# Titel, Erklärung, Widmung, Zusammenfassung, Abstract, Inhaltsverzeichnis und Kapitel 1 bis 5 (Seite 1-58)

Kapitel 6 (Seite 59-123)

| 7  | Gamr   | na-Ray-Spektrometer Untersuchung                      | 124 |
|----|--------|-------------------------------------------------------|-----|
| 8  | Gesa   | mtgesteins-Geochemie 1                                | 129 |
|    | 8.1    | Einleitung                                            | 129 |
|    | ð.Z    | metamorphe Prozesse                                   | 129 |
|    |        | 8.2.1 Verwitterung und Erosion 1                      | 129 |
|    |        | 8.2.2 Transport und Ablagerung 1                      | 130 |
|    |        | 8.2.3 Schwermineralfraktionierung                     | 130 |
|    |        | 8.2.4 Löslichkeitsprodukt der Elemente im Ozeanwasser | 130 |
|    |        | 8.2.5 Diagenese und Metamorphose                      | 130 |
|    |        | 8.2.6 Fazit                                           | 130 |
|    | 8.3    | Hauptelemente                                         | 131 |
|    | 8.4    | Spurenelemente                                        | 135 |
|    | 8.5    | Seltene Erden                                         | 143 |
|    | 8.6    | Ergebnisse der geochemischen Untersuchungen           | 147 |
| 9  | Interp | pretation                                             | 149 |
| 10 | Disku  | ission                                                | 161 |
| 11 | Dank   | sagung                                                | 172 |
| 12 | Litera | aturverzeichnis                                       | 173 |
|    |        |                                                       |     |

## Anhang

Lebenslauf

Beilage

# 7 Gamma-Ray-Spektrometer Untersuchung

#### Einleitung:

Bei der Anwendung der Gamma-Ray-Spektrometrie als Korrelationshilfe fielen als "Nebenprodukt" jeder Messung geochemische Werte an. Diese Daten sollen im folgenden Kapitel auf ihre Aussage hinsichtlich der Bildung von Petrofaziesgruppen und der Provenanzanalyse untersucht werden.

Um die quantitativen Ergebnisse der Gamma-Ray Messungen für Aussagen hinsichtlich der Provenanz oder der Klassifizierung der Herkunftsgesteine verwenden zu können, wurden in Abb. 7.1 die Ergebnisse von einigen gemessenen Sandsteinschichten mit den Ergebnissen der RFA (vgl. Kapitel 5 Geochemie) der gleichen Sandsteinschichten verglichen.



Abb. 7.1: Vergleich zwischen gemessenen Gamma-Ray-Werten einzelner Sandsteinschichten und den entsprechenden Proben der RFA dieser Sandsteinschichten. Betrachtet werden die Elemente U, Th und K.

Der Vergleich zeigt, dass die gemessenen Gamma-Ray-Spektrometerwerte annähernd die Werte der RFA replizieren können. Genauer betrachtet erkennt man, dass die gemessenen quantitativen Elementgehalte der Gamma-Ray-Spektrometer-Messung fast immer über denen der RFA-Messung liegen.

Bei dem Element Thorium ist diese Diskrepanz größer als bei Uran (Abb. 7.1a). Am besten schneidet der Vergleich zwischen den gemessenen Kalium- Werten ab (Abb. 7.1b). Hier liegen die Werte der Sandsteine nahe der Korrelationsgeraden, die für gleiche Elementgehalte bei den Messverfahren steht. Trotz dieser Messungenauigkeiten ist das Gamma-Spektrometer eine gute Geländemethode, um sich im Gelände einen schnellen Überblick über die gemessenen Elemente zu verschaffen (BAASKE, 1999). Die Daten der Gamma-Ray-Messung lassen sich aber aufgrund der schwankenden Fehler nicht mit den Daten der RFA kombinieren.

## Petrofaziesgruppen:

Da die Petrofaziesgruppen der Dünnschliffanalyse eine stratigraphische Abfolge kennzeichnen, habe ich den verschiedenen untersuchten Sandsteinschichten anhand ihrer stratigraphischen Stellung die jeweilige, für diesen Profilabschnitt vorherrschende Petrofaziesgruppe zugeordnet. Damit untersuchte ich, inwieweit die in der Leichtmineralanalyse gefundenen Petrofaziesgruppen durch die Gamma-Ray-Messungen bestätigt werden können.

Um gleiche Bedingungen wie bei der Leichtmineralanalyse zu schaffen, beschränke ich mich zunächst nur auf die Betrachtung der Sandsteindaten. Aufgrund der großen Datenmenge trage ich in die Diagramme nur die sich bildenden Felder gleicher Petrofazies ein (Abb. 7.2).



Abb.7.2: Verteilung der gemessenen chemischen Elemente der Gamma-Ray-Messung im Bezug zu den Petrofaziesgruppen der Leichtmineralanalyse. A) Kalium gegen Thorium. B) Kalium gegen Uran. Die Felder bezeichnen die Daten gleicher Petrofaziesgruppen und die Farbabstufungen zeigen in welchen Bereichen sich das Auftreten der Datenpunkte konzentriert. Helle Farben bezeichnen niedere Konzentrationen an Datenpunkten und dunkle Farben hohe Konzentrationen.

In Abb. 7.2 kann man erkennen, dass die Auernig-Formation sehr gut von der Hochwipfel-Formation unterschieden werden kann, da sie meist sehr niedere Kalium-, Uran- und Thorium-Gehalte hat. Die verschiedenen Petrofaziesgruppen der Hochwipfel-Formation können zunächst nicht klar unterschieden werden. Für die Diskriminierung der Petrofazies 1 sind zu wenig Sandsteinbänke gemessen worden, um eine ausreichende Datenmenge zu erhalten. Bei der näheren Betrachtung der Felder von Petrofazies 2 und 3 erkennt man einen ungefähren Trend von Petrofazies 2 zu Petrofazies 3. Während Petrofazies 2 noch relativ geringe Thoriumund Kalium- Gehalte besitzt, ändert sich dies zu erhöhten Gehalten in Petrofazies 3 (Abb. 7.2a und b). Es lassen sich jeweils 2 Bereiche diskriminieren, die von Petrofazies 2 oder 3 beherrscht werden. Dazwischen liegt ein mehr oder weniger breiter Übergangsbereich. Petrofazies 4 streut über den ganzen Bereich von Petrofazies 2 und 3. Innerhalb der Petrofazies 4 erkennt man eine Anhäufung der Datenpunkte im Bereich von niederen Kaliumund Thorium- Gehalten. Die Häufigkeit der Daten nimmt in Richtung höherer Kalium-, Thoriumund Uran- Werte ab.

Bei der Dünnschliffauswertung werden nur die Sandsteine einer bestimmten Korngröße ausgewählt (Mittelsand), um Korngrößen- und Sortierungseffekte auszuschließen. Bei der

Gamma-Ray-Messung hingegen ist die komplette Sedimentabfolge gemessen worden. Um auch einen Eindruck von den feinklastischen Sedimenten in Bezug zur Petrofaziesgruppierung zu bekommen, habe ich in einem weiteren Diagramm die Gamma-Ray-Werte in eine feinklastische Gruppe (Ton bis Silt) und eine grobklastische Gruppe (Sandsteine) unterteilt (Abb.7.3a und b).



Abb. 7.3: Verteilung der gemessenen chemischen Elemente Th und U aus der Gamma-Ray-Messung im Bezug zu den Petrofaziesgruppen der Leichtmineralanalyse. A) Silt- und Tonsteine der Hochwipfel-Formation. B) Sandsteine der Hochwipfel-Formation. Die Felder bezeichnen die Daten gleicher Petrofaziesgruppen und die Farbabstufungen zeigen in welchen Bereichen sich das Auftreten der Datenpunkte konzentriert. Helle Farben bezeichnen niedere Konzentrationen an Datenpunkten und dunkle Farben hohe Konzentrationen.

In Abb. 7.3 erkennt man, dass die Feinklastika allgemein höhere Thorium- Gehalte aufweisen als die Grobklastika, und die Petrofaziesdiskriminierung mittels der Gamma-Ray-Werte zeigt ein ähnliches Erscheinungsbild. Auch beim Betrachten der Gamma-Ray-Werte der Feinklastika kann man relativ gut zwischen Petrofazies 2 und 3 unterscheiden, während Petrofazies 4 über einen weiten Bereich streut. In Abb. 7.3b kann zusätzlich eine Zweiteilung der Petrofazies 3 in einen Bereich mit geringen Th-Gehalten und hohen Th-Gehalten erkannt werden.

Mit den Gamma-Ray-Messwerten der Grob- und Feinklastika kann man also bis zu einem gewissen Grad die Petrofaziesgruppenbildung der Lichtmineralanalyse bestätigen.

#### Provenanz:

Um die erhaltenen Gamma-Ray-Messwerte auch im Bezug zu ihrer Provenanzaussage zu untersuchen verwende ich ein Diskriminantendiagramm von MCLENNAN et al. (1993), das auf geochemische Analysen von Sandsteinen zurückgeht. MCLENNAN et al. (1993) betrachtete dabei das Thorium/Uran- Verhältnis gegen den Thorium-Gehalt. Anhand von verschiedenen rezenten Sedimenten aus Turbiditen unterschiedlicher tektonischer Milieus diskriminierte er Bereiche eines aktiven und passiven Kontinentalrandes. Außerdem kennzeichnet er einen Bereich, der aufgrund des niedrigen Th/U-Verhältnisses auf den Einfluss von Liefergesteinen aus einem verarmten Mantel schließen lässt. Niedrige Th/U- Verhältnisse sind nach TAYLOR & MCLENNAN (1985) für Forearc-Becken und meist für aktiven Vulkanismus kennzeichnend. Die Daten aus den Gamma-Ray-Messungen sind wieder in Petrofaziesgruppen-Felder untergliedert worden und jedes Feld in ein separates Diagramm übernommen worden (Abb. 7.4). Jede Petrofaziesgruppe tendiert in Richtung hoher Th/U- Verhältnisse, was nach MCLENNAN et al. (1990) ein normales Verwitterungsphanomen darstellt und auf Aufarbeitung sedimentärer

Gesteine unter oxidischen Bedingungen hinweist. Dabei oxidieren U<sup>4+</sup> Ionen zu U<sup>6+</sup> Ionen, welche leichter lösbar und transportierbar sind. Das führt dazu, dass das Th/U- Verhältnis während der Sedimentation ansteigt (MCLENNAN et al., 1993). Jede Petrofaziesgruppe sowie der Bereich der Auernig-Formation liegt zum Teil im Feld des aktiven Kontinentalrandes und des verarmten Mantels und geht dann über in das Feld des passiven Kontinentalrandes oder

liegt neben diesem. Die einzelnen Petrofaziesgruppen unterscheiden sich in diesen Diagrammen also nicht



Abb. 7.4: Diagramm Th/U gegen Th mit Diskriminantenfeldern für moderne Turbidite verschiedener tektonischer Milieus nach MCLENNAN et al. (1990). Dargestellt sind die Felder der einzelnen Petrofaziesgruppen 1 bis 4 und der Auernig-Formation im Uhrzeigersinn vom Liegenden ins Hangende.

wesentlich hinsichtlich ihrer Provenanz. Dies entspricht nicht den Ergebnissen der Leichtmineralanalyse, in der sich die Provenanz der einzelnen Petrofaziesgruppen relativ stark unterscheidet. Hinsichtlich der Provenanz scheinen die gemessenen Gamma-Ray-Werte also keine sinnvollen Ergebnisse zu liefern.

#### Fazit:

Hinsichtlich der Bildung von Petrofaziesgruppen und der Provenanzanalyse mit Hilfe der geochemischen Daten aus der Gamma-Ray-Spektrometrie kann man folgendes feststellen. Die Hochwipfel-Formation kann von der Auernig-Formation klar unterschieden werden, was im Gelände nicht immer sofort möglich ist. Man kann zusätzlich mit den Daten der Gamma-Ray-Spektrometrie teilweise die Petrofazieseinteilung der Leichtmineralanalyse für Sandsteine nachvollziehen. Die gebildeten Petrofaziesgruppen bleiben zum größten Teil erhalten und zeigen nur für Petrofazies 4 keine Übereinstimmung. Der Bereich, den Petrofazies 4 in den Diagrammen einnimmt ist, weitgestreut und deckt auch die Bereiche von Petrofazies 2 und 3 ab. Das liegt höchst wahrscheinlich am höheren Gehalt der Lithoklasten und der Pseudomatrix

in den Sandsteinen. Die Lithoklasten der Petrofazies 4 setzen sich zum Einen aus einem höheren Gehalt an Vulkanoklasten aber auch aus vielen sedimentären und metamorphen Gesteinsbruchstücken zusammen (vgl. Tab. 6.1). Bei genauerer Betrachtung der Dünnschliffdaten erkennt man, dass hohe Anteile an vulkanischen Gesteinsbruchstücken meist mit einem erniedrigten Anteil an metamorphen und sedimentären Gesteinsbruchstücken meist Auftreten von vulkanischen Gesteinsbruchstücken für ein niedriges Th/U- Verhältnis, während hohe Th/U- Verhältnisse auf aufgearbeitete Gesteine und damit ein erhöhtes Auftreten von sedimentären und metamorphen Lithoklasten hinweisen. Dies erklärt den weiten Bereich den Petrofazies 4 in den Diagrammen mit den Gamma-Ray-Werten einnimmt, da die Zusammensetzung der Sandsteine von Petrofazies 4 so heterogen ist.

Ein weiteres Ergebnis ist, dass es keine gravierenden Unterschiede in der Verteilung der Petrofaziesgruppen zwischen den Grobklastika und den Feinklastika der Gamma-Ray-Messung gibt. Die Gamma-Ray-Messung bestätigt diese Gruppen auch für Ton- und Siltsteine. Mit den geochemischen Werten der Gamma-Ray-Messung kann man also im Idealfall schon im Gelände erkennen, ob sich aus der Zusammensetzung der Sandsteine eine Gruppierung in verschiedene Petrofaziesgruppen ergibt.

Das gute Ergebnis der Gamma-Ray-Messwerte für die Petrofaziesgruppen-Klassifizierung kann meiner Meinung nach nicht auf die Provenanzanalyse übertragen werden. Die einzelnen Petrofaziesgruppen zeigen im Diagramm von MCLENNAN et al. (1993) keine Differenzierung in unterschiedliche Provenanzfelder, wie das nach der Leichtmineralanalyse zu erwarten wäre.

# 8 Gesamtgesteins-Geochemie

## 8.1 Einleitung

Verschiedene tektonische Konstellationen produzieren gewöhnlich verschiedenartige magmatische Suiten (BONIN et al., 1993). Durch Erosion gelangen Fragmente dieser Magmatite sowie in Orogenen vorkommende Metamorphite, als Lithoklasten und Mineralkomponenten in die jeweiligen Sedimentationsräume. In Sedimenten können deshalb geochemische Gesamtgesteinsuntersuchungen den Chemismus dieser Komponenten sowie die in der Matrix eines Sandsteines befindlichen Spuren dieser Ausgangsgesteine widerspiegeln. Die Analyse der Haupt- und Nebenelemente erlaubt so Rückschlüsse auf die Geologie des Herkunftsgebietes (MCLENNAN et al., 1993). Geochemische Gesamtgesteinsanalysen vervollständigen und ergänzen deshalb die petrographischen Analysen (MCLENNAN et al., 1993).

# 8.2 Änderung der Elementgehalte durch exogene, diagenetische und metamorphe Prozesse

## 8.2.1 Verwitterung und Erosion

Lösung und Mobilisierung während der verschiedenen sedimentären und postsedimentären Prozesse verändern vor allem die Gehalte der mobilen lithophilen Elemente (LiL=large ion lithophils) und der Hauptelemente. Der bestimmende Faktor ist hierbei ihre Löslichkeit in wässrigen Lösungen bei Verwitterungsbedingungen. Diese Löslichkeit wird durch das jeweilige Ionenpotential bestimmt. Bei hohem und niedrigen Potential neigen die Elemente dazu, mit den Wassermolekülen wasserlösliche Kationen- oder Anionenkomplexe einzugehen, die dann relativ leicht weggeführt werden können. Elemente mit mittlerem Ionenpotential bilden hingegen wasserunlösliche Hydroxide und fallen aus. Sie verbleiben also im System. Diese relativ immobilen Elemente gehören zur Aluminiumgruppe (Al, Ga), zur Titangruppe (Ti, Zr, Hf), zur Gruppe der Seltenen-Erden (REE) und zur Gruppe mit Ionen hoher Wertigkeiten (Sc, Y, Th, Nb) (TAYLOR & MCLENNAN, 1985). Von diesen immobilen Elementen wird angenommen, dass sie quantitativ vom Liefergebiet in das Sediment überliefert werden (TAYLOR & MCLENNAN, 1985; FLOYD et al., 1991B; MCLENNAN et al. 1993). Alkali- und Erdalkalielemente sind unter Verwitterungsbedingungen löslich. Allerdings werden größere Kationen wie Rb, Cs und Ba zurückgehalten, da sie durch Tone eingefangen werden. Ein Maß für die Verwitterung ist durch den chemischen Verwitterungsindex CIA nach NESBITT & YOUNG (1982) gegeben (KRAWINKEL et al., SUBMITTED). Der CIA-Index setzt sich aus:

## $CIA=[AI_2O_3/(AI_2O_3+CaO+Na_2O+K_2O)]\bullet 100$

zusammen.

Im Verhältnis des stabilen Aluminiums zu den mobilen Alkali- und Erdalkalielementen zeigt sich die während der Verwitterung stattfindende Umwandlung von Feldspäten zu Tonmineralen. Nash MCLENNAN et al. (1993) weisen unverwitterte Gesteine, wie frischer Granit, CIA-Werte um die 50 auf. Die CIA-Werte könne bei starker Verwitterung, wie zum Beispiel bei Tonen, bis auf 100 ansteigen. Für die Sandsteine der Hochwipfel-Formation liegt dieser Wert durchschnittlich bei 67. Dies entspricht einer geringen bis moderaten Verwitterung der Ausgangsgesteine (NESBITT & YOUNG, 1982; FLOYD et al., 1991B; MCLENNAN et al., 1993). Dies wird auch durch die semiquantitativen Ergebnissen der Leichtmineralanalyse nach WELTJE (1994) (Abb. 6.7) bestätigt.

Aus dem Verwitterungsindex ist daher abzuleiten, dass der Modalbestand der Hochwipfel-Sandsteine nicht oder nur in geringem Maße durch Verwitterungsprozesse modifiziert wurde. Mögliche diagenetische Beeinflussungen des Modalbestandes sind aber damit nicht auszuschließen (KRAWINKEL et al., SUBMITTED).

## 8.2.2 Transport und Ablagerung

Der Transport der Komponenten aus einem Liefergebiet in einen Ablagerungsraum ist durch die Faktoren spezifisches Gewicht, Korngrößenverteilung, Kornform und Transportmedium bestimmt. Nach WIMMENAUER (1985) zeigt sich bei Abnahme der durchschnittlichen Korngröße in den Sedimenten eine Abnahme des SiO<sub>2</sub>-Gehaltes. Dies hängt mit dem zunehmenden Austausch von Quarz und Feldspat durch Tonminerale bei den feineren Sedimenten zusammen. Alkali- und Erdalkalielemente zeigen durch Fraktionierungsvorgänge während der Verwitterung oftmals korngrößenbedingte Zu- oder Abnahmen in den Sedimenten (vgl. Abb. 7.2). Andere Elemente sind dagegen relativ unabhängig von Korngrößenunterschieden. Dazu gehören nach MCLENNAN et al. (1993) die La/Th und La/Sc- Elementverhältnisse. Korngrößenunterschiede spielen im Falle der analysierten Sandsteine der Hochwipfel-Formation keine Rolle, da ausschließlich Sandsteine im Bereich des Mittelsandes analysiert wurden.

#### 8.2.3 Schwermineralfraktionierung

Schwerminerale sind als Spurenelementträger bekannt und sind damit die wichtigsten Lieferanten von geochemischen Signalen. Da sich Schwerminerale aufgrund ihres spezifischen Gewichtes und der Verwitterungsbeständigkeit in klastischen Sedimenten anreichern können, muss man eine Beeinflussung des ursprünglichen Stoffbestandes durch die Schwerminerale in Betracht ziehen und berücksichtigen. Der Effekt der Schwermineralanreicherung hält sich vermutlich aber bei der Hochwipfel-Formation ebenfalls durch die einheitliche Korngröße der Probenauswahl in Grenzen.

## 8.2.4 Produkte gelöster Elemente und Mineralkomplexe im Ozeanwasser

Die Aufnahmekapazität und Verweildauer von gelösten chemischen Elementen (Hydroxide) im Meerwasser bestimmt die An- oder Abreicherung dieser Elemente in den klastischen, marinen Sedimenten. Gut lösliche Hauptelemente wie Kalium, Calcium, Magnesium und Natrium weisen nach TAYLOR & MCLENNAN (1985) sehr lange, Silizium dagegen mittlere Verweilzeiten im Meerwasser auf. Dementsprechend haben die schwer löslichen Elemente (REE, Sc, Th, Al, Fe) kurze Verweilzeiten, da die durchschnittlichen Konzentrationen im Meerwasser sehr gering sind. Bei starkem Eintrag dieser Elemente aus dem Liefergebiet stellt sich deshalb, im Gegensatz zu den leicht löslichen Elementen, sehr schnell ein ausgeglichenes Löslichkeitsprodukt ein. Es fallen die Hydroxidkomplexe aus und werden in die Sedimente eingebaut oder die Elemente werden von vorne herein in fester Phase in die Ablagerungsräume überführt (MCLENNAN, 1989).

Diesem, für die leichtlöslichen Elemente, negativen Effekt, wirkt allerdings eine schnelle Sedimentation aus einem nahen Liefergebiet mit starkem Relief entgegen, da die Verweildauer im Transportsystem kurz war. In diesem Fall haben die Lösungsprozesse während des Transportes keine Möglichkeit, das Ausgangsmaterial stark zu verändern und die enthaltenen leichtlöslichen Elemente in lösliche Komplexe zu überführen. Dies ist vermutlich in den meisten analysierten Ablagerungen der Hochwipfel-Formation der Fall (vgl. Kap. 6.2.2.1; Kap. 8.2.1).

## 8.2.5 Diagenese und Metamorphose

Die Geochemie der Sedimentgesteine erfährt während der Diagenese und Metamorphose Veränderungen, die durch wechselnde Druck-, Temperatur- und PH-Bedingungen hervorgerufen werden. Dabei muss beachtet werden, dass Elemente nicht nur gelöst und weggeführt, sondern auch vom System aufgenommen werden können. Die mobilen Elemente sind anfällig für diese Bedingungen und zeigen eine erhöhte Mobilität. Aluminium und die immobilen Spurenelemente wie Zr, Y, Nb, Ga und Sc sowie der REE sind gegenüber metamorpher Prozesse beständig (TAYLOR & MCLENNAN, 1985).

#### 8.2.6 Fazit

Aus den vorangegangenen Punkten lässt sich ableiten, dass zur geochemischen Rekonstruktion der Liefergebiete von Sedimentgesteinen besser auf immobile Elemente zurückgegriffen werden sollte. Diese gewährleisten eine quantitative Überführung ihrer

Elementgehalte vom Liefergebiet zum Sedimentgestein. In der Literatur werden jedoch weiterhin mobile Elemente zur Diskriminierung geotektonischer Provinzen verwendet (BHATIA, 1983; ROSER & KORSCH, 1986; ROSER & KORSCH, 1988), da sie einen ersten Überblick geben und trotz aller Bedenken relativ gute und replizierbare Ergebnisse bringen. Je geringer der Verwitterungsgrad des Ausgangsgesteins ist, desto besser und gesicherter sind die Ergebnisse der Provenanzanalyse mit Hilfe der mobilen Elemente. Da dies im Fall der Sandsteine der Hochwipfel-Formation zutrifft, werden auch die mobilen Elemente provenanzanalytisch betrachtet.

#### 8.3 Hauptelemente

Der durchschnittliche SiO<sub>2</sub>-Gehalt der Hochwipfel-Sandsteine liegt bei 69,5%, der durchschnittliche Al<sub>2</sub>O<sub>3</sub>-Gehalt bei 11,9% und der durchschnittliche Fe<sub>2</sub>O<sub>3</sub>-Gehalt bei 4,9% (Anhang 7). Die restlichen analysierten Elemente liegen unter 3%. Bei den Auernig-Sandsteinen ist ein deutlicher Anstieg der SiO<sub>2</sub>-Werte zu verzeichnen (83,2%), währende der Aluminium-Gehalt bei 6,9% liegt und die restlichen Elemente Gehalte unter 2% an der Gesamtgesteinschemie besitzen.

#### Sandsteinklassifikation:

Nach CROOK (1974) können die Sandsteine chemisch nach ihrem Quarzgehalt klassifiziert werden. Das Verhältnis von Kalium und Natrium spiegelt das Auftreten verschiedener Minerale (Plagioklas, Kalifeldspat, Glimmer, Tonminerale, etc.) wider, die für quarzreiche oder quarzarme Sandsteine kennzeichnend sind. Die Hochwipfel-Formation besitzt demnach Gesteine mit mittlerem Quarzgehalt (KRAWINKEL et al., SUBMITTED), während die Auernig-Formation aus quarzreichen Gesteinen aufgebaut wird (Abb. 8.1).

HERRON (1988) und WIMMENAUER (1984) haben für die geochemische Klassifizierung von Sandsteinen weitere Diagramme eingeführt, die auf der Chemie der Hauptelemente beruhen.



Abb. 8.1: Klassifikation des Quarzanteils nach CROOK (1974).

Bei dem Klassifikationsdiagramm nach HERRON (1988) fällt der überwiegende Anteil der Proben der Hochwipfel-Sandsteine in das Feld der Wacken und Litharenite, während die Proben der Auernig-Sandsteine hohe Silizium/ Aluminium-Verhältnisse aufweisen und deshalb in die Felder der Subarkosen und Sublitharenite tendieren (Abb. 8.2a). Nach dem Diagramm von WIMMENAUER (1984) fallen die Proben der Hochwipfel-Formation fast ausschließlich in das Feld der Litharenite und quarzreichen Litharenite (Abb. 8.2b). Die beiden Diagramme bestätigen zum größten Teil die Ergebnisse des McBride-Diagramms der Dünnschliffanalyse. Eine weitere Diskriminierung in verschiedene Petrofaziestypen ist damit allerdings nicht möglich.



#### <u>Provenanz</u>

Verschiedene Autoren (CROOK, 1974; BHATIA, 1983; ROSER & KORSCH, 1986; ROSER & KORSCH, 1988; FLOYD et al., 1991B etc.) versuchten, anhand der Geochemie von rezenten und phanerozoischen Sedimenten, Diskriminantenfelder einzuteilen, die sie als Grundlage für die Provenanzanalyse benutzten.



Abb. 8.3: Diskriminanten-Diagramm zur geochemischen Charakterisierung von Sandsteinen nach ROSER & KORSCH (1988). F1 =  $[TiO_2/Al_2O_3 \times 30.638] + [Fe_2O_3/Al_2O_3 \times -12.541] + [MgO/Al_2O_3 \times 7.329] + [Na_2O/Al_2O_3 \times 12.031] + [K_2O/Al_2O_3 \times 35.402] + Constant = -6.382; F2 = [TiO_2/Al_2O_3 \times 56.500] + [Fe_2O_3/Al_2O_3 \times -10.879] + [MgO/Al_2O_3 \times 30.875] + [Na_2O/Al_2O_3 \times -5.404] + [K_2O/Al_2O_3 \times 11.112] + Constant = -3.890.$ 

Aufgrund der Hauptelementverteilung lässt sich das Liefergebiet der Hochwipfel-Sandsteine im Diskriminantenfunktionsdiagramm nach ROSER & KORSCH (1988) als intermediäre, magmatische Provinz kennzeichnen (Abb. 8.3). Der Großteil der Auernig-Sandsteine fällt aus dem gewählten Diagrammbereich heraus. Ihre hohen positive Diskriminantenfunktions- Werte weisen aber auf eine aufgearbeitete Provinz hin.

Im Diagramm von ROSER & KORSCH (1986) werden den Siliziklastika aufgrund der Elementverhältnisse K<sub>2</sub>0/Na<sub>2</sub>O gegen SiO<sub>2</sub> verschiedene Provenanzen zugeordnet. In diesem Diagramm liegen alle Proben der Hochwipfel-Formation im Feld des aktiven Kontinentalrandes (KRAWINKEL et al., SUBMITTED) (Abb. 8.4); wobei Gesteine mit einem relativ hohen K<sub>2</sub>0/Na<sub>2</sub>O Verhältnis und niederen SiO<sub>2</sub>-Gehalten aus komplexen aktiven Kontinentalrand-Bereichen stammen. Diese können sowohl durch Subduktions-, aber auch durch Seitenverschiebungs-Prozesse gekennzeichnet sein (ROSER & KORSCH, 1986).



Abb. 8.4: SiO<sub>2</sub> K<sub>2</sub>O/Na<sub>2</sub>O - Verhältnisse in den karbonen Sedimenten der Ostkarawanken. Diskriminantenfelder der tektonischen Stellung nach ROSER & KORSCH. (1986).

Die Aussage des Diagramms von ROSER & KORSCH (1986) wird in den Diagrammen von BHATIA (1983) bestätigt (Abb. 8.5). In allen Diagrammen fallen die Proben der Hochwipfel-Formation in das Feld oder den Bereich des aktiven Kontinentalrandes bzw. des kontinentalen magmatischen Bogens. Die Auernig-Sandsteine plotten dabei in den Abbildungen 8.5a und b in die Felder des passiven Kontinentalrandes, während sie in Abbildung 8.5c nicht mehr im sichtbaren Diagrammbereich liegen.

Diese Ergebnisse zeigt auch das Diagramm von BHATIA & CROOK. (1986) (Abb. 8.6). In den bisherigen Provenanzdiagrammen konnte man keine Gruppierung der Proben in die Petrofaziesgruppen der Leichtmineralanalyse erkennen. Im SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> gegen K<sub>2</sub>O/Na<sub>2</sub>O – Diagramm von BHATIA & CROOK (1986) ist zum ersten Mal wieder eine schwache Differenzierung in die Petrofaziesgruppen zu erkennen (Abb. 8.6). Eine Aluminiumreiche Gruppe und eine Aluminiumarme Gruppe ist unterscheidbar. Diese Gruppen entsprechen den Petrofaziesgruppen der unteren (Petrofazies 1 und 2) und der oberen (Petrofazies 3 und 4) Hochwipfel-Formation. Die untere Hochwipfel-Formation hat höhere Silizium- und niedere Aluminiumgehalte, während sich die Al- und Si-Verhältnisse der oberen Hochwipfel-Formation reziprok dazu verhalten. Wahrscheinlich spiegelt sich hier der erhöhte Lithoklasten- und niedere Quarzgehalt der Sandsteine der oberen Hochwipfel-Formation wider (vgl. Kap. 6.3). Die obere Hochwipfel-Formation fällt überwiegend in den Bereich eines differenzierten magmatischen Bogens, während die untere Hochwipfel-Formation in die Felder des aktiven und passiven Kontinentalrandes plotten.



Abb. 8.5: Diagramme ( $Al_2O_3/SiO_2$ , TiO<sub>2</sub>, CaO/Na<sub>2</sub>O gegen Fe<sub>2</sub>O<sub>3</sub> + MgO) der Hauptelementzusammensetzung von Sandsteinen mit Diskriminantenfelder der tektonischen Stellung nach BHATIA (1983), A = Ozeanischer Inselbogen, B = Kontinentaler Inselbogen, C = aktiver Kontinentalrand, D = passiver Kontinentalrand. Die graue Ziffern bezeichnen Probennummern mit verstärktem mafischem Einfluss.



Abb. 8.6: SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> - K<sub>2</sub>O/Na<sub>2</sub>O - Verhältnisse in den karbonen Sedimenten der Ostkarawanken. Diskriminantenfelder der Situation nach BHATIA & CROOK (1986). Die graue Ziffern bezeichnen Probennummern mit verstärktem mafischem Einfluss.

Betrachtet man nur die Nebenelemente (Ca, Na, K), wie das BHATIA (1983) und TOULKERIDIS et al. (1999) getan haben, dann werden die Ergebnisse der Hauptelemente wieder bestätigt (Abb. 8.7). Der überwiegende Teil der Hochwipfel-Sandsteine fällt in den Bereich des kontinentalen magmatischen Bogens und des aktiven Kontinentalrandes. Nur wenige Proben der Hochwipfel-Formation fallen in das Feld des primitiven magmatischen Bogens, während die Sandsteine der Auernig-Formation sehr einheitlich in das Feld des passiven Kontinentalrandes plotten.



Abb. 8.7: Ternäres CaO-Na<sub>2</sub>O-K<sub>2</sub>O Diagramm nach TOULKERIDIS (1999). Diskriminantenfelder des tektonischen Settings nach BHATIA (1983).

die Ergebnisse der Haupt- und Nebenelemente zeigen sehr homogene Ergebnisse in Bezug auf die Provenanzanalyse. Mit dieser Methode kann aber keine differenziertere Aussage im Hinblick auf Provenanzänderungen innerhalb der stratigraphischen Abfolge getroffen werden.

#### 8.4 Spurenelemente

Spurenelemente ermöglichen eine bessere und gesichertere Aussagekraft über die Provenanz als die Hauptelemente (MCLENNAN et al., 1993; FLOYD et al., 1991B). Aufgrund der Immobilität der meisten Spurenelemente reichern sich in Abhängigkeit vom Liefergebiet und der Anzahl von Umlagerungszyklen bestimmte Elemente in spezifischen Verhältnissen an oder ab. Somit beinhalten diese Elemente auch eine Information über den Grad der Aufarbeitung und Verwitterung der Sedimente.

#### Sedimentaufarbeitung

In einem Diagramm von MCLENNAN et al. (1990) werden Sandsteine hinsichtlich des Th/Sc gegen Zr/Sc – Verhältnisses untersucht (Abb. 8.8). Dieses Verhältnis beschreibt, wie oft die Komponenten aufgearbeitet wurden, bevor sie endgültig abgelagert wurden. In rezenten Turbiditen unterschiedlicher tektonischer Stellungen zeigt sich eine Anreicherung von Zirkon und Thorium in den Sedimenten des passiven Kontinentalrandes. Dies spiegelt die Anreicherung des ultrastabilen Schwerminerals Zirkon in mehrfach umgelagerten Sedimenten wider. Da in Zirkonen auch Thorium eingebaut ist, wird dieses Element ebenfalls angereichert (MCLENNAN et al., 1993). Dagegen werden Sedimente von aktiven Kontinentalrändern geringer von Verwitterungs-, Transport- und Diageneseprozessen beeinflusst und zeigen eine einfache, lineare Korrelation der Elementverhältnisse Th/Sc und Zr/Sc. In diesem Fall werden die Elementverhältnisse von kompositionellen Unterschieden im Liefergebiet (MCLENNAN et al., 1990) bestimmt.

Die untersuchten Sandsteine der Hochwipfel-Formation liegen in diesem Diagramm fast alle auf einer Linie. Die meisten Proben zeigen keine signifikante Anreicherung an Zirkon, was darauf deutet, dass die Elementverhältnisse Th/Sc und Zr/Sc in erster Linie durch die Liefergebiete und die daraus stammenden Komponenten gesteuert werden und nicht durch die Aufarbeitung von Sedimenten. Allerdings liegen einige Proben zum Teil im Übergangsbereich, was auch eine geringe Anreicherung von Zirkon durch Aufarbeitung vermuten lässt.



Abb. 8.8: Th/Sc gegen Zr/Sc -Diagramm für die Sandsteine der Hochwipfel- und Auernig-Formation. Verändert nach MCLENNAN et al. (1990).

TOTTEN et al. 2000 stellen ein ähnliches Diagramm vor, indem sie, anhand des Thorium/Scandium- Verhältnisses, in eine kontinentale Signatur oder eine mafische Signatur unterteilen (Abb. 8.9). Th/Sc-Verhältnisse größer als 1,0 sind typisch für die Abtragung oder Umlagerung von oberer kontinentaler Kruste, während Th/Sc-Verhältnisse unter 0,6 auf eine mafische Komponente und wenig Aufarbeitung hinweisen.

Die Proben der Hochwipfel-Formation fallen meist in den Bereich der Th/Sc-Verhältnisse unter 1,0 (Abb. 8.9). Ein größerer Teil der Probenpunkte vermittelt dabei zwischen Proben mit einer mafischen Signatur und wenigen Proben mit einer kontinentalen Signatur. Die Sandsteine der Auernig-Formation fallen in den Bereich mit kontinentaler Signatur. Einige Sandsteine in Abbildung 8.9 mit mafischer Signatur entsprechen den Proben, die in den Abbildungen 8.5 und 8.6 in den Bereich eines wenig differenzierten magmatischen Bogens fallen (P 59/3, P 57/10, P 16/4, P 24/3, P 18/7, P 58/6). Trotz der stärkeren Anfälligkeit für Diagenese- und Metamorphoseereignisse und erhöhte Lösbarkeit im Vergleich zu den immobilen Spurenelementen bestätigen die angewendeten Provenanzdiagramme für Hauptelemente den Einfluss eines Liefergebietes mit mafischen Ausgangsgesteinen.



#### Signaturen vulkanischer Klasten in den Sedimenten

Geochemische Klassifizierungen von Magmatiten hinsichtlich ihrer geodynamischen Herkunft erfolgten schon immer mittels Diskriminantenfeldern von Spurenelementen. RAVNAS & FURNES (1995) stellten fest, dass in den entsprechenden Sedimenten die Spurenelement-Signaturen dieser Magmatite erhalten blieben. Meist handelte es sich bei den untersuchten Elementen um immobile Elemente, die in den häufig vertretenen magmatischen Lithoklasten der Sedimente enthalten sind (RAVNAS & FURNES, 1995).

In den Diagrammen der Abbildung 8.10 wurden unterschiedliche Elementkombinationen und Verhältnisse aus der magmatischen Petrographie nach PEARCE (1980), SHERVAIS (1982) und MULLEN (1983) auf die Hochwipfel-Sandsteine angewandt. Die Sandsteine der Hochwipfel-Formation fallen dabei zum größten Teil in das Feld der Inselbogenbasalte und Intraplattenoder Back-Arc- Basalte (Abb.8.10a bis c). In den Sedimenten sind also möglicherweise noch Signaturen eines Inselbogen- oder/und Intraplattenvulkanismuses vorhanden.



Abb. 8.10: Sandsteine in Diskriminanten-Diagrammen magmatischer Gesteine mit ihren plattentektonischen Provinzen. Diskriminantenfelder nach a) MULLEN (1983), b) PEARCE (1980) und c) SHERVAIS (1982).

Anhand der Signaturen der magmatischen Komponenten und der Anreicherung von verschiedenen Elementen bei der Sedimentation entwickelten MCLENNAN et al. (1990) und FLOYD et al. (1991B) Diagramme, die eine Verbindung zwischen dem sedimentierten Material, den Sedimentationsprozessen und der Provenanz herstellen. Dabei wurde eine große Bandbreite von rezenten und phanerozoischen Sedimenten bekannter plattentektonischer Provinzen berücksichtigt.



Abb. 8.11: Th/U - Th Diagramm für moderne Turbidite verschiedener tektonischer Stellungen. Während der Verwitterung gibt es ein Trend der Th/U- Erhöhung über die Werte der oberen magmatischen Kruste von 3,5 bis 4. Es wird vermutet, dass niedere Th/U Verhältnisse normalerweise bei aktiven Kontinentalrändern zu sehen ist. Vor allem, wenn sie durch geringe Th- und U-Anreicherungen begleitet werden. Dies deutet auf eine geochemisch verarmte Mantelquelle einer Inselbogenprovenanz hin (MCLENNAN et al., 1990).

MCLENNAN et al. (1990) diskriminiert anhand der Th/U gegen Th - Verhältnisse, in einen passiven und aktiven Kontinentalrand (Abb. 8.11). Außerdem berücksichtigt er in dieser Abbildung einen theoretischen Verwitterungstrend für Turbidite und schließt anhand des Th/U-Verhältnisses auf ein Feld mit Herkunftsgesteinen aus einer verarmten Mantelprovinz. Die Th/U-Werte der Hochwipfel-Formation liegen zum größten Teil unter den Werten der oberen magmatischen Kruste und fallen in das Feld des verarmten Mantelbereichs. Die Sandsteine der Hochwipfel-Formation folgen in diesem Diagramm nicht oder nur sehr undeutlich dem vorgegebenen Verwitterungstrend und der überwiegende Teil der Sandsteine liegt im Feld des aktiven Kontinentalrandes (Abb. 8.11). Das bestätigt die Annahme, dass die geochemische Zusammensetzung der Hochwipfel-Sandsteine nur gering von Verwitterungsprozessen beeinflusst wurde. Außerdem deutet die Vielzahl an Proben, die in den Bereich des verarmten Mantels plotten wieder darauf hin, dass in einem Liefergebiet der Hochwipfel-Formation auch mafische Ausgangsgesteine abgetragen wurden (vgl. Abb. 8.9). Die meisten Auernig-Sandsteine besitzen hohen Th/U-Verhältnisse und liegen im Bereich der oberen Kruste. Zwei plotten in den Bereich des aktiven Kontinentalrandes, während die restlichen Proben mit Th/U-Verhältnissen über 8 aus dem gewählten Diagrammbereich herausfallen.

FLOYD et al. (1991B) unterscheidet aufgrund der La/Th gegen Hf – Verhältnisse von Sandsteinen in verschiedene Liefergebietszusammensetzungen (Abb. 8.12). In diesem Diagramm liegt der überwiegende Teil der Hochwipfel-Sandsteine im Feld der saueren Inselbogen Quelle und zeigt nur geringe Hinweise auf aufgearbeitete Sedimentkomponenten (Abb. 8.12). Nur eine Probe der Hochwipfel-Formation tendiert in Richtung eines passiven Kontinentalrandes. Die einzige untersuchte Auernig Probe hat Hf-Werte von 25 ppm und fällt damit sehr weit in den Bereich des passiven Kontinentalrandes.



Abb. 8.12: Hf gegen La/Th -Diagramm zur Diskrimination von klastischen Sedimenten hinsichtlich ihres Liefergebiets und ihrer Zusammensetzung nach FLOYD et al. (1991B).

#### **Provenanz**

Bhatia (1985) klassifizierte aufgrund des Verhältnisses von Lanthan und Thorium drei plattentektonische Provinzen für paläozoische Grauwacken. Nach BHATIA (1985) besteht ein Zusammenhang zwischen dem La/Th-Verhältnis und der Quelle des gelieferten Sediments.

Je höher das La/Th-Verhältnis ist, desto mehr wird das Liefergebiet vom Einfluss eines magmatischen Bogens geprägt. Die Proben der Hochwipfel-Formation besitzen relativ hohe



La/Th- Verhältnisse (ca. 4) und plotten deshalb in diesem Diagramm in den Bereich des ozeanischen und kontinentalen magmatischen Bogens (Abb. 8.13). Der einzige untersuchte Auernig-Sandstein fällt in das Feld des aktiven und passiven Kontinentalrandes und grenzt sich gut von den Hochwipfel-Sandsteinen ab.

und Th verhalten sich La während magmatischer und sedimentärer Prozesse ähnlich (MCLENNAN et al., 1993). Nach BHATIA & CROOK (1986) sinkt das La/Th Verhältnis der Litharenite kontinuierlich von etwa 4,2 bei ozeanischen magmatischen über 2,4 kontinentalen Bögen, bei magmatischen Bögen, zu 1,8 bei aktiven Kontinentalrändern.

Abb. 8.13: La/Th – Klassifikationsdiagramm von Sandsteinen nach BHATIA (1985). Die einzelne Dismriminantenfelder wurden auf der Datengrundlage verschiedener phanerozoischer und rezenter Litharenite gebildet. ACM + PM = Aktiver und passiver Kontinentalrand; CIA = kontinentaler magmatischer Bogen; OIA = ozeanischer magmatischer Bogen. Die Litharenite lassen sich auch aufgrund des gleichzeitig von 0,55 bis zu 4 steigenden La/Sc-Verhältnisses deutlicher klassifizieren (GÜLDENPFENNIG, 1997). In diesem Verhältnis spiegelt sich auch der steigende Differentationsgrad der einzelnen geotektonischen Positionen wider. Im La-Th-Sc Dreieck können Litharenite aktiver und passiver Kontinentalränder nicht voneinander getrennt werden. Im Th-Sc-Zr/10 Dreieck ist diese Unterscheidung dagegen aufgrund der hohen Zr/Th -Verhältnisse passiver Kontinentalränder möglich (GÜLDENPFENNIG, 1997). Die Sandsteine der Hochwipfel-Formation liegen in beiden Diagrammen überwiegend im Feld der kontinentalen magmatischen Bögen (Abb. 8.14 a und b). Nur ein geringer Anteil fällt in den Bereich eines aktiven oder passiven Kontinentalrandes. Die Auernig-Sandsteine fallen entweder in das Feld des passiven Kontinentalrandes, liegen im Grenzbereich zum kontinentalen magmatischen Bogen oder plotten in dieses Feld (Abb.8.14 a und b).



Abb. 8.14: Spurenelementdiagramme a) ThScZr/10- Diagramme der Hochwipfel-Sandsteine mit Provenanzfeldern nach BHATIA & CROOK. (1986). b) LaThSc- Diagramme der Hochwipfel-Sandsteine mit Provenanzfeldern nach BHATIA & CROOK (1986). C) ThScZr/10- Diagramme der Hochwipfel-Sandsteine mit Provenanzfeldern nach MCLENNAN et al. (1990).

MCLENNAN et al. (1990) erstellten für rezente Turbidite aus 33 Lokalitäten des Pazifiks, des Atlantiks und des Indischen Ozeans ebenfalls ein Dreicksdiagramm mit den Spurenelementen Th, Sc und Zr. Sie konnten aufgrund der großen Datenmenge, die auf verschiedene Gebiete verteilt war, sechs plattentektonische Konfigurationen diskriminieren (Abb. 8.14c). Die einzelnen Diskriminantenfelder überlappen sehr stark. Dieser starke Überlappungsbereich entspricht nach

FLOYD et al. (1991B) den verschiedenen möglichen plattentektonischen Konfigurationen an einem aktiven Kontinentalrand. Die Unterscheidung in klar voneinander differenzierte Provenanzfelder und plattentektonischen Provinzen wird durch die oftmals ähnlichen Ablagerungen, Sedimente und Komponentenbestandteile an aktiven Kontinentalrändern erschwert und ist in der Natur eher unwahrscheinlich (FLOYD et al., 1991B). Im Diagramm Abb. 6.14c überschneiden sich besonders die Felder des aktiven Kontinentalrandes und des Back-Arc-Bereichs sehr stark. Der überwiegende Teil der Hochwipfel-Sandsteine fällt sehr deutlich in das Feld des Back-Arc Feldes. Ein kleiner Teil der Proben kann auch mit einer Strike Slip Zone in Verbindung gebracht werden, während der größte Anteil der Auernig-Sandsteine im Bereich des passiven Kontinentalrand-Feldes plotten.

#### **Multielementdarstellung**

Um eine möglichst große Zahl von Spurenelementen und Nebenelementen für die Sedimentgeochemie zu berücksichtigen und zu vergleichen, führten FLOYD et al. (1991B) Multielementdarstellungen ein. Die einzelnen Elemente sind dabei auf die Durchschnittswerte der oberen Kruste nach TAYLOR & MCLENNAN (1985) normiert und in einem halblogarithmischen Diagramm dargestellt (Abb. 8.15). Im Gegensatz zu den sonstigen Diskriminantendiagrammen wird durch die Vielzahl der berücksichtigten Elemente zusätzlich der unterschiedlich starke Einfluss von mafischen Gesteinen und Schwermineralen betrachtet. Die einzelnen dargestellten Elemente weisen von rechts (Thorium) nach links (Kalium) eine steigende ozeanische Verweilzeit auf und setzen sich aus einer relativ immobilen Gruppe von Nb bis Th und einer eher mobilen Gruppe von K bis Ni zusammen (Abb. 8.15f) (MCLENNAN et al., 1990; MCLENNAN et al., 1993). In den einzelnen Diagrammen (Abb. 8.15 a-d) werden Daten von BHATIA (1985) und BHATIA & CROOK (1986) (rot), FLOYD et al. (1991B) (blau) und GÜLDENPFENNIG (1998) miteinander verglichen. Es zeigen sich, abgesehen von kleinen Abweichungen, sehr ähnliche und für die einzelnen plattentektonischen Positionen kennzeichnende Verteilungsmuster. Von FLOYD et al. (1991B) werden die beiden Positionen kontinentaler magmatischer Bogen und aktiver Kontinentalrand zusammengefasst. Er führt dagegen im Vergleich zu BHATIA (1985) und BHATIA & CROOK (1986) noch das Muster aus ozeanischen Intraplattenbereichen ein.

In Abbildung 8.15 e ist die Multielementdarstellung des Mittelwerts der einzelnen Petrofaziesgruppen der Hochwipfel-Formation wiedergegeben.

Auffällig sind die hohen V-Cr-Ni-Werte, die ein Indiz für ultramafische Komponenten in den Lithareniten sind. Die hohen Cr-Werte können für hohe Anteile des detritischen Schwerminerals Chromspinell oder aufgearbeitete ultrabasische Gesteinsfragmenten in den Sedimenten stehen (Abb. 8.15 e und f). Weiterhin ergibt sich ein deutlich ausgeprägtes Nb - Minimum. Nach FLOYD et al. (1991B) ist dieser niedrige Nb-Wert kennzeichnend für einen erhöhten Anteil an subduktionsgebundenen Vulkaniten in Sandsteinen. Im weiteren Verlauf zeigen sich meist relativ niedere Werte von Zr und Hf. Dies deutet auf einen geringeren Einfluss kontinentaler Krustenbereiche hin, in denen diese Elemente meist angereichert sind (Abb. 8.15 e und f). Das Element Scandium ist teilweise leicht angereichert (Petrofazies 4), kann aber auch leicht abgereichert sein (Petrofazies 1). Starke Abreicherung würde den verstärkten Einfluss aus einem passiven Kontinentalrand wiederspiegeln.

Die unterschiedlichen Muster der durchschnittlichen Petrofaziesgruppen zeigen einen Trend hin zu einem erhöhten Einfluss von mafischem Material in den Petrofaziesgruppen der oberen Hochwipfel-Formation (Abb. 8.15 e). Innerhalb der unteren Hochwipfel-Formation unterscheiden sich Petrofazies 1 und 2 sehr deutlich in den Elementen, die auf eine kontinentalen Einfluss hindeuten. Während Petrofazies 1 die niedrigsten Werte dieser Elemente aufweist, zeigt Petrofazies 2 die höchsten Werte in der gesamten Hochwipfel-Formation (Abb. 8.15e).

Die besten Übereinstimmungen mit den Mittelwerten der Hochwipfel-Petrofaziesgruppen ergeben sich für die geotektonische Situationen des Back-Arc-Bereichs nach GÜLDENPFENNIG (1998) und mit Abstrichen für die Muster aus kontinentalen magmatischen Bögen (BHATIA, 1985; BHATIA & CROOK, 1986; FLOYD et al., 1991B) (Abb. 8.16 a bis e).



Abb. 8.15: A) bis D) sind auf kontinentale Oberkruste normierte (TAYLOR & MCLENNAN, 1985) Multielementdarstellungen verschiedener geotektonischer Konstellationen mit Daten von FLOYD et al. (1991B) (blau), GÜLDENPFENNIG (1998) (orange), BHATIA (1985) und BHATIA & CROOK (1986) (rot). E) Multielementdarstellung der Mittelwerte der einzelnen Petrofaziesgruppen der Hochwipfel-Formation, normiert auf kontinentale Oberkruste. F) Multielementdarstellung des Mittelwertes der Hochwipfel-Sandsteine, normiert auf kontinentale Oberkruste.

Die Ergebnisse der Multielementdarstellungen weisen wieder auf die Ausbildung eines Ablagerungsraumes hin, welcher die geochemischen Provenanzsignaturen von verschiedenen plattentektonischen Konstellationen aufgrund verschiedener Liefergebiete ererbte und am ehesten mit einer Back-Arc ähnlichen Situation beschrieben werden kann.

#### 8.5 Seltene Erden

Nach TAYLOR & MCLENNAN (1985) spricht das gleichförmige Verteilungsmuster der Seltenen Erden in klastischen Sedimenten für eine ausgesprochene Stabilität dieser Elemente beim Transport und bei postsedimentären Prozessen. Weder Verwitterung, noch Diagenese und Metamorphose bewirken signifikante Veränderungen der Seltenen Erden. Genauso wird das Verhältnis von Leichten Seltenen Erden (LREE) zu Schweren Seltenen Erden (HREE) nicht oder nur wenig dadurch beeinflusst (STOSCH, 2000). Das LREE zu HREE- Verhältnis wird als La<sub>N</sub>/Yb<sub>N</sub> ausgedrückt, wobei N für die Chondritnormierung steht (TAYLOR & MCLENNAN, 1985). Eine deutliche Verschiebung des Selten Erden Spektrums kann allerdings durch einen erhöhten Gehalt an Schwermineralen in den zu untersuchenden Sandsteinen auftreten. da Seltene Erden ihre Kristallgitter Schwerminerale vermehrt in einbauen können (GÜLDENPFENNIG, 1997). Besonders Zirkon und Granat zeigen hohe Seltenen-Erden-Werte bei sehr niedrigen La<sub>N</sub>/Yb<sub>N</sub> Verhältnissen (vgl. MCLENNAN, 1989). Sie weisen im Gegensatz zu anderen Mineralen, die üblicherweise einen absteigenden Trend an HREE zeigen, eine starke Anreicherung von HREE auf. Bei entsprechender Schwermineralführung können Zirkon und Granat die REE- Gehalte im Gesamtgestein beeinflussen. Nach TAYLOR & MCLENNAN (1985) wirken sich in Sandsteinen bereits Zirkongehalte von 400 – 500 ppm deutlich auf das Seltenen-Erden-Verteilungsmuster des Gesamtgesteins aus. Da die analysierte Gesamtgesteinschemie der Hochwipfel-Sandsteine nur Durchschnittsgehalte von 173 ppm Zirkon enthalten, kann man eine starke Beeinflussung des Seltenen-Erden-Verteilungsmusters durch das Schwermineral Zirkon ausschließen.

Demgegenüber könnte der Gehalt an Granat im Schwermineralspektrum einzelner Hochwipfel-Sandsteine zu einem Anstieg der HREE und damit zu einer Verflachung der Seltenen-Erden-Verteilungskurve führen.



Bei den Hochwipfel-Sandsteinen kann davon ausgegangen werden, dass keine übermäßige Anreicherung der Seltenen Erden durch das Schwermineral Granat stattfindet. Dies zeigt sich in Abbildung 8.16, wo keine Korrelation zwischen der Summe der HREE und der in den Schwermineralpräparaten ausgezählten Granate erkennbar ist.

McLENNAN et al. (1990) weisen darauf hin, dass sich auch Korngrößeneffekte auf die von Seltenen-Erden-Verteilungsmuster auswirken können. Dies muss bei der Anwendung dieser Verteilungsmuster hinsichtlich der Rekonstruktion geotektonischer Verhältnisse berücksichtigt werden. Rezente turbiditische Sande sind demnach gegenüber pelitischem Material an LREE verarmt, bzw. an HREE angereichert. Als mögliche Erklärung werden von McLENNAN et al. (1990) Schwermineralanreicherungen in der Sandfraktion in Betracht gezogen. Die analysierten Hochwipfel-Sandsteine weisen Korngrößen im Mittelsandbereich auf und wurden deshalb nur mit Literaturdaten turbiditischer Sandsteine, nicht aber mit Tonsteinen verglichen.

Die Mittelwerte chondritnormierter (Daten von TAYLOR & MCLENNAN, 1985) Seltenen-Erden-Muster von Sandsteinen unterschiedlicher geotektonischer Positionen wurden in Abbildung 8.17 und 8.18 aus der Literatur übernommen (schwarze Linien). Die Daten für die phanerozoischen Sandsteine stammen von BHATIA (1985) und BHATIA & CROOK (1986) sowie MCLENNAN et al. (1990). Die Seltenen-Erden-Muster unterscheiden sich voneinander. Jedoch zeigen alle einen Anstieg des Gesamtgehaltes der Seltenen Erden und des La<sub>N</sub>/Yb<sub>N</sub>-Verhältnisses mit zunehmendem Anteil der kontinentalen Oberkruste (passiver Kontinentalrand)(vgl. TAYLOR & MCLENNAN, 1985; MCLENNAN et al., 1990 ;STOSCH, 2000).

Ozeanische magmatische Bögen enthalten die geringsten Werte am Gesamt-REE- Anteil. Das La<sub>N</sub>/Yb<sub>N</sub>- Verhältnis liegt bei 2,7 – 4,9 (MCLENNAN et al., 1990). Eine negative Eu-Anomalie tritt nicht auf. Demgegenüber zeigen Sandsteine aktiver Kontinentalränder eine deutliche Zunahme an Seltenen Erden. Insbesondere die LREE sind, erkennbar am La<sub>N</sub>/Yb<sub>N</sub>-Verhältnis von 5,4 (rezente Turbidite) bis 9.8 (phanerozoische Grauwacken), sichtlich angereichert (GÜLDENPFENNIG, 1997). Es ist eine negative Eu-Anomalie ausgebildet. Die höchsten Seltenen-Erden-Werte haben nach FLOYD et al. (1991B) Sandsteine passiver Kontinentalränder, was sich auch durch das Verhältnis La<sub>N</sub>/Yb<sub>N</sub> zeigt, das bei 8,5 bis 10,6 liegt. Eine negative Eu-Anomalie ist hier sehr deutlich entwickelt.



Die durchschnittlichen Seltenen-Erden-Werte der jeweiligen Petrofaziesgruppen fügen sich am besten zwischen die REE-Verteilungsmuster von Back-Arc-Bereichen und aktiven sowie passiven Kontinentalrändern nach TAYLOR & MCLENNAN (1985) ein (Abb. 8.17b). Wenn man die Verteilungsmuster von BHATIA (1985) und BHATIA & CROOK (1986) betrachtet, dann liegen die Seltenen-Erden-Verteilungsmuster der Hochwipfel-Petrofaziesgruppen zwischen den Mustern aus ozeanischen und kontinentalen magmatischen Bögen (Abb. 8.17a). Eine Probe der Auernig-Formation wurde ebenfalls untersucht. Anhand der Seltenen-Erden-Muster kann man für die Probe der Auernig-Formation die Signatur eines passiven Kontinentalrandes klar erkennen (8.17).

Die Diskriminierung der phanerozoischen Grauwacken in geotektonische Konstellationen nach BHATIA (1985) und BHATIA & CROOK (1986) sowie TAYLOR & MCLENNAN (1985) zeigt zum Teil klare Unterschiede der Seltenen-Erden-Muster im Hinblick auf die Inselbogenbereiche, die sich vor allem durch die Diskrepanz von LREE zu HREE- Mustern bei TAYLOR & MCLENNAN (1985) ergeben. Die Seltenen-Erden-Muster von BHATIA (1985) und BHATIA & CROOK (1986) zeigen im Verhältnis der LREE zu HREE einheitlichere Muster (konstante Abnahme der REE-Gehalte). Die Insel-bogenmuster haben bei TAYLOR & MCLENNAN (1985) grundsätzlich niedrigere Seltenen-Erden-Gesamtgehalte als bei BHATIA (1985) und BHATIA & CROOK (1986). Da aber das La<sub>N</sub>/Yb<sub>N</sub> Verhältnis, das nach (MCLENNAN et al., 1990) für ozeanische magmatische Bögen bei 2,7 – 4,9 liegt, bei den Hochwipfel-Sandsteinen nie größer als 4,8 wird und im Durchschnitt 3,0 beträgt, liefern die chondritnormierten Seltenen-Erden-Muster von BHATIA (1985) und BHATIA & CROOK (1986) Ergebnisse, die mit diesen Werten besser übereinstimmen. Wenn man allerdings den Bereich des Back-Arcs von TAYLOR & MCLENNAN (1985) zum Inselbogenbereich hinzuzählt, dann ergeben sich wieder vergleichbare Ergebnisse. Um die Einflüsse der jeweiligen unterschiedlichen Liefergebiete näher zu diskriminieren, wurden in einem nächsten Schritt die Seltenen-Erden-Muster der analysierten Proben jeder Petrofaziesgruppen betrachtet (Abb. 8.18).

#### Petrofazies 1:

Vergleicht man die Seltenen-Erden-Muster der Proben von Petrofazies 1 mit den Mustern von BHATIA (1985) und BHATIA & CROOK (1986) so zeigen 2 Proben (P 23/1 und A20) Seltenen-Erden-Muster die für einen primitiven (ozeanischen) magmatischen Bogen sprechen und 2 Proben, die zwischen einem kontinentalen magmatischen Bogen und einem aktiven Kontinentalrand liegen (L6 und S3). Vergleicht man die Seltenen-Erden-Muster der Petrofazies 1 mit den Mustern der geotektonischen Konstellationen von TAYLOR & MCLENNAN (1985), so wird für P 23/1 das Liefergebiet eines primitiven magmatischen Bogens bestätigt, während für die Probe A20 die Muster eines Back-Arc-Bereichs zutreffen. Die Proben L6 und S3 zeigen auch hier in den LREE– Mustern die Signaturen eines aktiven Kontinentalrandes, während sie bei den HREE zwischen einem aktiven und passiven Kontinentalrand liegen (Abb. 8.18a+b).

#### Petrofazies 2:

Im Vergleich zu den Mustern von BHATIA (1985) und BHATIA & CROOK (1986) zeigen 2 Proben (P 14/2 und P22/1) Seltenen-Erden-Muster, die für eine primitiven (ozeanischen) magmatischen Bogen sprechen und eine Probe, die auf einen kontinentalen magmatischen Bogen als Liefergebiet deutet (P18/9) (Abb. 8.18c). Zusätzlich kann man hier, anhand der Seltenen-Erden-Muster der Probe P 23/8, noch einen sehr starken Einfluss eines passiven Kontinentalrandes nachweisen. Vergleicht man die Seltenen-Erden-Muster der Petrofazies 2 mit den Mustern der geotektonischen Konstellationen TAYLOR & MCLENNAN (1985), so wird für P 23/8 das Liefergebiet eines passiven Kontinentalrandes bestätigt. Für die Probe P22/1 und P 14/2 erkennt man bei den LREE- Mustern eine Übereinstimmung mit dem Back-Arc-Bereich, während bei den HREE eine Mischung zwischen Back-Arc-Bereich und aktivem Kontinentalrand zutreffender ist. Das Muster von P 18/9 zeigt bei den LREE eine Signatur eines aktiven Kontinentalrandes, während bei den HREE die Signatur eines passiven Kontinentalrandes, während bei den HREE die Signatur eines passiven Kontinentalrandes, während bei den HREE die Signatur eines passiven Kontinentalrandes auftritt (Abb. 8.18c+d).

#### Petrofazies 3:

3 Proben (P 33/1, P45/8 und P25/2) der Petrofazies 3 zeigen im Vergleich mit den REE-Mustern von BHATIA (1985) und BHATIA & CROOK (1986) Seltenen-Erden-Muster, die für einen primitiven magmatischen (ozeanischen) Bogen sprechen und eine Probe, die für einen kontinentalen magmatischen Bogen als Liefergebiet spricht (P17/1). Vergleicht man die



Abb. 8.18: REE-Verteilung chondritnormierter (TAYLOR & MCLENNAN, 1985) Mittelwerte unterschiedlicher geotektonischer Positionen, im Vergleich mit den chondritnormierten Proben der Petrofaziesgruppen der Hochwipfel-Formation.

Seltenen-Erden-Muster der Petrofazies 3 mit den Mustern der geotektonischen Konstellationen von TAYLOR & MCLENNAN (1985), so wird für P 45/8 und P 33/1 das Liefergebiet eines primitiven magmatischen Bogens bestätigt, während für die Probe P 25/2 die LREE- Muster eines Back-Arc-Bereichs und die HREE- Muster eines aktiven Kontinentalrandes zutreffen. Die Probe P 17/1 zeigt dazu in den LREE-Mustern die Signaturen eines aktiven Kontinentalrandes, während sie bei den HREE einem passiven Kontinentalrand entsprechen (Abb. 8.18e+f).

#### Petrofazies 4:

Im Vergleich mit den Mustern von BHATIA (1985) und BHATIA & CROOK (1986) zeigen zwei Proben (P 35/5 und P58/2) Seltenen-Erden-Muster, die für eine Mischung aus primitivem (ozeanischen) und kontinentalem magmatischen Bogen sprechen, obwohl schon teilweise eine leichte negative Europium-Anomalie ausgebildet ist. Die Seltenen-Erden-Muster einer Probe (P 55/6) ähneln den Mustern eines kontinentalen magmatischen Bogens und eine Probe (P 43/6) spricht für eine Mischung aus aktivem Kontinentalrand und passivem Kontinentalrand. Vergleicht man die Seltenen-Erden-Muster der Petrofazies 4 mit den Mustern der geotektonischen Konstellationen von TAYLOR & MCLENNAN (1985), so wird für P 43/6 das Mischsystem aus aktivem und passivem Kontinentalrand bestätigt und für P 55/6 dieses Mischsystem angenommen. P 58/2 hält sich grob an die Muster des aktiven Kontinentalrandes und P35/5 zeigt eine Mischung der Back-Arc-Signatur mit den Mustern eines aktiven Kontinentalrandes (Abb. 8.19g+h).

Als Ergebnis dieser differenzierteren Untersuchung der Seltenen-Erden-Muster kann man erkennen, dass in Petrofazies 3 die Signaturen eines passiven Kontinentalrandes am geringsten und bei Petrofazies 2 am größten ist. Petrofazies 1 und 2 zeigen die deutlichsten Muster eines Back-Arc-Bereichs, während die Seltenen-Erden-Muster der Sandsteine von Petrofazies 3 am deutlichsten auf einen primitiven magmatischen Bogen als Liefergebiet deuten.

## 8.6 Ergebnisse der geochemischen Untersuchungen

Die Proben der Hochwipfel-Sandsteine liegen bei den angewandten Provenanzdiagrammen der Gesamtgesteinschemie immer im Bereich eines aktiven Kontinentalrandes. Aufgrund ihrer Haupt,- Spuren-, und Seltenen-Erden-Elementverteilung können die Sandsteine der Hochwipfel-Formation einem Ablagerungsraum zugeordnet werden, der sein Material aus unterschiedlichen geotektonischen Konstellationen dieses tektonisch und magmatisch aktiven Bereichs an einem Kontinentrand bezieht. In einigen Proben zeigt sich auch konstant der Einfluss eines mafischen Liefergebiets (vgl. Abb. 8.5, 8.6, 8.9). Es ergeben sich Hinweise auf magmatische Bögen, Kollisionsorogene, Strike Slip Zonen, passive Kontinentalränder oder Back-Arc-Bereiche als Liefergebiete.

Unterteilt man den Bereich des magmatischen Bogens noch in ozeanische und kontinentale magmatische Bögen, dann zeigt der überwiegende Teil der untersuchten Hochwipfel-Sandsteine die Provenanz eines kontinentalen magmatischen Bogens. In einigen Fällen ist aber auch der Einfluss eines primitiven magmatischen Bogens und eines aktiven und passiven Kontinentalrandes zu erkennen.

Der Versuch einer weiteren Differenzierung der geotektonischen Konstellationen kann nur unter Berücksichtigung der Seltenen-Erden erfolgen, da deren Auftreten nur wenig oder gar nicht von äußeren Einflüssen abhängig ist und somit direkt auf die Liefergebiete verweist. Allerdings zeigte es sich, dass die Diskriminantenfelder der verschiedenen geotektonischen Milieus des aktiven Kontinentalrandes sehr große Überlappungsbereiche besitzen und deshalb ihre Aussagen mit Vorsicht zu behandeln sind. Die Provenanzaussage für die Hochwipfel-Formation kann aber durch die Seltenen-Erden-Muster noch differenzierter betrachtet werden.

Demnach ist für die Provenanz der Hochwipfel-Formation eine Mischung aus verschiedenen Liefergebieten wahrscheinlich und man kann eine Änderung der Liefergebiete innerhalb der Hochwipfel-Formation vermuten. Im Liegenden der Hochwipfel-Formation (Petrofazies 1) erkennt man zum einen Signaturen eines primitiven und differenzierten magmatischen Bogens und eines Back-Arc-Bereichs, aber zum anderen auch Muster die mit einem aktiven Kontinentalrand in Verbindung gebracht werden können. Im Hangenden der unteren Hochwipfel-Formation erkennt man dann zusätzlich deutliche Muster eines passiven Kontinentalrandes (Petrofazies 2), die auf verstärkten Sedimenteintrag aus solch einem Liefergebiet schließen lassen. Im weiteren Verlauf der Ablagerung zeigt sich im Liegenden der oberen Hochwipfel-Formation (Petrofazies 3) eine Zweiteilung der Seltenen-Erden-Muster in Proben mit sehr stark ausgeprägten Signaturen eines primitiven magmatischen Bogens und aktiven Kontinentalrandes. Die Sedimentation aus einem passiven Kontinentalrand nimmt ab oder ist nicht mehr vorhanden. Zum Hangenden der Hochwipfel-Formation (Petrofazies 4) wird der Eintrag aus dem magmatischen Bogen immer differenzierter und die Seltenen-Erden-Muster deuten auch wieder eher auf die Provenanz eines aktiven Kontinentalrandes hin. Für die Auernig-Formation ergibt sich in fast allen Diagrammen die Signatur eines passiven Kontinentalrandes.

Die Petrofazieseinteilung der Dünnschliffanalyse kann in den 2- Phasen Diagrammen und den Dreiecksdiagrammen nicht mehr nachvollzogen werden. Nur im  $SiO_2/Al_2O_3$  gegen  $K_2O/Na_2O - Diagramm von BHATIA & CROOK (1986) kann man in eine obere und untere Hochwipfel-Formation unterteilen (Abb. 8.6).$ 

Augenscheinlich gibt es eine große Diskrepanz zwischen der Provenanzaussage der klassischen Diskriminantenfelder der Leichtmineralanalyse nach DICKINSON et al. (1983); DICKINSON (1985) und den relativ eindeutigen Aussagen der Geochemie. Solche Unstimmigkeiten werden auch von anderen Autoren beschrieben. FLOYD et al. (1991) und FLOYD et al. (1991B) führen die Abweichungen auf Mischungseffekte bei der Schüttung aus mehreren Liefergebieten, auf Aufarbeitung alter Krustenfragmente sowie Änderungen geotektonischer Konstellationen zurück. Eine weitere Fehlerquelle bildet aber vermutlich die Methodik der statistischen Bestimmung der detritischen Hauptmodalbestandteile. Vor allem zu Matrix umgewandelten basischen und andesitischen Vulkanitfragmente, aber auch die instabilen Plagioklase werden wahrscheinlich im Falle der Hochwipfel-Formation unterbewertet. Dies führt zu Interpretationsfehlern im Vergleich zur Gesamtgesteinsgeochemie, bei der die Signaturen der Matrix mit in die Analysen eingehen.

# 9 Interpretation

In diesem Kapitel werden die Ergebnisse der bisherigen Kapitel zusammengefasst, interpretiert und diskutiert. Dabei wird die Beckenentwicklung der Hochwipfel- und Auernig-Formation in den Ostkarawanken näher betrachtet und versucht, diese in Bezug zur geodynamischen Entwicklung zu setzen.

Entwicklung des Hochwipfel- und Auernig-Beckens der Ostkarawanken während des Karbons

Die einzelnen Entwicklungsphasen und Änderungen der Liefergebiete zeigen sich am besten an den unterschiedlichen Petrofaziestypen, die sich zudem stratigraphisch einordnen lassen. Die einzelne Petrofaziesgruppen der Auernig-Formation unterscheiden sich in den Ostkarawanken nicht so fundamental, wie die der Hochwipfel-Formation. Deshalb unterscheide ich in diesem Kapitel nur in eine Beckenentwicklung der unteren und oberen Auernig-Formation. Eine Übersicht über die Provenanzindikatoren der einzelnen Petrofaziesgruppen gibt Tabelle 9.1..

## Hochwipfel-Formation Petrofazies 1:



Abb. 9.1: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation der Petrofazies 1.

Petrofazies 1 stellt den untersten Teil der Hochwipfel-Formation dar und ist durch feinklastische Ablagerungen eines Hangschürzensystems gekennzeichnet. Zum Hangenden der Petrofazies 1 werden die Ablagerungen gröber und der Ablagerungsraum wandelte sich zu einem schlammund sandreichen Hangschürzensystem (Abb. 5.3 und Beilage 1).

Die Sublitharenite, Subarkosen und lithische Subarkosen der Petrofaziesgruppe zeichnen sich durch einen hohen Anteil an Quarz (überwiegend Monoquarz) und einen niedrigen Anteil an magmatischen und sedimentären Lithoklasten aus. Die Dünnschliffanalyse weist auf einen gedehnten Kontinentalrand als Liefergebiet hin (vgl. Abb. 6.9-6.11). Das Logratio-Provenanzdiagramm für die Dünnschliffanalyse (vgl. Abb. 6.14) sowie für die Schwermineralanalyse (vgl. Abb. 6.26) bestätigen den Einfluss eines kontinentalen Liefergebiets für die Petrofazies 1.

Aus der Einzelmineralchemie konnten keine Indikatoren zur Liefergebietsdefinierung der Petrofazies 1 bestimmt werden.

|   | _          |  |
|---|------------|--|
|   | ~          |  |
| į | 5          |  |
| 1 |            |  |
| 9 | ø          |  |
|   | <u>`</u>   |  |
| 1 | <u> </u>   |  |
| 1 |            |  |
| 2 | D.         |  |
| ( | Ð          |  |
| ú | 3          |  |
| ( | Ð          |  |
| 2 | <u> </u>   |  |
| ( | Ð          |  |
| i | 5          |  |
| 1 | 3.         |  |
| 9 | ō.         |  |
| ł | <u></u>    |  |
| 9 | Ŋ          |  |
| i | 5          |  |
| 2 | T.         |  |
| - | Ľ.         |  |
|   | -          |  |
| 9 | <u>;</u> ; |  |
| , |            |  |
| 2 | ₩.         |  |
| ` |            |  |
| ; | £.         |  |
| - | 5          |  |
| 2 | 2          |  |
| - | ÷          |  |
| 1 | <u>т</u> . |  |
| ġ | ő.         |  |
| ( | Ð          |  |
| 2 | Š          |  |
| - | 4          |  |
| 1 | _          |  |
|   | Å.         |  |
| 2 | ≚          |  |
| i | 5          |  |
| 1 | n'         |  |
| ì | Ň          |  |
| i | Ð.         |  |
| į | Ś          |  |
| ģ |            |  |
| ç | È          |  |
| 3 | D          |  |
| 7 | S.         |  |
| 2 | Ľ,         |  |
|   | _          |  |

|                                | Üь                           | ersicht der Lieferge                                                                                             | bietsindikatoren nac                                                                                                                     | h verschiedenen U                                                                                                   | ntersuchungsmetho                                                                            | den                                                                                                                              |
|--------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                |                              | Untere Hochwipfel-Fo                                                                                             | ormation                                                                                                                                 | Obere Hochwipfel-Fo                                                                                                 | rmation                                                                                      | Auernig-Formation                                                                                                                |
| Petrofazieszi<br>setzung       | usammen-                     | Petrofazies 1:<br>Sehr quarzreich,<br>lithoklastenarm;<br>Sublitharenite, Subarkosen<br>und lithische Subarkosen | Petrofazies 2:<br>Quarzreich, lithoklastenarm;<br>Sublitharenite, Litharenite,<br>feldspatreiche Litharenite und<br>lithische Subarkosen | Petrofazies 3:<br>Mittlerer Quarzanteil, hoher<br>Lithoklastenanteil; Litharenite<br>und feldspatreiche Litharenite | Petrofazies 4:<br>Quarzarm, lithoklastenreich<br>Litharenite                                 | Petrofazies 1-3:<br>1) lithoklastenreiche Litharenite<br>2) lithoklastenarme Sublitharenite<br>3) lithoklastenfreie Quarzarenite |
| Provenanz<br>der Dünn-         | Dreiecks-<br>Diagramme       | Kollisionsorogen;<br>kontinentales Rift                                                                          | Kollisionsorogen;<br>Mischbereich                                                                                                        | Kollisionsorogen; mag-<br>matischer Bogen; Back Arc                                                                 | Kollisionsorogen; mag-<br>matischer Bogen; Back-Arc                                          | Kollisionsorogen; innerer Kraton-<br>bereich, Faltengürtel, Basement                                                             |
| schliff-<br>analyse            | Logratio-<br>Diagramme       | Kontinentale Signatur                                                                                            | Magmatischer Bogen und<br>Passiver Kontinentalrand                                                                                       | Erodierter und aktiver<br>magmatischer Bogen +<br>Passiver Kontinentalrand                                          | Erodierter magmatischer<br>Bogen                                                             | Umgelagerte, aufgearbeitete<br>Sedimente (evtl. Inselbogen-<br>bereich)                                                          |
| Schwer-<br>mineral-<br>analyse | Logratio-<br>Diagramme       | Kontinentale Signatur                                                                                            | Magmatischer Bogen und<br>Passiver Kontinentalrand                                                                                       | Erodierter und normaler<br>magmatischer Bogen +<br>Passiver Kontinentalrand                                         | Erodierter magmatischer<br>Bogen                                                             | Mehrfach umgelagerte Sedimente                                                                                                   |
| Einzel-<br>mineral-            | Chromspinell                 |                                                                                                                  | Entwickelter magmatischer<br>Bogen                                                                                                       | Primitiver magmatischer<br>Bogen, Back Arc                                                                          | Entwickelter magmatischer<br>Bogen                                                           |                                                                                                                                  |
| chemie                         | Amphibol                     |                                                                                                                  | Entwickelter magmatischer<br>Bogen                                                                                                       | Passiver Kontinentalrand<br>oder Back Arc                                                                           | Entwickelter magmatischer<br>Bogen                                                           | Entwickelter magmatischer Bogen                                                                                                  |
|                                | Granat                       |                                                                                                                  | Granatglimmerschiefer                                                                                                                    | Hochmetamorph, oder<br>ultrabasisch                                                                                 | Granatglimmerschiefer                                                                        |                                                                                                                                  |
|                                | Turmalin                     | niedermetamorph                                                                                                  |                                                                                                                                          |                                                                                                                     |                                                                                              | niedermetamorph                                                                                                                  |
| Geo-<br>chemische              | Zusammen-<br>setzung         | Entwickelter und primitiver mag                                                                                  | matischer Bogen, Back-Arc                                                                                                                |                                                                                                                     |                                                                                              | Passiver Kontinentalrand                                                                                                         |
| Gesamt-                        | Hauptelemente                | Aktiver Kontinentalrand; entwic                                                                                  | kelter und primitiver magmatisch                                                                                                         | ier Bogen                                                                                                           |                                                                                              | Passiver Kontinentalrand                                                                                                         |
| gesteins-                      | Nebenelemente                | Aktiver Kontinentalrand; entwic                                                                                  | kelter und primitiver magmatisch                                                                                                         | ier Bogen, Back-Arc                                                                                                 |                                                                                              | Passiver Kontinentalrand                                                                                                         |
| allalyse                       | Multielement-<br>darstellung | Entwickelter magmatischer<br>Bogen, Back-Arc                                                                     | Back-Arc, entwickelter<br>magmatischer Bogen +<br>Einfluss von passivem<br>Kontinentalrand                                               | Back-Arc, entwickelter<br>magmatischer Bogen.<br>Verstärkt mafische Einflüsse<br>(Cr, Ni, V).                       | Back-Arc, entwickelter<br>magmatischer Bogen.<br>Verstärkt mafische Einflüsse<br>(Cr,Ni, V). | Passiver Kontinentalrand                                                                                                         |
|                                | Seltene Erden<br>Muster      | Aktiver Kontinentalrand:<br>entwickelter und primitiver<br>magmatischer Bogen, Back-<br>Arc                      | Aktiver Kontinentalrand;<br>primitiver magmatischer<br>Bogen, Back-Arc, Einfluss von<br>passivem Kontinentalrand                         | Primitiver magmatischer<br>Bogen, Back-Arc                                                                          | Aktiver Kontinentalrand;<br>entwickelter magmatischer<br>Bogen, passiver<br>Kontinentalrand  | Passiver Kontinentalrand                                                                                                         |

Die Gesamtgesteinschemie zeigt in den Sandsteinen der Petrofazies 1 Einflüsse von mafischen und intermediären Komponenten eines magmatischen Bogens (vgl. Abb. 8.11). Nach der Hauptelement-Geochemie werden die Sandsteine der untersten Hochwipfel-Formation von einem primitiven (ozeanisch) und differenzierten (kontinentalen) magmatischen Bogen sowie von einem aktiven Kontinentalrand (vgl. Abb. 8.4-8.7) mit Detritus versorgt. Nur in Abb. 8.6 können die einzelnen, geochemisch untersuchten Sandsteine in eine obere und untere Hochwipfel-Formation unterteilen werden. Petrofazies 1 weist hier Proben im Feld des aktiven und passiven Kontinentalrandes auf. Die Betrachtung der immobileren Spurenelemente bestätigen den Einfluss eines differenzierten, magmatischen Bogens und eines aktiven Kontinentalrandes. Die Muster der Multielementdarstellung der Petrofazies 1 zeigen am ehesten eine Übereinstimmung mit einer Mischung aus einem aktiven Kontinentalrand und einen differenzierten magmatischen Bogen mit Einflüssen eines passiven Kontinentalrandes (vgl. Abb. 8.15). Dieses Ergebnis wird bestätigt, wenn man die Seltenen-Erden-Muster betrachtet (vgl. Abb. 8.17-8.18). Der Bereich der Provenanzindikatoren reicht hier von einem primitiven und differenzierten magmatischen Bogen über einen Back-Arc-Bereich bis hin zu einem aktiven Kontinentalrand mit kontinentalem Einfluss.

Petrofazies 1, im Liegenden der unteren Hochwipfel-Formation, wurde im Bereich eines aktiven Kontinentalrandes abgelagert (Abb. 9.1). Die deutliche Signatur eines Kontinents, eines aktiven Kontinentalrandes und untergeordnet einer primitiven und hochdifferenzierte Inselbogenquelle lässt den Schluss zu, dass der Ablagerungsraum in einer geotektonischen Situation lag, der eine Verbindung zu einem passiven Kontinentalrand, zu einem aktiven Kontinentalrand und teilweise zu einem magmatischen Bogen hatte (Abb. 9.1). Das Hochwipfel-Becken befand sich noch in der Öffnung und die Sedimentation lief gleichmäßig an einem Hangschürzensystem ab. Der aktive Kontinentalrand stellte eventuell die Fortsetzung einer Subduktionszone im Osten dar, die im westlichen Bereich in Seitenverschiebungen überging (vgl. Golf von Kalifornien). Eine Subduktionszone weiter im Osten würde auch den Detritus eines magmatischen Bogens erklären, der bis in das Ablagerungsbecken der Hochwipfel-Formation gelangte. Der ganze Ablagerungsraum lag entweder am Rande der Paläotethys oder in einem Bereich der Paläotethys. Hier könnte die seitenverschiebende Komponente der Subduktion so stark angestiegen sein, dass ein Übergang zu einem zeitweise aktiven Seitenverschiebungssystem auftrat. Während dem aktiven Zeitraum wurden die Abfolgen langsam gröberklastischer und das Ablagerungssystem veränderte sich zu einem sand- und schlammreichen Hangschürzensystem. Durch die Dehnung des Beckens und den auftretenden Seitenverschiebungen ergaben sich strukturelle Brüche, die das Eindringen von basischen Intrusionskörpern (Diabas von Eisenkappel) möglich machten. Ob es sich dabei um einen Intraplatten Basalt, anfänglichen MORB, oder Back-Arc-Beckenbasalt handelte lässt sich nicht genau feststellen.

## Hochwipfel-Formation Petrofazies 2:

Sedimente des Petrofaziestyps 2 treten im höheren Teil der unteren Hochwipfel-Formation auf. Sie sind durch gröberklastische Ablagerungen eines Hangschürzensystem und einer sandigen Rampe gekennzeichnet. Zum Hangenden der Petrofazies 2 werden die Ablagerungen gröber und der Ablagerungsraum wandelt sich von einem schlamm- und sandreichen Hangschürzensystem zu einer sandigen Rampe (Abb. 5.3 und Beilage 1).

Die Petrofaziesgruppe zeichnet sich durch einen mittleren Anteil an Quarz (überwiegend Monoquarz) und einen mäßigen Anteil an metamorphen, vulkanischen und sedimentären Lithoklasten aus. Bei den Sandsteinen handelt es sich überwiegend um Sublitharenite, Litharenite, feldspatreiche Litharenite und lithische Subarkosen. Die Provenanz der Dünnschliffanalyse weist auf ein gemischtes Liefergebiet hin, das ungefähr in gleichen Teilen Material aus einem Kollisionsorogen, einem aktiven Kontinentalrand und einem magmatischen Bogen schüttete (vgl. Abb. 6.9-6.11). Das Logratio-Provenanzdiagramm für die Dünnschliffanalyse (vgl. Abb. 6.14) sowie für die Schwermineralanalyse (vgl. Abb. 6.26) bestätigen den Einfluss von mehreren Liefergebieten. In Petrofazies 2 findet man Signaturen eines magmatischen Bogens, und eines aufgearbeiteten Kolllisionsorogens (passiver Kontinentalrand). Das plötzliche und sehr starke Auftreten von Granat im gröberklastischen Hangenden der Petrofazies, stellt eine Änderung des Liefergebietes dar (vgl. Abb. 6.21). Eine Möglichkeit



für diese Liefergebietsänderung könnte meiner Meinung nach eine Exhumierung eines kontinentalen Hinterlandes und eine Abtragung tiefer liegender Basementstockwerke sein.

Abb. 9.2: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation des unteren Teils der Petrofazies 2

Die untersuchten Chromspinelle der Mineralchemie zeigen keine eindeutige Differenzierung in ein Provenanzfeld. Sie streuen sehr weit in den Diagrammen, aber man kann, bei einigen Chromspinellen, einen Inselbogencharakter vermuten (vgl. Abb. 6.34). Die untersuchten Amphibole der Petrofazies 2 weisen auf die Entstehung in Inselbogenbasalten und Tholeiiten oder in Ozeanbodenbasalten hin (vgl. Abb. 6.36). Die Chemie der Granate lässt auf zwei Liefergebiete schließen (vgl. 6.38). Zum einen auf Granatglimmerschiefer einer kontinentalen Provenanz, zum anderen entweder auf die Provenanz eines Ozeanbodens sowie Back-Arc Bodenbasalts oder ein hochmetamorphes Ausgangsgestein. Die Analyse der Turmaline bestätigt das Vorhandensein eines niedermetamorphen und/oder metasedimentären Liefergebietes mit Quarz-Turmalin-Gesteinen (vgl. Abb. 6.40).

Nach der Hauptelement-Geochemie werden die Sandsteine der Petrofazies 2 wieder von einem magmatischen Bogen und Back-Arc-Bereich, primitiven (ozeanisch) und differenzierten (kontinentalen) magmatischen Bögen sowie von aktiven Kontinentalrändern (vgl. Abb. 8.4-8.7) mit Detritus versorgt. Nur in Abb. 8.6 zeigen sich die gleichen Provenanzsignaturen eines aktiven und passiven Kontinentalrandes wie bei Petrofazies 1. Die Betrachtung der immobileren Spurenelemente bestätigen diese Ergebnisse der Hauptelementchemie, jedoch wird der Einfluss eines primitiven und differenzierten magmatischen Bogens stärker bewertet. Die Muster der Multielementdarstellung der Petrofazies 2 zeigen am ehesten eine Übereinstimmung mit einer Mischung aus einem differenzierten und primitiven magmatischen Bogen (vgl. Abb. 8.15). Teilweise zeigen sich aber auch die Einflüsse eines passiven Kontinentalrandes. Dies wird bestätigt, wenn man die Seltenen-Erden-Muster betrachtet (vgl. Abb. 8.17-8.18). Überwiegend treten in den Sandsteinen Signaturen von einem primitiven magmatischen Bogen oder einem Back-Arc-Bereich auf. Es treten aber auch Einflüsse aus einem differenzierten magmatischen Bogen und aktiven sowie passiven Kontinentalrändern in den Sandsteinen der Petrofazies 2 auf.

Der liegende Teil der Petrofazies 2 wurde weiter im Bereich eines aktiven Kontinentalrandes abgelagert (Abb. 9.2). Es war weiterhin eine deutliche Signatur eines kontinentalen Einflusses vorhanden. Petrofazies 2 wurde aber immer mehr von nieder- und hochdifferenzierten Inselbogenkomponenten geprägt. Alle Anzeichen (Dehnungsstrukturen; Slumps) sprechen dafür, dass sich das Becken weiter öffnete und vertiefte. Die Sedimentation erfolgte gleichmäßig an einem schlamm- bis sandreichen Hangschürzensystem, dass sich während

tektonisch aktiver Phasen kurzzeitig zu einem sandigen Hangschürzensystem änderte. Die geotektonische Situation von Petrofazies 1 bestand weiter, nur scheint der Einfluss der Subduktionszone und des magmatischen Bogens im Osten größer geworden zu sein (Abb. 9.2).



Abb. 9.3: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation des oberen Teils der Petrofazies 2

Eine starke Hebung des kontinentalen Liefergebiets im Übergang zu Petrofazies 3 führte zu einer gröberklastischen Schüttung im Hangenden der Petrofazies 2. Das anfängliche schlammbis sandreiche Hangschürzensystem wird von einer sandigen Rampe abgelöst (Abb. 9.3). Dies kann man eventuell auf das Auftreten eines erstes Kompressionsereignisse beziehen, welches vermutlich weiterhin von Seitenverschiebungen begleitet wurde und die geotektonische Situation stark veränderte. Infolgedessen kann man das Auftreten von ersten Kalk-Olistolithen, die von dem nahen Kontinentrand herabgeglitten waren (vgl. KULLMANN & LOESCHKE, 1996), erklären. Das starke Auftreten von Granat im Hangenden der Petrofazies 2 bestätigt diese Änderung in den Liefergebieten. Der Einfluss des magmatischen Bogens ging scheinbar zurück, was aber wahrscheinlich an dem starken Sedimenteintrag aus einem kontinentalen Gebiet lag. Zudem traten die ersten Schwerminerale (Chromspinelle) aus einer ultrabasischen Provinz auf, die man mit einem magmatischen Bogen oder Back-Arc-Bereich in Verbindung bringen kann. Ich vermute, dass sich im Bereich des östlichen magmatischen Bogens eine Back-Arc Situation ausbildete, aus der Material in das Hochwipfel-Becken gelangen konnte. Andererseits bestand auch die Möglichkeit eines Eintrags aus dem teilweise exponierten Diabas von Eisenkappel. Beweise für den anhaltenden Eintrag aus einem magmatischen Bogen im Osten sind auch die vermehrt auftretenden basischen bis andesitischen Vulkanoklastika in den Sedimenten.

#### Hochwipfel-Formation Petrofazies 3:

Sedimente des Petrofaziestyps 3 treten im unteren Teil der oberen Hochwipfel-Formation auf. Die Abfolgen sind im Liegenden dieses Profilabschnittes durch die Sedimentation an einer sandigen Rampe gekennzeichnet, während zum Hangenden hin die Ablagerungen zuerst in ein schlamm- und sandreiches und später in ein schlammreiches Hangschürzensystem übergehen (Abb. 5.3 und Beilage 1).

Die Petrofaziesgruppe zeichnet sich durch einen mittleren Anteil an Quarz (überwiegend Polyquarz) und einen hohen Anteil an metamorphen, vulkanischen und sedimentären Lithoklasten aus.



Abb. 9.4: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation des unteren Teils der Petrofazies 3

Bei den Sandsteinen handelt es sich überwiegend um Litharenite und feldspatreiche Litharenite. Die Provenanz der Dünnschliffanalyse weist auf einen Mischbereich zwischen einem aufgearbeiteten Kollisionsorogen, einem aktiven Kontinentalrand im Übergangangsbereich zu Subduktionszonen und einem magmatischen Bogen als Liefergebiete hin (vgl. Abb. 6.9-6.11). Die Logratio-Provenanzdiagramme für die Dünnschliffanalyse (vgl. Abb. 6.14) sowie für die Schwermineralanalyse (vgl. Abb. 6.26) bestätigen auch für Petrofazies 3 den Einfluss von mehreren Liefergebieten. Aus der Zusammensetzung der Sandsteine gehen in diesen Diagrammen Signaturen eines magmatischen Bogens, eines erodierten magmatischen Bogens und eines aufgearbeiteten Kolllisionsorogens (passiver Kontinentalrand) hervor.

Aus den untersuchten Chromspinellen können überwiegend ultrabasische Ausgangsgesteine abgeleitet werden, die durch seltene Inselbogenbasalte (Boninite) oder Back-Arc-Becken- und Intraplattenbasalte gekennzeichnet sind (vgl. Abb. 6.34).

Die untersuchten Amphibole der Petrofazies 3 weisen auf die Bildung in mittel bis stark metamorph veränderten, basischen Intraplattenbasalten und Tholeiiten oder in Ozeanbodenbasalten hin (vgl. Abb. 6.36). Die Chemie der Granate lässt wie bei Petrofazies 2 auf ein nieder- bis mittelmetamorphes und ein ultrabasisches oder hochmetamorphes Liefergebiet schließen (vgl. 6.38). Die Analyse der Turmaline weist ebenfalls auf das Vorhandensein eines Liefergebietes mit niedermetamorphen Gesteinen hin (vgl. Abb. 6.40).

Petrofazies 3 zeigt in allen Diagrammen der Haupt- und Spurenelemente den größten Spielraum innerhalb der Chemie. Bei Betrachtung der immobilen Elemente La und Th (Abb. 8.13) kann man als Liefergebiet der Sandsteine von Petrofazies 3 zum einen primitiven (ozeanischen) magmatischen Bogen und zum anderen einen passiven Kontinentalrand ableiten. Diese Zweiteilung, die sich vor allem im sehr deutlichen Auftreten eines primitiven magmatischen Bogens äußert, kann auch in anderen Diagrammen (Abb. 8.6) erkannt werden. Diese verschiedene Liefergebiete (Abb. 8.5, 8.7, 8.10) kann man zudem stratigraphisch zuordnen (Liegend= kontinentale Signaturen; Hangend= Signaturen eines magmatischer Bogen). Nach der Hauptelement-Geochemie werden die Sandsteine der Petrofazies 3 von einem primitiven (ozeanisch) und differenzierten (kontinentalen) magmatischen Bogen sowie von einem aktiven Kontinentalrand (vgl. Abb. 8.4-8.7) mit Detritus versorgt. Die Betrachtung der immobileren Spurenelemente bestätigen den Einfluss eines primitiven bis differenzierten, magmatischen Bogens und eines aktiven Kontinentalrandes.



Abb. 9.5: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation im oberen Teil von Petrofazies 3

Die Muster der Multielementdarstellung von Petrofazies 3 zeigen am ehesten eine Übereinstimmung mit einem primitiven magmatischen Bogen und teilweise mit einem aktiven Kontinentalrand der geringe Einflüssen eines passiven Kontinentalrandes aufweist (vgl. Abb. 8.15). Der hohe Gehalt an V, Cr und Ni zeigt zudem eine Übereinstimmung mit Intraplattensignaturen. Die Seltenen-Erden-Muster bestätigen dieses Ergebnis (vgl. Abb. 8.17-8.18). Der Bereich der Provenanzindikatoren reicht hier von einem aktiven Kontinentalrand mit kontinentalem Einfluss im Liegenden bis hin zu einem primitiven und differenzierten magmatischen Bogen im Hangenden.

Petrofazies 3, im unteren Bereich der oberen Hochwipfel-Formation, zeigt im unteren Teil weiterhin eine Signatur eines kontinentalen Einflusses, der zum Hangenden hin aber geringer wird. Hier wurden die Sedimente deutlicher von gering differenzierten, magmatischen Komponenten beherrscht, die meiner Meinung nach auf eine Herkunft aus einem erodierten, basischen und ultrabasischen Bereich (evtl. Diabas von Eisenkappel) oder einem primitiven Inselbogen stammten. Die gröberklastische Schüttungen einer sandigen Rampe, im Liegenden der Petrofazies 3, am Übergang zu Petrofazies 2, gingen sehr schnell wieder in eine sand- und schlammreiche Sedimentation eines Hangschürzensystem über. Das Liegende der Petrofazies 3 vermittelt in seiner tektonischen Situation zwischen einem kompressiven System mit grobklastischen Schüttungen am Übergang von Petrofazies 2 zu 3 und einer erneuten Dehnungsphase (Slumpstrukturen) mit feinklastischen Abfolgen im Hangenden der Petrofazies 3. Die Kompressionskomponente die den Ablagerungsraum im Hangenden von Petrofazies 2 beeinflusste wurde schwächer und das Rampensystem mit seinen versteilten Beckenrändern wurde in der folgenden Sedimentation eingeebnet. Darauf hin konnte sich wieder ein Hangschürzensystem am Slope entwickeln. Die Petrographie zeigt, dass Petrofazies 3 von einem Mischsystem aus magmatischem Bogen und erodiertem magmatischem Bogen geprägt worden ist, in dem nur noch im Liegenden starke Einflüsse eines passiven Kontinentalrandes wirksam wurden. In dem Maße, wie die Schüttung des gröberen Materials nachließ, ging auch der Einfluss eines Kontinents verloren. Demgegenüber nahm der Einfluss eines primitiven magmatischen Bogens zum Hangenden stark zu und dominierte. Im Liegenden der Petrofazies 3, in der noch das kompressive System vorherrschte, konvergierten meiner Meinung nach im Bereich des Ablagerungsraumes zwei Krustenbereiche. Zum einen könnte dies das Intraalpine Terran gewesen sein und zum anderen Gondwana oder ein abgespaltenes Terransegment von Gondwana. Im oberen Bereich von Petrofazies 3, etablierte sich dann meiner Meinung nach

wieder ein sich vertiefender und öffnender Ablagerungsraum. Dies wurde durch eine Rotation um einen Angelpunkt an den Plattengrenzen hervorgerufen (Abb. 9.5). Diese Rotation könnte auch für die verstärkte Konvergenz am eurasischen Rand verantwortlich gewesen sein, in deren Folge sich der Subduktionswinkel und die Subduktionsrate veränderte. So entstehen im Hangenden der Petrofazies 3 verstärkt primitive magmatische Bögen am eurasischen Rand, die allerdings nur kurzzeitig aktiv waren, da die Paläotethys in diesem Bereich schnell geschlossen und die Subduktion eventuell vom ankommenden mittelozeanischen Rücken der Paläotethys beeinflusst wurde.



#### Hochwipfel-Formation Petrofazies 4:

Abb. 9.6: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation des unteren Teils der Petrofazies 4

Petrofazies 4 stellt den obersten Teil der Hochwipfel-Formation dar und ist durch gröberklastische Ablagerungen gekennzeichnet. In diesem Profilbereich ist die Hochwipfel-Formation im Liegenden und im Hangenden durch Sedimentation an einer sandigen Rampe gekennzeichnet, während im mittleren Teil die Ablagerungen in ein schlamm- und sandreiches Hangschürzensystem übergehen (Abb. 5.3 und Beilage 1). Der Ablagerungsraum wurde also zweimal von Hebungsphasen oder der Ausbildung von "fault escarps" beeinflusst, in denen grobes Material geliefert wird. Die Sedimentquelle ist ein relativ enger Schelf vor einem schnell abgetragenen Bereich. In diesem störungsbezogenen System können die Ablagerungen einen linearen Gürtel aus teilweise zusammengewachsenen Rampensystemen bilden (READING et al., 1994 ;READING, 1996).

Die Litharenite dieser Petrofaziesgruppe zeichnen sich durch einen geringen Anteil an Quarz und einen sehr hohem Anteil an metamorphen, sedimentären und vulkanischen Lithoklasten aus. Die Provenanz der Dünnschliffanalyse weist auf Liefergebiete aus einem magmatischen Bogen und einen aktivem Kontinentalrand im Übergangangsbereich zu Subduktionszonen oder einem Back-Arc-Bereich hin (vgl. Abb. 6.9-6.11). Die Logratio-Provenanzdiagramme für die Dünnschliffanalyse (vgl. Abb. 6.14) sowie für die Schwermineralanalyse (vgl. Abb. 6.26) ergeben für Petrofazies 4 ein erodierten magmatischen Bogen als Liefergebiet. Die Auswirkungen der grobklastischen Schüttung (Hebung) auf den Schwermineralgehalt des Ablagerungsraumes ist bei Petrofazies 4 relativ gering. Einzig das Auftreten von Chromspinell und Hornblende nimmt wieder zu. Dies korreliert mit dem Rückgang des ZTR-Anteils am Schwermineralbestand. Granat, der im Übergang von Petrofazies 2 und 3 stark auftritt, kommt in Petrofazies 4 nicht mehr in erwähnenswerter Menge vor (vgl. Abb. 6.21). Das bedeutet, dass der Einfluss eines kontinentalen Bereichs, der in den unteren Petrofaziesgruppen für das Auftreten des Granats mitverantwortlich war, nicht mehr oder nur untergeordnet vorhanden ist.

Bei den untersuchten Chromspinellen kann man basische und ultrabasische Ausgangsgesteine diskriminieren, die mit der Herkunft aus Inselbogen- und mittelozeanischen Rückenbasalten oder Back-Arc-Becken- und Intraplattenbasalten in Verbindung gebracht werden können (vgl. Abb. 6.33-6.34). Die untersuchten Amphibole der Petrofazies 4 weisen auf die Bildung in leichtmetamorph veränderten Inselbogenbasalten, Tholeiiten oder Ozeanbodenbasalten hin (vgl. Abb. 6.36). Die Granate, die im Liegenden der Petrofazies 4 auftreten, haben sehr hohe Pyropwerte die außer für Hochdruckmetamorphite auch für einer ultrabasischen Provinz sprechen können. Die Granate aus dem Hangenden entsprechen eher den Granaten aus Granat-Glimmer-schiefern und sind mit einem nieder- bis mittelmetamorphen Liefergebiet assoziiert. Die Analyse der Turmaline bestätigt das Vorhandensein eines niedermetamorphen, metasedimentären Liefergebietes mit Quarz-Turmalin Gesteinen (vgl. Abb. 6.40).

Nach der Hauptelement-Geochemie werden die Sandsteine der untersten Hochwipfel-Formation von einem differenzierten (kontinentalen) magmatischen Bogen, einem Back-Arc-Bereich sowie von einem aktiven Kontinentalrand (vgl. Abb. 8.4-8.7) mit Detritus versorgt. Nur in Abb. 8.6 können die einzelnen, geochemisch untersuchten Sandsteine in eine obere und untere Hochwipfel-Formation unterteilen werden. Petrofazies 4 weist hier Proben im Feld eines primitiven und differenzierten magmatischen Bogens auf. Die Betrachtung der immobileren Spurenelemente bestätigen den Einfluss eines differenzierten, magmatischen Bogens und eines aktiven Kontinentalrandes. Die Muster der Multielementdarstellung der Petrofazies 4 zeigen am ehesten eine Übereinstimmung mit einem differenzierten beziehungsweise primitiven magmatischen Bogen und einem aktivem Kontinentalrand. Der hohe Gehalt an V, Cr und Ni, zeigt auch hier eine Übereinstimmung mit Intraplattensignaturen (Back-Arc)(vgl. Abb. 8.15). Die Seltenen-Erden-Muster bestätigen die Ergebnisse der Hauptelemente (vgl. Abb. 8.17-8.18). Diese Muster zeigen einerseits, ein Liefergebiet mit starken Provenanzsignaturen eines aktiven Kontinentalrandes und eines untergeordneten passiven Kontinentalrands, sowie andererseits Muster, die mit einem primitiven und differenzierten magmatischen Bogen übereinstimmen.



Abb. 9.7: Schematische Darstellung des Ablagerungsraumes der Hochwipfel-Formation während der Sedimentation des oberen Teils der Petrofazies 4

Petrofazies 4, in der oberen Hochwipfel-Formation, wurde im unteren und oberen Bereich wieder von einem kompressiven System beherrscht, welches grobklastische Schüttungen an einem Rampensystem hervorrief und wieder Olistolithe von Beckenrand ins Innere abgleiten ließ (Abb. 9.6+9.7). Dazwischen entspannte sich das System und es konnten wieder

feinklastischere Abfolgen an einem Hangschürzensystem abgelagert werden. Petrofazies 4, zeigt eine sehr einheitliche Provenanz und wurde scheinbar aus einem Liefergebiet geschüttet. Das Hangende der oberen Hochwipfel-Formation (Petrofazies 4) zeigt vermehrt Einflüsse aus einem erodierten magmatischen Bogen (viele leichtmetamorphe, sedimentäre und vulkanische Lithoklasten). Die geochemische Signaturen weisen auf einen aktiven Kontinentalrand und ein kontinentalen magmatischen Bogen hin. Der magmatische Bogen war also nicht mehr oder nur noch untergeordnet aktiv und wurde zergliedert (vgl. DICKINSON, 1985: "dissected arc"). Dabei stieg das Maß der Zergliederung zum Hangenden der Petrofazies 4 an. Die Petrofazies wurde jetzt, deutlich von erodiertem, basischem und ultrabasischem Material (Vulkanoklasten, Chromspinelle, magmatische Hornblenden) beherrscht. Der starke Eintrag aus einem erodierten magmatischen Bogen überprägte wahrscheinlich den Eintrag vom Kontinent. Die vorhandenen Olistolithe zeugen von einem Eintrag aus dem Kontinentbereich und man kann vermuten, dass auch die Petrofazies 4 der Hochwipfel-Formation aus mehreren Liefergebieten geschüttet wurde (Abb. 9.7).

Im Liegenden der Petrofazies 4 wurde die geodynamische Situation meiner Meinung nach durch die Subduktion des mittelozeanischen Rückens der Paläotethys und daraus resultierenden Seitenverschiebungen geprägt, welche die Hebung und Zergliederung der Liefergebiete verursachte. Eine tektonische ruhige Phase machte es möglich, dass sich wieder eine feinerklastischere Sedimentation entwickeln konnte. Im Hangenden der Petrofazies 4 haben sich dann die Kontinentalränder von Gondwana und Eurasien soweit angenähert, dass sich das Hochwipfel-Becken weiter schloss. Die Seitenverschiebungen waren weiterhin aktiv und kompensierten die schräge Konvergenz zwischen Gondwana und Eurasien.



## Auernig-Formation

Abb. 9.8: Schematische Darstellung des Ablagerungsraumes der unteren Auernig-Formation

Für den Ablagerungsraum der Auernig-Formation gehe ich, wie KRAINER (1992) für die Karnischen Alpen, von küstennahen, marinen Ablagerungen aus. Diese werden im Strandbereich und oberen bis unteren Vorstrand sowie im Übergang zum offenen Schelf, sedimentiert. Dabei ist der liegende Teil der Auernig-Formation in den Ostkarawanken von feinklastischen Sedimenten gekennzeichnet. Erst zum Hangenden hin entwickelt sich die, vergleichbar zur Auernig-Formation der Karnischen Alpen kennzeichnende, zyklische Sedimentation von Konglomerat-, Sandstein-, Tonstein- und Karbonatabfolgen.

Bei den Sandsteinen handelt es sich im Liegenden überwiegend um Litharenite, während zum Hangenden hin Sublitharenite und, im obersten Teil der Auernig-Formation, Quarzarenite
auftreten. Die Petrofazies im Liegenden zeichnet sich durch ein mäßigen Anteil an Quarz und einen hohen Anteil an metamorphen, sedimentären und magmatischen Lithoklasten aus. Zum Hangenden hin nimmt der Quarzgehalt der Petrofaziesgruppen sehr stark zu und der Lithoklastengehalt geht fast auf Null zurück. Im Liegenden können regional auch eine große Menge an devonischen (?), teilweise ungerundeten Karbonatklasten, als Komponenten auftreten. Für die Provenanz ergibt sich sowohl bei der Dünnschliffanalyse als auch bei der Schwermineralanalyse ein passiver Kontinentalrand, der im Liegenden durch einen Faltungsund Überschiebungsgürtel und im Hangenden durch einen tief erodierten Kraton geprägt wurde und auf mehrfach umgelagerte Sedimente hinweist (vgl. Abb. 6.15-6.16). Das Liefergebiet setzt sich aus niedermetamorphen Gesteinen zusammen die, nach dem Diagramm von BASU (1975) und TORTOSA (1991) (Abb. 6.18), vor allem Schiefer und niedergradige Gneise darstellen.

Die untersuchten Amphibole der Auernig-Formation weisen auf die Bildung in mittelgradig metamorphen Inselbogenbasalten hin. Die Analyse der Turmaline bestätigt das Vorhandensein eines niedermetamorphen, metasedimentären Liefergebietes mit Quarz-Turmalin Gesteinen. Nach der Petrographie und Mineralchemie nehme ich an, dass die Auernig-Formation die hangende Fortsetzung der oberen Hochwipfel-Formation darstellt. Die Mineralchemie der Hornblenden und Turmaline weist auf ähnliche Liefergebiete hin.

Nach der geochemischen Zusammensetzung der untersuchten Sedimente der Auernig-Formation zeigt sich in allen Diagrammen der Haupt- und Spurenelemente, der Multielementund Seltenen-Erden-Muster die Provenanz eines Passiven Kontinentalrandes mit leicht erhöhten Scandium-Werten, die für Einflüsse aus einem ehemaligen Inselbogenbereich sprechen.



Abb. 9.9: Schematische Darstellung des Ablagerungsraumes der oberen Auernig-Formation

Die Auernig-Formation zeigt eine gänzlich andere Entwicklung des Ablagerungsraumes als die Hochwipfel-Formation. Allgemein wird von eine Diskordanz zwischen der Hochwipfel- und der Auernig-Formation ausgegangen (KRAINER, 1992). Es ist fraglich ob diese Diskordanz einen zeitlichen Hiatus darstellt. Meiner Meinung nach sprechen die lithoklastenreiche Ablagerungen Auernig-Formation im untersten Teil der (vgl. Abb. 6.15, oliv), sowie die Schwermineralvergesellschaftung von Zirkon, Turmalin und grüner Hornblende in diesem Bereich für eine Sedimentation, die der obersten Hochwipfel-Formation ähnlich ist. Erst danach Sedimentation der Auernig-Formation zu typischen quarzreichen, änderte sich die lithoklastenarmen Ablagerungen. Sicherlich trat im Wechsel der Hochwipfel-Formation zur Auernig-Formation eine Diskordanz auf, die auch nachträglich als Gleithorizont bei tektonischen Bewegungen genutzt wurde, jedoch schätze ich den Hiatus zwischen den beiden Formationen

aufgrund der Petrographie als geringer ein, als das bisher in der Literatur berichtet wurde. Ich bin der Meinung dass die Hochwipfel-Formation mehr oder weniger gleichmäßig in die Auernig-Formation übergeht und die Restbecken der variszischen Orogenese verfüllt. Allerdings kann ich diesen Übergang nicht durch Aufschlüsse belegen. Strukturelle Hochs zwischen den Restbecken verhinderte zu Beginn der Auernig Sedimentation (Liegenden) eine einheitliche Sedimentation der Auernig-Formation und ist auch für die polymikte Zusammensetzung der Konglomerate in der Petrofaziesgruppe 1 (oliv) verantwortlich (Abb. 9.10). Erst, nachdem diese Restbecken verfüllt waren und sich eine gleichmäßige, großräumige Sedimentation ausgebildet hatte, etablierte sich ein Ablagerungsraum, der zu einer vergleichbaren Sedimentation wie in den Karnischen Alpen führte (Abb. 9.11). Ab diesem Zeitpunkt war auch eine Verbindung zum ehemaligen Gondwana-Kontinent gegeben, von dem die Quarzgerölle der konglomeratischen Abfolgen der oberen Auernig-Formation stammen (KRAINER, 1992).

## 10 Diskussion

In diesem Kapitel werden die Ergebnisse dieser Arbeit mit den bestehenden Modellen verglichen und die angewandte Methodik diskutiert.

#### Bisherige geodynamische Modelle

Bisher werden in der Literatur vier geodynamische Modelle für den variszischen Raum der Alpen diskutiert (vgl. Kap. 3.2). In drei Modellen wird speziell auf den Ablagerungsraum der Karawanken und Karnischen Alpen eingegangen.

#### Das Modell nach Krainer (1992):

Das für die Karnische Alpen gültige und auf die Karawanken übertragene Modell nach KRAINER (1992) geht von der Entstehung des karbonen Ablagerungsraumes in Folge von großräumigen Strike-Slip-Bewegungen mit einer extensiven (Hochwipfel-Formation) und kompressiven (Auernig-Formation) Phase aus (Abb. 10.1). Ein ozeanischer Krustenbereich zwischen Laurussia und Gondwana wird im Devon/Karbon durch eine Transform-Rifting Phase mit dextralen Strike-Slip Bewegungen in Mikroplatten und schmale ozeanische Bereiche zerlegt KRAINER (1992). Die Strike Slip- Bewegungen haben sowohl extensive wie auch kompressive Tektonik zur Folge.



Abb. 10.1: Schematische Blockdiagramm mit Ablagerungsbereichen für die Karnischen Alpen und Karawanken während der variszischen Orogenese. Nach KRAINER (1992).

#### Das Modell nach KULLMANN & LOESCHKE (1994):

Demgegenüber stellen KULLMANN & LOESCHKE (1994) ein Modell für die Entwicklung der paläozoischen Karawanken vor, das ebenso wie das von LÄUFER et al. (1993) postulierte Modell für die Karnische Alpen, von einer Bildung der Hochwipfel-Formation in einem Fore-Arc-Becken ausgeht (Abb. 10.2). Bis in das Tournai/Visé liegt ihrer Meinung nach die Ausbildung eines passiven Kontinentalrandes vor, in dem Intraplattenvulkanismus auftritt. Der Diabaszug von Eisenkappel wurde demnach als Folge von Rift-Ereignissen gebildet und beinhaltet unter anderem Pillowlaven und Diabase typischer Intraplattenalkali-Basalte (KULLMANN & LOESCHKE, 1994; LOESCHKE, 1970); LOESCHKE & ROLSER, 1971) (Abb. 10.2A). An der Wende vom Unterzum Oberkarbon ändert sich die Situation in den Karawanken von einer Rift- zu einer Konvergenzsituation (KULLMANN & LOESCHKE, 1994). Es entwickelt sich ein aktiver Kontinentalrandes (Abb. 10.2B). In dieses Becken wird die Hochwipfel-Formation abgelagert. Teile des älteren Seeberger Paläozoikums werden durch die Kompression als Akkretionskeil zusammengeschoben (KULLMANN & LOESCHKE, 1994). Anschließend gleiten Teile dieses Akkretionskeils zusammen mit den Karbonaten (Devonkalke) gravitativ wieder in

das Fore-Arc-Becken hinein. Die Aschentuffe innerhalb der Hochwipfel-Formation werden als vulkanische Ablagerungen oder Aufarbeitungsprodukte einer Vulkankette eines aktiven Kontinentalrandes interpretiert KULLMANN & LOESCHKE (1994). Auf die weitere Entwicklung des Ablagerungsraum für die Auernig-Formation wird nicht näher eingegangen, aber die Autoren vermuten die Ausbildung eines Randmeeres im rückwärtigen Teil des variszischen Orogens.



Abb. 10.2: Geodynamisches Modell der variszischen Orogenese für den Bereich der Karawanken. Nach KULLMANN & LOESCHKE (1994).

#### Modell nach HUBICH (2000):

HUBICH (2000) modifizierte das geodynamische Modell der Karawanken von KULLMANN et al. (1994) für die Karnische Alpen und geht von einer Bildung des Hochwipfel-Beckens in einem Dehnungsbereich zwischen dem Ostalpinen Kristallinkomplex und Gondwana im Süden aus. Dies bildete sich im späten Unterdevon unter einem kompressiven Regime im Anschluss an ein Fore-Arc-Becken aus, als der Kontinent Gondwana sich stark an den eurasischen Kontinent angenähert hatte (Abb. 10.3A). Im Norden findet vom Unter/Mitteldevon bis in das Oberdevon/Unterkarbon die Ausbildung eines aktiven Kontinentalrandes mit einer Subduktion des Plankogel-Ozeans statt, der die zeitliche Fortsetzung der Paläotethys darstellt (HUBICH, 2000). Nach HUBICH (2000) erfolgte gleichzeitig im Süden eine Krustendehnung. Im Oberdevon bis Unterkarbon etabliert sich dann mit fortschreitender Krustendehnung ein reifer passiver Kontinentalrand (HUBICH, 2000). Dies äußert sich auch in Form eines Intraplattenvulkanismus (Dimon-Serie, Raabtal-Diabas, Diabase der Karawanken) (Abb. 10.3B). Nach HUBICH (2000) kam es in den Karnischen Alpen mit dem Beginn der variszischen Kollision im Unterkarbon zu einem von Nord nach Süd voranschreitenden, südvergenten Falten- und Überschiebungsgürtel, in dessen südlicher Vortiefe zunächst der "Cellon Kellerwand Flysch" und später nach "Hochwipfel Flysch" sedimentiert wurde. Heraushebung dieser Einheiten der Der Kontinentalrand wurde in diesem Zeitraum wieder aktiv und es brachen einzelne Schollen von dessen Rand ab, die in den Hochwipfel-Flyschtrog einglitten (HUBICH, 2000) (vgl. Olistolithe) (Abb. 10.3C). Die Aschenlagen in dieser "Hochwipfel-Decke" stammten seiner Meinung nach von dem Intraplatten-Vulkanismus der Dimon-Serie und einem im Hinterland aktiven kalkalkalinen Vulkanismus, dessen Detritus bis in den Bereich der Flysch-Becken transportiert wurde. Bei anhaltender Kompression und Einengung des Hochwipfel-Flyschbeckens im Westfal, wurde dieses in die variszische Deformation mit einbezogen und vom westlichen Bereich der Karnischen Alpen in südlicher Richtung überschoben (HUBICH, 2000). Nach der abgeschlossenen Kollision zwischen Gondwana und Laurussia, blieb nach HUBICH (2000) ein von Osten in den südalpinen Raum hineingreifender Golf übrig, in dem marine Sedimente des Oberkarbon bis Perm (Auernig-Gruppe) abgelagert wurden.



Abb. 10.3: Geodynamisches Modell der variszischen Orogenese für den Bereich der Karnischen Alpen. A) Unter-Oberdevon; B) Oberdevon bis Unterkarbon; C) Visé/Namur. Nach HUBICH (2000).

#### Diskussion der bisherigen geodynamischen Modelle

Für die Diskussion der geodynamischen Modelle sind mehrere Faktoren ausschlaggebend:

- Wird der karbone Ablagerungsraum und seine Sedimentation von einem magmatischen Bogen beeinflusst oder lassen sich die magmatischen Komponenten von einem Intraplatten-Vulkanismus herleiten ?
- Welche Bedeutung hat der Diabas von Eisenkappel ?
- Welche tektonischen und paläogeographischen Hinweise gibt es für den variszischen Ablagerungsraum?
- Welche Provenanzindikatoren zeigen die Sedimente der Hochwipfel-Formation und welche Hinweise kann man f
  ür die geodynamische Stellung der Herkunftsgebiete ableiten ?

Für Hinweise auf den Einfluss eines magmatischen Bogens bezüglich der Sedimentation der Hochwipfel-Formation gibt es verschiedene Indikatoren. Die Einschaltungen von Tuffen mit andesitischem Chemismus (LÄUFER et al., 1993, KULLMANN & LOESCHKE, 1994) sprechen für das Vorhandensein eines mehr oder weniger differenzierten magmatischen Bogens im Bereich eines Liefergebietes. Das Auftreten von basischen und andesitischen vulkanoklastischen Komponenten innerhalb der Hochwipfel-Formation (TESSENSOHN, 1968; KRAWINKEL et al., SUBMITTED) weisen ebenfalls auf Einflüsse eines magmatischen Bogens hin. HINDERER (1992) untersuchte Gänge und Aschelagen der Hochwipfel-Formation in den Karnischen Alpen und

konnte sie als Inselbogen-Granite klassifizieren. KÖPPEL et al. (1993) führt den auftretenden, weitverbreiteten, variszischen, kalkalkalinen Magmatismus zu Beginn des oberen Karbons auf die Ausbildung von andinen magmatischen Bögen zurück. Auch nach BONIN et al. (1993) weist die geodynamische Signatur des oberkarbonen, kalkalkalinen Magmatismus überall in den Südalpen auf eine Kordilleren-Situation über einer Subduktionszone hin (vgl. Anden, Südamerika). Es gibt also viele Hinweise, die auf das Vorhandensein eines magmatischen Bogens schließen lassen. Damit ist das Modell von KRAINER (1992) eher fraglich, da er für die vulkanoklastischen Ablagerungen innerhalb der Hochwipfel-Formation von einem Intraplatten oder an Strike Slipstörungen gebundenen Vulkanismus ausgeht. Beim Modell von HUBICH (2000) ist fraglich, ob diese teilweise sehr klaren Indizien für einen magmatischen Bogen von einem frühen Intraplatten-Vulkanismus der Dimon-Serie und einem vermuteten kalkalkalinen Vulkanismus im eurasischen Hinterland stammt, da für dessen paläogeographische Lage keine Anzeichen im weiteren Umfeld paläozoischer Ablagerungen zu finden ist.

Für die chemische Klassifizierung des Diabases von Eisenkappel ergibt sich nach LOESCHKE (1970) ein Alkalibasalt, den er auf Intraplatten-Vulkanismus zurückführt. Nach den geochemischen Daten meiner Untersuchungen kann der Diabas von Eisenkappel, anhand seiner Signaturen bei der Multielementdarstellung, allerdings auch als Back-Arc-Becken Basalt klassifiziert werden (Abb. 10.4). Die Verbreitung des Intrusivkörpers lässt aber nicht den Schluss auf ein groß angelegtes Back-Arc-Spreading zu, sondern deutet eher auf eine Intrusion in einem geschwächten, krustalen Bereich hin. Dies widerspricht somit auch nicht der Interpretation als Intraplattenbasalt. Ähnliche plattetektonischen Situation findet man nach STAMPFLI (1996), am Randes des austroalpinen Basements (VISONÀ, 1992), wo sich während der variszischen Orogenese im rückwärtigen Bereich von aktiven Kontinentalrändern Gabbros und Amphibolite bildeten, welche geochemische Hinweise auf ein Back-Arc geben.



Abb. 10.4: MORB-normiertes Sprurenelement-Vergleichsdiagramm von Back-Arc-Basalten der östlichen "Scotia See" (SAUNDERS, 1979) und Daten einer verarmte MORB- Zusammensetzung des Südatlantik (HUMPHREYS et al., 1991).

Die Ablagerungen der Hochwipfel-Formation sind eng mit dem Diabas von Eisenkappel verbunden und LOESCHKE (1970) vermutet für die unterlagernden Sedimente des Diabas eine Hochwipfel ähnliche Sedimentation oder die ersten Sedimente der Hochwipfel-Formation. Die nachfolgenden Ablagerungen der Hochwipfel-Formation folgen dann direkt auf dem Diabaszug ohne dass sich Anzeichen für eine starke Nord-Südbewegung des Diabaszuges in Relation zu den Ablagerungen der Hochwipfel-Formation ergeben. Deshalb vermute ich, dass der Diabas von Eisenkappel und die Hochwipfel-Formation im selben Ablagerungsraum eindrang.

Tektonisch und paläogeographisch gibt es weitere Hinweise, welche für die vorgeschlagenen geodynamischen Modelle berücksichtigt werden müssen. In den liegenden Abfolgen der Hochwipfel-Formation sind zuerst Slumpstrukturen und anschließend Knickfaltungen zu erkennen, die für eine anhaltende Extension des Ablagerungsraumes sprechen (mündliche Mitteilung Justus Krawinkel, 1999, vgl. STEUDLE, 2000). Dies widerspricht der Theorie, dass der Ablagerungsraum der Hochwipfel-Formation in einem subduktionsbezogenen Milieu lag, wo ein kompressives System vorherrscht (vgl. Fore Arc, KULLMAN & LOESCHKE 1994). Erst später

(spätes Westfal) kommt es nach STEUDLE (2000) zur Faltung infolge einer schräggerichteten Konvergenz während der Kollision und Schließung des Beckens.

Nach Stampfli 1996 sprechen die Plattenkonstellationen während des Karbons für eine schiefen Subduktion der Paläotethys. Dies kann an paläogeographischen Rekonstruktionen (z.B. ARTHAUD & MATTE, 1977; SCOTESE & MCKERROW, 1990; STAMPFLI, 1996; DIENER et al., in Vorbereitung) nachvollzogen werden und führt auch zu groß angelegten Seitenverschiebungszonen im Bereich des aktiven Kontinentalrandes (ARTHAUD & MATTE, 1977; BADHAM, 1982; STAMPFLI, 1996).

Ein weiterer Hinweis zur variszischen Orogenese ergibt sich für die Stärke und den Zeitpunkt der Kollision von Eurasia mit Gondwana. Nach STAMPFLI (1996) kann die Hauptkollision mit Gondwana nicht vor dem späten Karbon geschehen sein, da die beiden Vorlandgebiete des intraalpinen Terranes (Karnischen Zone und Südsardinien) nur wenig von der variszischen Deformation und Metamorphose beeinflusst (VAI & COCOZZA, 1986) wurden. Dieses Vorland war allerdings nicht der südlichste Rand der Paläotethys (STAMPFLI 1996). Nachweislich bestanden überall entlang der südlichen Seite des intraalpinen Terranes marine Verbindungen bis hin zum späten Karbon (Moskau), was eine Hauptkollision mit Gondwana im südlichen Bereich vor dieser Zeit, ausschließt (STAMPFLI, 1996). Deshalb kann die variszische Orogenese Mitteleuropas im Devon bis Karbon nicht auf eine vollständige Kontinent/Kontinent-Kollision (Eurasien-Gondwana) bezogen werden, eher auf eine Akkretion von Gondwana mit einem aktiven Rand im Norden.

Die Provenanz-Indikatoren für den Ablagerungsraum der Ostkarawanken zeigen überwiegend Hinweise auf einen aktiven Kontinentalrand, der zu großen Teilen, direkt von einem magmatischen Bogen beeinflusst wird (vgl. Tab. 9.1, Kap. 6, 8, und 9). Für das Hochwipfel-Becken der Ostkarawanken widersprechen diese teilweise sehr eindeutigen Hinweise (vgl. Abb. 8.15 und 8.18) Hubich's Annahme einer strikten passiven Kontinentalrand-Situation, wie er es für die Hochwipfel-Sedimentation der Karnischen Alpen vorschlägt.

Aufgrund der Ergebnisse dieser Arbeit und der von Rüdiger Diener sowie der Diskussion der bestehenden Modelle leitet unsere Arbeitsgruppe für die Ostkarawanken folgende Möglichkeiten für die geotektonische Situation des Ablagerungsraumes ab.

# Geotektonische Situation der Ostkarawanken für die karbonen Ablagerungsräume

#### Paläogeographische Voraussetzungen

Für die Paläogeographie der karbonen Ablagerungsräume ergeben sich zwei Möglichkeiten:

#### 1. Ablagerungsraum der Hochwipfel-Formation an einem Randbereich der Paläotethys:

Während des Oberdevons vollzieht sich im Bereich der heutigen Südalpen nach STAMPFLI et al. (1991) und STAMPFLI (1996) der Übergang von einer divergenten zu einer konvergenten Plattenrandsituation. Dies äußert sich durch eine Nordnordwest-gerichteten Subduktion der Paläotethys. Ab dem jüngeren Oberkarbon (Visé) werden in den entstandenen Becken die Sedimente der Hochwipfel-Formation abgelagert (KRAINER, 1992; KRAINER, 1993; KULLMANN & LOESCHKE, 1994; DIENER et al., in Arbeit]). Während des Unterkarbons bis Oberkarbons schließt sich die Paläotethys und ein Fragment des ozeanischen Rückens der Paläotethys gelangt in den Bereich der Subduktionszone und wird subduziert (vgl. ARTHAUD & MATTE, 1977, STAMPFLI, 1996).

Aufgrund einer hohen Subduktionsrate erfolgt eine Ausdünnung der kontinentalen Kruste am Rand des zusammengesetzten austroalpinen Terrans (STAMPFLI et al. 1991; STAMPFLI 1996). Eine zunehmend schräg gerichtete Konvergenz führt zudem zu einer seitenverschiebenden Komponente innerhalb des Stressfeldes (STAMPFLI et al., 1991; STAMPFLI, 1996).

## 2. Ablagerungsraum der Hochwipfel-Formation am Tripelpunkt Eurasien/Gondwana/Paläotethys:

Die grundlegende Plattenkonfiguration und die Entwicklung im Bereich der heutigen Südalpen bleibt auch in diesem Fall bestehen. Sicherlich vollzieht sich auch hier im Bereich der heutigen Südalpen der Übergang von einer divergenten zu einer konvergenten Plattenrandsituation, allerdings ist es fraglich, ob die Paläotethys direkt in diesem Bereich subduziert wird. Möglich ist aber auch ein ehemals aktiver Kontinentalrand, der nach der Konsolidierung von Gondwana an den westlichen Teil von Eurasien im Devon entstanden ist und an seinem östlichen Ende durch die Subduktion der Paläotethys beeinflusst wird. Diese Uberlegung wird durch ARTHAUD & MATTE (1977) und STAMPFLI (1996) gestützt, die vermuten, dass die variszische Orogenese im westlichen Teil der heutigen Alpen viel früher stattfand, als im Osten. Im Folgenden werden Gondwana und die ehemaligen alpinen Terrane an anhaltenden Seitenverschiebungen, weiter nach Westen verschoben. Dies und die schräge Subduktion der Paläotethys könnten eine komplizierte tektonische Situation (vgl. Afar-Dreieck im Golf von Akabar) im Übergangsbereich zwischen Gondwana, Eurasien und der Paläotethys schaffen. In deren Folge kommt es dann in diesem Bereich zur Ausbildung von Dehnungsstrukturen und Ablagerungsbecken als die Paläotethys versucht sich nach Westen fortzusetzen. Diese Situation lässt sich mit der Bildung des Ablagerungsraumes an einem "failed rift" (Aulakogen) in Einklang bringen indem die karbonen Sedimente der Karawanken abgelagert werden.

#### Geodynamische Modelle für die Ostkarawanken

Aus diesen paläogeographischen Überlegungen lassen sich zwei mögliche geodynamische Modelle für die Ostkarawanken ableiten:

#### 1. Geodynamisches Modell am Rand der Paläotethys

Bei diesem Modell sind im frühen Paläozoikum zu beiden Seiten der Paläotethys passive Kontinentalränder unbekannter Ausdehnung entwickelt (vgl. KULLMANN & LOESCHKE, 1994; STAMPFLI, 1996; KRAINER, 1992; LÄUFER et al., 1993). In Folge der Subduktion ozeanischer Kruste (Panthalassa ?) entstand am Nordrand von Gondwana ein magmatischer Bogen. Im Zuge dieser Subduktion kam es während des Kambriums im kontinentalen Randbereich von Gondwana, zu einer Back-Arc Extension. Dadurch kam es zur Abspaltung einzelner Terrane, wie Avalonia, Brabant, Amorica, Zentraleuropäische Blöcke und Moesia, vom panafrikanisch verdickten Nordrand Gondwanas (STAMPFLI, 1996; PHARAOH, 1999). Nach STAMPFLI (1996) erfolgte in dieser Phase auch die Abspaltung eines oder mehrerer, als das Alpines Terran bezeichnete Krustenblöcke, die sich nach Norden zum eurasischen Rand bewegten. Das Alpine Terran wurde dann im Verlauf des Altpaläozoikums (bis Devon) an Laurussia akkretioniert. Der aus der Back-Arc Extension resultierende Ozean wird allgemein als Paläotethys oder im Westen als Prototethys bezeichnet.

Die Sedimentation am Südrand des Alpinen Terrans ist zunächst durch klastische Schüttungen von Norden (Alpines Terran, vgl. STAMPFLI, 1996) und Süden (Gondwana) gekennzeichnet und wechselt dann im Silur und Devon zu einer karbonatischen Sedimentation. Zum Devon hin vollzieht sich im Bereich des an Eurasien akkretionierten alpinen Terrans der Übergang, von einer divergenten zu einer konvergenten Plattenrandsituation mit nordgerichteter Subduktion. Hiermit verbunden ist die Ausbildung eines magmatischen Bogens. Aufgrund einer hohen Subduktionsrate der Paläotethys im jüngeren Devon erfolgte eine Ausdünnung kontinentaler Kruste am Südrand des Terrans. Die Öffnung von Back-Arc-Becken entlang des eurasischen Plattenrandes kann als Folge der schrägen Subduktion des mittelozeanischen Rückens und des Slab roll-backs der Paläotethys erklärt werden (vgl. Meliata, Dobrogea und andere; STAMPFLI, 1993, 1996).

Im Bereich der Ostkarawanken könnte man die Intrusion des Eisenkappeler Diabaszuges im Oberdevon bis Unterkarbon (KULLMANN & LOESCHKE, 1994) in diese Back-Arc-Entwicklung am eurasischen Rand einbinden. Mindestens ab dem jüngeren Visé wurden dann die Sedimente der Hochwipfel-Formation in das sich öffnende Becken abgelagert. Die Sedimentquelle dieser klastischen Sedimentation sind im Norden das Alpine Terrane und ein im Süden vermuteter

magmatischer Bogen. Nach den paläogeographischen Karten von ARTHAUD & MATTE (1977) und STAMPFLI (1996) kann man annehmen, dass dann im älteren Unterkarbon der ozeanische Rücken der Paläotethys in diesem Bereich des Kontinentalrandes subduziert wird. In Folge der Subduktion des ozeanischen Rückens kam es zu Deformationen bis in den Back-Arc-Bereich. Ein ähnliches Phänomen wird aus Mittelamerika beschrieben (vgl. MCGEARY et al., 1985; HUENE VON et al., 1990). Auch dort führen diese Deformationen zu einer Zergliederung des Bereichs des magmatischen Bogens (vgl. GARDNER et al., 1992; KOLARSKY et al., 1995; KUTTEROLF, 1996) und dem Auftreten von kompressiven Stressfeldern. Zusammen mit einer zunehmenden seitenverschiebenden Komponente durch eine erhöhte, schräg gerichtete Konvergenz (STAMPFLI, 1996) kann es dann zur weiteren Zergliederung der Sedimentationsbecken (vgl. Kalifornien; MCLAUGHLIN, 1996) und des magmatischen Bogens gekommen sein. Teile der zuvor zerbrochenen devonischen Karbonatplattformen rutschten, zusammen mit älteren Einheiten, als Olistolithe (KULLMANN & LOESCHKE, 1994) vom Kontinentalrand in die Sedimentationsräume. Gegen Ende der Sedimentation der Hochwipfel-Formation (Westfal) führten die ersten Auswirkungen einer Kollision mit Gondwana zur Ausbildung steiler Escarpements und der Schüttung von immer gröberklastischeren Abfolgen und weiteren Olistolithen in den Sedimentationsraum. Durch die verstärkte Deformation und Zergliederung wurde der magmatischen Bogen tektonisch erodiert und in das Basement eingearbeitet. Der Kollaps der Variszischen Cordillere im späten Karbon führte zur endgültigen Schließung der Paläotethys zwischen Afrika und Europa (STAMPFLI, 1996). Die anhaltende rechtslaterale Seitenverschiebung zwischen den ehemaligen Plattengenzen führten zur Ausbildung von lokalen Restbecken in welche die klastische Auernig-Formation abgelagert wurde. Nach einer anfänglichen Dominanz von resedimentierten Klasten folgte ein zunehmender Einfluss quarzdominerter Schüttungen aus einem exhumierten Orogengürtel (vgl. Kap. 5, 6 und 9).

### 2. Geodynamisches Modell am Tripelpunkt Eurasien/Gondwana/Paläotethys

Die altpaläozoische Sedimentation während des Ordoviziums zeichnet sich durch klastische Schüttungen von Nord und Süd in ein westliches Randbecken der Paläotethys aus (nördliche Fazies: "Himmelberg-Sandstein", quarzreiche Bischofsalm Fazies, SCHÖNLAUB 1993; südliche Fazies: Comelico Porphyroid, Val Visdende Schiefer, Fleons Formation in den Karnischen Alpen, HEINISCH 1988, HINDERER 1992, HUBICH, 2000). Im Silur und Unterdevon setzt sich eine passive Kontinentalrandlage mit zunehmender struktureller Akzentuierung in Schwellen- und Grabenstrukturen fort (schwarze Kieselschiefer, schwarze Tonschiefer, kohlenstoffreiche "Kokkalke", "Orthocerenkalke" des Silur; bläuliche Kieselschiefer, Tonschiefer, bunte "Flaserkalke", "Bänderkalke" des Unterdevon; Riffkalke des Mitteldevon; rote "Goniatitenkalke" des Oberdevon, vgl. TESSENSOHN, 1974, SCHÖNLAUB 1992).

Während sich im Devon im Bereich der Paläotethys der Übergang, von einer divergenten zu einer konvergenten Plattenrandsituation mit nordgerichteter Subduktion vollzieht, bleibt im Bereich des Tripelpunkts zwischen Eurasien, Gondwana und der Paläotethys ein passiver Kontinentalrand mit einem kontinentalen Dehnungsbereich erhalten (DIENER et al., in Vorbereitung). Die Dehnung und Absenkung des Ablagerungsraumes im Oberdevon sowie der Übergang von einem extensionalen zu einem transtensionalen Stress-Regime im Übergangsbereich zwischen Alpinem Terran und Gondwana führte in begrenzten Bereich zur Intrusion von mafischen bis ultramafischen Magmen (vgl. Diabas von Eisenkappel) die in den Ostkarawanken ein "initiales rift- Stadium" eines Rand- oder Folgebeckens der Paläotethys darstellen könnten (DIENER et al., in Vorbereitung). Die Auswirkungen dieses beginnenden "rifts" nehmen nach Westen hin ab und es treten nur noch vereinzelt basische Intrusionen auf (Raabtal-Diabas; Diabas von Finkenstein). Es kommt aber nicht zur Bildung von Ozeanboden. Im frühen Unterkarbon (jüngeren Visé, cull $\alpha/\gamma$ ; SCHÖNLAUB, 1993) bildet sich in diesem "failed rift" (Aulakogen) ein Becken, dass als Ablagerungsraum für die Hochwipfel-Formation dient und in das zu Beginn der Sedimentation noch viel Material aus den kontinentalen Gebieten gelangt. Auf Grund erhöhter, räumlich differenzierter Subsidenzraten, bildeten sich im Folgenden eine verstärkte pelagisch-tiefmarine Sedimentation aus, worauf die Ichnofazies-Vergesellschaftung wie Dictyodora, Lophoctenium und Nereites hinweisen (TESSENSOHN, 1968; VGL. KRAINER,

1992). Das Zerbrechen und Absinken der mitteldevonischen Karbonatplattformen kann als direkte Folge dieser Prozesse angesehen werden (DIENER et al., in Vorbereitung). Einzelne Blöcke altpaläozoischer Schichtfolgen glitten im Verlauf der Hochwipfel-Sedimentation in Form von Olistolithen in das Becken (vgl. KULLMANN & LOESCHKE, 1994).

Durch die erhöhte Subduktionsrate der Paläotethys und dem daraus folgenden Slab roll-back (STAMPFLI, 1993, 1996) erfolgte vermutlich im Osten, im Anschluss an den Ablagerungsraum der Ostkarawanken, Ausdünnung der kontinentalen Kruste im Back-Arc Bereich eines magmatischen Bogens. Unterstützt wird dies durch eine schiefen Subduktion der Paläotethys (STAMPFLI, 1996). Die entstehenden primitiven magmatischen Bögen und Back-Arc Bereiche schütten auch verstärkt basisches und andesitisches Material in den Ablagerungsraum der Ostkarawanken. Tufflagen mit andesitischem Chemismus, vulkanoklastische Komponenten und Seltenen Erden Signaturen innerhalb der Hochwipfel-Formation weisen auf diese Einflüsse einer magmatischen Quelle (magmatischer Bogen oder bimodaler Riftvulkanismus ?) hin (KRAWINKEL et al., submitted). Der Übergang zu einem transpressiven Spannungsfeld führte zum Oberkarbon hin zur Schließung des Sedimentationsraumes mit Ausbildung steiler Escarpements und Schüttung extrem grobklastischer basaler Abfolgen. In der östlichen Fortsetzung des Ablagerungsraumes kann nach den paläogeographischen Karten von ARTHAUD & MATTE (1977) und STAMPFLI (1996) davon ausgegangen werden, dass im Bereich der aktiven Subduktionszone der ozeanische Rücken der Paläotethys subduziert wird. Dies bewirkt die Zergliederung und Erosion des magmatischen Bogens, wie es im Modell zuvor beschrieben wurde. Dadurch gelangt auch verstärkt Material aus dem erodierten magmatischen Bogen in den Ablagerungsraum der Hochwipfel-Formation. Die frühestens im Westfal B erfolgende Kollision von Gondwana an Eurasien bewirkt die endgültige Schließung des Hochwipfel-Beckens und die anhaltende Krustenverkürzung äußert sich in einer starken Versteilung und einer teilweisen Überschiebung tektonischer Einheiten nach Süden (DIENER et al., in Vorbereitung). Eine hiermit verbundene schwache Schieferung und südgerichtete Mineralauslängung wird nur in den Karnischen Alpen beschrieben (HUBICH, 2000), fehlen jedoch in den Karawanken. Auftretende schiefrige Tonsteine stehen im Zusammenhang mit alpidischen Deformationsphasen. Die bis zur Permokarbon-Grenze anhaltende Kompression zeigt sich in Form dextraler Seitenverschiebungen und damit verbundener Intrusionen von Lamprophyren entlang von Mega-Fiederspalten (DIENER et al., in Vorbereitung). Diese und auftretende porphyritischer Gänge folgen typischen Riedel- und Antiriedel-Störungen dieser Seitenverschiebungszone mit NW-SE-gerichtete Hauptspannungskomponente. Anhaltende Bewegungen entlang der dextralen Blattverschiebungen hatten eine Ausbildung lokaler Restbecken zur Folge, in der die zu Beginn noch uneinheitliche Sedimentation der klastischen Auernig-Formation stattfindet.

### Zusammenfassende Diskussion

#### Geodynamische Situation in den Ostkarawanken

Die bisherigen Modelle gingen entweder von einer Sedimentation in einem Extensionregime mit Dehnungsbrüchen (KRAINER, 1992; HUBICH, 2000) oder von einer Sedimentation im Fore-Arc-Bereich aus (KULLMANN & LOESCHKE, 1994). Meiner Meinung nach widersprechen die eindeutigen Provenanzsignaturen eines magmatischen Bogens dem Modell von KRAINER (1992), der von einem Ablagerungsraum in einem intrakontinentalen Becken ohne Bezug zu einem aktiven Kontinentalrand mit einer Subduktionszone ausgeht. Für das Modell von KULLMANN & LOESCHKE (1994) in einem Fore-Arc-Bereich sprechen zwar die geochemischen Signaturen der Hochwipfel-Formation, jedoch sollte dann der Detritus auch eindeutigere Zeichen (Feldspat, Vulkanoklasten) in den petrographischen Auswertungen aufweisen, wie das für diese Bereiche üblich ist. Außerdem müssten dann auch Reste des Bogens oder des Akkretionskeils vorhanden sein. Auch das Modell von HUBICH (2000) erklärt meiner Meinung nach nicht ausreichend das Auftreten und die Dominanz der Signaturen eines magmatischen Bogens in geochemischen Analysen an Proben der Ostkarawanken. Allerdings muss man beachten, dass HUBICH (2000) dieses Modell für die Karnischen Alpen entwickelt hat und sich vermutlich nach R. DIENER (2001, mündliche Mitteilung) der Einfluss eine magmatischen Bogens zum Westen hin abschwächt. Es wäre also gut möglich, dass das Modell von HUBICH

(2000) für die geodynamische Situation der Karnischen Alpen zutreffend ist und sich von den Ostkarawanken unterscheidet.

Für die Ostkarawanken ergeben sich meiner Meinung nach nur die oben vorgestellten Möglichkeiten der geodynamischen Entwicklung an einem Randbereich der Paläotethys mit starker Seitenverschiebungskomponente in einem Back-Arc-Bereich oder einem Ablagerungsraum in einem "failed rift" (Aulakogen), der einen offenen Zugang zum magmatischen Bogen an der Subduktionszone der Paläotethys hat.

Die für das Modell am Paläotethysrand benötigte hohe Subduktionsrate zur Ausbildung eines Back-Arc-Beckens, kann durch ARTHAUD & MATTE (1977) und STAMPFLI (1996) hergeleitet werden und scheint nicht abwegig zu sein. Die Dehnung in diesem Bereich wird zudem durch die Seitenverschiebungen, die von ARTHAUD & MATTE (1977) und STAMPFLI (1996) am Rande der Paläotethys infolge schiefer Subduktion beschrieben werden, unterstützt. Auch die frühe Schließung des Back-Arc-Beckens und die Zergliederung des magmatischen Bogens aufgrund der Subduktion, des mittelozeanischen Rückens der Paläotethys ist nach der Beschreibung von STAMPFLI (1996) und vergleichbaren rezenten Situationen möglich. Das Eindringen eines ozeanischen Rückens in eine Subduktionszone bewirkt kompressive Deformation bis in den Back-Arc-Bereich und verursacht dort Aufschiebungen und die Bildung eines Überschiebungsgürtels ("Backarc-thrust-belt"; SILVER & REED, 1988). Dass der ankommende Kontinent Gondwana, das Hochwipfel-Becken schließt, ist nach den paläogeographischen Überlegungen von STAMPFLI (1996) ebenfalls nicht auszuschließen, wobei nicht geklärt ist, inwieweit eine vollständige Kollision und Schließung mit Ausbildung eines Gebirgsgürtels in diesem Bereich stattgefunden hat. Die geringe Deformation der karbonen Sedimente im Bereich der Karawanken deutet eher darauf hin, dass hier nur eine leichte Akkretierung oder eine starke Annäherung der beiden Bereiche stattfand. Allerdings muss man hinsichtlich des Back-Arc-Beckenmodells kritisch bemerken, dass die Sedimentpetrographie trotz der eindeutigen geochemischen Signale zu wenig direkte Hinweise (Feldspäte, Vulkanoklasten) auf einen magmatischen Bogen, der direkt dem Ablagerungsraum vorgelagert sein müsste, ergeben. Außerdem fehlen auch hierfür Beweise für einen ehemaligen magmatischen Bogens (z.B. Teile des Akkretionskeils, basische und ultrabasische Inselbogenbasalte) oder seines Akkretionskeils. Andererseits erklärt diese Konfiguration des Ablagerungsraumes der Hochwipfel-Formation die Mischprovenanz aus passiven und aktiven Kontinentalrand-Signaturen und Signaturen eines magmatischen Bogens, da Material aus allen Liefergebieten in unterschiedlicher Menge in das Hochwipfel-Becken gelangten.

Die Mischung von verschiedenen geodynamisch unterschiedlich entstandenen Liefergebieten wäre aber auch für das Modell an einem "failed rift" (Aulakogen) möglich (vgl. Abb. 9.1 bis 9.9). Damit erklärt sich dann auch der Trend zu immer geringer werdenden Einflüssen eines magmatischen Bogens zum Westen hin, da die Materialzufuhr aus einem aktiven Bereich der Paläotethys nicht mehr so dominant ist wie in den Ostkarawanken. Dies entspricht den Vermutungen von Rüdiger DIENER für die Westkarawanken. Außerdem würde es den noch kontinentaleren Ablagerungsraum der Karnischen Alpen weiter im Westen erklären. In diesem Modell müssen auch keine hohen Feldspat und Vulkanoklasten-Gehalte in den Sandsteinen vorhanden sein, da das Material vom magmatischen Bogen bis zum Ablagerungsraum die Möglichkeit hatte sich mit anderem Material zu vermischen und die instabileren Komponenten zu zerstören. Trotzdem bleibt bei der Geochemie vor allem bei der Betrachtung der immobileren Elementen die starke Signatur des magmatischen Bogens erhalten, da sich diese Elemente schlecht lösen und im Sediment verbleiben. Diese Beckenkonfiguration erklärt auch das unterschiedliche Eindringen der basischen Intrusiva im Bereich der Karawanken, wo der in den Ostkarawanken auftretende Diabas von Eisenkappel einen recht massigen Intrusionskörper darstellt, während zum Westen hin die basischen Intrusionen immer geringmächtiger werden (Raabtal-Diabas, vermutete Diabasfragmente zwischen Nötsch und Arnoldstein). Außerdem könnte diese Plattenrandkonfiguration auch erklären, wieso das Ablagerungsbecken augenscheinlich immer wieder von Dehnungs- und Kompressionsphasen beeinflusst wurde, da es zu Beginn der Ablagerungen eine Spreizung der ausgedünnten kontinentalen Kruste gab, die später durch die Norddrift von Gondwana wieder in ein kompressives System umgewandelt wurde. Eine Rotation, die durch die schräg zum Kontinentalrand von Eurasia verlaufende Konvergenzrichtung ausgelöst wird, könnte wieder zur erneuten Öffnung des

Ablagerungsraumes führen und feinerklastischere Sedimentation zulassen. Bei der endgültigen Akkretion oder Kollision von Gondwana und Eurasia schließt sich dann das Hochwipfel-Becken soweit, dass nur noch Restbecken zwischen strukturellen Hochgebieten übrigbleiben, in welche die Auernig-Formation abgelagert wird.

Da die Detailgenauigkeit der von ARTHAUD & MATTE (1977) und STAMPFLI (1996) konstruierten Plattenkonfiguration für das Karbon fraglich ist, ist es meiner Meinung nach möglich für den Ablagerungsraum der karbonen Becken der Karawanken verschiedenen Bereiche des eurasischen Randes anzunehmen. Meiner Meinung nach besitzt aber das hypothetische Modell eines Ablagerungsraumes in einem "failed rift" (Aulakogen) am Tripelpunkt Gondwana, Eurasien und Paläotethys die wenigsten Fehlerquellen, wenn man alle Ergebnisse meiner Arbeit und meine Interpretation der Beckenentwicklung für die Hochwipfel- und Auernig-Formation betrachtet. Zudem würde es noch laterale Unterschiede in den Karawanken und das etwas andere Modell von HUBICH (2000) für die Karnischen Alpen erklären.

#### Hinweise auf laterale Veränderungen der karbonen Formationen:

Innerhalb der Ostkarawanken konnten innerhalb der Litho- oder Petrofazies eine laterale Veränderung von Nord nach Süd erkannt werden. Während im Norden vor allem die Abfolgen der unteren Hochwipfel-Formation auftreten, sind im Süden des Arbeitsgebietes hauptsächlich die Ablagerungen der oberen Hochwipfel-Formation aufgeschlossen. Auch von West- zu Ostkarawanken ist ein Trend erkennbar. Die Mächtigkeit der Hochwipfel-Formation sinkt scheinbar von Westen nach Osten um fast die Hälfte, von 2000 m (mündliche Mitteilung, DIENER, 2000) auf 950 m. Im Westen scheinen stratigraphisch tieferliegende Ablagerungen der Hochwipfel-Formation aufgeschlossen zu sein als im Osten. Diese Beobachtungen lassen sich über die Karawanken hinweg bis in die Karnische Alpen weiterverfolgen, in der die Hochwipfel-Formation nach LÄUFER et al. (1993) und KRAINER (1992) eine Mächtigkeit kann eventuell auf die von HUBICH (2000) beschriebene Deckenstappelung unterschiedlicher Flysch-Einheiten zurückgeführt werden, die dann eine größere Mächtigkeit vortäuscht. Die teilweise abweichende Zusammensetzung der Sedimente kann auf den größeren Einfluss von kontinentalen Liefergebieten im Westen des Hochwipfel-Beckens zurückgeführt werden.

#### **Diskussion der Methodik**

Zum Schluss der Arbeit möchte ich noch auf die unterschiedlich angewandten Labormethoden eingehen und sie hinsichtlich ihres Aufwandes und ihres Nutzens bewerten.

#### **Dünnschliffanalyse**

Die aufwändigste Methode bei der Aufarbeitung, wie auch bei der Auswertung, war die klassische Methode der petrographischen Auswertung des Modalbestandes. Durch die Auswertung der Dünnschliffe war ich in der Lage, die bisher nur ansatzweise untergliederte Hochwipfel-Formation in 4 Gruppen zu unterteilen. Diese ließen sich dann stratigraphisch im Übersichtsprofil einordnen. Hinsichtlich der Provenanzauswertung stieß ich an die Grenzen der Methodik. Es zeigte sich, dass die unterschiedlichen auf der Basis verschiedener Modalparameter erstellten Provenanzdiagramme relativ große Abweichungen in ihrer Aussage hatten. Bessere Ergebnisse erhielt ich erst, als die verschiedenen Lithoklasten betrachtet wurden oder Diagramme benutzt wurden, welche die klassischen Datensätze von DICKINSON (1985) auf der Basis von Diskriminantenfunktions-Diagrammen bewerteten.

#### Die Schwermineralanalyse

Die Schwermineralanalyse war ebenfalls eine aufwändige Methode. Hinsichtlich einer Unterteilung in verschiedene Petrofaziesgruppen ergaben sich keine klaren Ergebnisse. Nur das Auftreten des Granates ließ eine Einteilung in eine obere und untere Hochwipfel-Formation zu. Für die Provenanz waren einige Schwerminerale liefergebietsindikativ. So deutete das Auftreten von Chromspinell auf das Vorhandensein eines ultrabasischen Liefergebiets, das zudem noch relativ nahe am Ablagerungsraum gelegen haben muss (idiomorphe Körner). Die

Schwermineralanalyse unterstützte die Leichtmineralanalyse, konnte aber nicht separat zur Provenanzaussage benutzt werden

#### Einzelmineralchemie

Die Einzelmineralchemie ist eine gut Methode, um Änderungen von Liefergebieten mittels mineralchemischen Änderungen zu erfassen. Die angewandte Methode mit der EDAX ist schnell und relativ billig durchzuführen und gibt einen guten Überblick über die Mineralchemie der untersuchten Schwerminerale. Allerdings erlaubt diese Methode keine hochauflösende quantitative Analysen. Vor allem im Bereich der leichten Elemente wird der Fehlerbereich sehr groß. Hier wäre der Einsatz einer Mikrosonde zu empfehlen, die standardisierte und damit gesichertere Ergebnisse bringt. Der Einsatz dieser Methode ermöglichte eine differenziertere Betrachtung der einzelnen Schwerminerale und brachte neue Erkenntnisse für die Provenanzanalyse.

#### Gesamtgesteinschemie

Die Betrachtung der Gesamtgesteinschemie ist, meiner Meinung nach, neben der Dünnschliffanalyse, die effektivste Methode. Einer relativ einfachen und kurzen Aufbereitung folgen sehr schnelle und gualitativ hochwertige Ergebnisse. Beim Versuch der Reproduktion der Analysen konnte ich bei Mehrfachmessungen einen Fehlerquotienten der Hauptelemente von unter einem Prozent feststellen. Die Provenanzanalyse der chemischen Elemente ergaben sehr stabile und einheitliche Ergebnisse, gleichgültig welche Elementkombinationen ich betrachtete. Ein Nachteil ist, dass die Hauptelemente, genauso wie die Hauptmodalbestandteile der Dünnschliffanalyse, relativ anfällig für Lösungs- und Ausfällungsprozesse sind. Bei der Hochwipfel-Formation zeigte sich aber, dass auch die immobilen Elemente die gleichen Ergebnisse hinsichtlich der Provenanz lieferten wie die mobilen Elemente. Vermutlich war der Stoffaustausch aus und in die Sandsteine sowie die Verwitterung und selektive Lösung gering. So gut die Ergebnisse für die Ermittlung der Provenanz auch sind, für die Gruppierung der Petrofazies versagte diese Methode fast vollständig. Man konnte die Petrofaziesgruppierung allerhöchstens erahnen. Um die Ergebnisse der RFA mit weiteren immobilen Elementen zu untermauern und zu konkretisieren, wurden an Schmelztabletten der RFA die Seltenen Erden mittels der LA-ICP-MS bestimmt. Auch hier ergaben sich bei Mehrfachmessungen sehr gute Ergebnisse für die Reproduzierbarkeit (5 – 10% Abweichung). Der Mehraufwand dieser Methode, im Vergleich zu der RFA, war sehr gering und das Ergebnis sehr gut. Die Analyse der Gesamtgesteinschemie ergibt also hinsichtlich der Provenanz sehr gute und differenzierte Ergebnisse, während diese Methode für die stratigraphische Gliederung und die Einteilung in Faziesgruppen nicht geeignet war.

Die Kombination verschiedener Methoden ist sinnvoll, da zum Beispiel die Dünnschliffanalyse hinsichtlich einer Provenanzanalyse einige Schwächen besitzt und abhängig von der Sichtweise des Bearbeiters ist. Dagegen hat sie ihre Vorteile in der konstant bleibenden Klassifizierung und Einteilung von Petrofaziestypen, während hier die Gesamtgesteinschemie, die ansonsten sehr gute, differenzierte und homogene Ergebnisse für die Provenanz zeigt, nicht verwendet werden kann. Als Ergänzung zu diesen Methoden eignet sich die Schwermineralanalyse und speziell die Einzelmineralchemie der Schwerminerale sehr gut, um die Herkunft einzelner Provenanzsignaturen genauer zu untersuchen, zu differenzieren und auf die Liefergesteine zu beziehen.

Nach der Anwendung der verschiedenen Methoden kann man, im Hinblick auf die Provenanzindikatoren, feststellen, dass jede Methode für sich eine mehr oder minder große Fehlerquelle enthält, die nur in Kombination der einzelnen Methoden ausgeräumt oder minimiert werden kann.

## 11 Danksagung

Die vorliegende Dissertation entstand auf Anregung von Frau PD Dr. Hannelore Krawinkel am Institut für Geologie und Paläontologie der Universität Stuttgart. Frau PD Dr. H. Krawinkel danke ich sehr herzlich für die Betreuung im Gelände und am Institut sowie die Kostenübernahme der geochemischen Analysen. Herrn Prof. Dr. Hartmut Seyfried möchte ich meinen besonderen Dank für die Übernahme des Korreferates und für seine stete Hilfsbereitschaft bei fachlichen Fragen und der Unterstützung zur Finanzierung dieser Arbeit aussprechen.

Ganz besonders möchte ich mich bei der Arbeitsgruppe "Krawinkel" und den befreundeten Personen bedanken, die nicht nur bei fachlichen Diskussionen für mich da waren, sondern zu denen mich inzwischen auch eine enge Freundschaft verbindet. **Uwe Baaske** half mir unter anderem dabei die nötigen Verbindungen zu den geochemischen Analyseeinrichtungen aufzunehmen und half diese Analysen mit zu finanzieren. **Rüdiger Diener** untersuchte nicht nur den westlichen Teil der Karawanken, sondern war auch jeden Morgen zu einem wertvollen und effektiven Informationsaustausch bereit, der es uns ermöglichte eine umfassende Vorstellung über die geologischen Entwicklungen in den Karawanken zu erlangen. **Stefan Wozazek** half mir die Verbindung in das Geographische Institut zu knüpfen und war mir ins Besondere bei der Schwermineralanalyse sehr hilfreich. **Andrea Knörich** war die erste, die Teile meiner Arbeit zu sehen bekam und mir half, meinen Schreibstil zu verbessern. Nicht zuletzt muß ich mich recht herzlich bei meinen Diplomanden **Esther Blaurock, Raphael Knoll, Natascha Spengler** und **Marc Steudle** bedanken, die mit ihren Arbeiten einen Grundstein für meine Dissertation gelegt haben.

Dr. Justus Krawinkel und Nicole Schotters danke ich sehr herzlich für einige schöne Geländetage in den Karawanken und fruchtbaren Diskussionen über das Gelände

Auch Dr. **Elmar Buchner** möchte ich für einen Teil der Korrekturen danken, die er für mich machte, aber ins Besondere für die schöne Zeit, in der wir das Lateinamerika Kolloquium 2000 organisierten.

Bei allen anderen **Mitarbeitern, Doktoranden** und **Studenten** des Instituts für Geologie und Paläontologie der Universität Stuttgart möchte ich mich ebenfalls für die Unterstützung und Hilfsbereitschaft bedanken.

Im Zuge der Geländearbeit muß ich mich ganz herzlich bei der Gemeinde Eisenkappel in Kärnten/Österreich bedanken, da sich durch die Hilfsbereitschaft der Gemeindeangestellten die Geländearbeit optimal erledigen ließ. Genauso schulde ich auf slowenischer Seite dem Geological Survey of Slovenia Dank, deren Mitarbeiter in Geländeeinführungen und in fachlichen Diskussionen hilfsbereit waren.

Ein besonderer Dank gilt der Besitzerin des Seebergsattels **Christa Schwarz** und ihrer Tochter **Petra**, die mir im ersten Geländejahr eine gute und familiäre Unterkunft boten. Ebenso gilt ein ganz besonderer Dank an **Ernst Stocker**, seine Frau **Gitte** und den vielen Helfern aus Wien, die in den letzten 3 Jahren für eine gute Unterkunft, hervorragende Verpflegung, unzählige, lange, gemütliche Abende und eine tiefe Freundschaft am Seebergsattel sorgten. Weiterhin möchte ich den Bauern, den Zollgendarmen und Einwohnern von Bad Vellach danken die so hilfsbereit und freundlich waren, daß man lange suchen muß, um solche Geländebedingungen wiederzufinden. Ich bin und bleibe ein Vellacher !!

Bei Herrn Prof. Dr. W.D. Blümel, Herrn Dr. J. Eberle und Herrn Stettler bedanke ich mich für die großzügige Bereitstellung des Labors im Geographischen Institut der Universität Stuttgart für die Aufbereitung der Schwerminerale. Bei Herrn Prof. Dr. Masonne muß ich mich für die Benutzung des Backenbrechers und der Schwingscheibenmühle bedanken. Herrn Weingand und Herrn Wimmer danke ich vielmals für die Herstellung von Dünnschliffen meiner Gesteinsproben. Für die Betreuung am Rasterelektronenmikroskop bin ich Herrn Dr. Alexander Fels und zu Dank verpflichtet. Herrn D. Frobel möchte ich für die Betreuung und die Messungen an der RFA am Bodenkundlichen Institut der Universität Hohenheim danken. Für die hervorragende Betreuung und die Einführung an der LA-ICP-MS möchte ich mich recht herzlich bei Dr. D. Mertens vom Geologischen Institut der Universität Jena bedanken sowie Prof. Dr. Reinhard Gaupp für die Bereitstellung der Labor und Analyseeinrichtungen der LA-ICP-MS und des Gamma Ray Spektrometers.

Für eine Geländeeinführung in den Karnischen Alpen möchte ich der Arbeitsgruppe um Prof. Dr. J. Loeschke, Dr. Andreas Läufer und Dr. Dieter Hubich danken, die auch immer zur fachlichen Diskussion bereit waren. Ebenso bedanke ich mich bei Prof. Dr. Karl Krainer für eine Geländeeinführung in die Auernig Gruppe der Karnischen Alpen.

Ein besonderer Dank gebührt meinen **Kollegen** und dem Stationsleiter **Harald Kitscha** der Station 10, des Zentrums für Psychiatrie in Weinsberg. Ohne ihre Geduld und Hilfsbereitschaft in den letzten 10 Jahren, hätte ich mein Studium und meine Promotion nicht durchführen und finanzieren können.

Bei meinem Vater Klaus Kutterolf und meinem Bekannten Peter Butz möchte ich mich ebenfalls ganz besonders bedanken, da Sie als Rechtschreibinstanz fungierten und mein Manuskript durchsahen. Ein weiterer großer Dank gebührt Markus Fingerle der die Arbeit vor dem Druck noch ein letztes Mal auf Herz und Nieren prüfte.

Meinen Schwiegereltern Irene und Jakob Jillich möchte ich für das häufige Kinderhüten danken, welches es mir oft ermöglichte, mich meiner Promotion zu widmen.

Der größte Dank aber gehört meiner Frau **Elke Jillich-Kutterolf** und meinen Kindern **Ann-Cathrin, Sebastian** und **Jonas** für ihre Geduld und ihre Liebe. Sie hatten mich in den letzten Jahren oftmals vermißt, da ich mich entweder im Nachtdienst, in den Karawanken oder an der Universität befand.

## 12 Literaturverzeichnis

- ALLAN, J. F. (1994): Cr-Spinel in depleted basalts from the Lau basin backarc: petrogenetic history from Mg-Fe crystal-liquid exchange.- Proc. ODP, Sci. Results, **135**: 565-583.
- ANDERLE, N. (1970): Stratigraphische und tektonische Probleme im Bereich des österreichischen Anteils der Westkarawanken zwischen Rosenbach und Thörl unter Berücksichtigung der alpinen Orogenese.- Geologjia.
- ANDERLE, N. (1977): Geologische Karte der Republik Österreich, Blatt 200 Arnoldstein, 1:50 000.-Geologische Bundesanstalt.
- ARAI, S. (1992): Chemistry of chromian spinell in volcanic rocks as a potential guide to magmatic chemistry.- Mineralogical Magazine, **56**: 173-184.
- ARTHAUD, F. & MATTE, P. (1977): Late Paleozoic strike-slip faulting in Southern Europe and North Africa: results of a right lateral shear zone between the Appalachians and the Urals.- Geol. Soc. Am. Bull., 88: 1305-1320.
- BAASKE, U. (1999): Untersuchungen zur Diagenese des Buntsandsteins am Westrand des Rheingrabens (Region Bad Dürkheim / Neustadt a. d. Weinstraße).- Unveröff. Diplomarbeit, Universität Mainz: **90**.
- BACHTADSE, V. & BRIDEN, J. C. (1990): Palaeomagnetic constrains on the position of Gondwana during Ordovician to Devonian times.- In: MCKERROW, W.S., SCOTESE, C.R. (1990): Palaeozoic palaeogeography and biogeography.- Geol. Soc. Mem., **12**: 43-48
- BADHAM, J. P. (1982): Strike-slip orogens an explanation for the Hercynides.- J. Geol. Soc., **139**: 493-504.
- BARBARIN, B. (1990): Granitoids: main petrogenetic classifications in relation to the origin and tectonic setting.- J. of Geology., 25: 227-238.
- BASU, A. (1985): Influence of climate and relief on compositions of sands released at source areas.- In: Zuffa, G.G. (1985): Provenance of arenites.- Dordrecht, Reidel., **148**: 1-18.
- BASU, A., YOUNG, S. W., SUTTNER, L. J., JAMES, W. C. & MACK, G. H. (1975): Re-evalution of the use of undulatory extinction and polycrystallinity in detritial quartz for provenance interpretation.- J. of Sed. Petr., 45: 873-882.
- BAUD, A. & STAMPFLI, G. M. (1989): Tectogenesis and evolution of a segment of the Cimmerides: the volcano-sedimentary Triassic of Aghdarban (Kopet-Dagh, North- East Iran). Tectonic evolution of the Tethyan region. - Amsterdam, Kluwer Acad. Publ.
- BAUD, A., STAMPFLI, G. M. & STEHEN, D. (1991a): The Triassic Aghdarband Group: volcanism and geological evolution. The Triassic of Aghdarband (AqDarband), NE-Iran, and ist Pre-Triassic frame. - Wien, Abh. Geol. B.-A., 38: 125-137
- BAUER, F. K. (1984): Zur Geologie der westlichen Karawanken und zum Verlauf des Periadriatischen Lineaments.- Jb. Geol. B.-A., **27**(3): 289-297.
- BAUER, F. K., BUCKENBERGER, U. S., R., EXNER, C., HUSEN, D. V., KUPSCH, F., LÖSCHKE, J., ROLSER, J., SUETTE, G., TESSENSOHN, F. & WALTZ, W. (1981): Geologische Karte der Karawanken 1:25 000, Ostteil. Wien, Geologische Bundesanstalt.
- BEHR, H.-J., ENGEL, W., FRANKE, W., GIESE, P. & WEBER, K. (1984): The Variscan Belt in central Europe; Main structures, geodynamic implications, open questions.- Tectonophysics, **109**: 15-40.
- BHATIA, M. R. & CROOK, K. A. W. (1986): Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins.- Contrib. Mineral. Petrol., **92**: 181-193.
- BHATIA, M. R. (1983): Plate Tectonics and geochemical composition of sandstones.- J. of Geology, **91**(6): 611-627.
- BHATIA, M. R. (1985): Rare-earth element geochemistry of Australian Paleozoic greywackes and mudrocks: Provenance and tectonic control.- Sedimentary Geology, **45**: 97-113.
- BIINO, G. (1994): The pre-Late Ordovician metamorphic evolution of the Gotthard-Tavetsch massifs (Central Alps): from Lawsonite to kyanite eclogite to granulite retrogression.- Schweiz. Mineral. Petrogr. Mitt., 74: 87-104.
- BLAUROCK, E. (2000): Petrographie, Provenanz und Diagenese der Auernig-Schichten (Oberkarbon) der Karawanken.- unveröffent. Diplomarbeit, Universität Mainz.
- BOCK, B., MC LENNAN, S. M. & HANSON, G. N. (1998): Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England.- Sedimentology, **45**: 635-655.
- BOENIGK, W. (1983): Schwermineralanalyse.- Stuttgart, Enke.
- BONIN, B., BRÄNDLEIN, P., BUSSY, F., DESMONDS, J., EGGENBERGER, U., FINGER, F., GRAF, K., MARRO, C., MERCOLLI, I., OBERHÄNSLI, R., PLOQUIN, A., QUADT, A., RAUMER, J. F., SCHALTEGGER, U., STEYRER, H. P., VISONA, D. & VIVIER, G. (1993): Late Variscian Magmatic Evolution of the Alpine Basement.-In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- BOUMA, A. H. (1962): Sedimentology of some flysch deposits.- Amsterdam, Elsevier.
- BUCH, V. (1824b): Über die Karnische Alpen, Leonhardts Mineral Taschenbuch.

BUSER, S. (1974): Neue Feststellungen im Perm der westlichen Karawanken.- Carinthia II, 164: 27-37.

- CASTELLARIN, A. & VAI, G. B. (1981): Importance of Hercynian tectonics within the framework of the Southern Alps.- Jour. Struct. Geol., **3**: 477-486.
- CLIFF, R. A., HOLZER, H. F. & REX, D. (1975): The age of the Eisenkappel Granite, Carinthia and the History of the Periadriatic Lineament.- Vh. Geol. B.-A., **1974**: 347-350.
- COX, R. & LOWE, D. R. (1995): A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover.- J. of Sed. Res., A65: 1-12.
- CROOK, K. A. W. (1974): Lithogenesis and geotectonics: The significance of compositional variations in flysch arenites (greywackes).- In: Dott, R.H., Shaver, R.H. (1974): Modern and Ancient Geosynclinal Sedimentation.- Soc.Econ.Paleontol, Mineral.Spec. Publ., **19**: 104-310
- DALLMEYER, R. D. & NEUBAUER, F. (1991): <sup>40</sup>Ar/<sup>39</sup>Ar age of detritial muscovite, Carnic Alps: Evidence for Cadomian basement in the Eastern Alps.- Terra Nostra Abstracts, **3**: 12-13.
- DEER, W. A., HOWIE, R. A. & ZUSSMAN, J. (1963): Rock forming minerals Chain Silicates.- London, Longman.
- DEL-NEGRO, W. (1977): Abriss der Geologie von Österreich.- Wien, Geologische Bundesanstalt (Bundesländerserie).
- DICK, H. J. B. & BULLEN, T. (1984): Chromian spinel as an petrogenetic indicator in abyssal and alpinetype peridotites and spatially associated lavas.- Contrib. Mineral. Petrol., **86**: 54-76.
- DICKINSON, W. R. & SUCZEK, C. A. (1979): Plate tectonics and sandstone compositions.- AAPG Bull., 63: 2164-2182.
- DICKINSON, W. R. (1970): Interpreting detrital modes of greywackes and arkose.- J. of Sed. Petr., **40**: 695-707.
- DICKINSON, W. R. (1985): Interpreting provenance relations from detrital modes of sandstones.- In: Zuffa, G.G. (1985): Provenance of arenites.- Dordrecht, Reidel., **148**: 333-361.
- DICKINSON, W. R., BEARD, L. S., BRAKENRIDGE, G. R., ERJAVEC, J. L., FERGUSON, R. C., INMAN, K. F., KNEPP, R. A., LINDBERG, F. A. & RYBERG, P. T. (1983): Provenance of North American Phanerozoic sandstones in relation to tectonic setting.- Geol. Soc. Am. Bull., **94**(2): 222-235.
- DIENER, R., KUTTEROLF, S., STEUDLE, M. & KRAWINKEL, H. (IN VORBEREITUNG): Tektonische Untersuchungen in den Karawanken Implikationen für die variszische und alpidische Orogenese innerhalb der Südalpen.- Geol. B.-A.
- DIETZ, V. (1973): Experiments on the influence of transport on shape and roundness of heavy minerals.-Contrib. Sediment., 1: 103-125.
- EBNER, F., ED. (1990): Circummediterranen Carboniferous preflysch sedimentation. Field workshop on Carboniferous to Permian sequence of the Pramollo Nassfeld Basin (Carnic Alps).
- EBNER, F., NEUBAUER, F. & STATTEGGER, K. (1987): The Caledonian event in the Eastern Alps; a review.-Bratislava, Alfa.
- EXNER, C. (1972): Geologie der Karawankenplutone östlich Eisenkappel, Kärnten.- Mitt. Geol. Ges, Wien **64**: 1-108.
- EYNATTEN VON, H. & GAUPP, R. (1999): Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis, and mineral chemistry.-Sedimentary Geology, **124**: 81-111.
- EYNATTEN VON, H. (1996): Provenanzanalyse kretazischer Siliziklastika aus den nördlichen Kalkalpen Petrographie, Mineralchemie und Geochronologie des frühalpidisch umgelagerten Detritus.-Dissertationen in Mainz: 1-134.
- FELS, A. (1999): Kurs und Einführung am Rasterelektonenmikroskop.- http://www.reclot.de/.
- FLOYD, P. A., LEVERIDGE, B. E., FRANKE, W., SHAIL, R. & DÖRR, W. (1991): Provenance and depositional environment of Rhenoherzynian synorogenic greywackes from Giessen Nappe, Germany.- Geol. Rundsch., 79(3): 611-626.
- FLOYD, P. A., SHAIL, R., LEVERIDGE, B. E. & FRANKE, W. (1991b): Geochemistry and provenance of Rhenoherzynian synorogenic sandstones: implications for tectonic environment discrimination.- In: MORTON, A.C., TODD, S.P., HAUGTHON, P.D.W (1991): Developments in Sedimentary Provenance studies.- Geol. Soc. Am. Spec. Pub., **57**: 611-626.
- FLÜGEL, H. (1975a): Einige Probleme des Variszikums von Neo-Europa.- Geol. Rundsch., 64: 1-62.
- FLÜGEL, H. W. (1990): Das voralpine Basement im alpin-mediterranen Belt Überblick und Problematik.-Jb. Geol. B.-A., **133**(2): 181-221.
- FOLK, R. L. (1980): Petrology of sedimentary rocks.- Austin, Texas, Hemphill Publishing Company.
- FRANKE, W. & ENGEL, W. (1986): Synorogenic sedimentation in the Variscan belt of Europe.- Bull. Soc. Geol. France., **8** II(1): 25-33.
- FRANKE, W. (1989): Tectonostratigraphic units in the Variscan belt of central Europe.- Geol. Soc. Am. Spec. Paper, **290**: 67-89.

- FREISE, F. W. (1931): Untersuchung von Mineraldaten auf Abnutzbarkeit bei Verfrachtung im Wasser.-Tschermaks Mineral. Petrogr. Mitt., **41**: 1-7.
- FRISCH, W. & NEUBAUER, F. (1989): Pre-Alpine terranes and tectonic zoning in the Eastern Alps.- Geol. Runds., **73**: 47-68.
- FRISCH, W., NEUBAUER, F. & SATIR, M. (1984): Concepts of the evolution of the Austroalpine basement complex (Eastren Alps) during the Caledonian-Variscan cycle.- Geol. Soc. Am. Spec. Paper, 230: 91-100.

FRISCH, W., NEUBAUER, F., MÉNOT, R. P. & RAUMER, J. F. (1990): Correlation and evolution of the Alpine basement.- Schweiz. Mineral. Petrogr. Mitt., 70: 265-286.

- FÜCHTBAUER, H. (1988): Sedimente und Sedimentgesteine. Sedimentpetrologie 2.- Stuttgart, Schweizerbart.
- GARDNER, T. W., VERDONCK, D., PINTER, N. M., SLINGERLAND, R., FURLONG, K. P., BULLARD, T. F. & WELLS, S. G. (1992): Quarternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica.- Geo. Soc. Am. Bull., **104**: 219-232.
- GARZANTI, E. (1991): Non-carbonate intrabasinal grains in arenites: their recognition, significance, and relationship to eustatic cycles and tectonic setting.- J. of Sed. Petr., **61**: 959-975.
- GEBAUER, D. (1993): The Pre-Alpine Evolution of the Continental Crust of the Central Alps An Overview.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- GEBAUER, D., QUADT, A., COMPSTON, W., WILLIAMS, I. & GRÜNENFELDER, M. (1988): Archaische Komponenten in retrograden Eklogiten des Gotthardmassivs.- Schweiz. Mineral. Petrogr. Mitt., 68: 485-490.
- GIJBELS, R. & ADRIAENS, A. (2000): Einleitung zu den massenspektrometrischen Methoden.- Stuttgart, E. Schweizerbart sche Verlagsbuchhandlung (Nägele u. Obermiller).
- GOSEN, W. V. (1989): Fabric development and the evolution of the Periadriatic Lineament in southeast Austria.- Geol. Mag., **126**: 55-71.
- GRÄNICHER, W. H. H. (1994): Messung beendet was nun?: Einführung und Nachschlagewerk für die Planung und Auswertung von Messungen.- Stuttgart, Teubner.
- GRAUERT, B. (1969): Die Entwicklungsgeschichte des Silvretta-Kristallins auf Grund radiometrischer Altersbestimmungen.- 168, Universität Bern.
- GRIMM, W. D. (1973): Stepwise heavy mineral weathering in the residual quartz gravel, Bavarian Molasse (Germany).- Contrib. Sediment., **1**: 103-125.
- GÜLDENPFENNIG, M. (1997): Geologische Neuaufnahme der Zone von Badenweiler-Lenzkirch (Südschwarzwald) unter besonderer Berücksichtigung unterkarbonischer Vulkanite und Grauwacken.- Tüb. Geowiss. Arb., **32**: 120.
- GÜLDENPFENNIG, M. (1998): Zur geotektonischen Stellung unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler-Lenzkirch (Südschwarzwald).- Z. Deutsch. Geol. Ges., **149**(2): 213-232.
- HACQUET, B. (1784): Mineralogisch-botanische Lustreise, von dem Berg Terglou in Krain, zu dem Berg Glokner in Tyrol, im Jahr 1779 und 81, Kraus.
- HAUER VON, F. (1847): Versteinerungen von Dienten in Salzburg, Heidingers Ber. 1.
- HAUGHTON, P. D. W. & FARROW, C. M. (1989): Compositional variations in lower Old Red Sandstone garnets from the Midland Valley of Scotland and the Anglo-Welsh Basin.- Geological Magazine, 126: 373-396.
- HEINISCH, H. (1988): Hinweise auf die Existenz eines passiven Kontinentalrandes im Altpaläozoikum der nördlichen Grauwackenzone Ostalpen.- Schweiz. Mineral. Petrogr. Mitt., **68**: 407-418.
- HELLER, P. L. & DICKINSON, W. R. (1985): Submarine ramp facies model for delta-fed, sand-rich turbidite systems.- Bull. Am. Assoc. Petrol. Geol., 69: 960-976.
- HELMOLD, K. P. (1985): Provenance of feldspathic sandstones the effect of diagenesis on provenance interpretations: a review.- In: ZUFFA, G.G. (1985): Provenance of arenites.- Dordrecht, Reidel. 148: 139-164.
- HENNINGSEN, D. (1966a): Crushing of sedimentary rock samples and its effects on shape and number on heavy minerals.- Sedimentology, **8**: 253-255.
- HENRY, D. J. & GUIDOTTI, C. V. (1985): Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine.- American Mineralogist, **70**: 1-15.
- HERITSCH, F., KAHLER, F. & METZ, K. (1933): Die Schichtfolge von Oberkarbon und Unterperm -Stratigraphie von Oberkarbon und Unterperm in den Karnischen Alpen. Klagenfurt, Carinthia II.
- HERRON, M. M. (1988): Geochemical classification of terrigenous sands and shales from core or log data.-J. of Sed. Petr., **58**(5): 820-829.
- HINDERER, M. (1992): Die vulkanoklastische Fleonsformation in den westlichen Karnischen Alpen -Sedimentologie, Petrographie, Geochemie.- Jb. Geol. B.- A., **135**: 335-379.
- HOWELL, D. G., JONES, D. L. & SCHREMER, E. R. (1985): Tectonostratigraphic Terranes of the Circum-Pacific region, Earth Science Series.

HUBICH, D. (2000): Geodynamische Entwicklung der Karnischen Alpen.- Tüb. Geo. Arb., A58: 1-101.

- HUENE VON, R. & LALLEMAND, S. (1990): Tectonic erosion along the Japan and Peru convergent margins.-Geo. Soc. Am. Bull., **102**: 704-720.
- HUMPHREYS, B., MORTON, A. C., HALLSWORTH, C. R., GATLIFF, R. W. & RIDING, J. B. (1991): An integrated approach to provenance studies: a case example from the Upper Jurrasic of the Central Graben North Sea.- In: MORTON, A.C., TODD, S.P., HAUGTHON, P.D.W (1991): Developments in Sedimentary Provenance studies.- Geol. Soc. Am. Spec. Pub., 57: 251-262.
- HUSEN, D. V. (1976): Zur Schichtfolge und Tektonik des Jungtertiärs zwischen Rechberg und Homarow-Berg und seine Beziehung zur Heraushebung der Karawanken.- Carinthia II, **86**: 113-126.
- HUSEN, D. V. (1984): Synsedimentäre Gleitschollen großen Ausmaßes im terrestrischen Jungtertiär der Karawanken.- Geol. Runds., **73**: 433-445.
- HUTCHEON, I. (1990): Aspects of the Diagenesis of coarse-grained Siliciclastic Rocks.- McIlreath, I.A. & Morrow, D.W.: Aspects of the Diagenesis of coarse-grained Siliciclastic Rocks.-. Ontario, Geoscience Canada. 4.
- INGERSOLL, R. V. & SUCZEK, C. A. (1979): Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218.- J. of Sed. Petr., **49**: 1217-1228.
- INGERSOLL, R. V., BULARD, T. F., FORD, R. L., GRIMM, J. P. & PICKLE, J. D. (1984): The effect of grain size on detritial modes: a test of the Gazzi-Dickinson point-counting method.- J. of Sed. Petr., 54: 103-116.
- IRVINE, I. N. (1967): Chromian spinel as a petrogenetic indicator. Part 2, Petrologic applications.-Canadian Journal of Earth Science, **4**: 71-103.
- JOCHUM, K. P., GIJBELS, R. & ADRIAENS, A. (2000): Multielementmassenspektrometrie (MMS).- Stuttgart, E.Schweizerbart sche Verlagsbuchhandlung (Nägele u. Obermiller).
- JOHNSSON, M. J., STALLARD, R. F. & LUNDBERG, N. (1991): Controls on the composition from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Columbia.-Geo. Soc. Am. Bull., 103: 1622-1647.
- KAHLER, F. (1953): Der Bau der Karawanken und des Klagenfurter Beckens.- Carinthia II, **16**(Sonderheft): 78.
- KAHLER, F. (1971): Die Überlagerung des variszischen Gebirgskörpers der Ost- und Südalpen durch jungpaläozoische Sedimente.- Z. Deutsch. Geol. Ges., **122**: 137-143.
- KAHLER, F. (1986a): Ein Normalprofil der Fusuliniden-Stratigraphie im Oberkarbon und Unterperm der Karnischen Alpen.- Carinthia II, **176**(96): 1-17.
- KAHLER, F. (1986b): Eine neue Fusuliniden-Gemeinschaft in tiefen Oberkarbon Schichten der Karnischen Alpen.- Carinthia II, **176**(96): 425-441.
- KENT, D. V. & VOO, R. V. D. (1990): Palaeozoic palaeogeography from palaeomagnetism of the Atlanticbordering continents - Palaeozoic palaeogeography and biogeography, Geol. Soc. Mem.
- KNOLL, R. (1999): Petrographie und Provenanzanalyse der Sandsteine der Hochwipfel- und Auernigschichten (Karbon) im Bereich westlich des Seebergsattels (Karawanken, Österreich und Slowenien).- (unveröffentlichte Diplomarbeit, Universität Stuttgart).
- KOLARSKY, R. A., MANN, P. & MONTERO, W. (1995): Island arc response to shallow subduction of the Cocos Ridge, Costa Rica.- Geo. Soc. Am. Spec. Pup., **295**: 235-262.
- KÖPPEL, V., NEUBAUER, F. AND SCHROLL, E. (1993): Pre-Alpidic Ore Deposits in the Central, Eastern and Southern Alps.- Berlin, Springer.
- KOZUR, H. (1991): The evolution of the Hallstatt Ocean and it significance for the early evolution of the Eastern Alps and western Carpathians.- In:CHANNEL, J.E.T., WINTERER, E.L., JANSA, J.F. (1991): Palaeogeography and palaeooceanography of Tethys.- Paleogeogr. Palaeoclimatol. Palaeoecol., 87: 109-135.
- KRAINER, K. (1989): Das Karbon in Kärnten.- Carinthia II, **179** / 99. Jhrg.: 59-109.
- KRAINER, K. (1990): Die basalen Auernigschichten am Tomritsch-Rücken südlich von Tröpolach (Oberkarbon, Karnische Alpen, Kärnten).- Jb. Geol. B.- A., **133**(4): 567-574.
- KRAINER, K. (1992): Fazies, Sedimentationsprozesse und Paläogeographie im Karbon der Ost- und Südalpen.- Jb. Geol. B.-A., **135**(1): 99-193.
- KRAINER, K. (1993): Late- and Post-Variscan-Sediments of the Eastern and Southern Alps.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- KRAWINKEL, H., KUTTEROLF, S., SPENGLER, N. & KNOLL, R. (review): Petrographische und geochemische Provenanz-Indikatoren der Hochwipfel Formation (Karbon, Karawanken).- N. Jb. Geol. Paläont. Abh..
- KRAWINKEL, H., WOZAZEK, S., KRAWINKEL, J. & HELLMANN, W. (1999): Heavy-mineral analysis and clinopyroxene geochemistry applied to provenance analysis of lithic sandstones from the Azuero-Soná Complex (NW Panama).- Sedimentary Geology, **124**: 149-168.
- KREUTZER, L. H. (1990): Mikrofazies, Stratigraphie und Paläogeographie des Zentralkarnischen Hauptkammes zwischen Seewarte und Cellon.- Jb. Geol. B.-A., **133**: 275.

KULLMANN, J. & LOESCHKE, J. (1994): Olistholithe in Flysch-Sedimenten der Karawanken: Die Entwicklung eines aktiven Kontinentalrandes im Karbon der Südalpen (Paläozoikum von Seeberg und Eisenkappel / Österreich).- N. Jb. Geol. Paläont. Abh., **194**(1): 115-142.

- KUTTEROLF, S. & KRAWINKEL, H. (2000a): Petrofacies of the carboniferous Hochwipfel Formation of the Karawanken Mountains (Austria/Slovenia).- Terra Nostra, **2000/1**(Geology 2000 in Wien).
- KUTTEROLF, S. & KRAWINKEL, H. (2000b): Die Petrofazies der karbonen Hochwipfel Formation der Karawanken (Österreich/Slowenien).- Mitt. Ges. Geol. Bergbaustud. Österr., 43/2000 (Sediment 2000, Kurzfassungen/Abstracts).

KUTTEROLF, S. & KRAWINKEL, H. (2001): Petrographische und geochemische Provenanz-Indikatoren der Hochwipfel Formation (Karbon, Karawanken).- Jena, Schriftr. Deutsch. Geol. Ges.: 68

- KUTTEROLF, S. (1996): Strukturgeologische Untersuchungen im Forearc von Südwest-Costa Rica (Raum Dominical).- Unveröff. Diplomarbeit, Universität Stuttgart: **107**.
- LASH, G. G. (1987): Longitudinal petrographic variations in a Middle Ordovician trench deposit, Central Appalachian orogen.- Sedimentology, **34**: 227-235.
- LÄUFER, A. L. (1996): Variscan and alpine tectonometamorphic evolution of the Carnic Alps (Southern Alps) Structural analysis, illite crystallinity, K-Ar and Ar-Ar geochronology.- Tüb. Geowiss. Arb. **A26**: 102.

LÄUFER, A., LOESCHKE, J. & VIANDEN, B. (1993): Die Dimon-Serie der Karnischen Alpen (Italien) -Stratigraphie, Petrographie und geodynamische Interpretation.- Jb. Geol. B.-A., **136**(1): 137-162.

LEAK, B. E. (1978): Nomenclature of Amphibolites.- Canadian Mineralogist, 16: 501-520.

- LEFORT, J. P. (1989): Basement correlation across the North Atlantic.- Berlin, Heidelberg, New York, Springer.
- LICHTE, F. (1995): Determination of element content of rocks by laser ablation inductively coupled plasma mass spectrometry.- Anal. Chem., **67**: 2479-2485.
- LOESCHKE, J. & HEINISCH, H. (1993): Palaeozoic Volcanism of the the Eastern Alps and its Palaeotectonic Significance.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- LOESCHKE, J. & ROLSER, J. (1971): Der altpaläozoische Vulkanismus in den Karawanken (Österreich).- Z. Deutsch. Geol. Ges., **122**: 145-156.
- LOESCHKE, J. & SCHNEPF, H. (1987): Zur Geologie des Diabaszuges östlich Eisenkappel (Kärnten/Österreich).- N. Jb. Geol. Palöont. Abh., **174**(3): 303-329.
- LOESCHKE, J. & WEBER, K. (1973): Geochemie und Metamorphose paläozoischer Tuffe und Tonschiefer aus den Karawanken (Österreich).- N. Jb. Geol. Paläont. Abh., **142**: 115-138.
- LOESCHKE, J. (1970): Zur Geologie und Petrographie des Diabaszuges westlich Eisenkappel (Ebriachtal/Karawanken/Österreich).- Oberrhein. Geol. Abh., **19**: 73-100.
- LOESCHKE, J., SONNTAG, A. & KULLMANN, J. (1996): Zur Geologie des Koschuta-Zuges südlich von Eisenkappel (Karawanken).- Jb. Geol. B.-A., **139**(1): 35-43.
- LORENZ, V. & NICHOLLS, I. A. (1984): Plate and intraplate processes of Hercynian Europe during the Late Paleozoic.- Tectonophysics, **107**: 25-56.
- LOWE, D. R. (1982): Sediment gravity flows: II depositional models with special reference to the deposits of high-density turbidity currents.- J. of Sed. Petr., **52**.
- MACK, G. H. (1984): Exceptions to the relationship between plate tectonics and sandstone composition.-J. of Sed. Petr., **54**: 212-220.
- MAGGETTI, M. & FLISCH, M. (1993): Evolution of the Silvretta Nappe.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- MAGGETTI, M., FLISCH, M. & BOLLIN, R. (1990): Bericht über die Exkursion der Schweizerischen Mineralogischen und Petrographischen Gesellschaft ins Silvretta Kristallin und in den Westrand des Unterengadiner Fensters.- Schweiz. Mineral. Petrogr. Mitt., **70**: 121-157.

MANGE, M. A. & MAURER, H. F. W. (1991): Schwerminerale in Farbe.- Stuttgart, Enke.

- MARSAGLIA, M. M. & INGERSOLL, R. V. (1992): Copositional Trends in arc related, deep marine sand and sandstones: A reassesment of magmatic-arc provenance.- Geo. Soc. Am. Bull., **104**: 1637-1649.
- MATTE, P. (1986): Tectonics and plate tectonic model for the Variscan belt of Europe.- Tectonophysics, **126**: 329-374.
- MATTHES, S. (1993): Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, Springer.
- MAYNARD, B. J., VALLONI, R. & YU, K.-M. (1982): Composition of modern deep-sea sands from arc-related basins, Geol. Soc. London Spec. Publ.
- MCBRIDE, E. F. (1963): Classification of common sandstones.- J. of Sed. Petr., 33: 664-669.
- MCGEARY, S. NUR, A., BEN-AYRAHM, Z. (1985): Spatial Gaps in arc volcanism: The effect of collision of subduction of oceanic plateaus.- Tectonopysics, **119**, 195-221

- MCLAUGHLIN, R. J. (1996): Large-scale right-slip displacement on the East San Francisco Bay Region fault system, California: Implications for location of late Miocene to Pliocene plate boundary.-Tectonics, **15**(1): 1-18.
- MCLENNAN, S. M. (1989): Rare Earth Elements in sedimentary rocks: infuence of provenance and sedimentary processes.- In: Lippin, B.R., Mackay, G.A. (1989): Geochemistry and mineralogy of Rare Earth Elements.- Min. Soc. of America., **21**: Review in Mineralogy.
- MCLENNAN, S. M., HEMMING, S., MCDANIEL, D. K. & HANSON, G. N. (1993): Geochemical approchaes to sedimentation, provenance, and tectonics.- Boulder, GSA Special Paper.
- MCLENNAN, S. M., TAYLOR, S. R., MCCULLOCH, M. T. & MAYNARD, B. J. (1990): Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal Evolution and plate associations.- Geochimica et Cosmochimica Acta, **54**: 2015-2050.
- MÉNARD, G. & MOLNAR, P. (1988): Collapse of a Hercynian Tibetan Plateau into Late Palaeozoic European basin and range province.- Nature, **334**: 235-237.
- MIALL, A. D. (1990): Principles of Sedimentary Basin Analysis.- New York, Springer.
- MILLIKEN, K. L. (1988): Loss of provenance information through subsurface diagenesis in Plio-Pleistocene sandstones Northern Gulf Mexico.- J. of Sed. Petr., **58**: 992-1002.
- MIYASHIRO, A. (1975): Classification, characteristics and origin of ophiolites.- J. Geol. Chicago, 83: 249-281.
- MOLINAROLI, E., BLOM, M. AND BASU, A. (1991): Methods of Provenance Determination tested with Discriminant Function Analysis.- J. of Sed. Res., **61**(6): 900-908.
- MORLOT von, A. (1847): Erläuterungen zur geologischen Übersichtskarte der nordöstlichen Alpen.- Wien, Braumüller.
- MORTON, A. C. & HALLSWORTH, C. R. (1999): Processes controlling the composition of heavy mineral assemblages in sandstones.- Sedimentary Geology, **124**: 3-29.
- MORTON, A. C. (1984): Stability of detritial minerals in Tertiary sandstones of the North Sea Basin.- Clay Miner., **19**: 287-308.
- MORTON, A. C. (1985a): A new approach to provenance studies: electron microprobe analysis of detritial garnets from Middle Jurassic sandstones of the northern North Sea.- Sedimentology, **32**: 553-566.
- MORTON, A. C. (1991): Geochemical Studies of detritial heavy minerals and their application to provenance research.- In: MORTON, A.C., TODD, S.P., HAUGTHON, P.D.W (1991): Developments in Sedimentary Provenance studies.- Geol. Soc. Am. Spec. Pub., 57: 31-45.
- MOSHAMMER, B. (1989): Das südalpine pelagische Eisenkapeller Paläozoikum (Trögener Gruppe der Ostkarawanken) - Teil1: Aufschlußverhältnisse und Conodonten-Biostratigraphie.- Carinthia II, 99(179): 611-640.
- MULLEN, E. D. (1983): Mn/TiO<sub>2</sub>/P<sub>2</sub>O<sub>5</sub>: a minor element discriminant for basaltic rocks of oceanic enironments and its implications for petrogenesis.- Earth and Planetary Science Letters, **62**: 53-62.
- MUTTI, E. & NORMARK, W. R. (1987): Comparing examples of modern and ancient turbidite systems: problems and concepts.- London, Graham & Trotman.
- Mutti, E. & RICCI LUCCHI, F. (1978): Turbidite facies and facies associations.
- MUTTI, E. (1985): Turbidite systems and their realtions to depositional sequences.- Dordrecht, NATO Advanced Scientific Institute.
- NECHAEV, V. P. & ISPHORDING, W. C. (1993): Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments.- J. of Sed. Petr., **63**: 1110-1117.
- NESBITT, H. W. & YOUNG, G. M. (1982): Early Proterozoic climates and plate motions inferred from mayor element chemistry of lutites.- Nature, **299**: 715-717.
- NEUBAUER, F. & FRISCH, W. (1993): The Austro-Alpine Metamorphic Basement East of the Tauern Window.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- NEUBAUER, F. (1985): Eine präoberordovizische Transgression in der Grauwackenzone (Ostalpen) und ihre Bedeutung für paläozoische Geodynamik und alpidischen Deckenbau.- N. Jb. Geol. Paläont. Mh., **1985**: 46-64.
- NEUBAUER, F. (1988): The Variscan orogeny in the Austroalpine and Southalpine domains of the Eastern Alps.- Schweiz. Mineral. Petrogr. Mitt., **68**: 339-349.
- NEUBAUER, F. (1988a): Bau und Entwicklungsgeschichte des Rennfeld-Mugel und des Gleinalm-Kristallins (Ostalpen).- Abh. Geol, BA., **A 42**: 1-137.
- NEUBAUER, F., FRISCH, W., SCHMEROLD, R. & SCHLÖSER, H. (1989): Metamorphosed and dismembered ophiolite suites in the basement of the eastern Alps.- Tectonophysics, **164**: 49-62.
- NEUGEBAUER, J. (1988): The Variscan plate tectonic evolution: an improved "Japetus model".- Schweiz. Mineral. Petrogr. Mitt., **68**: 313-333.
- NEUGEBAUER, J. (1989): The Japetus model: a plate tectonic concept for the Variscan belt of Europe.-Tectonophysics, **169**: 229-256.

NICKEL, E. (1973): Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution.- Contrib. Sediment., **1**:1-68.

ORTON, G. J. AND READING, H. G. (1993): Variability od deltaic processes in terms of sediment supply, with particular emphasis on grain size.- Sedimentology **40**: 475-512.

PAVICEVIC, M. K. (2000): Elektronenstrahlmikrosonde (ESMA).- Stuttgart, E.Schweizerbart´sche Verlagsbuchhandlung (Nägele u. Obermiller).

PEARCE, J. A. (1980): Geochemical evidence for the genesis and eruptiv setting of lavas from Tethyan ophiolites. Ophiolites, Geological Survey Department, Cyprus.

PERROUD, J. A., VAN DE VOO, R. & BONHOMMET, N. (1984): Paleozoic evolution of the Armorica platt on the basis of paleomagnetic data.- Geology, **12**: 579-582.

PETTIJOHN, F. J., POTTER, P. E. & SIEVER, R. (1973): Sand and Sandstones.- New York, Springer.

PFIFFNER, O. A. (1993): Palinspastic Reconstruction of the Pre-Triassic Basement Units in the Alps: The Central Alps.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.

PHARAOH, T. C. (1999): Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. – Tectonophysics, **314**, 17-41.

PICHLER, H. & SCHMITT-RIEGRAF (1987): Gesteinsbildende Minerale im Dünnschliff.- Stuttgart, Enke.

PICKERING, K. T., HISCOTT, R. N. & HEIN, F. J. (1989): Deep Marine Environments - Clastic Sedimentation and Tectonics.- London, Unwin Hyman.

PITCHER, W. S. (1983): Granite Type and tectonic environment.- London, Academic Press.

- PITCHER, W. S. (1987): Granites and yet more granites forty years on.- Geol. Runds., 76: 51-79.
- PLAS, L. V. D. & TOBI, A. C. (1965): A chart for judging the reliability of point counting results.- Am. J. Soc., **263**: 87-90.
- POBER, E. & FAUPL, P. (1988): The chemistry of detritial chromian spinels and ist implications for the geodynamic evolution of the Eastern Alps.- Geol. Runds., **77**:641-670.
- POHL, W. (1984): Metallogenetic evolution of the East Alpine Paleozoic basement.- Geol. Rundsch., **73**: 131-147.

POLINSKI, R. K. & EISBACHER, G. H. (1992): Deformation partioning during polyphase oblique convergence in the Karawanken Mountains, Southeastern Alps.- J. Struct. Geol., **14**: 1203-1213.

- POLINSKI, R. K. (1991): Ein Modell der Tektonik der Karawanken, Südkärnten, Österreich.- Dissertation, Universität Freiburg.
- RAMOVS, A. (1969): Entwicklung der Devon-Schichten in der Umgebung von Jezersko.- Bericht im Manuskript, Univ. Ljublijana.
- RAMOVS, A. (1969): Geologische Forschungen (1959-1968) im Paläozoikum der Karawanken (Jugoslawischer Anteil).- Carinthia II, **27**: 29-37.
- RAMOVS, A. (1971): Einige neue Feststellungen aus dem Altpaläozoikum und Unterkarbon der Südkarawanken.- Z. deutsch.Geol. Ges., **122**: 157-160.
- RATSCHBACHER, L. & FRISCH, W. (1993): Palinspastic Reconstruction of the Pre-Triassic Basement Units in the Alps: The Eastern Alps.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- RAUMER, J. F. & NEUBAUER, F. (1993A): History of Geological Investigations in the Pre-Triassic Basement of the Alps.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- RAUMER, J. F. & NEUBAUER, F. (1993B): Late Precambrian and Palaeozoic Evolution of the Alpine Basement - An Overview.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- RAUMER, J. F. (1998): The Palaeozoic evolution in the Alps: from Gondwana to Pangea.- J. of Earth Science, **87**(3): 407-435.
- RAUMER, J. F., NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- RAVNAS, R. & FURNES, H. (1995): The use of geochemical data in determining the provenance and tectonic setting of ancient sedimentary successions: The Kalvag Melange, western Norwegian Caledonides.- Special Pub. of IAS, 22: 237-280.
- READING, H. G. & RICHARDS, M. (1994): Turbidite systems in deep-water basin margins classified by grain size and feeder system.- AAPG Bull., **78**.
- READING, H. G. (1996): Sedimentary Environments.- Oxford, Blackwell.
- ROLSER, J. & TESSENSOHN, F. (1974): Alpidische Tektonik im Variszikum der Karawanken und ihre Beziehung zum Periadriatischen Lineament.- Jb. Geol. B.-A, **25**: 23-53.
- ROSER, B. P. & KORSCH, R. J. (1986): Determination of tectonic setting of sandstone-mudstone suites using SiO<sub>2</sub> Content and K<sub>2</sub>O/Na<sub>2</sub>O Ratio.- Journal of Geology, 94: 635-650.
- ROSER, B. P. & KORSCH, R. J. (1988): Provenance signatures of Sandstone-Mudstone suites determined using discriminant function analysis of Major-Element data.- Chemical Geology, **67**: 119-139.

- SAUNDERS, A. D. & TARNEY, J. (1979): The geochemistry of basalts from a back arc spreading centre in the Esat Scotia Sea.- Geochimica et Cosmochimica Acta 43: 555-572.
- SAWYER, E. W. (1986): The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province; Canada.- Chemical Geology, 55: 77-95.
- SCHALTEGGER, U. (1991): Die polymetamorphe Geschichte des Aarmassivs neue U-Pb-Resultate.-Schweiz. Mineral. Petrogr. Ges., Jahrestagung Chur 1991, Abstracts 20.
- SCHARBERT, S. (1975): Radiometrische Altersdaten von Intrusivgesteinen im Raum Eisenkappel (Karawanken, Kärnten).- Verh. Geol. B.-A., **1975**: 301-304.
- SCHENK-WENGER, K. & STILLE, P. (1989): Geochemical and isotope evidence for an extensive Proterozoic ophiolite-suite in the Central Alps (Switzerland).- Eur. J. Mineral, **11**:1-160.
- SCHÖNLAUB, H. P. (1971): Stratigraphische und lithologische Untersuchungen im Devon und Unterkarbon der Karawanken (Jugoslawischer Anteil).- N. Jb. Geol. Paläont. Abh., **138**: 157-168.
- SCHÖNLAUB, H. P. (1973): Conodontenstratigraphische Arbeiten im Altpaläozoikum.- Verh. Geol. B.-A., **1973**: A81-A83.
- SCHÖNLAUB, H. P. (1979): Das Paläozoikum in Östterreich.- Abh. Geol, B.-A., 33: 124.
- SCHÖNLAUB, H. P. (1993): The Pre-Alpine Evolution of the Continental Crust of the Central Alps- An Overview.- In: RAUMER, J.F. & NEUBAUER, F. (1993): Pre-Mesozoic Geology in the Alps.- Berlin, Springer.
- SCOTESE, C. R. & MCKERROW, W. S. (1990): Revised world maps and introduction.- In: MCKERROW, W.S., SCOTESE, C.R. (1990): Palaeozoic palaeogeography and biogeography.- Geol. Soc. Mem., **12**: 1-21.
- SEIBERL, W. & STEINHAUSER, P. (1980): Magnetische Messungen entlang dem östlichen Teil des Periadratischen Lineaments.- Mitt. österr. geol. Ges., **71/72**: 291-298.
- SHANMUGHAM, G. (1996a): High-density turbidity currents: are they sandy debris flows?- J. of Sed. Res., 66.
- SHANMUGHAM, G. (2000): 50 years of the turbidite paradigm (1950s 1990s): deep water processes and facies models a critical perspective.- Marine Petroleum Geology, **17**: 285-342.
- SHERVAIS, J. W. (1982): Ti-V plots and the petrogenesis of modern and ophiolithic lava.- Earth and Planetary Science Letters, **59**: 101-118.
- SIEWERT, W. (1984): Der Werdegang der Karawanken Stratigraphischer Abriß und Strukturgeschichte.-Jb. Geol. B.- A., **127**: 29-133.
- SILVER, E. A. & REED, D. L. (1988): Backthrusting in acretionary wedges.- J. geopys. Res., 93: 3116-3126.
- SONNTAG, A., BRACKE, G., LOESCHKE, J. & SATIR, M. (1997): Untersuchungen an Zirkonen aus dem Flysch der Karawanken: Ihre Bedeutung für potentielle Liefergebiete und paläogeographische Fragen.- Jb. Geol. B.-A., 140(2): 251-273.
- SPENGLER, N (1999): Petrographie und Provenanzanalyse der Hochwipfel- und Auernigschichten im Bereich östlich des Seebergsattels (Südkarawanken, Kärnten, Österreich).- (unveröffentlichte Diplomarbeit, Universität Stuttgart)
- STACHE, G. (1874): Über die Silurbildungen der Ostalpen, nebst Bemerkungen über die Devon-Karbonund Permschichten dieses Gebietes.- Z. Dtsch. Geol. Ges., **36**: 277-378.
- STAMPFLI, G. M. (1996): The Intra-alpine terrain: a paleotethyan remnant in the alpine Variscides.-Eclogea geol. Helv., 89(1): 13-42.
- STAMPFLI, G. M., MARCOUX, J. & BUND, A. (1991): Tethyan margins in space and time.- Palaeo. Palaeochlim. Paleoeco., 87: 373-409.
- STEINHAUSER, P., SEIBERL, W., ZYCH, D. & RUESS, D. (1980): Bestimmung des Bouger-Schwerefeldes der Karawanken und der Sattnitz.- Mitt. österr. geol. Ges., **71/72**: 299-306.
- STEUDLE, M. (2000): Strukturelle Entwicklung der Karawanken entlang der Traverse Ebriachtal -Paulitschsattel (Kärnten, Österreich).- unveröffent. Diplomarbeit.
- STEVENS, R. E. (1944): Composition of some chromites of the Western Hemisphere.- Am. Min., 29: 1-34.
- STILLE, P. & TATSUMOTO, M. (1985): Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Penninic nappe system of the Alps: evidence from Sm-Nd isotopes and rare earth elements.- Contrib. Mineral. Petrol., 89: 184-192.
- STOSCH, H. G. (2000): Geochemie der Seltenen Erden.- Vorlesungen am Mineralogisch-Petrographischen Institut der Universität zu Köln, 1988 – 1993, Skript mit Ergänzungen von 1998 und Sommer 2000; http://129.13.109.66/WWW\_only/html/ftp.html.
- STOW, D. A. V. & BOWEN, A. J. (1980): A physical model for the transport and sorting of finegrained sediments by turbidity currents.- Sedimentology, 27: 31-46.
- STOW, D. A. V. (1986): Deep clastic seas.- Oxford, Blackwell.
- STRUCL, L. (1970): Stratigraphie und Tektonik der östlichen Teile der Nordkarawanken.- Geologija.

- SUTTNER, L. J. & BASU, A. (1985): The effect of grain size on detritial modes: a test of the Gazzi-Dickinson point-counting method Discussion.- J. Sed. Petrol., **55**: 616-617.
- Sylvester, H. (1989): Vergleich von Perm/Skyth-Profilen des Ober-Mittel- und Unterostalpins.- Jb. Geol. B.-A., **132**: 791-821.
- TAYLOR, S. R. & MC LENNAN, S. M. (1985): The Continental Crust: its composition and evolution, Blackwell.
- TELLER, F. (1898): Geologische Karte der österreichisch-ungarischen Monarchie, Blatt Eisenkappel-Kanker, 1:75000 mit Erläuterungen.
- TESSENSOHN, F. (1968): Unterkarbon-Flysch und Auernig-Oberkarbon in Trögern, Karawanken, Österreich.- N. Jb. Geol. Paläont. Mh.: 100-121.
- TESSENSOHN, F. (1971): Der Flysch-Trog und seine Randbereiche im Karbon der Karawanken.- N. Jb. Geol. Paläont. Abh., **138**: 169-220.
- TESSENSOHN, F. (1974): Zur Fazies paläozoischer Kalke in den Karawanken.- Verh. Geol. B.-A., **1974**: 89-130.
- TESSENSOHN, F. (1983): Eisenkappler und Seeberger Paläozoikum. Geologische Karte der Karawanken 1:25 000, Ostteil. Wien, Geol. Bundesanstalt.
- THIEL, G. A. (1945): Mechanical effects of stream transportation in mineral grains of sand size.- Bull. Geol. Soc. Am., **56**: 127.
- TORTOSA, A., PALOMARES, M. & ARRIBAS, J. (1991): Quarz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis.- In: MORTON, A.C., TODD, S.P., HAUGTHON, P.D.W (1991): Developments in Sedimentary Provenance studies.- Geol. Soc. Am. Spec. Pub., **57**: 47-54.
- TOTTEN, M. W., HANAN, M. A. & WEAVER, B. L. (2000): Beyond whole-rock geochemistry of shales: The importance od assessing mineralogic controls for rvealing discriminants of multiple sediment sources for the Ouachita Mountain flysch dposits.- Geol. Soc. Am. Bull., **112**(7): 1012-1022.
- TOULKERIDIS, T., CLAUER, N., KRÖNER, A., REIMER, T. & TODT, W. (1999): Characterization, provenance, and tectonic setting of Fig Tree greywackes from the Archaen Barberton Greenstone Belt, Soth Africa.- Sedimentary Geology, **124**: 113-129.
- TRÖGER, W. E. (1967): Optische Bestimmung der gesteinsbildenden Minerale.- Stuttgart, Schweizerbart.

UNGER (1843): Geognostische Skizze der Umgebung von Grätz.- Graz, Ferstl.

- VAI, G. B. & COCOZZA, T. (1986): Tentative schematic zonation of the Hercynian chain in italy.- Bull. Soc. Geol. France., **1986**(8): 95-114.
- VAI, G. B. (1979): Tracing the Hercynian structural zones across "Neo-Europa": an introduction.- Mem. Soc. Geol. Ital., **20**: 39-45.
- VALLONI, R. (1985): Reading provenance from modern marine sands.- In: Zuffa, G.G. (1985): Provenance of arenites.- Dordrecht, Reidel., **148**: 309-332.
- VEBLEN, D. R. & RIBBE, P. H. (1982): Amphibolites: Petrology and experimental phase relations, Min. Soc. of Am., **9b**: 390
- VELBEL, M. A. (1985): Mineralogically mature sandstones in accretional prisms.- J. of Sediment. Petrol., **55**(5): 685-690.
- VENTURINI, C., FERRARI, C., SPALETTA, C. & VAI, G. B., EDS. (1982): La discordanza ercinica, il tardoorogeno e il postorogeno nlla geologia del Passo di Pramollo. Guida alla geologia del Sudalpino centro-orientale. Bologna, Guide geol. reg. S.G.I.
- VISONÀ, D. (1992): The gabbro-amphibolite complex of Corno Bianco (Bolzano, NE Italy): an eovariscan pluton in the Austroalpine of the eastern Alps?- Sienna, IGCP project **276** newsletter.
- VISSER, J. N. J. (1990): The age of the late Palaeozoic glacigene deposits in southern Africa.- S. Afr. J. Geol., **93**: 366-375.
- VOLL, G. (1960): New work on petrofabrics.- Liverpool and Manchester Geological Journal, 2: 503-567.
- WALKER, N. W. (1978): Deep water sandstone facies and ancient submarine fans: models for exploration for straitgraphic traps.- Bull. Am. Assoc. Petrol. Geol., **62**: 932-966.
- WEBER, K. & BEHR, H.-J. (1983): Geodynamic interpretation of the Varescides, Springer.
- WEBER-DIEFENBACH, K. (2000): Röntgenfluoreszenzanalyse (RFA).- Stuttgart, E.Schweizerbart´sche Verlagsbuchhandlung (Nägele u. Obermiller).
- WELTJE, G. J. (1994): Provenance and dispersal of sand-sized sediments.- Geologica Ultraiectina, **121**: 1-208.
- WESTGATE, J. A., PERKINS, W. T., FUGE, R., PEARCE, N. J. G. & WINTLE, A. G. (1994): Trace-element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronical studies.- Appl. geochem., **9**: 323-335.
- WILSON, M. (1989): Igneous Petrogenesis: A global tectonic approach.- London, Chapmann & Hall.
- WIMMENAUER, W. (1984): Das prävariszische Kristallin im Schwarzwald.- Forscht. Miner., Beih., 62: 69-86.
- WIMMENAUER, W. (1985): Petrographie der magmatischen und metamorphen Gesteine.- Stuttgart, Enke.

YOKOYAMA, K., AMANO, K., TAIRA, A. & SAITO, Y. (1990): Mineralogy of silts from the Bengal Fan.

ZIEGLER, P. A. (1984): Caledonian and Hercynian crustal consolidation of western and central Europe - a working hypothesis.- Geol. Mijnbouw, **63**: 93 - 108.

ZIEGLER, P. A. (1986): Geodynamic model for the Paleozoic crustal consolidation of Western and Central Europe.- Tectonophysics, **126**: 303-328.

ZIMMERLE (1972): Sind detritische Zirkone rötlicher Farbe auch in Mitteleuropa Indikatoren für präkambrische Liefergebiete?- Geol. Rundsch., **61**: 116-139.

ZIMMERLE, W. (1984): The geotectonic significance of detritial brown spinel in sediments.- Mitt. Geol. Paläont. Inst. Univ. Hamburg, **56**: 337-360.

ZUFFA, G. G. (1985): Optical analyses of arenites: influence of methodology on compositional results.- In: ZUFFA, G.G. (1985): Provenance of arenites.- Dordrecht, Reidel., **148**.



## Übersicht:

| 1 | Tabellarische Profilbeschreibung | 1  |
|---|----------------------------------|----|
| 2 | Einzelprofile                    | 13 |
| 3 | Leichtmineralanalyse             | 34 |
| 4 | Schwermineralanalyse             | 44 |
| 5 | Mineralchemie                    | 48 |
| 6 | Gamma-Ray-Messungen              | 51 |
| 7 | Gesamtgesteinschemie             | 56 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Litheferies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Möchtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               | Peoplyzikung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Machtigkeit<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               | Beschreibung<br>Feinkies weniger lila und Feinsandlamellen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 2/1                                                                                                                                                                         | Formace, wongoi na ana rendanananan<br>Formace, wongoi na ana rendanananan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Grobsand - Feinkies mit lila Klasten und Schwarzen Tonklasten konglomeratisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | One Mitching with One has with a Friend allow they Minching and any and a with the Minching and the has big friends and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S2 1 + T1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               | Grou-Millerkies wie 2, aber grober Peinsandamienen, missioning von ruhiden und groberen Naster nach ober nim reinen, grau – ma<br>Grau – fils Mittel-Grobsand mit wenigen groben Q2- Klasten, massig, untergeordnet planar schrägneschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1.1 →G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | MK nach oben hin feiner aber auch runder. 3 Schübe mit 110 Mittelkies; eckige Komponenten nach oben hin in Feinkies und gerundet übergeht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Feinkies ohne Feinsandlinsen, schräggeschichtet, gradiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | reinsano – Sinstein<br>Hier unrealmäßige Schichtgrenze nach oben: massives Quarzgeröll mit großen Qz-Klasten bis 5 cm: darin Qz im Zentimeter-Bereich erscheint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | weißlich-rosa, nicht so gut gerundet. Quarzschicht eingeregelt drin mit Linear von 150/30. Danach war Fließrichtung ca. nach SSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Mittelkies 2-4 cm große Qz-Klasten sehr gut gerundet, erscheinen in einer welligen Oberfläche (vorl. Rinnenfüllung) grau-weiß, kaum Matrix, fast nur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2/8                                                                                                                                                                          | dieses Klasten gut sortiert. Rinnenachse mit 210/5/, nach SW einfallend; weitere Rinne mit 90/11 nach E einfallend<br>Weiterbir von Qr-Klasten doministr (100%) vereinzett Glimmer zu sehen: Grobsandtein grauweiß. Oz Klasten eingergedet: Längsachse – 176/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F 2/0                                                                                                                                                                         | weiternin von zervasien uominier (100%) vereinzen Gimmier zu seiten, orobisariasien gradiweits, zervasien eingelegen zahgsause = 170/1,<br>186/19; Querrichtung; 67/25 $\Rightarrow$ ca. Fließrichtung nach S; Rinnenstruktur mit Rinnenachse 189/22 = nach Süden einfallend;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               | grau, leichte Bänderung zu sehen (dunkler); Mittelsandstein – Grobsandstein mit viel Glimmer, langwellige trogförmige Schrägschichtung 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               | Hummocky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Profil 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R:54 81 0                                                                                                                                                                     | 000-54 80 200 / H:14 40 150-14 40 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probe                                                                                                                                                                         | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1.1<br>S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3/1<br>P3/2                                                                                                                                                                  | Grossand; Quarzit, horizontal geschichtet, grau-violett, fast nur Qz, stark suturiert<br>Mittelsand - Eainsand: Quarzit: violett-rrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 0/2                                                                                                                                                                         | Feinkles, Quarze gerundet, 1-2 cm, keine Matrix vorhanden, gut sortiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               | Fein-Mittelsand, gut gerundet, Schrägschichtung?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1.1<br>T1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                               | Nasten in 0,5 - 1 cm Grouse → Feinkies, Lyaite drin, Einregelung der Nasten : L = 52/33= NE; SI= 326/00; SI= 50/16 → NE<br>Silt-Feinsand neschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3/3                                                                                                                                                                          | Grobsand gut sortiert, Glimmer vorhanden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Matrix mit Grob-Mittelsand darin schwimmen gerundete 1 cm große Qz-Klasten, Sandsteinflaser drin, gradiert, nach oben hin feiner,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3/4                                                                                                                                                                          | Grobsand gut sortiert, Qz-reich im Wechsel mit großen Quarzklasten die lagig angeordnet sind (4-6 cm), Glimmer vorhanden, langwellig trogförmige<br>Schrägeschichtung 2 der Humochw 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Schichtlicke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3/5                                                                                                                                                                          | Matrix aus Grobsand, darin eingeschaltet 1-2 cm große gerundete Qz-Klasten in manchen Zonen auch 4-5 cm große Feinsandklasten,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>D</b> 2/2                                                                                                                                                                  | schräggeschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S2.1<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3/0<br>P3/7                                                                                                                                                                  | Giousano mit o o un, de niasteri, gradicit, kauni andere Komponienten<br>Mittelsand-Feinsandmatrix mit Klasten im cm-Bereich, subrounded elonoiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P3/8                                                                                                                                                                          | Grobsand Matrix mit 0,5 - 1 cm großen Qz-Klasten gut gerundet und Glimmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3/9                                                                                                                                                                          | Klasten eingeregelt, Linear = 310/15→NW. Fein - Mittelkies, bimodale Klastenführung: kleinere (0,5 cm) gut gerundete Qz-Klasten und große 1-2 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               | grouse ion-sandsteinklasten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R:54 53 2                                                                                                                                                                     | 250-54 624 00 / H:14 42 000-14 39 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe                                                                                                                                                                         | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Tonstein – Biltstein , ratu dänzend, stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Siltstein mit Lyditklasten → gröber + roter Verwitterung, leicht glänzend, stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Siltstein – Feinsandstein, dunkelgrau ohne Klasten leicht geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/1                                                                                                                                                                          | Sitistem Draun/grau + rotitich, weniger stark geschierent<br>Tuff wie am Seeberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , .                                                                                                                                                                           | Siltstein – Tonstein hellgrau stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/2                                                                                                                                                                          | Sandstein rötlich, Feinsandstein – Mittelsandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F2.1<br>B1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P 1/3                                                                                                                                                                         | Vertaltete I one mit GZ + anderen Klasten im mm – cm Bereich, stark geschiefert, Auflastmarken,<br>Grobeandstein mit großen (mm) Lydien und inne un Glaste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P4/4                                                                                                                                                                          | Lyditbreksie, eingeregelt zwischen Tonflager. Matrix ist Grobsand + Klasten in mm – 0,5 cm groß, hellgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/5                                                                                                                                                                          | Mittelsandstein , hellgrau, Fsp erkennbar, dunkle Klasten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/6                                                                                                                                                                          | Grobsandstein, hellgrau, Fsp erkennbar, dunkle Klasten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F2.1<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               | Ion schwarz glanzeno geranet, stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Siltstein – Tonstein, schwarz, matt, weniger stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               | Siltstein – Feinsandstein , hellbesch, matt wenig stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Siltstein – Tonstein leicht glänzend, stärker geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                               | Siltetein übergebend in Feinsandetein mehr Feinsand weniger stark geschiefert, dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (19)<br>(20)<br>(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>140<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Sittstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>140<br>300<br>140<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               | Sitstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Sitstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Sitstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Sitstein hellorau, flaseria, ungeordnet, stark tektonisch geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>140<br>300<br>140<br>80<br>570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4/7                                                                                                                                                                          | Sitstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Sitstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Sitstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Sitstein helgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>140<br>300<br>140<br>80<br>570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4/7                                                                                                                                                                          | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibelgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>Profil 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P4/7<br><b>R:54 71 6</b>                                                                                                                                                      | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 41250-14 49500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>Profil 5<br>Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2.2<br>Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P4/7<br>R:54 71 6<br>Probe                                                                                                                                                    | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto0-54 75 500 / H:14 41250-14 49500<br>Grohkörnin violetter Sandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>Profil 5<br>Schicht<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.2<br>Lithofazies<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2                                                                                                                     | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein belgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>500-54 75 500 / H:14 41250-14 49500<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>Profil 5<br>Schicht<br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2.2<br>Lithofazies<br>S1.1<br>S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2                                                                                                                     | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein belgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 49500</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>Profil 5<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.2<br>Lithofazies<br>S1.1<br>S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/7<br>R:54 71 6<br>Probe<br>P 5/1<br>P5/2                                                                                                                                   | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibuergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibuergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>500-54 75 500 / H:14 41250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobkörnig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein i violette Silte. Tone(40 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2.2<br>Lithofazies<br>S1.1<br>S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2                                                                                                                     | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Stop-54 75 500 / H:14 41250-14 49500<br>Bescher Fosol / H:14 41250-14 49500<br>Grobkörnig violetter Sandstein<br>Grobkörnig violetter Sandstein<br>Grobkörnig violetter Sandstein<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3                                                                                                            | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Stop-54 75 500 / H:14 41250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltsteri, Bandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (19)<br>(20)<br>(21)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schichtt</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>10<br>400<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/3                                                                                                   | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein belgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 41250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobkörnig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P4/7<br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/5                                                                                                              | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 41250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstei übergehend in der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Schiefer Sendstein feinsandstein / Feinsandstein<br>Grobsandstein – Schiefer Mechsellagerung for Schiefer / Berner – Schiefer / Feinsandstein<br>Grobsandstein – Feinkeis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P4/7<br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/5                                                                                                              | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 49500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein sandig weiß, glimmerreich<br>Violetter Sandstein in der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>570<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4/7<br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/5                                                                                                              | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein iblergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein iblergehend in anminert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto-54 75 500 / H:14 41250-14 49500<br>Bescher Feinsandstein in durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto-54 75 500 / H:14 41250-14 49500<br>Bescher Feinsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6                                                                                 | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein bellgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>500-54 75 500 / H:14 41250-14 49500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Bötliches Grobkonglomerat, Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.1<br>G1.2<br>G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P4/7<br><b>R:54 71 6</b><br><b>P robe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6                                                                                | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein bibergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein bibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto0-54 75 500 / H:14 41250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                          | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>120<br>120<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P4/7<br><b>R:54 71 6</b><br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/6                                                                                          | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein bibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 49500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Site – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschniere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr rund größere Klasten (3-5 cm) + gröbere Matrix<br>Violetters Konglomerat gut sortiert mit Klasten in 0,5 – 1cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>Or Or O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>10<br>400<br>30<br>20<br>20<br>120<br>220<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P4/7<br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6                                                                                                     | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein bibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 49500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstei übergehend in der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein nit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violetter Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm 2); Oben kommen Tonflasern dazu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>570<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P4/7<br><b>Probe</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/6<br>P 5/6<br>P 5/7                                                                                  | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein iblergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein iblergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto-54 75 500 / H:14 41250-14 49500<br>Bescher Feinsandstein in durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend ± mehr Tonschichten (1 mm- Abstand)<br>Sto-54 75 500 / H:14 41250-14 49500<br>Bescher Feinsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violetter Konglomerat gut sortiet mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm <i>Q</i> ); Oben kommen Tonflasern dazu.                                                                                                                                                                                                                                                                                                                                |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                   | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>G1.2<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P4/7<br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9                                                                 | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein bibergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein bibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto0-54 75 500 / H:14 41250-14 49500<br>Beschereibung<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschimer – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violettes Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm ∅); Oben kommen Tonflasern dazu.<br>Eventuell violettes Konglomerat von vorher<br>Glimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hurmmocky                                                                                                                                                                                                                                                                                                                                                               |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                              | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P4/7<br><b>Probe</b><br>P 5/1<br>P5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                                 | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein ibbergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein hellgrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Sto0-54 75 500 / H:14 41250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschimer – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violettes Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm 2); Oben kommen Tonflasern dazu.<br>Eventuell violettes Konglomerat von vorher<br>Glimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hurmocky<br>Hellgrauer Grobsandstein mit wenig großen Klasten(1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet                                                                                                                                                                                                              |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                          | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4/7<br><b>R:54 71 6</b><br><b>P 5/1</b><br>P 5/2<br>P 5/3<br>P 5/4<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/8                                                                       | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein in übergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 41250-14 49500<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 41250-14 49500<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke : ab hier Sandstein – Schrägeschichtung<br>Schichtlücke : ab hier Sandstein = Schrägeschichtung<br>Schichtlück : ab hier Sandstein = Neihefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein - Größen Matrix<br>Violetter Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm Ø); Oben kommen Tonflasern dazu.<br>Eventuell violettes Konglomerat von vorher<br>Glimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Hellgrauer Grobsandstein mit wenig großen Klasten (1-2 cm) (Lydite + Quarze). Sand                                                       |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P4/7<br><b>P5/4</b><br>P5/1<br>P5/2<br>P5/3<br>P5/3<br>P5/4<br>P5/5<br>P5/6<br>P5/6<br>P5/7<br>P5/9<br>P5/8                                                                   | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>Bescher Feinsandstein aminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger</b><br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>Bescher Feinsandstein</b> Schiefer Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violetter Songlomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm ⊘); Oben kommen Tonflasern dazu.                                                                                                                                                                                                                                                                                                                                                                                                           |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                                      | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>S1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>100<br>50<br>70<br>110 nach<br>oben?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P4/7<br><b>Probe</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                       | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein ibergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein amlinet und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 14250-14 49500<br>Bescher Feinsandstein inaminet und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 14250-14 49500<br>Bescher Feinsandstein under the Sandstein<br>Grobkörnig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Gimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, gimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violettes Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm Ø); Oben kommen Tonflasem dazu.<br>Eventuell violettes Konglomerat dus on vorher<br>Gimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Heilgraver Grobsandstein mit wenig großen Klasten(1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Konglomerat mit gut                             |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                              | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>20<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P4/7<br><b>Probe</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                       | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Soltichtlücke<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein anminetr und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>Stor-54 75 500 / H:14 1250-114 49500<br>Bescher Feinsandstein annere Schrägeschichtung<br>Grobkörnig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Stiltstein, sandig weiß, glimmerreich<br>Violetter Sandstein and er Basis (30) Mittelsandstein ; violette Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Stiltstein, sandig weiß, glimmerreich<br>Violetter Sandstein and er Basis (30) Mittelsandstein ; violette Site – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter forbsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschniere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violetter Songlomerat. Matrix Mittelsandstein , 9 gröbere Matrix<br>Violetter Konglomerat guz.<br>Eventuell violetter Feinsandstein mit Qz-Mobilisaten (3<br>cm ⊘); Oben kommen Tonflasern dazu.<br>Eventuell violetter Schoglomerat. Matrix Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Heilgrauer Grobsandstein mit wenig großen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittent lamineeartig-> war horizontal geschichtet<br>Konglomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm ⊘; gut sortiert                                                                                                                                                                                                            |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                 | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4/7<br><b>Probe</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                                | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br>300-54 75 500 / H:14 14250-14 49500<br>Beschreibung<br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Weelslich violetter Grobsandstein mit Qz-mobilisat<br>Weelslich violetter Grobsandstein mit Qz-klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violettes konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm ∅); Oben kommen Tonflasern dazu.<br>Eventuali violettes konglomerat von vorher<br>Glimmerreicher Feinsandstein mit Mattelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Hellgraver Grobsandstein mit wenig großen Klasten(1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Konglomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm ∅; gut sortiert<br>Übergang in Hochwipfel Formation ?<br>Grobsandstein Quarz, rötlich                                                                                                      |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(24)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                               | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>80<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P4/7<br><b>R:54 71 6</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                            | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkeigrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bæreich<br>Siltstein übergehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 14 150-14 49500</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein and er Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Wechsellagerung Tonschmierre – Mittelsandstein / Feinsandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke; ab hier Sandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein / Feinsandstein<br>Grobsandstein violett Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat, Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + gröbere Matrix<br>Violettes Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm Ø); Oben komgio montatischer Standstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Heilgrauer Grobsandstein mit weng großen Klasten(1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Konglomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm Ø; gut sortiert                                       |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4                                                                                                                                                                                                                                                                        | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>410<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200 -300<br>70<br>170<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P4/7<br><b>P5/4</b><br>P5/1<br>P5/2<br>P5/3<br>P5/3<br>P5/4<br>P5/5<br>P5/6<br>P5/6<br>P5/7<br>P5/9<br>P5/8                                                                   | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Siltstein hülgrau, flaserig, ungeordnet, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>Beschreibung</b><br><b>Grobkönig violetter Sandstein</b><br><b>Grobkönig violetter Sandstein</b> – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein hölg julimmerreich<br>Violetter Sandstein and der Basis (30) Mittelsandstein ; violette Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein mit Qz-mobilisat<br>Westilck violetter Grobsandstein mit Qz-mobilisat<br>Westilck violetter Grobsandstein mit Qz-thalstein – Große (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat, Marix Mittelsandstein – Große (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat, Marix Mittelsandstein – Großen, Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisat<br>Violetter Konglomerat gut sortiert mit Klasten in cm- Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm (2); Oben kommen Tonlasem dazu.<br>Eventuell violetter Skonglomerat von vorher<br>Glimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Heilgrauer Grobsandstein Quarz, föllich<br>Wediblicher Grobsandstein in wenig großen Klasten (12 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Konglomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm Ø; gut sortiert<br>Übergang in Hochwipfel Formation ?                                                                                                                                               |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                          | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200 -300<br>70<br>170<br>20<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P4/7<br><b>P5/4</b><br>P5/2<br>P5/3<br>P5/3<br>P5/4<br>P5/5<br>P5/6<br>P5/6<br>P5/7<br>P5/9<br>P5/8                                                                           | Siltstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunklegrau<br>Feinsandstein übergehend in Siltstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm.Bereich<br>Siltstein hügrau, flasseig, ungeordnet, stark geschiefert<br>Siltstein heilgrau, flasseig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 49600</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobksandstein violett, planare Schrägeschichtung<br>Schichtlücke ; ab heir Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Siltstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Silte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein/ Feinsandstein<br>Grobsamdstein – Schiefer Wechsellagerung, total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat, Matrix Mittelsandstein – Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat, Matrix Mittelsandstein – Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat, Matrix Mittelsandstein – Größe Matrix<br>Violetter Konglomerat von vorher<br>Glimmerreicher Feinsandstein, übergehend in Mittelsandstein vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3 cm) + gröbere Matrix<br>Violettes Konglomerat von vorher<br>Glimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langweiliger Schrägschichtung → Hummocky<br>Heilgrauer Grobsandstein mit wenig größen Klasten (1 - 2 m) (Lydite + Quarze). Sandstein verwittert lamineeantig-> war horizontal geschichtet<br>Konglomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm Ø; gut sortiet<br>Übergang in Hochwipfel Formation ?<br>Grobsandste                |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                 | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>20<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200-300<br>70<br>170<br>250<br>300<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P4/7<br><b>P5/1</b><br>P5/1<br>P5/2<br>P5/3<br>P5/3<br>P5/4<br>P5/5<br>P5/6<br>P5/6<br>P5/9<br>P5/8                                                                           | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Sittstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlicke<br>Sittstein hölgragehend in Tonstein beige rötlich, stark geschiefert<br>Sittstein hölgragehend in Tonstein beige rötlich, stark geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobksandstein violett, planare Schrägeschichtung<br>Schichtlicke, is hinr Sandstein — Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Sittstein, sandig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Sitte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinklies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein / Feinsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3 5 cm) + gröbere Matrix<br>Violettes Konglomerat. Matrix Mittelsandstein in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm ∅); Oben kommen Tonflasern dazu.<br>Eventuell violettes Konglomerat un vorher<br>Gimmerreicher Feinsandstein, übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichturg → Hummocky<br>Heilgrauer Grobsandstein mit weing großen Klasten (1-2 cm) (Lydite + Quarze). Sandstein vervittert talmineeartig-> war horizontal geschichtet<br>Konglomerat nit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm ∅; gut sortiert<br>Übergang in Hochwipfel Formation ?<br>Grobes Auemigkonglomerat 3-5 cm ∅                                                                 |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(6)<br>(7)<br>(6)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                             | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>S1.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>G1.2<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>400<br>30<br>20<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200 -300<br>70<br>170<br>250<br>300<br>800<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P4/7<br><b>R:54 71 6</b><br><b>P 5/1</b><br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/3<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                     | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkeigrau<br>Feinsandstein übergehend in Sittein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Sittstein leitgraf. flaserig, ungeordnet, stark deschiefert<br>Sittstein leitgraf. flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm-Abstand)<br><b>300-54 75 500 / H:14 41250-14 49500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein<br>Grobsandstein violett, planare Schrägeschichtung<br>Schichtlücke (a bh ier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Sittstein, aandig welß, glimmerreich<br>Violetter Sandstein and re Basis (30) Mittelsandstein ; violette Sitte – Tone(40 cm)<br>Ton violett – schwarz<br>Welßlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschniere – Mittelsandstein/ Feinsandstein<br>Grobsandstein – Feinkles<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total welß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein / Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3 cm - Größe Rasten (3 cm d); Oben kommer Tonfläser Klasten (3 cm d); Oben kommer Tonfläser klasten (3 cm d); Oben kommer Tonfläser klasten (3 cm d); Den kommer duru vonier mit klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3 cm d); Oben kommer Tonfläset mit klasten in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Hellgrauer Grobsandstein mit wenig großen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Konglomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm Ø; gut sortiert<br>Übergang in Hochwipfel Formation ?<br>Grobsandstein Quart, rö                               |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                         | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>T1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G1.2<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>S2.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1<br>S3.1 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>50<br>70<br>120<br>220<br>410<br>50<br>70<br>120<br>220<br>410<br>50<br>70<br>220<br>410<br>220<br>410<br>220<br>410<br>220<br>410<br>220<br>410<br>220<br>410<br>220<br>410<br>20<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                   | P4/7<br><b>R:54 71 6</b><br><b>P 5/1</b><br>P 5/3<br>P 5/3<br>P 5/3<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8                                                              | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkeigrau<br>Feinsandstein übergehend in Sittstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlicke<br>Sittstein leitgrau, flaserig, ungeordnet, stark tekkonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm-Abstand)<br><b>300-54 75 500 / H:14 41250-14 4950</b><br><b>Beschreibung</b><br>GrobsArtstein violett, Danare Schrägeschichtung<br>Schichtlicke : ab hier Sandstein<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Sittstein, sandt wielet, Danare Schrägeschichtung<br>Schichtlicke : ab hier Sandstein – Schrägeschichtung<br>Schichtlicke : ab hier Sandstein – Größe (2cm); total weiß gut gerundete Klasten<br>Violett – ashwarz<br>Weißich violett – Grobandstein mit Qz-mobilisat<br>Wongtomeratischer Sandstein mit Qz-klasten in cm - Größe (2cm); total weiß gut gerundete Klasten<br>Grobsendstein – Feinkies<br>Kongtomeratischer Sandstein int Witelsandstein / Feinsandstein<br>Grobsendstein rund größere Klasten (3-5 cm) + gröbere Matrix<br>Violettes Kongtomerat, Matrix Mitelsandstein o. 9 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm ⊘); Oben kommen Tonflasem dazu.<br>Eventuell violettes Kongtomerat von voher<br>Gimmerreicher Feinsandstein mit wenig größen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichturg → Hummocky<br>Hellgrauer Grobsandstein mit wenig größen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Kongtomerat mit gut gerundeten Qz- Klasten, kaum Matrix, weiß; Klasten in 1-2 cm <i>Q</i> ; gut sortiert<br>Übergang in Hochwipfel Formation ?<br>Grobsandstein – Feinsandstein<br>Weißlicher Grobsandstein<br>Weißlicher Grobsandstein<br>Weißlicher Grobsandstein – Feinkleisendstein<br>Weißlicher Grobsandstein |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                               | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S1.1<br>G1.2<br>S2.2<br>S1.1<br>G1.2<br>S2.2<br>S1.1<br>G1.2<br>S2.2<br>S1.1<br>G1.2<br>S2.2<br>S1.1<br>G1.2<br>S2.2<br>S1.1<br>G1.2<br>S2.2<br>S1.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200 -300<br>70<br>170<br>250<br>300<br>800<br>300<br><b>Koordinaten:</b><br><b>Machtigkeit</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P4/7<br><b>R:54 71 (</b><br><b>P</b> 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8<br><b>R:54 71 2</b><br><b>Probe</b>                 | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunktigrau<br>Feinsandstein übergehend in Sittstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Sittstein leingeordnet, stark tektonisch geschiefert<br>Sittstein neilingeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 48500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein (1 mm- Abstand)<br><b>300-54 75 500 / H:14 41250-14 48500</b><br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Sittstein, sandig weiß, gimmerreich<br>Violetter Sandstein ander Basis (30) Mittelsandstein ; violette Sitte – Tone(40 cm)<br>Ton violett – schwarz<br>Weißlich violetter Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein ? Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-mobilisat<br>Wechsellagerung Tonschmiere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkies<br>Konglomeratischer Sandstein mit Qz-Klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (-3c - n) + gröbere Matrix<br>Violettes Konglomerat gut sortiert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm d?). Cben kommen Tonflasten dazu.                                                                                                                                                                                                                                                                                                                                                                                                 |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                         | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S1.1<br>G1.2<br>S1.1<br>S1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.2<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.2<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3                                                                                                                 | 120<br>140<br>300<br>140<br>80<br>570<br>Koordinaten:<br>Mächtigkeit<br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>190<br>50<br>70<br>100<br>400<br>30<br>20<br>120<br>220<br>410<br>190<br>50<br>70<br>100<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>30<br>20<br>70<br>10<br>400<br>50<br>70<br>10<br>400<br>50<br>70<br>10<br>400<br>50<br>70<br>10<br>400<br>50<br>70<br>10<br>400<br>50<br>70<br>10<br>400<br>50<br>70<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | P4/7<br><b>R:54 71 6</b><br><b>P 5/1</b><br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8<br><b>R:54 71 2</b><br><b>Probe</b>        | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunktigrau<br>Feinsandstein übergehend in Sittstein mit Laminierung in 0,5 cm Abständen durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Breich<br>Schichtlicke<br>Sittstein beligrephend in Tonstein beige rötlich, stark geschiefert<br>Sittstein heligrauf, faserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm-Abstand)<br><b>Beschreibung</b><br>Grobsdräug violetter Sandstein<br>Grobsdräug violetter Sandstein – Schrägeschichtung<br>Schichtlicke ; ab hier Sandstein mit 02-mobilisat<br>Wolfelt – schwarz<br>Weblick violetter Grobsandstein mit 02-mobilisat<br>Weblicker Grobsandstein mit 02-mobilisat<br>Weblicker Grobsandstein mit 02-klasten in cm- Größe (2cm); total welß gut gerundete Klasten<br>Rötliches Grobkongjomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt 02 – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3-5 cm) + größere Matrix<br>Violetter Kongjomerat von vorher<br>Gilmmerreicher Feinsandstein mit 02-klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit 02-Mobilisaten (3<br>cm 2); Oben kommen Tonlasern dazu.<br>Eventuell violettes Kongjomerat von vorher<br>Gilmmerreicher Feinsandstein mit wenig großen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Kongjomerat tilt subtare mit wenig großen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Kongjomerat in Lyditer Klasten, kaum Matrix, welß; Klasten in 1-2 cm 2; gut sortiert<br>Übergang in Hochwipfel Formation ?<br>Grobsandstein mit wenig großen Klasten (1-2 cm) (Lydite + Quarze). Sandstein verwittert lamineeartig-> war horizontal geschichtet<br>Kongjo                   |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(7)<br>(8)<br>(6)<br>(7)<br>(8)<br>(8)<br>(9)<br>(7)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9                                                                                                                                                                             | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G1.2<br>G2.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>S1.1<br>S1.1<br>S1.1<br>S1.2<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.2<br>S2.1<br>S2.2<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.2<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.2<br>S2.3<br>S2.3<br>S2.2<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.2<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>20<br>20<br>120<br>220<br>410<br>400<br>20<br>20<br>120<br>220<br>410<br>10<br>400<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200-300<br>70<br>170<br>250<br>300<br>800<br>300<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>110<br>120<br>210<br>210<br>210<br>210<br>210<br>210<br>210<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4/7<br><b>R:54 71 C</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8<br><b>R:54 71 2</b><br><b>Probe</b><br>P 6/1      | Sittetin übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkelgrau<br>Feinsandstein übergehend in Sittetin mit Laminierung in 0,5 cm Absänden durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlücke<br>Sittetin ubergehend in Tonstein beige rötlich, stark tektonisch geschiefert<br>Sittetin neltigen, flassertig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1 mm- Abstand)<br><b>Beschreibung</b><br>Grobkörnig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Oz – Sandstein<br>Sittstein, sandig weiß, glimmerreich<br>Violetter Sandstein and er Basis (30) Mittelsandstein ; violette Stile – Tone(40 cm)<br>Ton violett – schwarz<br>Wechsellagerung Tonschreitere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkes<br>Konglomeratischer Sandstein mit Qz-mobilisat<br>Wechsellagerung Tonschreitere – Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkes<br>Konglomerati, dustrix Mittelsandstein – Grobsendstein, vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten (3 cm) + gröbere Matrix<br>Violettes Konglomerat gut soritert mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm <i>Ø</i> ); Oben kommen Tonfläseren dazu.<br>Eventueli violettes Konglomerat y dus order mit klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend in Mittelsandstein, vereinzelt Lydite; evtl. noch Spuren von langwelliger Schrägschichtung → Hummocky<br>Hellgrauer Grobsandstein in Wereingen Klasten (4 cm) (Lydite + Quarze                        |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br><b>Profil 5</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                     | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G1.2<br>G2.1<br>G1.2<br>G2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>G1.2<br>S2.2<br>S2.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.1<br>S1.2<br>S2.2<br>S2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>S2.2<br>S2.2<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.1<br>S2.2<br>S2.2<br>S2.1<br>S2.1<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3<br>S2.3 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br>Mächtigkeit<br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>20<br>20<br>120<br>220<br>410<br>400<br>220<br>410<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>220<br>300<br>800<br>300<br><b>Koordinaten:</b><br>Mächtigkeit<br>110<br>180<br>130<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P4/7<br><b>R:54 71 6</b><br><b>P 5/2</b><br>P 5/3<br>P 5/3<br>P 5/4<br>P 5/5<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8<br><b>R:54 71 2</b><br><b>Probe</b><br>P6/1<br>P6/2 | Sittstein übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkeigrau<br>Feinsandstein übergehend in Sittstein mit Laminierung in 0,5 cm Absänden durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Schichtlicke<br>Sittstein heiligrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bistein heiligrau, flaserig, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werdend + mehr Tonschichten (1mm- Abstand)<br><b>Beschreibung</b><br>GrobsArdstein vollett, planare Schrägeschichtung<br>Schichtlicke ; ab hier Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Sittstein, andig weiß, glimmerreich<br>Violetter Sandstein an der Basis (30) Mittelsandstein ; violette Sitle – Tone(40 cm)<br>Ton violett – schwarz<br>Weclisch vollett grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschnierne – Mittelsandstein / Feinsandstein<br>Grobsandstein mit Qz-mobilisat<br>Wechsellagerung Tonschnierne – Mittelsandstein / Feinsandstein<br>Grobsandstein mit Qz-tkasten in cm - Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat. Matrix Mittelsandstein – Grobsandstein , vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größere Klasten in Co – 1 cm Größe (2cm); total weiß gut gerundete Klasten<br>Rötliches Grobkonglomerat us ontri mit Klasten in 0,5 – 1 cm Größe (2cm); stal weiß, gut gerundete Klasten<br>Rötliches Grobkonglomerat us ontri mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisat<br>Violettes Konglomerat us ontri mit Klasten in 0,5 – 1 cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm <i>Q</i> ). Oben kommen Tonflasern dazu.                                                                                                                                                                                                                                                               |
| (19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(24)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br><b>Profil 6</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br><b>Profil 6</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(5)<br>(6)<br>(6)<br>(7)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | C2.2<br>Lithofazies<br>S1.1<br>S1.2<br>S1.2<br>S1.1<br>G1.2<br>G1.2<br>G1.2<br>G1.2<br>G1.2<br>G1.2<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>G1.2<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S3.1<br>S2.3<br>S2.3<br>S2.2<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.1<br>S2.1<br>S2.2<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1 | 120<br>140<br>300<br>140<br>80<br>570<br><b>Koordinaten:</b><br>Mächtigkeit<br>70<br>50<br>1000<br>20<br>70<br>10<br>400<br>30<br>20<br>120<br>220<br>410<br>120<br>220<br>410<br>120<br>220<br>410<br>190<br>50<br>70<br>110 nach<br>oben ?<br>400<br>Nach unten ?<br>200 -300<br>70<br>170<br>250<br>300<br>800<br>300<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>110<br>150<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P4/7<br><b>R:54 71 6</b><br>P 5/1<br>P 5/2<br>P 5/3<br>P 5/3<br>P 5/6<br>P 5/6<br>P 5/6<br>P 5/7<br>P 5/9<br>P 5/8<br><b>R:54 71 2</b><br><b>Probe</b><br>P 6/1<br>P 6/2      | Sittetin übergehend in Feinsandstein mehr Feinsand weniger stark geschiefert, dunkeigrau<br>Feinsandstein übergehend in Sittetin mit Laminierung in 0,5 cm Absänden durch Tonhäutchen getrennt; nach oben hin engständiger werdend im<br>mm-Bereich<br>Soltentilicke<br>Sitteten heilgrau, flaseré, ungeordnet, stark tektonisch geschiefert<br>Sitteten heilgrau, flaseré, ungeordnet, stark tektonisch geschiefert<br>Bescher Feinsandstein laminiert und durch Tonschichten voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werderd + mehr Tonschichten (1 mm- Abslanden voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werderd + mehr Tonschichten (1 mm- Abslanden voneinander getrennt im 0,5 cm – Bereich, Ton=0,5mm, nach oben hin engständiger<br>werderd + mehr Tonschichten (1 mm- Abslanden)<br><b>Beschreibung</b><br>Grobkondsmig violetter Sandstein<br>Grobkondsmig violetter Sandstein – Schiefer Wechsellagerung, violetter Schiefer+ Glimmerreicher weißer Qz – Sandstein<br>Sittetin, sandig weiß, glimmerreich<br>Violetter Sandstein and er Basis (20) Mittelsandstein ; violette Site – Tone(40 cm)<br>Tor violet – Schwarz<br>Weißlich violetter Gondsandstein mit Qz-rklasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötiches Grobkongiomerat, Matrix Mittelsandstein / Feinsandstein<br>Grobsandstein – Feinkeis<br>Konglomeratischer Sandstein mit Qz-klasten in cm- Größe (2cm); total weiß gut gerundete Klasten<br>Rötiches Grobkongiomerat, Matrix Mittelsandstein – Grobsandstein, vereinzelt Qz – Klasten in cm-Größe.<br>Nach oben hin mehr und größen Klasten, is 0,5 – cm Größe. Nach oben hin feiner werdend in Grobsandstein übergehend, mit Qz-Mobilisaten (3<br>cm <i>G</i> ); Oben kommen Tonflageren dazu.<br>Eventuel violettes Konglomerat vering größen Klasten (3 cm) + gröbere Matrix<br>Violettes Konglomerat vering größen Klasten (3 cm) + gröbere Matrix<br>Violettes Konglomerat vering größen Klasten (3 cm) + gröberen klasten (3 c                           |

| (7)<br>(8)<br>(9)                                                                                                                                                                                                                                                                                                                                           | C2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>410<br>260                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mittelsandstein kompakt, leicht geschiefert, mit Tonhäutchen dazwischen<br>Wechsellagerung Tonstein mit Feinsandstein im 1-2 mm Bereich, beide gleich dick<br>Wechsellagerung Siltstein /Mittelsandstein – Grobsandstein im cm Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10)<br>(11)<br>(12)                                                                                                                                                                                                                                                                                                                                        | B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50<br>100<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 6/3<br>P 6/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grobsandstein rot – Bank<br>Hellgrauer Grobsandstein mit vielen Quarzen<br>Durkelroter Grobsandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (12)<br>(13)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 210<br>Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 6/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hellroter – Hellbrauner Mittelsandstein – Grobsandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                              | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                           | Probe<br>P 7/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beschreibung Dunkelgrauer –grauer Mittelsandstein, sehr gut sortiert; planare Schrägschichtung; eventuell Rippel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (2)<br>(3)                                                                                                                                                                                                                                                                                                                                                  | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 7/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Siltstein + vereinzelte Tonhäutchen<br>Dunkelgrauer Grobsandstein normal gradiert an Tonlamellen –Y> Ripp up clasts+ Brüchen bräunlich rot verwitternd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                                                  | B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 7/3<br>P 7/2 +<br>P 7/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wechsellägerung Feinsandstein – Tonhautchen; Feinsandstein immer 1-3 mm; Tonhautchen ganz dunn<br>Mittelsandstein rötlich, kaum ausgeprägte Wechsel mit ganz dünnen Tonhäutchen; die letzten 20 cm vor (5) kommen viel Qz-Mobilisate dazu und<br>starke rötlich varvittette Ton + Silt Horizonte + die eingeschalteten Mittelsandsteine: nanare Schrägschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (6)<br>(7)                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35<br>310                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 7/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wechsellagerung Sint – Feinsandstein im 1-2 mm – Bereich, dunkelbraun – rot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (8)                                                                                                                                                                                                                                                                                                                                                         | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wechsellagerung Ton – Silt/Feinsandstein , schwarz – gräulich mit rotem Verwitterungshorizonten an den Tonen. Verwittert Bänkchen artig im mm – cm Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 8<br>Schicht                                                                                                                                                                                                                                                                                                                                         | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Koordinaten:<br>Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:54 50 9<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 / H:14 40 750<br>Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                           | E2.2 ?<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100<br>190<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 8/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Schwarzer geschieferter Tonstein in Zwischenlagen rot verwitternd<br>Grobsandstein normal gradiert mit Zwischenlagen von Ton; Tonhäutchen und Sandstein im 0,5 – 1 cm Bereich<br>Tonstein schwarz gilanzend, stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vulkanische Aschenlage<br>Tonstein / Feinsandstein Wechsellagerung im mm – Bereich mit Tonhäutchen dazwischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                                                           | C.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 160<br>40<br>550                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 8/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tonstein / Mittelsandstein Wechsellagerung im 1 mm - Bereich<br>Mittelsandstein – Grobsandstein rötlich, normal gradiert<br>Schwarz – bescher diagender, stark geschieferer Tonstein, nach oben richtig schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (9)                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 490<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schwarzer Sittstein mit Tonhäutchen zwischen drin im mm-Bereich; nach oben hin geht Sittstein in Sittstein – Feinsandstein über.<br>Schwarzer Sittstein mit Tonhautchen zwischen drin im mm-Bereich; nach oben hin geht Sittstein in Sittstein – Feinsandstein über.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11)<br>(12)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80<br>?100                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schichtlicke (tektonisch)<br>Schichtlicke (tektonisch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (13)<br>(14)                                                                                                                                                                                                                                                                                                                                                | D1.1<br>C.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 470<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P 8/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Schwarzer geschieferter glänzender Schlammstein ; obere 65 cm mit vielen schieferungsparallen Qz-Mobilisaten<br>Feinsandstein – Mittelsandstein ? durch Tonlamellen mit Laminierung, getrennt, einzelne Lagen im 5 - 10 cm Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (15)<br>(16)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grobsandstein dunkelgrau; planare Laminierung,<br>Siltstein / Tonstein Wechselfolge geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (17)<br>(18)                                                                                                                                                                                                                                                                                                                                                | B1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200<br>60 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                               | P 8/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feinsandstein /Siltstein Wechselfolge leicht geschiefert<br>Feinsandstein – Mittelsandstein grau-bräunlich/rot. evtl. Rip-up-clasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Profil 9<br>Schicht                                                                                                                                                                                                                                                                                                                                         | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Koordinaten:<br>Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:54 52 5<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 / H:14 43 000 Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1)<br>(2)                                                                                                                                                                                                                                                                                                                                                  | D1.1<br>C2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schwarze Tonstein/Schlammstein; glänzend; stark geschiefert<br>Feinsandstein / Tonstein Wechsellagerung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (3)<br>(4)                                                                                                                                                                                                                                                                                                                                                  | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Siltsteinlagen schwarz geschiefert<br>Feinsandstein – Mittelsandstein (0,5 – 1cm) Wechsellagen mit Siltstein – Tonstein (1 mm) ; verwittert plattig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (5)<br>(6)<br>(7)                                                                                                                                                                                                                                                                                                                                           | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 330<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 9/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tonstein – Sutstein / Feinsandstein wechseliagerung schwarz<br>Wechsel von Grobsandstein – Mittelsandstein mit Tonautchen, die tektonisch ausgeschmiert wurden (phyllitartig) glänzend<br>Feinsandstein rötlich lampingt mit Tonabiutchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (8)                                                                                                                                                                                                                                                                                                                                                         | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grobsandstein – Feinkies; normal gradiert, dunkelgrau mit großen Lyditen; oben 8 cm Quarzmobilisate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (10)                                                                                                                                                                                                                                                                                                                                                        | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grobsandstein hellgrau – beigelaminiert mit Silthäutchen<br>Feinsandstein/Siltstein Wechsellagerung dunkelgrau glänzend, geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (12)<br>(13)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wechsellagerung Mittelsandstein (0,5 cm – 1 cm Bereich)<br>Feinsandstein mit Tonhäutchen laminiert im mm - Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (14)                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R-54 73 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Schwarzer glänzender Tonstein; geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                              | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mächtigkeit<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                          | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beschreibung<br>Wechsellagerung dunkelgrauer Feinsandsteine (0.5 cm) mit schwarzen Silten: evtl. Schrägschichtung: wieder Oz gefüllte Extensionsgänge zu finden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                         | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mächtigkeit<br>160<br>460<br>130<br>140 + ?                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beschreibung     Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden     (Ø 5 cm) im unteren Drittel     Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich     Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht     Wechsellagerung Feinsandstein / Ton im halben cm – Bereich: laminert ca, deichdick. Quarzmobilisat im unteren Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)                                                                                                                                                                                                                                                                                                                  | C2.3<br>C2.2<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320                                                                                                                                                                                                                                                                                                                                                                                                          | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beschreibung Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich Dunkel schwarz stark glänzender Tonschiefer, telwiese ausgequetscht Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                           | C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Probe</b><br>P 10/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; larniniert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklern Feinsandstein (1-2 cm); bei frischem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                      | C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800                                                                                                                                                                                                                                                                                                                                                                                 | Probe<br>P 10/1<br>P 10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert         stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen         Schwarzer Silt – Feinsandstein (1-2 cm); bei frischem Anschlag dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)                                                                                                                                                                                                                                                                               | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.2<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120                                                                                                                                                                                                                                                                                                                                                                          | Probe<br>P 10/1<br>P 10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden           (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelgrauer Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklern Feinsandstein (1-2 cm); bei frischem           Anschlag dunkelgrau           Feine Tonschicht Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert und glänzende, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Schicht           (1)           (2)           (3)           (4)           (1)           (2)           (3)           (4)           (5)           (1)           (2)           (3)           (4)           (5)           (1)           (2)           (3)           (4)                                                                                         | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170                                                                                                                                                                                                                                                                                                                                                     | P 10/1<br>P 10/2<br>P 10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgrau glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert und glänzend, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau           Platige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarzer glänzender Feinsandstein – Siltstein in dem bevorzugt Faltung zu sehen ist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)                                                                                                                                                                                                                                                   | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170                                                                                                                                                                                                                                                                                                                                                     | P 10/1<br>P 10/2<br>P 10/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunkler Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgrau glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein , stark geschiefert und glänzende, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau<br>Plattige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; extrem schiefrige Platten, normal gradiert<br>Schwarzer Feinsandstein – Siltstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen; Man findet Blattabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (5 - 10 cm) (65), non. Ved. 51, 265, 10, 14, 40, 5, 5, 830, 51, 970, 10, 1170                                                                                                                                                                                                                                                                                                                                           |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)                                                                                                                                                                                                                                     | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335                                                                                                                                                                                                                                                                                                                                        | P 10/1<br>P 10/2<br>P 10/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelprauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgrau glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer glänzender Feinsandstein – Sittstein in dem bevorzugt Faltung zu sehen ist           Schwarzer glänzender Feinsandstein – Sittstein in dem bevorzugt Faltung zu sehen ist           Schwarze Feinsandstein – Sittstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein Lagen in Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein Lagen, Man findet Blattabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise is 10 cm. Immer wieder glänzende Schiefertone dazwischen (5 – 10 cm) (Bsp. nach 40,101 t, 21                                                                                                                                                                                                                                                                                                                                                              |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(5)<br>(6)<br>(1)<br>(2)<br>(2)                                                                                                                                                                                                         | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100                                                                                                                                                                                                                                                                                                                        | P 10/1<br>P 10/2<br>P 10/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; Iaminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelbrauer Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein , stark geschiefert und glänzender, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau           Platitige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarzer Feinsandstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Charzer Feinsandstein – Siltstein in dem bevorzugt Faltung zu sehen ist<br>Schwarzer Glänzender Feinsandstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen; Man findet Blattabdrücke in den Tonlagen und Quarzmobilisat                                                                                                                                                                                                                                                                                     |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(3)<br>(4)                                                                                                                                                                                                         | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60                                                                                                                                                                                                                                                                                                            | P 10/1<br>P 10/2<br>P 10/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelgrauer Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklern Feinsandstein (1-2 cm); bei frischem           Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgrauer Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert und glänzende, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau           Platige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarze Feinsandstein – Siltstein in dem bevorzugt Faltung zu sehen ist           Schwarze fainzender Feinsandstein – Siltstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarze glänzender Foinsandstein –                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(5)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4                                         | C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>0<br>305<br>130 +<br>100<br>200 + ?<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                    | Probe<br>P 10/1<br>P 10/2<br>P 10/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein / Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklern Feinsandstein (1-2 cm); bei frischem           Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgrau glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert und glänzend, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung unkelgrau           Platige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; stark verfalter mit stellenweise 2-3 cm mächtigen Mittelsandstein           Lagen; Man findet Blattabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefert Tonstein (0,5 mm) Wechsellagerung; stark verfalter mit stellenweise 2-3 cm mächtigen Mittelsandstein           Lagen; Ma                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(6)<br>(7)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                           | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit           160           460           130           140 + ?           320           70           5           100           800           120           30           130           1170           70           335           130 +           100           70           335           130 +           100           70           60           200 +?           Koordinaten:           Mächtigkeit                                                | Probe<br>P 10/1<br>P 10/2<br>P 10/3<br>R:54 76 5<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden (Ø 5 cm) muteren Dittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein / Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkelbrauner Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgrau glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein , stark geschiefert und glänzend, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau           Platige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarzer glänzender Feinsandstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen; Man findet Blattabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (5 -10 cm) (5ps. nach 40, 10, 12, 10, 5, 1265, 10, 410, 5, 10, 5, 100, 10, 1, 90, 5, 1, 135, 5, 1, 210, 10, 1, 240, 5, 1                                                                                                                                                                                                                                                                                        |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                      | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60<br>200 +?<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>80<br>120<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>13                                                                                                                                                                                 | Probe<br>P 10/1<br>P 10/2<br>P 10/3<br>P 10/3<br>R:54 76 5<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) imi schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden<br>(Ø 5 cm) im unteren Drittel<br>Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequestcht<br>Wechsellagerung Feinsandstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend<br>Dunkel schwarz, glänzender Tonstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau<br>Feine Tonschicht schwarz, geschiefert<br>Dunkelprauer Feinsandstein - stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein (0,5 mm) Wechsellagerung dunkelgrau<br>Plattige Tonstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung; extrem schiefrige Platten, normal gradiert<br>Schwarzer glänzender Feinsandstein – Siltstein in dem bevorzugt Faltung zu sehen ist<br>Schwarzer glänzender Feinsandstein – Siltstein (1-2 mm) / Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen; Man findet Blattabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (5 – 10 cm) (Bs.p. nach 40, 10, 1, 210, 5 t, 265, 10 t, 410, 5 t, 830, 5 t, 970, 10 t, 1170<br>Schwarzer glänzender Feinsandstein fornstein<br>Wie 4 nur jetzt vermehrt talgige Tonschieferfagen dazwischen (5-10 cm): nach 50, 10 t, 90, 5 t, 135, 5 t, 210, 10 t, 240, 5 t, 90           Feinsand gradiert – Siltstein (1-3 mm) / Tonlamellen(0,5 mm) , dunkelgrau mit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein(1-3 mm) / Tonlamellen(0,5 mm) , dunkelgrau mit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein (1-6 mm) inniert<br>Siltstein graubraun mit Feinsandiagen (2cm)           W                                                        |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br><b>Profil 11</b><br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)                                                                                                                         | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>120<br>30<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>305<br>130 +<br>100<br>70<br>200 +?<br><b>Koordinaten:</b><br>Mächtigkeit<br>80<br>100<br>120<br>130 +<br>100<br>100<br>210 +<br>100<br>130<br>110 + ?<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                           | Probe<br>P 10/1<br>P 10/2<br>P 10/3<br>R:54 76 5<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgånge zu finden<br>(Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkel schwarz, geschiefert           Dunkel grauu glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein (0,5 mm) Wechsellagerung dunkelgrau<br>Platige Tonlagen (0,5 mm) und 1-2 mm) / Konstein (0,5 mm) Wechsellagerung; stark vertaltet mit stellenweise 2-3 cm mächtige Mittelsandstein<br>Lagen; Man findet Blattabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (5 – 10 cm) (B.g., nach 40,10,1 z, 10, 5, 1 z, 26, 10, 1 x, 40, 5, 1 x, 30, 5 1, 210, 10, 1 z, 40, 5 1, 90           Feinsandstein (1-3 mm) /Tonlamellen(0,5 mm) , dunkelgrau mit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung wit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein (1-3 mm) /Tonlamellen(0,5 mm) , dunkelgrau mit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein (1-3 mm) /Tonlamellen(0,5 mm) , dunkelgrau mit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein (1-3 mm) /Tonlamellen(2 mm) , dunkelgrau                                                                                                                                                                                         |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60<br>200 +?<br>Koordinaten:<br>Mächtigkeit<br>80<br>100<br>120<br>30<br>100<br>100<br>210<br>100<br>210<br>30<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                | Probe<br>P 10/1<br>P 10/2<br>P 10/3<br>P 10/3<br>R:54 76 5<br>Probe<br>P 11/5<br>P 11/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden<br>(Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefr, teilweise ausgequetscht           Wechsellagerung Feinsandstein /Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkelgrauuer Feinsandstein - Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert           Dunkelgraue glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein – Siltstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau           Platige Tonlagen (0,5 mm) und 1-2 mm dicke Mittelsandstein Lagen in Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen; Man findet Blatabdrücke in den Tonlagen und Quarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (5 - 10 cm) (Bsp. nach 40,10, 12, 10, 5, 1, 26, 5, 10, 410, 5, 1, 830, 5, 1, 970, 10, 1, 1170           Schwarze glänzende sehr stark geschieferte Tonstein<br>(We 4 nur jetzt vermehrt talgige Tonschieferlagen dazwischen (5-10 cm); nach 50, 10 t, 90, 5, 1, 35, 5, 12, 10, 10, 240, 5 t, 90           Feinsandstein - Siltstein (1-3 mm) / Tonlamellen(0,5 mm) wankelgrau mit Gli                                                                                                                                                                                                                                                                                  |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)                                                                                                                     | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60<br>200 +?<br>Mächtigkeit<br>80<br>100<br>120<br>150<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>13                                                                                                                                                                                                 | Probe<br>P 10/1<br>P 10/2<br>P 10/3<br>P 10/3<br>R:54 76 5<br>Probe<br>P 11/5<br>P 11/4<br>P 11/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden<br>(∅ 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein / Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkeldsrauer Feinsandstein – Mitelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau           Peine Tonschicht schwarz, geschiefert           Dunkelgrau glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer Silt – Feinsandstein – Siltstein in dem bevorzugt Fallung zu sehen Ist           Schwarze fänzender Feinsandstein – Siltstein in dem bevorzugt Fallung zu sehen Ist           Schwarze fanzender Foinsandstein – Siltstein (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lager; Man findet Blatabdricke in den Tonagen und Quarzmobilista 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzender Schiefertone<br>dazwischen (5 – 10 cm) (Bsp. nach 40,10 t, 210, 5 t, 265, 10 t, 410, 5 t, 30, 5 t, 970, 10 t, 1770           Schwarze flanzende seh stark geschiefert Tonstein<br>We 4 nur jetzt vermehrt taigige Tonschieferlagen dazwischen (5-10 cm): nach 50, 10 t, 90, 5 t, 135, 5 t, 210, 10 t, 240, 5 t, 90                                                                                                                                                                                                                                                                                                |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(6)<br>(7)<br>(7)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                         | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60<br>200 +?<br>Koordinaten:<br>80<br>120<br>130<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>200 +?<br>Koordinaten:<br>80<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                    | Probe<br>P 10/1<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/3<br>P 11/5<br>P 11/4<br>P 11/3<br>P 11/2<br>P 11/2<br>P 11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgånge zu finden<br>(Ø 5 cm) im unteren Drittel           Glänzende Silt – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein / Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkelgrau führender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen           Schwarzer Silt – Feinsandstein – Sittesin in dem bevorzugt Faltung zu sehen ist           Schwarzer Glänzender Feinsandstein – Sittesin in dem bevorzugt Faltung zu sehen ist           Schwarzer Feinsandstein – Sittesin in dem bevorzugt Faltung zu sehen ist           Schwarzer Feinsandstein – Sittesin (1-2 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lager; Man Indet Blattabdricke in den Tonlagen und Quarzmobilista 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzender Schwafter Bonstein (0,5 mm) / Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm sächtiefen tonstein           Wie A nur jetzt vermehnt halgige Tonschieffangen dazwischen (5-10 cm): nach 50, 10 t, 90, 5 t, 135, 5 t, 210, 10 t, 240, 5 t, 90           Feinsand gradiert – Siltstein (1-2 mm) / Tona                                                                                                                                                                                                                                                                                                                                                   |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(5)<br>(6)<br>(7)<br>(8)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(2)<br>(3)<br>(4)<br>(4)<br>(7)<br>(7)<br>(8)<br>(9)<br>(9)<br>(10)<br>(11)<br>(11)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12               | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60<br>200 +?<br><b>Koordinaten:</b><br>Mächtigkeit<br>80<br>100<br>210<br>100<br>20<br>70<br>60<br><b>Koordinaten:</b>                                                                                                                                                                                        | Probe<br>P 10/1<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/3<br>P 11/3<br>P 11/4<br>P 11/3<br>P 11/2<br>P 11/2<br>P 11/1<br>R:54 90 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgänge zu finden<br>(Ø 5 cm) im unteren Drittei<br>Glänzende Silte – Tonstein (Tonihäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht<br>Wechsellagerung Feinsandstein / Ton im halben cm – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich<br>Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend<br>Dunkelbrauer geschiefert<br>Dunkelgrauug glänzender Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarze füll – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer füll – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer füll – Feinsandstein , stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer füll – Feinsandstein , Stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer füll – Feinsandstein , Stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarzer füll – Feinsandstein – Sittstein (1-2 mm) Wechsellagerung; extrem schiefrige Platten, normal gradiert<br>Schwarzer fainzender Feinsandstein – Sittstein in dem bevorzugt Failung zu sehen ist<br>Schwarze feinzendstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung; stark verfaltet mit stellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen; Man Indet Blatabrücke in dem Toniagen und Quarzmobiliste 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schieferton<br>dazwischen (5-10 cm) (Bgs. nach 40, 10, 12, 0, 5, 125, 10, 14, 10, 5, 1, 25, 1, 170<br>Schwarze glänzender Sehistein (1-3 mm) / Tonstein (0,5 mm), dunkelgrau mit Glimmer bis hellgrau massig<br>Feinsand gradiert – Siltstein (1-3 mm) / Tonstein (0,5 mm), dunkelgrau mit Glimmer bis hellgrau massig extrem schiefrige Platten<br>Brauner Siltstein autore trauter daz – G |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(12)<br>(7)<br>(8)<br>(9)<br>(10)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                 | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>60<br>200 +?<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>80<br>10<br>20<br>70<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>10<br>10<br>20<br>70<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                               | Probe<br>P 10/1<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/3<br>P 11/3<br>P 11/4<br>P 11/3<br>P 11/2<br>P 11/2<br>P 11/1<br><b>R:54 90 5</b><br><b>Probe</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; eut. Schrägschichtung; wieder Qz gefüllte Extensionsgånge zu finden<br>(Ø 5 cm) im unteren Drittel           Glänzende Silten – Tonstein (Dohäuchen) Wechsellagerung, schwarz im m-Bereich<br>Durkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein / Ton im halben om – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich<br>Durkels schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau<br>Durkelbraume Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau glänzender Feinsandstein in, stark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarze flänzender Feinsandstein – Sitte schwarzug fallung zu sehn teil<br>Schwarzer glänzender Feinsandstein / Sitte und glänzend, mit glänzenden Partikel, dazwischen geschaltet dünne Vulkanittage (5cm)           Peinsandstein for Sittes (1 - 2 cm) / Tonstein (0.5 cm) Wochsellagerung sehn teil<br>Schwarzer glänzender Feinsandstein – Sittestein (1-2 cm) / Tonstein (0.5 cm)         Wechsellagerung tunkelgrau<br>Weitsellenweise 2-3 cm mächtigen Mittelsandstein<br>Lagen: Man findet Blattabrücke in den Tontagen und Quarzmobiliste 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (5 - 10 cm) (Bsp. nach 40,10 1, 210, 5 1, 265, 1 01, 410, 5 1, 305, 5 1, 770, 10 1, 170           Schwarze glänzende Seinstein (1-3 mm) / Tonstein (0.5 mm), dunkelgrau mit Glimmer bis heilgrau massig<br>Feinsand radiert – Siltstein (1-2 mm) / Tonstein (0.5 mm), dunkelgrau mit Glimmer bis heilgrau massig<br>Feinsand gradiert – Siltstein (1-2 mm) / Tonstein (0.5 mm), dunkelgrau mit Glimmer bi                                                                                                                                       |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(4)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>335<br>130 +<br>100<br>70<br>30<br>130<br>130<br>1170<br><b>Koordinaten:</b><br>Mächtigkeit<br>80<br>100<br>200<br>70<br><b>Koordinaten:</b><br>Mächtigkeit<br>180<br>100<br>200<br>70<br><b>Koordinaten:</b><br>180<br>140<br>200<br>70<br><b>Koordinaten:</b><br>180<br>140<br>200<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | Probe<br>P 10/1<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/2<br>P 10/3<br>P 10/3<br>P 11/5<br>P 11/4<br>P 11/2<br>P 11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung           Wechseliagerung dunkeigrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; eutl. Schrägschichtung; wieder Qz gefüllte Extensionsgånge zu finden<br>(Ø 5 cm) im unteren Drittel           Gölanzende Silten: H – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im m-Bereich<br>Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht           Wechsellagerung Feinsandstein / Ton im halben om – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich           Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, sehr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend           Dunkelbraumer Feinsandstein - Nittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau<br>Feine Tonschicht schwarz, geschiefert           Dunkelbraumer, istark geschiefert mit evtl. Tonhäutchen dazwischen<br>Schwarze fäinsandstein - Sittstein (1-2 rm) / Tonstein (0,5 rm) Wechsellagerung dunkelgrau           Platige Tonlagen (0,5 rm) und 1-2 rm dicke Mittelsandstein Lagen in Wechsellagerung; skrem schiefrige Platten, normal gradiert<br>Schwarze fäinsandstein – Sittstein (1-2 rm) / Tonstein (0,5 rm) Wechsellagerung; skrem schiefrige Platten, normal gradiert<br>Schwarze glänzender Feinsandstein – Sittstein (1-2 rm) / Tonstein (0,5 rm) werder Jäänzende Feinsandstein – Sittstein (1-3 rm) / Tonstein (0,5 rm) Wechsellagerung zusehn ist<br>Schwarze glänzender Sittstein geschiefert Erotstein           Wie 4 nur jetzt vermehrt talgige Tonschiefertagen dazwischen (5-10 cm); nach 50, 10 t, 90, 5 t, 135, 5 t, 210, 10 t, 240, 5 t, 90           Feinsand gradiert – Sittstein (1-3 rm) / Tonstein (0,5 rm) wercheslagerung unit Glimmer bis hellgrau mossi                                                                                                                                                                                                                                                     |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(12)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7    | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>1170<br>70<br>5<br>130 +<br>100<br>70<br>60<br>200 +?<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>100<br>100<br>200<br>70<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>180<br>200<br>100<br>200<br>70<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>180<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                   | Probe<br>P 10/1<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/3<br>P 11/3<br>P 11/4<br>P 11/3<br>P 11/2<br>P 11/1<br><b>R:54 90 E</b><br><b>P 12/1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder Qz gefüllte Extensionsgånge zu finden<br>(0,5 cm) im unteren Drittel<br>Gilanzende Silt. – Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich<br>Dunkel schwarz stark gilanzender Tonschiefer, teilweise ausgequetscht<br>Wechsellagerung Feinsandstein / Ton im halben om – Bereich; laminiert ca. gleichdick. Quarzmobilisat im unteren Bereich<br>Schwarz glänzender Siltstein – Feinsandstein nach oben in Feinsandstein / Silt Wechsellagerung übergehend, schr fein laminiert; weiter nach oben in<br>Feinsandstein übergehend<br>Dunkelgrauer Feinsandstein – Mittelsandstein, planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem<br>Anschlag dunkelgrau<br>Feine Tonschlicht schwarz, geschiefert<br>Dunkelgrauer, geschiefert<br>Dunkelgrauer, geschiefert<br>Dunkelgrauer, feinsandstein, stark geschiefert und glänzenden Partikel, dazwischen geschaltet dünne Vulkanitlage (Scm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau<br>Platige Tonlagen (0,5 mm) und 1-2 mm dicke Mitelsandstein: Lagen in Wochsellagerung; schr verfaltet mit stellenweise 2-3 cm mächtige Mittleandstein<br>Tagen, Man findet Blattachrücke in den Tonlagen und Ouarzmobilisate 2-5 cm mächtig, teilweise bis 10 cm. Immer wieder glänzende Schiefertone<br>dazwischen (6-1 ocm) (Bas, and 4-0,0,1,2,10,5,1,2,86,10,14,0,5,1,30,5,1,90,10,1,170)           Schwarze glänzende sehr stark geschieferte Tonstein<br>Ugen unt jetzt vermehrt talgige Tonschiefertagen dazwischen (5-10 cm); nach 50, 0,1,9,0,5,1,15,5,1,210, 10,1,240,5,1,90           Feinsand gradiert – Siltstein (1-3 mm) / Tonlamellen(2,5 mm), dunkelgrau mit Glimmer bis hellgrau massig<br>erianer Siltstein (20,5 mm) imminiert<br>Siltstein grauter Vereich tastu geschiefert annate<br>schwarze Siltstein (1-2 mm) / Tonstein (0,5 mm) isominiert<br>Siltstein (1                                                                                  |
| Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | Lithofazies<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mächtigkeit<br>160<br>460<br>130<br>140 + ?<br>320<br>70<br>5<br>100<br>800<br>120<br>30<br>130<br>120<br>30<br>130<br>120<br>30<br>130<br>130<br>170<br>70<br>335<br>130 +<br>100<br>200 +?<br>Koordinaten:<br>Mächtigkeit<br>180<br>140<br>200<br>170<br>Koordinaten:<br>Mächtigkeit<br>180<br>140<br>200<br>170<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                           | Probe<br>P 10/1<br>P 10/2<br>P 10/2<br>P 10/3<br>P 10/3<br>P 10/3<br>P 10/3<br>P 11/5<br>Probe<br>P 11/4<br>P 11/3<br>P 11/2<br>P 11/4<br>P 11/2<br>P 11/2<br>P 10/2<br>P 11/5<br>P 11/4<br>P 11/2<br>P 10/2<br>P 10/2 | Beschreibung           Wechsellagerung dunkelgrauer Feinsandsteine (0,5 cm) mit schwarzen Silten; evtl. Schrägschichtung; wieder 02 gefüllte Extensionsgånge zu finden (0,5 cm) im unteren Dirttel           Glänzende Silt.         Tonstein (Tonhäutchen) Wechsellagerung, schwarz im mm-Bereich           Dunkel schwarz stark glänzender Tonschiefer, teilweise ausgequetscht         Wechsellagerung übergehend, sehr fein laminiert, weiler nach oben in Feinsandstein in Ubergehend, sehr fein laminiert; weiler nach oben in Feinsandstein, Planare Schrägschichtung in Wechsellagerung mit dunklem Feinsandstein (1-2 cm); bei frischem Anschlag dunkelgrau           Feine Tonschicht schwarz, geschiefert         Tonstein (Tonschin testwarz)           Schwarzs fläng dunkelgrau         Feinsandstein in dem berorung diazender Partikel, dazwischen geschaltet dünne Vulkanitlage (5cm)           Feinsandstein (1-3 mm) / Tonstein (0,5 mm) Wechsellagerung dunkelgrau         Platige Tonsching (1-2 mm / Tosstein (0,5 mm) ann i Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarzs fläng constratien - Sittestin in dem berorzugt Faltung zu seihen ist         Schwarzs fainsching (1-2 mm / Tosstein (0,5 mm) ann Wechsellagerung; extrem schiefrige Platten, normal gradiert           Schwarzs glänzender seh stark geschiefert Tonstein (0,5 mm) / Mechsellagerung; stark verfalter thi stellenweise 2-3 cm mächtigen Bittelsand tein Lagen. Mach Sol, 9, 0, 1, 10, 1, 170           Schwarzs glänzende seh stark geschieferter Tonstein         Schwarz fain (1-2 mm // Tonstein (0,5 mm) anniet           Stittetien         Statterin         Statter (1-3 mm) // Tonstein (0,5 mm) anniet<                                                                                                                                                                                                                                                                                                                                                                                           |

| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.2                                                                                                                                                    | 110                                                                                                                                                                                                                                                                             | P 13/1                                                                                                           | Feinsandstein geschiefert, bräunlich rot; alle 1-2 cm Tonhäutchen schwarz horizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2.3                                                                                                                                                    | 190<br>110                                                                                                                                                                                                                                                                      | P 13/2                                                                                                           | Mittelsandstein (2-3 cm) in Wechsellagerung mit 1 mm starken Tonlamellen schwarz; dunkelgrau / rötlich<br>Dunkelgrauer Feinsandstein (1-2 mm) engständig mit Tonlamellen (0.5 mm) wechselnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1 2                                                                                                                                                    | 130                                                                                                                                                                                                                                                                             |                                                                                                                  | Tonstein (0,5 mm) / Siltstein – Feinsandstein (1 mm) Wechsellagerung, tektonisch beansprucht; stark geschiefert<br>Feinsandstein bräunlich – grau, tote Verwitterungsränder, glänzt bei trischem Anschlag $\rightarrow$ Glimmer $\rightarrow$ tektonisch beansprucht $\rightarrow$ geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1.2                                                                                                                                                    | 120                                                                                                                                                                                                                                                                             | D 12/2                                                                                                           | Tonlamellen nicht regelmäßig<br>Cräulisk weiter die Kendersen in State of the State of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Profil 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1.2                                                                                                                                                    | Koordinaten:                                                                                                                                                                                                                                                                    | R:55 04 0                                                                                                        | 00 / H:14 44 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lithofazies                                                                                                                                             | Mächtigkeit                                                                                                                                                                                                                                                                     | Probe                                                                                                            | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02.3                                                                                                                                                    | 800                                                                                                                                                                                                                                                                             | D 44/40                                                                                                          | Schichtlicke<br>Chichter (Derdebin (Delevit (Kell) Westerlagerung, Schwarz – oraun, sein engstandig<br>Chichter (Derdebin (Delevit (Kell) Westerlagerung, Arm Otto 5, 2 am Oracistic Peleviti Kell, Oracistic tech sher such teilweise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.3                                                                                                                                                    | 460                                                                                                                                                                                                                                                                             | P 14/10                                                                                                          | Sittstein / Sandstein / Dolomit / Kaik Wechsellage; -> 1 cm Sitt; 0,5 - 3 cm Sandstein, Dolomit, Kaik. Sprudeit teilweise stark, aber auch teilweise gering. Im Gelände verwittert das Material gering bankig (in 2-5 cm Bänkchen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         | 380                                                                                                                                                                                                                                                                             | P 14/9                                                                                                           | Siltstein mit Tonlamellen alle 3-5 mm; stark glänzend. Ab und zu harte ca. 5 cm mächtige Lagen sehr feinkörnig, schwarz, sprudelt kurz und heftig -> evtl. Dolomit; horizontal laminiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2.3                                                                                                                                                    | 160<br>1040                                                                                                                                                                                                                                                                     | P 14/8                                                                                                           | Feinsandstein mit Tonlamellen alle 3 – 5 mm; dunkelgrau mit glänzenden Komponenten; stärker geschiefert; Horizontalschichtung<br>Siltstein – Feinsandstein (2-3mm) / Tonstein (1mm) Wechsellagerung dunkelgrau – braun. Nach unten weniger Feinsandstein: Dolomit Klast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.3                                                                                                                                                    | 660                                                                                                                                                                                                                                                                             | P 14/7                                                                                                           | eingeregelt mit 218/8 L → Strömungsrichtung= nach SSW; 2. Klast mit L= 190/16 → Strömungsrichtung S<br>Feinsandstein Lage mit allen 1-2 cm eine Tonlamelle (0.5 – 1mm): stark glänzend, hellgrau: Planare Schrägschichtung: mit L: 218/20: 220/5: 230/25:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         | 630                                                                                                                                                                                                                                                                             |                                                                                                                  | 243/8; 198/20 → Strömungsrichtung des Klastes wird bestätigt : Grob S bis SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.3                                                                                                                                                    | 150                                                                                                                                                                                                                                                                             | P 14/1                                                                                                           | Feinsandstein – Sittstein (1-2 mm)/ Tonstein (0,5 mm) Wechsellagerung; dunkeigrau – braun, Horizontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.5                                                                                                                                                    | 160                                                                                                                                                                                                                                                                             | P 14/2                                                                                                           | Feinsandstein – Siltstein (1-2 mm)/ Tonstein (0,5 mm) Wechsellagerung; dunkelgrau – braun; eingeschaltet ist eine dünne Vulkanitlage (5cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (12)<br>(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         | 40<br>170                                                                                                                                                                                                                                                                       | P 14/3                                                                                                           | Dunkelgrauer – schwarzer Mittelsandstein; leicht glanzend durch Komponenten, planare Schragschichtung<br>Tonstein – Siltstein (0,5 mm) / Feinsandstein (0,5 – 2 mm) Wechselfolge. Stark ausgequetscht, verwittert extrem plattig, stark geschiefert; ab und zu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         | 1170                                                                                                                                                                                                                                                                            |                                                                                                                  | Mittelsandstein Lagen in cm Stärke dazwischen, horizontal geschichtet<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellagerung im mm – Bereich; stark ausgequetscht. Dunkelgrau - grünlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (15)<br>(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.3<br>B2.1                                                                                                                                            | 180<br>500                                                                                                                                                                                                                                                                      | P 14/4<br>P 14/5                                                                                                 | Feinsandstein dazwischen bis 5 cm dicke hellgraue – rötliche Mittelsandstein; stark glänzend<br>Grobsandstein – Mittelsandstein stark guarzitisch; dicke Bank (10 cm) im Wechsel mit ausgeguetschten Tonstein – Siltstein Horizonten; stark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         | 250                                                                                                                                                                                                                                                                             | P 14/6                                                                                                           | glänzend; grau – rötlich. Eventuell calzitisch. Nach oben in MS übergehend<br>Dünne Mittelsandstein – Grobsandstein Lagen (1-2 cm) im Wechsel mit Tonhäutchen (1mm): stark tektonisch ausgeguetscht. Reagiert calzitisch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                  | Außerdem Feinsandstein Lagen. Alles stark miteinander verwurstelt. Stark mineralisiert, dunkelgrau – schwarz, eventuell Schrägschichtung und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Profil 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         | Koordinaten:                                                                                                                                                                                                                                                                    | R:55 05 0                                                                                                        | 1012011ale Scherking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lithofazies                                                                                                                                             | Mächtigkeit                                                                                                                                                                                                                                                                     | Probe                                                                                                            | Beschreibung<br>Schwarze Siltstein / Tonstein (Häutchen) Wechsellane: stark geschiefert → Ton ausgeguetscht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B2.1                                                                                                                                                    | 510                                                                                                                                                                                                                                                                             | P 15/7                                                                                                           | Mittelsandstein dunkelgrau; oben in 3-5 cm Bänken; nach unten hin in 0,5 – 1 cm dicken Bänken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.0                                                                                                                                                    | 2000                                                                                                                                                                                                                                                                            | D 45/0                                                                                                           | Schichlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02.3                                                                                                                                                    | 260                                                                                                                                                                                                                                                                             | P 15/6                                                                                                           | Feinsandstein – Slittstein ; sieht aus, als ob er nachtaglich ernitzt wurde: violett braunlich angelauten. Wechsellagerung mit Tonnautchen alle 1-2 mm.<br>Wahrscheinlich mehr wie 260, weil er auf dem Weg nach unten immer wieder auftritt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D2.3                                                                                                                                                    | 3000<br>1300                                                                                                                                                                                                                                                                    |                                                                                                                  | Schichtlücke<br>Im Hang kommen über die Mächtigkeit immer wieder plattige Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellagen; dunkelgrau – schwarz;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         | 140                                                                                                                                                                                                                                                                             |                                                                                                                  | wahrscheinlich durchgehende Schicht<br>Schwarzer Siltstein mit Tonhäutchen alle 3-4 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.2                                                                                                                                                    | 30                                                                                                                                                                                                                                                                              | P 15/4<br>P 15/5                                                                                                 | Grobsandstein mit extrem grober Basislage (P15/4); hellgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         | 40                                                                                                                                                                                                                                                                              | 1 10/0                                                                                                           | Feinsandstein dunkelgrau mit paralleler Schichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.2                                                                                                                                                    | 160                                                                                                                                                                                                                                                                             | P 15/3                                                                                                           | Sinstein (1 min) / Toristein (0,5 min) webseinoige, dunkeigrau<br>Mittelsandstein – Grobsandstein; lagig angeordnet im Wechsel mit Tonlamellen → alle 2-3 cm; hellgrau. Nach unten hin engständiger werdend (im 1 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         | 120                                                                                                                                                                                                                                                                             |                                                                                                                  | 0, 5 cm Breich Tonlamellen)<br>Siltstein – Feinsandstein (1mm) / Tonstein (0,5 mm) Wechsellagen; sehr stark laminiert; stark verfaltet; hellgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (14)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.3                                                                                                                                                    | 25<br>380                                                                                                                                                                                                                                                                       | P 15/2                                                                                                           | Feinsandstein hellgrau, glänzende Komponenten, planare Schrägschichtung<br>Feinsandstein (2-5 mm) / Tonstein (0.5 mm) Wechsellagerung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (16)<br>(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2 ?                                                                                                                                                    | 1500<br>330                                                                                                                                                                                                                                                                     |                                                                                                                  | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (16)<br>(17)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2 ?<br>B1.2                                                                                                                                            | 1500<br>330<br>160                                                                                                                                                                                                                                                              | P 15/1                                                                                                           | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (16)<br>(17)<br>(18)<br>Profil 16<br>Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2 ?<br>B1.2                                                                                                                                            | 1500<br>330<br>160<br>Koordinaten:<br>Mächtigkeit                                                                                                                                                                                                                               | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>000-55 11 250 / H:14 45 600-14 45 700<br>Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (16)<br>(17)<br>(18)<br>Profil 16<br>Schicht<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2 ?<br>B1.2<br>Lithofazies<br>D2.2                                                                                                                     | 1500<br>330<br>160<br>Koordinaten:<br>Mächtigkeit<br>400 + ?<br>110                                                                                                                                                                                                             | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>00-55 11 250 / H:14 45 600-14 45 700<br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (16)<br>(17)<br>(18)<br>Profil 16<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2 ?<br>B1.2<br>Lithofazies<br>D2.2                                                                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15                                                                                                                                                                                  | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlicke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>00-55 11 250 / H:14 45 600-14 45 700<br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (16)<br>(17)<br>(18)<br>Profil 16<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2 ?<br>B1.2<br>Lithofazies<br>D2.2                                                                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400                                                                                                                                                                    | P 15/1<br><u>R:55 09 0</u><br>Probe                                                                              | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>300-55 11 250 / H:14 45 600-14 45 700<br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schrichtlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4                                                                                                             | 1500<br>330<br>160<br><b>Koordinaten:</b><br>Mächtigkeit<br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350                                                                                                                                                             | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellage grau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>300-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>QZ - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2                                                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270                                                                                                                                       | P 15/1<br><u>R:55 09 0</u><br>Probe                                                                              | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Siltstein / Tonstein (0,5 mm) Wechsellage dunkelgrau<br>Siltstein / Tonstein (0,5 mm) Wechsellage dunkelgrau<br>Siltstein / Tonstein Wechsellage dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3                                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>270                                                                                                                         | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage dunkelgrau<br>Feinsandstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein - Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau ; sehr engständig, Horizontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3                                                                             | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>200                                                                                                                         | P 15/1<br>R:55 09 0<br>Probe<br>P 16/8<br>P 16/9                                                                 | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Oz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein mit Tonlamellen alle 0,5 – 1cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau ; sehr engständig. Horizontalschichtung<br>Feinsandstein – Mittelsandstein in 0,5 – 1cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2                                                                             | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10                                                                                                            | P 15/1<br>R:55 09 0<br>Probe<br>P 16/8<br>P 16/9                                                                 | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Q2 - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein – Feinsandstein mit Toniamellen alle 0,5 – 1cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Mittelsandstein in 0,5 – 1cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3                                                                             | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>200<br>350<br>350<br>350<br>350<br>350<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                             | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9                                                   | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Siltstein - Tonstein Wechsellage dunkelgrau<br>Feinsandstein mit Tonlamellen alle 0,5 – 1cm Bänkchen; nach unten hin gröber werdend (planare)<br>Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Qz<br>Feinsandstein (5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(17)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>400 + 7<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>350<br>350<br>350<br>2200<br>260<br>10<br>10<br>10<br>10                                                                                          | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9                                                   | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>300-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Q2 - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schicktlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Siltstein – Feinsandstein mit Tonlamellen alle 0,5 – 1cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein in 0,5 – 1cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2                                                                     | 1500<br>330<br>160<br><b>Machtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                         | P 15/1<br>R:55 09 0<br>Probe<br>P 16/8<br>P 16/9                                                                 | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein mit Tonlamellen alle 0,5 – 1cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Qz<br>Feinsandstein (s.o)<br>Tonstein (s.o)<br>Qz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(15)<br>(16)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>30<br>30<br>20                                                      | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9                                                   | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage, dunkelgrau; sehr engständig, Horizontalschichtung<br>Feinsandstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein / Tonstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellager, dunkelgrau - schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Za<br>Feinsandstein (s.o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(23)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>200<br>360<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>10                             | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Stiltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellager grau - beige<br>Tonstein Schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellager, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein mit Toniamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein in 0,5 – 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm ⊘<br>Tonstein schwarz<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(17)<br>(18)<br>(17)<br>(18)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2                                                                             | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>200<br>350<br>1300<br>270<br>560<br>200<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9                                                   | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Q2 - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellager, dunkelgrau; sehr engständig, Horizontalschichtung<br>Feinsandstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein in 0,5 – 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein Schwarz<br>Q2<br>Feinsandstein (s.o)<br>Tonstein (s.o)<br>Q2<br>Feinsandstein (s.o)<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(15)<br>(16)<br>(17)<br>(12)<br>(20)<br>(21)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(25)<br>(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2?<br>B1.2<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2                                                                                             | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>200<br>350<br>1300<br>270<br>560<br>200<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>50<br>50<br>5                         | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9                                                   | Schichtlicke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 600-14 45 700</b><br>Beschreibung<br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Siltstein / Tonstein Wechsellage dunkelgrau<br>Feinsandstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein i (1 mm) / Tonstein (0,5 mm) Wechsellager, dunkelgrau; sehr engständig, Horizontalschichtung<br>Feinsandstein – Mittelsandstein in 0,5 – 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Tonstein<br>Feinsandstein (s.o)<br>Qz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(16)<br>(17)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2                                                                      | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>200<br>350<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>50<br>5<br>5<br>100<br>10                   | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, vervittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>300-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein / Tonstein Bereine (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau; sehr engständig, Horizontalschichtung<br>Feinsandstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein – Mittelsandstein in 0,5 – 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)<br>Qz<br>Feinsandstein (s.o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(17)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2?<br>B1.2<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2                                                                                     | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>400 + ?<br>110<br>400<br>15<br>700<br>200<br>350<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                         | P 15/1<br>R:55 09 0<br>Probe                                                                                     | Schichtlücke<br>Sittstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>300-55 11 250 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Cz - Band<br>Siltstein (1mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlücke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein – Mittelsandstein in 0,5 – 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Q<br>Feinsandstein (s.o)<br>Tonstein<br>Qz<br>Feinsandstein (s.o)<br>Cz<br>Feinsandstein (s.o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2?<br>B1.2<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2                                                                                             | 1500<br>330<br>160<br><b>Machtigkei</b><br>400 + 7<br>110<br>400 + 15<br>700<br>400<br>200<br>350<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                           | P 15/1<br>R:55 09 0<br>Probe<br>P 16/8<br>P 16/9<br>P 16/9                                                       | Schichtlicke<br>Sittstein – Feinsandstein / Wechsellagerung: dunkelgrau, verwittert beige - braun<br>Grobsandstein heilgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>200-55 11 250 / H:14 45 600-14 45 700<br>Beschreibung<br>Schwarzer Tonstein<br>Schwarzer Tonstein<br>Sittstein (Tmm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Vechsellage dunkelgrau<br>Feinsandstein mit Tonlamelien alle 0,5 - 1 cm; hellgrau - rötlich, evtl. Schrägschichtung (planar)<br>Sittstein – Feinsandstein (0,5 mm) Wechsellagen, dunkelgrau; sehr engständig, Horizontalschichtung<br>Feinsandstein – Mittelsandstein in 0,5 - 1 cm; hellgrau - rötlich, evtl. Schrägschichtung (planar)<br>Sittstein – Teinsandstein in 0,5 - 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Sittstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm ∅<br>Tonstein Schwarz<br>Qz<br>Feinsandstein (s.o)<br>Tonstein<br>Qz<br>Feinsandstein (s.o)<br>Tonstein<br>Qz<br>Feinsandstein (s.o)<br>Tonstein<br>Qz<br>Feinsandstein (s.o)<br>Tonstein<br>Qz<br>Feinsandstein (s.o)<br>Z<br>Feinsandstein (s.o)<br>Z<br>Feinsandstein (s.o)<br>Z<br>Feinsandstein (s.o)<br>Dunkelgrauer Siltstein mit Tonhäutchen alle 2 mm<br>Feinsandstein mit Tonhäutchen alle 2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2 ?<br>B1.2<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.2                                                                                    | 1500<br>330<br>160<br><b>Machtigkeit</b><br>400 + ?<br>110<br>400 + ?<br>110<br>400<br>200<br>350<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                           | P 15/1<br>R:55 09 0<br>Probe<br>P 16/8<br>P 16/9<br>P 16/7                                                       | Schichtlicke<br>Sitstein – Feinsandstein / Wechsellagerung: dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 800-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Sittstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwitter Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Sittstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Sittstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Sittstein / Tonstein (0,5 mm) Wechsellage, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein mit Tonlamellen alle 0,5 – 1 cm; hellgrau-rötlich, evtl. Schrägschichtung (planar)<br>Sittstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein Schwarz<br>Qz<br>Feinsandstein (5.0)<br>Tonstein<br>Gz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein mit Tonhäutchen alle 2 mm<br>Feinsandstein - Mittelsandstein in Bähre 2.3 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2 ?<br>B1.2<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.2                                                                                    | 1500<br>330<br>160<br><b>Machtigkeit</b><br>400 + ?<br>110<br>400 + ?<br>110<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                             | P 15/1<br>R:55 09 0<br>Probe<br>P 16/8<br>P 16/9<br>P 16/7                                                       | Schichtlicke<br>Sittstein - Feinsandstein / Wechsellagerung: dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>00-55 11 250 / H:14 45 800-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Sittstein - Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Notein Wechsellage dunkelgrau<br>Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellage, dunkelgrau : sehr engständig, Horizontalschichtung<br>Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellagen, dunkelgrau : sehr engständig, Horizontalschichtung<br>Feinsandstein - Sittstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein Schwarz<br>Qz<br>Feinsandstein (5.0)<br>Tonstein<br>Qz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein (5.0)<br>Qz<br>Feinsandstein (5.0)<br>Dunkelgrauer Sittstein mit Tonhäutchen alle 2 mm<br>Feinsandstein (5.0)<br>Dunkelgrauer Sittstein ganz eng geschieftet, teilweise Minerale mobilisient, extrem dünn blättig.<br>Statk verbackener Schicht rölich, woldet angelauten; Qz – reich, teilweise mobilisient, mit Ton dazwischen gequetscht<br>Sittstein (- 0, 5 mm) Vercheselagerung, noch stark tektonisch beansprucht, dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(3)<br>(14)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(22)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(22)<br>(23)<br>(31)<br>(32)<br>(33)<br>(35)<br>(36)<br>(37)<br>(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.2                                                                      | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                        | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7                                         | Schichtlicke<br>Siltstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwitter beige - braun<br>Grobsandstein heligrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>Beschreibung</b><br>Schwarzer Siltstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Gz - Band<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Siltstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Siltstein / Tonstein (0,5 mm) Wechsellage, dunkelgrau<br>Feinsandstein int Tonlamellane alle 0,5 - 1 cm: hellgrau-rötlich, evtl. Schrägschichtung (planar)<br>Siltstein – Feinsandstein in 0,5 - 1 cm Bänkchen; nach unten hin gröber werdend (planare Schrägschichtung)<br>Feinsandstein – Siltstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Sitsein (1 mm) Tonstein (blachen alle 2 mm<br>Feinsandstein (s.o)<br>Tonstein<br>Sitsein (1 mm) Tonstein (blachen alle 2 mm<br>Feinsandstein (s.o)<br>Tonstein<br>Sitsein (1 mm) Tonstein (blachen alle 2 mm<br>Feinsandstein (s.o)<br>Tonstein<br>Feinsandstein (s.o)<br>Tonstein<br>Sitsein (1 mm) Tonstein (s.o)<br>Tonstein<br>Feinsandstein (s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(12)<br>(22)<br>(23)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2                                                              | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                           | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/7<br>P 16/6                     | Schichtlicke<br>Sittstein – Feinsandstein / Wechsellagerung dunkelgrau, verwitter beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>Beschreibung</b><br>Schwarzer Sittstein – Feinsandstein gefallet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Gz - Band<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Sittstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Sittstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Sittstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein Schwarz<br>Sittstein / Tonstein (0,5 mm) Wechsellage dunkelgrau<br>Feinsandstein in Tonamellen alle 0,5 – Tom; helgrau - föllich, evtl. Schrägschichtung (planar)<br>Sittstein – Stinstein / Tonstein (0,5 mm) Wechsellagen, dunkelgrau , sehr engständig, Horizontalschichtung<br>Feinsandstein – Sittstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Q<br>Feinsandstein (s.o)<br>Tonstein (s.o)<br>Q<br>Z<br>Feinsandstein (s.o)<br>Tonstein<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Q2<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)<br>Tonstein<br>Gz<br>Feinsandstein (s.o)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(16)<br>(17)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(16)<br>(17)<br>(12)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(16)<br>(17)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2?<br>B1.2<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C                                                        | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>200<br>350<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                      | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/6                               | Schichtlicke<br>Sittetin – Feinsandstein / Wechsellagerung dunkelgrau, verwitter beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>Bochreibung</b><br>Schwarzer Sittetin – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Sittetin (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Qz - Band<br>Sittetin (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Sittetin (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Sittetin (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Sittetin (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Sittetin / Tonstein (0,5 mm) Wechsellage grau - beige<br>Sittetin / Tonstein Wechsellage dunkelgrau<br>Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellager, dunkelgrau - schwarz<br>Sittetin / Tonstein Wechsellage dunkelgrau<br>Feinsandstein mit Toniamellen alle 0,5 – form; hellgrau- rötlich, evtl. Schrägschichtung (planar)<br>Sittetin – Feinsandstein (1 mm) / Tonstein (0,5 mm) Wechsellageru, dunkelgrau - schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein mit Toniamellen alle 0,5 – form; hellgrau-<br>Sittetin – Sittetin / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Qz<br>Feinsandstein (s.o)<br>Tonstein<br>Gg<br>Feinsandstein (s.o)<br>Tonstein (s.o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C                                        | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>400 + ?<br>110<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                           | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/6<br>P 16/6<br>P 16/5           | Schichtlicke<br>Sittstein – Feinsandstein / Wechsellagerung; dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>2005<br>2005<br>2005<br>2005<br>2005<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>200   |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(13)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(13)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(12)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13 | C2.?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>B1.1<br>C2.1<br>(vollständige<br>Bouma)  | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>400 + 7<br>110<br>400<br>15<br>700<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                              | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/6<br>P 16/5<br>P 16/5           | Schichtlicke<br>Sittein – Feinsandstein / Wechsellagerun; dunkelgrau, verwitert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br>2005<br>2005<br>2005<br>2005<br>2005<br>2007<br>2007<br>2017<br>2018<br>2018<br>2018<br>2018<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2 |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B1.1<br>C2.1<br>(vollständige<br>Bouma)   | 1500<br>330<br>160<br><b>Koordinaten:</b><br><b>Machtigkeit</b><br>400 + 7<br>110<br>400<br>15<br>700<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                           | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/6<br>P 16/5<br>P 16/4           | Schichtlicke Wechellagerung: dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>3005 11 250 / H14 156 00.414 57 00</b><br><b>Beschreibung</b><br>Schwarzer Steinen – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Stitten (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Steinen – Keinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Steinen – Schwanzer Steinen – Schwanzer Steinen – Schwanzer Steinen – Schwanzer Steinen – Schwarzer Steinen – Schwarzer Steinen – Schwarzer Steinen – Schwanzer Steinen – Schwarzer Steinen – Schwarzer Steinen – Schwarzer Steinen – Schwarzer – Steinen – Schwarzer – Stittein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Stittein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Stittein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Stittein / Tonstein Wechsellage dunkelgrau<br>Feinsandstein – Stittein / Tonstein Wechsellager num Wechsellagen, dunkelgrau - schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Tonstein schwarz<br>Q<br>Z<br>Feinsandstein (s.o.)<br>Tonstein (s.o.)<br>Static vertackere Schicht röllich, violett angelaufen, Qa-reich, teilveise keinschichtearputch, daavischen geguetscht<br>Stitten (- Tonm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(13)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(13)<br>(14)<br>(12)<br>(22)<br>(22)<br>(23)<br>(24)<br>(23)<br>(33)<br>(33)<br>(33)<br>(33)<br>(33)<br>(33)<br>(33                                                                                | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B1.1<br>C2.1<br>(vollständige<br>Bourna) | 1500<br>330<br>160<br><b>Machtigkei</b><br>400 + 7<br>110<br>400<br>15<br>700<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                   | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/6<br>P 16/5<br>P 16/4           | Schichtlicke Wechsellagerung: dunkelgrau, verwittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>300-55 11 250 / H114 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Stinstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Stitstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Stitstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Stitstein (1 mm) / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Stitstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Stitstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Stitstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Schwarzer Stitstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Stitstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Stitstein / Tonstein (0,5 mm) Wechsellage grau - beige<br>Tonstein schwarz<br>Q<br>Peinsandstein - Stitstein / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau - schwarz mit Quarzmobilisaten in 2-3 cm Ø<br>Feinsandstein (s.o.)<br>Tonstein (s.o.)<br>Qz<br>Peinsandstein (s.o.)<br>Tonstein<br>Qz<br>Peinsandstein (s.o.)<br>Tonstein<br>Qz<br>Peinsandstein (s.o.)<br>Tonstein<br>Q2<br>Peinsandstein (s.o.)<br>Tonstein<br>Q3<br>Peinsandstein (s.o.)<br>Tonstein<br>Q4<br>Peinsandstein (s.o.)<br>Tonstein<br>Q5<br>Peinsandstein (s.o.)<br>Tonstein<br>Q2<br>Peinsandstein (s.o.)<br>Tonstein<br>Q2<br>Peinsandstein (s.o.)<br>Tonstein<br>Q3<br>Peinsandstein (s.o.)<br>Tonstein<br>Q4<br>Peinsandstein (s.o.)<br>Tonstein<br>Q5<br>Peinsandstein (s.o.)<br>Tonstein<br>Q6<br>Peinsandstein (s.o.)<br>Tonstein<br>Q6<br>Peinsandstein (s.o.)<br>Tonstein<br>Q6<br>Peinsandstein (s.o.)<br>Tonstein (b7, com) Wechsellagerung, neb takk teknolsch Deas                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (16)<br>(17)<br>(18)<br><b>Profil 16</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2 ?<br>B1.2<br>Lithofazies<br>D2.2<br>C2.4<br>D2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B1.1<br>C2.1<br>(vollständige<br>Bouma)          | 1500<br>330<br>160<br><b>Machigkei</b><br>400 + 2<br>110<br>400 + 2<br>110<br>400<br>200<br>350<br>1300<br>270<br>560<br>200<br>260<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                               | P 15/1<br><b>R:55 09 0</b><br><b>Probe</b><br>P 16/8<br>P 16/9<br>P 16/7<br>P 16/7<br>P 16/6<br>P 16/5<br>P 16/4 | Schichtlicke Wetherlagerung; dunkelgrau, vervittert beige - braun<br>Grobsandstein hellgrau mit Lyditen, rote Verwitterungsränder, Tonklasten, verdreht, eventuell Ripp up clasts<br><b>305-511 280 / H:14 45 600-14 45 700</b><br><b>Beschreibung</b><br>Schwarzer Stinstein – Feinsandstein gefaltet, glänzend an der Oberfläche<br>Schwarzer Tonstein<br>Sitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Stitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Stitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Schwarzer Stitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Stitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Totesen Strawarz<br>Bitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Schichtlicke<br>Stitteten (1 mm) / Tonstein (0.5 mm) Wechsellage grau - beige<br>Totesen Strawarz<br>Bitteten – Sitteten (1 mm) / Tonstein (0.5 mm) Wechsellagen, dunkelgrau ; sehr engständig, Horizontalschichtung<br>Feinsandstein – Sitteten / Tonstein (0.5 mm) Wechsellagen, dunkelgrau - schwarz mit Quarzmobilisaten in 2-3 cm (2<br>Tonstein Schwarz<br>Z<br>Feinsandstein – Sitteten / Tonstein Wechsellagerung im mm- Bereich; dunkelgrau – schwarz mit Quarzmobilisaten in 2-3 cm (2<br>Tonstein Schwarz<br>Z<br>Feinsandstein (6.0)<br>Tonstein<br>Q2<br>Feinsandstein (6.0)<br>C2<br>Feinsandstein (6.0)<br>C3<br>Grossfein<br>Grossfein (6.0)<br>Dunkelgrauer Sitteten mit Tonhäutchen alle 2 mm<br>Feinsandstein (6.0)<br>C4<br>Grossfein (6.0)<br>Dunkelgrauer Sitteten mit Tonhäutchen alle 2 mm<br>Feinsandstein (6.0)<br>C5<br>Grossfein<br>Grossfein (6.0)<br>Dunkelgrauer Sitteten mit Tonhäutchen alle 2 mm<br>Feinsandstein (6.0)<br>C4<br>Grossfein (6.0)<br>Dunkelgrauer Sitteten (6.0)<br>C5<br>Grossfein (6.0)<br>Dunkelgrauer Sitteten (6.0)<br>C7<br>Grossfein (6.0)<br>C7<br>Grossfein (6.0)<br>C7<br>Grossfein (6.0)<br>C7<br>Grossfein (6.0)<br>C7<br>Grossfein (6.0)<br>C7<br>Grossfein (6.0)                                                                                                                                                                                                                                                                                                                                                                                      |

| (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.3                                                                                                                                                                                                                                                    | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 16/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wechsellagerung Feinsandstein – Mittelsandstein / Siltstein im mm-Bereich; grau – rötlich<br>Siltstein schwarz mit dänzenden Oberflächen, teilweise tonig, schwarz werdend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D1.1                                                                                                                                                                                                                                                    | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seinsen schwarz im glanzenden Obernachen, einweise könig, schwarz werdend<br>Feinsandstein – Siltstein (2 mm) sehr dünnbankig, hellgrau verwitternd, schwarz – dunkelgrau frisch. Dazwischen Tonhäutchen. Nach oben hin mehr<br>Silt + schwärzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (54)<br>(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B2.1                                                                                                                                                                                                                                                    | 70<br>420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 16/2<br>P 16/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grobsandstein – Feinkies mit Qz – Mobilisaten<br>Feinsandstein – Mittelsandstein glänzend; braun - rötlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Profil 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:55 11 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250 / H:14 50 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies                                                                                                                                                                                                                                             | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.0                                                                                                                                                                                                                                                    | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 17/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Siltstein / Tonstein Wechsellagerung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02.3                                                                                                                                                                                                                                                    | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F 17/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Siltstein (1 mm) / Tonstein (0,5) Wechsellagerung beige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D2.2                                                                                                                                                                                                                                                    | 300<br>1400 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | schichtlucke<br>Siltstein (1 mm) / Tonstein ( 0,5 mm) Wechsellagerung beige; frisch = schwarz mit einer sehr dünnen Vulkanitlage (2 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Profil 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:55 13 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250-55 16 000 / H:14 54 250-14 54 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies                                                                                                                                                                                                                                             | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Beschreibung<br>Siltstein – Tonstein (schwarz) / Feinsandstein (rötlich braun) Wechsellagerung im om Bereich (ieweils 2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02.0                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silistein schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2.1                                                                                                                                                                                                                                                    | 100<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 18/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feinsandstein – Siltstein dunkeigrau – schwarz<br>Dunkelorauer Mittelsandstein : venigi a diazende Komponenten: oben in 20 – 30 cm Paketen: nach unten in 1-2 cm Bänkchen übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.4                                                                                                                                                                                                                                                    | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 19/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sittstein schwarz, horizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02.2                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wie (25) nur winterstandstein – Grousandstein, neigrau - durkeigrau<br>Wie (25), nur winterstandstein – Grousandstein, neigrau - durkeigrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (8)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.4                                                                                                                                                                                                                                                    | 120<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 18/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hellgrauer – bräunlicher Siltstein<br>Hellgrauer – dunkelgrau / rötlicher Feinsandstein – Mittelsandstein oben dickbankig ca. 20 cm; nach unten dünnbankiger 2-3 cm; mit plattig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | glänzenden, gradiert, Mineralblättchen<br>Schwarzer Siltstein – Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.4                                                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 18/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Schwarz – grauer Feinsandstein in Bänken von 3-4 cm, normal gradiert (nach oben in Si übergehend)<br>Schwarzer Siltetein – Tonctein: nach unten siltiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.3                                                                                                                                                                                                                                                    | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 18/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Siltstein – Tonstein (1 mm) / Feinsandstein (1,5mm) (horizontal geschichtet) Wechsellagerung; schwarz glänzend; nach unten werden Lagen dicker +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.4                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 18/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | grober; 1-2 cm jede<br>Grobsandstein hellgrau; Komponenten bis 2 mm, mit Ripp up clasts an der Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (15)<br>(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2.1 -                                                                                                                                                                                                                                                  | 1220<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 18/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Siltstein – Tonstein stark geschiefert; teilweise glänzende Oberfläche<br>Grobsandstein dunkelgrau: Komponenten bis 2 mm: wird nach unten hin zum Feinsandstein, normal gradiert mit Ripp up clasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.3                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 18/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mittelsandstein – Grobsandstein dunkelgrau mit glänzenden Komponenten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                         | 190<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 18/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Siltstein – Tonstein schwarz<br>Mittelsandstein orau im Bänken a 10 cm und kleiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 10/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Siltstein – Tonstein schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (22)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                         | 190<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 18/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mittelsandstein – Grobsandstein heligrau – rotlich; nach unten hin grober werdend<br>Schwarzer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 18/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Feinsandstein – Mittelsandstein; dunkelgrau;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Turiseen – onseen schwarz, sear geschieren<br>Siltstein / Tonstein Wechsellagen jeweils 1 mm; stark geschiefert; dunkelgrau; dazwischen mehrere dunkelgraue 2 cm starke Mittelsandsteine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2 1                                                                                                                                                                                                                                                    | 380<br>270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 18/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Feinsandstein dünnbankig dunkelgrau – rot<br>Grobsandstein – Eeinkies hellnrau, viele Lydie massin gradiert (komplette Rouma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02.1                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 18/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ubergangszone Grobsandstein Parallelmamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (30)<br>(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                         | 400<br>280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 18/4<br>P 18/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mittelsandstein – Grobsandstein heligrau – rotlich; mit vielen weißen Mineralen; Juz-Mobilisaten; dunnbankig (2 – 4 cm)<br>Feinsandstein heligrau – rötlich: dicke Bänke bis 70 cm: nach unten dünnbankiger. planare Schrägschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>P</b> 2.4                                                                                                                                                                                                                                            | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 10/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sittstein (1mm) / Feinsandstein (1mm) Wechsellagerung; verwittert stark plattig; hellgrau – dunkel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D2.1                                                                                                                                                                                                                                                    | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Millelsandstein neingrau – roundt, stark tekonnisien, under Banke a 50 cm, nach unter ourinbankiger r-2 cm<br>Schichtlücke mit viel Vulkantischult im Hang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (35)<br>(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B2.1<br>D1 1                                                                                                                                                                                                                                            | 200 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 18/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mittelsandstein ; hellgrau – rötlich, grobbankig, ca. 10 – 15 cm Ø, leicht schrägeschichtet, aber auch horizontal Schichtung an der Basis<br>Schwarze Tonsteine, leicht geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B2.1                                                                                                                                                                                                                                                    | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein – Grobsandstein: dünnbankig ca. 1-3 cm Ø, hellgrau, in Wechsellagerung mit Silthäutchen, ca. alle 15 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Profil 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:55 18 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-55 18 250 / H:14 52 500-14 51 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Profil 19<br>Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.1                                                                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R:55 18 0<br>Probe<br>P 19/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | io0-55 18 250 / H:14 52 500-14 51 000<br>Beschreibung<br>Feinsandstein dünnbankig (2 –3 cm) hellgrau – rötlich; frisch dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lithofazies<br>C2.1                                                                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000-55 18 250 / H:14 52 500-14 51 000<br>Beschreibung<br>Feinsandstein dünnbankig (2 –3 cm) hellgrau – rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stark openantere Grobsandstein hellgrau/tötlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>C2.1                                                                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000-55 18 250 / H:14 52 500-14 51 000<br>Beschreibung<br>Feinsandstein dünnbankig (2 -3 cm) hellgrau – rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithofazies<br>C2.1<br>C2.3                                                                                                                                                                                                                             | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>500<br>1220<br>490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000-55 18 250 / H:14 52 500-14 51 000<br>Beschreibung<br>Feinsandstein dünnbankig (2 –3 cm) hellgrau – rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke<br>Siltstein – Tonstein schwarz<br>Feinsandstein / Siltstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithofazies<br>C2.1<br>C2.3                                                                                                                                                                                                                             | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>500<br>1220<br>490<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/8<br>P 19/6<br>P 19/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000-55 18 250 / H:14 52 500-14 51 000 Beschreibung Feinsandstein kellgrau, viele glänzende Komponenten Stark gebankter Grobsandstein , hellgrau/rötlich Schichtlücke Siltstein – Tonstein schwarz Feinsandstein / Siltstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau Mittelsandstein hellgrau – rötlich Nach unten gebt er im Mittelsandstein in (P 19/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithofazies<br>C2.1<br>C2.3<br>C2.2                                                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>500<br>1220<br>490<br>320<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/8<br>P 19/6<br>P 19/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000-55 18 250 / H:14 52 500-14 51 000 Beschreibung Feinsandstein kellgrau, viele glänzende Komponenten Stark gebankter Grobsandstein , hellgrau/rötlich Schichtlücke Siltstein – Tonstein schwarz Feinsandstein / Siltstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau Mittelsandstein hellgrau – rötlich Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7) Feinsandstein – Siltstein Wechsellage mit Qz –mobilisaten an Untergrenze von (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1                                                                                                                                                                                                             | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/8<br>P 19/6<br>P 19/7<br>P 19/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000-55 18 250 / H:14 52 500-14 51 000 Beschreibung Feinsandstein hellgrau, viele glänzende Komponenten Stark gebankter Grobsandstein , hellgrau/rötlich Schichtlücke Siltstein – Tonstein schwarz Feinsandstein hellgrau – rötlich Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7) Feinsandstein – Siltstein Wechsellage mit Qz –mobilisaten an Untergrenze von (6) Feinsandstein – Mittelsandstein; hellbraun – rot Schwarzer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1                                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>1220<br>490<br>320<br>250<br>90<br>140<br>25<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/8<br>P 19/6<br>P 19/7<br>P 19/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000-55 18 250 / H:14 52 500-14 51 000         Beschreibung         Feinsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich         Schreibung         Schwärzer         Feinsandstein / Siltstein Tonstein schwarz         Feinsandstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellage mit Qz –mobilisaten an Untergrenze von (6)         Feinsandstein – Mittelsandstein; hellbraun – rot         Schwarzer Tonstein         Mittelsandstein dimentiren Lingen on 1 mm bereich)         Mittelsandstein dimentiren Lingen on 1 mm bereich         Schwarzer Tonstein         Schwarzer Tonstein         Schwarzer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1                                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>1220<br>490<br>320<br>250<br>90<br>140<br>25<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/8<br>P 19/6<br>P 19/7<br>P 19/5<br>?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000-55 18 250 / H:14 52 500-14 51 000         Beschreibung         Feinsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich         Schreibung         Schwarz         Feinsandstein Vechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellage mit Oz –mobilisaten an Untergrenze von (6)         Feinsandstein – Mittelsandstein; hellbrau – rot         Schwarzer Tonstein         Mittelsandstein dunkelgrau (Rinnenstruktur)         Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schrichtlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3                                                                                                                                                                                     | Koordinaten:<br>Mächtigkeit<br>450<br>50<br>180<br>500<br>1220<br>490<br>320<br>250<br>90<br>140<br>25<br>230<br>570<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/6<br>P 19/6<br>P 19/7<br>P 19/5<br>?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000-55 18 250 / H:14 52 500-14 51 000       Beschreibung         Feinsandstein Algrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau, rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke         Siltstein – Tonstein schwarz         Feinsandstein hellgrau, rötlich<br>Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellage mit 02 -mobilisaten an Untergrenze von (6)         Feinsandstein – Mittelsandstein; hellbraun – rot<br>Schwarzer Tonstein<br>Mittelsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot<br>Schichtlücke         Schwarzer Tonstein / Siltstein beige; nach oben in Ton übergehend<br>Feinsandstein dünnbankigen / Siltstein beige; nach oben in Ton übergehend<br>Feinsandstein dünnbankigen / Siltstein beige; nach oben in Ton übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>R1.0                                                                                                                                                                             | Koordinaten:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>R:55 18 0</b><br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/6<br>P 19/7<br>P 19/5<br>?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Witelsandstein Auflanzen versionen einen sollter einen eine                                                                                                     |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2                                                                                                                                                                                     | Koordinaten:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/6<br>P 19/7<br>P 19/5<br>?<br>P 19/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D00-55 18 250 / H:14 52 500-14 51 000       Beschreibung         Feinsandstein Alignau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau, rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke         Siltstein – Tonstein schwarz         Feinsandstein hellgrau, rötlich<br>Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellager mit 02 – mobilisaten an Untergrenze von (6)         Feinsandstein – Mittelsandstein i, hellbraun – rot<br>Schwarzer Tonstein         Mittelsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot<br>Schwarzer Tonstein / Siltstein beige; nach oben in Ton übergehend<br>Feinsandstein dünnpabankt         Schwarzer Siltstein – Tonstein<br>Dunkelgrauer Mittelsandstein mit glänzenden Komponenten<br>Schichtlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3                                                                                                                                                                     | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/8<br>P 19/7<br>P 19/5<br>?<br>P 19/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Witelsandstein Australing und Status and Statu                                                                                                     |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(20)<br>(21)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.4 (C2.4)                                                                                                                                                              | Koordinaten:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:55180<br>Probe<br>P 19/9<br>P 19/9<br>P 19/0<br>P 19/6<br>P 19/6<br>P 19/7<br>P 19/5<br>?<br>P 19/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D00-55 18 250 / H:14 22 500-14 51 000       Beschreibung         Feinsandstein Alignau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau, rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke         Stillstein – Tonstein schwarz         Feinsandstein hellgrau, rötlich<br>Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellager mit 02 – mobilisaten an Untergrenze von (6)         Feinsandstein – Nittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Nittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellage mit 02 – mobilisaten an Untergrenze von (6)         Feinsandstein – Nittelsandsteini, hellbraun – rot         Schwarzer Tonstein         Mittelsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schwarzer Tonstein / Siltstein beige; nach oben in Ton übergehend         Feinsandstein dünnbankigen Lagen at 1 mm; hellbraun – rot         Schwarzer Siltstein – Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schichtlücke         Feinsandstein dünnapaktig (0,5 – 1,5 cm); hellgrau, nach unten in Siltstein übergehend         Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Siltstein übergehend         Feinsandstein dundenstein keller weine (0,0 cm); hellgrau, nach unten in Siltstein übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)                                                                                                                                                              | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100           560                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:55180<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/6<br>P 19/7<br>P 19/5<br>?<br>P 19/4<br>P 19/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D00-55 18 250 / H:14 52 500-14 51 000       Beschreibung         Feinsandstein Allinzus, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke         Stillstein – Tonstein schwarz         Feinsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein , hellgrau/rötlich<br>Schichtlücke         Stillstein – Tonstein schwarz         Feinsandstein hellgrau, viele glänzende Komponenten<br>Stark gebankter Grobsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellage mit 02 – mobilisaten an Untergrenze von (6)         Feinsandstein – Siltstein Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Mittelsandstein in einnenstruktur)         Feinsandstein – Mittelsandstein in blinnenstruktur)         Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot<br>Schichtlücke         Schwarzer Tonstein         Mittelsandstein dünngebankt         Schwarzer Siltstein – Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Komponenten<br>Schichtlücke         Feinsandstein dünngebankt         Schwarzer Siltstein – Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Siltstein übergehend         Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Siltstein übergehend         Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nacu unten in Siltstein übergehend <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4                                                                                                                                              | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100           560           250           4200                                                                                                                                                                                                                                                                                                                                                                                                                | R:55180<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/6<br>P 19/7<br>P 19/5<br>?<br>P 19/4<br>P 19/4<br>P 19/3<br>P 19/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D00-55 18 250 / H:14 52 500-14 51 000       Beschreibung         Feinsandstein Allmane Kig (2 – 3 cm) hellgrau – rötlich; frisch dunkelgrau       Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich       Schichtlücke         Stiltstein – Tonstein schwarz       Feinsandstein hellgrau – rötlich         Feinsandstein hellgrau – rötlich       mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein hellgrau – rötlich       Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellager mit 02 – mobilisaten an Untergrenze von (6)       Feinsandstein – Siltstein Mittelsandstein; hellbraun – rot         Schwarzer Tonstein       Mittelsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schverzer Tonstein       Siltstein Deige; nach oben in Ton übergehend         Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot       Schverzer Tonstein / Siltstein beige; nach oben in Ton übergehend         Feinsandstein düngebankt       Schwarzer Siltstein – Tonstein       Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schichtlücke       Feinsandstein mit glänzenden Komponenten       Schichtlücke         Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Siltstein übergehend       Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Siltstein übergehend         Schichtlücke       Taktonisch stark verwursteltes Material; ähnlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4                                                                                                                                              | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100           560           250           4200                                                                                                                                                                                                                                                                                                                                                                                                                | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/6<br>P 19/6<br>P 19/7<br>P 19/7<br>P 19/5<br>?<br>P 19/4<br>P 19/4<br>P 19/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D00-55 18 250 / H:14 52 500-14 51 000       Beschreibung         Feinsandstein Allmane Kig (2 – 3 cm) hellgrau – rötlich; frisch dunkelgrau       Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich       Schichtlücke         Stiltstein – Tonstein schwarz       Feinsandstein hellgrau – rötlich         Wittelsandstein hellgrau – rötlich       Name Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein hellgrau – rötlich       Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)         Feinsandstein – Siltstein Wechsellager mit 02 – mobilisaten an Untergrenze von (6)       Feinsandstein – Mittelsandstein; hellbraun – rot         Schwarzer Tonstein       Mittelsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schvarzer Tonstein       Siltstein begier; nach oben in Ton übergehend         Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot       Schvarzer Tonstein / Siltstein begie; nach oben in Ton übergehend         Feinsandstein düngebankt       Schwarzer Siltstein – Tonstein       Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schichtlücke       Feinsandstein hellgrau mit glänzenden Komponenten       Schichtlücke         Feinsandstein in glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Siltstein übergehend       Feinsandstein fellgrau, nach unten in Siltstein übergehend         Schichtlücke       Teinsnich stark verwursteltes Material; ähnlich wie (2), mit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(22)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4                                                                                                                                              | Koordinaten:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100           560           250           4200                                                                                                                                                                                                                                                                                                                                                                                                                | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/6<br>P 19/7<br>P 19/7<br>P 19/7<br>P 19/4<br>P 19/4<br>P 19/3<br>P 19/2<br>R:55 19 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D00-55 18 250 / H:14 52 500-14 51 000       Beschreibung         Feinsandstein dünnbankig (2 –3 cm) hellgrau – rötlich; frisch dunkelgrau       Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich       Schichtlücke         Schichtlücke       Teinsandstein hellgrau – rötlich         Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)       Feinsandstein – Mittelsandstein julter – rötlich         Nach unten geht er in Mittelsandstein julter num – rot       Schichtlücke         Schwarzer Tonstein       Mittelsandstein julter num – rot         Schwarzer Tonstein       Mittelsandstein julter num – rot         Schwarzer Tonstein       Siltstein belgrau mit glänzenden Komponenten         Schwarzer Tonstein       Siltstein belge; nach oben in Ton übergehend         Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot       Schichtlücke         Schwarzer Tonstein       Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schichtlücke       Seinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schichtlücke       Seinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schwarzer Tonstein       Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schichtlücke       Seinstein en Siltstein belge; nach oben in Ton übergehend         Feinsandstein in kelfarau mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Sil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br><b>Profil 0</b><br>Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3                                                                                                                       | Koordinaten:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           2550           4200           Koordinaten:           Mächtigkeit           240                                                                                                                                                                                                                                                                                                                                                                                 | R:55 18 0           Probe           P 19/9           P 19/0           P 19/6           P 19/7           P 19/7           P 19/7           P 19/8           P 19/7           P 19/7           P 19/8           P 19/7           P 19/7           P 19/7           P 19/7           P 19/7           P 19/7           P 19/8           P 19/4           P 19/3           P 19/2           R:55 19 5           Probe                                                                                                                                                                                                                                               | Beschreibung         Feinsandstein dünnbankig (2 –3 cm) hellgrau – rötlich; frisch dunkelgrau         Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich         Schichtlicke         Sittstein – Tonstein schwarz         Feinsandstein / Sittstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein / Sittstein Wechsellager ung (in 2 – mobilisaten an Untergrenze von (6)         Feinsandstein – Sittstein Wechsellage mit Q2 – mobilisaten an Untergrenze von (6)         Feinsandstein – Sittstein Wechsellage mit Q2 – mobilisaten an Untergrenze von (6)         Feinsandstein – Sittstein Wechsellage mit Q2 – mobilisaten an Untergrenze von (6)         Feinsandstein – Sittstein Wechsellage mit Q2 – mobilisaten an Untergrenze von (6)         Feinsandstein dunkelgrau (Rinnenstruktur)         Feinsandstein i dunnbankigen Lagen a 1 mm; hellbraun – rot         Schwarzer Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schwarzer Sitstein – Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schwarzer Sitstein – Sitstein mit glänzenden Komponenten         Schvarzer Sitstein – Sitstein mehr Feinsandst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(11)<br>(11)<br>(11)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>Schicht<br>(1)<br>(2)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3                                                                                                                       | Koordinaten:           Mächtigkeit           450           50           180           50           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           255           4200           Koordinaten:           Mächtigkeit           240           600           320                                                                                                                                                                                                                                                                                                                                                       | R:55 18 0           Probe           P 19/9           P 19/0           P 19/6           P 19/7           P 19/7           P 19/7           P 19/8           P 19/7           P 19/4           P 19/3           P 19/2           R:55 19 5           Probe                                                                                                                                                                                                                              | Description of the end                                                                                                                  |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(17)<br>(18)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br><b>Profil 0</b><br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1 (C2.4<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3                                                                                                         | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinaten:           Mächtigkeit           240           600           320                                                                                                                                                                                                                                                                                                                                                                    | R:55 18 0           Probe           P 19/9           P 19/0           P 19/0           P 19/6           P 19/7           P 19/4           P 19/3           P 19/2           R:55 19 5           Probe           P 0/1                                                                                                                                                                                             | Beschreibung         Feinsandstein dünnbankig (2 - 3 cm) hellgrau – rötlich; frisch dunkelgrau         Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich         Schichtlücke         Sittstein Vechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein / Sittstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein / Sittstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein / Sittstein Wechsellage mit Qz – mobilisaten an Untergrenze von (6)         Feinsandstein - Mittelsandstein, hellbraun – rot         Schwarzer Tonstein         Mittelsandstein dunkelgrau (Rinnenstruktur)         Feinsandstein dungebankt         Schwarzer Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schwarzer Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Siltstein übergehend         Feinsandstein hellgrau mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Siltstein übergehend         Schwarzer Tonstein         Dunkelgrauer Mittelsandstein mit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(17)<br>(18)<br>(17)<br>(18)<br>(17)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(23)<br>(4)<br>Profil 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3                                                                                                               | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100           560           250           4200           Koordinaten:           Mächtigkeit           240           600           320           210                                                                                                                                                                                                                                                                                                           | R:55 18 0<br>Probe<br>P 19/9<br>P 19/0<br>P 19/0<br>P 19/6<br>P 19/7<br>P 19/7<br>P 19/7<br>P 19/7<br>P 19/4<br>P 19/4<br>P 19/4<br>P 19/2<br>R:55 19 5<br>Probe<br>P 0/1<br>R:54 81 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Beschreibung         Beschreibung         Feinsandstein dünnbankig (2 – 3 cm) hellgrau – rötlich; frisch dunkelgrau         Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau/rötlich         Schichtlücke         Sitter (Sitter) Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein hellgrau – rötlich; frisch dunkelgrau         Mittelsandstein / Sittestein Wechsellage mit Qz – mobilisaten an Untergrenze von (6)         Feinsandstein – Tonstein – Sittstein Wechsellage mit Qz – mobilisaten an Untergrenze von (6)         Feinsandstein – Intitelsandstein in beliprau – röt         Schwarzer Tonstein – Sittstein Wechsellage mit Qz – mobilisaten an Untergrenze von (6)         Feinsandstein in dünnbanktigen Lagen a 1 mm; hellbraun – rot         Schwarzer Tonstein / Sittstein beige; nach oben in Ton übergehend         Feinsandstein dünngebankt         Colspan="2">Schwarzer Tonstein / Sittstein beige; nach oben in Ton übergehend         Feinsandstein dünnbanktig (0,5 – 1,5 cm); hellgrau, nach unten in Sittstein übergehend         Feinsandstein dünnbanktig (0,5 – 1,5 cm); hellgrau, nach unten in Sittstein übergehend         Schwarzer Tonstein – Sittstein umt glänzenden Komponenten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(17)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(18)<br>(17)<br>(17)<br>(18)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3                                                                                                               | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           800           830 + ?           320           1100           560           250           4200           Koordinatem:           Mächtigkeit           240           600           320           210                                                                                                                                                                                                                                                                                                           | R:55 18 0           Probe           P 19/9           P 19/0           P 19/1           P 19/2           R:55 19 5           Probe           P 0/1           R:54 81 5           Probe           P 20/0                                                                                                                                                                                                                                                                                                                                   | Beschreibung         Beschreibung         Feinsandstein dünnbankig (2 – 3 cm) hellgrau – rötlich; frisch dunkelgrau         Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein , hellgrau – rötlich;         Schichtlücke         Siltstein – Tonstein schwarz         Feinsandstein / Siltstein Wechsellage mit Qz – mobilisaten an Untergrenze von (6)         Feinsandstein – Mittelsandstein; hellbrau – rot         Schwarzer Tonstein         Mittelsandstein dunkelgrau (Rinnenstruktur)         Feinsandstein – Tonstein Siltstein Wechsellage nit Qz – mobilisaten an Untergrenze von (6)         Feinsandstein dunkelgrau (Rinnenstruktur)         Feinsandstein dunkelgrau (Rinnenstruktur)         Feinsandstein dünnobankigen Lagen a 1 mm; hellbraun – rot         Schwarzer Tonstein         Dunkelgrauer Mittelsandstein mit glänzenden Komponenten         Schwarzer Mittelsandstein mit glänzenden Komponenten         Schrichtlücke         Feinsandstein dünnobankig (0,5 – 1,5 cm); hellgrau, nach unten in Sittstein übergehend         Feinsandstein – Sittstein weißen Oberflächen; dünnbankig eschiefert (1-2 mm); tektonisch stark zerschuppt         Dunkelgrauer Sittstein – Sittstein; mit glänzenden + weißen Oberflächen; dünnbankig eschiefert (1-2 mm); tektonisch stark zerschuppt         Durkelgrauer Sittstein – Sittstein und dazwischen Feinsandstein Bänke a 2 cm alle 20 – 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>G1.1<br>G1.1                                                                                | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinaten:           Mächtigkeit           240           600           320           210           Koordinaten:           Mächtigkeit           1500           500                                                                                                                                                                                                                                                                            | R:55 18 0           Probe           P 19/9           P 19/0           P 19/6           P 19/7           P 19/2           R:55 19 5           Probe           P 0/1           R:54 81 5           Probe           P 20/8                                                                                                                                                                          | Beschreibung         Feinsandstein Auforder, Neuronautore and Status, Programment, Status, Programment, Status, Stat                                                                                                                                |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C1.1<br>G1.1<br>S2.2                                                                        | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinaten:           Mächtigkeit           240           600           320           250           4200           Koordinaten:           Mächtigkeit           1500           500                                                                                                                                                                                                                                                             | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/6           P 19/7           P 19/2           R:55 19 5           Probe           P 0/1           R:54 81 5           Probe           P 20/8           P 20/1                                                                                                                                                         | Beschreibung           Feinsandstein dümbankig (2 –3 cm) hellgrau – rötlich; frisch dukkilgrau           Mittelsandstein hellgrau, viele glänzende Komponenten           Stark gebankter Grobsandstein, hellgrau/rötlich           Schreibung           Feinsandstein föllstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau           Mittelsandstein hellgrau – rötlich           Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)           Feinsandstein – Mittelsandstein, hellbraum – rot           Schwarzer Tonstein           Schwarzer Tonstein           Wittelsandstein dumkeigrau (Rinnenstruktur)           Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot           Schrichtlücke           Schwarzer Tonstein           Dunkeigrauer Mittelsandstein mit glänzenden Komponenten           Schrichtlücke           Feinsandstein dünnbankigen Lagen a 1 mm; hellbraun, not           Schrichtlücke           Feinsandstein helgrau mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Siltstein übergehend           Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Siltstein übergehend           Feinsandstein - Siltstein mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Siltstein übergehend           Feinsandstein - Siltstein Grobenstein         Schwarzer Tonstein Chunkeingergeustein Siltstein Zemetersensensensensenstein Grobentersensenstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(5)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C1.1<br>G1.1<br>S2.2<br>S1.2<br>S1.2                                                        | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinaten:           Mächtigkeit           240           600           320           250           4200           Koordinaten:           Mächtigkeit           1500           500           230           210                                                                                                                                                                                                                                 | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/0           P 19/0           P 19/7           P 19/2           R:55 19 5           Probe           P 20/8           P 20/9           P 20/1           P 20/2           P 20/2                                                                                                                                         | Beschreibung         Beschreibung           Feinsandstein dümbankig (2 –3 cm) hellgrau – rötlich; frisch dunkelgrau         Mittelsandstein hellgrau, viele glänzende Komponenten           Stark gebankter Grobsandstein , hellgrau/rötlich         Schichtlicke           Sittstein – Tonstein schwarz         Feinsandstein in Belgrau – rötlich, Tambereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau           Mittelsandstein nellgrau – rötlich         Nach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)           Feinsandstein – Sittstein Wochsellage mit Qu – mobiliseten an Untergrenze von (6)         Feinsandstein – Sittstein Wochsellage mit Qu – mobiliseten an Untergrenze von (6)           Feinsandstein – Sittstein Wochsellagen tu Qu – mobiliseten an Untergrenze von (6)         Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot           Schwarzer Tonstein         Sittstein Verkelellage mit Qu – mobiliseten an Untergrenze von (6)           Feinsandstein in dünnbankigen Lagen a 1 mm; hellbraun – rot         Schwarzer Tonstein           Schwarzer Tonstein         Sittstein Verkellagen tu Qu – vochlisten übergehend           Feinsandstein dünnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Sittstein übergehend           Feinsandstein hellgrau – mit glänzenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Sittstein übergehend           Schwarzer Tonstein         Sittstein Verkeites Material; ähnlich wie (2), mit Qu-Mobilisaten, dickbankig bis 40 cm; sieht brekziös aus; Komponenten bis 2 mm Größe:           Schichtlücke         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(12)<br>(13)<br>(14)<br>(17)<br>(17)<br>(18)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(2)<br>Schicht<br>(1)<br>(2)<br>(2)<br>Schicht<br>(1)<br>(2)<br>(2)<br>Schicht<br>(1)<br>(2)<br>(2)<br>Schicht<br>(1)<br>(2)<br>(2)<br>Schicht<br>(1)<br>(2)<br>(2)<br>(3)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(2)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(2)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4 | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C1.1<br>G1.1<br>S1.2<br>S1.2<br>S1.1<br>S1.1                                                | Koordinatem:           Mächtigkeit           450           50           180           50           120           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           1100           560           250           4200           Koordinaten:           Mächtigkeit           240           600           320           210           Koordinaten:           Mächtigkeit           1500           500           230           420           500           230           420           500           230           420           500           230           420           340                                                                         | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/6           P 19/7           P 19/2           R:55 19 5           Probe           P 20/8           P 20/9           P 20/2           P 20/3                                                                                                                                                          | Beschreibung       Beschreibung         Feinsandstein dünnbanklig (2 – 3 cm) hellgrau – rötlich; frisch dunklejrau         Mittelsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein, hellgrau/rötlich         Schreibung         Feinsandstein hellgrau, viele glänzende Komponenten         Stark gebankter Grobsandstein, hellgrau/rötlich         Schreibung         Feinsandstein / Sittstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau         Mittelsandstein hellgrau – rötlich         Nach unten geht er in Mittelsandstein über nach ca. 140 (P 197)         Feinsandstein – Sittstein Wechsellager mit C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(17)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4                                                                                                              | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C1.1<br>G1.1<br>G1.1<br>S1.2<br>S1.2<br>S1.1<br>T1.1 | Koordinatem:           Mächtigkeit           450           50           180           500           1220           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinaten:           Mächtigkeit           240           600           320           250           4200           Koordinaten:           Mächtigkeit           1500           230           420           500           230           420           500           230           420           500           230           420           500           230           420           340           70                                            | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/6           P 19/7           P 19/2           R:55 19 5           Probe           P 20/8           P 20/9           P 20/2           P 20/3                                                                                                                        | Bitsen         Deschreibung           Feinsandstein dünnbankig (2 - 3 cm) hellgrau – röllich; frisch dunkelgrau           Mittelsandstein hellgrau, viele glänzende Komponenten           Stark gebankter Grobsandstein , hellgrau/röllich           Schwart           Stilstein – Tonstein schwarz           Feinsandstein / Slitstein Wechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau           Mittelsandstein - Slitstein Wechsellagerung (in 1 mm Bereich) nach unter mehr Feinsandstein und dickere Bänke; hellgrau           Mittelsandstein - Slitstein Wechsellager (12 - 2 - mobilisaten an Untergrenze von (6)           Feinsandstein - Slitstein Wechsellager (12 - mobilisaten an Untergrenze von (6)           Feinsandstein in dunnbankigen Lagen at 1 mm; hellbraun – rot           Schwarzer Tonstein           Mittelsandstein in dunnbankigen Lagen at 1 mm; hellbraun – rot           Schwarzer Tonstein / Slitstein beige; nach oben in Ton übergehend           Feinsandstein dunnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Slitstein übergehend           Feinsandstein dunnbankig (0,5 – 1,5 cm); hellgrau, nach unten in Slitstein übergehend           Feinsindstein in tiglänzenden Kimeralen, feinbankig, (0,5 – 1 cm); wieder in Slitstein ötergehend teinsichtung           Feinsindstein (1+z mm) / Slitstein versteilte Baterial; ähnlich wie (2), mit Q2-Mobilisaten, dickbankig bis 40 cm; sieht brekziös aus; Komponenten bis 2 mm Größe; Horizontalskolten           Feinsindstein - Slisitstein versteilte Slitste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(12)<br>(13)<br>(14)<br>(17)<br>(12)<br>(13)<br>(14)<br>(17)<br>(22)<br>(23)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C1.1<br>G1.1<br>S1.2<br>S1.2<br>S1.1<br>S1.1<br>T1.1<br>G2.1                                | Koordinatem:           Mächtigkeit           450           50           180           50           120           490           320           250           90           140           25           230           570           60           120           150           830 + ?           320           1100           560           250           4200           Koordinaten:           Mächtigkeit           240           600           320           210           Koordinaten:           Mächtigkeit           1500           500           230           420           500           230           420           500           230           420           500           230           420           340           70           60           1420                                | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/0           P 19/0           P 19/0           P 19/0           P 19/0           P 19/7           P 19/7           P 19/7           P 19/7           P 19/7           P 19/7           P 19/3           P 19/2           R:55 19 5           Probe           P 20/1           P 20/2           P 20/3           P 20/4                                                                                                                                                                                                                                               | Beschreibung<br>Feinsandstein dünnbankig (2 – 3 cm) hellgrau – rötlich; frisch dunkelgrau<br>Mittelsandstein hellgrau, viele glänzende Komponenten<br>Stakr gebankter Grobsandstein, hellgrau/vittich<br>Schichtlücke<br>Sitteten – Tonstein schwarz<br>Feinsandstein / Nechsellagerung (in 1 mm Bereich) nach unten mehr Feinsandstein und dickere Bänke; hellgrau<br>Mach unten geht er in Mittelsandstein über nach ca. 140 (P 19/7)<br>Feinsandstein – Sitteten Wechsellage mit Qz -mobilisaten an Untergrenze von (6)<br>Feinsandstein – Mittelsandstein über nach ca. 140 (P 19/7)<br>Feinsandstein – Sitteten Wechsellage mit Qz -mobilisaten an Untergrenze von (6)<br>Feinsandstein – Mittelsandstein, Belbraun – rot<br>Schwarzer Tonstein<br>Mittelsandstein öulonpeharkt<br>Schwarzer Tonstein Mittelsandstein in diuribankigen Lagen a 1 mm; hellbraun – rot<br>Schichtlücke<br>Schwarzer Tonstein / Sittetein beige; nach oben in Ton übergehend<br>Feinsandstein in diuribankigen Lagen a 1 mm; hellbraun – rot<br>Schichtlücke<br>Schwarzer Sittetin – Tonstein Kittetein Mittelsandstein mit glänzenden Komponenten<br>Schichtlücke<br>Feinsandstein in digrazenden Mineralen, feinbankig, (0,5 – 1 cm); wieder in Sittetein übergehend<br>Feinsandstein dungebankt<br>Schichtlücke<br>Feinsandstein indigrazenden Hineralen, feinbankig, (0,5 – 1 cm); wieder in Sittetein übergehend<br>Schichtlücke<br>Feinsandstein - Sittetein, mit glänzenden Komponenten<br>Schichtlücke<br>Feinsandstein - Sittetein, mit glänzenden Hineralen, feinbankig, geschiefter (1 -2 mm); tektonisch stark zerschuppt<br>Dunkelgrazer Bittetein – Sittetein und dazwischen Feinsandstein Günnbankig geschiefter (1 -2 mm); tektonisch stark zerschuppt<br>Dunkelgrazer Bittetein – Sittetein und dazwischen Feinsandstein Sinke a 2 m alle 20 – 30 cm<br>Feinsandstein fülzen Mittelsandstein viele Bitteten Feinsandstein Sikke a 2 m alle 20 – 30 cm<br>Feinsandstein fülzen Mittelsandstein viele Bitteten Tonen, Konglomeratantellen etc.<br>Irgendvo unter 4 met 701 von oben; rosa/weißes Material reagiert karbonatisch<br>Schichtlücke<br>Grobsandstein inte Heinvidetten Feinsandstein N |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(17)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3                                                                 | Koordinatem:           Mächtigkeit           450           50           180           50           120           490           220           290           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinaten:           Mächtigkeit           240           600           320           210           Koordinaten:           Mächtigkeit           1500           500           230           420           500           230           420           500           230           420           500           230           420           500           230           420           340           70 <tr td=""> <tr td=""></tr></tr> | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/6           P 19/7           P 19/2           R:55195           Probe           P 20/9           P 20/1           P 20/2           P 20/3           P 20/4           P 20/4                                     | Beschreibung seine schlere sc                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(18)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3                   | Koordinatem:           Mächtigkeit           450           50           180           50           120           490           220           290           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinatem:           Mächtigkeit           240           600           320           210           Koordinatem:           Mächtigkeit           1500           230           420           500           230           420           340           70           60           1420           1220           100           30                                                                                                       | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/6           P 19/7           P 19/2           R:55195           Probe           P 20/1           P 20/2           P 20/4           P 20/6           P 20/6                                                      | Beschreibung           Seckreibung           Feinsandstein dümbankig (2 –3 cm) heligrau – rötlich; frisch dunkelgrau           Mittelsandstein heligrau, viele glänzende Komponenten         Schweibung           Feinsandstein Velter         Feinsandstein viele glänzende Komponenten           Statk gebanker, viele glänzende Komponenten         Schweizen           Statk gebanker, viele glänzende Komponenten         Schweizen           Feinsandstein Veltesandstein über nach ca. 140 (P 197)         Feinsandstein Heligrau – rötlich           Feinsandstein – Nittesin Wechsellage mit Q2 – noblisaten an Untergrenze von (6)         Feinsandstein – Mitteslandstein kelbrau – rot           Schwarzer Tonstein         Mitteslandstein dunkelgrau (Binnestruktur)         Feinsandstein dunkelgrau (Binnestruktur)           Feinsandstein dunkelgrau (Binnestruktur)         Feinsandstein dunkelgrau (Binnestruktur)         Feinsandstein dunkelgrau (Binnestruktur)           Feinsandstein dunkelgrau (Binnestruktur)         Feinsandstein dunkelgrau (Binnestruktur)         Feinsandstein dunkelgrau mit glänzenden Komponenten           Schichtlücke         Gemanker         Feinsandstein dunbankig (0,5 – 1 cm; wieder in Sittstein übergehend           Feinsandstein dunbankig (0,5 – 1,5 cm); hellgrau, nach unten in Sittstein übergehend         Schichtlücke           Feinsandstein zublätzer, mit glänzenden + weißen Oberlächen; dünbankig geschiefert (1-2 mm); tektonisch stark zerschuppt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Profil 19<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(14)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>Profil 0<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>Profil 20<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithofazies<br>C2.1<br>C2.3<br>C2.2<br>D1.1<br>B2.1<br>D2.1<br>C2.3<br>B1.2<br>C2.3<br>B1.2<br>C2.3<br>D2.1 (F2.1)<br>D2.1<br>C2.4<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3<br>Lithofazies<br>C2.3                          | Koordinatem:           Mächtigkeit           450           50           180           50           120           490           220           250           90           140           25           230           570           60           120           150           830 + ?           320           250           4200           Koordinatem:           Mächtigkeit           1500           220           210           Koordinatem:           Mächtigkeit           1500           230           420           500           210           Koordinatem:           Mächtigkeit           1500           230           420           340           70           60           1420           1220           100           30           530                                          | R:55 18 0           Probe           P 19/9           P 19/9           P 19/0           P 19/0           P 19/8           P 19/7           P 19/2           R:55195           P 0/1           R:54 81 5           Probe           P 20/8           P 20/1           P 20/2           P 20/4           P 20/6           P 20/6 | Beschreibung           Feinsandstein dümbankig (2 – 3 cm) hellgrau – rötlich; frisch dunkligrau           Mittelsandstein hellgrau, viele glänzende Komponenten           Stak gebankter           Stak gebankter           Peinsandstein rötlich hellgrau, viele glänzende Komponenten           Stak gebankter           Stak gebankter           Peinsandstein / Stakter           Peinsandstein / Stakter           Peinsandstein / Verstellage mit 02 – mobilisaten an Untergrenze von (6)           Feinsandstein / Mittelsandstein über nach ca. 140 (P 197)           Feinsandstein / Mittelsandstein über nach ca. 140 (P 197)           Feinsandstein / Mittelsandstein über nach ca. 140 (P 197)           Feinsandstein / Mittelsandstein über nach oben in Ton übergehend           Feinsandstein / Mittelsandstein mit glänzenden Komponenten           Schichtlücke           Beschreibung           Schichtlücke           Peinsandstein (J) (S – 1 cm); wieder in Siltetin übergehend           Feinsandstein dimbrahrig (J, 5 – 1 cm); wieder in Siltetin übergehend           Feinsandstein (J) (S – 1 cm); wieder in Siltetin übergehend           Feinsandstein (J) (S – 1 cm); wieder in Siltetin übergehend           Feinsandstein (J) (S – 1 cm); wieder in Siltetin übergehend           Schichtlücke           Beschreibung           Schichtlücke <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|   | -  | _  |
|---|----|----|
|   | r  |    |
|   |    | ۰. |
| 1 |    |    |
|   | ۰. |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R:54 86 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 / H:14 47 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies                                                                                                                                                                                                                         | Machtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G2.1                                                                                                                                                                                                                                | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 21/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kongiomerat mit QZ Ø: 2-4 cm; viel Matrix → Matrixgesutzt; Matrix dunkelgrau leicht violett mit schwarzen Komponenten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.2                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F 21/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weini $Q_2 - Genole - 7$ jetti kongoli elinen gestutzi, $Q_2 = 0$ nun hoch bei $0, 5 - 1$ cm, watrix weiter dunkeigrau, planar schlageschichter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S2.2                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 21/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grobsandstein – Mittelsandstein mit dz alle Ø Timit, leicht geschleien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T1 1                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 21/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Giousanusien mit Lagen von Q2 – Kasten Ca. 0,0 – 0,5 m 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S1.2                                                                                                                                                                                                                                | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 21/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein hellgrau – dunkel/rötlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T1.1                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schwarzer Tonstein – Siltstein, nicht glänzend, anthrazitfarben wie (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G1.1                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 21/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grobes Qz – Konglomerat, keine genauen Grenzen der Qz mehr feststellbar Ø2 - cm ?; stark verwittert, rötliche Farbe, alles nur Qz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G1.2                                                                                                                                                                                                                                | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 21/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wird nach oben feiner; schönes Qz-Konglomerat mit Ø von 1-3 cm Qz; relativ gut gerundet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.1                                                                                                                                                                                                                                | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schwarze Tonstein mit leicht glanzender Oberfläche, stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52.2<br>G2.2                                                                                                                                                                                                                        | 50 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 21/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dunkeigrauet – schwarzer reinsandstein, stark glanzend da viele Kontponentien in der Sohne glanzen<br>Konglomerat 23.2 m. Ø. der Oz. – bellorgue Matrix, trochömig geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02.2                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 2.//0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nongionera, 25 cm 2 del 42, neligiade matrix, ilogionnig geschicitet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Proben Kra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-9: Koordina                                                                                                                                                                                                                       | ten R:527800-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28550 / H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :148350-148475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Profil 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R:52 85 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i00-52 86 750 / H:14 83 000-14 83 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies                                                                                                                                                                                                                         | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1.1                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 00 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Schwarze Tonstein + Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.2                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 22/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heilgraue Mittelsandstein in Banken a 20 – 30 cm mit dunnen Toniagen dazwischen, normal gradiert (nach oben in Fs – Ms übergenend)<br>Existence dunkeldrugen schweizer nach ehen in Sitterie übergehend sterk geschiefet mit diezegehenen. In the sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1.1                                                                                                                                                                                                                                | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | remisand durinegrad – schwarz nach ober in Sinstein übergereint, stark geschieren mit granzenden Obernacien, inn kindersandstein Lagen<br>dazwischen: ieweik dünne Bänkchen a 15 cm alle 1 – 15 m: in Lienenden mächtigner Mittelsandstein Lagen die nach oben in Feinsand übergehen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Im untern Teil horizontal Laminiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.3                                                                                                                                                                                                                                | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fein-Mittelsandstein hellgrau, dickbankig (40= cm), nach oben in Feinsandstein übergehend, angedeutet horizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Siltstein-Feinsandstein, tektonisiert mit glänzender Oberfläche, eventuell planare Schrägschichtung vorhanden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2.1                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 22/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dickbankige Mittelsandstein hellbraun rotlich<br>Mittelsandstein (5 0) om Pärkelo, mit inverse Cradierung is Bank, generall ober in Mittelsand. Eeineand übergebend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2 1 B1 1                                                                                                                                                                                                                           | 1170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P 22/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein (3 – 10 din banke) nin niverse Gradierung je bank, generen aber in Mittelsandstein (3 – 10 din banke) nin niverse and beigen den beigen der Belarau- direkbankin: immer wechselnd alle 30-40 cm alle 2-3 m schwarze Sittsteinlage von 10 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2.1                                                                                                                                                                                                                                | 1170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 22/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lateral abbrechend, meist tektorisch ausgeduetscht: eventuell sind diese Ausgeduetschungen auch Überbleibsel von Amalgamierungshorizonten. $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ripp up clasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ ~ ~                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schwarzer Siltstein tektonisch ausgequetscht, geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2.2                                                                                                                                                                                                                                | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 22/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein dunkelgrau, nach oben feiner werdend; dickbankig; nach 60 cm 15 cm Siltsteinlage schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2 2                                                                                                                                                                                                                                | 450<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sitistein dunkeigrau tektonisiert mit glanzenden Schieferungshachen, norizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02.2                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schwarzer Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2.2                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 22/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein hellgrau mit glänzenden Komponenten, normal gradiert, event. Horizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 22/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feinsandstein wie (2); sehr dickbankig (30 – 40 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00.0                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dickbankiger Siltstein , hellgrau glänzend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02.3                                                                                                                                                                                                                                | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dannegrader Feitsatrastein mit vieten granzenden Komponenten; dickoankig (30 cm)<br>Siltstein diszend durkelarau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wechsellagerung von Feinsandstein (2) / mit Siltstein in 2-3 cm Bereich, horizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 22/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dunkelgrauer Feinsandstein mit vielen glänzenden Komponenten; dickbankig (30 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Siltstein hell – dunkelgrau mit glänzenden Komponenten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Profil 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-54 03 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 / H-14 85 000-14 83 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies                                                                                                                                                                                                                         | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.1                                                                                                                                                                                                                                | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 23/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grauer Mittelsandstein-Grobsandstein mit glänzenden Partikel + schwarzen Lyditen, dickbankig bis 30-40 cm normal gradiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 23/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hellgrau - brauner Mittelsandstein, dünnbankig von vielen Tonlamellen durchzogen; 3-4 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hellgrau – brauner Siltstein – Tonstein extrem geschiefert, horizontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.2                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 23/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heligrauer Mittelsandstein - Grobsandstein; breite Banke 20 – 30 cm; Honzontal geschichtet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 23/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grauer Feinsandustein – Mittelsandstein in Banken von 10 – 15 Gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.3                                                                                                                                                                                                                                | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 23/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsand heligrau, leicht bräunlich, stark zerschert, tritt in Bänkchen a 10 cm auf; normal gradiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schwarzer Tonstein – Siltstein, leicht geschiefert, viele glänzende Partikel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Siltstein – Tonstein schwarz (2-3 cm)/ Feinsandstein dunkelgrau (2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D0.4                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D 00/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Schwarzer Tonstein – Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B2.1                                                                                                                                                                                                                                | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 23/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein – Feinsandstein in Banken von 10 – 20 cm, parallei geschichtet<br>Grabesondetzie bellergen, mit echevarzen et argues Partikele ist 2 mm Gräßer unter in Bänken von 20 – 40 cm nach aben in Bänken von 10 – 20 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1.2                                                                                                                                                                                                                                | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F 23/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Giobanistein meigrau, nit schwarzen + grauen Fattkein in 1-2 min Giose, uner in Banken von 30 - 40 ch nach oben in Banken von 10 - 20 ch<br>überrehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D1.1                                                                                                                                                                                                                                | 1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Siltstein dunkelgrau in dünnen Bänkchen von 2-3 cm, mit glänzenden Oberflächen, leicht geschiefert und horizontal laminiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1.2                                                                                                                                                                                                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 23/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beim Häuschen hellgrau - weiß mit glänzenden Partikeln; Mittelsandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D1.1                                                                                                                                                                                                                                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schwarzer Tonstein- Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R:54 19 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300-54 20 250 / H:14 83 500-14 82 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lithofazies                                                                                                                                                                                                                         | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Profil 24<br>Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lithofazies<br>B2.1                                                                                                                                                                                                                 | Mächtigkeit<br>270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>B2.1<br>C2.2                                                                                                                                                                                                         | Mächtigkeit<br>270<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Einsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>B2.1<br>C2.2                                                                                                                                                                                                         | Mächtigkeit<br>270<br>160<br>480<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Probe<br>P 24/1<br>P 24/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>B2.1<br>C2.2<br>C2.3                                                                                                                                                                                                 | Mächtigkeit<br>270<br>160<br>480<br>10<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probe<br>P 24/1<br>P 24/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lithofazies<br>B2.1<br>C2.2<br>C2.3                                                                                                                                                                                                 | Mächtigkeit<br>270<br>160<br>480<br>10<br>80<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe<br>P 24/1<br>P 24/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzkliften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2                                                                                                                                                                                         | Mächtigkeit<br>270<br>160<br>480<br>10<br>80<br>160<br>290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe<br>P 24/1<br>P 24/2<br>P 24/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 om, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Sittstein<br>Feinsandstein – Tonstein – Vittelsandstein; grau-braun, mit vielen glänzenden Komponenter; dickbankig (2 x 40)<br>Sittstein – Tonstein – Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2                                                                                                                                                                                 | Mächtigkeit<br>270<br>160<br>480<br>10<br>80<br>160<br>290<br>360 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/3<br>P 24/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2                                                                                                                                                                                 | Mächtigkeit<br>270<br>160<br>480<br>10<br>80<br>160<br>290<br>360 + ?<br>Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/3<br>P 24/4<br><b>R:54 06 5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein n Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein i/ Feinsandstein Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br>100-54 08 500 / H:14 79 500-14 82 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>Lithofazies                                                                                                                                                                  | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/3<br>P 24/4<br><b>R:54 06 5</b><br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend jrau-hellgrau; mit Quarzkliften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Sittstein<br>Feinsandstein / Hittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Sittstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein hellgrau<br>Grobsandstein hellgrau<br>Grobsandstein hellgrau<br>Grobsandstein hellgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1                                                                                                                                                  | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/3<br>P 24/4<br><b>R:54 06 5</b><br>P 25/3<br>P 25/3                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Slitstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenter; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein full <b>12 10 11 17 500-114 82 000</b><br><b>Beschreibung</b><br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1                                                                                                                                                          | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probe<br>P 24/1<br>P 24/2<br>P 24/3<br>P 24/4<br><b>R:54 06 5</b><br>Probe<br>P 25/3<br>P 25/2                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Slitstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; (ickbankig (2 x 40)<br>Siltstein – Tonstein – Klitelsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein ellgrau<br><b>300-54 08 500 / H:14 79 500-14 82 000</b><br>Beschreibung<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein, hellgrau in Bänken bis 70 cm<br>Tonstein – Slitstein Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.2                                                                                                                                                  | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10           210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe<br>P 24/1<br>P 24/2<br>P 24/3<br>P 24/4<br><b>R:54 06 5</b><br><b>Probe</b><br>P 25/3<br>P 25/2<br>P 25/1                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau, mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Slitstein<br>Feinsandstein / Feinsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein / Wechselalgerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-unkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein fullgrau<br>500-54 08 500 / H:14 79 500-14 82 000<br>Beschreibung<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Mittelsandstein schwarz<br>Mittelsandstein jrau, in Bänken zu on<br>Tonstein – Siltstein a Subarg zu ober 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken zu on<br>Tonstein – Siltstein zu on<br>Tonstein – Siltstein zu on<br>Mittelsandstein jrau, in Bänken zu on<br>Mittelsandstein grau, in Bänken zu on<br>Tonstein – Siltstein schwarz<br>Mittelsandstein grau, in Bänken zu on<br>Tonstein – Siltstein schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>B1.2<br>C2.1<br>Lithofazies<br>C2.1                                                                                                                                          | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10           210           170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/4<br><b>R:54 06 5</b><br>Probe<br>P 25/3<br>P 25/2<br>P 25/1                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau (mormal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein ivergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein ivergehend mellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein ivergehend mellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein prau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br>500-54 08 500 / H:14 79 500-14 82 000<br>Beschreibung<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein - Mittelsandstein; hellgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein schwarz<br>Mittelsandstein grau, in Bänken a 20-30 cm<br>Siltstein – Tonstein grau, india kan a 20-30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                  | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10           210           170           480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/4<br><b>R:54 06 5</b><br>Probe<br>P 25/3<br>P 25/2<br>P 25/1                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenter; dickbankig (2 x 40)<br>Siltstein – Tonstein – Siltstein<br>Grobsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein – Siltstein schwarz<br>Mittelsandstein – Siltstein auni, hellgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein schwarz<br>Mittelsandstein grau, in Bänken a 20-30 cm<br>Siltstein – Siltstein – Siltstein Wechsellagen mit Bänken a 2-3 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.2                                                                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           360           10           210           170           480           70           140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/4<br><b>R:54 06 5</b><br>P 25/3<br>P 25/2<br>P 25/1<br>P 25/4                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein – Tonstein – Siltstein<br>Mittelsandstein grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein prau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br><b>300-54 08 500 / H:14 79 500-14 82 000</b><br>Beschreibung<br>Grobsandstein, grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein, futlelsandstein; hellgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein schwarz<br>Mittelsandstein grau, in Bänken a 20-30 cm<br>Siltstein – Tonstein grau, horizontal laminiert<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Grobsandstein fulfgrau<br>Siltstein – Tonstein j Siltstein Wechsellagen mit Bänken a 2-3 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                          | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10           210           170           480           70           140           20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/4<br><b>R:54 06 5</b><br>Probe<br>P 25/3<br>P 25/2<br>P 25/1<br>P 25/4<br>P 25/5                                                                                                                                                                                                                                                                                                                                                                                                                           | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau, mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein übergehend plagrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-unkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br>500-54 08 500 / H:14 79 500-14 82 000<br>Beschreibung<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken von 20 – 30 cm, server and server a                                                |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10           210           170           480           70           140           20           160 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Probe           P 24/1           P 24/2           P 24/2           R:54 06 5           Probe           P 25/3           P 25/1           P 25/4           P 25/5                                                                                                                                                                                                                                                                                                                                                                                       | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenter;           Grobsandstein grau           Banke von 20 – 30 cm, normal gradiert           Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein mittelsandstein; hellgrau/braun in Bänken bis 70 cm           Tonstein – Siltstein schwarz           Mittelsandstein grau, in Bänken a 20-30 cm           Siltstein – Tonstein Jergrau           Siltstein – Tonstein Jergrau           Banken von 20 – 30 cm           Brobsandstein grau, in Bänken a 20-30 cm           Siltstein – Tonstein grau, in Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; Feinsandstein / Siltstein Vechsellagen mit Bänken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.2<br>C2.3                                                                                                                         | Mächtigkeit           270           160           480           10           80           160           290 ?           360 + ?           Koordinaten:           Mächtigkeit           360           10           210           210           170           480           70           140           20           160 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Probe           P 24/1           P 24/2           P 24/3           P 25/3           P 25/1           P 25/4           P 25/5                                                                                                                                                                                                                                                                  | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Siltstein           Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenter; dickbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein hellgrau           Grobsandstein nellgrau           Siltstein – Tonstein – Siltstein Stern viele glänzenden Komponenten           Grobsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein grau - Junkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein mittelsandstein; hellgrau/traun in Bänken bis 70 cm           Tonstein – Siltstein Schwarz           Mittelsandstein miniert           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Feinsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(10)<br>(11)<br>(12)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(23)<br>(23)<br>(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                 | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?                                                                                                                                                                                                                                                                                                                                                                                                        | Probe           P 24/1           P 24/2           P 24/3           P 24/4 <b>R:54 06 5 Probe</b> P 25/3           P 25/2           P 25/1           P 25/5           P 0005/2                                                                                                                                                                                                                                                                                                                                                                          | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau, mit Quarzklüften, wie drüben in Trögem (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; (alckbankig (2 x 40)<br>Siltstein – Tonstein – Nittelsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br><b>300-54 08 500 / H:14 79 500-14 82 000</b><br><b>Beschreibung</b><br>Grobsandstein, Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein, Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken a 20-30 cm<br>Siltstein – Tonstein j, hellgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein schwarz<br>Mittelsandstein grau, in Bänken a 2-3 cm<br>Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Grobsandstein / Siltstein in Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)<br>Schichtlücke<br>Feinsandstein grau – rötlich in Bänkchen a 1-2 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(6)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(3)<br>(4)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           500           10           210           170           480           70           140           20           160 + ?           80 +?           180           190 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                           | Probe           P 24/1           P 24/2           P 24/3           P 25/3           P 25/1           P 25/4           P 25/5           P 25/6           P 25/6                                                                                                                                                                                                                                                                  | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein – Siltstein<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten; dickbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken z0-30 cm<br>Siltstein – Tonstein grau, in Bänken z0-30 cm<br>Siltstein – Tonstein grau, in Bänken z0-30 cm<br>Siltstein – Siltstein schwarz<br>Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)<br>Schichtlücke<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein grau – rötlich in Bänkchen a 1-2 cm<br>Mittelsandstein forba andstein beingrau – tötlich in Bänkchen a 1-2 cm<br>Mittelsandstein forba andstein beingrau – tötlich in Bänkchen a 1-2 cm<br>Mittelsandstein hellorgu                                                                          |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C1.1<br>B1.2<br>B1.2<br>B1.2                                                                                 | Mächtigkeit           270           160           480           10           80           160           360 + ?           Koordinaten:           Mächtigkeit           360           500           10           210           170           480           70           140           20           160 + ?           80 + ?           180           120 + ?                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/4<br><b>R:54 06 5</b><br>P 25/2<br>P 25/2<br>P 25/1<br>P 25/5<br>P 25/5<br>P 25/6<br>P 25/7                                                                                                                                                                                                                                                                                                                                                                                                                | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Siltstein           Feinsandstein in Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponente; dickbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein far           Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein mittelsandstein; hellgrau/braun in Bänken bis 70 cm           Tonstein / Flittelsandstein; nellgrau           Mittelsandstein grau, in Bänken a 20-30 cm           Siltstein – Siltstein wechsellagen mit Bänken a 2-3 cm           Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtücke           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtücke           Feinsandstein / Siltstein Wechsellage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>Profil 26<br>Profil 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3                                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit           360           500           10           210           170           480           70           140           20           160 + ?           80 +?           180           120 + ?           Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                             | Probe           P 24/1           P 24/2           P 24/3           P 24/4           R:54 06 5           P 25/3           P 25/2           P 25/1           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7                                                                                                                                                                                                                                                                                                                  | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Slitstein<br>Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenter; dickbankig (2 x 40)<br>Siltstein – Tonstein – Nittelsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br><b>300-54 08 500 / H:14 79 500-14 82 000</b><br><b>Beschreibung</b><br>Grobsandstein, grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein, fultelsandstein; hellgrau/traun in Bänken bis 70 cm<br>Tonstein – Siltstein Schwarz<br>Mittelsandstein grau, in Bänken a 20-30 cm<br>Siltstein – Tonstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm;<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)<br>Schichtlücke<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein / Siltstein Wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein - follstein in bänkchen a 1-2 cm<br>Mittelsandstein - follstein schwarzen Lyditen; in Bänken a 10 – 20 cm<br>Grobsandstein hellgrau – bräunl  |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(1)<br>(1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C1.1<br>B1.2<br>B1.2<br>B1.2<br>C2.3                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           180           120 + ?           Koordinaten:           Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                     | Probe           P 24/1           P 24/2           P 24/3           P 24/4 <b>R:54 06 5 P 25/3</b> P 25/2           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7 <b>R:54 33 5 P 25/7 R:54 33 5 P 754 33 5</b>                                                                                                                                                                                                                                                                                                             | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Sittstein           Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; (dickbankig (2 x 40)           Sittstein – Tonstein – Sittstein           Mittelsandstein grau-dunkelgrauschwarz; sehr viele glänzenden Komponenten; (dickbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrauschwarz; sehr viele glänzenden Komponenten           Grobsandstein er Sittstein           Beschreibung           Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken a 20-30 cm           Sittstein – Tonstein j, hellgrau/braun in Bänken bis 70 cm           Tonstein / Sittstein Sutter in Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Sittstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Sittstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein / Sittstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein / Sittstein Wechsellagen mit Bänken a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(11)<br>(12)<br>(13)<br>(11)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(3)<br>(4)<br>(1)<br>(1)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           120 + ?           Koordinaten:           120 + ?           Mächtigkeit           1100                                                                                                                                                                                                                                         | Probe           P 24/1           P 24/2           P 24/3           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe                                                                                                                                                                                                             | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend grau-hellgrau, mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-unkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau unkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau unkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau unkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein grau, unkelgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein schwarz<br>Mittelsandstein grau, in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken z0-30 cm<br>Siltstein – Tonstein grau, horizontal laminiert<br>Feinsandstein j Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Grobsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein – Mittelsandstein, cmal gradiert<br>Feinsandstein (grau – tötich in Bänkchen a 1-2 cm<br>Mittelsandstein feingrau – tötich in Bänkchen a 1-2 cm<br>Mittelsandstein hellgrau – bräunlich, mit einzelnen Komponenten größer als 2 mm; Bänke a 40 –50 cm<br><b>Stot-54 33 000 / H:14 86 000-14 85 000</b><br><b>Beschreibung</b><br>F    |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>Profil 26<br>Schicht<br>(1)<br>(2)<br>(1)<br>(1)<br>(2)<br>(1)<br>(1)<br>(2)<br>(1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>C2.1<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C1.1<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C1.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit           360           10           290           10           210           170           480           70           140           20           160 + ?           80 +?           180           120 + ?           Koordinaten:           Mächtigkeit           1100           10                                                                                                                                                                                                                                                                                                                              | Probe<br>P 24/1<br>P 24/2<br>P 24/2<br>P 24/4<br>R:54 06 5<br>P 25/3<br>P 25/2<br>P 25/2<br>P 25/1<br>P 25/4<br>P 25/5<br>P 25/5<br>P 25/5<br>P 25/7<br>R:54 33 5<br>Probe                                                                                                                                                                                                                                                                                                                                                                             | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend pellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Slitstein           Feinsandstein auf Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenter; dickbankig (2 x 40)           Slitstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein au           Bänke von 20 – 30 cm, normal gradiert           Grobsandstein mu in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken a 20-30 cm           Slitstein – Slitstein schwarz           Mittelsandstein ju, in Bänken a 20-30 cm           Slitstein – Slitstein wechsellagen mit Bänken a 2-3 cm           Grobsandstein / Slitstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Slitstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtücke           Feinsandstein / Slitstein Mechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtücke <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(8)<br>(7)<br>(7)<br>(3)<br>(12)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(12)<br>(13)<br>(12)<br>(12)<br>(13)<br>(12)<br>(13)<br>(12)<br>(13)<br>(12)<br>(13)<br>(12)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3                                                                                  | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           10           210           170           480           70           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570                                                                                                                                                                                                                                                                                                                                             | Probe           P 24/1           P 24/2           P 24/2           P 24/3           P 24/3           P 24/3           P 24/3           P 24/3           P 24/3           P 24/4           P 25/3           P 25/3           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 E           Probe                                                                                                                                                                                                             | Beschreibung         Mittelsandstein – Feinsandstein dukelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert         Grobsandstein in Feinsandstein übergehend leilgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet         Schwarzer Tonstein – Siltstein         Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)         Siltstein – Tonstein – Siltstein         Peinsandstein jarau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten         Grobsandstein prau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten         Grobsandstein prau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten         Grobsandstein grau un Bänken von 20 – 30 cm, normal gradiert         Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert         Grobsandstein grau, in Bänken a 20-30 cm         Siltstein – Tonstein – Siltstein Schwarz         Mittelsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm         Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm         Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)         Schichtlück         Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)         Schichtlück         Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)         Schichtlück <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(11)<br>(12)<br>(2)<br>(3)<br>(13)<br>(14)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(2)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(5)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lithofazies<br>B2.1<br>C2.2<br>C2.3<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>Lithofazies<br>C2.3<br>D1.1<br>B2.1                                                           | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit           360           10           210           170           480           70           160 + ?           80 +?           Koordinaten:           Mächtigkeit           120 + ?           Koordinaten:           0           570           80 + ?                                                                                                                                                                                        | Probe           P 24/1           P 24/2           P 24/3           P 24/4 <b>R:54 06 5 P 25/3</b> P 25/2           P 25/1           P 25/5           P 25/5           P 25/6           P 25/7 <b>R:54 33 5 P 25/7 R:54 33 5 P 26/8</b>                                                                                                                                                                                                                                                                                                                 | Beschreibung         Mittelsandstein – Feinsandstein dukelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert         Grobsandstein in Feinsandstein übergehend leilgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet         Schwarzer Tonstein – Siltstein         Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)         Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel all B3-4 cm. Auttreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben         Mittelsandstein grau-dukelgrau/schwarz; sehr viele glänzenden Komponenten         Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert         Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert         Grobsandstein grau, in Bänken a 20-30 cm         Siltstein – Tonstein / Siltstein Schwarz         Mittelsandstein in grau, in Bänken a 20-30 cm         Siltstein – Tonstein / Siltstein Nuchsellagen mit Bänken a 2-3 cm         Grobsandstein hellgrau         Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)         Schichtlücke         Feinsandstein / Siltstein Nuchsellagen mit Bänken a 1-2 cm         Mittelsandstein / Siltstein Vechsellagen mit Bänken a 10 – 20 cm         Grobsandstein feilgrau       Tostein / Siltstein Vechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)         Schichtlücke       Feinsandstein / Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                  | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           80 + ?           80 + ?                                                                                                                                                                                                                                                             | Probe           P 24/1           P 24/2           P 24/2           P 24/3           P 24/3           P 24/2           P 24/3           P 25/3           P 25/4           P 25/6           P 25/7           P 25/8           P 25/6           P 70be           P 26/8                                                                                                                                                                             | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzkilfren, wie drüben in Trögem (Nr.2); Bänke von 20(unten)-40(oben) cm.           Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Sinstein           Feinsandstein versensdestein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein hellgrau           Grobsandstein rung in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein verse gradient; Jistein Vechsellagen mit Bänken bis 70 cm           Tonstein – Siltstein schwarz           Mittelsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein – Jiltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein j Siltstein – Tonstein (schwarz) Wechsellagerung, unten alle 2-3 cm Wechsel (gleichmächtig); nach oben (ab 500) Abnahme der           Feinsandstein (grau)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br><b>Profil 25</b><br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(13)<br>(14)<br><b>Profil 26</b><br>Schicht<br>(1)<br>(12)<br>(13)<br>(14)<br><b>Profil 26</b><br>Schicht<br>(1)<br>(12)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                 | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           800 + ?           800           370 + ?                                                                                                                                                                                                                                                  | Probe           P 24/1           P 24/2           P 25/3           P 25/3           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           P 26/8           P 26/8                                                                                                                                                         | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm. jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Mittelsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm.           Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau, Bänken von 20 – 30 cm, normal gradiert           Grobsandstein regu in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken a 2-3 cm           Feinsandstein / Siltstein Vechsellagen mit Bänken a 2-3 cm           Feinsandstein – Mittelsandstein, nit einzelnen Komponenten größer alls 2 mm. Sänke a 40 –50 cm           Grobsandstein - Mittelsandstein, mit einzelnen Komponenten größer alls 2 mm. Bänke a 40 –50 cm           Grobsandstein fellgrau           Feinsandstein / Siltstein – Tonstein (schwarz) Wechsellagerung, unten alle 2-3 cm Wechsel (gleichmächtig); nach oben (ab 500) Abnahme der Feinsandstein fellgrau) / Siltstein – Tonstein (schwarz) Wechseellagerung, unten alle 2-3 cm Wechsel (gleichmächtig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>Profil 26<br>Schicht<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                         | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           80 + ?           100           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           80 + ?           800           370 + ?           50                                                                                                                                                                                                                                                                                       | Probe           P 24/1           P 24/2           P 25/3           P 25/2           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe           P 26/8           P 26/8           P 26/1           P 26/1                                                                                                       | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Feinsandstein übergehend grau-hellgrau; mit Quarzklüffen, wie drüben in Trögern (Mr.2), Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein grau-drunkelgrau/schwarz; sehr viele glänzenden Komponenten; dickbankig (2 x 40)<br>Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein engrau-drunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau<br>Grobsandstein feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein faru (Jackbankig) (2 x 40)<br>Siltstein – Tonstein / Feinsandstein hellgrau<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, In Bänken a 20-30 cm<br>Siltstein – Tonstein / Bittelsandstein; hellgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Grobsandstein faru, horizontal laminiert<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm;<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm;<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm;<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein / Siltstein Wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein / Siltstein Wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein / Siltstein - Tonstein (schwarz) Wechsellagerung, unten alle 2-3 cm Wechsel (gleichmächtig); nach oben (ab 500) Abnahme                      |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(11)<br>(12)<br>(13)<br>(14)<br>(11)<br>(12)<br>(13)<br>(14)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(3)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                   | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Mächtigkeit           360 - ?           Mächtigkeit           360 - ?           Mächtigkeit           360 - ?           10           210           170           480           70           160 + ?           80 +?           Mächtigkeit           1100           10           570           80 + ?           800           370 + ?           50           100                                                                                                                                                                                                                                                 | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 25/3           P 25/2           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe           P 26/8           P 26/8           P 26/1           P 26/2                                                                                                       | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Feinsandstein übergehend hellgrau (mormal gradiert)           Biltstein – Mittelsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Sittstein           Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenter; dickbankig (2 x 40)           Sittstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein hellgrau           Biltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein period (2 x 40)           Biltstein – Tonstein / Feinsandstein; hellgrau/braun in Bänken bis 70 cm           Tonstein – Siltstein Subardstein, hellgrau/braun in Bänken bis 70 cm           Tonstein – Siltstein Norborzontal laminiert           Feinsandstein / Siltstein Vachsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein all (2 x 40)           Siltstein – Siltstein Suchsen a 1-2 cm           Mittelsandstein feilgrau – Totstein (3 kinken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlüc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(13)<br>(14)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(1)<br>(12)<br>(13)<br>(14)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                         | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           800           370+ ?           50           100           30                                                                                                                                                                                                                                                   | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 25/3           P 25/1           P 25/6           P 26/6           P 26/8           P 26/8           P 26/8           P 26/1           P 26/2                    | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Feinsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (N-2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend grau-hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Siltstein           Feinsandstein – Siltstein           Feinsandstein – Siltstein           Feinsandstein en Statein Vechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein hellgrau           Grobsandstein hellgrau           Grobsandstein hellgrau           Grobsandstein feinzenstein Feinzendstein vechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein prau-ubelgrau/brau in Bänken so 20 – 30 cm, normal gradiert           Grobsandstein feinzen, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein / Tonstein – Siltstein schwarz           Mittelsandstein grau, in Bänken von 20 - 30 cm           Siltstein – Tonstein / Siltstein Schwarz           Mittelsandstein / Siltstein Schwarz           Mittelsandstein / Siltstein Schwarz           Mittelsandstein / Siltstein Schwarz           Siltstein – Tonstein / Siltstein / Schwarze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>Profil 26<br>Schicht<br>(1)<br>(12)<br>(13)<br>(14)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                   | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           80 + ?           800           370 + ?           50           100           30           80                                                                                                                                                                                              | Probe           P 24/1           P 24/2           P 25/3           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           P 26/8           P 26/8           P 26/2           P 26/2                                                                                                                       | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken vol 0 – 15 cm. jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Feinsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögen (Nr.2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)           Silistein – Tonstein / Feinsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)           Silistein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau, -uhnkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein hellgrau           Worts 500 / H:14 79 500-14 82 000           Beschreibung           Grobsandstein mäknen von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken a 2-3 cm           Mittelsandstein grau, in Bänken a 2-3 cm           Feinsandstein / Siltstein - Tonstein grau, horizontal laminiert           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein / Siltstein - Tonstein (schwarz) Lyditen; in Bänken a 10 – 20 cm           Grobsandstein hellgrau           Mittelsa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>B2.1<br>C2.4<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3         | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360           360           10           290           360 + ?           Koordinaten:           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           1100           10           570           80 + ?           800           370 + ?           50           100           30           80           30           80           20                                                                                                                                                                                 | Probe           P 24/1           P 24/2           P 24/3           P 24/4           R:54 06 5           P 25/3           P 25/2           P 25/2           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe           P 26/8           P 26/1           P 26/2           P 26/3                                                                                                                                                                                                          | Beschreibung           Mittelsandstein – Feinsandstein dunkelgrau, in Bänken volt 0 – 15 cm., jede Bank invers gradiert; insgesamt normal gradiert           Grobsandstein in Feinsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögen (Nr.2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögen (Nr.2); Bänke von 20(unten)-40(oben) cm           Sittstein – Tonstein – Slitstein           Feinsandstein mätering aus-dunkelstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)           Sittstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel ale 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-unkelstein; znel-braun, mit vielen glänzenden Komponenten           Grobsandstein grau-un Bänken von 20 – 30 cm, normal gradiert           Grobsandstein - Mittelsandstein; hellgrau/braun in Bänken bis 70 cm           Tonstein – Siltstein schwarz           Wintelsandstein Mittelsandstein; nellgrau/braun in Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein / Siltstein verselsegun mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein / Siltstein verselsegun mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke           Feinsandstein (grau – bräunlich, mit einzelnen Komponenten g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(7)<br>(10)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.3<br>C2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                 | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Mächtigkeit           360 + ?           Mächtigkeit           360 + ?           Mächtigkeit           360 + ?           80 + ?           80 + ?           80 + ?           Mächtigkeit           1100           10           570           80 + ?           800           370+ ?           50           100           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30 <tr td=""></tr>    | Probe           P 24/1           P 24/2           P 24/3           P 24/4           R:54 06 5           P 25/3           P 25/2           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           P 25/7           R:54 33 5           P 26/8           P 26/1           P 26/3           P 26/3                                                                                                                                                                                                      | Beschreibung         Mittelsandstein – Feinsandstein dunkelgrau, in Bänken vol 0 – 15 cm., jede Bank invers gradiert; insgesamt normal gradiert         Grobsandstein in Feinsandstein übergehend hellgrau; mit Quarzklüften, wie drüben in Trögen (Nr.2); Bänke von 20(unten)-40(oben) cm         Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet         Schwarzer Tonstein – Slitstein         Feinsandstein – Mittelsandstein; grau-braun, mit vielen glänzenden Komponenten; dickbankig (2 x 40)         Slitstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben         Mittelsandstein grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten         Grobsandstein nellgrau         100-54 8 500 / H:14 79 500-14 82 000         Beschreibung         Grobsandstein sign grau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten         Grobsandstein sign grau, in Bänken von 20 – 30 cm, normal gradiert         Grobsandstein sign grau, in Bänken a 2-3 cm         Feinsandstein / Siltstein Vochsellagen mit Bänken a 2-3 cm         Feinsandstein / Siltstein Vochsellagen mit Bänken a 2-3 cm; am Top dünne Vulkanitlage (5 cm)         Schichtlücke         Feinsandstein / Siltstein / Siltstein / Tonstein raz, uhorstein, zra, an top dünne Vulkanitlage (5 cm)         Schichtlücke         Feinsandstein jargu – träunlich, mit Bänken a 1-2 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(12)<br>(13)<br>(14)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(10)<br>(11)<br>(12)<br>(13)<br>(11)<br>(12)<br>(13)<br>(11)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>Lithofazies<br>C2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                  | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit           360           10           20           160 + ?           80 +?           180           120 + ?           Koordinaten:           Mächtigkeit           1100           160 + ?           80 +?           180           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           80 + ?           800           370+ ?           50           100           30           80           20           30           20           30           30           30           30           30           30           30           30           30 <tr td=""></tr> | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 25/3           P 25/2           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe           P 26/8           P 26/8           P 26/8           P 26/3           P 26/3           P 26/4           P 26/5                                                                     | Beschreibung<br>Mittelsandstein – Feinsandstein dunkelgrau, in Bänken von 10 – 15 cm, jele Bank invers gradiert; insgesamt normal gradiert<br>Grobsandstein in Mittelsandstein übergehend prau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm<br>Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Sittstein<br>Feinsandstein – Mittelsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein prau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten<br>Grobsandstein nellgrau<br>200-54 05 00 / H:14 79 500-14 82 00<br>Beschreibung<br>Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert<br>Grobsandstein - Nittelsandstein, hellgrau/braun in Bänken bis 70 cm<br>Tonstein – Siltstein schwarz<br>Mittelsandstein, nellgrau<br>Beschreibung<br>Grobsandstein Nellgrau<br>Feinsandstein - Siltstein Wechsellagen mit Bänken a 2-3 cm<br>Feinsandstein - Siltstein Wechsellagen mit Bänken a 1-2 cm<br>Mittelsandstein regru – träunlich, mit einzelnen Komponenten größer als 2 mm; Bänke a 40 –50 cm<br><b>100-543 300D / H:14 86 000-148 500</b><br><b>100-543 300D / H:14 86 000-14</b><br>Schwarz – grauer Siltstein – Tonstein (schwarz) Wechsellagen gm, unten alle 2-3 cm Wechsel (gleichmächtig); nach oben (ab 500) Abnahme der<br>Feinsandstein Bänke: 30 cm Siltstein – Tonstein (schwarz) Wechsellagen Bänkchen a 30 – 40 cm, ripp up clasts an der Basis<br>Schichtlicke<br>Devonkalk<br>Siltstein – Tonstein In Bänken vo 2-3 cm<br>Feinsandstein – Mittelsandstei |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>Profil 26<br>Schicht<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                           | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Mächtigkeit           1100           10           570           800           370+ ?           50           100           30           80           20           130           50                                                                                                                                                                                               | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 24/2           P 24/3           P 24/2           P 24/2           P 24/2           P 24/2           P 24/2           P 24/2           P 24/3           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           P 26/8           P 26/8           P 26/3           P 26/3           P 26/3           P 26/3           P 26/3                                                                                     | Beschreibung           Mittelsandstein – Feinsandstein übergehend grau-hellgrau; mit Quarzklüften, wie drüben in Trögern (Nr.2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend hellgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Siltstein           Grobsandstein in Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein rau-dunkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein neilgrau           Ø0-54 08 500 / H:14 79 500-14 82 000           Beschreibung           Grobsandstein neilgrau           Ø0-54 08 500 / H:14 79 500-14 82 000           Beschreibung           Grobsandstein grau, un Bänken von 20 – 30 cm, normal gradiert           Grobsandstein mänken a 20-30 cm           Mittelsandstein, Nellgrau/brau in Bänken bis 70 cm           Feinsandstein hellgrau           Breissandstein jarau, horizontal Raimken a 2-3 cm           Grobsandstein neilgrau           Feinsandstein hellgrau           Feinsandstein - Siltstein Bänken a 1-2 cm           Mittelsandstein, Bellgrau – Tötelin in Bänken a 1-2 cm           Feinsandstein in Bellgrau – Tötelin in Bänken a 1-2 cm           Mittelsandstein - Solten staft geschiefert, glänzend           Schwarz - Torauer Siltstein Bechestella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16)<br>(16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                   | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Koordinaten:           Mächtigkeit           360 + ?           Koordinaten:           Mächtigkeit           300           10           210           170           480           70           140           20           160 + ?           80 +?           1100           10           570           80 + ?           800           370+ ?           50           100           30           80           20           30           30           30           30           30           30           30           30           30           30           30           30           30 <tr td=""></tr>           | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 25/3           P 25/2           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           P 26/8           P 26/8           P 26/8           P 26/1           P 26/3           P 26/3           P 26/3           P 26/5           P 26/6                 | Beschreibung           Mittelsandstein – Feinsandstein üunkeigrau, in Bänken von 10 – 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Kitelsandstein in Mittelsandstein übergehend grau-heligrau; mit Quarzklüften, wie drüben in Trögern (NL-2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend heligrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein - Siltstein           Feinsandstein - Mittelsandstein übergehend heligraug (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Wittelsandstein grau-Unukergraus/schwarz; sehr viele glänzenden Komponenten (drobankig (2 x 40)           Bistein - Tonstein / Feinsandstein in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiert           Grobsandstein - Siltstein schwarz           Mittelsandstein, Paltres von Bänken a 20-30 cm           Siltstein - Tonstein grau, In Bänken a 20-30 cm           Siltstein - Siltstein schwarz           Mittelsandstein, Nechsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Wechsellagen mit Bänken a 1-2 cm           Mittelsandstein - Grobsandstein ; grau, mit schwarzen Lyditen; in Bänken a 10 – 20 cm           Grobsandstein fullgrau – Stein (schwarz) Wechsellagerung, unten alle 2-3 cm weis Bänk e a 40 – 50 cm           Wocheel as 00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>Profil 25<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(16)<br>(17)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                   | Mächtigkeit           270           160           480           10           80           160           290           360 + ?           Koordinaten:           Mächtigkeit           360           10           290           360 + ?           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           800           370+ ?           50           100           30           80           20           30           30           30           30           30           30           30           30           30           50           500           500           500           500           500                                                                        | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 25/3           P 25/4           P 25/5           P 25/6           P 25/6           P 25/6           P 26/8           P 26/8           P 26/1           P 26/3           P 26/3           P 26/3           P 26/6           P 26/7                                                      | Beschreibung           Mittelsandstein – Feinsandstein übergehend grau-heligrau; mit Quarzklüften, wie driben in Trögen (Nr.2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend heligrau (nrmäl gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hagenden horizontal geschichtet           Schwarzer Tonstein – Siltstein           Feinsandstein – Mittelsandstein übergehend heligrau (nrmäl gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hagenden horizontal geschichtet           Schwarzer Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Mittelsandstein grau-Unkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein grau. Unkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein grau. Unkelgrau/schwarz; sehr viele glänzenden Komponenten           Grobsandstein met Stein Schwarz           Mittelsandstein – Siltstein Schwarz           Mittelsandstein / Siltstein Vachwallagen mit Bänken a 2-3 cm           Grobsandstein heligrau           Feinsandstein / Siltstein Vachwallagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Vachsellagen mit Bänken a 2-3 cm           Feinsandstein / Siltstein Vachsellagen mit Bänken a 2-3 cm           Feinsandstein heligrau – Mittelsandstein, normal gradiert           Feinsandstein fuelora – Vatiler in Bänken a 2-3 cm           Feinsandstein heligrau – Siltstein Vonstene Komponenten gröber als 2 mm; Bänke a 40 –50 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br><b>Profil 25</b><br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(11)<br>(2)<br>(3)<br>(4)<br>(10)<br>(11)<br>(12)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(11)<br>(12)<br>(13)<br>(14)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12 | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                           | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360           360 + ?           Koordinaten:           Mächtigkeit           360           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           80 + ?           800           370+ ?           50           100           30           80           20           300           30           130           50           550           200           400 + ?                                                                                  | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 25/3           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe           P 26/8           P 26/8           P 26/8           P 26/2           P 26/3           P 26/3           P 26/6           P 26/6           P 26/6           P 26/7 | Beschreibung           Mittelsandstein – Feinsandstein üurkeigrau, in Bänken von 10 - 15 cm, jede Bank invers gradiert; insgesamt normal gradiert           Kittelsandstein in Keinsandstein übergehend grau-heilgrau; mit Quarzklütten, wie dribben in Trögen (IN-2); Bänke von 20(unten)-40(oben) cm           Mittelsandstein in Feinsandstein übergehend heilgrau (normal gradiert); Bänke von 10 (unten) – 30 (oben) cm. Im Hangenden horizontal geschichtet           Schwarzer Tonstein – Siltstein           Feinsandstein – Mittelsandstein ügrau-brauw, mit vielen glänzenden Komponenten, dickbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Grobsandstein faugu         Baschreibung           Grobsandstein faugu         Grobsandstein vechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben           Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiet         Grobsandstein grau in Bänken von 20 – 30 cm, normal gradiet           Grobsandstein grau, in Bänken von 20 – 30 cm, normal gradiet         Grobsandstein grau, in Bänken von 20 – 30 cm, ormal gradiet           Feinsandstein (Jättein Solverz)         Basken vec 23 cm; am Top dünne Vulkanitlage (5 cm)           Schichtlücke         Feinsandstein in grau, mit Schwarzen Lydiner, in Bänken a 10 – 20 cm           Grobsandstein heilgrau – bräunlich, mit einzelnen Komponenten größer als 2 mm; Bänke a 40 – 50 cm         Schichtlücke           Feinsandste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Profil 24<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br><b>Profil 25</b><br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br><b>Profil 26</b><br>Schicht<br>(1)<br>(1)<br>(12)<br>(13)<br>(14)<br><b>Profil 26</b><br>Schicht<br>(1)<br>(12)<br>(13)<br>(14)<br>(15)<br>(6)<br>(7)<br>(13)<br>(14)<br>(15)<br>(15)<br>(10)<br>(11)<br>(12)<br>(13)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(15)<br>(16)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithofazies<br>B2.1<br>C2.2<br>B1.2<br>B1.2<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                                                                                                                   | Mächtigkeit           270           160           480           10           80           360 + ?           Koordinaten:           Mächtigkeit           360           360           10           290           360 + ?           Koordinaten:           Mächtigkeit           300           10           210           170           480           70           140           20           160 + ?           80 +?           120 + ?           Koordinaten:           Mächtigkeit           1100           10           570           80           370+?           50           100           30           80           20           130           50           200           300           130           550           200           400 + ?           Koordinaten:                      | Probe           P 24/1           P 24/2           P 24/3           P 24/2           P 24/2           P 24/3           P 24/3           P 24/4           R:54 06 5           P 25/3           P 25/2           P 25/3           P 25/4           P 25/5           P 25/6           P 25/7           R:54 33 5           Probe           P 26/8           P 26/8           P 26/1           P 26/3           P 26/3           P 26/3           P 26/4           P 26/6           P 26/6           P 26/7                                                 | Deschreibung           Mittelsandstein – Feinsandstein übergehend grau-heilgrau, mit Quarzküften, wie drüben in Trögern (Mr.2). Bahev on 20(unten)-40(oben) om<br>Mittelsandstein in Mittelsandstein übergehend fagrau-heilgrau, (mmt guardeirt): Bahkev on 10 (unten) – 30 (oben) om. Im Hangenden horizontal geschichtet<br>Schwarzer Tonstein – Siltstein<br>Feinsandstein – Nittelsandstein wie Arbeinauschwarz, sehr vielen glänzenden Komponenten; dickbankig (2 x 40)           Siltstein – Tonstein / Feinsandstein Wechsellagerung mit Wechsel alle 3-4 cm. Auftreten dünnbankig a 5 – 10 cm unten; dickbankig (40-60 cm) oben<br>Mittelsandstein grau-Unkelgrauschwarz, sehr viele glänzenden Komponenten<br>Grobsandstein hellgrau           Woos-40 8 500 /H:14 79 500-14 82 000         Beschreibung           Grobsandstein mellgrau         Banken von 20 – 30 cm, normal gradiett<br>Grobsandstein mäten schwarze           Mittelsandstein grau, in Bähken vo 20 – 30 cm, normal gradiett<br>Grobsandstein Mittelsandstein, 'hellgraubraun in Bähken bis 70 cm<br>Tonstein – Siltetin Schwarze         Mittelsandstein<br>Grobsandstein Mittelsandstein, 'hellgraubraun in Bähken a 2-3 cm<br>Erisandstein Grau, Nitstein Mechellagen mit Bähken a 2-3 cm<br>Feinsandstein / Siltstein – Tonstein grau, horizontal laminiet<br>Feinsandstein (Siltstein – Tonstein Grobsandstein in grau, mit schwarzen Lyditen; in Bähken a 10 – 20 cm<br>Mittelsandstein: grau – träulich in Bänkchen a 1-2 cm<br>Mittelsandstein grau – bätistein – Tonstein (schwarz) Wechsellagerung, unten alle 2-3 cm (Banken a 10 – 20 cm<br>Mittelsandstein (grau) / Siltstein – Tonstein (schwarz) Wechsellagerung, unten alle 2-3 cm Wechsel (gleichmächtig); nach oben (ab 500) Abnahme der<br>Feinsandstein (grau) / Siltstein – Tonstein (schwarz) Wechsellagerung, unten alle 2-3 cm Wechsel (gleichmächtig); nach oben (ab 500) Abnahme der<br>Feinsandstein (grau) / Siltstein / Tonstein,                                                                                                                                                                                                              |

| (1)                                                                                                                                                                                                                                                                                                                         | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400 +?                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anstehende Wechsellagerung Feinsandstein / Siltstein schwarz – grau (beide 2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)<br>(3)                                                                                                                                                                                                                                                                                                                  | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70<br>800                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mittelsandstein grau, dickbankig (30 – 40 cm)<br>Wie (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                  | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300<br>250                                                                                                                                                                                                                    | P 27/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grobsandstein hellbraun – grau in Bänken von 20 – 40 cm, mit großen schwarzen + weißen Komponenten (bis 2 mm)<br>Siltstein schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (6)                                                                                                                                                                                                                                                                                                                         | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 380<br>800 +2                                                                                                                                                                                                                 | P 27/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mittelsandstein – Grobsandstein grau, dünnbankig a 10 – 20 cm<br>Feinsandstein bellgrau in 2 cm Bänkchen / Siltstein dunkelgrau Wechsellagerung, ziemlich gestört und geschiefert: eventuell ist (7) auch eine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (7)                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000 11                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Doppelung von (1), da hier Sf sich ändert : 350/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Profil 28<br>Schicht                                                                                                                                                                                                                                                                                                        | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Koordinaten:<br>Mächtigkeit                                                                                                                                                                                                   | R:54 33 5<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00-54 34 000 / H:14 32 000-14 31 800<br>Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1)                                                                                                                                                                                                                                                                                                                         | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 290 + ?                                                                                                                                                                                                                       | P 28/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stark geschieferter Mittelsand – Feinsand in Lagen von 1-2 cm; hellgrau, plattig, wird nach oben hin zu Feinsand dazwischen ausgequetschte<br>Tonhäutchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (2)<br>(3)                                                                                                                                                                                                                                                                                                                  | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30<br>250                                                                                                                                                                                                                     | P 28/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wechselfolge Siltstein / Feinsand in 1-2 cm Bänken nach oben hin in 0,5 cm Bänkchen übergehend<br>Grobsand grau, leicht geschiefert, massig in 20 – 30 cm Bänkchen (dazwischen Tonhäutchen) und Einzelkomponenten bis 2 cm; nach oben hin<br>geringere Mächtigkeit (5 – 10 cm) und übergehend in Wechsellagerung mit Siltstein (1 – 2 cm)/ Mittelsand → bis 100 dickbankig, ab dann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160<br>70                                                                                                                                                                                                                     | P 28/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wechselfolge<br>Wechselfolge von (3) oben, aber kein Grobsand sondern Mittelsand<br>Mittelsand – Grobsand mit vielen Qz – Klüften in Bänken á 10 – 20 cm, grau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (6)<br>(7)                                                                                                                                                                                                                                                                                                                  | A2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>240                                                                                                                                                                                                                     | P 28/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tonstein schwarz<br>Grobsand – Feinkies → Brekzie; sehr eckige Komponenten, schwarz, grau, etc. in 0,5 – 1 cm Größe. Sie schwimmen in einer Feinsand – Mittelsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (8)                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix. Stark geschiefert und ausgequetscht. Komponenten eingeregelt längs der Sf; in Lagen von 5 – 10 cm vorkommend. Bankig<br>Grauer Mittelsand mit schwarzen Lyditen /Glimmer, in Bänken á 10 – 20 cm; weiter unten kommt es noch mal heraus → mind. 250; + Rip up clasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (9)                                                                                                                                                                                                                                                                                                                         | B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250 + ?<br>200                                                                                                                                                                                                                | P 28/5<br>P 28/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dünnbankige (1-2 cm) Mittelsand mit großen weißen Komponenten länglich bis 1 cm; hellgrau und dünnen schwarzen ausgequetschten Tonhäutchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (10)                                                                                                                                                                                                                                                                                                                        | C2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                           | D 29/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = Ripp up clasts<br>Grauer Feinsand, dünnbankig 2-3 cm, mit dünnen Tonhäutchen dazwischen; Flächen stark glänzend, planare Schrägschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (11)<br>(12)                                                                                                                                                                                                                                                                                                                | 62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70<br>50                                                                                                                                                                                                                      | P 20/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mittelsand – folicher Globsand in dünnen Lagen, tektonisch ausgequetscht (1 cm) mit Qz bis 2 mm, gut gerundet; glänzende Oberfläche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (13)                                                                                                                                                                                                                                                                                                                        | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                            | P 28/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eine dicke Bank aus cm – mächtigen Schichten von Mittelsand – Feinsand grau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (15)<br>(16)                                                                                                                                                                                                                                                                                                                | A2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40<br>50                                                                                                                                                                                                                      | P 28/9<br>P 28/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dunkeigrauer Mittelsand – Feinsand in 0,5 cm Schichten; stark geschiefert mit glanzenden Komponenten<br>Grobsand – Feinkies mit Lyditen + weißen Komponenten bis 1 cm; Matrix ist Grobsand; nicht ganz so geschiefert, Oberfläche glänzt trotzdem; Bänke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (17)<br>(18)                                                                                                                                                                                                                                                                                                                | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80<br>310                                                                                                                                                                                                                     | P 28/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feinsand schwarz mit glänzenden Komponenten<br>Mittelsand – Grobsand (hellgrau – rot) in Lagen von 0,5 cm; frisch = grau mit weißen Schlieren in Wechsellagerung mit schwarzen Silten → unten bis<br>50 fast nur Sandstein mit einer Siltlage von 2 cm; von 50 – 200 Wechsellagerung 3-4 cm beide; ab 200 – 319 größere Siltlagen (5 cm Sandstein ; 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (19)                                                                                                                                                                                                                                                                                                                        | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cm Siltstein ) und Sandstein geht nach oben in Feinsand über.<br>Mittelsand – Grobsand dunkelgrau mit glänzenden Komponenten ins Hangende in Feinsand übergehend; dicke Bänke (immer eine), darin Schichten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (20)<br>(21)                                                                                                                                                                                                                                                                                                                | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>100                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Schwarzer Sittstein / Tonstein im mm-Bereich wechselnd<br>Hellarau – rötlicher Grobsand in 10 – 20 cm Bänken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (22)                                                                                                                                                                                                                                                                                                                        | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>60                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mittelsand – Grobsand in dünnen Lagen, tektonisch ausgequetscht (1 cm) mit Qz bis 2 mm, gut gerundet; glänzende Oberfläche<br>Hellorau – rötlicher Grobsand in 10 – 20 cm Bänken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (24)                                                                                                                                                                                                                                                                                                                        | C2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>30                                                                                                                                                                                                                      | P 28/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsand – Grobsand in dünnen Lagen, tektonisch ausgequetscht (1 cm) mit Qz bis 2 mm, gut gerundet; glänzende Oberfläche Hellarau – rötlicher Grobsand in 10 – 20 cm Bänken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (26)                                                                                                                                                                                                                                                                                                                        | B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>430                                                                                                                                                                                                                     | P 28/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsand – Grobsand in dünnen Lagen, tektonisch ausgequetscht (1 cm) mit Qz bis 2 mm, gut gerundet; glänzende Oberfläche<br>Feinsand – Mittelsand stark geschiefert = (1) von a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Profil 29                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Koordinaten:                                                                                                                                                                                                                  | R:53 61 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50-53 59 700 / H:14 47 500-14 45 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                              | Lithofazies<br>T1.1/K1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mächtigkeit<br>150                                                                                                                                                                                                            | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beschreibung<br>Schwarzer Siltstein mit glänzenden Partikeln (antrazit Farben) horizontal laminiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (2)                                                                                                                                                                                                                                                                                                                         | K1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 + ?                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Brauner Feinsand (Verwitterung); an Basis frisch : Grobsand hellgrau (P 29/12) mit schwarzen Klasten; noch weiter unten Grobsand – Feinkies , karbonatisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3)                                                                                                                                                                                                                                                                                                                         | K1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500 + ?                                                                                                                                                                                                                       | P 29/12<br>P 29/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kalk der Auernigschichten, biogenführender Mudstone mit Zwischenlagen aus Packstone (Komponentengestützter Kalkstein)(Großforaminiferen).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                  | I 1.1/K1.1<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200<br>250                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Schwarzer Siltstein mit glanzenden Partikeln (anthrazitarben) horizontal laminiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Feinsand in dunnen Lagen (0,5 cm) + Bankchen → tektonisch ausgequetscht, viel Heilglimmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (6)<br>(7)                                                                                                                                                                                                                                                                                                                  | S2.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>380                                                                                                                                                                                                                    | P 29/11<br>P 29/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feinsand in dunnen Lagen (u, 5 cm) + bankchen → tektonisch ausgeduetscht, viel Heiligimmer<br>Hellgrauer Grobsand in Bänken á 10 – 20 cm, trogförmig schrägeschichtet; Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120<br>380<br>Ca.1000                                                                                                                                                                                                         | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feinsand in durinen Lagen (u,o cm) + bankchen → tektonisch ausgequetscht, viel Heiligimmer<br>Heilgrauer Grobsand in Bärken á 10 – 20 cm, trogförmig schrägeschichtet, Linear: 199/19 = SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Korntypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000                                                                                                                                                                                                         | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Feinsand in dunnen Lagen (u,o cm) + Bankchen → tektonisch ausgequetscht, viel Heiligimmer<br>Hellgrauer Grobsand in Bänken á 10 – 20 cm, trogförmig schrägeschichtet; Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten ⊘ der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzel (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000                                                                                                                                                                                                         | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Feinsand in dunnen Lagen (0, 5 cm) + Bankchen → tektonisch ausgeduetscht, viel Heiligimmer<br>Hellgrauer Grobsand in Bänken á 10 – 20 cm, trogförmig schrägeschichtet, Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Korntypen (schwarze Klasten, graue etc.) Unten ⊘ der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Siltstein – Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (6)<br>(7)<br>(8)<br>(9)                                                                                                                                                                                                                                                                                                    | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380                                                                                                                                                                                                  | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Feinsand in dunnen Lager (0,o cm) + Bankchen → tektonisch ausgequetscht, viel Heilgimmer<br>Heilgrauer Grobsand in Barken á 10 – 20 cm, trogförmig schrägeschichtet, Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Oz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch tark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat mit sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)                                                                                                                                                                                                                                                                                    | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620                                                                                                                                                                                    | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/8<br>P 29/5<br>P 29/4<br>P 29/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feinsand in dunnen Lagen (u, c cm) + Bankchén → tektonisch ausgequetscht, viel Heilgimmer<br>Heilgrauer Grobsand in Bänken á 10 – 20 cm, trogfórmig schrägeschichtet, Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Korntypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Siltstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat mit sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiet Ø von 1 – 4 cm<br>Qz – Konglomerat bas verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiet Ø von 1 – 4 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)                                                                                                                                                                                                                                                                            | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160                                                                                                                                                                             | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/8<br>P 29/5<br>P 29/4<br>P 29/3<br>P 29/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Feinsand in dunnen Lagen (0, c cm) + Bankchen → tektonisch ausgequetscht, viel Heilginnmer</li> <li>Hellgrauer Grobsand in Barken á 10 – 20 cm, trogfórmig schrägeschichtet, Linear: 199/19 = SSW, evtl. HCS</li> <li>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal gradiert) und mehrere unterschiedliche Korntypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet 80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS</li> <li>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (&lt; 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)</li> <li>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal geschichtet</li> <li>20 schwarzer Siltstein – Tonstein</li> <li>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen</li> <li>Qz – Konglomerat mit sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend</li> <li>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm</li> <li>Qz – Konglomerat besser sortiert als (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix, hell + glimmerreich; nach unten feiner werdend Qz = 0,5 – 1 cm; von unten P 29/3</li> <li>Mittelsand grau mit weißen Einsprenglingen → Qz; leicht geschieftert, auftreten in Bänken á 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)                                                                                                                                                                                                                                                                                   | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160                                                                                                                                                                             | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/8<br>P 29/4<br>P 29/3<br>P 29/1<br>P 29/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feinsand in dunnen Lager (0, 5 cm) + Bankchen → tektonisch ausgeduetscht, Viel Heilgimmer<br>Hellgrauer Grobsand in Barken á 10 – 20 cm, trojfórmig schrägeschichtet, Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch stark deformieter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat tark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat mit sehr gut gerundeten Qz $0 = 0, 5 - 1$ cm; von unten P 29/3<br>Mittelsand grau mit weißen Einsprenglingen $\rightarrow$ Qz; leicht geschiefert, auftreten in Bänken á 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die grauen Lagen (P 29/1) alle 2 – 3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau verwittert zurück                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)                                                                                                                                                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>60                                                                                                                                                                       | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/8<br>P 29/4<br>P 29/3<br>P 29/1<br>P 29/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feinsand in dunnen Lager (U), c cm) + Bankchen → tektonisch ausgequetscht, viel Heilginnmer<br>Heilgrauer Grobsand in Bakken á 10 – 20 cm, trojfórmig schrädgesquetscht, viel Heilginmer<br>Heilgrauer Grobsand in Bakken á 10 – 20 cm, trojfórmig schrädgeschichtet, Linear: 199/19= SSW, evit. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0.5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0.5 cm (P29/6), evit. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat tark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat tester sortiert 18 (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz Ø= 0,5 – 1 cm; von unten P 29/3<br>Mittelsand grau mit weißen Einsprenglingen → Qz; leicht geschiefert, auftreten in Bänken á 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die grauen Lagen (P 29/1) alle – 3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau verwittert zurück<br>10 – 20 Wechsellage Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat tind Qz in 0,5 – 2 cm Größe; Zwickel mit Ton – Siltstein lagen, die ausgeschmiert sind $\rightarrow$ schwar                                                      |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)                                                                                                                                                                                                                                                                   | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>G1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?                                                                                                                                                                  | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/8<br>P 29/4<br>P 29/3<br>P 29/1<br>P 29/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feinsand in dunnen Lagen (u, c) cm) + Bankchén → tektonisch ausgequetscht, viel Heilginnmer<br>Heilgrauer Grobsand in Bänken á 10 – 20 cm, trojfórmig schrägeschichtet, Linear: 199/19 = SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Kontypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Siltstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat mit sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturier Ø von 1 – 4 cm<br>Qz – Konglomerat bis en sortiert als (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz Ø = 0,5 – 1 cm; von unten P 29/3.<br>Mittelsand grau mit weißtelsand (P 29/1) alle 2 –3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm;<br>120 - 140 Mittelsand grau verwittert zurück<br>10 – 20 Wechsellage Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat mit Qz in 0,5 – 2 cm Größe; Zwickel mit Ton – Siltstein lagen, die ausgeschmiert sind → schwarz<br>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz Ø bis 4 cm                                                                                                                                                                                                   |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)                                                                                                                                                                                                                                                   | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>G1.1<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80                                                                                                                                                            | P 29/11<br>P 29/9<br>P 29/10<br>P 29/10<br>P 29/17<br>P 29/8<br>P 29/5<br>P 29/4<br>P 29/3<br>P 29/1<br>P 29/2<br>P 29/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Heinsand in dunnen Lagen (0,5 cm) + Bankchén → tektonisch ausgequetscht, viel Heilgimmer</li> <li>Hellgrauer Grobsand in Barken á 10 - 20 cm, trojfórmig schrädeschichtet, Linear: 199/19= SSW, evtl. HCS</li> <li>Graues Qz - Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet 80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS</li> <li>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (&lt; 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)</li> <li>120 tektonisch stark deformieter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal geschichtet</li> <li>20 schwarzer Sittstein – Tonstein</li> <li>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen</li> <li>Qz - Konglomerat tis sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend</li> <li>Qz - Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm</li> <li>Qz - Konglomerat besser sortiert als (1); weniger tektonisch beansprucht der verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix, hell + glimmerreich, nach unten feiner werdend QZ = 0,5 – 1cm; von unten P 29/3</li> <li>Mittelsand grau mit weißen Einsprenglingen → Qz; leicht geschiefert, auftreten in Bänken á 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz – Feinsand in den die grauen Lagen (P 29/1) alle 2 – 3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):</li> <li>120 - 140 Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)</li> <li>Qz - Konglomerat mit Qz in 0,5 – 2 cm Größe; Zwickel mit Ton – Sittstein lagen, die ausgeschmiert sind → schwarz</li> <li>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (heili); Sehr</li></ul>                                                                                                           |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)                                                                                                                                                                                                                                   | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200                                                                                                                                                | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/8<br>P 29/3<br>P 29/4<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feinsand in dunnen Läger (U), s cm) + Bankchén → tektonisch ausgequetscht, Viel Heilgimmer<br>Hellgrauer Grobsand in Bänken á 10 – 20 cm, trojfórmig schrädeschichtet, Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0.5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0.5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat tark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat tesser sortiert als (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz Ø= 0,5 – 1 cm; von unten P 29/3<br>Mittelsand grau umi weißen Einsprenglingen → Qz; leicht geschiefert, auftreten in Bänken á 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die grauen Lagen (P 29/1) alle 2 – 3 cm eingeschaltet sind mid Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau verwittert zurück<br>10 – 20 Wechsellage Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat is schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz Ø bis 4 cm<br>Schichtlücke<br>Hellgrauer Feinsand –                                                           |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(12)                                                                                                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200                                                                                                                                                | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/8<br>P 29/4<br>P 29/3<br>P 29/4<br>P 29/2<br>P 29/20<br>P 29/20<br>P 29/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feinsand in dunnen Lager (0,5 cm) + Bankchén → tektonisch ausgequeisch, Viel Heilgimmer<br>Heilgrauer Grobsand in Bärken á 10 – 20 cm, trojfórmig schrädgeschichtet, Linear: 199/19= SSW, evit. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evit. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat tark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz – Konglomerat bester sortiert als (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz Ø = 0,5 – 1 cm; von unten P 29/3<br>Mittelsand grau werittert zurück<br>10 – 20 Wechsellage Mittelsand (20, 0,5 – 3 – cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau verwittert zurück<br>10 – 20 Wechsellage Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz & bis 4 cm<br>Schichtlücke<br>Heilgrauer Feinsand – Mittelsand sehr gut sortiert/gut bioturbiert, HCS<br>Heilgrauer Feinsand – Siltstein stark geschiefert<br>Grauer Feinsand – Mit                                                    |
| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)                                                                                                                                                                                                            | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60                                                                                                                                    | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/21<br>P 29/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Feinsand in dunnen Lägen (U, 5 cm) + Bankchén → tektonisch ausgequetscht, Viel Heilginnmer</li> <li>Hellgrauer Grobsand in Bänken á 10 – 20 cm, tröfförnig schrädeschichtet, Linear: 199/19 = SSW, evtl. HCS</li> <li>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal gradiert) und mehrere unterschiedliche Kontypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet 80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS</li> <li>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (&lt; 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)</li> <li>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal geschichtet</li> <li>20 schwarzer Siltstein – Tonstein</li> <li>Danach irgendweiche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen</li> <li>Qz – Konglomerat mit sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend</li> <li>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturier Ø von 1 – 4 cm</li> <li>Qz – Konglomerat bis (1); weniger tektonisch beansprucht oder verfestigt. Ωz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix, hell + glimmerreich; nach unten feiner werdend Qz Ø = 0.5 – 1 cm; von unten P 29/3)</li> <li>Mittelsand grau verwittert zurück</li> <li>10 – 20 Wechsellage Mittelsand gruu (0,5 cm)/ Feinsand 2-3 cm (P29/2)</li> <li>Qz – Konglomerat mit Qz in 0,5 – 2 cm Größe; Zwickel mit Ton – Siltstein lagen, die ausgeschmiert sind → schwarz</li> <li>10 – 20 Wechsellage Mittelsand gruu (0,5 cm)/ Feinsand 2-3 cm (P29/2)</li> <li>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin gröber; Qz Ø bis 4 cm</li> <li>Schichtlücke</li> <li>Hellgrauer Feinsand – Mittelsand sehr gut so</li></ul>                                                                                                            |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)                                                                                                                                                                                                   | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?                                                                                                                   | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/8<br>P 29/4<br>P 29/3<br>P 29/4<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/22<br>P 29/22<br>P 29/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heinsand in dunnen Lagen (U.5 cm) + Bankoneh → tektonisch ausgequetscht, Viel Heiginimer<br>Hellgrauer Grobsand in Bänken á 10 – 20 cm, trofförmig schrägeschichtet; Linear: 199/19= SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet;<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke á 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendweiche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat taster sortiert als (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subroundet; 1-2 cm Ø, kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz Ø= 0,5 – 1 cm; von unten P 29/3<br>Mittelsand grau mit welßen Einsprenglingen → Qz; leicht geschiefert, auftreten in Bänken á 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die grauen Lagen (P 29/1) alle 2–3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau verwittert zurück<br>10 – 20 Wechsellage Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz bis 4 cm<br>Schichtlücke<br>Heilgrauer Feinsand – Sittstein stark geschiefert<br>Grauer Feinsand – Sittstein stark durchwüht → kein einheitliches Paket mehr, evtl. Überbleibsel von HCS; darunter jeweils mit einer 2 – 5 cm mächtigen<br>Tonstein – Sittstein stark durchwüht → kein einheitliches Paket mehr, evtl. Überbleibsel von HCS; darunter jeweils mit einer 2                                                          |
| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)                                                                                                                                                                                    | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?                                                                                                                   | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/7<br>P 29/8<br>P 29/3<br>P 29/4<br>P 29/20<br>P 29/20<br>P 29/20<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Feinsand in dunnen Lagen (U,S cm) + Bankchen → fektonisch ausgequeischt, Veil Heilginumer</li> <li>Heilgrauer Grobsand in Binken à 10 – 20 cm, trofförmig schrägeschichtet, Linear: 199/19– SSW, evtl. HCS</li> <li>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal gradiert) und mehrere unterschiedliche Komtypen (schwarzer Klasten, graue etc.) Unten Ø der Klasten: 0.5 cm (P29/10) trogförmig schrägeschichtet 180 Mittelsand grau – weiß in Lagen von 0.5 cm (P29/6), evtl. HCS</li> <li>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (&lt; 1%), Qz bis 0.5 cm Bänke å 5 cm (P 29/7)</li> <li>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal geschichtet</li> <li>20 schwarzer Siltstein – Tonstein</li> <li>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen</li> <li>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm</li> <li>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm</li> <li>Qz – Konglomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm</li> <li>Qz – Konglomerat tais (1); weniger tektonisch beansprucht oder verfestigt. Qz – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix, hell + glimmerreich; nach unten feiner werdend Qz 20 = 0.5 – 1 cm; von unten P 29/3</li> <li>Mittelsand grau unit weißen Einsprenglingen → Qz; leicht geschiefert, auftreten in Bänken å 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz – Feinsand in den die grauen Lagen (P 29/1) alle 2 – 3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):</li> <li>120 - 140 Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)</li></ul>                                                                                                              |
| <ul> <li>(6)</li> <li>(7)</li> <li>(8)</li> <li>(9)</li> <li>(10)</li> <li>(11)</li> <li>(12)</li> <li>(13)</li> <li>(14)</li> <li>(15)</li> <li>(16)</li> <li>(17)</li> <li>(18)</li> <li>(19)</li> <li>(20)</li> <li>(21)</li> <li>(22)</li> <li>(23)</li> <li>(24)</li> </ul>                                            | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?                                                                                                          | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/24<br>P 29/24<br>P 29/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Feinsand in dunnen Lägen (U,S cm) + Banchen $\rightarrow$ tektonisch ausgequetischt, Viel Heliginuer Grobsand in Banken à 10 – 20 cm, trogförmig schrägeschichtet, Linear 199/19– SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Kontypen (schwarze Klasten, graue etc.) Unten $\oslash$ der Klasten: 0,5 cm (P29/0) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralgehalt vereinzelt (< 1%), Oz bis 0,5 cm Bänke à 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Siltstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat mit sehr gut gerundeten Qz von $\oslash$ 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat mit sehr gut gerundeten Qz von $\oslash$ 2-5 cm; von unten P 29/3<br>Mittelsand grau mit weißen Einsprenglingen $\rightarrow$ Qz; leicht geschiefert, auftreten in Bänken à 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die graue Lagen (P 29/1) alle 2-3 cm eingeschaltet sind mit $\oslash$ von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau verwittert zurück<br>10 – 20 Wechsellage Mittelsand yrau (D,5 cm) / Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz $\oslash$ bis 4 cm<br>Schichtlücke<br>Hellgrauer Feinsand – Mittelsand sehr gut sortiert/gut bioturbiert, HCS<br>Hellgrauer Feinsand – Mittelsand sehr gut sortiert/gut bioturbiert, HCS<br>Hellgrauer Feinsand – Siltstein stark geschieffett<br>Grauer Feinsand – Siltstein stark geschieffett<br>Mittelsand hellbraun – rötlich mit vielen glänzenden Komponenten: Schieferungs-Schichtläche = 345/60 Lineare der trogförmigen Schrägsschichtung=<br>340/3 |
| <ul> <li>(6)</li> <li>(7)</li> <li>(8)</li> <li>(9)</li> <li>(10)</li> <li>(11)</li> <li>(12)</li> <li>(13)</li> <li>(14)</li> <li>(15)</li> <li>(16)</li> <li>(17)</li> <li>(18)</li> <li>(19)</li> <li>(20)</li> <li>(21)</li> <li>(22)</li> <li>(23)</li> <li>(24)</li> </ul>                                            | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?                                                                                                          | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/21<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/24<br>P 29/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Feinsand in dunnen Lagen (0,5 cm) + Bankchen - Yektonisch ausgeduetscht, vier Heilginumer<br>Heilgrauer Grobsand in Bänken å 10 – 20 cm, trogformig schärgeschichtet, Linear: 1991/19–SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) um dehrere unterschiedliche Komtypen (schwarze Klasten, graue etc.) Unten $\oslash$ der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stah; glänzend durch Mineralgehalt vereinzelt (< 1%), Qz bis 0,5 cm Bänke å 5 cm (P29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat tistste yrut gerundeten Qz von $\oslash$ 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat tistste yrut gerundeten Q2 von $\oslash$ 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat tistste yrut gerundeten Q2 von $\oslash$ 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat tiststen sentiert als (1); weniger tektonisch beansprucht der verfestigt. Qz – Klasten rund bis subroundet; 1-2 cm $\oslash$ , kaum Matrix,<br>hell + glimmereich; nach unten feiner werdend Qz $\oslash$ = 0,5 – 1 cm; von unten P 29/3<br>Mittelsand grau vertiert zurück<br>10 – 20 Wechsellage Mittelsand Jza (0,5 cm) / Eeinsand 2-3 cm (P29/2)<br>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz $\oslash$ bis 4 cm<br>Schlictücke<br>Heilgrauer Feinsand – Sittstein stark geschieft<br>Grauer Feinsand – Sittstein stark durchwühlt + kein einheltliches Paket mehr, evtl. Überbleibsel von HCS; darunter jeweils mit einer 2 – 5 cm mächtigen<br>Tonstein – Sittsteinlage 11 Bänke alle ca. 20 – 30 cm mächtig; nach unten hin Mittelsand werdend.<br>Unten Sittstein a – Sittstein stark        |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(25)                                                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>200                                                                                                   | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/24<br>P 29/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heinsand in dunnen Lagen (U.S cm) + Bankchen → tektonisch ausgequetscht, viel Heitgiummer<br>Heilgrauer Grobsand in Bänken a 10 – 20 cm, trogformig schrägeschichtet, Linear. 19919 = SSW, evtl. HCS<br>Graues Qz – Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P299), nach oben feiner werdend (normal<br>gradiert) um herhere unterschiedliche Kontypen (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0,5 cm (P29/10) trogförmig schrägeschichtet<br>80 Mittelsand grau – weiß in Lagen von 0,5 cm (P29/6), evtl. HCS<br>100 Mittelsand weiß – grau stark glänzend durch Mineralephalt versinzelt (< 1%), Qz bis 0,5 cm Bänke å 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach ingendweiche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Konglomerat mit sehr gut gerundeten Qz von Ø 2-5 cm; nach oben hin feiner werdend<br>Qz – Konglomerat tester sortiert als (1): weinger tektonisch beansprucht oder verfestigt. 02 – Klasten rund bis subrounded; 1-2 cm Ø, kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz Ø= 0,5 – 1 cm; von unten P 29/3<br>Mittelsand grau umt weißen Einsprenglingen j – 3 2: leicht uttreten in Bänken å 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die grauen Lagen (P 29/1) alle 2–3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>120 - 140 Mittelsand grau vortitert zuröck<br>10 – 20 Wechsellage Mittelsand grau (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>Qz – Konglomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz / 60 bis 4 cm<br>Schlichtlücke<br>Hellgrauer Feinsand – Sittstein stark geschiefert<br>Hellgrauer Feinsand – Sittstein stark geschiefert<br>Grauer Feinsand – Sittstein stark geschiefert<br>Grauer Feinsand – Sittstein stark geschiefert<br>Hellgrauer Feinsand – Sittstein Schwarz; oben (letzte 25                                                |
| <ul> <li>(6)</li> <li>(7)</li> <li>(8)</li> <li>(10)</li> <li>(11)</li> <li>(12)</li> <li>(13)</li> <li>(14)</li> <li>(15)</li> <li>(16)</li> <li>(17)</li> <li>(18)</li> <li>(19)</li> <li>(20)</li> <li>(21)</li> <li>(22)</li> <li>(23)</li> <li>(24)</li> <li>(25)</li> <li>(26)</li> </ul>                             | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>50 +?                                                                                                 | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/4<br>P 29/3<br>P 29/4<br>P 29/20<br>P 29/20<br>P 29/20<br>P 29/20<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/24<br>P 29/24<br>P 29/17<br>P 29/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Feinsand in dunnen Lägen (0,5 cm) + Bankchen $\rightarrow$ tektonisch ausgequeischt, viel Heigimmer<br>Heigrauer Grobsand in Bänken a 10 – 20 cm, trogformig schrädgeschichtet, Linear: 1991 = SSW, evit. HCS<br>Graues Qz - Konglomerat mit gut gerundeten Qz bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P299), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschiedliche Komptone (schwarzer Klasten, graueetc.) Unten Ø der Klasten: 0.5 cm (P2910) trogförmig schrägeschichtet<br>80 Mittelsand yreil- quasi stat glänzend durch Mineralgehalt vereinzell (< 1%), Qz bis 0,5 cm Bänke å 5 cm (P 29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Qz bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach irgendwelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz - Konglomerat mit sehr gut gerundeten Qz von Q 2-5 cm; nach oben hin feiner werdend<br>Qz - Konglomerat taskr verfestigt bei frischem Anschlag stark glänzend durch Minerale. Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm<br>Qz - Konglomerat mit sehr gut gerundeten Qz von Q 2-5 cm; nach oben hin feiner werdend<br>Qz - Konglomerat mit sehr gut gerundeten Qz von Q 2-5 cm; nach oben hin feiner werdend<br>Qz - Konglomerat besser sortiert als (1); weniger tektonisch beansprucht oder verfestigt. Qz - Klasten rund bis subrounded, 1-2 cm Ø; kaum Matrix,<br>hell + glimmerreich; nach unten feiner werdend Qz 2 cm (2920)<br>20 - 140 Mittelsand graue veritter zurök<br>10 - 20 Wechsellage Mittelsand graue (0,5 cm)/ Feinsand 2-3 cm (P29/2)<br>20 - Konglomerat mit Q z in G,5 - 2 cm Größe; Zwickel mit Ton – Sittstein lagen, die ausgeschniert sind $\rightarrow$ schwarz<br>20 - Konglomerat mit Q z in G,5 - 2 cm Größe; Zwickel mit Ton – Sittstein lagen, die ausgeschniert sind $\rightarrow$ schwarz<br>20 - Konglomerat mit Q z in Gau Witter Zurök<br>20 - Zu Wechsellage Mittelsand graue visitert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>Schichtlicke<br>Heligrauer                        |
| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)                                                                                                                                    | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>200<br>220<br>220<br>200<br>220                                                                       | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/21<br>P 29/21<br>P 29/22<br>P 29/23<br>P 29/24<br>P 29/17<br>P 29/18<br>P 29/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heinsan in dunnen Lägen (0,5 cm) + Bankchen → tektonisch ausgequetisch, viel Heilgimmer<br>Heilgrauer Chosena in Banken a 10 – 20 cm, trogformig schrädesschricht, Linear: 1991/95 SW, evit. HCS<br>Graues Q2 – Kongiomerat mit gut gerundeten Q2 bis 4 cm; Matrix = Mittelsand; mehr wie sonst (20%) (P29/9), nach oben feiner werdend (normal<br>gradiert) und mehrere unterschleiche Komptone (schwarzer Klasten, graueetc.) Unten Q der Klasten: 0.5 cm (P29/10) trogformig schrägeschichtet<br>80 Mittelsand weile – grau stark gilanzend durch Mineralgehalt verkinzel (< 1%), Q2 bis 0,5 cm Bänke á 5 cm (P29/17) trogformig schrägeschichtet<br>80 Mittelsand weile – grau stark gilanzend durch Mineralgehalt verkinzel (< 1%), Q2 bis 0,5 cm Bänke á 5 cm (P29/7)<br>120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Q2 bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal<br>geschichtet<br>20 schwarzer Sittstein – Tonstein<br>Danach ingendweiche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Qz – Kongiomerat tark verfeistig bei firschem Anschlag stark glänzend durch Minerale. Qz tellweise gut gerundet, tellweise suturiert Ø von 1 – 4 cm<br>Qz – Kongiomerat tark verfeistig bei firschem Anschlag stark glänzend durch Minerale. Qz tellweise nund bis subroundet; 1-2 cm 0, kaum Matrix,<br>Hell + glimmerreich; nach unten feiner werdend QZ 20 – 0.5 – 1 cm; von unten P 29/3<br>Mittelsand grau unit weißen Einsprenglingen → Qz; leicht geschiefert, auftreten in Bänken 4 +5 cm, Lagen von 1 cm; An der Basis ein reiner Qz –<br>Feinsand in den die graue Lagen (P 29/1) alle 2 – 3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm);<br>120 - 140 Mittelsand grau (0,5 cm) / Feinsand 2-3 cm (P29/2)<br>Qz – Kongiomerat, schlecht sortiert, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröber; Qz / Dis 4 cm<br>Grauer Feinsand – Mittelsand sehr gut sortiert/gut bioturbiert, HCS<br>Heilgrauer Feinsand – Mittelsand sehr gut sortiert/gut bioturbiert, HCS<br>Heilgrauer Feinsand – Mittelsan                                                            |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(20)                                                                                                                                           | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>260 + ?<br>50 +?<br>200<br>220<br>220<br>220<br>220<br>580                                                                                  | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/21<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/22<br>P 29/23<br>P 29/24<br>P 29/13<br>P 29/18<br>P 29/16<br>P 29/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feinsand in dunnen Lagen (U.S. cm) + Bankchen → terkonisch ausgegeluitscht, viel Heilignum Grossand in Bänken at 10 – 20 mr. trogförmig schrägeschichtet, Linnear: 199/19-SSW, evtl. HCS Graues Q2 – Kongiomerat mit gut gerundeten Q2 bis 4 cm, Mattix – Mittelsand; mehr wie sonst (20%) (Per Klasten, 0,5 cm (P29/10) trogförmig schrägeschichtet, Linnear: 199/19-SSW, evtl. HCS 100 Mittelsand weils – grau stark glanzend durch Mineralgehalt Vereinzel (+ 1%), Q2 bis 0,5 cm Bänke å 5 cm (P29/17) 120 tektonisch stark deformierter schwarzer Fein-Mittelsand mit Q2 bis 1 cm (10%), stark glänzend durch Mineralgehalt (P 29/8), horizontal geschichtet 20 Advarzer Sittstin – Tonstein Danach ingendwiche Mittelsand and Verbielagerung im Hangschutt zu sehen Q2 – Kongiomerat task verfestig bei frischem Anschlag stark glänzend durch Mineralgehalt (P 29/8), horizontal geschichtet 20 Konarzer Sittstin – Tonstein Danach ingendwiche Mittelsand dir Jeinsand Wechsellagerung im Hangschutt zu sehen Q2 – Kongiomerat task verfestig bei frischem Anschlag stark glänzend durch Minerale, Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm Q2 – Kongiomerat task verfestig bei frischem Anschlag stark glänzend durch Minerale, Qz teilweise gut gerundet, teilweise suturiert Ø von 1 – 4 cm Q2 – Kongiomerat task verfestig bei frischem Anschlag stark glänzend durch Minerale, Qz teilweise gut gerundet, glänzend durch Mineralgehalt Qz = 0, cm; von unten P 29/3 Mittelsand grau unit weißen Einsprenglingen → Qz; leicht geschiefter, auftreten in Bänken à 4-5 cm, Lagen von 1 cm, 2 nd der Basse ien reiner Qz – 6 jeinsand in den ide graue Lagen (P20) 19/18 la 2 -3 cm eingeschaltet ind mit Qu o no, 5 cm. Hier Bankmächtigkeit 10 – 20 cm; 10 – 20 Wechsellage Mittelsand grau (P3 ± 23 cm (P28/2)) Qz – Kongiomerat, schlecht grau                                                                                                                                                                                                                   |
| <ul> <li>(6)</li> <li>(7)</li> <li>(8)</li> <li>(10)</li> <li>(11)</li> <li>(12)</li> <li>(13)</li> <li>(14)</li> <li>(15)</li> <li>(16)</li> <li>(17)</li> <li>(18)</li> <li>(19)</li> <li>(20)</li> <li>(21)</li> <li>(23)</li> <li>(24)</li> <li>(25)</li> <li>(26)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> </ul> | S2.1<br>G1.2<br>Unten jeweils<br>S2.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1<br>G2.2<br>Junten<br>G1.2<br>G2.2<br>Junten<br>G1.2<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>200<br>260 + ?<br>50 +?                                                                               | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/3<br>P 29/4<br>P 29/20<br>P 29/20<br>P 29/20<br>P 29/20<br>P 29/20<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/24<br>P 29/14<br>P 29/16<br>P 29/14<br>P 29/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Feinsand in dunnen Lagen (U, S cm) / Eakhorten → teknolisch ausgeduesch, viel Heiginner<br>Heiginzen Grobean in Bainen à 10 – 20 cm, rugförmig schrägeschlichte (Lines (20%) (P290)), ach oben feiner werdend (normal<br>grader) und mehrere unterschlichte Komtypen (achwarze Klasten, graue etc.) Unten / 26 mt (R2910) tragförmig schrägeschlichte<br>Bittelsand grau – wells in Lagen von 0.5 cm (P296), evil. HCS<br>00 Mittelsand wells – grau statel ginzend durch Minerägehalt vereinzelt (< 1%), 0.2 bis 0.5 cm Bänke à 5 cm (P 29/7)<br>120 lektonisch stark deformienter schwarzer Fein-Mittelsand mit 0.2 bis 1 cm (10%), stark glänzend durch Minerägehalt (P 29/8), horizontal<br>09 schwarzer 5 filtelin – Tonstein<br>Danach irgendvelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>02 – Kongliomerat traik vertestigt bal finschem Anschlag stark glänzend durch Mineräje. Oz telknelse gut gerundet, tellweise sutwiert Ø von 1 – 4 cm<br>02 – Kongliomerat traik vertestigt bal finschem Anschlag stark glänzend durch Mineräje. Oz – Klasten nund bis subroundet, tellweise sutwiert Ø von 1 – 4 cm<br>02 – Kongliomerat bissevertinte als (1): vereingtrektonisch beanspruch dodr vertestigt 0.2 – Klasten nund bis subroundet, tellweise sutwiert Ø von 1 – 4 cm<br>02 – Kongliomerat bissevertinte als (1): vereingtrektonisch beanspruch dodr vertestigt 0.2 – Klasten nund bis subroundet, tellweise sutwiert Ø von 1 – 4 cm<br>02 – Kongliomerat stark vertestigt bal finschem Anschlag stark glänzend durch Mineraje. Ø von 1,5 cm: An der Basis ein reiner 02 –<br>Feinsand in den die grauun Lagen (P 29/1) alle 2 – 3 cm eingeschaltet sind mit Ø von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>10 – 20 Vechsellage Mittelsand grau (0,5 cm) / Feinsand 2-3 cm (P29/2)<br>02 – Kongliomerat: schlecht sortiert, zurück<br>02 – Kongliomerat: schlecht sortiert, mit glimmerreichen Zwickelfüllungen (heil): Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>gröher 02 2 Di k 4 cm Schlichtlöck Heilgrauer Feinsand – Mittelsand stark geschieftet Tintter – Sitstein Tostori                                                                                             |
| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(20)<br>(30)                                                                                            | $\begin{array}{c} S2.1\\ G1.2\\ Unten jeweils\\ S2.2, dann\\ S1.2, dann\\ T1.1\\ G1.2\\ G1.1\\ G1.2\\ S2.1\\ G1.1\\ G1.2\\ S2.1\\ G2.1\\ S2.2\\ S2.2\\ S2.1\\ G2.1\\ G2.1\\ S2.1\\ G2.1\\ S2.1\\ S2.1\\ S2.1\\ S2.1\\ S2.1\\ S2.1\\ S1.1\\ S1.1\\ S1.2\\ S1.1\\ S1.2\\ S1.1\\ S1.2\\ S1.1\\ S1.2\\ S1.1\\ S1.2\\ S1.1\\ S1.2\\ S1.2\\ S1.1\\ S1.2\\ S1$ | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>200<br>220<br>220<br>200<br>260<br>580<br>60 + ?                                                          | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/21<br>P 29/21<br>P 29/22<br>P 29/22<br>P 29/24<br>P 29/19<br>P 29/19<br>P 29/18<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/17<br>P 29/17<br>P 29/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feinsand in dunnen Lagen (U.S. Cm) + Bankchen → teknolisch augegelischt, viel Heiginner<br>Heiginzen Grobsan in Bainen a 10 – 20 cm, rugförmig schrägeschichtet, Lines (1991/9), SSW, evtl. HCS<br>Graues Q2 – Kongiomerat mit gut gerundeten Q2 bis 4 cm, Matrix = Mittelsand, mehr wis sonst (20%) (P290), anch oben feiner werdend (normal<br>grader) und mehrere unterschiedliche Kompyon (schwarze Klasten, graue etc.) Unten Ø der Klasten: 0.5 cm (P297) (brgförmig schrägeschichtet<br>80 Mittelsand weiß – grau staatik glinzend durch Minerägehalt vereinzelt (< 1%), Q2 bis 0.5 cm Bänke å 5 cm (P 29/7)<br>120 lektonisch stark deformiente schwarzer Fein-Mittelsand mit Q2 bis 1 cm (10%), stark glänzend durch Minerägehalt (P 29/8), horizontal<br>90 schwarzer Stillstein – Tonstein<br>Danach irgendivelche Mittelsand / Feinsand Wechsellagerung im Hangschutt zu sehen<br>Q2 – Kongibmerat stark verlestigt bei frischem Anschlag stark glänzend durch Mineräle. Qz teilweise gut gerundet, teilweise sutwiert Ø von 1 – 4 cm<br>Q2 – Kongibmerat stark verlestigt bei frischem Anschlag stark glänzend durch Mineräle. Qz teilweise gut gerundet, teilweise sutwiert Ø von 1 – 4 cm<br>Q2 – Kongibmerat stark verlestigt bei frischem Anschlag stark glänzend durch Mineräle. Qz teilweise gut gerundet, teilweise sutwiert Ø von 1 – 4 cm<br>Qz – Kongibmerat bester stark verlestigt bei frischem Anschlag stark glänzend durch Mineräle. Qz teilweise gut gerundet, teilweise sutwiert Ø von 1 – 4 cm<br>Qz – Kongibmerat teilweisen gut unger (P 29/7)<br>20 – 140 Hittelsand grau unger (P 29/7)<br>20 – 140 Hittelsand grau unger (P 29/7)<br>20 – 140 Hittelsand grau unger (P 29/7)<br>20 – 40 Mechellage Mittelsand grau (PS cm) / Feinsand 2-3 cm (P29/2)<br>20 – Kongibmerat tradicke distare unger (P 29/7)<br>20 – Kongibmerat H 20 (20 (5 cm) / Feinsand 2-3 cm (P29/2)<br>20 – Kongibmerat H 20 (20 (5 cm) / Feinsand 2-3 cm (P29/2)<br>20 – Kongibmerat H 20 (20 (5 cm) / Feinsand 2-3 cm (P39/2)<br>20 – Kongibmerat H 20 (20 (5 cm) / Feinsand 2-3 cm (P39/2)<br>20 – Kongibmerat H 20 (20 (5 cm) / Feinsand 2-3 cm (P39/2)<br>20 – Kongibmerat H 20 (20                                                   |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)<br><b>Profil 30</b><br><b>Schicht</b>                                                                                     | S2.1<br>G1.2<br>Unten jeweilis<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>200<br>220<br>200<br>220<br>200<br>200<br>200<br>20                                                       | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/21<br>P 29/21<br>P 29/22<br>P 29/21<br>P 29/23<br>P 29/24<br>P 29/23<br>P 29/24<br>P 29/19<br>P 29/18<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/16<br>P 29/17<br>P 29/17<br>P 29/17<br>P 29/23<br>P 29/24<br>P 29/25<br>P 29/24<br>P 29/25<br>P 29/26<br>P 20/26<br>P 20/26<br>P 20/26<br>P 20/26<br>P 20/26<br>P 20/26<br>P 20/26<br>P 20/26<br>P | Feinsand in durhen Lagen (U.S. cm) + taknochen - Pterknolsch ausgequetasch, viel Heighauer Groband in Barken als 0 – 20 cm, rorgiorning schrägeschichtet, Limaer 1991% – SSW, evit. HCS<br>Graues Q2 – Konglomerat mit gut gerundeten Q2 bis 4 cm, Matrix = Mittelsand, mehr wie sons (20%) (P239), nach oben feiner werdend (normal<br>gradierly und mehrere unterschiedliche Konrygen (schwarzer Klassin, graue etc.) Unten 02 fer Klassen, 0.5 cm (P2370) torgformig schrägeschichtet<br>100 Mittelsand well – grau stark glanzend durch Mineralgehalt vereinzelt (c 1%), Oz bis 0.5 cm Barke & 5 cm (P2377)<br>20 schwarzer Sittstein – Tonstein<br>20 schwarzer Sittstein als (1): weinger tetkohisch beansprucht dev refessitt, 20 schwarzer<br>20 schwarzer Sittstein – Tonstein<br>20 schwarzer Sittstein als (1): weinger tetkohisch beansprucht dev refessitt, 20 schwarzer<br>20 schwarzer sittstein 20 schwarzer Sittstein 180 mit 20 von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>20 - 140 Mittelsand grave untert zurick.<br>20 - 20 weichsellage Mittelsand grave (0.6 cm) / Feinsand 2.3 cm (P29/2)<br>20 - Konglomerat in Sitt August zuriker Sittstein 180 mit 180 von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>20 - 140 Mittelsand grave U.S cm) / Feinsand 2.3 cm (P29/2)<br>20 - Konglomerat in Sitt August zuriker Sittstein 180 mit 180 von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm):<br>20 - 140 Mittelsand Sittstein Tonstein stark durchwalter zuriker Sittstein 180 mit 180 von 0,5 cm. Hier Bankmächtigkeit 10 – 20 cm Sittstein<br>20 schwarzer Sittstein Sittstein 180 von 100 mittelsand werdend                                |
| (6)<br>(7)<br>(8)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)<br><b>Profil 30</b><br><b>Schicht</b><br>(1)<br>(2)                                                                       | S2.1<br>G1.2<br>Unten jeweilis<br>S2.2, dann<br>S1.2, dann<br>T1.1<br>G1.2<br>G1.1<br>G1.2<br>S2.1<br>G1.1<br>G1.1<br>S2.2<br>S2.2<br>S2.2<br>S2.1<br>G2.1<br>S2.1<br>G2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S2.1<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120<br>380<br>Ca.1000<br>380<br>220<br>620<br>160<br>510 + ?<br>80<br>5<br>200<br>40<br>60<br>20<br>260 + ?<br>50 +?<br>200<br>220<br>220<br>200<br>220<br>200<br>220<br>580<br>60 + ?<br>Koordinaten:<br>Mächtigkeit<br>S1.2 | P 29/11<br>P 29/9<br>P 29/10<br>P 29/6<br>P 29/7<br>P 29/8<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/7<br>P 29/2<br>P 29/2<br>P 29/20<br>P 29/21<br>P 29/21<br>P 29/21<br>P 29/22<br>P 29/21<br>P 29/23<br>P 29/24<br>P 29/19<br>P 29/19<br>P 29/18<br>P 29/16<br>P 29/17<br>P 29/17<br>P 29/20<br>P 29/21<br>P  | Feinsand in durhein Lagen (U.S. cm) + takinchen - Feiknichen ausgequetasch, viel Heighauer Gröben in Banken als 0 - 20 cm, regioning schrägeschichtet, Linear: 19919 = SSW, evit. HCS<br>Graues Q2 - Kongiomerat mit gut gerundeten Q2 bis 4 cm, Matrix = Mittelsand, mehr wie sons (20%) (P239), nach oben feiner werdend (normal<br>gradierly und mehrer untraschilder Konnyepen (Schwarzer Klassin, graue etc.) Unlen 2 der Klassen. 0,5 cm (P23910) trogformig schrägeschichtet<br>B0 Mittelsang mehrer untraschilder Konnyepen (Schwarzer Klassin, graue etc.) Unlen 2 der Klassen. 0,5 cm (P23910) trogformig schrägeschichtet<br>B0 Mittelsang mehrer untraschilder Konnyepen (Schwarzer Klassin, graue etc.) Unlen 2 der Klassen. 0,5 cm (P23910) trogformig schrägeschichtet<br>B0 Schwarzer Sittetim – Tonstein<br>Danach ligendwelche Mittelsand / Feinsam Wechsellagerung im Hangschutz zu sehen<br>B2 - Kongiomerat mit sehr gut gerundeten 2 von 2 -5 cm, rach oben hin feiner werdnd<br>B2 - Kongiomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. 0,2 tellweise gut gerundet, tellweise suturiert 0 von 1 - 4 cm<br>2 - Kongiomerat stark verfestigt bei frischem Anschlag stark glänzend durch Minerale. 0,2 tellweise gut gerundet, 1 - 2 cm (R, kaum Matrix,<br>hell + glimmerreich; nach unten leiner werdend Q2 (2 = 0,5 - 1 cm; von unten P 23/3)<br>Mittelsand grau verklet zurick. 10 - 100 Wechsellage Mittelsand grau (S, Cm) Feinsand 2-3 cm (P29/2) 2 - Kongiomerat mit Veilöne. Ensprendingen - 0,2 cilicht geschlefter, auftreten in Bänken å 4-5 cm, Lagen von 1 cm; An der Basis ein reiner Qz -<br>Feinsand - Mittelsand seru (S, Cm) - 2 - Cm Größe; zwickel mit TO n - Sittetin lagen, die ausgeschmiert sind -9 schwarz<br>Qz - Kongiomerat, schlecht sortier, mit glimmerreichen Zwickelfüllungen (hell); Sehr stark verfestigt, kaum runde Gerölle mehr, nach unten hin<br>größer, Q2 / bi 4 cm 3 Schwarzer Mittelsand sehr geschieft Mittelsand grau - Otateh sehwarz; oben (letzte 25 cm) schwarzere-funkelgauer Feinsand stark geschieft Mittelsand                                                                                                                          |

|  |  | 1 |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |

| Profil 31      |                     | Koordinaten: | R:53 81 0          | 00 / H:14 41 750                                                                                                                                                                                                                                                                                 |
|----------------|---------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schicht        | Lithofazies         | Mächtigkeit  | Probe              | Beschreibung                                                                                                                                                                                                                                                                                     |
| (1)            | 1200                | C1.1<br>B2.1 | P 31/1             | reinsand - Silfstein dunkeigrau in Bankchen a 3-4 cm mit vielen glanzenden Komponenten; leicht geschiefert<br>Mittelsand helldrau - rötlich in Bänkchen a 2-5 cm                                                                                                                                 |
| (3)            | 550                 | C2.1         | P 31/2             | Grobsand – Mittelsand grau – rötlich: schwarze + weiße + braune Komponenten. (P31/2). In Bänken von 2 cm. Rip up clasts                                                                                                                                                                          |
|                |                     |              | P 31/3             | Alle 40 – 60 cm kommt eine dickere Bank von 20 cm. Nach oben hin in Grobsand übergehend (P31/3). Ab 470 Grobsand mit ca. 5 cm langen                                                                                                                                                             |
| (4)            | 230                 |              | P 31/4             | Toninsen, ca. 80 cm macnug<br>Mittelsand (P31/4) braun mit hellen Klasten mit Lagen von Grobsand ca. 90 cm mächtig (P31/5)                                                                                                                                                                       |
| (-)            |                     |              | P 31/5             |                                                                                                                                                                                                                                                                                                  |
| (5)            | 20<br>210           | C2 1         | P 31/6<br>P 31/7   | Mittelsand / Tonstein – Siltstein Wechsellagerung, Bioturbiert> Spuren zu sehen; hier ist Ton da<br>Wieder Schichtfolge die von ca. 80 cm reisem Grobsand in 40 cm Grobsand mit Tonflatschen und dann in 60 cm Mittelsand – Grobsand, bis zum                                                    |
| (0)            | 210                 | 02.1         | 1 31/1             | Schuß in Feinsand übergehen                                                                                                                                                                                                                                                                      |
| (7)            | 120                 |              |                    | Siltstein – Feinsand dunkelgrau mit vielen glänzenden Komponenten, dünnbankig in 0,5 cm                                                                                                                                                                                                          |
| (8)            | 50<br>30            | C2.1         |                    | Grossana mit Tonilatschen; eingeregeite Tonilatschen: L: 222/9; 225/10; 230/25 → Fileisrichtung ca. nach SW; rip-up-clasts                                                                                                                                                                       |
| (10)           | 40                  | C2.1         |                    | Grobsand Schichtfolge wie bei (6):                                                                                                                                                                                                                                                               |
| (11)           | 250                 | A 2 7        |                    | reiner Grobsand                                                                                                                                                                                                                                                                                  |
| (12)           | 130                 | A2.5         | P 31/8             | 130 Grobsand – Feinkies mit wenigen Tonklasten (P 31/8)                                                                                                                                                                                                                                          |
| (13)           | Ca. 450             | B2.1         |                    | ca. 450 Mittelsand in Feinsand übergehend                                                                                                                                                                                                                                                        |
| Profil 32      |                     | Koordinaten: | R:53 81 7          | 50 / H:14 38 000-14 37 500                                                                                                                                                                                                                                                                       |
| Schicht        | Lithofazies         | Mächtigkeit  | Probe              | Beschreibung                                                                                                                                                                                                                                                                                     |
| (2)            | 130                 | S2.1         | P 32/1             | Kongionierat weiss, matrix = Globaand, rikasten bis 3-4 cm<br>Grobsand hellgrau weiß, rötlich verwitternd, planar schräggeschichtet, Linear= 193/17 → S                                                                                                                                          |
| (3)            | 160                 | G2.1         | P 32/2             | An der Basis Grobsand – Feinkies (30 cm) mit Qz – Komponenten stark suturiert, hellgrau (P 32/3); nach oben reiner werdend + Grobsand weiß                                                                                                                                                       |
| (4)            | 230                 | G2.1         | P 32/3<br>P 32/4   | (P32/3), normal gradiett<br>Grobsand mit Q = Klasten in 2 –3 cm Ø an der Basis: nach oben hin feiner werdend in reinen Grobsand übernebend planer schrägeschichtet Linear                                                                                                                        |
| (.)            | 200                 | 02.1         |                    | = 163/15 → SSE, normal gradient                                                                                                                                                                                                                                                                  |
| (5)            | 330                 | G2.1         | P 32/5             | Wie (1) nur noch grauer → teilweise klassischer Auernig, planer schrägeschichtet, normal gradiert                                                                                                                                                                                                |
| (6)<br>(7)     | 200                 | S2.1         | P 32/6             | reinsand – Sinstein violett<br>Harte Bank von Qz – Konolomerat / Brekzie: Matrix Grobsand + Ø Quarz bis 1-3 cm out gerundet                                                                                                                                                                      |
| (8)            | 400 + ?             | T1.1         | P 32/7             | Violetter Tonstein + Siltstein stark tektonisch beansprucht mit vereinzelten gut gerundeten Qz á 0,5 - 1 cm. (20 - 30 %) → in Lagen von 2 - 3 cm;                                                                                                                                                |
|                |                     |              |                    | dazwischen ab und zu dünne Bank von 5 – 10 cm nur Grobsand mit ebenfalls Qz in der Größe                                                                                                                                                                                                         |
| Profil 33      |                     | Koordinaten: | R:53 86 5          | 00 / H:14 31 500                                                                                                                                                                                                                                                                                 |
| Schicht<br>(1) | Lithofazies<br>B1 1 | 200 + 2      | P 33/1             | Beschreibung<br>Grauer Mittelsand – Grobsand mit einigen Helldimmern                                                                                                                                                                                                                             |
| (2)            | A2.5                | 460          | P 33/2             | Hellgrauer Grobsand mit schwarzen Klasten in Grobsand – Größe, aber auch als Klasten von 0,5 – 1 cm Größe (2 %)                                                                                                                                                                                  |
| (3)            | B2.1                | 280          | P 33/3             | Dunkelgrauer – schwarzer Mittelsand mit einigen Hellglimmern in Bänken von 20 – 30 cm, mit ca. 2 – 3 cm Siltstein – oder Tonstein dazwischen<br>Hollnergore Mittelsand mit weisig echtwarzer Kladen im Pänken von 20 – 30 cm, mit ca. 2 – 3 cm Siltstein – oder Tonstein dazwischen              |
| (4)<br>(5)     | 02.1                | 300<br>40    | P 33/4<br>P 33/5   | rengraden windersahld min weinig schwarzen naisen in panken von 30 cm.<br>Feinsand dünnbankia + lagiq (1 – 2 cm); zurückwitternd, toniger werdend, dunkelarau – schwarz bräunlich: mit viel Hellalimmer. ca. 10 %                                                                                |
| (6)            | C2.1                | 40           | P 33/6             | Grau – brauner Mittelsand – Grobsand mit vielen Komponenten (10%) bis 2 – 3 mm (grau + schwarz); 1 Bank                                                                                                                                                                                          |
| (7)            | C2 2                | 40<br>400    | P 33/7             | Wie (5)<br>Wia (6): 3 Bänke (Rasis 150, dann werden Bänke neringer mächtigt), horizontal geschichtet                                                                                                                                                                                             |
| (U)            | 02.2                | Heartin      | D.50.70            |                                                                                                                                                                                                                                                                                                  |
| Schicht        | Lithofazies         | Mächtigkeit  | R:53 73 7<br>Prohe | ov / n. 14 42 vvv                                                                                                                                                                                                                                                                                |
| (1)            | 21110102100         | 290 + ?      |                    | Hellgrauer Kalk                                                                                                                                                                                                                                                                                  |
| (2)            | D2.1                | 70           | P 34/1             | Grauer Siltstein dünnlagig, stark geschiefert, eventuell Tuff, stark tektonisch beeinflußt, mit ganz feinen tonartigen Lagen dazwischen<br>Wieder (Usetherkeitersted L. Aufgestendense)                                                                                                          |
| (3)            | C2.3                | 210          | P 34/2<br>P 34/3   | Wieder (1), stark ganzente + Aunastinanten<br>Feinsand grau – heiligrau – rötlich, eventuell aber auch Tuff                                                                                                                                                                                      |
| (5)            | C2.2                | 240          | P 34/4             | Grauer Feinsand – Mittelsand                                                                                                                                                                                                                                                                     |
| (6)            | D1.1                | 70 + ?       | P 34/5             | Extrem plattiges schartkantiges Material                                                                                                                                                                                                                                                         |
| Profil 35      | Little of a min a   | Koordinaten: | R:53 99 7          | 00 / H:14 31 000                                                                                                                                                                                                                                                                                 |
| (1)            | A2.7                | 400 + ?      | P 35/5             | Beschreibung<br>Grobsand – Mittelsand, in dünnen Lagen von 0,5 cm aber hervorstehend, hellgrau rötlich, mit schwarzen Klasten bis 0,5 cm, stark geschiefert                                                                                                                                      |
| (2)            | C2.4                | 200          |                    | Schwarzer Tonstein – Siltstein mit einer Feinsand – Mittelsandlage (20 cm) nach 110 (herausstehend)                                                                                                                                                                                              |
| (3)            | C2.2                | 720          | P 35/4             | Unten Grobsand nach oben in Mittelsand übergehend, hellgrau/rötlich mit schwarzen und weißen Komponenten bis 2 mm<br>Siltstein (Kom) – Feinsand (10cm) Wechsellaerung                                                                                                                            |
| (5)            |                     | 100          |                    | Feinsand – Siltstein schwarz                                                                                                                                                                                                                                                                     |
| (6)            |                     | 5            |                    | Qz – Mobilisat                                                                                                                                                                                                                                                                                   |
| (7)            | C2.2                | 30           |                    | Schwalzer Sinstein – Jonsein                                                                                                                                                                                                                                                                     |
| (9)            |                     | 10           |                    | Schwarzer Siltstein – Tonstein                                                                                                                                                                                                                                                                   |
| (10)           |                     | 30<br>10     | P 35/3             | Mittelsand – Grobsand grau-rotlich<br>02 – Mohilisat                                                                                                                                                                                                                                             |
| (12)           |                     | 20           |                    | Schwazer Siltstein – Tonstein                                                                                                                                                                                                                                                                    |
| (13)           | C2.4                | 20           |                    | Dickes Feinsand - Mittelsand Paket; dünnbankig á 1-2 cm                                                                                                                                                                                                                                          |
| (14)           |                     | 80           |                    | Vachaelfolge 440:                                                                                                                                                                                                                                                                                |
| (10)           | 00.4                | 010          | D 05/0             | Schwarze Siltstein – Tonstein mit ab und zu (alle 20 cm) eine 1 cm dicke Feinsand – Lage                                                                                                                                                                                                         |
| (16)           | C2.1                | 210          | P 35/2             | Ubergang von einem Grobsand an der Basis, dickbankig (20 – 30 cm), uber einen Mittelsand extrem dunnbankig (0,5 – 1 cm) in einen Mittelsand –<br>Feinsand mit Bänkchen a 0,5 – 1 cm aber auftretend in teilweise 10 – 20 cm dicken Paketen Mittelsand stark tektonisch durchgearbeitet nach oben |
|                |                     |              |                    | hin stark geschiefert, verwittert aber nicht so stark zurück.                                                                                                                                                                                                                                    |
| (17)           | P2 4                | 120          | D 25/4             | Wechsellagerung: Feinsand (grau)/ Sitstein – Tonstein (schwarz), jeweils 2 – 3 mm.                                                                                                                                                                                                               |
| (18)           | B2.1                | 170          | r 35/1             | stark geschierenen Grousand – Millersand mill Silurautoren alle ∠ – 3 cm → stark tektonisch durchbewegt, Einregelung der Millerale : L = 52/33= NE;<br>Sf= 328/60; SI= 50/16 → NE; Farbe grau mit Komponenten (schwarz, grau, weiß) bis 2 – 3 mm,                                                |
| (19)           | D2.1                | 520          |                    | Schwarzer Siltstein, stark geschiefert in Wechsellagerung mit Tonsteinhäutchen) in 2 – 3 mm                                                                                                                                                                                                      |
| (20)           | D2.1                | 500 + ?      |                    | Junnoankige (2 – 3 cm) Lagerung von stark geschietertem Feinsand – Sittstein mit Komponenten vereinzelt bis 1 mm (<5%); dunkelgrau relativ starke<br>Fältelung. Stark zerrüfteter Vulkanit an der Basis                                                                                          |
| Profil 29      |                     | Koordinatory | P-54 22 5          | DEA/4 3000 LH 44 31 50 0.44 32 50                                                                                                                                                                                                                                                                |
| Schicht        | Lithofazies         | Mächtigkeit  | Probe              | Beschreibung                                                                                                                                                                                                                                                                                     |
| (1)            | D2.1                | 220 + ?      |                    | Siltstein beige, dünn geschiefert á 1-2 mm in Bänken á 20 - 30 cm auftretend                                                                                                                                                                                                                     |
| (2)            | C2.3                | 460          |                    | Mitteisand (3 - 5 mm)rotlich-grau / Ion (5 - 10 mm) schwarz Wechselfolge (50 cm); nach unten in Feinsand (0,5 cm)/Ton (3 mm) übergehend (100 cm); nach weiter unten in Stittein / Tonstein übergehend gehankt wie oben und                                                                       |
|                |                     |              |                    | mit der zeit dünner werdend (1 mm) 1 mm); allgemein immer wieder Q2 Mobilisate bis ca. 10 cm Durchmesser, alles stark geschiefert.                                                                                                                                                               |
| (3)            | 10 F                | 140          | D 00/0             | Silt (0,3 - 0,5 cm)/Ton (1 - 2 mm) Wechselfolge, dunkelgrau - schwarz, mit einer Bank Mittelsandstein (5 cm) nach 70 cm                                                                                                                                                                          |
| (4)<br>(5)     | A2.5<br>A2.5        | 220<br>140   | P 38/2<br>P 38/1   | Enispiran (3) nur grober (Feinkies);<br>Grobsand geschiefert mit Komponenten bis 0,5 cm, einige glänzende Komponenten. Bänke á 10 - 60 cm                                                                                                                                                        |
| (6)            | B1.2                | 100 + ?      | - 37 -             | Mittelsand - Grobsand , grau-rötlich in dünnen Bänken, stark geschiefert                                                                                                                                                                                                                         |
| (7)<br>(8)     | D2.1<br>A2.5        | 80<br>420 +  | P 38/5             | roniage geschierert (2 mm - Bankchen)<br>Feinkies mit Lyditen an der Basis, mit Einschaltungen von Mittelsand (20 - 30 cm) alle 0.5 - 1.5 m                                                                                                                                                      |
| (9)            | D2.1                | 70           | 1 00/0             | Schwarzer Siltstein                                                                                                                                                                                                                                                                              |
| (10)           | C1.1                | 130          | P 38/6             | Wechsellage Sittstein (1 mm) / Mittelsand - Grobsand (0,5 cm) in Bänken á 20 - 30 cm                                                                                                                                                                                                             |
| (11)<br>(12)   | A2.5                | 30           | P 38/3<br>P 38/4   | Groussand - reinkies mit nomponenten bis u,o cm (Lybite und Tonklasten etc.) eine Bank rotlich – dunkelgrau, rip-up-clasts an der Basis .<br>Grobsand grau-rötlich in Bänken à 5 - 10 cm, nach oben hin in Mittelsand übergehend (70 cm), nach weiteren 50 cm wieder Grobsand                    |
| (13)           | D1.1                | 20 +         |                    | Siltstein schwarz                                                                                                                                                                                                                                                                                |
| (14)           | D2 1                | 660 ±        |                    | Schichtlucke<br>Dunkelorauer Siltstein mit tonigen Lagen à 20 cm alle 1.5 m                                                                                                                                                                                                                      |
| (16)           | 02.1                | 80           |                    | Zz - Mobilisat in tonig - talgigen Schefer enigewirstelt (Qz bis 10 - 15 cm)                                                                                                                                                                                                                     |
| (17)           | D2.2                | 260          |                    | Sittstein laminiert im 1-2 mm Bereich, dazwischen Tonhäutchen                                                                                                                                                                                                                                    |
| (18)<br>(19)   | C2.4                | 260<br>420   |                    | Sirstein (10 - 40 cm)schwarz / Feinsand (10 cm) braun-rot - Wechseltolge<br>Feinsand - Siltstein beide, sehr stark deschiefert                                                                                                                                                                   |
| (20)           |                     | 50           |                    | Qz - Mobilisat                                                                                                                                                                                                                                                                                   |
| (21)           | D2.1                | 400 +        |                    | Siltstein dünnbankig                                                                                                                                                                                                                                                                             |
| (22)<br>(23)   | B2.1                | 360          |                    | Grobsand hellgrau-rot in Bänken á 5-10 cm, nach oben hin in Mittelsand - Feinsand übergehend                                                                                                                                                                                                     |
| (24)           | A2.5                | 60           | B                  | Grobsand - Feinkies (Lyditbreccie) rötlich-grau                                                                                                                                                                                                                                                  |
| (25)           | B1 2                | 200<br>170   | P 38/7<br>P 38/8   | Grobsand neilgrau - grau mit vielen Lyditen im 0,5 cm Bereich, dünnbankig å 2-3 cm<br>Mittelsand - Grobsand grau, dickbankig å 10 - 15 cm, massig                                                                                                                                                |
| (27)           | B1.2                | 60           | . 00/0             | Wie (3) nur eher Mittelsand - Grobsand                                                                                                                                                                                                                                                           |
| (28)           | D1.2                | 30<br>80     | D 38/0             | Schwarzer Tonstein stark geschiefert<br>Ωz - Mobilisat in braun-rotem Mittelsand - Feinsand mit großen Komponenten bis 0.5 cm                                                                                                                                                                    |
|                | C ( )               |              |                    |                                                                                                                                                                                                                                                                                                  |

| (30)<br>(31)<br>(32)<br>(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D1.2<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>210<br>180<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P 38/10                                                                                                                                                                                  | Siltstein talgig sehr stark geschiefert<br>Dunkelgrauer Mittelsand - Grobsand mit Qz + Lyditen in mm- Größe; Rinnenstruktur: Quersachse= 262/13 → Strömungsrichtung ca. NW/SE (Norden)<br>Siltstein dunkelgrau in dünnen Lagen stark ausgequetscht<br>Grobsand dunkelgrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (34)<br>(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 38/11                                                                                                                                                                                  | Feinsand - Sillstein Schwarz<br>Mittelsand dunkelgrau-schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (36)<br>(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 38/12                                                                                                                                                                                  | Schwarzer Sittstein<br>Vulkanit mit unregelmäßiger Unterfläche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (38)<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120<br>200 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 38/13                                                                                                                                                                                  | Stark geschieferter roter Feinsand - Siltstein<br>Tonstein - Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Profil 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:54 43 2                                                                                                                                                                                | 50 / H:14 33 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithofazies<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit<br>150 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Probe<br>P 39/1                                                                                                                                                                          | Beschreibung<br>Stark geschieferter Mittelsand - Feinsand braun-rötlich; an der Basis Mittelsand frisch (grau-schwarz mit einigen Hellglimmern + weißen Klasten bis 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                          | mm Bankung mehrere 5 cm Bänkchen und alle 80 cm 20 - 30 cm Bänke<br>Wechselfolge :Siltstein beine - braun, stark geschiefert, frisch dunkelorau (50 cm)/ Feinsand hellgrau stark geschiefert mit Bänken à 20 cm, nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 20/2                                                                                                                                                                                   | unten Feinsand – Mittelsand; Rinnenfüllung: Breite ca. 300; Mächtigkeit ca. 100 $\rightarrow$ Schüttungsrichtung nach NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F 39/2                                                                                                                                                                                   | (20 cm) in Bänken 45 cm, nach oben Schrägschichtung sichtbar L $\rightarrow$ 112/36, evtl. ehemalige Rippel; auskeilend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 39/3                                                                                                                                                                                   | Sinstein - ronstein mit 2-3 om dicken Peinsand - Lagen alle 10 om entspricht (3), im Streichen weitenaufen 🛩 weitere Sandsteinninsen wittelsand<br>heligrau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Litth of spin a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:54 49 5                                                                                                                                                                                | 00 / H:14 40 150-14 34 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe                                                                                                                                                                                    | Beschreibung<br>Schwarzer Siltstein in mm-Laminierung mit Tonstein ; geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                          | Feinsand dunkelgrau-rötlich<br>Siltstein - Feinsand dunkelgrau, Horizontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 40/1<br>P 40/2                                                                                                                                                                         | Tonstein - Siltstein grau - schwarz; stark geschiefert, mit Feinsand - Linsen dunkelgrau (Hier Schrägschichtung (Linear242/29), viele Hellglimmer (30 cm mächtig, ca. 1 m lang)(P40/1); Eine Rinnenstruktur (4 m breit 2 m mächtig) mit Grobsand, feiner werdende über Mittelsand bis Feinsand :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 40/3                                                                                                                                                                                   | Rinnenachse fällt nach ENE ein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 40/4<br>P 40/5                                                                                                                                                                         | Wechsellagerung von Tonstein-Siltstein (5 - 10 cm) /Feinsand (5 cm) hellgrau; nach oben (nach 150) Übergang in 10 - 20 cm dünnbankigen Feinsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Profil 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R·54 45 7                                                                                                                                                                                | und 1-2 cm Siltstein Honzontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Probe                                                                                                                                                                                    | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50+<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 41/1<br>P 41/2                                                                                                                                                                         | Grobsand, dicke Bänke å 20 - 30 cm, grau - braun rot<br>Feinsand wie (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 41/3                                                                                                                                                                                   | Wechsellagerung Feinsand wie (2) (1 cm)/Siltstein beige-schwarz (1-2 cm); nach oben dünner werdend (Feinsand 4 mm, Siltstein 2 mm<br>Mittelsand - Grobsand hellorau in dünnen Bänkchen á 2 - 3 cm. An der Basis Grobsand /Feinkies, ca. 10 cm dann schnell über Grobsand nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P 41/4                                                                                                                                                                                   | Mittelsand übergehend<br>Siltstein)-Feinsand (2-3 cm)/Tonstein (1 cm) schwarz Wechsellagerung: Schrägschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 460+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | Siltstein - Feinsand dünnlagig (1 - 0,5 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 42<br>Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Koordinaten:<br>Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R:54 46 2                                                                                                                                                                                | 50-54 47 570 / H:14 24 000-14 24 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 42/1                                                                                                                                                                                   | Mittelsand, rot, mit vielen Klasten bis 0,5 cm; Bänke á 50 cm → Schichten á 2-3 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 42/2<br>P 42/3                                                                                                                                                                         | Grobsand-Mittelsand mit einigen Klasten bis 0,3 cm, heligrau; Nach oben in reinen Mittelsand übergehend, ohne oder mit vereinzelten Klasten im 1-<br>2mm Bereich; eingeschaltet nach 100 eine Feinsand - Bank grau (P42/3) ca. 15 cm; danach Wechselfolge Feinsand / Grobsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 280<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 42/4<br>P 42/5                                                                                                                                                                         | Hellgrauer Grobsand mit einigen schwarzen Komponenten im 1-2 mm Bereich, massig (180), danach 2-3 Bänke á 30 - 40 cm<br>Mittelsand massig, hellgrau-rötlich, ganz selten Klasten >1 mm; dünnlagig in 4-5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 42/6                                                                                                                                                                                   | Mittelsand (4-5 cm)grau/Tonstein (1-2 mm) stark geschiefert schwarz) Wechsellagerung in Bänken á 50 - 70 cm; Schrägschichtung= L:340/55; 320/45<br>→ Eließrichtung ca N bis NNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 42/7                                                                                                                                                                                   | Grauer Grobsand mit teilweise schwarzen Komponenten bis 0,5 cm; massig; evtl. Rippelschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (7)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 42/8<br>P 42/9                                                                                                                                                                         | Mittelsand-Peinsand neligrau; wenig grobere Komponenten; dunnbankig a 1-2 cm aber in Banken a 20 cm<br>Feinkies-Grobsand dunkelgrau-rötlich; viele Komponenten Ø 0,5 cm; in dünnen Bänken á 2-3 cm; stark geschiefert; Matrix= Mittelsand-Grobsand ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          | Ripp up clasts<br>Mittelsand mit Komponenten bis 3 mm; dunkelgrau-rötlich in Bänken á 2-3 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P 42/10                                                                                                                                                                                  | Grobsand hellgrau-rötlich in Bänken á 10 - 20 cm. Komponenten á 0.5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (11)<br>Profil 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140+<br>Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R:54 55 5                                                                                                                                                                                | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)<br>00-54 52 000 / H:14 35 500-14 35 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (11)<br>Profil 43<br>Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R:54 55 5<br>Probe<br>P 43/1                                                                                                                                                             | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) 00-54 52 000 / H:14 35 500-14 35 200 Beschreibung Feinsand-Mittelsand beige-braun/rot: massig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lithofazies<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>R:54 55 5</b><br><b>Probe</b><br>P 43/1<br>P 43/2                                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) 00-54 52 000 / H:14 35 500-14 35 200 Eeinsand-Mittelsand beige-braun/rot; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lithofazies<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  Deschreibung  Feinsand-Mittelsand beige-braun/rot; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Siltstein-Feinsand (1-2 mm) / Tonstein (0,5 - 1 mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend  Feinsand (1-2 mm) / Tonstein (0,5 - 1 mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend  Feinsand (1-2 mm) / Tonstein (0,5 - 1 mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend  Feinsand (1-2 mm) / Tonstein (1 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithofazies<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+<br>160<br>620<br>70<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  00-54 52 000 / H:14 35 500-14 35 200  Beschreibung  Feinsand-Mittelsand beige-braun/rot; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Siltstein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend Feinsand (1-0,5 mm) / Tonstein (1,0,5 - 1) mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend Feinsand (1-2,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen å 2-3 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+<br>160<br>620<br>70<br>350<br>30<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  00-54 52 000 / H:14 35 500-14 35 200  Feinsand-Mittelsand beige-braun/rot; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Siltstein-Feinsand (1-2,mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend Feinsand - Mittelsand L(-0,5 mm) / Tonstein (Hautchen) Wechselfolge in 2-3 cm Bänken Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen å 2-3 mm Feinsand total verwittert Wechselfolge von :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  00-54 52 000 / H:14 35 500-14 35 200  Feinsand - Mittelsand beige-braun/rot; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Siltstein-Feinsand (1-2/cm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein / Tonstein übergehend Feinsand - Mittelsand 1-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 mm Feinsand toul verwittert Wechselfolge von : Oben: Tonstein (1 - 2cm); Übergang hat Mitter Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  00-54 52 000 / H:14 35 500-14 35 200  Feinsand - Mittelsand grau-rötlich (2-3 cm)  Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Sittsein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Sittstein /Tonstein übergehend Feinsand - Mittelsand (1-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand total verwittert Wechselfolge von : Oben: Tonstein (1 - 2cm); Übergang hart Mitter Sittstein (2-3 mm)/Tonstein (Häutchen) Wechselfagerung (2 cm); Übergang fließend Unten: Feinsand total Sittstein Bänke (2 -3 cm) mit Horizontalschichtung Gliech wie (2 - 10 unz daß E feinsand verschwindet = Sittstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  00-54 52 000 / H:14 35 500-14 35 200  Feinsand -Mittelsand beige-braun/rot; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Siltstein-Feinsand (1-2 mm) / Tonstein (0,5 - 1 mm) Wechselfolge; nach oben hin in Siltstein / Tonstein übergehend Feinsand - Mittelsand 10-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 mm Feinsand total verwittert Wechselfolge von : Oben: Tonstein (1 - 2 cm): Übergang hart Mitte: Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend Unten: Feinsand Versilitel Bänke (2 -3 cm) mit Horizontalschichtung Gleich wie (7), nur daß Feinsand verschwindet = Siltstein Stark geschieferter schwarzer Siltstein-Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>Beschreibung</b> Feinsand - Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Sittstein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Sittstein / Tonstein übergehend         Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Sittstein / Tonstein übergehend         Feinsand (1-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm         Feinsand total verwittert         Wechselfolge von :         Oben: Tonstein (1-2cm); Übergang hart         Mittelsand Sänke (2 - 3 cm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unter: Feinsand verschwindet = Siltstein         Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unter: Feinsand verschwindet = Siltstein         Siltstein Gas Feinsand verschwindet = Siltstein         Siltstein Gas Feinsand verschwindet = Siltstein         Valkantiage         Wechsellagerung Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2                                                                                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>Beschreibung</b> Feinsand-Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Siltstein-Feinsand (1-2/cm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand (1-2/cm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand (1-2/cm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 mm         Feinsand total verwittert         Wechselfolge von :         Oben: Tonstein (14auchen) Wechsellagerung (2 cm); Übergang fließend         Untern: Feinsand-Siltstein (2-3 cm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Untern: Feinsand verschwindet = Siltstein         Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50<br>560<br>40<br>170<br>50+<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/3                                                                                                                                         | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>00-54 52 000 / H:14 35 500-14 35 200</b> Beschreibung         Feinsand -Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2),<br>Horizontalschichtung         Siltstein-Feinsand (1-2/cm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand - Mittelsand 10 - 02 cm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen å 2-3 mm         Feinsand total verwittert         Wechselfolge von :         Oben: Tonstein (1 - 2cm); Übergang hart         Mitte: Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Untern: Feinsand-Siltstein Bänke (2 -3 cm) mit Horizontalschichtung         Gleich wie (7), nur daß Feinsand verschwindet = Siltstein         Statk geschieferter schwarzer Siltstein-Tonstein         Vulkanitäge         Wechsellagerung Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-5 mm)/Feinsand - Siltstein (1-2 mm) Wechsellagerung, dunkelgrau         Tonstein - Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-5 mm)/Feinsand - Siltstein min - Bereich mit reinen Tonhäutchen getrennt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(15)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>300<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm//Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>00-54 52 000 / H:14 35 500-14 35 200</b> Beschreibung         Feinsand-Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2),<br>Horizontalschichtung         Siltstein-Feinsand (1-2/mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand - Mittelsand 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 mm         Feinsand total verwittert         Wechselfolge von :         Oben: Tonstein (1 - 2cm); Übergang hart         Mitte: Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unter: Feinsand-Siltstein Bänke (2 - 3 cm) mit Horizontalschichtung         Gleich wie (7), nur daß Feinsand verschwindet = Siltstein         Statk geschieferter schwarzer Siltstein-Tonstein         Vulkanitage         Wechsellagerung Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-5 mm/Feinsand - Siltstein (1-2 mm) Wechsellagerung, dunkelgrau         Tonstein - Siltstein dünnlagig in 1 mm - Bereich mit reinen Tonhäutchen getrennt, schwarz-dunkelgrau         Tonstein - Siltstein dünnlagig in 1 mm - Bereich mit reinen Tonhäutchen getrennt, schwarz-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>300<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50<br>560<br>40<br>170<br>50<br>50<br>50<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>00-54 52 000 / H:14 35 500-14 35 200</b> Beschreibung         Feinsand-Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Siltstein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein / Tonstein übergehend         Feinsand 1-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 mm         Feinsand toul verwittert         Wechselfolge von :         Oben: Tonstein (1 - 2cm); Übergang hatt         Mitte: Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unten: Feinsand valke (2 - 3 cm) mit Horizontalschichtung         Gleich wie (7), nur daß Feinsand verschwindet = Siltstein         Stark geschieferter schwarzer Siltstein Tonstein         Vechsellagerung Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein (2-5 mm)/Feinsand - Siltstein (1-2 mm) Wechsellagerung, dunkelgrau         Tonstein - Siltstein dünnlagig in 1 mm - Bereich mit reinen Tonhäutchen getrennt, schwarz-dunkelgrau         Hellgrauer Mittelsand - Grobsand in Lagen á 1-2 cm; massig         ©(13) von a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150+<br>40<br>150+<br>200<br>200<br>430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150+<br>50+<br>40<br>150+<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>Beschreibung</b> Feinsand-Mittelsand beige-braun/rot; massig         Feinsand - Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Siltstein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein / Tonstein übergehend         Feinsand 1-0,5 mm) / Tonstein (Häutchen) Wechselfolge; nach oben hin in Siltstein / Tonstein übergehend         Feinsand t-0,5 mm / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen á 2-3 mm         Feinsand total verwittert         Wechselfolge von :         Oben: Tonstein (1 - 2cm); Übergang hart         Mitte: Siltstein (2 - 3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unten: Feinsand verschwindet = Siltstein         Siltstein Feinsand verschwindet = Siltstein         Siltstein (2 - 3 cm) mit Horizontalschichtung         Gleich wie (7), nur daß Feinsand verschwindet = Siltstein         Vulkanitage         Wechsellagerung Siltstein (2 - 3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein - Siltstein dünnlagig in 1 mm - Bereich mit r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(15)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>500<br>200<br>430<br>70<br>10<br>120<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>00-54 52 000 / H:14 35 500-14 35 200</b> Beschreibung         Feinsand -Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2),<br>Horizontalschichtung         Siltstein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand 1-0,5 mm) / Tonstein (Häutchen) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand (1-0,5 mm) / Tonstein (Häutchen) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand vezwitter         Wechselfolge von :         Oben: Tonstein (1 - 2cm): Übergang hart         Mitte: Siltstein Bänke (2 -3 cm) mit Horizontalschichtung         Gleich wie (7), nur daß Feinsand vezschwindet = Siltstein         Siltstein (1-2 mm) Wechsellagerung (2 cm); Übergang fließend         Vulkanitage         Vechsellagerung Siltstein (2-3 cm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein Colspan in Lagen á 1-2 cm; massig         Siltstein Mänke (2 -3 cm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstein Mänke (2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(23)<br>(21)<br>(22)<br>(22)<br>(24)<br>(24)<br>(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.1<br>D2.1<br>B2.2<br>D2.1<br>D2.1<br>B2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>330<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>150<br>500<br>200<br>430<br>70<br>10<br>10<br>10<br>50<br>200<br>10<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/4                                                                                                                     | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>00-54 52 000 / H:14 35 500-114 35 200</b> Beschreibung         Feinsand-Mittelsand beige-braun/rot; massig         Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2),<br>Horizontalschichtung         Siltstein-Feinsand (1-2mm) / Tonstein (Häutchen) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend         Feinsand tond zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen å 2-3 mm         Feinsand total verwittert         Wechselfolge von :         Oben: Tonstein (1 - 2cm); Übergang hart         Mitte: Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unter: Feinsand-Siltstein Bänke (2 - 3 cm) mit Horizontalschichtung         Gleich wie (7), nur daß Feinsand verschwindet = Siltstein         Stark geschieferter schwarzer Siltstein Tonstein         Vulkanitage         Wechsellogerung Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Siltstei (2-5 mm)/Feinsand - Siltstein (1-2 mm) Wechsellagerung, dunkeigrau         Tonstein - Siltstein dünnlagig in 1 mm - Bereich mit reinen Tonhäutchen getrennt, schwarz-dunkeigrau         Hellgrauer Mittelsand - Grobsand in Lagen á 1-2 cm; massig         =(13) von a)         =(14) von a)         Basis grob Grobsand nach oben in Mitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(21)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(   | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>504<br>40<br>150<br>504<br>40<br>150<br>500<br>200<br>40<br>150<br>500<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/5                                                                                                 | Wechselfolge Tonstein schwarz geschiefert (1-2 cm//Feinsand - Mittelsand grau-rötlich (2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(10)<br>(11)<br>(12)<br>(22)<br>(23)<br>(22)<br>(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50<br>560<br>40<br>170<br>50<br>500<br>200<br>430<br>70<br>10<br>150<br>50<br>200<br>430<br>70<br>10<br>10<br>200<br>70<br>200<br>10<br>50<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6                                                                                                           | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)<br><b>De54 52 000 / H:14 35 500-14 35 200</b><br><b>Beschreibung</b><br>Feinsand -Mittelsand beige-braun/rot; massig<br>Feinsand (2-4 mm) / Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2),<br>Horizontalschichtung<br>Siltstein-Feinsand (1-2mm) / Tonstein (0,5 - 1mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend<br>Feinsand - Mittelsand 1-0,5 mm / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken<br>Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen à 2-3 mm<br>Feinsand toul verwittert<br>Wechselfolge von:<br>Oben: Tonstein (1 - 2cm); Übergang hat<br>Mitte: Siltstein (2-3 mm)/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend<br>Unten: Feinsand verwittert<br>Wechselfolge von:<br>Oben: Tonstein (1 - 2cm); Übergang hat<br>Mitte: Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Siltstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Siltstein (2-5 mm)/Feinsand verschwindet = Siltstein<br>Siltstein (2-5 mm)/Feinsand verschwindet = Siltstein<br>Siltstein (2-5 mm)/Feinsand verschwindet = Siltstein<br>Siltstein (2-5 mm)/Feinsand - Siltstein (1-2 mm) Wechsellagerung, dunkelgrau<br>Heligrauer Mittelsand - Grobsand nach oben in Mittelsand - Grobsand übergehend; dünnlagig á 2-3 cm; schiefrig<br>Massige Lage Mittelsand - Feinsand mit wiel Heliglimmer, trogförmige Schrägschichtung<br>Feinsand (20 - 30 cm) heligrau in Wechsellagerung mit Mittelsand-Feinsand (2-5 cm) = (3); stark geschiefert; Oben weniger Mittelsand mehr Feinsand<br>→ geht in Feinsand (3-4 mm)/Tonstein (1 mm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (3-4 mm)/Tonstein (1 mm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (3-4 mm)/Tonstein (1 mm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (3-4 mm)/Tonstein (1 cm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (3-4 mm)/Tonstein (1 cm) Wech  |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)<br>(12)<br>(13)<br>(14)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.2<br>B2.1<br>C2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>200<br>430<br>70<br>10<br>10<br>50<br>200<br>430<br>70<br>10<br>10<br>200<br>430<br>70<br>10<br>200<br>430<br>70<br>10<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>430<br>70<br>10<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>10<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>200<br>400<br>100<br>400<br>100<br>400<br>100<br>400<br>100<br>400<br>100<br>400<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6                                                                                                 | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(22)<br>(22)<br>(23)<br>(24)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>D2.3<br>D2.1<br>D2.2<br>D2.3<br>D2.3<br>D2.2<br>D2.3<br>D2.2<br>D2.3<br>D2.2<br>D2.3<br>D2.2<br>D2.3<br>D2.2<br>D2.3<br>D2.2<br>D2.2                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>300<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50<br>200<br>430<br>70<br>10<br>50<br>200<br>430<br>70<br>10<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>430<br>70<br>200<br>420<br>200<br>430<br>70<br>200<br>420<br>200<br>430<br>70<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>420<br>200<br>400<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6                                                                                                 | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)           Op:45 2000 / H:14 35 500-14 35 200           Beschreibung           Feinsand -Mittelsand beige-braun/tor; massig           Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung           Siltstein-Feinsand (1-2 mm) / Tonstein (0.5 - 1 mm) Wechselfolge; nach oben hin in Siltstein /Tonstein übergehend Feinsand (1-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken           Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Siltstein - Linsen å 2-3 mm           Feinsand (1-10,5 mm) / Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend           Unten: Feinsand total verwittet           Wechselloge von :           Oben: Tonstein (1 - 2cm;); Übergang hart           Mitte: Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen           Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen           Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen           Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen           Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen           Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen           Siltstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(12)<br>(13)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(27)<br>(22)<br>(23)<br>(27)<br>(28)<br>(27)<br>(28)<br>(29)<br>(31)<br>(31)<br>(32)<br>(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>300<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>200<br>430<br>70<br>10<br>50+<br>40<br>10<br>50+<br>40<br>10<br>50<br>50+<br>40<br>10<br>50<br>50<br>50<br>10<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6                                                                                                           | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) <b>Beschreibung</b> Feinsand-Mittelsand beige-braun/tor; massig Feinsand (2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Sittstein-Feinsand (1-2 mm) / Tonstein (0.5 - 1 mm) Wechselfolge; nach oben hin in Sittstein / Tonstein übergehend Feinsand (1-0,5 mm) / Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken Wie (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen à Z-3 mm Feinsand total verwittert Wechselfolge von: Oben: Tonstein (1 - 2cm); Übergang hart Mitte: Sittstein (2-3 mm)/Tonstein (Häutchen) Wechselfolge (2 cm); Übergang fließend Unten: Feinsand sittstein Bänke (2 - 3 cm) mit Horizontalschichtung Gleich wie (7), nur daß Feinsand verschwindet = Sittstein Stark geschieferts rchwarzer Sittstein in Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sittstein (2-3 mm)/Tonstein (1-2 mm) Wechsellagerung, dunkelgrau Heilgrauer Mittelsand (-0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sittstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sittstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sittstein Sittstein (1-2 mm) Wechsellagerung, dunkelgrau Heilgrauer Mittelsand - Feinsand verschwindet = Sittstein Sittstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sittstein Feinsand (0.5 - 0.7 cm) Wechsellagerung; nach oben mehr Tonstein Wechsellagerung Sittstein (1-2 mm) Wechsellagerung; nach oben mehr Tonstein Geschneidung and in Lagen 1 - 2 cm; massig E(13) von a) E(14) von a); Basis grob Grobsand nach oben in Mittelsand - Grobsand übergehend; dünnlagig á 2-3 cm; schiefrig Massige Lage Mittelsand (0.5 - 0.7 cm)/ Sittstein - Feinsand (1-2 mm) wechsellagerung; nach oben mehr Tonstein Roter Feinsand (5.4 mm)/Tonstein (1 mm) Wechsellagerung; nach oben mehr Tonstein Roter Feinsand (                                                                 |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(12)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(12)<br>(23)<br>(24)<br>(22)<br>(22)<br>(24)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(22)<br>(23)<br>(31)<br>(32)<br>(33)<br>(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>B2.1<br>D2.1<br>B2.1<br>D2.2<br>C2.4<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>500<br>200<br>430<br>70<br>10<br>10<br>500<br>200<br>430<br>70<br>10<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>200<br>40<br>10<br>50<br>200<br>40<br>10<br>50<br>200<br>40<br>10<br>50<br>200<br>40<br>10<br>50<br>200<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>200<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>40<br>10<br>50<br>50<br>200<br>40<br>10<br>50<br>50<br>200<br>40<br>150<br>50<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>50<br>200<br>40<br>150<br>50<br>50<br>200<br>40<br>150<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>R:54 55 5</b><br><b>Probe</b><br>P 43/1<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/4<br>P 43/6<br>P 43/6                                                                                   | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)  DeS-45 200 / H:14 35 500-14 35 200  Feinsand 2-4 200 / H:14 35 500-14 35 200  Feinsand 2-4 200 / H:14 35 500-14 35 200  Feinsand 2-4 cmm) Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Sittetein-Feinsand (1-2 mm) / Tonstein (1.5 - 1 mm) Wechselfolge; nach oben hin in Sittetein / Tonstein übergehend Feinsand 2-4 Mittelsand (1-0,5 mm) / Tonstein (Häutchen) Wechselfolge; nach oben hin in Sittetein / Tonstein übergehend Feinsand 1-2 mm) / Tonstein (1.5 - 1 mm) Wechselfolge; nach oben hin in Sittetein / Tonstein übergehend Feinsand 1-2 mm) / Tonstein (1.5 - 1 mm) Wechselfolge; nach oben hin in Sittetein / Tonstein (1.5 - 1 mm) / Tonstein (1.5 - 1 mm) Wechselfolge; nach oben hin in Sittetein / Tonstein (1.5 - 1 mm) / Tonstein (1.5 - 1 mm) / Wechselfolge; nach oben hin Sittetein / Tonstein (1.5 - 1 mm) / Wechsellagerung, dunkelgrau Unten: Feinsand - Sittetein / Sittetein / Tonstein (1.5 - 1 mm) / Wechsellagerung, dunkelgrau Unten: Sitteten / Sittetein / Sittetein / Tonstein (1.5 - 1 mm) / Wechsellagerung, dunkelgrau Unten: / Sittetein / Sittetein / Sittetein / Tonstein (1.5 - 1 mm) / Wechsellagerung, dunkelgrau Helgrauer Mittelsand - Grobsand in Lagen & 1-2 cm; masig = (1.4) von a) Beais grob Grobeand nach oben in Mittelsand - Grobsand übergehend; dünnlagig & 2-3 cm; schiefrig Massige Lage Mittelsand - Feinsand werschwinger (1.6 - mm) / Wechsellagerung mit Mittelsand/- Feinsand (2-5 cm) = (3); stark geschiefert; Oben weniger Mittelsand mehr Feinsand 2-4 vollisat Feinsand (2-4 mm)/Tonstein (1 mm) Wechsellagerung inti Mittelsand/E-Feinsand (2-5 cm) = (3); stark geschiefert; Oben weniger Mittelsand mehr Feinsand 2-4 von ja Bais grob Grobsand nach oben in Mittelsand / Corbig dachidagu Feinsand (2-3                                                                      |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(12)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(23)<br>(24)<br>(23)<br>(23)<br>(24)<br>(23)<br>(23)<br>(24)<br>(23)<br>(23)<br>(24)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(33)<br>(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50<br>500<br>40<br>150<br>50<br>200<br>430<br>70<br>10<br>310<br>420<br>200<br>430<br>70<br>10<br>310<br>420<br>200<br>430<br>70<br>30<br>150<br>50<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>430<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>200<br>40<br>200<br>40<br>200<br>40<br>200<br>40<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6<br>P 43/6                                                                                       | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm) De54 52 000 / H:14 35 500-14 35 200 Beschreibung Feinsand 2-4 mm)/ Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Sittstein-Feinsand (1-4 mm) Voetselfolge - Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Sittstein-Feinsand (1-2 mm) / Tonstein (1-5 cm)/ Wechselfolge in 2-3 cm Bänken Wei (3), ab und zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand tot zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand tot zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand tot zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand tot zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand tot zu (alle 10 - 20 cm) dünne Feinsand-Sittstein - Linsen á 2-3 mm Feinsand (2-1 cm), Übergang hart Mitte: Sittstein (2-3 mm)/Tonstein (Mäutchen) Wechsellagerung (2 cm); Übergang fließend Unter-Sittstein (2-3 mm)/Tonstein (Natorham) Wechsellagerung, dunkelgrau Gleich wie (7), nur daß Feinsand verschwindet = Sittstein Sittstein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sittstein (2-3 mm)/Foinstein (1-2 mm) Wechsellagerung, dunkelgrau Helgrauer Mittelsand - Grobsand in Lagen à 1-2 cm; masig E(13) on a) E(14) von a); Basis grob Grobsand nach oben in Mittelsand - Grobsand übergehend; dünnlagig à 2-3 cm; schiefrig Massige Lage Mittelsand - Grobsand nach oben in Mittelsand Feinsand (2-5 cm) = (3); stark geschiefert; Oben weniger Mittelsand mehr Feinsand 20-40 ocn) - Nostein (1 cm) Wechsellagerung; nach oben mehr Tonstein Roter Feinsand (5.0 cm) / Tonstein (1 mm) Wechsellagerung; nach oben mehr Tonstein Roter Feinsand (5.0 cm) / Tonstein (1 mm) Wechsellagerung; nach oben mehr Tonstein Roter Feinsand (5.0 cm) / Tonstein (1 cm) Wechsellagerung; nach oben mehr Tonstein Roter Fei                                                                     |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(11)<br>(12)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(25)<br>(27)<br>(23)<br>(24)<br>(25)<br>(27)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(23)<br>(24)<br>(23)<br>(24)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(23)<br>(24)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(23)<br>(24)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(23)<br>(24)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(23)<br>(33)<br>(34)<br>(33)<br>(34)<br>(33)<br>(34)<br>(33)<br>(34)<br>(33)<br>(34)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)<br>(37)                                                                                                | Lithofazies<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50<br>500<br>40<br>170<br>500<br>200<br>430<br>70<br>10<br>50<br>500<br>200<br>430<br>70<br>10<br>50<br>500<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>40<br>150<br>50<br>40<br>40<br>40<br>150<br>50<br>40<br>40<br>150<br>50<br>50<br>40<br>40<br>150<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>430<br>430<br>430<br>50<br>430<br>430<br>430<br>50<br>430<br>430<br>430<br>430<br>40<br>50<br>50<br>430<br>40<br>50<br>50<br>430<br>40<br>50<br>50<br>430<br>40<br>50<br>50<br>430<br>40<br>50<br>50<br>430<br>40<br>50<br>40<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>50<br>50<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6<br>P 43/7<br>R:54 53 0<br>Probe                                                                 | Wechselloge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)         Deschreibung         Feinsand 2-44 mm) Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Sittstein-Feinsand (1-1 mm) Wochselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Sittstein-Feinsand (1-2 mm) Tonstein (Häutchen) Wechselfolge in 2-3 cm Bänken         Wie (3), ab und zu (alle 10 - 2 cm), Übergang hart         Mitte: Sittstein Feinsand total verwittert         Wechselfolge von :         Ober: C3 mm/Tonstein (Häutchen) Wechsellagerung (2 cm); Übergang fließend         Unten: Feinsand-Sittstein Bänke (2 - 3 cm) mit Horizontalschichtung         Gliech wie (7), nur daß Feinsand verschwindet = Sittstein         Sittstein (2-3 mm/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Sittstein (2-3 mm/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Sittstein (2-3 mm/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen         Sittstein (2-3 mm/Tonstein (1-2 cm; mass)         #(1) von a)         #eligrauer Mittelsand - Feinsand in Lagen al 2-2 cm; mass)         #(1) von a)         #on a)         #eligrauer Mittelsand (0-5 cm) z (0)         Wechsellagerung and Sittstein (1-mm) Wechsellagerung, auch oben mehr Tonstein <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(34)<br>(34)<br>(34)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35 | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.2<br>D2.1<br>D2.1<br>D2.2<br>D2.1<br>D2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50<br>560<br>40<br>170<br>50<br>500<br>40<br>170<br>50<br>500<br>40<br>170<br>50<br>500<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>150<br>50<br>40<br>40<br>150<br>50<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6<br>P 43/7<br>R:54 53 0<br>Probe                                                                 | Wechselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-röttich (2-3 cm)  Beschreibung  Feinsand 2-4 mm) Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung Stitstein-Feinsand (1-1 mm) Vortselet (1 mm) Wechselfolge; nach oben hin in Sitstein / Tonstein übergehend Feinsand (1-1 (1-5, mm) / Tonstein (0.5 - 1 mm) Wechselfolge; nach oben hin in Sitstein / Tonstein übergehend Feinsand (1-1 (1-5, mm) / Tonstein (Hautchen) Wechselfolge; nach oben hin Sitstein / Tonstein übergehend Feinsand (1-1 (1-5, mm) / Tonstein (Hautchen) Wechselfolge; nach oben hin Sitstein / Tonstein übergehend Feinsand (1-1 (1-5, mm) / Tonstein (Hautchen) Wechselfolge; nach oben hin Sitstein / Tonstein übergehend Feinsand (1-1 (1-5, mm) / Tonstein (Hautchen) Wechselfolge; nach oben hin Sitstein / Tonstein übergehend Feinsand (1-2 mm) / Tonstein (Hautchen) Wechselfolge; nach oben hin Sitstein / Tonstein (1-5, mm) / Tonstein (1-5, mm) / Tonstein (1-5, mm) / Tonstein (1-5, mm) / Tonstein (1-2 mm) / Tonstein (1-2 mm) / Tonstein (1-2 mm) / Wechselfolgerung (2 cm); übergang fließend Unter: Feinsand-Sitstein führ (2-3 mm) / Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen Sitstein (2-5 mm)/Feinsand - Sitstein (1-2 mm) / Wechselfolgerung; durkelgrau Tonstein - Sitstein führ (1-2 mm) Wechselfolgerung; durkelgrau Hellgrauer Mittelsand - Grobsand in Lagen á 1-2 cm; massig = (1-3) von a) = (1-4) von a); Basis gob Grobsand in Lagen á 1-2 cm; massig = (1-3) von a) = (1-4) von a); Basis gob Grobsand in Lagen á 1-2 cm; massig = (1-3) von a) = (1-4) von a); Basis gob Grobsand in Lagen á 1-2 cm; massig = (1-2 mm) / Wechselfolgerung; und weber meh Tonstein Roter Feinsand (2-5 cm) = (3); stark geschiefert; Oben weniger Mittelsand mehr Feinsand 2-2 Mobilisat Feinsand (5-10 m) Nelfgrau in Wechselfolgerung mit Mittelsand-Feinsand (2-5 cm) = (3); stark geschiefert; Oben weniger Mittelsand here Feinsand - Sittetin - Feinsand (3-4 mm)/Tonstein                                                                      |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(34)<br>(32)<br>(33)<br>(34)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>(35)<br>( | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D2.1<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140+<br>Koordinaten:<br>Mächtigkeit<br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>170<br>50+<br>40<br>150<br>500<br>200<br>430<br>70<br>10<br>50<br>500<br>200<br>430<br>70<br>10<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>200<br>40<br>170<br>50<br>50<br>40<br>170<br>50<br>50<br>200<br>40<br>170<br>50<br>50<br>200<br>40<br>170<br>50<br>50<br>200<br>40<br>170<br>50<br>50<br>200<br>40<br>170<br>50<br>50<br>200<br>40<br>170<br>100<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>40<br>150<br>50<br>200<br>400<br>150<br>50<br>50<br>200<br>400<br>150<br>50<br>200<br>400<br>150<br>50<br>50<br>400<br>150<br>50<br>200<br>400<br>150<br>50<br>50<br>400<br>150<br>50<br>200<br>400<br>150<br>50<br>50<br>200<br>430<br>70<br>150<br>50<br>430<br>50<br>430<br>50<br>50<br>430<br>430<br>50<br>50<br>430<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>430<br>50<br>50<br>50<br>430<br>50<br>50<br>50<br>430<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6<br>P 43/7<br>R:54 53 0<br>P 43/7<br>R:54 53 0<br>P 44/1<br>P 44/2                               | Weckselfolge Tonstein schwarz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)         Beschreibung         Feinsand 2-4 mm) Tonstein (1 mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P43/2), Horizontalschichtung         Stitstein-Feinsand (1-10,5 mm) / Tonstein (0,5 - 1 mm) Wechselfolge; nach oben hin in Sitstein / Tonstein übergehend         Feinsand 1-2 du (alle 10 - 20 cm) (Jüne Feinsand - 2 Mittelsand (1-2 cm), Tonstein (1-2 cm), Tonstein (Hautchen) Wechselfolge; nach oben hin in Sitstein / Linsen (1-2 cm), Tonstein (1-2 cm), Tonstein (Hautchen) Wechselfolge 1-2 cm); Übergang fileßend         Weitsetlidge vol :       Doe:: Tonstein (1 - 2 cm), Tonstein (Hautchen) Wachsellagerung (2 cm); Übergang fileßend         Stark geschliedert schwarzer Sitstein (-2 mm) Wechsellagerung (2 cm); Übergang fileßend       Stark geschliedert schwarzer Sitstein (2-3 mm)/Tonstein (0,5 - 1 mm); schwarz mit einigen Quarzmobilisäten dazwischen         Stark geschliedert schwarzer Sitstein (-2 mm) Wechsellagerung, dunkelgrau       Tonstein - Sitstein (1-2 mm) Wechsellagerung, dunkelgrau         Valkanitäge       Ca mm)/Tonstein (0,5 - 1 mm; schwarz mit einigen Quarzmobilisäten dazwischen         Sitstein (-2 mm)/Foinsamd (0,5 - 0:1 mm): schwarz mit einigen Quarzmobilisäten dazwischen         Sitstein (-2 mm)/Foinsami (0,5 - 0:1 mm): schwarz mit einigen Quarzmobilisäten dazwischen         Sitstein (-2 mm)/Foinsami (0,5 - 1 mm): schwarz mit einigen Quarzmobilisäten dazwischen         Sitstein (-2 mm)/Foinsami (0,5 - 1 mm): schwarz mit einigen Quarzmobilisäten dazwischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(34)<br><b>Profil 44</b><br>Schicht<br>(1)<br>(1)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>B2.2<br>D2.1<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>B2.1<br>C2.4<br>D2.1<br>D2.2<br>B2.1<br>C2.4<br>D2.1<br>D2.2<br>B2.1<br>C2.2<br>B2.1<br>C2.2<br>B2.1<br>D2.2<br>B2.1<br>D2.2<br>C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>30<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50<br>200<br>430<br>70<br>10<br>50<br>50<br>430<br>70<br>10<br>10<br>50<br>50<br>430<br>70<br>10<br>10<br>50<br>50<br>430<br>70<br>10<br>10<br>50<br>50<br>430<br>70<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>10<br>50<br>50<br>40<br>10<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>40<br>100<br>50<br>50<br>50<br>40<br>100<br>50<br>50<br>50<br>50<br>50<br>40<br>100<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6<br>P 43/6<br>P 43/7<br>R:54 53 0<br>P 43/7<br>R:54 53 0<br>P 44/1<br>P 44/2<br>violet<br>P 44/3 | Weshealfolge Tonstein schwaiz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötlich (2-3 cm)<br><b>Boschreibung</b><br>Feinsand (2-4 mm) Tonstein (10.5 - tmm) Wechselloger, ach oben hin in Sittetein /Tonstein übergehend<br>Feinsand (2-4 mm) Tonstein (10.5 - tmm) Wechselloger, ach oben hin in Sittetein /Tonstein übergehend<br>Feinsand (2-4 mm) Tonstein (10.5 - tmm) Wechselloger, ach oben hin in Sittetein /Tonstein übergehend<br>Feinsand (2-4 mm) / Tonstein (10.5 - tmm) Wechselloger, ach oben hin in Sittetein /Tonstein übergehend<br>Feinsand (2-4 mm) / Tonstein (10.5 - tmm) Wechsellogerung (2 cm); Übergang fileßend<br>Unter: Feinsand Sittetein Earkor (2-3 cm) mit / Tonstein (10.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (1 - 2cm); Übergang hart<br>Mitte: Sittetein (2-3 mm)/Tonstein (15.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2-3 mm)/Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2-5 mm)/Feinsand - Sittetein Tonstein<br>Vulkanitäge<br>(13) von a)<br>(14) von a)<br>(14) von a)<br>(15) von a)<br>(15) von a)<br>(15) von a)<br>Sittetein - Feinsand ach oben in Mittelsand - Groband Übergehend; dünnlagig à 2-3 cm; schieftig<br>Massige Lage Mittelsand - Feinsand mach oben in Mittelsand - Feinsand (1-2 mm) dunkebraun<br>Qu-Mobilat<br>Sittetein - Feinsand (3-4 mm/Tonstein - Sittetein (1 mm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (3-4 mm/Tonstein (1 mm) Wechsellogerung mit Mittelsand - Feinsand (1-2 mm) dunkebraun<br>Qu-Mobilat<br>Peinsand (0-5 cm) / Tonstein (1 mm) Wechsellagerung mit Mittelsand forebraun<br>(2-4 Mobilat<br>Feinsand (3-4 mm/Tonstein (1 mm) Wechsellagerung mit Mittelsand (1-2 mm) dunkebraun<br>Qu-Mobilat<br>Peinsand (3-1 mm) / Tonstein (1 mm) Wechsellagerung mit Mittelsand forebraun<br>Heigrauer Grobaard-Mittelsand (2-5 cm) / Tonstein (1 mm) Wechsellagerung mit Mittelsand forebraun<br>Mittelsand (2-3 mm)/Tonstein (1 mm) Wechsellagerung mit Mittelsand (2-5 cm) = (3 |
| (11)<br>Profil 43<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27)<br>(22)<br>(23)<br>(24)<br>(31)<br>(32)<br>(33)<br>(34)<br>Profil 44<br>Schicht<br>(1)<br>(22)<br>(23)<br>(34)<br>(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.3<br>C2.2<br>D2.1<br>D2.1<br>D2.2<br>C2.2<br>D2.1<br>D2.2<br>C2.2<br>D2.1<br>D2.2<br>C2.2<br>D2.1<br>D2.2<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.2<br>D2.3<br>C2.2<br>D2.3<br>C2.2<br>D2.1<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D2.2<br>D                                                                                                                                                                                                                                                                                                                                                                    | 140+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40+<br>160<br>620<br>70<br>350<br>300<br>180<br>210<br>10<br>50<br>560<br>40<br>170<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>40<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>150<br>50+<br>400<br>100<br>50-<br>50+<br>400<br>100<br>50-<br>50-<br>400<br>100<br>50-<br>50-<br>400<br>100<br>50-<br>50-<br>400<br>100<br>50-<br>50-<br>400<br>100<br>50-<br>50-<br>400<br>100<br>50-<br>50-<br>50-<br>400<br>150-<br>50-<br>50-<br>400<br>150-<br>50-<br>50-<br>50-<br>400<br>150-<br>50-<br>50-<br>50-<br>400<br>150-<br>50-<br>50-<br>50-<br>400-<br>150-<br>50-<br>50-<br>50-<br>400-<br>150-<br>50-<br>50-<br>400-<br>150-<br>50-<br>50-<br>400-<br>150-<br>50-<br>50-<br>400-<br>150-<br>50-<br>400-<br>400-<br>50-<br>50-<br>100-<br>50-<br>100-<br>50-<br>100-<br>50-<br>100-<br>100-<br>50-<br>100-<br>50-<br>100-<br>100-<br>50-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100- | R:54 55 5<br>Probe<br>P 43/1<br>P 43/2<br>P 43/2<br>P 43/3<br>P 43/4<br>P 43/5<br>P 43/6<br>P 43/6<br>P 43/7<br>R:54 53 0<br>P 43/7<br>P 44/1<br>P 44/2<br>violett<br>P 44/2<br>grünlich | Wechselfolge Tonstein schwaiz geschiefert (1-2 cm)/Feinsand - Mittelsand grau-rötich (2-3 cm)<br><b>Boschreibung</b><br>Feinsand (24 mm) Tonstein (1-mm) Wechselfolge + Mittelsand Lagen dazwischen (15 cm)die dünnlagig sind 1-2 cm + Tonhäutchen (P432),<br>Horizontalschichtung<br>Stassan-Feinsand (24 mm) Tonstein (0.5 - 1mm) Wechselfolge: nach oben hin in Sittetein /Tonstein übergehend<br>Stassan-Feinsand (24 mm) Tonstein (0.5 - 1mm) Wechselfolge: nach oben hin in Sittetein /Tonstein übergehend<br>Stassan-Feinsand (24 mm) Tonstein (0.5 - 1mm) Wechselfolge: nach oben hin in Sittetein /Tonstein übergehend<br>Stassan-Feinsand (24 mm) Tonstein (0.5 - 1mm) Wechselfolge: nach oben hin in Sittetein /Tonstein (1-2 cm): Übergang hart<br>Mitte: Sittetein (1 - 2 cm): Übergang hart<br>Mitte: Sittetein (1 - 2 cm): Übergang hart<br>Mitte: Sittetein (2 - 3 cm) /Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2 - 3 cm) /Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2 - 3 cm) /Tonstein (0.5 - 1 mm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2 - 3 cm) /Tonstein (0.5 - 1 cm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2 - 3 cm) /Tonstein (0.5 - 1 cm); schwarz mit einigen Quarzmobilisaten dazwischen<br>Sittetein (2 - 3 cm)/Feinsand - Sittetein Tonstein<br>Vulkanitäge<br>Wechselligerung Sittetein (2 - 3 cm) in Wechsellagerung, dunkkigrau<br>Tonstein - Sittetein danch doein in Mittelsand - Grobaand übergehend; dünnlagig â 2 - 3 cm; schiefrig<br>Massige Dar Obstaand nach oben in Mittelsand - Grobaand übergehend; dünnlagig â 2 - 3 cm; schiefrig<br>Massige Jage Mittelsand - Feinsand (1 - 2 cm) wechsellagerung; mit Mittelsand Peinsand (2 - 3 cm) /Tonstein (1 rm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand: G-4 mm/Tonstein-Sittetein (1 rm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (J-4 rm) /Tonstein (1 rm) Wechsellagerung; nach oben mehr Tonstein<br>Roter Feinsand (J-4 cm) /Tonstein (1 rm) Wechsellagerung; mit Mittelsand (2 - cm) dunkelgrau brau                   |

| (6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D2.3<br>D2.2<br>D2.1<br>D2.3<br>D2.3                                                                                                                                 | 270<br>200<br>160<br>200<br>400<br>200<br>260<br>350<br>1000<br>110<br>400<br>300<br>1000                                                                                                                                                                                                        | P 44/4<br>P 44/5<br>P 44/6<br>P 44/7<br>P 44/8<br>P 44/9-11                                                                                                                                                                                   | Wie (4) nach oben hin toniger<br>Wechsellagerung graue + leicht violette Tone; jeweils ca. 20 cm; gehen über in:<br>Normale schwarze HW-Tone<br>Siltstein - Feinsand dunkelbraun + mehrfache Farbwechsel, grau/braun/grünlich/rötlich<br>Siltstein violett<br>Wieder wie (9)<br>Schichtlücke<br>Grüner Siltstein /Tonstein /Tuff ?<br>Ton in alle Farben fühlt sich taligig an<br>Tief violette Lage Schichtlücke, aber wahrscheinlich gleiches Zeug, da es immer wieder aus dem Hang kommt; viel violett<br>Schichtlücke<br>Tief violette Lage Schichtlücke, aber wahrscheinlich gleiches Zeug, da es immer wieder aus dem Hang kommt; viel violett<br>Schichtlücke<br>Tief violette Lage Schichtlücke, aber wahrscheinlich gleiches Zeug, da es immer wieder aus dem Hang kommt; viel violett<br>Schichtlücke<br>Tiefforaun-rötliche Lagen á 10 - á 20 cm, frisch = hellgrau<br>Daneben wieder Tonstein-Siltstein in verschiedenen Farben, mit Devonkalk darin<br>Schichtlücke<br>Vulkanit in Schichtlage, stark verwittert; dazwischen Lagen extrem fein + hart + grünlich-grau. Vulkanit bleibt gleich:<br>Nach oben wird das Zeug Qz-reicher + härter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profil 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                      | Koordinaten:                                                                                                                                                                                                                                                                                     | R:55 23 8                                                                                                                                                                                                                                     | 00-55 24 500 / H:14 55 500-14 55 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lithofazies<br>D2.2                                                                                                                                                  | Mächtigkeit<br>1000+                                                                                                                                                                                                                                                                             | Probe                                                                                                                                                                                                                                         | Beschreibung<br>Schwarzer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2.3                                                                                                                                                                 | 750                                                                                                                                                                                                                                                                                              | P 45/15                                                                                                                                                                                                                                       | Hellgrauer Feinsand - Mittelsand, laminiert mit planerer Schrägschichtung und mit Tonschichten nach 300, nach 400, nach 600, á 20 - 30 cm;Tb-Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2.2                                                                                                                                                                 | 460<br>370                                                                                                                                                                                                                                                                                       | P 45/13                                                                                                                                                                                                                                       | (Bounia)<br>Schwarzer Siltstein - Tonstein geschiefert<br>Feinsand wie (28), mit Tonflatschen = Ripp up clasts ca. 10 cm dick, nach 160 in Mittelsand übergehend (P45/14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      | 310                                                                                                                                                                                                                                                                                              | F 43/14                                                                                                                                                                                                                                       | Ton schwarz geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.3                                                                                                                                                                 | 40<br>120                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               | Feinsand braun<br>Schwarzer Tonstein geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2.2                                                                                                                                                                 | 170                                                                                                                                                                                                                                                                                              | P 45/12                                                                                                                                                                                                                                       | Grauer Mittelsand - Grobsand mit schwarzen Komponenten, Sohlmarken und Ripp up clasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.4                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | Foinsand - Sittsein hellbraun - rötlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 50<br>980                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               | Siltstein schwarz - grau<br>Schwarzer Tonsteig geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.3                                                                                                                                                                 | 180                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               | Ubergang Feinsandstein (50cm) über Silt zu Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2 3                                                                                                                                                                 | 90<br>80                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               | Schwarzer Tonstein übergehend in Siltstein nach 30 + später in Siltstein - Feinsand nach 60 (hellbraun); Schrägschichtung 20/47 L→ T0-T6 (Stow)<br>Der Mal Mittelsand - Einsand dickbankin 4 0, 50 cm grauphraum: Trooffirming Schrägschichtung 1: 245/50. Die zweits Schicht mit trooffirminger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02.0                                                                                                                                                                 | 00                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | Schrägschichtung, normales Schichteinfallen der Schicht mit tregförnigen Schrägschichtung immer noch 330/70, Lineare der trogförmigen Schrägschichtung; 70/40, 50/60, 10/65, 10/45; nächste Schicht it 2/62,10/45, 0/37; eine Fläche bei dieser trogförmigen Schrägschichtung: 355/55;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                               | P 45/11                                                                                                                                                                                                                                       | Feinsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 470                                                                                                                                                                                                                                                                                              | D 45/10                                                                                                                                                                                                                                       | Generelles Schichteinfallen 325/70. Erste Bank planare Schrägschichtung 20/47 L; Nachste Bank wieder planare Schrägschichtung 25/28 L;<br>Nächste Bank: L 10/45, 10/55, 35/40, 60/15 € Tießrichtung ca. N € TO: TI(Stow)<br>Schwarzer Tonstein - Sittstein dünnlagig (0,5 - 1 mm) in größeren Paketen à 20 - 30 cm auftretend – T3-T5 (Stow)<br>Ochwarzer Tonstein - Sittstein dünnlagig (0,5 - 1 mm) in größeren Paketen à 20 - 30 cm auftretend – T3-T5 (Stow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 700                                                                                                                                                                                                                                                                                              | 1 43/10                                                                                                                                                                                                                                       | Gumatzer ronsein, nach under grober werden vollsatien in einsand ab zuo, meinere weutser nach rob - zuo minner von reinsand - Gitatien<br>über Sittstein nach Onstein gehend → T0-T6 (Stow) Horizontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.3                                                                                                                                                                 | 460<br>200                                                                                                                                                                                                                                                                                       | P 45/9<br>P 45/8                                                                                                                                                                                                                              | Feinsand dunkelgrau - schwarz mit vielen Hellglimmern, mehr Tonhäutchen (alle 1-3 mm) → To-T3(Stow); Horizontalschichtung<br>Weiter an der Straße: grauer Feinsand (Sittstein) in Lagen §-23 cm (dazwischen Tonstein-Sittstein Häutchen → T3-T6 (Stow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 1420                                                                                                                                                                                                                                                                                             | P 45/7                                                                                                                                                                                                                                        | Änderung des Sf: 210/75 alt, 0/38 jetzt; Ca. 5 cm Bänkchen immer mit der Abfolge Feinsand→ Siltstein → Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2.1                                                                                                                                                                 | 800                                                                                                                                                                                                                                                                                              | P 45/5<br>P 45/6                                                                                                                                                                                                                              | Siltstein - Ionstein mit vielen Heilglimmern und Banken mit harten Tonlamellen → 10-16 (Stow); Schragschichtung zu sehen 10/56 L und 313/51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2.1                                                                                                                                                                 | 800                                                                                                                                                                                                                                                                                              | P 45/4                                                                                                                                                                                                                                        | Tonstein-Siltstein mit kleinen Feinsand-Siltstein Linsen in Rinnen mit Schrägschichtung alle 100 - 150; Schrägschichtung zu sehen 351/55 L auch in<br>Tonstein Siltetin wenn en citizen wird a TO IS (Struit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2.1                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | Torsteen - Sitstein , wellinger wild - To-To (Slow)<br>Sitstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | Tonstein<br>Silistein (Feinsand) mit allen 30 cm 5-10 cm Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 270                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               | Tonstein mit allen 30 - 40 cm 5-10 cm Siltstein (Feinsand)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 60<br>70                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               | Feinsand, Planare Schrägschichtung 350/53 L<br>Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | Silstein (Feinsand),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (31)<br>(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D2.2                                                                                                                                                                 | 80<br>70                                                                                                                                                                                                                                                                                         | P 45/3                                                                                                                                                                                                                                        | Tonstein, Planare Schrägschichtung, 22/47 L<br>Feinsand, tradförnige Schrägschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 70                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | Wechsellagerung wie bei a) mit gleichem Material, stark tektonisch zerschert, immer in Rinnenform die Siltstein-Feinsand in mehr tonigem Material 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                               | beginnt mit Tonstein<br>Schichtlücke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (33)<br>(34)<br>(35)<br>(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D2.2                                                                                                                                                                 | 270+                                                                                                                                                                                                                                                                                             | P 45/2                                                                                                                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schungzoch beritanstel leminister (0.5 mm) Eningend – Sittetais: glögzende Oberflöchen → mehr Tektonik wie (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2.2<br>D2.2                                                                                                                                                         | 270+<br>230<br>520+                                                                                                                                                                                                                                                                              | P 45/2<br>P 45/1                                                                                                                                                                                                                              | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2.2<br>D2.2                                                                                                                                                         | 270+<br>230<br>520+                                                                                                                                                                                                                                                                              | P 45/2<br>P 45/1                                                                                                                                                                                                                              | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D2.2<br>D2.2                                                                                                                                                         | 270+<br>230<br>520+<br>Koordinaten:<br>Mächtigkeit                                                                                                                                                                                                                                               | P 45/2<br>P 45/1<br>R:55 29 0<br>Probe                                                                                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br>00 / H:14 50 800<br>Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D2.2<br>D2.2<br>Lithofazies<br>D2.3                                                                                                                                  | 270+<br>230<br>520+<br>Koordinaten:<br>Mächtigkeit<br>4000+                                                                                                                                                                                                                                      | P 45/2<br>P 45/1<br>R:55 29 0<br>Probe                                                                                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>00 / H:14 50 800</b><br>Beschreibung<br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2                                                                                                                          | 270+<br>230<br>520+<br><b>Koordinaten:</b><br>Mächtigkeit<br>4000+<br>1650                                                                                                                                                                                                                       | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5                                                                                                                                                            | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larnineitert (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>00 / H:14 50 800</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißern, grauem Material, ähnlich wie am Paulitsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2                                                                                                                          | 270+<br>230<br>520+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>4000+<br>1650                                                                                                                                                                                                                | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6                                                                                                                                                  | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>00 / H:14 50 800</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißern, grauer Material, ähnlich wie am Paulitsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3                                                                                                                  | 270+<br>230<br>520+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>4000+<br>1650<br>200                                                                                                                                                                                                         | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>00 / H:14 50 800</b><br>Tonstein-Siltstein in Feinsand<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißern, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3                                                                                                                  | 270+<br>230<br>520+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200                                                                                                                                                                                           | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißern, grauer Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein - 2 mm et Tonhäutehen dazwischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3                                                                                                                  | 270+<br>230<br>520+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200<br>850                                                                                                                                                                                    | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißern, grauer Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein und häufiger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3                                                                                                                  | 270+<br>230<br>520+<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300                                                                                                                                                                     | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein, glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie hei P45/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3<br>D2.2<br>D2.1                                                                                                  | 270+<br>230<br>520+<br><b>Mächtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1070                                                                                                                                                                                    | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/6<br>P 47/6<br>P 47/7                                                                                                                                        | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein in dhäufiger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie der Tonstein - Siltstein in dünnen Paketchen á 2-5 mm<br>Wie bei P 45/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3<br>D2.2<br>D2.2<br>D1.1<br>B2.1                                                                                  | 270+<br>230<br>520+<br><b>Kachtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1070<br>140                                                                                                                                                                             | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/3<br>P 47/6<br>P 47/6<br>P 47/7<br>P 47/7                                                                                                                              | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein in dünnen Paketchen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie der Tonstein - Siltstein in dünnen Paketchen á 2-5 mm<br>Wie bei P 45/7<br>Schwarzer Tonstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2.2<br>D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>D2.2<br>D1.1<br>B2.1<br>D1.1                                                                                         | 270+<br>230<br>520+<br><b>Mächtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1070<br>140                                                                                                                                                                     | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7                                                                                                                              | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauer Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstei 1-2 mm + Tonhäutchen dazwischen<br>Siltstein und häufiger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie bei P 45/7<br>Schwarzer Tonstein - Siltstein in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br>Profil 47<br>Schicht<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>Profil 48<br>Octibet 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D2.2<br>D2.2<br>Lithofazies<br>D2.3<br>D2.2<br>C2.3<br>D2.2<br>D1.1<br>B2.1<br>D1.1                                                                                  | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1070<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b>                                                                                                                                             | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/1<br>P 47/2<br><b>R:55 30 5</b>                                                                                      | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein in dhäufiger Wechsel Schrägschichtung und verstärkt Faltung<br>Siltstein in häufiger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie der Tonstein - Siltstein in dünnen Paketchen á 2-5 mm<br>Wie bei P 45/7<br>Schwarzer Tonstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>100-55 31 250 / H:14 51 500-14 51 000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D2.2<br>D2.2<br>D2.3<br>D2.2<br>C2.3<br>D2.2<br>C2.3<br>D2.2<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.3                                                  | 270+<br>230<br>520+<br><b>Kachtigkeit</b><br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>1070                                                                                                                | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/1<br>P 47/2<br><b>R:55 30 5</b><br><b>Probe</b>                                                                      | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal larninierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen larniniert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein in dhäufiger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie der Tonstein - Siltstein in dünnen Paketchen â 2-5 mm<br>Wie bei P 45/7<br>Schwarzer Tonstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstei in geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>100-55 31 250 / H:14 51 500-14 51 000</b><br>Änderung des SI: 210/75 alt, 0/38 jetzt;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D2.2<br>D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.3<br>C2.3                                                  | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>1070<br>220                                                                   | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/2<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1                                                            | beginnt mit Tonstein<br>Schichtlück<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein und häufiger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wieder Tonstein - Siltstein n dünnen Paketchen á 2-5 mm<br>Wie bei P 45/7<br>Schwarzer Tonstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H:14 51 500-14 51 000</b><br>Ânderung des Sf: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger Ton-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Hellglimmern, hellgrau-braun <u>=</u> evtl. P 45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basis normal gradiert                                                                                                                                                                                                                                                                                                                                                                                                       |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D2.2<br>D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3                                         | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1070<br>140<br>1030<br><b>[Koordinaten:</b><br><b>Mächtigkeit</b><br>1070<br>220<br>1350                                                                          | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>Probe<br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/2<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1                                                         | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung → mehr Tektonik wie (1)<br>Dunkelgrauer Sittstein (feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>00 / H14 50 800</b><br><b>Beschreibung</b><br>Tonstein-Sittstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Sittstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Sittstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Sittstein 1-2 mm + Tonhäutchen dazwischen<br>Sittstein 1-2 mm + Tonhäutchen azwischen<br>Sittstein und häufiger Wechsel zwischen Sittstein (2-3 mm) / Tonstein (1 mm)<br>Wie bei P 45/7<br>Schwarzer Tonstein - Sittstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Sittstein geschiefert, nach unten in grauen Sittstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H14 51 500-14 51 000</b><br>Anderung des Sf: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → T0-T6 (Stow)<br>Feinsand gradiert<br>Wie (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2.2<br>D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.3<br>C2.3<br>C2.3                                          | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br>Mächtigkeit<br>1070<br>220<br>1350                                                                                       | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/4<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Brobe</b>                                  | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Durklergraues Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken à 30-50 cm; nach oben dünnere Bänke à<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>007 H:14 50 800</b><br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstei 1-2 mm + Tonhäutchen dazwischen<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein - Feinsand grau - braun in dünnen Paketchen á 2-5 mm<br>Wie bei P 45/7<br>Schwarzer Tonstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H:14 51 500-14 51 000</b><br>Änderung des Si: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abtolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → T0-T6 (Stow)<br>Feinsand grauert<br>Wie (1)<br><b>00-55 32 700 / H:14 50 700 - 14 49 800</b><br><b>Beschreiburg</b>                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D2.2<br>D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                  | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br>Mächtigkeit<br>1070<br>220<br>1350                                                                  | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br><b>Probe</b><br>P 47/3<br>P 47/4<br>P 47/4<br>P 47/6<br>P 47/6<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b>                                  | beginnt mit Tonstein<br>Schrichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>200 /H:14 50 800</b><br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein 1-2 mm / Siltstein in dünnen Paketchen å 2-5 mm<br>Wie bei P45/7<br>Schwarzer Tonstein e Siltstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>300 /H:14 51 500-14 51 000</b><br>Ânderung des Sf: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → T0-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Heilglimmern, hellgrau-braun = evtl. P 45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basin ormal gradiet<br>Wie (1)<br><b>300-55 32 700 /H:14 50 700 -14 49 800</b><br>Siltstein/Tonstein Wechselfolge                                                                                                                                                                                                                                                                                                                    |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(3)<br>(2)<br>(3)<br>(3)<br>(3)<br>(2)<br>(3)<br>(3)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(2)<br>(3)<br>(3)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3         | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>1070<br>220<br>1350<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>500<br>20 | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>Probe<br>P 47/3<br>P 47/4<br>P 47/4<br>P 47/6<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br>Probe<br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b>                            | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminiert (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Dor H:14 50 800</b><br><b>Beschreibung</b><br>Tonstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein - Tom + Tonhäutchen dazwischen<br>Siltstein - Siltstein in dünnen Paketchen á 2-5 mm<br>Wieder Tonstein - Siltstein in dünnen Paketchen á 2-5 mm<br>Wieder Tonstein - Siltstein i dünnen Paketchen á 2-5 mm<br>Wieder Tonstein - Siltstein i dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer Tonstein - Siltstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer Tonstein - Siltstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H:14 51 500-14 51 000</b><br>Anderung des Sf: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → To-T6 (Stow)<br>Feinsand - Mittelsand Tivelen Hellgimmern, hellgrau-braun = evtl. P 45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basis normal gradiert<br>Wie (1)<br><b>00-55 32 700 / H:14 50 700 - 14 49 800</b><br>Siltstein/Tonstein Wechselfolge<br>Schwarzer Tonstein<br>Feinsand Fuller                                                                                                                  |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(3)<br>(4)<br>(5)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(10)<br>(11)<br>(2)<br>(3)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(10)<br>(11)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(11)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(1)<br>(1)<br>(2)<br>(3)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(2)<br>(3)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>1070<br>220<br>1350<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>500<br>20<br>110  | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>Probe<br>P 47/3<br>P 47/4<br>P 47/4<br>P 47/6<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/7<br>P 47/2<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1       | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminiert (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken á 30-50 cm; nach oben dünnere Bänke á<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig á 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jetzt Störung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein - Siltstein in dünnen Paketchen á 2-5 mm<br>Wie bei 7 45/7<br>Schwarzer Tonstein - Siltstein ne Paketchen á 2-5 mm<br>Wie bei 7 45/7<br>Schwarzer Tonstein - Siltstein geschiefert<br>Mittelsand - Feinsand grau. brau in dünnen Lagen á 0,5 cm; nach unten Mittelsand<br>Schwarzer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H:14 51 500-14 51 000</b><br>Ânderung des SI: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 457; → Slow mit Sediment-Strukturen wie bei Rüdiger → To-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Hellglimmern, hellgrau-braun = evtl. P 45/10-11; planare und torgförmige Schrägsschichtung 5/47 L, 28/42 L, an der<br>Baschreibung<br>Siltstein:Tonstein Wechselfolge<br>Stitstein:Tonstein Wechselfolge<br>Stitstein:Tonstein Wechselfolge<br>Stitstein:Tonstein Wechselfolge<br>Stitstein:Tonstein Wechselfolge                                                                                                                                                                                                                                                |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(4)<br>(4)<br>(5)<br>(6)<br>(6)<br>(6)<br>(6)<br>(6)<br>(6)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D2.2<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br>Mächtigkeit<br>1070<br>220<br>1350<br><b>Koordinaten:</b><br>Mächtigkeit<br>500<br>20<br>110                                | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>Probe<br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7                               | beginnt mit Tonstein<br>Schichtlicke<br>Wie (1), stärker tektonisient gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer horizontal laminieter (0.5 mm) Feinsand - Sittstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Durkelgrauer Sittstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Heliglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Sittstein dünnlagig å 1-2 mm, stark geschieftert mit vielen Heliglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Sittstein - Feinsand<br>Jett Störung ca. 175/70; Wechselfolge von 0.5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Sitt Wechselfolge<br>Feinsand(1-2 mm) / Sittstein (0.5 mm) mit Schrägschichtung und verstärkt Faltung<br>Sittstein 1-2 mm + Tonhäutchen dazwischen<br>Sittstein - Sittstein dünnen Paketchen å 2-5 mm<br>Wieder Tonstein - Sittstein dünnen Paketchen å 2-5 mm<br>Wieder Tonstein - Sittstein dünnen Paketchen å 2.5 mm<br>Wieder Tonstein - Sittstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Sittstein geschiefert, nach unten in grauen Sittstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H:14 51 50:01 5 11</b> ; 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → T0-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Heliglimmern, heligrau-braun = evtl. P 45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basis normal gradiert<br>Wie (1)<br><b>00-55 32 700 / H:14 50 700 - 14 49 800</b><br>Sittstein/Tonstein Wechselfolge<br>Schwarzer Tonstein<br>Feinsand robtraun<br>Tonstein schwarzer                                                                                                                                                                                                                |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D2.2<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>200<br>850<br>400<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br>Mächtigkeit<br>1070<br>220<br>1350<br><b>Koordinaten:</b><br>Mächtigkeit<br>50<br>500<br>20<br>110<br>133                   | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>Probe<br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7                               | beginnt mit Tonstein<br>Schichtlicke<br>Wie (1), stärker tektonisient gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer brozontal laminieter (0,5 mm) Feinsand - Sittstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Sittstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Heliglimmer, gröbere Partien in Rinnen form<br><b>Beschreibung</b><br>Tonstein-Sittstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Heliglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Sittstein - Feinsand<br>Jett Störung ca. 175/70; Wachselfolge von 0.5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Sitt Wechselfolge<br>Feinsand(1-2 mm) / Sittstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Sittstein - Zimm / Tonhäutchen dazwischen<br>Sittstein - Sittstein in dünnen Paketchen â 2-5 mm<br>Wie dee' Tonstein - Sittstein in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer fonstein - Sittstein dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer Tonstein - Sittstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer fonstein - Sittstein geschiefert, nach unten in grauen Sittstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 1250 / H:14 51 500-14 51 000</b><br>Anderung des Si: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → T0-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Heliglimmern, heligrau-braun = evtl. P 45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basis normal gradiert<br>Wie (1)<br><b>00-53 23 700 / H:14 50 700 - 14 49 800</b><br><b>Eeschreibung</b><br>Sittstein iT. Jorstein Wechselfolge<br>Schwarzer Tonstein<br>Feinsand robtraun<br>Tonstein Schwarzer                                                                                                           |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(77)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(2)<br>(3)<br>(4)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D2.2<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1070<br>140<br>1030<br><b>Koordinaten:</b><br>Mächtigkeit<br>1070<br>220<br>1350<br><b>Koordinaten:</b><br>Mächtigkeit<br>500<br>20<br>110<br>1330                     | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>Probe<br>P 47/3<br>P 47/4<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/6<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7<br>P 49/7<br>P 49/8 | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer Horizontal laminierter (0,5 mm) Feinsand - Siltstein; glanzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Heliglimmer, gröbere Partien in Rinnen form<br><b>007/H:14 50 800</b><br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Heliglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jett Stötung ca. 175/70; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißem, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitlage in Ton/Silt Wechselfolge<br>Feinsand(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein und Aufürger Wechsel zwischen Siltstein (2,3 mm) / Tonstein (1 mm)<br>Wie bei P457<br>Schwarzer Tonstein - Siltstein ad ünnen Paketchen å 2-5 mm<br>Wie bei P457<br>Schwarzer grauer Tonstein - Siltstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 31 250 / H:14 51 500-14 51 000</b><br>Ânderung des Sf: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P457; > Slow mit Sediment-Strukturen wie bei Rüdiger → To-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Hellgimmern, hellgrau-braun = extl. P45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basin ormal gradiert<br>Wie (1)<br><b>00-55 32 700 / H:14 50 700 - 14 49 800</b><br>Siltstein/Tonstein Wechselfolge<br>Schwarzer Tonstein<br>Tonstein Ruder, grau mit vielen Hellgimmern<br>Schwarzer Tonstein Tonstein (H-2 mm)/ Tonstein (1-2 mm);<br>Siltstein mit Tonhäutcher → dünne Lagen å 1-0,5 mm                                                              |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3          | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300                                                                                                                                                   | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/6<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7<br>P 49/8                              | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form: planare Schrägschichtung<br>Schwarzer hotizontal laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Dunkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Helglimmer, gröbere Partien in Rinnen form<br><b>2007/H:14 50 800</b><br>Tonstein-Siltstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Helglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand, 1-2 mm, Vechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>welßern, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitäge in Ton/Silt Wechselfolge<br>Feinsan(1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein 1-2 mm + Tonhäutchen dazwischen<br>Siltstein - Siltstein in Glinnen Paketchen ä 2-5 mm<br>Wie bei P 45/7<br>Schwarzer Tonstein - Siltstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer Tonstein - Siltstein geschiefert<br>Mittelsand - Siltstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>00-55 1260/H:14 51 500-14 51 000</b><br>Anderung des SI: 210/75 alt, 0/38 jetzt;<br>Ca. 5 cm Bänkchen immer mit der Abfolge wie bei P 45/7; → Slow mit Sediment-Strukturen wie bei Rüdiger → To-T6 (Stow)<br>Feinsand - Mittelsand mit vielen Hellgimmern, hellgrau-braun = evtl. P 45/10-11; planare und trogförnige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basis normal gradiert<br>Wie (1)<br><b>00-55 32 700 /H:14 51 500 -14 49 800</b><br><b>Beschreibung</b><br>Sittein Tonstein Wechselfolge<br>Sittein Tonstein Wechselfolge<br>Sittein Tonstein Wechselfolge<br>Sittein Tonstein Wechselfolge<br>Sittein Tonstein Mechselfolge<br>Sittein Tonstein Mechselfolge Sittein (1-2 mm);<br>Sittein fortsein Here Filssand - Mittelsand mit Lyditen (schwarzer Komponenten) und Hellgilmmern, nach |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(6)<br>(7)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                  | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>C1:thofazies<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>400<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300                                                                                                                                                   | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7<br>P 49/8                              | beginnt mit Tonstein<br>Schlachtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer forzontal laminiert (0.5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Durkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Hellglimmer, gröbere Partien in Rinnen form<br><b>2007H:14 50 800</b><br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlagig å 1-2 mm, stark geschiefert mit vielen Hellglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Feinsand<br>Jeurs Slörung c.a. 17570; Wechselfolge von 0,5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißern, grauem Material, ähnlich wie am Paulitsch<br>Vulkanitäge in Ton/Silt Wechselfolge<br>Feinsand (1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein und haufger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie bei P4.27<br>Schwarzer Tonstein - Siltstein ne dazwischen<br>Siltstein und haufger Wechsel zwischen Siltstein (2-3 mm) / Tonstein (1 mm)<br>Wie bei P4.57<br>Schwarzer Tonstein - Siltstein geschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>30-53 1250 / H:14 51 500-14 51 000</b><br><b>Beschreibung</b><br>Ånderung des SI: 210776 alt, 0.38 jetzt:<br>Ca. 5 cm Bänkchen immer mit wiel Ablolge wie bei P 457; → Slow mit Sediment-Strukturen wie bei Rüdiger → To-T6 (Stow)<br>Feinsand - Wittelsand mit vielen Hellglimmern, hellgrau-braun = evtl. P 45/10-11; planare und trogförmige Schrägschichtung 5/47 L, 28/42 L, an der<br>Basis normal gradiert<br>Wie (1)<br><b>00-55 2700 / H:14 59 700 - 14 49 800</b><br><b>Beschreibung</b><br>Siltstein/Tonstein Wechselfolge<br>Schwarzer Tonstein Beschreibung<br>Siltstein (1-2 mm)/ Tonstein (1-2 mm);<br>Siltstein mit Tonstein Kuben Hellglimmern                 |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Schicht</b><br>(2)<br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(3)<br><b>Schicht</b><br>(4)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1 | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>D1.1<br>C1:1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300                                                                                                                                                                 | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7<br>P 49/8                              | beginnt mit Tonstein<br>Schlachtlücke<br>Wie (1), stärker tektonisiert gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer forbizontal laminierte (0,5 mm) Feinsand - Siltstein, glänzende Oberflächen → mehr Tektonik wie (1)<br>Durkelgrauer Siltstein (Gerinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; viele Heliglimmer, gröbere Partien in Rinnen form<br><b>200/H:14 50 800</b><br><b>Beschreibung</b><br>Tonstein-Siltstein dünnlegig å 1-2 mm, stark geschiefert mit vielen Heliglimmern, antrazit schwarz + nach unten heller werdend + dünne Lagen von<br>Siltstein - Finisand<br>Jetzt Störung ca. 17570; Wechselfolge von 0.5 - 2 cm dicken Tonschichten und Brekzienzonen (P47/4); relativ dunkel im Wechsel mit violetten, roten,<br>weißer non/Silt Wechselfolge<br>Feinsand (1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein + TonSilt Wechselfolge<br>Feinsand (1-2 mm) / Siltstein (0,5 mm) mit Schrägschichtung und verstärkt Faltung<br>Siltstein + 12 mm / Siltstein dazwischen<br>Vieder Tonstein - Siltstein in dünnen Paketchen å 2-5 mm<br>Wie bei P45/7<br>Schwarzer Tonstein egschiefert<br>Mittelsand - Feinsand grau - braun in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>Schwarzer grauer Tonstein - Siltstein geschiefert, nach unten In grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br><b>205-53 12:07.51:17:05:10.17:10:10:10:10:10:10:10:10:10:10:10:10:10:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (33)<br>(34)<br>(35)<br>(36)<br>(37)<br><b>Profil 47</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br><b>Profil 48</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br><b>Profil 49</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(6)<br>(7)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                              | D2.2<br>D2.3<br>D2.3<br>D2.2<br>C2.3<br>C2.3<br>C2.3<br>D1.1<br>B2.1<br>D1.1<br>D1.1<br>D1.1<br>C1:1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 270+<br>230<br>520+<br>Mächtigkeit<br>4000+<br>1650<br>200<br>850<br>400<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300                                                                                                                                                                 | P 45/2<br>P 45/1<br><b>R:55 29 0</b><br>P 47/3<br>P 47/4<br>P 47/5<br>P 47/6<br>P 47/7<br>P 47/7<br>P 47/7<br><b>R:55 30 5</b><br><b>Probe</b><br>P 48/1<br><b>R:55 32 3</b><br><b>Probe</b><br>P 49/7<br>P 49/8                              | beginnt mit Tonstein<br>Schichtlücke<br>Wie (1), stärker tektonisief gröbere Partien in Rinnen form; planare Schrägschichtung<br>Schwarzer frotzental laminierter (0,5 mm) Feinsand - Siltstein; glänzende Oberflächen → mehr Tektonik wie (1)<br>Durkelgrauer Siltstein (Feinsand) in 1-2 mm Abständen laminiert mit Tonhäutchen dazwischen, in Bänken å 30-50 cm; nach oben dünnere Bänke å<br>10 - 20 cm; vielde Hellgilmmer, gröbere Partien in Rinnen form<br>10 - 20 cm; vielde Hellgilmmer, gröbere Partien in Rinnen form<br>10 - 20 cm; vielde Hellgilmmer, gröbere Partien in Rinnen form<br>10 - 20 cm; vielde Hellgilmmer, gröbere Partien in Rinnen form<br>10 - 20 cm; vielde Hellgilmmer, gröbere Partien in Rinnen form<br>10 - 20 cm; vielde Hellgilmmer, gröbere Partien in Rinnen form<br>10 - 20 cm; vielder Tonstein Siltstein förstere Partien in Rinnen form<br>10 - 20 cm; vielder Tonstein Siltstein förstere Partien in Rinnen form<br>10 - 20 cm; vielder Tonstein Kenstein Siltstein (2-3 mm), förstein (1 mm)<br>10 - 20 cm; vielder Tonstein er Tonstein for Maxie Schwarzer grauer Tonstein - Siltstein (2-3 mm) / Tonstein (1 mm)<br>10 - 20 cm; vielder Tonstein - Siltstein in dünnen Lagen å 0,5 cm; nach unten Mittelsand<br>10 - 20 cm; vielder Tonstein - Siltstein eschiefert<br>10 - 20 cm; vielder Tonstein - Siltstein geschiefert, nach unten in grauen Siltstein übergehend, Wechsel mit Tonhäutchen alle 1-2 mm<br>10 - 53 2120 / H:14 51 500-14 51 000<br>10 - 55 21 - 20 / H:14 51 500-14 51 000<br>10 - 55 21 - 20 / H:14 51 500-14 51 000<br>10 - 55 21 - 20 / H:14 51 500-14 51 000<br>10 - 55 21 - 20 / H:14 51 500-14 51 000<br>10 - 55 21 - 20 / H:14 51 500-14 51 000<br>10 - 55 21 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20 - 20 / H:14 51 500-14 51 000<br>10 - 20            |

| (16)      | C2.2        | 340          | P 49/5    | Feinsand oben grau, in Lagen von 20 - 30 cm: nach 80 übergehend in Mittelsand, dünnlagig zurückwitternd á 2-3 cm: nach 180 übergehend in                               |
|-----------|-------------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( - )     |             |              | P 49/6    | Mittelsand-Grobsand grau in Lagen á 10 - 20 cm                                                                                                                         |
| (17)      |             | 70           |           | Schwarzer Siltstein - Tonstein dünnlagig (0,5 - 1 mm) dazwischen Tonhäutchen stark geschiefert                                                                         |
| (18)      | C2.2        | 420          | P 49/4    | Feinsand - Mittelsand grau, weniger Hellglimmer, weniger Lydite (kaum), nach unten Mittelsand bis Mittelsand-Grobsand                                                  |
| (19)      |             | 30           |           | Schwarzer Siltstein - Tonstein dünnlagig (0,5 - 1 mm) dazwischen Tonhäutchen stark geschiefert                                                                         |
| (20)      | C2.3        | 200          | P 49/3    | Mittelsand braun-hellgrau, viele Hellglimmer + Lydite bis 4 mm                                                                                                         |
| (21)      |             | 170          |           | Tonstein - Siltstein grau - rötlich                                                                                                                                    |
| (22)      | B2.1        | 290          | P 49/1    | Oben Feinsand                                                                                                                                                          |
|           |             |              | P 49/2    | Unten Mittelsand ; grau - braun in Lagen á 5-10 cm                                                                                                                     |
| Profil 50 |             | Koordinaten: | R:54 59 2 | 00 / H:14 39 200                                                                                                                                                       |
| Schicht   | Lithofazies | Mächtigkeit  | Probe     | Beschreibung                                                                                                                                                           |
| (1)       | 200 +       | D2.2         |           | Tonstein (3-5 cm) / Siltstein (0.5 cm) Wechselfolge mit Qz - Mobilisaten                                                                                               |
| (2)       | 90          |              |           | Schwarzer Tonstein stark geschiefert                                                                                                                                   |
| (3)       | 150         | D2.2         |           | Tonstein (2-3 cm) stark geschiefert schwarz / Siltstein (1-1,5 cm) leicht geschiefert hellgrau-rot Wechselfolge; dazwischen alle 40 cm ein dünnes                      |
| . ,       |             |              |           | Bänkchen Siltstein - Feinsand stark verfaltet → nach unten mehr Siltstein (2-3 cm), Tonstein (2-3 cm) + Übergang in Siltstein-Feinsand                                 |
| (4)       | 50          |              |           | Stark geschieferter schwarzer Tonstein - Siltstein glänzend                                                                                                            |
| (5)       | 140         |              |           | Siltstein - Tonstein 20-30 cm; mit dazwischen gelagerten Siltstein-Feinsand Bänken á 1-2 cm → stark geschiefert (außer Siltstein - Feinsand )+                         |
|           |             |              |           | gefaltet (Siltstein - Feinsand                                                                                                                                         |
| (6)       | 180         | C2.4         |           | Feinsand (2-5 mm) / Siltstein (1-2 cm) Wechselfolge; viele Qz - Mobilisate an der Basis uns auch sonst: Ø5-10 cm                                                       |
| (7)       | 200         |              |           | Tonstein (1mm) / Siltstein (1mm)Wechselfolge sehr stark geschiefert, mit Qz-Mobilisaten ca. 5-10 cm; nach unten mehr Siltstein (1-2 mm) Tonstein                       |
|           |             |              |           | (Häutchen)                                                                                                                                                             |
| (8)       | 20          |              |           | Schwarzer glänzender Tonstein sehr stark geschiefert                                                                                                                   |
| (9)       | 50          | C2.4         |           | Feinsand (1-2 cm) / Siltstein (1-2 mm) Wechselfolge, dunkel beige - grau; am Top Qz-Mobilisat ca. 5 cm                                                                 |
| (10)      | 730 +       |              |           | Tonstein (1mm) / Siltstein (1mm) Wechselfolge sehr stark geschiefert, mit Qz-Mobilisaten ca. 5-10 cm; nach unten mehr Siltstein (1-2 mm) Tonstein                      |
|           |             |              |           | (Häutchen)                                                                                                                                                             |
| Profil 51 |             | Koordinaten: | R:55 46 0 | 00 / H:14 57 000                                                                                                                                                       |
| Schicht   | Lithofazies | Mächtigkeit  | Probe     | Beschreibung                                                                                                                                                           |
| (1)       | C2.4        | 230 +        |           | Feinsand schwarz mit Hellglimmer                                                                                                                                       |
| (2)       |             | 320          |           | Schwarzer Tonstein - Siltstein mit Hellglimmer                                                                                                                         |
| (3)       | D1.1        | 100 +        |           | Siltstein dunkelgrau mit Hellglimmer                                                                                                                                   |
| (4)       |             | 350          |           | Schichtlücke                                                                                                                                                           |
| (5)       | D1.1        | 300 +        |           | Schwarzer Tonstein unter Kalk (Devon)                                                                                                                                  |
| (6)       |             | 300          |           | Schichtlucke                                                                                                                                                           |
| (7)       | C2.4        | 200          | P 51/5    | Feinsand                                                                                                                                                               |
| (8)       |             | 220          |           |                                                                                                                                                                        |
| (9)       |             | 100          |           | I onstein                                                                                                                                                              |
| (10)      |             | 10           |           | Vuikanitage<br>Tangtoin vin (4) page unter in Sittetein. Tangtoin ükergebend                                                                                           |
| (11)      | D2 2        | 390          |           | Siltetain wie (4), nach unter in Siltetein - Tonstein übergenend                                                                                                       |
| (12)      | U2.2        | 410          |           | onstein sonwarz mit neinginninen<br>Schwarze antherzitighenergt Tonstein nach unten eiltiger werdend ab 150: weiter unten wieder en 20 em Egiscond Sitetein            |
| (13)      | C2 4        | 50           | P 51/4    | Sonwarzer anunazuarbenen fonsient nach unter singer werdend ab 150, weiter Unter Wieder (a. 20 Chi Feinsand - Sitstein<br>Eansand-Sitstein wie ober zum Schluß Eansand |
| (15)      | 02.4        | 200          | 1 31/4    | Silitar Schwarzer Tonstein                                                                                                                                             |
| (16)      |             | 200          | P 51/3    | Schwarzer Tonstein                                                                                                                                                     |
| (17)      |             | 330          | P 51/2    |                                                                                                                                                                        |
| (18)      |             | 860 +        | P 51/2    | Schwarzer (antrazit) Tonstein - Siltstein in dünnen Lagen á 0.5 mm, nach unten in Wechsellagerung Siltstein (2-3 mm) / Tonstein (0.5 mm)                               |
| (10)      |             | 000 +        | 1 31/1    | Generation (analysis) reliased in Sillstein-Feinsand                                                                                                                   |

Profil 52; Auernig, idealisiertes Profil, Sf evtl.: 20/36  $\rightarrow$  Tonschiefer  $\rightarrow$  Einregelung von diversen längglich, plattigen Komponenten (300/30); Weiter unten Sf: 310/55 Mehrere Phasen, die mit groben Konglomeraten beginnen und dann in Feinkies übergehen; Normal gradiert: Basis: alles mögliche, Glimmerschiefer, große Quarze, Kalke, Dolomite, Gneise, Vulkanite, Sedimente (Tonstein + Siltstein + Sandstein)  $\varnothing$  3-4 cm  $\rightarrow$  Subrounded - rounded; Größte : 10 - 20 cm  $\rightarrow$  alles angular - subrounded  $\rightarrow$  Kalke am wenigstens gerundet. Matrix: Grobsand (gut gerundete Quarze). Oben:  $\varnothing$  1-2 cm gut gerundet vor allem Qz +ü anderes wie oben, nur kaum Kalke; Matrix= Feinsand-Mittelsand. Meist Rinneform aber nicht gut zu sehen.

| Profil 52 |                     | Koordinaten: | R:54 20 0 | 000 / H:14 16 000                                                                                                                                                                                                                                                                  |
|-----------|---------------------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schicht   | Lithofazies         | Mächtigkeit  | Probe     | Beschreibung                                                                                                                                                                                                                                                                       |
| (1)       | G1.2, G2.1          | 400 +        | P 52/4    | Wechsel von grob nach fein allerdings invers gradiert:                                                                                                                                                                                                                             |
|           |                     |              |           | Im groben Part $arnothing$ Klasten 2-3 cm, gut gerundet - gerundet                                                                                                                                                                                                                 |
|           |                     |              |           | Im feinen Part: Grobsand mit einzelnen Klasten bis 0,5 mm; Wechsel alle 30 - 50 cm                                                                                                                                                                                                 |
| (2)       | G2.1, G1.2,         | 560          |           | Wie (1) Wechsel alle 1,60 - 200                                                                                                                                                                                                                                                    |
|           | G1.1                |              |           |                                                                                                                                                                                                                                                                                    |
| (3)       | \$2.2               | 40           | P 52/3    | Sandstein mit stark schwankender Mächtigkeit → Rinnenfüllung → eingeregelte Tonklasten: 252/38; Rinnenkontakte : oben: 298/75; unter: 290/55<br>Michter unter an die String kommen winder Scienzend/Sitterine bie sehurgstreg Taestein dazu, (biezes 20, 60 mm), und Leseweltender |
| (4)       | 024 012             | 200          | D 52/2    | We the under an der Strates kommt, wieder Feinsand/Sittstein bis Schwarzer Fonstein dazu (hier ca. 20 - 50 cm), und rangweinige Hummocky                                                                                                                                           |
| (4)       | G2.1, G1.2,<br>G1.1 | 380          | P 52/2    | Wie (1) nur nicht so grobe @; der grobste max. 9 cm Ø bei 5 cm                                                                                                                                                                                                                     |
| (5)       | S2.1                | 30           | P 52/1    | Grobsand mit einzelnen Komponenten (wenig bis 8 cm, sehr gut gerundet)                                                                                                                                                                                                             |
| (6)       | S1.2                | 10           |           | Schwarzer - grauer leicht violetter Feinsand - Siltstein                                                                                                                                                                                                                           |
| (7)       | G2.1, G1.2,<br>G1.1 | 520 +        |           | Normal gradierter Wechsel von Konglomeraten und Sandsteinen wie in (1).                                                                                                                                                                                                            |

| Profil 53 |             | Koordinaten: | R:54 30 7 | /00 / H:14 33 250                                                                                                                                       |
|-----------|-------------|--------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schicht   | Lithofazies | Mächtigkeit  | Probe     | Beschreibung                                                                                                                                            |
| (1)       | T1.1        | 180 +        |           | Feinsand-Siltstein /Siltstein Wechsellagerung, mit Quarz drin (sehr hart), dünnlagig in 0,2-0,5 cm Abständen (Feinsand-Siltstein) und 1 mm (Siltstein), |
|           |             |              |           | horizontal geschichtet; evtl. Übergang zu der Hochwipfel Formation                                                                                      |
| (2)       | S1.1        | 50           | P53/1     | Feinsand grau, dickbankig                                                                                                                               |
| (3)       | T1.1        | 10           |           | Tonschiefer schwarz-grau                                                                                                                                |
| (4)       | S1.2        | 110          |           | Wie (2); ersten 40 cm sind eine Bank, dann Übergang in 10-5 cm Bänken, horizontal geschichtet                                                           |
| (5)       | T1.1        | 20           |           | Wie (3)                                                                                                                                                 |
| (6)       | T1.1        | 900          |           | Wie (1), nach oben dünnere Lagen $\rightarrow$ 1-2 mm / 1 mm, horizontal geschichtet                                                                    |
| (7)       | S1.2        | 500          |           | Ähnlich wie (6), nur Lagen mit gröberen Bestandteilen, Feinsand/Mittelsand; schwarze Kalkklasten drin 2 cm; horizontal geschichtet, evtl. ansatzweise   |
|           |             |              |           | sehr weitläufige trogförmige Schrägschichtung (HCS)                                                                                                     |
| (8)       | T1.1        | 600          |           | Reiner Siltstein                                                                                                                                        |
| (9)       | T1.1        | 300          |           | Wie (6), hier viel Auernigklasten im Bach, Horizontalschichtung                                                                                         |
| (10)      | T1.1        | 90           |           | Wie (8) Horizontalschichtung                                                                                                                            |
| (11)      | T1.1        | 700          |           | Wie (9) Horizontalschichtung                                                                                                                            |
| (12)      | S1.2        | 300          |           | Wie (1), mehr Feinsand-Anteil Horizontalschichtung                                                                                                      |
| (13)      | G2.1        | 70           | P 53/2    | Grobsand, Qz Grobsandstein grau mit gerundeten Quarzen bis 0,5 cm → Auernig                                                                             |
| (14)      | G1.2        | 100 +        | P 53/3    | Erstes Konglomerat anstehend, danach nur noch Schutt + Wechsel von mehr brekziösen Konglomeraten wie am Seeberg (Slowenien) mit gut                     |
|           |             |              | P 53/4    | gerundeten Konglomeraten; nach oben hin feiner werdend + mehr schwarze Matrix                                                                           |
|           |             |              |           |                                                                                                                                                         |

| Profil 54 |             | Koordinaten: | R:54 07 0 | 00 / H:14 23 000                                                                                                                                                                    |
|-----------|-------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schicht   | Lithofazies | Mächtigkeit  | Probe     | Beschreibung                                                                                                                                                                        |
| (1)       | D1.1        | 2000 +       |           | Tonsteinabfolgen                                                                                                                                                                    |
| (2)       | C2.3        | 400          |           | Schichtlücke, viel Sandstein im Hangschutt (Mittelsand)                                                                                                                             |
| (3)       |             | 200          |           | Tonsteinabfolgen                                                                                                                                                                    |
| (4)       | C2.2        | 50           | P 54/5    | Mittelsand - Grobsand grau – rötlich, Horizontalschichtung                                                                                                                          |
| (5)       |             | 400          |           | Siltstein hellgrau, stark geschiefert + glänzende Oberfläche (20-30 cm) / Tonstein stark geschiefert (10 - 20 cm) Wechselfolge                                                      |
| (6)       |             | 200          |           | Schichtlücke + whg. von (1)+(2)                                                                                                                                                     |
| (7)       | D1.1        | 400          |           | Tonschiefer mit glänzender Oberfläche, (80+) nach unten in Siltstein übergehend (20)                                                                                                |
|           |             |              |           | Dann wieder Tonstein (150)                                                                                                                                                          |
| (8)       |             | 200          |           | Schichtlücke                                                                                                                                                                        |
| (9)       | C2.3        | 530 +        | P 54/4    | Wie (5), nach unten gröber werdend: immer von Feinsand-Mittelsand nach grobem Mittelsand-Grobsand übergehend (die letzten 10-20 cm) und dann                                        |
|           |             |              |           | folgt eine 10 cm starke Tonlage. Nach unten wird die Abfolge aber feiner: 170 Feinsand-Mittelsand $\rightarrow$ 20 Mittelsand-Grobsand $\rightarrow$ 10 Tonstein $\rightarrow$ 130  |
|           |             |              |           | Feinsand $\rightarrow$ 20 Mittelsand $\rightarrow$ 10 Tonstein $\rightarrow$ 80 Mittelsand-Feinsand $\rightarrow$ 20 Feinsand $\rightarrow$ 10 Tonstein $\rightarrow$ 50 + Feinsand |
| (10)      |             | 400          |           | Siltstein (0,5cm) grau-braun / Tonstein (0,5 - 1cm) hellgrau-beige Wechsellagerung                                                                                                  |
| (11)      | C2.3        | 200          |           | Wechselfolge von Feinsand-Mittelsand grau-rötlich, dünnbankig á 2-3 cm und grauer Feinsand - Siltstein alle 10-20 cm                                                                |
| (12)      | C2.3        | 80           |           | Feinsand - Mittelsand, nach unten in Mittelsand übergehend                                                                                                                          |
| (13)      |             | 160          |           | Tonschiefer mit glänzender Oberfläche, (80+) nach unten in Siltstein übergehend (20)                                                                                                |
|           |             |              |           | Dann wieder Tonstein (150)                                                                                                                                                          |
| (14)      | C2.3        | 80           |           | Grauer Feinsand - Siltstein, nach unten in braunen Feinsand-Mittelsand übergehend, dünnbankig á 1-2 cm ≅ wie (5)                                                                    |
| (15)      |             | 20           |           | Wieder Tonstein wie (1)                                                                                                                                                             |
| (16)      | C2.3        | 120          | P 54/3    | Feinsand-Mittelsand grau-rötlich, dünnbankig á 2-3 cm                                                                                                                               |
| (17)      |             | 1000         |           | Tonstein                                                                                                                                                                            |
| (18)      | A2.5        | 130          | P 54/1    | Lyditbreccie?, Grobsand mit vielen weißen + schwarzen Klasten im 0,3-0,5 Ø; grau; dünnbankig á 0,5-1,5 cm; je höher man kommt desto feiner                                          |
|           |             |              | P 54/2    | (Mittelsand-Grobsand ) bis zu Feinsand                                                                                                                                              |
| (19)      |             | 300          |           | Schichtlücke, aber wahrscheinlich alles Tonstein /Siltstein Wechselfolge in 50 - 100 cm Abständen                                                                                   |

| (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D2.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250 +                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tonschiefer mit glänzender Oberfläche, (80+) nach unten in Siltstein übergehend (20)<br>Dann wieder Tonstein (150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profil 55                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R:54 38 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 / H:14 29 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithofazies<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                         | Mächtigkeit<br>200 +                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beschreibung<br>Siltstein, hellarau – beiae (1-2 cm) in Wechselfolae mit Tonstein 1-3 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 55/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mittelsandstein – Feinsandstein, hellgrau, stark geschiefert mit vielen glänzenden Partikeln an der Schieferungsoberfläche; nach unten teilweise in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grobsandstein übergenend; dunne Bankchen a 3-4 cm<br>Wie (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Schichtlücke<br>Wie (1) aur shund zu 2:3 cm dicke Bänkchen Feinsandstein einschaltet + weniger Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02.4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 55/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | We (1) full ab unt 20 20 cm anche bainchen i heinsan basen eingsstratet weinger Forsten.<br>Feinsandstein heiligrau, in einem Paket mit Bänchen å 3-4 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wie (1)<br>Wie (6) nur dünnbankiner á 1-2 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02.4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Schwarz-grauer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wie (1)<br>Wie (8) (Ränke ietzt 1.5 – 2 cm dick) insresamt weiter massig durchhaltend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tonstein braun – schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (13)<br>(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 280<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 55/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Siltstein – Heinsandstein dunnbankig a 0,5 – 1 cm, Qz-Mobilisate dazwischen<br>Mittelsandstein – Grobsandstein orb-raun; in dicken Bänkchen (2 starke unten + oben á 15 – 20 cm) dazwischen 3-5 cm Bänkchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wechselfolge teilweise mit Schrägschichtung in Feinsandstein – Linsen die weniger stark geschiefert sind (5 – 10 cm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - übeginnen unit Sutstein + Forstein (20 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 55/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>dann sind Feinsandstein Linsen drin von ca. 5-10 cm)</li> <li>Mächtings Sandtseinnaket unten Feinsandstein nach ohen in Mittelsandstein – Grohsandstein üherrehend in 5-10 cm Bänkchen</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02.2                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 55/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (17)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Siltstein (0,5 – 1 mm) – Ionstein (Hautchen – 0,5 mm) Wechseltoige, laminiert<br>Siltstein Lagen (2-4 m) mit Tonhäutchen dazvischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 55/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wie (16); nach oben + unten hin in Grobsandstein übergehend; dicke Bänke á 10 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (20)<br>(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wie (o) ; banke a 5 – 10 cm, pianare ocnragscricinung<br>Wie (16) zwischen einzelnen Sandsteinbänken Siltstein Lage von 5 cm; Grobsandstein = rot-braun (60cm), 5 cm Siltstein hellgrau – beige,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290 +                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grobsandstein (30 cm)<br>Silstein (35 cm) mit Toneinschaltungen (0.5 – 1 cm): nach oben bin in Tonlagen (5 cm) überrebend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Profil 56                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-54 43 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sector (COM) in the termination of termin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithofazies                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210 +<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 56/1<br>P 56/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Grauer Grobsandstein, geschiefert, weiße Komponenten bis 4 mm + wenige Lydite; dickbankig in 3 Paketen á 70 cm<br>Mittelsandstein – Feinsandstein, crau à 3-5 cm Bänkchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Siltstein – Feinsandstein hellgrau, nach oben in Siltstein – Tonstein übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Siltstein – Lonstein (1-2 mm) / Feinsandstein – Mittelsandstein (0,5 – 1 cm) Wechselfolge, starker geschiefert<br>Mittelsandstein rot – braun, dünnbankig å 1-2 cm; ein Paket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 56/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wie (5) aber jetzt Grobsandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (7) (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1.2<br>B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 30/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wie (5), jetzt aber anfänglich Mittelsandstein – Grobsandstein dann in Grobsandstein übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1.2<br>B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                | 60<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wie (5), jetzt aber Mittelsandstein – Feinsandstein<br>Wie (5), jetzt aber Mittelsandstein – Gensandstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wie (5), jetzt aber Grobsandstein - CHOSandstein Wie (5), jetzt aber Grobsandstein - Wie (5), jetzt aber Grobsandstein ; Hier Bänkchen nur noch 0,5 – 1 cm, dünne dazwischen lagemde ehemalige Tonhorizonten sind tektonisiert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (12)<br>(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1.2<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wie (5), Bankdicke wie bei (11), weiter stark geschiefert<br>Tonstein – Siltstein (1-2 mm) / Feinsandstein (0.5-2 cm) Wechselfolge: extrem dünnbankig + stark geschiefert. Nach oben werden Feinsandstein –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (4.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DO 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bänkschen dünner (1-5 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 56/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mitteisandistein, ein raket, naton open in Grobsandistein übergenend<br>Wie (13), nur anstatt Feinsandistein Mittelsandistein – Grobsandistein und Bankmächtigkeit bis 20 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 56/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mittelsandstein grau, Bänkchen à 5-10 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 +                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sinstein – reinsaniseten reingilau – grau<br>Wieder wie (16) nur Bänchen à 1-5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 +<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | entspricht (18)<br>Mittelsandstein – Grobsandstein dünnbankig, rot – braun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 50/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Schwarzer geschieferter Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (22)<br>(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                | B2.1<br>B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 56/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grobsandstein – Mittelsandstein wie (1) aber ein Paket; stark geschiefert<br>Wie (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>DO</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mittelsandstein – Feinsandstein dünne Bänkchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (24)<br>(25)<br>(26)                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1<br>B2.1<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (24)<br>(25)<br>(26)                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1<br>B2.1<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (24)<br>(25)<br>(26)                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1<br>B2.1<br>C2.3                                                                                                                                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Fonstein (2-3 mm) Wechselfolge;<br>- Siltstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (24)<br>(25)<br>(26)<br>(27)                                                                                                                                                                                                                                                                                                                                                                                                                                | B2.1<br>B2.1<br>C2.3<br>B1.1                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>240<br>310                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P 56/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)                                                                                                                                                                                                                                                                                                                                                                                                                | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>240<br>310<br>100<br>540<br>270                                                                                                                                                                                                                                                                                                                                                                                                                             | P 56/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Fonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)                                                                                                                                                                                                                                                                                                                                                                                                        | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>B2.1                                                                                                                                                                                                                                                                                                                                                                                | 120<br>240<br>310<br>100<br>540<br>270<br>180                                                                                                                                                                                                                                                                                                                                                                                                                      | P 56/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein – Grobsandstein als Sandsteinlage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)                                                                                                                                                                                                                                                                                                                                                                                                | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1                                                                                                                                                                                                                                                                                                                                                                                | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +                                                                                                                                                                                                                                                                                                                                                                                                             | P 56/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein, weiter extrem dünnbankig (1-2 cm), rot-bruun wie immer, ein Paket<br>Mittelsandstein – Grobsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (24)<br>(25)<br>(26)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>Profil 57<br>Schicht                                                                                                                                                                                                                                                                                                                                                                        | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>Lithofazies                                                                                                                                                                                                                                                                                                                                                                 | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten::</b><br><b>Mächtigkeit</b>                                                                                                                                                                                                                                                                                                                                                               | P 56/7<br>R:54 44 0<br>Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein, weiter extrem dünnbankig (1-2 cm), rot-braun wie immer, ein Paket<br>Mittelsandstein – Grobsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br>00/H:14 25 250<br>Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (24)<br>(25)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br>Profil 57<br>Schicht<br>(1)                                                                                                                                                                                                                                                                                                                                                                         | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>D1.1<br>Lithofazies<br>C2.1                                                                                                                                                                                                                                                                                                                                                                 | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +                                                                                                                                                                                                                                                                                                                                                       | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br><b>P</b> 57/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>100 / H:14 25 250</b><br>Beschreibung<br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsandstein, den mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (24)<br>(25)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)                                                                                                                                                                                                                                                                                                                                                           | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.1                                                                                                                                                                                                                                                                                                                                                         | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +                                                                                                                                                                                                                                                                                                                                                       | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>100 / H:14 25 250</b><br>Beschreibung<br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (24)<br>(25)<br>(26)<br>(28)<br>(29)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                                                                                                                     | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.1                                                                                                                                                                                                                                                                                                                                                         | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600                                                                                                                                                                                                                                                                                                                                   | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>(7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein, weiter extrem dünnbankig (1-2 cm), rot-brun wie immer, ein Paket<br>Mittelsandstein – Grobsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (24)<br>(25)<br>(26)<br>(26)<br>(29)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                              | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.1                                                                                                                                                                                                                                                                                                                                                 | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830                                                                                                                                                                                                                                                                                                                            | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>bod / H:4 25 250</b><br>Beschreibung<br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (5 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteine :<br>Untere Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (24)<br>(25)<br>(26)<br>(26)<br>(29)<br>(30)<br>(30)<br>(30)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                      | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.1<br>C2.2                                                                                                                                                                                                                                                                                                                                         | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830                                                                                                                                                                                                                                                                                                                            | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein Lage<br>(7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (S bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :<br>Unten Grobsand – Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (24)<br>(25)<br>(26)<br>(26)<br>(29)<br>(30)<br>(30)<br>(30)<br>(30)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                              | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>Lithofazies<br>C2.1<br>C2.2                                                                                                                                                                                                                                                                                                                                         | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830                                                                                                                                                                                                                                                                                                                            | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein – Grobsandstein als Sandsteinlage<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>00 / H:14 25 250</b><br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (5 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :<br>Unten Grobsand z. 100<br>Dann Keinsand ca. 105<br>Dann Feinsand ca. 150<br>Dann Siltstein (1-3 cm Einsand<br>Siltstein (1-3 cm Einsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (24)<br>(25)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                       | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2                                                                                                                                                                                                                                                                                                                                          | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830                                                                                                                                                                                                                                                                                                                            | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (51 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein num Tonsteinen :<br>Unter Grobsand – Mittelsand, zeich zum Siltstein Siltstein Peinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (51 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :<br>Unter Grobsand – Sto<br>Dann Feinsand ca. 100<br>Dann Siltstein Vechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschut: : Mittelsandstein – Feinsandstein; Material bleibt gleich wie bei (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (24)<br>(25)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)                                                                                                                                                                                                                                                                                                                       | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2                                                                                                                                                                                                                                                                                                                                          | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830                                                                                                                                                                                                                                                                                                                            | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/7<br>P 57/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (51 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein num Untersteinen :<br>Unter Grobsand – Siltstein Schuzer – Siltstein Siltstein Peinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (51 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :<br>Unter Grobsand – Sto<br>Dann Feinsand ca. 100<br>Dann Feinsand ca. 105<br>Dann Feinsand ca. 150<br>Dann Feinsand ca. 150<br>Dann Feinsand ca. 150<br>Dann Feinsand zeit (55 Stück) Grobsandstein – Mittelsandstein hellgrau – rölich (frisch: grau) á Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dünnbankteirer (0-5 mm) übergehend.<br>Störung + Hangschut: : Mittelsandstein – Feinsandstein; Material Ibeibt gleich wie bei (4)<br>Dicke Pakket é 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – rölich (frisch: grau) á Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dünnbankteirer (5-10 m): troroformice Schrädsschichtun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (24)<br>(25)<br>(26)<br>(26)<br>(30)<br>(31)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)                                                                                                                                                                                                                                                                                                          | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2<br>C2.2                                                                                                                                                                                                                                                                                                                                  | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390                                                                                                                                                                                                                                                                                                      | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/7<br>P 57/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Nittelsandstein – Grobsandstein als Sandsteinlage<br>Teinsandstein – Nittelsandstein – Grobsandstein als Sandsteinlage<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlicke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand. 50<br>Dann Feinsand ca. 100<br>Dann Siltstein – Soltstein Wittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlicke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschutt : Mittelsand, stein – Feinsandstein , Material bleibt gleich wie bei (4)<br>Diann Feinsand ca. 100<br>Dann Feinsand ca. 150<br>Dann Feinsand ca. 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)                                                                                                                                                                                                                                                                                                           | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2                                                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060                                                                                                                                                                                                                                                                                              | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (51 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein laminiert (0-5 mm) übergehend.<br>Störung – Hangschut: Mittelsand, Selfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschut: Mittelsand wechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschut: Mittelsand (18 cbiebit gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschut: Mittelsandstein – Feinsandstein; Material Ibeibt gleich wie bei (4)<br>Dann Feinsand ca. 100<br>Dann Feinsand ca. 105<br>Dann Stöt 4 - 3 cm Feinsandstein – Feinsandstein; Material Ibeibt gleich wie bei (4)<br>Dicke Pakete à 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – rölich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (24)<br>(25)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)                                                                                                                                                                                                                                                                            | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2                                                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40                                                                                                                                                                                                                                                                                        | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/8<br>P 57/7<br>P 57/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mittelsandstein – Feinsandstein üünne Bänkchen<br>We (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein Großsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein Cano, not-braun wie immer, ein Paket<br>Mittelsandstein – Grobsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschen Siltstein num Tonsteinen :<br>Unter Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschen Siltsteinen und Tonsteinen :<br>Unter Grobsand – Mittelsand; Siltstein Wechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschutt: Mittelsandstein – Feinsandstein; Material bleibt gleich wie bei (4)<br>Dicke Pakete å 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – Töltich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein, Nach oben wird alles dünnbanking (-5-10 m), itorgörning is Schrägschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige)/ Feinsandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein weniger stark<br>geschiefert; horizontal geschichtei<br>Dunkelgrauer Feinsandstein –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br>(3)<br>(11)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)                                                                                                                                                                                                                                                                                                  | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1                                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250                                                                                                                                                                                                                                                                                | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/6<br>P 57/3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mittelsandstein – Feinsandstein üürne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein (2-3 mm) Vechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein (2-3 mm) Vechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Siltstein schwarzgrau mit rot<br><b>200 / H:14 25 250</b><br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danach jeweils 20 cm Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein numinert (0-5 mm) übergehend.<br>Störung + Hangschutt: Mittelsandstein – Feinsandstein; Material bleibt gleich wie bei (4)<br>Dicke Pakete à 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – rötlich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein – Nangschutz: Mittelsandstein – Stütstein (2-5 mm, rötlich-braun) Wechselfolge; Chadgschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige) / Feinsandstein – Mittelsandstein hellglimmern in Bänkchen á 2-3 cm. Farbe bei starken Verwitterung (rötlich – braun/grau)<br>Zwischen jedem Bänkchen kommen 1-2 mm Feinsandstein – Siltstein; Schrägschichtung zu sehen;<br>Schwarzer Siltstein – Feinsandstein – Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(30)<br>(31)<br>(11)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)                                                                                                                                                                                                                                                                                                | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>D1.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2                                                                                                                                                                                                                                                                                                        | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520                                                                                                                                                                                                                                                                         | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/6<br>P 57/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mittelsandstein – Feinsandstein Jühne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein gehr in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mit Mittelsandstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein (2-3 mm) Vechselfolge;<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>00 / H:14 25 250</b><br><b>10 Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (35 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltstein laminiert (0-5 mm) übergehend.<br>Störug + Hangschut: Mittelsandstein – Feinsandstein; Material bleibt gleich wie bei (4)<br>Dicke Pakete à 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – rötlich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dürbenhanktige (-5 mm, ötilstein laminiert (0-5 mm) übergehend.<br>Störug + Hangschut: Mittelsandstein – Feinsandstein: Material bleibt gleich wie bei (4)<br>Dicke Pakete à 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – rötlich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein – Nach oben wird alles dürbenhanktige (-5 nm; ötheselfolge; Tonstein ful-1 zmm, beige) Feinsandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein weniger stark<br>geschiefert; horizontal geschichtet<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(11)                                                                                                                                                                                                                                                    | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2                                                                                                                                                                                                                                                                                                  | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520                                                                                                                                                                                                                                                                         | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/6<br>P 57/2<br>P 57/2<br>P 57/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer. Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein (2 mm) / Tonstein (2-3 mm) Wechselfolge;<br>Schrägschlichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein Lage<br>Wie (7) aber mitt Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Grobsandstein als Sandsteinlage<br>Gradienter Sandstein, der mit Grobsand stein als Sandsteinlage<br>Gradienter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danach jeweils 20 cm Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschen Siltsteinen und Tonsteinen :<br>Unten Grobsand ca. 100<br>Dann föristein Als cm Feinsand/Siltstein Wechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störug + Hangschutt : Mittelsandstein – Feinsandstein, Material bleibt gleich wie bei (4)<br>Dicke Pakete 46 0 – 80 cm (4-5 Stück) Grobsandstein hellgrau – vötlich (frisch: grau) å Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dünnbankiger (5-10 cm) ; trogförnige Schrägschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige)/ Feinsandstein – Siltstein (5-1 mm; trogförnige Schrägschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige) / Einsandstein mit vielen Hellgimmern in Bänkchen 4 2-3 cm. Farbe bei starken Verwiterung (rötlich – braun/grau)<br>Zwischen jedem Bänkchen kommen 1-2 mm Feinsandstein – Siltstein Schrägschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige) / Zeinsandstein mit vielen Hellgi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (24)<br>(25)<br>(26)<br>(26)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)                                                                                                                                                                                                                                                                    | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2                                                                                                                                                                                                                                                                                                  | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450                                                                                                                                                                                                                                                           | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/8<br>P 57/7<br>P 57/7<br>P 57/6<br>P 57/2<br>P 57/2<br>P 57/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wei (4) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>Siltstein – Feinsandstein (5 cm)<br>Siltstein – Siltstein (2-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächlige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Korbaandstein, weiter extern dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>007 H:14 25 250</b><br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand und Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand und Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand Userghen<br>Danach jeweils 20 cm Mittelsand userghen ausgequetschten Siltsteinen und Tonsteinen :<br>Unten Grobsand ca. 100<br>Dann Feinsandca. 150<br>Dann 50 à 1-3 cm Feinsand/Siltstein Wechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störug H augschutt : Mittelsandstein – Feinsandstein; Material bleibt gleich wie bei (4)<br>Dicke Pakete à 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein heligrau – rötlich (firsch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsand-Lingen Kommen 1-2 mm Feinsandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein weinger stark<br>geschiefert, Horizontal geschichtet<br>Durkelgrauer Feinsandstein – Mittelsandstein in Bistein – Siltstein 2-5 cmm, rötlich-braun) Wechse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)                                                                                                                                                                                                                                            | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2                                                                                                                                                                                                                                                                                          | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450                                                                                                                                                                                                                                                           | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/6<br>P 57/2<br>P 57/2<br>P 57/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mittelsandstein – Feinsandstein dünne Bänkchen<br>We (A) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>We chaber Mittelsandstein (bit in Feinsandstein über (10-15 cm)<br>- Mittelsandstein (bit in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (bit in Feinsandstein über (10-3 mm) Wechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Kotsandstein, weiter extern dünnbankig<br>Tonstein – Siltstein – Grobsandstein, weiter extern dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Nittelsandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Nittelsand übergehen<br>Danach jeweils 20 cm Mittelsandstei, gefolgt von 10 – 15 cm Feinsand<br>Schichlücke, aber gleiches Material (Sf bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :<br>Unten Grobsand – Mittelsand stein – Feinsandstein; Material bleibt gleich wie bei (4)<br>Dann Feinsandca. 150<br>Dann 5 á 1.3 cm Feinsand/Siltstein – Feinsandstein; Material bleibt gleich wie bei (4)<br>Dicke Pakete á 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein heligrau – rötlich (fiscisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsand-thildesandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein weiger stark<br>geschiefert, Fonzontal geschichtet<br>Tonstein (1-2 mm, beige) / Feinsandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein weiger stark<br>geschiefert, Folzontal geschichtet<br>Tonstein – Siltstein – Siltste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b>                                                                                                                                                                                                              | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br><b>Lithofazies</b><br>C2.1<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.2                                                                                                                                                                                                                                                                                          | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b>                                                                                                                                                                                                                                    | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br><b>R:54 44 2</b><br><b>Brobe</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Weic (4) aber Mittelsandstein geht in Feinsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>Mittelsandstein geht in Feinsandstein über (10-15 cm)<br>Siltstein – Feinsandstein (5 cm)<br>Siltstein (2-3 mm) / Tonstein (2-3 mm) Wechselfolge:<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Machtige Mittelsandstein auf Lingen<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Grobsandstein (10-12 cm), rot-braun wie immer, ein Paket<br>Mittelsandstein – Grobsandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit ot<br><b>907 H:14 25 20</b><br><b>Beschreibung</b><br>Gradienter Sandstein, den mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danach jeweils 20 cm Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schkeitlicke, aber gleiches Material (SI bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand ub Grobsand mit dazwischen ausgequelschen Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschutt : Mittelsandstein – Feinsandslein; Material bleibt gleich wie bei (4)<br>Dicke Paket & 60 – 80 cm ; Siltstein (2-5 mm, rötlich-braun) Wechselfolge, ronstein (1-2 mm, beige) Feinsandstein – Siltstein (2-5 nm, rötlich-braun) Wechselfolge; Tonstein istr geschiefert; Sandstein weinger stark<br>geschiefert; horizontal geschichtet<br>Dunktgrauer Feinsandstein – Mittelsandstein mit vielen Hellgiummer in Bänkchen fa 2-3 cm; Farbe bei starken Verwitterung (rötlich – braun/grau)<br>Zwischen jedem Bänkchen kommen 1-2 mm Feinsandstein – Siltstein (2-5 nm, rötlich-braun) Wechselfolge; Tonstein istark geschiefert; Sandstein weinger stark<br>geschiefert; horizontal geschichtet<br>Dunktgrauer Feinsandstein = Siltstein (2-6 mm, rötlich-braun) Wec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)                                                                                                                                                                                                       | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>D1.1<br>D1.1<br>C2.2<br>C2.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2                                                                                                                                                                                                        | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40                                                                                                                                                                                                        | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br><b>R:54 44 2</b><br><b>Probe</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (A) aber Mittelsandstein – Grobsandstein Lagen dzwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>Mittelsandstein (= form)<br>Siltstein – Feinsandstein (= form)<br>Siltstein (= 73 mm) / Tonstein (= 23 mm) / Mechselfolge;<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mittelsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Mittelsandstein – Grobsandstein dünibankig (1+2 cm), rot-braun wie immer, ein Paket<br>Mittelsandstein – Mittelsandstein, weiter externe dünnbankig<br>Tonstein – Sültstein schwarzgrau mit rot<br><b>Borchreibung</b><br>Gradienter Sandstein, dier mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danad I jeweils 20 cm Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schwarzer Siltstein<br>Schwarzer Siltstein<br>Schichtlücke, aber gleiches Material (SI bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgeuetschten Siltsteinen und Tonsteinen :<br>Unten Grobsand ca. 100<br>Dann Stö 4:15 dm Feinsand/Siltstein Wechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschut : Mittelsandstein – Feinsandstein: Material bleibt gleich wie bei (4)<br>Dicke Pakete 60 – 80 cm (-5 Stück) (Grobsandstein – Mittelsandstein hellegirau – rötich (frisch: grau) & Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dünnbankiger (5-10 cm): trogförmige Schrägschichtung im cm-Bereich<br>Tonstein (-1 - 5 Stück) (Grobsandstein – Siltstein; Schrägschichtung zu em-Bereich<br>Tonstein (-1 - 5 Stück) (Grobsandstein – Mittelsandstein mit vielen Hellgilmmer in Bänkchen 42 - 3 cm. Farbe bei starken Verwitterung (rötich – braur/grau)<br>Zwischen geschieftert. An der Basis grob (P57/3) nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)                                                                                                                                                                                        | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>B2.1<br>D1.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C                                                                                                                                                                                                                                                                                                           | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>310<br>80                                                                                                                                                                                           | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br>P 57/7<br><b>R:54 44 2</b><br><b>Probe</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen dzwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geft in Feinsandstein über (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein auf (1 - 2 cm), Vbechselfolge;<br>- Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>- Feinsandstein – Mittelsandstein dünnbankig (1 - 2 cm), rot-braun wie immer, ein Paket<br>Mittelsandstein – Grobsandstein, weier extrem dünnbankig<br>- Tonstein – Siltstein schwarzgrau mit rot<br>- Beschreibung<br>- Gradienter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grotsband – Mittelsandstein, gefolgt von 10 – 15 cm Feinsand<br>- Schühtlücke, aber gleiches Material (5 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand ca. 100<br>Dann Mittelsand ca. 50<br>Dann 50 à 1-3 cm Feinsand/Siltstein Wechselfolge, nach oben in Siltstein laminiert (0-5 mm) übergehend.<br>- Störung + Hangschutt : Mittelsandstein – Feinsandstein in "Material Ibeibt gleich wie bei (4)<br>Dicke Pakete à 60 – 80 cm (4-5 Stück) Grobsandstein – Mittelsandstein hellgrau – rötlich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dünnbankinge (7-10 cm) ; trogförninge Schrägschichtung im cm-Bereich<br>- Tonstein (1-2 mm, beige)/ Feinsandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein weiger stark<br>geschiefert, Foriozontal geschichtet<br>- Muttelsandstein – Mittelsandstein – Siltstein (2-5 mm, rötlich-braun) Wechselfolge ennet istark (9-57/4) übergehend. Dieser<br>Sf: 15/249; 15/8/2<br>- Mittelsandstein – Mittelsandstein – Mittelsandstein – Siltstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(4)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3           | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>D1.1<br>D1.1<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C                                                                                                                                                                                                                                                                                                                   | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40                                                                                                                        | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/8<br>P 57/7<br>P 57/8<br>P 57/8<br>P 57/7<br>P 57/8<br>P 57/8 | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (A) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wechselfolge von Abfolgen zwischen denen immer Tonstein – Sittstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein uber (10-15 cm)<br>- Sittstein – Feinsandstein uber (10-15 cm)<br>- Sittstein – Feinsandstein uber (10-15 cm)<br>- Sittstein – Feinsandstein diver (10-15 cm)<br>- Sittstein – Sowie in den Tonstein (-2 mm) Wechselfolge:<br>Schrägschichtung zu sehen, sowie in den Tonstein + Sittsteinlagen Parallelschichtung<br>Mächtige Mittelsandstein – Grobsandstein als Sandsteinlage<br>Feinsandstein – Grobsandstein, weiter extrem dünnbankig<br>Tonstein – Sittstein schwarzgrau mit ot<br><b>Beschreibung</b><br>Gradienter Sandstein, der mit Grobsand an der Basis begint (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsandstein, geht ogt von 10 – 15 cm Feinsand<br>Schwarzer Sittstein<br>Schleitlicken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Sittsteinen und Tonsteinen :<br>Uhten Grobsand ca. 100<br>Dann Mittelsand ca. 50<br>Dann Feinsand/Sittein Wechselfolge, nach oben in Sittstein laminiert (0-5 mm) übergehend.<br>Störung + Langschutt : Mittelsandstein – Sittstein eller in beit gleich wie bei (4)<br>Dicke Pakete 4 g0 – 80 cm (4-5 Stück Grobsandstein – Mittelsandstein hellgrau – rötlich (frisch: grau) & Bänkchen von 20 – 30 cm; An der Basis ist er<br>es Grobsandstein. Nach oben wird alles dönhankinger (5-10 cm): trogformige Schrägschichtung im cm-Bereich<br>Tonstein (1-2 mm, belge) / Feinsandstein – Sittstein (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein venigaer stark<br>geschieftri. hortontal geschichtet<br>Tonstein (1-2 mm, belge) / Feinsandstein – Sittstein (2-5 mm, rötlich-braun) wechselfolge; Tonstein stark geschiefert; Sandstein weiger stark<br>geschieftri. hortontal geschichtet<br>Tonstein – Piensandstein – Sittstein (2-5 mm, rötlich-braun) wechselfolge; Tonstein stark geschiefert; sandstein veniger stark<br>ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(6)                                                                                                                                                                    | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>Lithofazies<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.2<br>C2.3<br>C2.3                                                                                 | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>0<br>60<br>60<br>0                                                                                                  | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/8<br>P 57/7<br>P 57/8<br>P 57/7<br>P 57/8<br>P 57/8<br>P 57/7<br>P 57/8<br>P 58/8<br>P 58/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (A) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wie (A) aber Mittelsandstein (5 cm)<br>Siltstein – Feinsandstein (5 cm)<br>Siltstein – Siltstein – Seinsandstein (5 cm)<br>Siltstein – Seinsandstein (5 cm)<br>Siltstein – Seinsandstein (5 cm)<br>Siltstein – Seinsandstein dubri (1/2 cm), rot-brau wie immer, ein Paket<br>Mittelsandstein auch in cossandstein als Sandsteinlage<br>Feinsandstein – Grobsandstein dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, weiter extrem dünnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Groband – Mittelsandstein agel<br>Gradierter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Groband – Mittelsand übergehen<br>Danach jeweiß 20 cm Mittelsand, gefolgt von 10 – 15 cm Feinsand<br>Schwarzer Siltstein<br>Schlichtlücke, aber glebches Material (51 bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschten Siltsteinen und Tonsteinen :<br>Unten Grobsand ze. 100<br>Dann Mittelsand zeiten – Feinsandstein / Mitteilandteil gleich wie bei (4)<br>Die Grobsandstein – Mittelsandstein – Mitteilandtein Heitzendetein Materia bleibt gleich wie bei (4)<br>Die Grobsandstein – Nitteinsandstein – Witteinsandstein – Siltstein (2- mm, rötich-fram) Wechselloge, Tonstein stätten verwitterung (rötlich – braunzgrau)<br>Zwischen jedem Bänkchen kommen 1-2 mm Feinsandstein – Siltstein (2- mm, rötlich-fram) Wechselloge, Tonstein stätten verwitterung (rötlich – braunzgrau)<br>Zwischen jedem Bänkchen kommen 1-2 mm Feinsandstein – Siltstein, Schrägschichtung au sehen;<br>Schwarzer Siltstein – Feinsandstein – Siltstein – Tonstein – Heinzonten alle 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (24)<br>(25)<br>(26)<br>(26)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(13)<br>(12)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13             | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>Lithofazies<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>310<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                    | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/8<br>P 57/7<br>P 57/8<br>P 57/8 | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wechselfolge von Abtolgen zwischen denen immer Tonstein – Siltstein Lagen von 1 mm – 0,5 mm liegen:<br>- Mittelsandstein geht in Feinsandstein ükter (10-15 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein (5 cm)<br>- Siltstein – Feinsandstein dunnbankig (12 cm), Wechselfolge:<br>Schrägschichtung zu sehen, sowie in den Tonstein + Siltsteinlagen Parallelschichtung<br>Machtige Mittelsandstein auf<br>- Mittelsandstein auf<br>- Mittelsandstein – Grobsandstein alls Sandsteinlage<br>- Feinsandstein – Mittelsandstein – Grobsandstein alls Sandsteinlage<br>- Feinsandstein – Mittelsandstein – Grobsandstein alls Sandsteinlage<br>- Mittelsandstein – Grobsandstein, weiter extrem dunnbankig<br>Tonstein – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradienter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danab (19 klassistein)<br>Schichtlicke, aber gleiches Material (5 bielbt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsan die Lawischen ausgequetschten Siltstein laminert (0-5 mm) übergehend.<br>Störum – Hangschutt: Mittelsandstein – Feinsandstein – Mittelsandstein heilgen – rölich (frisch: grau) à Bänkchen von 20 – 30 cm; An der Basis Ist<br>es Grobsand-Satien. Nach oben wird alles dünnbankige (6-10 cm): trogförmige Schrägschichtung im cm-Feirst<br>geschiefert; brutzontal geschichtet<br>es Grobsandstein. Nach oben wird alles dünnbankiger (6-10 cm): trogförmige Schrägschichtung im cm-Feirst<br>geschiefert; brutzontal geschichtet<br>es Grobsandstein in eitwiseln – Siltstein Schrägschichtung im cm-Feirst<br>Schrägschichtung im Keinstein Siltstein – Siltstein – Siltstein, Schrägschichtung im cm-Feirst<br>Schrägschichtung (7000 – braundytein – Siltstein – Siltstein Schrägschichtung im cm-Feirst<br>Schrägschichtung (7000 – braundytein – Siltstein – Siltstein – Siltstein Schrägschichtung im cm-Feirst<br>Schrägschie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13              | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>Lithofazies<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                         | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>310<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                   | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/2<br>P 57/2<br>P 57/1<br>P 57/2<br>P 58/2<br>P 58/2<br>P 58/2<br>P 58/2<br>P 58/2<br>P 58/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (A) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wie (A) aber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Sittstein – Feinsandstein (S cm)<br>Sittstein – Feinsandstein (S cm)<br>Sittstein – Feinsandstein (S cm)<br>Sittstein – Seinsandstein dünnbank (g 1 cm), Wechselfolge:<br>Schrägschichtung zu sehen, sowie in den Tonstein + Sittsteiniagen Parallelschichtung<br>Machtige Mittelsandstein age<br>Wie (7) aber mit Mittelsandstein age<br>Wie (7) aber mit Mittelsandstein age<br>Wie (7) aber mit Mittelsandstein – Grobsandstein als Sandsteiniage<br>Feinsandstein – Mittelsandstein ge<br>Schrägschichtung zu sehen, sowie in den Tonstein + Sittsteiniagen Parallelschichtung<br>Mittelsandstein – Grobsandstein, weiter extrem dunnbankig<br>Tonstein – Sittstein schwarzgrau mit rot<br><b>Borchreibung</b><br>Gradienter Sandsteini, der mit Grobsand an der Basis beginnt (40 cm) und 2:3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danach jeweils 20 cm Mittelsand, gelogit von 10 – 15 cm Feinsand<br>Schichtlicke, aber gleiches Material (St belibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit dazwischen ausgequetschen Sittstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschutt: Mittelsandstein – Feinsandstein – Mittelsandstein nei – Grobsandstein – Mittelsandstein – Gittelsandstein – Sittelstein (2-5 mm, Übergehend.<br>Störung + Hangschutt: Mittelsandstein – Feinsandstein – Sittelstein laminiert (0-5 mm) übergehend.<br>Störung + Hangschutt: Mittelsandstein – Feinsandstein – Sittelstein Rostening Ernis Hittelstein Statter (2-5 mm, Gittelstein stark, geschiefert, Sandstein weinger stark<br>geschiefert; horizontal geschichtet<br>Dunkelgrauer Pfeinsandstein – Mittelsandstein – Sittelstein Statter, Sandstein stark, geschiefert, Sandstein – Mittelsandstein – Sittelstein – Straisentiger – Sittelstein – Straisentiger – Sittelstein – Feinsandstein – Mittelsandstein – Sittelstein – Feinsandstein – Mittelsandstein – Sitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(12)<br>(13)<br>(4)<br>(13)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(12)<br>(13)<br>(4)<br>(5)<br>(6)<br>(7)<br>(13)<br>(2)<br>(3)<br>(4)<br>(11)<br>(11)                                                                                                                                 | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>Lithofazies<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                         | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>390<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>310<br>80<br>80<br>80<br>80<br>80<br>80<br>40<br>100<br>410<br>100<br>410<br>100<br>40<br>2250<br>520<br>120<br>450 | P 56/7<br><b>R:54 44 0</b><br><b>Probe</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/2<br>P 58/2<br>P 58/2<br>P 58/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mittelsandstein – Feinsandstein dünne Bänkchen<br>Wie (A) daber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wie (A) daber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wie (A) daber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Sittstein – Feinsandstein (S cm)<br>Sittstein – Feinsandstein (S cm)<br>Sittstein – Feinsandstein (S cm)<br>Sittstein – Feinsandstein (S cm)<br>Wechselfolge zwischen daren mit Wechselfolge:<br>Schrägschichtung 2U sehen, sowie in den Tonstein + Sittsteiniagen Parallelschichtung<br>Machtige Mittelsandstein dinnbankig (12 cm), rot-braun wie immer, ein Paket<br>Mittelsandstein – Mittelsandstein, weiter extrem dünnbankig<br>Tonstein – Sittstein Schwarzgrau mit rot<br><b>207/H127 220</b><br><b>207/H127 207/H127 207/H12</b> |
| (24)<br>(25)<br>(26)<br>(26)<br>(28)<br>(29)<br>(30)<br>(31)<br><b>Profil 57</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br><b>Profil 58</b><br><b>Schicht</b><br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12 | B2.1<br>B2.1<br>C2.3<br>B1.1<br>C2.2<br>B2.1<br>B2.1<br>D1.1<br>Lithofazies<br>C2.2<br>C2.2<br>C2.2<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>B2.1<br>C2.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                 | 120<br>240<br>310<br>100<br>540<br>270<br>180<br>300 +<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>750 +<br>300 +<br>600-600<br>830<br>1000<br>330<br>1000<br>330<br>1060<br>40<br>2250<br>520<br>120<br>450<br><b>Koordinaten:</b><br><b>Mächtigkeit</b><br>40<br>310<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                           | P 56/7<br><b>R:54 44 0</b><br>P 57/9<br>P 57/10<br>P 57/7<br>P 57/8<br>P 57/8<br>P 58/2<br>P 58/2<br>P 58/3<br>P58/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mittelsandstein – Feinsandstein duren Bänkchen<br>Wie (4) daber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wie (3) daber Mittelsandstein – Grobsandstein Lagen dazwischen<br>Wie (3) daber Mittelsandstein – Grobsandstein (10-15 cm)<br>Stitstein – Feinsandstein (23 mm) / Tonsien (23 mm) Wechselfolge:<br>Schrägschichtung zu sehen, sowie in der Tonstein – Siltsteinlagen Parallelschichtung<br>Michtige Mittelsandstein Lagen<br>Wie (7) aber mit Mittelsandstein (23 mm) / Tonsien (23 mm) Wechselfolge:<br>Schrägschichtung zu sehen, sowie in der Tonstein – Siltsteinlagen<br>Piersandsdein – Mittelsandstein (23 mm) / Tonsien (23 mm) / Tonsien (25 mm) / Tonsien (25 mm) / Tonsien – Siltstein schwarzgrau mit rot<br><b>Beschreibung</b><br>Gradienter Sandstein, der mit Grobsand an der Basis beginnt (40 cm) und 2-3 Grobsand – Schübe beinhaltet, die dann nach oben hin wieder in<br>Grobsand – Mittelsand übergehen<br>Danach jeweils 20 cm Mittelsand, gelogt von 10 – 15 cm Feinsand<br>Schchrlücke, aber glichtes Material (SI bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen Lage<br>Mittelsand und Grobsand mit der Wechselfolge, nach oben in Sittetien laminiert (0-5 mm) übergehend.<br>Discharzer Sittetien<br>Dana feinsandstein – Feinsandstein – Sittetien kenselfolge, nach oben in Sittetien laminiert (0-5 mm) übergehend.<br>Schchrlücke, aber glichtes Material (SI bleibt gleich) mit viel Gesteinsbruchstücken aus einer vulkanischen von 20 – 30 cm; An der Basis ist<br>es Grobsandstein. Nach oben wird alles dünnbanklegr (5-10 m); Urogformigs Schrädgschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige) / Feinsandstein – Sittetien (2-5 mm, rötlich-braun) Wechselfolge; Tonstein stark geschiefert; Sandstein – weniger stark<br>geschiefert; honzdatein – Mittelsandstein mit wielen Hellgilmmern in Bänkchen A 2-3 cm. Farbe bei starken verwitterung (rötlich – braurgrau)<br>zwischen jeden meinschwen Kommen 1-2 mm Feinsandstein – Sittetien (2-5 mm, rötlich-braun) wechselfolge; Schrädgschichtung im cm-Bereich<br>Tonstein (1-2 mm, beige) / Feinsandstein – Sittetien (2-6 mm, rötlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
## Anhang 1 – Tabellarische Profilbeschreibung

| 1 | 2 |
|---|---|
| I | 4 |

| (14)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D1.1<br>C2.3                                                                                                                                                                                                                                                 | 1700 +<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P 58/4                                                                                                                                          | Grauer Sittstein – Feinsand mit glanzenden Komponenten; hach oben in Lonstein sehr stark geschierer übergenend;<br>Mittelsand rot – braun grau, in dünnen Bänkchen å 1-2 cm: verfaltet: Nach 150 in Ms – Grobsand / Grobsand übergehend: stark geschiefert, immer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 | mit 1-2 cm Siltstein dazwischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | Siltstein grau mit dünnen Tonstein Schichten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1.1                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Sitsein buildegraumit dumen sitsein banktien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1.1                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Wieder Tonstein schwarz – grau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.4                                                                                                                                                                                                                                                         | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Wechselfolge Siltstein – Tonstein (2-3 cm) / Feinsand – Mittelsand (2-3 cm) glimmerreich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 58/5                                                                                                                                          | Sittstein – Feinsand grau mit einigen auskeilenden Sandsteinkörpern (Feinsand – Mittelsand) (alle 40 – 50 cm, 5 – 10 cm dick); nach oben in Wochselfung Sittstein – Teinsand (2,2 cm); Kerschand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | wed seniolize sinstein - ronstein (2-5 cm) / reinsand (2-5 cm) abegenetic<br>Siltstein - Tonstein (2-4 cm) and VSiltstein - Feinsand (1-2 cm) arau-rötlich Wechselfolge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A2.5                                                                                                                                                                                                                                                         | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 58/6                                                                                                                                          | Grobsand rötlichbraum mit Komponenten bis 3-4mm (Lydite, weiße Komponenten) in Bänken á 10 cm dazwischen Siltstein / Tonstein (1 –2 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1.1                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Schwarzer Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A2.5                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | Wie (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 1                                                                                                                                                                                                                                                         | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 58/7                                                                                                                                          | Wite (11)<br>Mittelsand – Grobsand hellorau – braun – rot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1.1                                                                                                                                                                                                                                                         | 70 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | Tonstein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F2.1                                                                                                                                                                                                                                                         | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | Tonstein – Siltstein grau – beige, mit einigen Lagen á 5 cm Siltstein/Feinsand grau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 | Wechseltolge von Tonstein und Sittstein – Feinsand mit 100 dann Sittstein - Feinsand mit 5 cm; Es sind Slumpstrukturen vorhanden (nach 1800);<br>asch oben bin Zungstruktein – Feinsand auf dem Slumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1.2                                                                                                                                                                                                                                                         | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 58/8                                                                                                                                          | Feinsand au mit Ludien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F2.1                                                                                                                                                                                                                                                         | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Tonstein – Siltstein wie (1), aber dazwischen Lagen von Siltstein/Feinsand – Feinsand/Mittelsand und Slumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Profil 42 re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | view                                                                                                                                                                                                                                                         | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R:54 46 2                                                                                                                                       | 250 / H:14 24 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Schicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithofazies                                                                                                                                                                                                                                                  | Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probe                                                                                                                                           | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2.1                                                                                                                                                                                                                                                         | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Grobsand rötich braun nach oben hin in Mittelsand übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62.1                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Grobsana/reinkies rollich in Grobsana -> Mittelsana übergenena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2.1                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Grobsand/Feinkies wie (2) aufgearbeitete Klasten an der Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | Wie (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2.1                                                                                                                                                                                                                                                         | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Wie (4) aufgearbeitete Klasten an der Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2 1                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | wie (3)<br>Wie (4) aufgearbeitete Klasten an der Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DEIT                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | Wie (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1.1                                                                                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Grobsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A2.5                                                                                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Feinkies alles extrem dick gebankt $((1) - (11))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B2.1<br>A2.4                                                                                                                                                                                                                                                 | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Grobsand dunnibankig, dainn in Mitteisand Y-Einsand übergenend<br>Grobsand/Feinkies in Grobsand - Mitteisand - Feinsand übergehend ab hier wieder Bänke á 20 – 30 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B2.1                                                                                                                                                                                                                                                         | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Feinsand/Mittelsand in Feinsand/Siltstein übergehend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.1                                                                                                                                                                                                                                                         | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | Grobsand über Mittelsand in Feinsand übergehend, an der Basis gradiert und dann mit planarer Schrägschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.2                                                                                                                                                                                                                                                         | 100 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                 | Sittstein – Feinsand Wechseitoige, mit trogrormiger Schrägschichtung und honzontal läminiert an der Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Profil 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.41 4 1                                                                                                                                                                                                                                                     | Koordinaten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R:54 45 8                                                                                                                                       | 000-54 46 500 / H:14 24 500-14 24 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D2.3                                                                                                                                                                                                                                                         | 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Probe                                                                                                                                           | Beschreibung<br>Siltstein schwarz – drau massig mit Parallel Laminierung und Wechselfolge: Siltstein-Tonstein / Siltstein ie 1.3 mm Lagen und his zu 1.2 cm dicke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 | $\mathcal{O}$ is invertible. When $\mathcal{O}$ is a subsection of the formula                                                                                                                       |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2.3                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 59/1                                                                                                                                          | Feinsand hellgrau, dicke Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2.3                                                                                                                                                                                                                                                         | 50<br>250<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 59/1                                                                                                                                          | Feinschn Soffware grub mit ander and and a start and and a start and a s                                                                                                                                   |
| (2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2.3                                                                                                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 59/1<br>P 59/2                                                                                                                                | Bankchen<br>Feinsand heilgrau, dicke Bank<br>Siltstein-Feinsand (heilgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Siltmp, keilt in Sf aus → geslumpte Rinne; Feinsand heilgrau, Horizontalschichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.3<br>F2.1<br>D1.1                                                                                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P 59/1<br>P 59/2                                                                                                                                | Bankchen<br>Bänkchen<br>Sittstein-Feinsand hellgrau, dicke Bank<br>Sittstein-Feinsand hellgrau, dicke Bank<br>Sittstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Sittstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Sittstein schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2.3<br>F2.1<br>D1.1<br>C2.3                                                                                                                                                                                                                                 | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Freinsand hellgrau, dicke Bank<br>Siltstein-Freinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.3<br>F2.1<br>D1.1<br>C2.3                                                                                                                                                                                                                                 | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Bänkchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3                                                                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Fonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                 | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein Schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (7)<br>Wie (6)<br>Wie (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                                 | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein Schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>20<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Freinsand hellgrau, dicke Bank<br>Siltstein-Freinsand hellgrau, dicke Bank<br>Siltstein-Freinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein Schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein Schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1                                                                                                                                                                                         | 50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein(Siltstein - Schwarz)<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7), unten Feinsand-Mittelsand nach oben hin Feinsand/Siltstein<br>Siltstein beige – grauer Siltstein mit Tonhäutchen (1mm) alle 1-2 cm<br>Wie (7)<br>Wie (12)<br>Wie (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3                                                                                                                                                                                 | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3                                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 59/1<br>P 59/2<br>P 59/3                                                                                                                      | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein-Feinsand / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (12) nur Siltstein mit Tonhäutchen (1mm) alle 1-2 cm<br>Wie (7)<br>Wie (12)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4                                                                                                            | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dinnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                         | 50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4                                                                                                            | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, kelit in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(16)<br>(17)<br>(19)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20)<br>(20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                 | 50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>20<br>15<br>50<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4                                                                                                            | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand -Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (14)<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19)<br>Charten Siltstein beige – und wie flag au und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(20)<br>(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.1<br>B11                                                                                                                                          | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4                                                                                                            | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Fisnsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (8)<br>Wie (7)<br>Wie (8)<br>Wie (7)<br>Wie (12)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit heligrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkantilage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Wittelsand (200 beer jetzt alles 1-4 mm dick, stark geschiefert<br>Wittelsand (200 beer jetzt alles 1-4 mm dick, stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>15<br>5<br>30<br>320<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5                                                                                                  | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein-Feinsand (Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit hellgraue, feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmöbilisat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(17)<br>(18)<br>(17)<br>(20)<br>(21)<br>(22)<br>(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>320<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>20<br>30<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>20<br>30<br>20<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>30<br>320<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>30<br>20<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5                                                                                                  | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein -Schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit hellgrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) er jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand-Siltstein (7) Tonstein frisch (1 mm) Wechselfolge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(17)<br>(18)<br>(17)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.1<br>B1.1<br>D2.1<br>B2.1<br>B2.1<br>B2.1<br>B2.1<br>B2.1<br>B2.1<br>C2.1<br>B2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3 | 50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5                                                                                                  | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12) Intre Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dinnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein rothig, rung stark verwittert, beige – rötlich<br>Feinsand/Siltstein Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit helgrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) Gut er jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand/Aittelsand dünngebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand/Mittelsand dünngebankt mit Tonstein/Siltstein – Häutchen dazwischen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(16)<br>(17)<br>(16)<br>(17)<br>(16)<br>(17)<br>(16)<br>(17)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>D2.1<br>B1.1<br>D2.1<br>B2.1<br>B1.2                                                                                                                 | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>30<br>55<br>50<br>430<br>20<br>30<br>55<br>50<br>40<br>20<br>30<br>20<br>30<br>40<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5                                                                                                  | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (16)<br>Stark geschieferter Siltstein/Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige – Jrauer Siltstein/Tonstein fisch dunklegrau, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunklegrau, ansonsten beige – braun /rot<br>Wie (19)<br>(14) cm mächtig) nur in Wechselfolge mit heligrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilistat<br>Feinsand/Siltstein addingebankt mit Tonstein/Siltstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Mittelsand düngebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand Siltstein (Fötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(14)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(26)<br>Profil 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>30<br>55<br>50<br>430<br>200<br>70<br>640<br>370<br>580<br>430<br>20<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5<br><b>R:54 49 9</b>                                                                              | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein - Feinsand hellgrau, dicke Bank<br>Siltstein - Sinsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (12)<br>Wie (12) nur Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (13)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit helgrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet is eine Vulkanitlage mit 10 cm Mächtigkei<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Wittelsand (ördobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand stark geschiefert<br>Wittelsand (ich-grau, 1-3 mm)/ Tonstein – Biltstein (1 mm) Wechselfolge<br>Feinsand stark geschiefert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(25)<br>(26)<br><b>Profil 61</b><br><b>Schultz</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>30<br>50 +<br><b>Koordinaten:</b><br><b>Mittely</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5<br>R:54 49 9<br>Probe<br>61/4                                                                    | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand hellgrau, dicke Bank<br>Siltstein-Fisnsand hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (13)<br>Stark geschieferter Siltstein/Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit heligrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischne eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand-Mittelsand timgebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Biltstein (1 mm) Wechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Kechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Kechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Häutchen dazwischen<br>Feinsand Siltstein (rötlich-grau                                          |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(24)<br>(22)<br>(26)<br><b>Profil 61</b><br><b>Schicht</b><br>(1)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>370<br>580<br>430<br>20<br>370<br>580<br>430<br>20<br>370<br>50<br>40<br>50<br>50<br>50<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/4<br>P 59/5<br><b>R:54 49 9</b><br><b>Probe</b><br>61/1<br>61/2                                    | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12) curd Siltstein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (19)<br>Vie (19)<br>Vie (19)<br>Ui (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (20) aber jetzt alles 1- 4 mm dick, stark geschiefert<br>Mittelsand (Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand-Kiltelsand düngebankt mit Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Kiltelsand düngebankt mit Tonstein Siltstein – Häutchen dazwischen<br>Feinsand/Siltstein beige-teit<br>Mittelsand Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Mittelsand düngebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand Altitelsand düngebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand-biltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-biltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-biltelsen debine Komponenten wie 1, Gesteinsbruchstücke<br>Feinsand ben hin Ges, Frabe um K Komponenten wie 1, Gesteinsbruchstücke<br>Feinsand-biltelsen hin Ges. Farbe um Komponenten wie 1, G                                                        |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(17)<br>(14)<br>(17)<br>(18)<br>(17)<br>(18)<br>(17)<br>(18)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(24)<br>(25)<br>(25)<br>(25)<br>(24)<br>(25)<br>(25)<br>(25)<br>(22)<br>(24)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>370<br>580<br>430<br>280<br>20<br>30<br>50<br>430<br>20<br>30<br>40<br>30<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/5<br><b>R:54 49 9</b><br><b>Probe</b><br>61/1<br>61/2                                              | Bankchen<br>Feinsand hellgrau, dicke Bank<br>Siltstein-Feinsand (hellgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteingakte leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (14)<br>Wie (14)<br>Wie (14)<br>Wie (14)<br>Wie (14)<br>Wie (19)<br>Uie (19)<br>Other Siltstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19)<br>Wie (19)<br>Wie (19)<br>Charlen Feinsand-Mittelsand mit frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19)<br>Wie (19)<br>Wie (10)<br>Wie (10)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (14)<br>Wie (14)<br>Wie (16)<br>Charlen Feinsand Winterschluter, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (19)<br>Other Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19)<br>Charlen mächtig) nur in Wechselfolge mit hellgrauen Feinsand (24 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1- 4 mm dick, stark geschiefert<br>Wittelsand/Grobeand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Mittelsand dünngebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand Stark geschiefert<br><b>Beschreibung</b><br>Grobklastischen Sandsteinen, Ms-Gs, hell-dunkelgrau, Quarze, Lydite, Gesteinsbruchstücke<br>Fk, nach oben hin Gs, Farbe und Komponenten wei 1, Gs beginnt nach 60 cm<br>Grober teil am Antang, Basis nur noch Grobeand/Fk; Material wird värker geschie |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25)<br>(25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>30<br>15<br>5<br>30<br>20<br>30<br>15<br>5<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>15<br>5<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P 59/1<br>P 59/2<br>P 59/3<br>P 59/3<br>P 59/4<br>P 59/5<br><b>P 59/5</b><br><b>P 59/5</b><br><b>P 7 5 1</b><br><b>6 1</b> /1<br>6 1/2<br>6 1/2 | Bänkchen<br>Feinsand hellgrau, dicke Bank<br>Sittstein-Feinsand (hellgrau, grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Sittstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand hellgrau, Horizontalschichtung<br>Tonstein/Sittstein schwarz<br>Feinsand-Mittelsand grau / Hellgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (13)<br>Stark geschiefterter Sittstein nötichen (1mm) alle 1-2 cm<br>Wie (14)<br>Stark geschiefterter Sittstein nit Tonhäutchen (1mm) alle 1-2 cm<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (13)<br>Stark geschiefterter Sittstein nötichen (5kmp) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Sittstein beige-braun<br>Wie (16)<br>Stark geschiefterter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19) (1-4 cm mächtig) nur in Wechselfolge mit hellgrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Guarzmobilist<br>Feinsand/Sittstein nicpebankt mit Tonstein/Sittstein (1 mm) Wechselfolge<br>Feinsand/Mittelsand dünngebankt mit Tonstein/Sittstein – Häutchen dazwischen<br>Feinsand Stittstein nicptick, stark geschiefert<br>Grobklastischen Sandsteinen, Ms-Gs, hell-dunkelgrau, Quarze, Lydite, Gesteinsbruchstücke<br>Fk, nach oben hin Gs, Farbe und Komponenten wie 1, Gs beginnt nach 60 cm<br>Grober teila Anfang, Basis nur noch Grobssand/Fk, Material wird stärker geschiefert und sind keine ganzen Bänke mehr sonder kleinere Bänke á 4-                                      |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(14)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(17)<br>(13)<br>(14)<br>(17)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(25)<br>(25)<br>(26)<br><b>Profil 61</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(3)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>C2.3<br>D2.1<br>B1.1<br>D2.1<br>B1.2<br>Lithofazies<br>A2.5<br>A2.5<br>A2.5                                                                                          | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>200<br>70<br>640<br>370<br>580<br><b>Kordinaten:</b><br><b>Mittely</b><br>430<br>20<br>30<br>15<br>5<br>5<br>40<br>20<br>30<br>15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/4<br>P 59/5<br><b>Probe</b><br>61/1<br>61/2<br>61/3                                                | Bänkchen<br>Feinsand heilgrau, dicke Bank<br>Siltstein-Feinsand heilgrau, dicke Jitstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand heilgrau, Horizontalschichtung<br>Tonstein Schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand heilgrau, Horizontalschichtung<br>Tonstein/Siltstein isotwarz<br>Feinsand-Mittelsand grau / Heilgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (13)<br>Stark geschieferter Sittstein reinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Sittstein beige-braun<br>Wie (16)<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19)<br>Vie (10)<br>Vie (10)<br>Vie (10)<br>Vie (10)<br>Charmachtig) nur in Wechselfolge mit heilgrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitage mit 10 cm Mächtigkeit<br>Wie (20) heit pitzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilisat<br>Feinsand/Siltstein (rötlich-grau, 1-3 mm) Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Siltstein (rötlich-grau, 1-3 mm) Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Siltstein Keiter Are Sochieffert<br><b>Beschreibung</b><br>Grobklastischen Sandsteinen, Ms-Gs, hell-dunkelgrau, Quarze, Lydite, Gesteinsbruchstücke<br>Fk, nach oben hin Gs, Farbe und Komponenten wit 1, Gs beginnt nach 60 cm<br>Grober teil am Anfang, Basis nur noch Grobsand/Fk; Material Wird stärker geschiefert und sind keine ganzen Bänke mehr sonder kleinere Bänke á 4-5<br>Gm, Farbe verändert sich bei nicht                                         |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(22)<br>(23)<br>(24)<br>(22)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(23)<br>(22)<br>(22 | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>15<br>5<br>30<br>220<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>220<br>70<br>640<br>370<br>580<br>430<br>20<br>30<br>50 +<br><b>Koordinaten:</b><br><b>Mitchigkeit</b><br>90 +<br>110<br>140<br>160 + ?<br>250 ca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/4<br>P 59/5<br><b>R:54 49 9</b><br><b>Probe</b><br>61/1<br>61/2<br>61/3                            | Bankchen<br>Feinsand heilgrau, dicke Bank<br>Sittstein-Feinsand (heilgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Sittstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sf aus → geslumpte Rinne; Feinsand heilgrau, Horizontalschichtung<br>Tonstein/Sittstein schwarz<br>Terinsand-Mittelsand grau / Heilgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (13)<br>Stark geschieferter Sittstein rotakt verwittert, beige – rötlich<br>Feinsand-Mittelsand gruu / Wechselfolge mit heilgraue, nasonsten beige – braun /rot<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (18)<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wite (19)<br>Wite (14)<br>Wite (14)<br>Wite (15)<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wite (16)<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wite (16)<br>Stark geschieferter Sittstein/Tonstein frisch dunkelgrau, feinstein (1 mm) Wechselfolge<br>Feinsand/Sittstein frötlich-grau, 1-3 mm) Tonstein – Sittstein (1 mm) Wechselfolge<br>Feinsand-Mittelsand düngebankt mit Tonstein/Sittstein – Häutchen dazwischen<br>Feinsand-Sittstein frötlich-grau, 1-3 mm) Tonstein – Sittstein (1 mm) Wechselfolge<br>Feinsand-Mittelsand düngebankt mit Tonstein/Sittstein – Häutchen dazwischen<br>Feinsand-Sittstein frötlich-grau, 1-3 mm) Tonstein – Sittstein (1 mm) Wechselfolge<br>Feinsand-Mittelsand düngebankt mit Tonstein/Sittstein – Häutchen dazwischen<br>Feinsand-Sittstein frötlich                                                |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(14)<br>(15)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br><b>Profil 61</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(6)<br>(7)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>50<br>250<br>410<br>330 (Mitte)<br>330<br>20<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>320<br>20<br>70<br>640<br>320<br>20<br>30<br>500<br>20<br>30<br>15<br>5<br>30<br>20<br>30<br>20<br>30<br>15<br>5<br>30<br>20<br>30<br>20<br>30<br>15<br>5<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/4<br>P 59/5<br><b>R:54 49 9</b><br><b>Probe</b><br>61/1<br>61/2<br>61/3                            | Bankchan<br>Feinsand-Neitgrau, dicke Bank<br>Sillstein-Feinsand (heligrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Machtiges Sandsteinpaket leicht verfaltet – Slump, keilt in St aus ⇒ geslumpte Rinne; Feinsand heligrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Heligrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12) rurstistein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand-Mittelsand, rur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitäge mit 10 cm Mächtiges gau und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitäge mit 10 cm Mächtigk gau und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitäge mit 10 cm Mächtigk<br>Wie (70)<br>Wie (70)<br>Wie (70)<br>Wie (70)<br>Wie (70)<br>Wie (70)<br>Wie (70)<br>Wie (70)<br>Wie (71)<br>Wie (71)<br>Wie (72)<br>Mietelsand Günsbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (73)<br>Wie (74)<br>Wie (74)<br>Mittelsand Günsbankig (1-4 cm mächtig), nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitäge mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alle 31 - 4 mm cikk, stark geschiefert<br>Mittelsand/Girobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Outerzubilist<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-Siltstein (rötlich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand-Siltstein (750)<br>Grober teila mAnfang, Basis nur noch Grobsand/Fick Material wird stärkter geschiefert und sind keine ganzen Bänke mehr sonder kleinere Bänke á 4-5                                              |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br><b>Profil 61</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>280<br>20<br>370<br>580<br>430<br>280<br>20<br>30<br>500<br>430<br>280<br>20<br>30<br>500<br>430<br>20<br>500<br>40<br>370<br>580<br>430<br>280<br>20<br>30<br>500<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>370<br>580<br>40<br>30<br>30<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>500<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>580<br>40<br>30<br>30<br>500<br>40<br>30<br>500<br>40<br>30<br>30<br>500<br>40<br>40<br>30<br>30<br>500<br>40<br>40<br>30<br>500<br>40<br>30<br>500<br>40<br>40<br>30<br>500<br>40<br>30<br>500<br>40<br>40<br>30<br>500<br>40<br>40<br>40<br>40<br>40<br>30<br>500<br>40<br>40<br>40<br>40<br>500<br>40<br>40<br>500<br>40<br>500<br>40<br>500<br>40<br>500<br>50                                                                                                                                                                                                                                                                                                                                                                                                                            | P 59/1<br>P 59/2<br>P 59/3<br>P 59/3<br>P 59/4<br>P 59/5<br><b>R:54 49 9</b><br><b>Probe</b><br>61/1<br>61/2<br>61/3<br>P 61/4                  | Bankchan<br>Feinsand heligrau, dicke Bank<br>Siltstein-Feinsand heligrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfaltet → Slump, keilt in Sl aus → geslumpte Rinne, Feinsand heligrau, Horizontalschichtung<br>Tonstein/Siltstein - Standsteinpaket leicht verfaltet → Slump, keilt in Sl aus → geslumpte Rinne, Feinsand heligrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Heligrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (6)<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12) ruts Tiststein - Feinsand-Mittelsand nach oben hin Feinsand/Siltstein<br>Siltstein beige – grauer Siltstein mit Tonhäuchen (1mm) alle 1-2 cm<br>Wie (7)<br>Wie (12)<br>Wie (12) ruts Tiststein-Feinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbahkig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (14)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (19)<br>Wie (19) un in Wechselfolge mit heligrauen Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanitlage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarmobilisat<br>Feinsand-Siltstein (föltich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Siltstein bege-share und Komponenten wei 1, Ge beginnt nach 60 cm<br>Grobklastischen Sandsteinen, Ms-Gs, hell-dunkelgrau, Quarze, Lydite, Gesteinsbruchstücke<br>Fk, nach oben hin Gs, Farbe und Komponenten wie 1, Ge beginnt nach 60 cm<br>Grobet teil am Antang, Basis nur noch Grobsand/Fk; Material wird stärker geschiefert und sind keine ganzen Bänke mehr sonder kleinere Bänke å 4-5<br>Gn, Farbe verän                                                              |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(11)<br>(12)<br>(13)<br>(14)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(13)<br>(14)<br>(12)<br>(13)<br>(14)<br>(13)<br>(14)<br>(12)<br>(22)<br>(22)<br>(23)<br>(22)<br>(25)<br>(25)<br>(26)<br>(25)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27                                                                                                                         | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>F2.1<br>C2.3<br>C2.3<br>D2.1<br>B1.1<br>D2.1<br>B1.2<br>D2.1<br>B1.2<br>D2.1<br>B1.2<br>D2.1<br>B1.2<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2                           | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>320<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>200<br>70<br>640<br>370<br>580<br><b>Kordinaten:</b><br><b>Mittelseit</b><br>90 +<br>110<br>140<br>160 + ?<br>250 ca.<br>210 +<br>300<br>160<br>160<br>170<br>160<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/4<br>P 59/5<br><b>Probe</b><br>61/1<br>61/2<br>61/3<br>P 61/4<br>P 61/4                            | Bänkchen<br>Feinsand heilgrau, dicke Bank<br>Siltstein-Feinsand (heilgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Mächtiges Sandsteinpaket leicht verfatter 5 Slump, keilin Is 3 cas 4 gestumpte Rinne; Feinsand heilgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Heilgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (7)<br>Wie (6)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (12)<br>Wie (13)<br>Wie (14)<br>Wie (14)<br>Wie (14)<br>Wie (15)<br>Stark geschieferter Siltstein Freinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (13)<br>Wie (14)<br>Wie (14)<br>Wie (15)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgraue, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgraue, ansonsten beige – braun /rot<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein Finsch dunkelgraue, neuer Feinsand (2-4 cm mächtig); nicht regelmäßig ab und zu auch Feinsand Bänke kurz<br>hintereinander mit nur 1 mm (19) dazwischen eingeschaltet ist eine Vulkanittage mit 10 cm Mächtigkeit<br>Wie (20) aber jetzt alles 1-4 mm dick, stark geschiefert<br>Mittelsand/Girobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilist<br>Feinsand/Siltstein (Bittich-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Mittelsand dünchgenkt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand stark geschiefert<br>Bechreibung<br>Grobklastischen Sandsteinen, Ma-Gs, hell-dunkelgrau, Quarze, Lydite, Gesteinsbruchstücke<br>Fk, nach ober hin Gs, Farbe und Auron nut anderen Komponenten<br>Schieferungs-Schichtläche 270/20, 160/20, 155/25<br>Störung<br>Si (2-3 om/Fk (2-3cm)Wechsellagerung With Si za monten die ersten 50 cm mit Siltlagen81 cm) dazwisch                                |
| (2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(11)<br>(12)<br>(13)<br>(14)<br>(15)<br>(16)<br>(17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br><b>Profil 61</b><br><b>Schicht</b><br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2.3<br>F2.1<br>D1.1<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3<br>C2.3                                                                                                                                                                         | 50<br>250<br>410<br>350 (Mitte)<br>330<br>20<br>30<br>15<br>5<br>30<br>20<br>160<br>500<br>200<br>70<br>640<br>370<br>580<br>430<br>20<br>70<br>640<br>370<br>580<br><b>Koordinaten:</b><br><b>Michtigkeit</b><br>90 +<br>110<br>160 + ?<br>250 ca.<br>210 +<br>300<br>160<br>600 +<br>300<br>300<br>15<br>500<br>200<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>30<br>20<br>20<br>30<br>20<br>20<br>70<br>640<br>370<br>580<br>50<br>20<br>20<br>70<br>640<br>370<br>580<br>20<br>30<br>20<br>30<br>50<br>50<br>20<br>20<br>70<br>640<br>370<br>50<br>50<br>20<br>20<br>70<br>640<br>370<br>50<br>50<br>20<br>20<br>70<br>640<br>370<br>50<br>50<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>430<br>20<br>30<br>50<br>40<br>30<br>30<br>50<br>50<br>50<br>60<br>200<br>200<br>70<br>500<br>200<br>200<br>30<br>50<br>40<br>30<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>30<br>50<br>40<br>50<br>40<br>30<br>50<br>40<br>50<br>40<br>30<br>50<br>40<br>50<br>40<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | P 59/1<br>P 59/2<br>P 59/3<br>P 59/4<br>P 59/4<br>P 59/5<br><b>Probe</b><br>61/1<br>61/2<br>61/3<br>P 61/4<br>P 61/4                            | Bankchen<br>Feinsand Neilgrau, dicke Bank<br>Siltstein-Feinsand Neilgrau, dicke Bank<br>Siltstein-Feinsand Neilgrau-grau) / Tonstein (schwarz) Wechselfolge, Horizontalschichtung<br>Reiner Tonstein schwarz mit 2-3 cm dicken Siltstein Lagen (beige-braun) alle 40 – 50 cm<br>Machtiges Sandsteinpaket leicht verfaltet → Slump, keil in Sf aus → geslumpte Rinne; Feinsand heilgrau, Horizontalschichtung<br>Tonstein/Siltstein schwarz<br>Feinsand-Mittelsand grau / Heilgrau, durchziehend; planare Schrägschichtung : L= 50/6 → Fließrichtung ca. NE<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (7)<br>Wie (12)<br>Wie (13)<br>Stark geschieferter Siltstein Freinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (7)<br>Wie (13)<br>Wie (14)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (14)<br>Vie (20) auch Teinsand und gestörter (Slump) Bereich, danach wieder gleiches Sf<br>Mittelsand dünnbankig (1-2 cm) stark verwittert, beige – rötlich<br>Feinsand/Siltstein beige-braun<br>Wie (16)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (17)<br>Wie (10)<br>Stark geschieferter Siltstein/Tonstein frisch dunkelgrau, ansonsten beige – braun /rot<br>Wie (20) aber jetz alles 1-4 mm dick, stark geschiefert<br>Mittelsand Grobsand mit schwarzen länglichen Komponenten (Tonsteinklasten, ausgelenkt), = Rip up clasts<br>Quarzmobilistat<br>Feinsand-Siltstein (föllch-grau, 1-3 mm)/ Tonstein – Siltstein (1 mm) Wechselfolge<br>Feinsand/Siltstein neilengebankt mit Tonstein/Siltstein – Häutchen dazwischen<br>Feinsand Matelsand Sinstein/Teinstein Kater geschiefert<br>Totskarz (K4 Egeschiefert<br>Siltstein (75) (2-30)/Wechsellagerung<br>Siltstein – Keinsterial wird Sältstein zur die Keinster Siltstein – Häutchen dazwischen<br>Feinsand-Siltstein (75) (2-30)/Wechsellagerung<br>Si (2-4 cm)/FS (2-300)/Wechsellager                            |

## Legende:

\_\_\_\_

77

フナ

| HHH   | Kalk                            | HCS                   | Beulenschichtung              |
|-------|---------------------------------|-----------------------|-------------------------------|
|       | Mergel                          | $\approx$             | Slump                         |
|       | Ton                             |                       | Lamination                    |
|       | Silt                            |                       | Bioturbation                  |
|       | Feinsand                        | • * •                 | Lyditklasten                  |
|       | Mittelsand                      |                       | Größere<br>Quarzklasten       |
|       | Grobsand                        | ~                     | Aufarbeitungsklasten          |
| °0°   | Feinkies                        |                       | Glimmer                       |
| 00°00 | Mittelkies                      | $\sim$                | Erosive<br>Schichtgrenze      |
| PCGA  | Grobkies                        |                       | Auflastmarken                 |
|       | Vulkanit                        | F                     | Linear der Strömungsrichtung  |
|       | Wechselfolge                    | P 42/9                | Probennummer                  |
|       | Rinne                           |                       | Schichtlücke                  |
|       | Horizontale<br>Schichtung       |                       | linsenförmige Sandsteinbank   |
|       | Planare<br>Schrägschichtung     |                       | Uranwert in ppm               |
|       | Trogförmige<br>Schrägschichtung |                       |                               |
|       |                                 | 340 350 360 370 380 5 | 190 400 0 5 10 15 20 25 ppm/% |
|       |                                 | Gesamtstrah           | lung Kaliumwert in %          |









Anhang 2 - Einzelprofile: Hochwipfel-Formation







90 m

85 m

80 m

75 m

70 m

65 m

60 m

55 m

50 m





























| σ.     | υ.       |             |            |                | 2    | x      | Σ.       | Π                | Π.6         | ) п         |        | Þ       | Þ          | P       | 1      | <u> </u> | ш      | τ.    | U.                               | 0            |                | Z     | 2       | <u> </u> | $\sim$        | <                                                                                | -         | Ś      | ᆔ       | υ.                                                                                               | 0.5         |              | 2      | χ.       | 2-5        | 5 8                                          |                  | П     | 0                 |             | 5.7                                      | > >          | -                  | 1        |
|--------|----------|-------------|------------|----------------|------|--------|----------|------------------|-------------|-------------|--------|---------|------------|---------|--------|----------|--------|-------|----------------------------------|--------------|----------------|-------|---------|----------|---------------|----------------------------------------------------------------------------------|-----------|--------|---------|--------------------------------------------------------------------------------------------------|-------------|--------------|--------|----------|------------|----------------------------------------------|------------------|-------|-------------------|-------------|------------------------------------------|--------------|--------------------|----------|
| VUIVE  | 23/01    | ק           |            | (S 28          | 3    | (0 2/2 | 1        | 10               |             | 5 V 0       | (s26/3 | 21      | 20         | robe    |        | 2        | st 0/2 | 06/02 | 06/01                            | 04/06        | 04/02          | 6     | 5       | S11/2    | - «           | . 15                                                                             | 12        | ω      | 19      | 34/04                                                                                            | 032/04      | °.4          | 7 1    | S 28     | 13         | 6 1<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10               | -     | ; 7               | SZ0/3       | 121                                      | 20           | robe               |          |
| 00     | 18       | 10          | 140<br>07  | 51             | 126  | 84     | 71       | 115              | 30          | 65          | 111    | 156     | 75         | Qmn     |        | 100      | 133    | 102   | . ĩ                              | 79           | 128            | 158   | 145     | 145      | 187           | 260<br>108                                                                       | 149       | 202    | 224     | 305                                                                                              | 201         | 184          | 230    | 199      | 233        | 205<br>วาร                                   | 201              | 110   | 170               | 164         | 16/                                      | 169<br>242   | Qm                 |          |
| 171    | 173      | 100         | 06         | 138            | 106  | 126    | 128      | 85               | CG          | 87          | 53     | 98      | 94         | Qmu     |        | 131      | 106    | 148   | 116                              | 174          | 117            | 88    | 77      | 117      | 107           | 81                                                                               | 109       | 83     | 80      | 25                                                                                               | 105         | 132          | 73     | 116      | 71         | 100                                          | 81               | 181   | 157               | 167         | 137                                      | 105          | Qp                 |          |
| 4      | 11       | 10          | 30         | 75             | 55   | 87     | 42       | 46               | 90<br>80    | 84          | 40     | 78      | 30         | Qpg     |        | 1        | 13     | 16    | 24                               | 23           | 39             | 12    | 36      | 14 -     | 7             | 94 9                                                                             | 28        | 16     | 19      | 0                                                                                                | 29          | 3<br>15      | 19     | 12       | 27         | 7 14                                         | 19               | 7     | 10                | ÷ +         | - ī                                      | 13           | σ                  |          |
| 7      | 61       | 40          | 22         | 28             | 12   | 32     | 32       | 28               | 27          | 67          | 56     | 25      | 88         | Qps     |        | 44       | 10     | 10    | 10                               | ∞ c          | ¤ 1            | 31    | 21      | σ        | 48            | 12<br>61                                                                         | 58        | 61     | 57      | 0                                                                                                | <u>1</u> 0  | ° 7          | 24     | ы        | 50 v       | ათ                                           | 54               | 7     | ы                 | - u         | 1 [                                      | 35<br>77     | ~                  | F        |
| 5      | 22 4     | ~ ~         | 4 6        | ω              | 0    | 4      | 10       | - J              | 3 σ         | 6           | 10     | 1       | 1          | Qpl     |        | 4        | 8      | 13    | ü                                | 0            | 0 7            | 21    | ъ       | 0        | 2 0           | o 28                                                                             | 7         | 53     | ω       | 0 -                                                                                              | 7 0         | nω           | 20     | 8        | 37         | ta<br>13                                     | 8                | 21    | <b>б</b>          | лс          | ມ -                                      | - 1          | G                  | icht     |
| 47     | 11       | 22          | 15         | 11             | σ    | 8      | 17       | 5 00             | 70<br>0     | 9           | 30     | -       | 16         | С       |        | 20       | ъ      | ∞     | 4                                | ю<br>0       | <sup>თ</sup> თ | 17    | 15      | 24       |               | v 2                                                                              | -         | 0      | 7       | 0                                                                                                | 5 C         | 3 9          | 9      | 1        | 0          | ω                                            | 0                |       | σř                | 13 0        | 1 <sub>6</sub>                           |              | ₽                  | mine     |
| 5      | 0 0      | ა _         | 18         | 6 0            | 0    | 0      | 6        | 18 13            | 1, 0        | 0           | 0      | ъ       | 4          | St      | eich   | 1        | 2      | 2     | 4                                | 9            | n 17           | 2     | 18      | 1        | -             | - 0                                                                              | 1         | 0      | 0       | ω (                                                                                              | - ת         | Δ            | 0      | 0        | 0          | 0                                            | 8                | -     | 0                 | ⊃ ∓         | 1                                        |              | ۲                  | eral-    |
| μ      | 4 -      | 1 0         | • 0        | o →            | 0    | 8      | <u> </u> | ω                | ی د         | ათ          | 4      | 0       | 0          | Ssi     | tmin   | 39       | 47     | 22    | 18                               | 29           | 24<br>28       | 14    | 34      | 23       | 10 1          | 14                                                                               | 24        | 16     | ω       | 23                                                                                               | 7 4         | 17           | 19     | ω        | 0          | 15                                           | 27               | 21    | 4                 | 1<br>л ч    | • =                                      | 11           | <u>ا</u>           | Date     |
| 0      | 2        | 4           | <u> </u>   | o →            | 0    | ъ      | 0.       | 7                | n –         | 4           | -      | 0       | 0          | Ssa     | Iera   | 6        | 38     | 30    | 49                               | 20           | 7 25           | 34    | 31      | 37       | ۲<br>۵        | 4 6                                                                              | ω         | 2      | -       | 17                                                                                               | 24          | 23           | 6      | 36       | 0          | 15<br>15                                     | ω                | 18    | 36                | 34          | 3 -                                      | 4 4          | 3                  | en d     |
| >      | 2 4      | 4 4         | <u> </u>   | 0              | 0    | -      | 0        | 0 0              |             | ω           | ω      | 0       | 0          | ŕ       | -Dat   | 39       | 46     | 63    | 51                               | 38 4         | 34             | 45    | 21      | 23       | -<br>د        | 7                                                                                | 26        | 21     | 9       | 21 :                                                                                             | 17          | 3 11         | 19     | 15       | 18         | × 33                                         | 7                | 52    | 12                | ם ת         | 10 -                                     | <u> </u>     | .hm                | er H     |
| >      | 2 0      |             | <u>, o</u> | n 0            | 0    | 0      | ω        | ω 5              | 10 0        | 0           | 0      | 1       | 4          | Mŧ      | ien c  | 2        | 13     | 4     | 4                                | ω -          | 4              | ω     | 13      | 4        | x c           | о <u>З</u> З                                                                     | з         | 16     | 0       | 13 0                                                                                             | ר ת         | 7            | 6      | ω        | ω (        | л∞                                           | ω                | 22    | σ -               | 7 0         | ມ -                                      | <u>-</u> 6.  | Ň                  | och      |
| 4      | 2 0      |             |            | 0              | 0    | 0      | 0        | 0 0              |             | 0           | 0      | 0       | 0          | Mss     | der H  | 24 2     | 0 2    | 10 2  | 4 ·<br>2 ·                       |              | 0              | 0 2   | 0       | 0        |               | 0<br>0<br>0<br>0                                                                 | 0 2       | 0 2    | 0<br>3  | 0<br>0<br>0                                                                                      | ົ່ວດ        | 0<br>0<br>0  | 13     | 0<br>3   | 0 0<br>0 0 | 0<br>0<br>0                                  | 0                | 0     | 0<br>3            | ົ່          | ວ ເ<br>ລີ ເ                              | л 33<br>л 33 | (ar                | wipf     |
| ა      | 4 0      | лс          | ء د        | ω              | 0    | _      | 6        | 0 0              |             | ·           | -      | 0       | 0          | Mph     | loch   | 31       | 39 2   | 50    | 41                               | 53           | 45             | 46 4  | 22 5    | 62       | 202           | 70<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 58 8      | 85 7   | 04 7    | 30                                                                                               | 06          | 17           | 03 4   | 16       | 04 7       | 7 05                                         | 82 7             | 91 1  | 27 1              | 1           | 2 1                                      | 47 4         |                    | el-F     |
| ~      | 17       | در<br>۱۹    | 3 0        | 33             | 0    | 13     | 21       | 0 0              | с, с        | 23          | 30     | 0       | 0          | Mgq     | ۱wip   | 54<br>1  | 24 1:  | 26 1: | ພື່                              | 1            | <sup>50</sup>  | 13 1  | 59<br>1 | 20 1     | л с           | 22                                                                               | 37 5      | 77 3   | 76<br>2 | 4                                                                                                | л о         | 6            | ъ<br>5 | 6        | ء<br>1 1   | ° 22                                         | <sup>7</sup> 3 4 | 50    | 5                 | л с         | 5 7<br>2                                 | 1 4          |                    | orma     |
| 2<br>2 | 13 5     | 3 u         | 18         | 13             | 17   | 4      | 29       | ω                | 30          | <b>ბ</b> თ  | 17     | 1       | 6          | Mgv     | fel-F  | 15 24    | 37 24  | 24 27 | 25 22                            | 17 20        | 25             | 11 19 | 19 19   | 18 23    | 0 1<br>1<br>1 | 11                                                                               | 5 16      | 8 12   | 0 10    | 000                                                                                              | 3 4         | 2 10         | 4 12   | 4 18     | 8 0<br>9 7 | 2 17                                         | 5 12             | 4 27  | 7 21              | 200         | 0 +<br>0 -                               | 4 9          |                    | atior    |
| 5      | 4        |             | <u>د</u> د | <u>ب</u>       | 2    | 0      | 4.       | 4 5              | 1, 0        | 0           | -      | 0       | -          | Mgs     | orm    | 16<br>41 | 38     | 2 9   | 10                               | 50 0         |                | 9 79  | )6<br>5 | 5 0      | ⊿, -          | л ®                                                                              | 5 28      | 2 2    | 10      | ы<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>4 | 5 07<br>2 03 | 27 28  | 51<br>51 | 0 2        | ή ω<br>1 Ο                                   | .6<br>9          | 5 70  | 4<br>4            | ລັດ<br>ວັດ  | אַ<br>מע                                 | 0 0<br>0 1   | <br>               | 1        |
| >      | 0 0      |             |            | 0              | 0    | 0      | 0        | 0 -              | <u> </u>    | 0           | 0      | 0       | 0          | Mgr     | latio  | 5        | 3 8    | 3 10  | ō '                              | 22 -         | 1 9            | 9 2   | 2 28    | 2        | - ~           | 4 7                                                                              | 8 1       | 3 0    | 0       | 8                                                                                                | 1 9         | ο<br>ο<br>ο  | 5 0    | 4        | 0          | ა თ<br>ა თ                                   | ~                | 0 10  | 6                 | ہ م<br>بہ د | 2 0                                      | - N          | л<br>Г             | Ŧ        |
| 3      | E st     |             |            | P04,           | P04, | 0 N    | ≤<br>5   | KS               | < > -       | T 15        | T 12   | S 3     | R 19       | Pro     | Ď      | 4 10     | 61     | 81    | 65                               | 55 0         | л 3<br>л 51    | 91    | 3 57    | 53       | ר ת           | 25                                                                               | 85        | 82     | 73      | 21                                                                                               | 7 28        | 26           | 52     | 31       | 68 -       | 45                                           | 61               | 60    | 22                | 20          | 25                                       | 20           | m Lsi              | aup      |
| n      | 0/2      | 3           |            | /05<br>2       | /02  | 6      | 4        | 1/2 5            |             | × ->        | 0      | 1       | 1          | Q<br>Q  | 6      | 0 30     | 7      | 10    | ∞ ¦                              | 29           | 122            | 19    | 34      | 35 d     | -<br>-        | 0 10                                                                             | 3         | 0      | 7       |                                                                                                  | ກ -         | 12           | 9      | 11       | 0 0        | οω                                           | 8                | ω     | сл <mark>г</mark> | 10          | 30                                       |              | n Ma               | tmo      |
| ა<br>ა | ω σ<br>- |             | 1 6        | - <u>-</u>     | 6 1  | 9<br>9 | 4        | 54 O             | 1 2         | 30 00       | 8      | 11 9    | 51 7       | nn<br>Q | Quar   | 177      | 189    | 240   | 216                              | 233          | 176            | 167   | 129     | 176      | 140           | o3                                                                               | 138       | 106    | 06      | 63                                                                                               | 146         | 166          | 66     | 167      | 90         | 150                                          | 91               | 251   | 205               | 106         | 187                                      | 108          | g                  | dalb     |
| ň      | 20       | ŭ k         | 3 22       | ۵<br>۵         | 18   | 88     | 2        | 21 L             | 7 N         | ¥ř          | 51     | 90<br>0 | 3          | nu<br>Q | r<br>u | 139      | 180    | ) 124 | 143                              | 107          | 13/            | 171   | ) 178   | 168      | 107           | 316                                                                              | 173       | \$ 217 | 227     | 328                                                                                              | 202         | 201          | 249    | 202      | 233        | 3/12                                         | 228              | 131   | 174               | 170         | 172                                      | 206          | q Lse              | esta     |
| 5      | 4 0      | 10 4        | 31         | 13             | 25   | 39     | 23 i     | 42               | š t         | 7           | 80     | . 95    | 36         | pg<br>Q | nd L   | ω        | 6      | 8     | 4                                | 4            | 10             | 0     | 10      | 16       |               | 0 0                                                                              | 0         | 0      | 0       | 13                                                                                               | 1 0         | ہ 7          | 0      | 4        | 0 -        | <u>م</u>                                     | 0                | 9     | ы                 | ۍ م         | 1, 0                                     | 4 C          | d Glas             | Indte    |
| 3      |          | й ×         | 3 13       | 12             | 4    | 37     | . 8      | 5 5              | ы ×         | 5<br>0      | 21     | 12      | <b>1</b> 0 | ps<br>Q | itho   |          |        |       |                                  |              |                |       |         |          |               |                                                                                  |           |        |         |                                                                                                  | ,           |              |        |          |            |                                              |                  |       |                   |             |                                          |              | s Sed              | ile (    |
| -      | 22       | 3 0         | ° 11       | 15             | 10   | 6      | ι<br>3   | 0 0<br>          | ى د         | ာစာ         | 6      | 7       | 0          | р<br>С  | klas   | 1,45     | 2,29   | 2,28  | 1 98                             | 2,20         | 1,59           | 1,74  | 1,32    | 2.55     | 1,17          | 2,63                                                                             | 1,09      | 1,32   | 1,39    | 2,02<br>3,16                                                                                     | 2,94        | 2,70         | 1,95   | 2,76     | 3,04       | 2,62                                         | 1,35             | 2,97  | 2,97              | 3,40        | 2,17                                     | 1,89         | 85                 | und      |
| þ      | 21 1     | 2 0         | 19         | 5 <del>4</del> | 38   | 6      | 23       | ő⊳               | 4 C         | <u>ч</u> ол | 14     | 9       | 4          | Š       | tenv   | 0,70     | 0,56   | 0,70  | 0.65                             | 0,00         | 0,85           | 0,79  | 0,63    | 0.80     | 4 70          | 1,40                                                                             | 1,54      | 2,01   | 2,72    | 1,55                                                                                             | 1,21        | 1,63         | 1,73   | 1,59     | 2.81       | 1,44                                         | 1,84             | 1,13  | 1,75              | 1,22        | 1 DD                                     | 1,83         | ۶Ľ                 | bere     |
| 0      | ως       |             |            |                | 0    | 14     | 0        | ω                | 10 14       | 45          | 14     | 14      | З          | с.<br>v | /arie  | -0,24    | -0,05  | -0,66 | -0.41                            | -0,72        | -0,15          | 0,03  | 0,32    | -0.05    | 0,00          | 1,65                                                                             | 0,23      | 0,72   | 0,92    | 1.66                                                                                             | 0,23        | 0,20         | 0,93   | 0,19     | 0.95       | 0,26                                         | 0,92             | -0,65 | -0,16             | -0,08       | 0,00                                     | 0,34         | Ln<br>Lsed<br>/Lmq | )<br>chn |
| ა      | 22       | 3 6         | 21         | 17             | 17   | 0      | 28 i     | 12               |             | 0           | 0      | 2       | 0          | s:<br>S | täte   | -0,62    | -1,10  | -1,39 | 0,00                             | -0,29        | 1,10           | -2,40 | 0,15    | -0.81    | -1,01         | -1,36                                                                            | 0,00      | 0,00   | -2,89   | 2,94                                                                                             | -2,30       | -1,25        | -3,11  | -3,29    | 0.00       | -1,94                                        | 3,01             | 0,00  | -2,55             | -0,00       | 0,00                                     | 0,00         | L»PI               | ete      |
| ა      | 21       | 4 <         | <u>∽</u> σ | 7              | 7    | 0      | υ        | 70               |             |             | 6      | 0       | 0          | sa L    | n in   |          |        |       |                                  |              |                |       | •       |          |               |                                                                                  |           |        | •       |                                                                                                  |             |              |        |          |            |                                              |                  |       |                   |             |                                          |              | Ln<br>Sed/<br>Met  | Para     |
| ა      | 0        |             |            | N N            | 0    | 0      | 0        | <u> ~</u> ~      |             | 0           | 4      | 0       | 0          | ×<br>   | %)     | •        | •      | •     |                                  |              |                |       | •       |          |               |                                                                                  | •         |        | •       |                                                                                                  |             | •            |        | •        |            |                                              |                  | •     |                   |             |                                          |              | Ln<br>Mag/<br>Met  | Imet     |
| n      | N 0      |             | ა თ        | ہ ہ            | 0    | 34     | ω.       | د<br>د           | 2<br>2<br>4 | • 6         | ω      | 2       |            | 7       |        | -0,45    | -0,41  | -0,22 | -0.35                            | -0,37        | -0,24          | -0,25 | -0,58   | -0.06    | 0.41          | 0,61                                                                             | 0,07      | 0,48   | 0,77    | 0.97                                                                                             | 0,54        | 0,82         | 0,67   | 0,81     | 1,44       | 0,64                                         | 0,42             | 0,40  | 0,97              | 4 02        | 1,30                                     | 0,70         | P1                 | er in    |
| >      | 7 0      | n o         | ით         | r<br>7         | 4    | 0      | ω (      | 0                |             | 0           | 0      | 0       | 0          | lss N   |        | 0,61     | 1,33   | 1,18  | 1 07                             | 1 05         | 0,60           | 0,77  | 0,57    | 1.21     | 0,09          | 0,78                                                                             | -0,48     | -0,48  | -0,64   | 1,10                                                                                             | 0,97        | 0,67         | 0,22   | 0,71     | -0.69      | 0,75                                         | -0,36            | 1,07  | 0,69              | 1,11        | , -0, -0, -0, -0, -0, -0, -0, -0, -0, -0 | 0,13         | D2                 | (% ۱     |
| >      | + ∞      | <u></u> ≥ 2 | 3 0        | ດ              | 6    | 0      | υ        | 7 0              |             | 0           | 0      | 0       | 0          | N hdl   |        | -1,58    | -1,09  | -1,50 | -1 21                            | -1,4-3       | -1,20          | -0,81 | -1,00   | -0,44    | 0,34          | 0,57                                                                             | -0,98     | -0,28  | 0,01    | 1,19                                                                                             | 0,44        | -0,42        | 0,14   | -0,22    | 0.13       | -0,15                                        | -0,29            | -1,38 | -0,60             | -0,67       | 0,00                                     | -0,66        | D3                 |          |
| >      | 21       | 3           | 12         | 31             | 15   | 0      | 15       | 28               |             | 0           | 0      | 0       | 0          | V b6V   |        | -1,31    | -1,77  | -2,00 | -1 61                            | -1 07        | -1,19          | -1,10 | -0,81   | -1.77    | 0,32          | -0,76                                                                            | -0,11     | 0,00   | 0,27    | 0.02                                                                                             | -1,56       | -1,42        | -0,49  | -1,32    | -1,33      | -1,21                                        | 0,00             | -2,19 | -1,65             | -1,80       | -0,40                                    | -0,93        | <b>D</b> 4         |          |
| ა<br>ი | 41       | r SO        | 30<br>30   | 34             | 29   | 25     | 15<br>15 | 1 <sub>6</sub> 0 | <u> </u>    | • œ         | 17     | 10      | ω          | Ngv N   |        | -4,39    | -3,26  | -4,36 | -3 -5<br>-5 -5 - 5<br>-5 - 5 - 5 | -4,22        | -3,38          | -2,35 | -2,77   | -2.85    | 4 0,00        | 1,26                                                                             | -2,55     | -0,69  | 0,09    | 2,82                                                                                             | -1,54       | -1,45        | 0,23   | -0.91    | 0.42       | -0,71                                        | -0,73 -          | -4,10 | -1,98             | 3,20        | 0,00                                     | -1,93        | D2                 |          |
| •      | 4 0      | n 0         | å «        | 0              | 6    | 19     | υ        | 7 0              | 4           | ω           | 9      | 10      | 6          | Ngs N   |        | 2,15     | 3,01   | 3,36  | 2, <del>2</del> 1                | 3,20<br>2,71 | 1,97           | 1,85  | 1,33    | 3.01     | 0,09          | 1,39                                                                             | 0,09      | -0,19  | -0,47   | 1.72                                                                                             | 4 30        | 2,45         | 0,87   | 2,29     | 2,39       | 2,12                                         | -0,03            | 3,72  | 2,83              | 3,20        | 0,07                                     | 1,57         | D6                 | _        |
| ა      | 0        |             | 0          | 0              | 0    | 2      | 0        | 0                | -           | • 0         | 0      | 0       | 0          | Vign    |        | •        | 1      | •     | •                                |              | •              | •     | •       |          | '             | •                                                                                | •         |        | •       | •                                                                                                | ·           | •            |        | •        | • •        | •                                            |                  | •     | •                 |             | '                                        | '            | D7                 | 4        |
|        |          |             |            |                |      |        |          |                  |             |             |        |         |            |         |        | ·        | •      | •     | •                                | •            | •              | ŀ     | •       | • •      |               | ·                                                                                | $ \cdot $ | •      | •       | ·                                                                                                |             |              | •      | •        | ·          |                                              | ·                | ÷     | •                 | '           | •                                        | •            | D8                 |          |

|            |          |          |             |                |         |          |          |              |          |         |        |        |            |              |                 |       |          |         |         |            |               |         |          |         |           |                   |                     |         |          |         |           |          |                                         |                    |          |         |                |                                                                                                   |                      |          |         |          |          | _       |              |        |
|------------|----------|----------|-------------|----------------|---------|----------|----------|--------------|----------|---------|--------|--------|------------|--------------|-----------------|-------|----------|---------|---------|------------|---------------|---------|----------|---------|-----------|-------------------|---------------------|---------|----------|---------|-----------|----------|-----------------------------------------|--------------------|----------|---------|----------------|---------------------------------------------------------------------------------------------------|----------------------|----------|---------|----------|----------|---------|--------------|--------|
| S 10       | R 2      | 71 12/1  | St 6/2      | г 49/00<br>Z 8 | P49/07  | P38/11   | P49/02   | P35/01       | P33/07   | P43/05  | KP 3/1 | KP11/1 | KP10/1     | KP 1/1       | 0.040           |       | P22/07   | P22/05  | P22/04  | P22/01     | P18/17        | P18/09  | P15/03   | P15/02  | P14/05    | P14/02            | P06/05              | P06/04  | ZL 8/1   | S 2     | S 10      | R 2      | St 6/2<br>ZL 12/1                       | Z8                 | P49/08   | P49/07  | P38/11         | 540/02                                                                                            | P33/07               | P43/05   | KP 3/1  | KP11/1   | KP10/1   | KP 1/1  | Probe        |        |
| 70         | 81       | 30       | 30          | - 13<br>51     | 22      | 18       | 19       | 16           | 33       | 17      | 35     | 33     | 18         | 38           | 2               |       | 174      | 166     | 153     | 177        | 154           | 147     | 83       | 134     | 170       | 210               | 108                 | 113     | 133      | 208     | 203       | 138      | 160<br>140                              | 128                | 111      | 120     | 133            | 170                                                                                               | 109                  | 123      | 130     | 144      | 128      | 182     | Qm           |        |
| 173        | 56       | 4        | 110         | 97<br>79       | 94      | 110      | 130      | 93           | 132      | 86      | 92     | 109    | 109        | 144          |                 |       | 80       | 94      | 76      | 85         | 90            | 73      | 158      | 116     | 66        | 62                | 131                 | 130     | 120      | 45      | 63        | 133      | 84<br>93                                | 129                | 143      | 146     | 106            | 70                                                                                                | 137                  | 201      | 145     | 86       | 107      | 92      | Qp           |        |
| 12         | 24       | 1 1      | 12          | 31             | 51      | 20       | 15       | 14           | 21       | 33      | 35     | 8      | 35         | 25           | 2               |       | 28       | 19      | 26      | 28         | 10            | 19      | 16       | 28      | 24        | 10                | 16                  | 22      | 22       | 8       | ъ         | 22       | 28                                      | 12                 | 17       | 23      | 18             | 36-0                                                                                              | 1.5                  | 67       | 27      | 14       | 20       | 28      | Ρ            |        |
| S          | 84       | 3 00     | 50          | 113<br>54      | 71      | 65       | 34       | 73           | 38       | 54      | 60     | 50     | 58         | 36           | 2               |       | 22       | 21      | 20      | 16         | ω α           | 31      | 13       | 12      | 34        | 25                | 4 8                 | 4       | 16       | 11      | ъ         | 30       | -22<br>12                               | 53                 | 8        | 8       | 10             | л<br>с                                                                                            | 4                    | 17       | 21      | 15       | 8        | 14      | ×            | Le     |
| D          | 10       | 5.       | 7           | ωα             | ° 13    | 12       | 4        | 19           | 13       | 12      | 8      | 10     | σī         |              | 22              |       | 21       | 21      | 9       | ∞ !        | 34            | h 15    | сл       | 32      | 19        | 22                | 212                 | 14      | 14       | 21      | 15        | œ        | 18                                      | 17                 | 14       | ъ       | 2              | 3 3                                                                                               | <u>ე</u> ი           | `        | ι ω     | 18       | 19       | 21      | G            | icht   |
| 18         | 15       | 3        | ית          | 34             | 12      | 10       | 6        | 32           | 13       | 4       | 43     | 18     | 10         | 28           | )               | F     | -        | 7       | 4       | <b>ი</b> - | ~ ~           | , o     | сл       | 4       | υ         | 2                 | ω                   | 7       | ъ        | 7       | 0         | <u> </u> | 8 11                                    | 0                  | 12       | 9       | o ►            | ۱                                                                                                 | 4 N                  | θL       | 9       | з        | 10       | ω       | 卪            | min    |
| D          | 0        | o r      | 2           | ωc             | , 0     | 0        | 0        | 0            | 0        | 0       | 0      | 4      | 10         | <sup>0</sup> | ?               | eich  | 13       | 26      | 47      | 12         | 13            | 33      | 12       | 24      | 34        | 16                | ວຫ                  | ω       | 0        | 0       | 16        |          | 9<br>17                                 | 0                  | 15       | ω       | ω [            | 32 -                                                                                              | - 1                  | 10       | ω       | 8        | ω        | 13      | Ł            | eral-  |
| 24         | 0 4      | 2 -      | 10          | ο α            | , œ     | 41       | 2        | 23           | 23       | 12      | 13     | 11     | 18         | 4            | 2               | tmin  | 21       | 27      | 25      | 25         | 33            | 31      | 14       | 12      | 16        | 26                | 38                  | 37      | 31       | 52      | 32        | 0        | 18<br>48                                | 5 U                | 12       | 15      | 47             | აგ                                                                                                | 38                   | 12       | 27      | 23       | 36       | 24      | Ls           | Date   |
| æ          | 0        | 3        | ות          | Nα             | » л     | 6        | 0        | 13           | 10       | 0       | 6      | 6      | ω (        | بن<br>م      | 2020            | eral  | 32       | 21      | 33      | 29         | 51            | 36      | 54       | 71      | 32        | 28                | 46                  | 39      | 37       | 39      | 42        | 0        | 38                                      | 8 ∞                | 57       | 47      | 47             | ло                                                                                                | 39                   | 54       | 22      | 63       | 70       | 41      | <u>–</u>     | ∍n d   |
| D          | 0        |          | 0           | 0 -            | 2       | 0        | 0        | 2            | 2        | 0       | 0      | 2      | 0          | ے ر          | -               | -Dat  | 29       | 18      | 16      | 23         | 37            | 50      | 45       | 57      | 18        | 20                | 51                  | 45      | 36       | 29      | 34        | 74       | 29                                      | 8 65               | 25       | 28      | 25             | 2 4                                                                                               | 54                   | 31       | 16      | 44       | 17       | 4       | hm           | er H   |
| D          | 0 1      | <u> </u> | ، د         | ωυ             | י ני    | 2        | 2        | Сл           | 2        | 4 (     | 0      | ი      | 23         |              | N/14            | en c  | ω        | 2       | 4       | сл<br>;    | 10 4          | 6       | -        | 7       | 4         | ი :<br>-          | <u>1</u> 0          | ω       | 9        | ω       | 8         | 7        | 4                                       | 5 6                | 0        | 2       | ~ 7            | 5                                                                                                 | ກດ                   | 4        | 10      | 12       | 8        | 6       | Ň            | ochv   |
| ×          | 0        |          | 7           | 0 4            |         | 12       | 4        | 16           | 10       | 12      | 0      | œ      | 0          | 0            | Moo             | ler H | 0        | 4 2     | 0       | 2          | 2 2           | 2 2     | 0 2      | 0       | 2         | 0                 |                     | 9 2     | 2 2      | 0 2     | 0         | 2        | 0 1                                     | 2                  | 0 2      | 0 2     |                | 0<br>0<br>0                                                                                       |                      |          | 0 8     | 0 2:     | 0 2:     | 17 2    | ~            | vipf   |
| 30         | 0        | n (      | ית          | 0 4            |         | 2        | 2        | 4            | 6        | 4       | 0      | 22     | 20         | 18           | Mah             | loch  | 53 5     | 60 4    | 29 4    | 62<br>4    | 38<br>44<br>1 | 20      | 41 2     | 50 4    | 36<br>5   | 72 7              | 5 5<br>2 2          | 43      | 53 3     | 53 2    | 66 1      | 5        | 33 44<br>4                              | 57 6               | 54 2     | 66<br>3 | 39 2           | 20-00-                                                                                            | 46<br>1              | 022      | 75 4    | 30 2     | 35 2     | 74 4    |              | el-Fo  |
| ×          | 0        | 4 1      | 24          | 0 44           | 40      | 31       | 44       | 14           | 40       | 35      | 22     | 26     | 27         | 20<br>PEIN   | Maa<br>a        | wipt  | 96 0     | 36 0    | 6 12    | 4 95       | 20<br>1.3     | 0 13    | 9 13     | 0 11    | ء<br>8 10 | 9 -<br>9          | 1 13                | 6 13    | 8 10     | 0 12    | 1 12      | 2        | 1 10<br>0 12                            | 5 78               | 5 12     | 1 10    | 7 13           | 1 C                                                                                               | 9 13<br>13 13        | 12       | 8       | 9 14     | 9 13     | 2 82    | -            | orma   |
| 21         | 68       | 2 r      | 30          | 33             | 23      | 22       | 29       | 44           | 15       | 25      | 14     | 36     | 13 -       | 1 Yerr       | Max             | ē-F   | ŝ 170    | 9 19-   | 5 20.   | 179        | 8 228         | 200     | 0 288    | 0 226   | 7 17:     | 15                | 4 26-               | 1 26    | 9 229    | 7 17:   | 4 18:     | 210      | 4 18                                    | 20                 | 1 26-    | 3 249   | 3 239          | 7 17                                                                                              | 5 222                | 1 22     | 222     | 1 22     | 5 243    | 170     | 5            | ition  |
| 11         | 6        | n (      | <u>ا</u> در | ω<br>υ         | י ט     | 4        | 2        | 10           | 15       | 6       | -      | 7      | 4 0        | u ya         | M20             | orm   | 61       | 4 39    | 1 49    | 52         | 88 90         | 86      | 99       | s<br>72 | 50        | 48                | о<br>97<br>88<br>88 | 84      | 9 73     | 69 7    | 7 76      | 0 74     | 54                                      | 73                 | 4 82     | 9 75    | 73             | 8/00                                                                                              | 03 88                | 68       | 2 38    | 7 106    | 3 87     | 45      | Ę            |        |
| ۵          | 0        | - o      | 0           | 0 0            | , o     | 0        | 0        | 0            | 0        | 0       | 0      | 0      | 0          | 0            | Man             | atior | 21       | 31      | 51      | 23         | 7C            | 19      | 14       | 24      | 43        | 32                | <sup>8</sup> 13     | 12      | ъ        | 0       | 18        | 10       | 30                                      | ; 0                | 15       | 9       | ۍ<br>۳         | 57.0                                                                                              | 10                   | 10       | 22      | i<br>19  | 6        | 28      | Lvn          | (Ha    |
| P22/       | P22/0    | 022/0    | P22/0       | P18/1          | P18/0   | P15/0    | P15/(    | P14/(        | P14/(    | P08/0   | P06/(  | P06/(  | ZL 8/      | s 2          | 5               | د     | 52       | 46      | 39      | 45         | 49            | 80      | 63       | 67      | 58 :      | 47                | л<br>53             | 56      | 57       | 46      | 37        | 105      | 48                                      | 118                | 45       | 45      | 41             | ло                                                                                                | 60<br>60             | 1        | 45      | 62       | 35       | 21      | ۱<br>Lsm     | aupt   |
| х<br>л     | 5<br>10  | 2        | N 24        | 7 (C)          | 13      | 13       | 18       | <b>)5</b> 12 | 2 10     | )4<br>4 | 7      | 16     | 1 17       | 14:          | ,<br>)<br>}     | ରି    | 14       | 33      | 51      | 18         | 17            | 3 13    | 17       | 26      | 39        | 18                | 4 00                | 10      | თ        | 7       | 16        | ω        | 19<br>25                                | ; 0                | 26       | 13      | 14             | 570                                                                                               | л <mark>1</mark> 3   | 67       | 12      | 11       | 13       | 15      | Mag          | mod    |
| 16         | 15       | 10       | 14          | 14             | 13      | 68       | 13       | 14           | 18,      | 10,     | 10     | 96     | 110        | 88           | 5               | uarz  | 141      | 134     | 125     | 137        | 178           | 159     | 257      | 188     | 116       | 109               | 218                 | 214     | 193      | 113     | 139       | 207      | 151<br>147                              | 202                | 225      | 221     | 178            | 1/0                                                                                               | 174                  | 181      | 183     | 192      | 194      | 137     | Lmet         | albe   |
| 3 16       | 1 15     | 2 -      | 11          | 15             | 13      | 16       | 5 7      | 7 16         | 14       | 4<br>9  | 7 12   | 8      | 12         | 24<br>24     | 2               | nn    | 195      | 193     | 178     | 201        | 187           | 178     | 97       | 146     | 186       | 236               | 136                 | 150     | 164      | 260     | 234       | 138      | 179<br>188                              | 132                | 123      | 135     | 180            | 170                                                                                               | 207<br>146           | 135      | 157     | 167      | 164      | 206     | Lsed         | stan   |
| 46         | 69<br>71 | 200      | 50          | 55             | 36      | 126      | 28       | 33           | 20       | 108     | 62     | 66     | 72         | 10           | 2               | d Li  | 9        | ъ       | 4       | 1          | 14            | ი       | ω        | 0       | 9         | 16                | ∞ ∞                 | 9       | ы        | 0       | ω         | 9        | 14                                      | 10                 | 0        | 6       | 0 1            | <u>ں</u>                                                                                          | ۹<br>10              | c        | 19      | 11       | 4        | 15      | Glas         | Idtei  |
| 4          | 4 U      | ა -      | 7 -         | 215            | 11      | 7        | 0        | _            | 4        | s 15    | 19     | 21     | 15         | _ <u>x</u>   | 222             | thok  | •        | •       | •       | •          |               | •       | •        | •       | •         | •                 | •                   | •       | •        | •       | •         | •        | • •                                     | •                  | •        | •       |                | '                                                                                                 |                      | •        | •       | •        | •        | •       | Sed          | le ui  |
| <b>1</b> л | 6        | 4        | 17          | 18             | 2 11    | 9        | 6        | 16           | 24       | 13      | 21     | 35     | 22         | ω <b>(</b>   | 2               | laste | 1,61 (   | 1,87    | 1,61    | 1 78       | 2,21          | 1,49    | 2,12     | 1,83    | 1.40      | 2 05              | 2,46                | 2,23    | 1,89 (   | 2,56    | 3,23      | 1.65     | 1,56                                    | 1,37               | 2,31     | 2,14    | 2.16           | 10,07                                                                                             | 3,81                 | 1,50     | 1,75    | 2,06     | 2,08     | 1,88    | <u>۽</u> ۽   | nd b   |
| s          | 4 1      | ა ი      | о.          | 4 0            | > 2     | 0        | 0        | 0            | 0        | 4       | 0      | _      | 2 2        |              | 2               | evne  | 0,97 (   | 0,96 (  | 0,60    | 1.02       | 0,56 -        | 0,53 (  | 0,61 -   | 0,82 -  | 0.79 (    | 1 07 1            | 0,61 -              | 0,62 -  | 0,85 -   | 0,69 (  | 0,76 (    | 1.26 -   | 0,85 (                                  | 1,19 -             | 0,75 -   | 0,95 -  | 0.58 (         |                                                                                                   | 0,64 (               | 0,57 -   | 1,28 -  | 0,49 -   | 0,55 -   | 1,18 (  | <u></u>      | erec   |
| ٥          | 8 7      | 4 1 0    | 1.2         | 15             | ,<br>19 | 8        | 14       | ω            | 14       | 21      | 18     | 12     | 15         | 0            | 02:             | rietä | ),33 2   | ),37 1  | ),35 2  | 39 0       | 0,08 1        | 0,11 3  | 0,97 0   | 0,25 1  | ).47 1    | 0,00 -2<br>2 77 0 | 0,36 0              | 0,36 -( | 0,16 -2  | ),83 -2 | ),52 3    | 0.41 0   | ),17 -(<br>) 25 ()                      | 0,42 0             | 0,60 0   | 0,49 -0 | ),19 ∠<br>01 0 | ,+0<br>-10-1-                                                                                     | ),17 1               | 0,33 -(  | 0,15 -1 | 0,14 0   | 0,17 -1  | ),41 1  | sed L        | hne    |
| 11         | 9 4      | <u> </u> | ٥i          | 12             | 6       | υ        | 4        | 12           | 12       | 4 ;     | 19     | 11     | ი -        | 1 030        | 0               | iten  | ,56      | ,31     | 48      | 7          | ,61           | ,51     | ,81      | .91     | .87       | 08<br>1.1<br>2    | ,51                 | ),85    | 2,45     | 2,86    | 68        | .00      | ),20<br>69                              | ,00                | ,20      | ),98    | 29<br>9        | ,                                                                                                 | ,79                  | ,69      | ,25     | ,98      | ,39      | ,50     | - <u>1</u>   | te Pa  |
| D          | 2 0      | ა ი      | ω I         | 2              | , 0     | _        | 4        | -            | 0        | 0       | -      | 4      | <b>о</b> о | ہ ر          | -               | in %  | '        | '       | '       | •          |               | '       | 1        | '       |           |                   | '                   |         | '        | '       | '         | '        |                                         | '                  | •        | '       |                | '                                                                                                 |                      | '        | '       | '        | •        |         | let /<br>Mir | aram   |
| 7          | ω        | ა ი      | ית          | ωσ             | ,<br>10 | 9        | 0        |              | 0        | 0       | 1      | 0      | ω          | 39           | N/14            | ి     | -<br>-0, | '<br>,0 | -<br>-  | -<br>      | , c           | , '     | -<br>-0, | '       | -<br>-    | -<br>             | , '                 | '<br>,- | '<br>,-  | '<br>,- |           | 0        | -<br>-<br>-                             | -<br>-             | -<br>-0, | - 0,0   | - '<br>        | '<br>b c                                                                                          | -<br>                | -<br>-0, | 0,:     | -<br>-0, | -<br>-0, | 0,0     | e g n        | letei  |
| ۵          | 6 4      | <u> </u> | ת           | 10             | . 4     | υ        | 7        | 0            | 4        | 12      | 9      | 4      | 0          |              | Moo             |       | 00 0,5   | 02 0,7  | 51 0,8  | 01 0.6     | 42 1,2        | 64 0,8  | 37 1,    | 19 0,8  | 37 0.4    | 14 0.             | 32 1,3              | 34 1,2  | 14 0,8   | 20 1,3  | 02 1,4    | 18 0.3   | 24 0,5                                  | 01 0,0             | 16 1, 1  | 04 0,8  | 49 0,3         | 40,*                                                                                              | 15 1,6               | 56 0,8   | 24 0,3  | 54 1,2   | 45 1,2   | 20 0,5  | <u>_</u>     | r in 9 |
| ۵          | лo       |          | л.          | 4 1            | °<br>10 | 4        | 4        |              | 2        | 4 0     | 8      | 11     | ~ ~        |              | Mat             |       | 50 -0,6  | 71 -0,6 | 35 -0,8 | -0.5       | -0,9          | 34 -0,9 | 18 -1,7  | 31 -1   | 18 -0.6   |                   | 35                  | 24 -1,3 | 33 -1, ` | 31 -0,0 | t3<br>-0, | 30 -1.0  | 57 -0,7<br>77 -1 (                      | -1,2               | 15 -1,3  | 39 -1,2 | 00 -0,0        |                                                                                                   | 52 -0,5              | 33 -1,2  | 36 -1,  | 28 -0,9  | 23 -1,   | 53 -0,∠ | 2            | %      |
| 10         | 7        | 30       | 14          | 29             | 13      | 36       | 60       | 29           | 22       | 28      | 28     | 24     | 25         |              | . No.           |       | 30 -0,7  | 39 -1,1 | 37 -1,0 | -0.0       | 94 -1,6       | 95 -1,0 | 76 -2,0  | -1,3    | 57 -0.6   | 11 -0 8           | 33 -2,0             | 36 -1,9 | 12 -1,4  | 00 -1,2 | 17 -1,5   | )8 -1.0  | 78 -0,8                                 | 23 -0,8            | 38 -1,9  | 27 -1,7 | 10 -1.6        | +-<br>- <u>-</u> | 56 -1,9              | 26 -1,1  | 17 -1,2 | 96 -1,5  | 17 -1,6  | 19 -0,9 | <u>م</u>     |        |
| 20         | 17       | 10       | 00          | 33 26          | 46      | 32       | 35       | 13           | 12       | 40      | 29     | 33     | 30         | 18           | ľ               |       | 78 -1,7  | 10 -2,0 | 07 -2,5 | -1.6       | 275 -2,8      | 02 -2,7 | )8 -5,0  | 38 -3,2 | -1.8      | -0                | 01 -3,9             | 90 -3,9 | 13 -3,2  | 25 -0,5 | 52 -0,8   | )5 -3.0  | 38 -2,2                                 | 31 -3,3            | 93 -4,0  | 71 -3,7 | 39 -1,o        | -4,1                                                                                              | 90 -1,9              | 14 -3,5  | 21 -3,3 | 56 -2,8  | 39 -3,4  | 92 -1,4 | 4<br>7       |        |
| 0          | ں<br>ب   | ა ი      | در          | 4 ~            | 4       | 13       | 21       | ы            | œ        | 11      | 13     | 12     | <b>б</b>   | 10           | M <sub>22</sub> |       | 5 1,32   | 6 1,87  | 2 1,80  | 7 1.56     | 34 2,7(       | 0 1,7   | 15 3,48  | 0 2,31  | 8 1.05    | 0 1 50            | 0 3,4(              | 18 3,20 | 4 2,40   | 9 2,19  | 2 2,66    | 3 1.74   | 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | <sup>36</sup> 1,30 | 15 3,2€  | 1 2,88  | 5 2.86         | 4 0,0,                                                                                            | אר אר 11<br>אר אר 12 | 7 2,1    | 3 2,02  | 7 2,64   | .4 2,85  | 8 1,58  | D6           |        |
| D          | 0        |          | 0           | 0 0            | , 0     | 0        | 0        | 0            | 0        | 0       | 0      | 0      | 0 -        |              |                 |       | -        | 7 -     | -       |            |               |         |          | - 0     |           |                   | - 0                 |         | -        | -       | -         |          |                                         |                    | -        | -       |                | -                                                                                                 |                      | -<br>-   | - 2     | 44<br>1  |          |         | D7           |        |
|            |          |          |             |                |         | <u> </u> | <u> </u> | <u> </u>     | <u> </u> |         |        |        |            |              |                 |       |          |         |         |            |               |         |          |         |           |                   |                     |         |          | •       | •         |          |                                         |                    |          | •       |                |                                                                                                   |                      |          |         |          |          | •       | D8           |        |
|            |          |          |             |                |         |          |          |              |          |         |        |        |            |              |                 |       | 1        |         | - 1     | 1          | 1             |         | 1        |         | 1         | - 1               |                     |         |          | 1       |           |          | 1                                       | 1                  | 1        |         | 1              | -                                                                                                 |                      |          | 1       |          |          | . 1     |              |        |

| P15/0 | P14/0 | P07/0; | P07/0    | P19/0; | P15/0     | P27/0   | P26/0 | P26/0; | P23/0 | P23/0 | P23/0 | P23/0 | P23/0:<br>P23/0 | Probe    | ]      |               | P18/1  | P12/0             | P18/10     | P07/0   | P18/0   | P26/0   | P24/0            | P24/0            | P18/0   | P16/0   | P16/0   | P15/0   | P06/0          | P15/0   | P14/0   | P07/0    |         | P15/0             | P28/0;  | P27/0;  | P26/0   | P26/0        | T 23/0 | P23/0        | P23/0   | P23/0-  | P23/0;  | Probe              |         |
|-------|-------|--------|----------|--------|-----------|---------|-------|--------|-------|-------|-------|-------|-----------------|----------|--------|---------------|--------|-------------------|------------|---------|---------|---------|------------------|------------------|---------|---------|---------|---------|----------------|---------|---------|----------|---------|-------------------|---------|---------|---------|--------------|--------|--------------|---------|---------|---------|--------------------|---------|
| ω     | 23    | 2 10   | 4        | 18     | 30        | 22      | 30    | 25     | 3 12  | 29    | 24    | 17    | 20<br>11        | Qmi      |        |               | 151    | 86 -40            | 91         | 152     | 93      | 103     | 106              | 136              | 83      | 94      | 87      | 114     | 3 125<br>123   | 103     | 3 158   | 154      | 141     | 129               | 106     | 2 171   | 135     | 135          | 741    | 140          | 95      | 193     | 158     | Qm                 |         |
| 93    | 127   | 145    | 137      | 109    | 76<br>26  | 138     | 90    | 86     | 157   | 105   | 100   | 74    | 134             | Qm       |        | ľ             | 65     | 139               | 113        | 98      | 104     | 94      | 61               | 63               | 123     | 138     | 141     | 110     | 90<br>71       | 109     | 58      | 67       | 86      | 110<br>88         | 145     | 83      | 86      | 110          |        | 125          | 148     | 81      | 125     | ê                  |         |
| 28    | 15    | 4      | 4        | 14     | 23        | 14      | 22    | 36     | 7     | 33    | 35    | 51    | 11              | gdo r    |        | Ī             | 1 !    | 21 22             | 27         | 7       | 43      | 30      | 25               | 33               | 34      | 11      | 12      | 27      | 36             | 31      | 15      | 13       | 7       | 8 23              | 16      | 24      | 32      | 25           | 8 1    | 44           | 31      | 11      | 22      | σ                  |         |
| 56    | 38    | 48     | 52       | 64     | 115<br>64 | 34      | 62    | 45     | 55    | 78    | 45    | 72    | 62<br>52        | Qps      |        | Ī             | 4      | 10                | 14         | 8       | 22      | 20      | 22<br>16         | 18               | 28      | 4       | 8       | 11      | 11<br>16       | 13      | 19      | 11       | 5 0     | 8 10              | 6       | 18      | 14      | 20           | 1 0    | 19<br>24     | 16      | 15      | 12      | ⊼                  | F       |
| 17    | 0     | 8      | 0        | 6      | 11 α      | 21      | 6     | 16     | 6     | 11    | 7     | 12    | 1               | Qpl      |        | Ī             | 26     | υ<br>Ξ            | 11         | 11      | 4       | 9       | 15               | ; 11             | 7       | 7       | 4       | ъ       | 11             | I       | 28      | 11       | ~ ~     | ۶<br>۲            | 9       | 8       | 0       | 1 4          | 2 -    | 7            | 0       | 23      | сл      | G                  | eich    |
| 8     | 4     | 8      | 30       | 4      | 11        | 15      | 8     | 13     | 15    | ω     | υ     | 12    | 19<br>17        | c        | 1_     | - [           | 0.     | 7                 | 9          | 0       | 9       | 13      | 10               | 9                | თ       | 4       | 12      | 13      | 3<br>12        | 12      | 8       | 2        | γ<br>N  | 12                | з       | 4       | 6       | 7            | -      | 7            | 12      | з       | 4       | Ы                  | tmin    |
| _     | 0     | 0      | 0        | 2      | 0 0       | 0       | 2     | 1      | -     | 2     | 0     | _     | 0 2             | St       | -eicr  |               | 32 i   | 42 5              | 9          | 12      | 31      | 42      | 49<br>36         | 39               | 23      | 4       | 8       | 24      | 39<br>12       | 20      | 12      | ∞i       | 13      | ہ م               | 0       | 13      | 36      | 21           | 1      | 28           | 40      | 7       | 7       | Ł                  | eral    |
| 17    | 19    | 21     | 26       | 4      | 15<br>25  | 18      | 10    | 19     | 15    | 16    | 23    | 8     | 20<br>11        | Ssi      |        |               | 43     | 39<br>29          | 33         | 43      | 40      | 15      | 25               | 27               | 32      | 10      | 27      | 27      | 36             | 27      | 27      | 32       |         | 8 29              | 26      | 32      | 18      | 29           |        | 32           | 17      | 21      | 34      | ľ                  | -Dat    |
| ~     | 8     | 11     | 12       | 2      | ωσ        | ,<br>10 | 4     | ъ      | 9     | 2     | 8     | ω     | œ ∞             | Ssa      | nera   |               | 54     | 49 <del>4</del> 9 | 54         | 54      | 32      | 49      | 38<br>47         | 8 8              | 36      | 57      | 54      | 44      | 51<br>75       | 44      | 65      | 48       | 48      | 47                | 30      | 37      | 40      | 34           | 3 2    | 17 33        | 30      | 41      | 21      | Lim                | en d    |
| 0     | 0     | 0      | 0        | 0      | - u       | o 4     | 2     | 4      | 0     | σ     | 1     | σ     | 4 1             | Ŀ        |        | ,             | 40     | 70                | 51         | 38      | 27      | 32      | 24<br>26         | 34               | 37      | 78      | 52      | 31      | 20             | 41      | 38      | 65       | 58      | 76<br>76          | 68      | 17      | 20      | 19           | 5 -    | 1 4          | 13      | 28      | 18      | Lhm                | ler H   |
| _     | 8     | 0      | 4        | 10     | ωω        | 2       | 0     | ы      | 6     | 0     | -     | ω     | 1               | Mŧ       | ten    |               | 7      | <u>ں</u> 4        | o N        | 10      | 0       | 13      | - 4              | 4                | 2       | 4       | 8       | ω       | 2 4            | ο<br>σι | 4       | 15<br>15 | 5       | 4 x               | 4       | ω       | Ν       | ۵ ۲          | ~      | ა ω          | 0       | σ       | -       | SM                 | loch    |
| 9     | 4     | 13     | 14       | 4      | 11        | 5 0     | 4     | _      | 8     | 2     | 9     | 2     | σω              | Mss      | der    | <u> </u>      | 0      |                   | > <u>-</u> | 0       | 0       | 0       | 0 0              | ) <u> </u>       | 0       | 0       | 0       | 0       | 0 0            | 0       | 0       | 0        |         |                   | ω       | 0       | 0       | 0            |        |              | 0       | 0       | 0       | ~                  | wip     |
| _     | 8     | 6      | 6        | 10     | 4 3       | ი<br>თ  | 0     | 4      | ω     | 0     | -     | 0     | 7               | s Mpl    | HOC    |               | 216    | 225               | 203        | 238     | 197     | 197     | 206              | 199              | 206     | 232     | 228     | 225     | 216<br>194     | 212     | 215     | 221      | 207     | 238               | 250     | 255     | 233     | 245          |        | 231          | 243     | 274     | 283     | Q                  | fel-F   |
| 32    | 46    | 29     | 24       | 50     | 15<br>29  | 24      | 36    | 26     | 16    | 13    | 21    | 25    | 17              | ר<br>Mge | IMU    |               | 14 1   | 30                | 41         | 15 1    | 65 1    | 50 1    | 41 1             | 52 1             | 62 1    | 15 1    | 19 1    | 37 1    | 51 1           | 44 1    | 35 1    | 25 1     | 13 0    | 16 1              | 22 1    | 43 1    | 46 1    | 45 1         |        | 68<br>33     | 47 1    | 26      | 34      | п                  | orm     |
| 32    | 19    | 59     | 52       | 68     | 26        | 5 9     | 20    | 11     | 11    | 9     | 33    | 11    | 14<br>20        | Mg t     | )Tel-I |               | 69 2   | 44 2              | 56 2       | 47 2    | 38 2    | 53 2    | 50 2<br>2        | 48 2             | 32 2    | 53 2    | 53 2    | 38 2    | 49<br>54 2     | 44 2    | 50 2    | 54 2     | 20.0    | 29 2<br>67 2      | 28 2    | 03 1    | 21 2    | 10<br>2      |        | 36<br>1<br>2 | 12 2    | 99 1    | 33 2    |                    | atio    |
| 9     | 19    | 6      | 6        | 8      | 8 13      | 9       | 0     | 8      | _     | 2     | 8     | 2     | 8 4             | / Mgs    | orm    |               | 34 9   | 83 o              | 68 10      | 33 9    | 42 5    | 47 8    | 49 6<br>11 7     | 11 6             | 55 7    | 91 1:   | 94 10   | 49 7    | 39<br>26 9     | 53      | 08 10   | 21 1     | 46 10   | 1. 8              | 73 9    | 86 5    | 19 6    | 20<br>5<br>5 |        | 27 7         | 59 4    | 81 6    | 08 3    | +<br>-             | n       |
| 0     | 0     | 0      | 0        | 0      | 0 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     | 0 0             | s Mgi    | latic  | -             | 4      | 6 0<br>4 -        | 05         | 23      | 9       | 3       | ώ<br>Σ<br>4      | 2                | 2 4     | 36 1    | 206     | 4       | 5īα<br>4 Ν     | 5 55    | 04 1    | 12 2     | 7 7     | <u>7</u> <u>-</u> | 9<br>0  | 4       | 0<br>4  | 4 20 4       |        | 4 α<br>. ω   | 3<br>4  | 9       | 9       | m<br>L             | Ŧ       |
| P18   | P18   | P22    | P18      | P07    | P18       | P24     | P24   | P24    | P18   | P16   | P16   | P15   | P06             | ר<br>Pro | ň      |               | 6<br>4 | 2 0               | 2          | 3 4     | 6<br>5  | 6       | 0<br>0<br>0<br>0 | 5                | 1 7     | 2 8     | 5 7     | N<br>€  | 2 3            | 6       | 0 6     | 6 7      | יי<br>ה | 2 4 0<br>2 5      | 8 7     | 6 4     | 4       | 5<br>4<br>4  | - i    | - N<br>- 0   | 5       | 5 4     | 4<br>3  | m Ls               | laup    |
| C1/   | /12   | /03    | /10      | /06    | 80/       | 02      | /01   | /01    | /01   | 80/   | 70/   | /05   | /03             | be Q     |        |               | 3      | 40 40             | 18         | o<br>12 | 3<br>40 | 55      | 7 5<br>51        | , 1<br>1<br>2 48 | 28      | 8       | 1       | 4 37    | 3 42<br>24     | . 32    | 5 19    | 10       | 1 0     | » 10              | 7 3     | 0 16    | 42      | 28 10        |        | 1 20         | 1 51    | 9       | 4 10    | m Ma               | tmo     |
| 25 1  | 34    | 24 1   | 10       | 16 1   | 11        | 13      | 13    | 9 1    | 21    | 15    | 4     | 21    | 12 1            | mn Q     | Qua    |               | 15     | 19                | 21         | 2 178   | 16      | 17.     | 13               | 130              | s 19    | 27,     | 24      | 18      | 16             | 19      | 16:     | 179      | 10, 10, | )<br>190          | 24      | i<br>13 | 15      | 16           | , , ,  | 15.          | 190     | 15      | 16;     | ig Lm              | dalb    |
| 12    | 52    | 18     | 80       | 36     | 87        | 23      | 73 .  | 6      | 22    | . 87  | . 62  | 8     | 07              | mu Q     | -z-    |               | 195    | 125               | 124        | 3 195   | 3 133   | 117     | 1 134<br>3 173   | 163              | 5 115   | 103     | 7 114   | 141     | 3 154<br>5 158 | 129     | 2 185   | 9 187    | 170     | 137               | 4 132   | 3 203   | 7 153   | 3 164        |        | 5 171<br>167 | 0 112   | 1 214   | 3 192   | et Lse             | esta    |
| 0     | 27    | 17     | 8        | 0      | 18 I3     | 5 5     | 42    | 12     | 18    | 44    | ±3    | 25    | 24<br>24        | pg Q     |        |               | 4      | √ 4               | 20         | N       | 4       | 0       |                  | N N              | 0       | 4       |         | 0       | ωω             | 0       | N       | 14       | -<br>   | 11                | ω       | 4       | 8       | ο 4          | -<br>- | 4 C          | сл      |         | 00      | d Gla              | ndte    |
| 32    | .9    | 21     | , 8      | 30     | 75 7      | đ       | 19    | 37     | 33    | , 75  | 07    | 72    | # 12            | ps Q     | ITNO   |               |        |                   |            |         | •       |         |                  |                  |         | •       | •       | •       |                |         |         |          |         |                   |         | •       |         |              |        |              |         |         |         | s Sed              | e ile u |
| -     | 16    | 0      |          | 6      | 4 1       | ω       | -     | 6      | 6     | 17    | 21    | 8     | 4 4             | pl<br>C  | Klas   |               | 2 71   | 3 NO              | 1,60       | 2,76    | 1,11    | 1.37    | 1,53             | 1,34             | 1,20    | 2,72    | 2.47    | 1.80    | 1,81           | 1,57    | 1,83    | 2,19     | 2,00    | 1,98              | 2,45    | 1,79    | 1.63    | 1,49         | 1,3/   | 1,94         | 1,65    | 2,35    | 2,12    | <u>۽</u> ج         | und     |
| 22    | 17    | 15     | 16       | 00     | 7 8       | ω       | 8     | 7      | 6     | 2     | 8     | σı    | 0 0             | Š        | ienv   |               | 0.24   | 0,36              | 0,27       | 0,48    | 0,35    | 0.25    | 0,32             | 0,30             | 0,44    | 0,41    | 0,40    | 0,49    | 0,37           | 0,39    | 0,36    | 0,36     | 0.25    | 0,62              | 0,67    | 0,91    | 0.65    | 1,11         | 1,3/   | 0,53         | 0,77    | 1,02    | 1,23    | ٩Ļ                 | bere    |
| 0     | 4     | 5      | <u> </u> | 0      |           | 0       | 0     | 0      | •     | 0     | 0     | 0     | 40              | ŝ        | arie   |               | 0 20   | -0.44             | -0,56      | 0,09    | -0,20   | -0.39   | -0,19            | 0,23             | -0,53   | -0,97   | -0,77   | -0,27   | -0,09          | -0,41   | 0,13    | 0,04     | -0.02   | -0,19             | -0,61   | 0,39    | -0.03   | 0,45         | 0,00   | 0,03         | -0,53   | 0,35    | 0,16    | Ln<br>Lmq/<br>Lsed | chn     |
| 29    | 24    | 16     | 23       | 23     | 36<br>36  | 19      | 20    | 19     | 29    | 8     | 23    | 25    | 12              | si<br>S  | iate   | 1747          | 4 40   | 4,62              | 0,00       | 3,40    | 1,27    | 1.16    | 1,53             | 1,47             | 1,57    | 0,00    | -0.41   | 0.59    | 2,59           | 0,51    | 0,41    | 1,39     | 1 20    | -0,59             | -1,99   | 1,18    | 1.79    | 3,65<br>1.16 | 0,00   | 3,04         | 1,20    | 0,85    | 0,56    | Ln<br>Lv/Pi        | ete     |
| 1     | 1     | 4      | 8        | 12     | 2 4       | 0       | 7     | 6      | ω     | N     | 4     | -     | 9<br>16         | sa Ly    | n in   |               |        |                   | •          | •       | •       |         |                  |                  |         | •       | •       | •       |                |         | •       |          |         |                   |         | •       | •       |              |        |              |         | ,       |         | Ln<br>Sed/<br>Met  | Para    |
| 4     | -     | З      | 0        | 8      | 0 0       | 0       | _     | 0      | 0     | 0     | 0     | 0     | 4 0             | M        | %)     | ~             |        |                   | •          | •       | •       |         |                  | •                | •       | •       | •       | •       |                |         | •       |          |         | •                 |         | •       | •       |              | '      | •            |         |         |         | Ln<br>Mag/<br>Met  | met     |
| 7     | 8     | 4      | σı       | 2      | ωσ        | ıω      | 0     | ω      | -     | 0     | 0     | -     | 4 ω             | t<br>M   | -      |               | -0,0-  | -0,95             | -0,93      | -0,45   | -0,97   | -1.01   | -0,88            | -0,96            | -0,83   | -0,55   | -0,60   | -0,60   | -0,75          | -0,78   | -0,76   | -0,69    | -0,70   | -0,39             | -0,23   | -0,11   | -0.45   | -0,02        | 0,10   | -0,51        | -0,29   | 0,16    | 0,32    | 2                  | er in   |
| 14    | 26    | 4      | 13       | 4      | 00 G      | 000     | 8     | 7      | ∞     | 27    | 15    | 9     | ∞ ∞             | Iss M    |        | . <u>.</u>    | 1 80   | 1 30 -            | 1,23       | 1,57    | 0,66    | 1.05    | 1,11             | 0,96             | 0,66 -  | 1,63    | 1.56    | 1.12    | 1,26           | 1,06 .  | 1,28 -  | 1,48     | 1,14    | 1,10              | 1,29    | 0,69 .  | 0.82    | 0,27         | -0,01  | 1,16         | 0,73 .  | 0,94 .  | 0,65 .  | D2                 | 1 %)    |
| 14    | 4     | 8      | 17       | 2      | 4 ω       | .ω      | ω     | ω      | 4     | 6     | 2     | 7     | 12 1            | h M      |        | - <u>-</u>    | -0.84  | -1,00             | -1,67 -    | -0,83 - | -1,68 - | -1.53 - | -1,48 -          | -1,10 -          | -1,81 - | -1,60 - | -1.69 - | -1.36 - | -1,21 -        | -1,52 - | -0,79 - | -0,82 -  | 0.08    | -1,17 -           | -1,45 - | -0,62 - | -1.10 - | -0,61 -      | -1,04  | -1,03 -      | -1,63 - | -0,32 - | -0,78 - | D3                 |         |
| 18    | 11    | 25     | 19       | 46     | 18        | 8 8     | 28    | 19     | 23    | 25    | 37    | 27    | 39<br>51        | lgq M    |        |               | 1 86 - | 0,60 -            | 1,72 -     | 1,84 -  | 1,11 -  | 1.39 -  | 1,50 -           | 1,05 -           | 1,27 -  | 2,33 -  | 2.28 -  | 1.61 -  | 1,56 -         | 1,54 -  | 1,31 -  | 1,58 -   | 1 08 -  | 1,60 -            | 2,07 -  | -1,00 - | 1.22 -  | 1.24 -       | 0,49 - | 1,50 -       | -1,50 - | 1,22 -  | 1,32 -  | D4                 |         |
| 29    | ω     | 24     | 40       | 35     | 28        | 24      | 20    | 27     | 35    | 63    | 43    | 25    | 23<br>16        | lgv M    |        | - <del></del> | 2 64 2 | 4 03 3            | 4,74 2     | 2,62 3  | 4,60 1  | 4.28 2  | 4,18 2           | 3,08             | 4,96 2  | 4,69 3  | 4.93    | 3,91 2  | 3,51 1         | 4,31 2  | 2,36 2  | 2,51 2   | 2 C2 C  | 3,40 1            | 4,26 3  | 1,85 1  | 3.14 2  | 3.15 2       | CO'A   | 3,02         | 4,58 2  | 1,12 2  | 2,34 2  | D5                 |         |
| 11    | 4     | 4      | 11       | ω      | 4 4       | . 2     | 4     | 7      | Ν     | 15    | 10    | σı    | υ<br>4          | lgs N    |        |               | 2,U,U  | 1,07              | 2,86       | 3,15    | 1,79    | 2.29    | 2,49             | 1,74             | 2,05    | 3,93    | 3.84    | 2.70    | 2,63           | 2,56    | 2,22    | 2,70     | 2 20    | 2,69              | 3,50    | 1,69    | 2.04    | 2.08         | 1,12   | 2,53         | 2,60    | 2,11    | 2,24    | D6                 | l       |
| 0     | 0     | 0      | 0        | 0      | 0 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     | 0 0             | ∕lgn     |        | ŀ             | ·   ·  | ·   ·             | '          | '       | •       | •       | •                | •                | •       | •       | '       | '       | · ·            | '       | •       | •        |         | •                 | •       | •       | '       | • •          | '      | '            | •       | '       | •       | D7 I               |         |
|       |       |        |          |        |           |         |       |        |       |       |       |       |                 |          |        |               | •      | ·   ·             |            | •       |         | •       | • •              | ·                | ŀ.      | •       | •       | •       | • •            | ŀ       | •       | •        | •       | '                 | ŀ.      | •       | •       | • •          | ŀ      |              | · .     | •       | · .     | D8                 |         |

| NSZ0/S | N 4              | Kra 8    | Kra 6 | Les1    | KP 7/1     | P33/03     | P31/04           | P31/02  | P28/06 | P28/03  | P25/06 | P25/03     | P25/02 | P24/04   | Probe    | ]      | P7 1    | 2010/3   | P35/02   | P38/10   | P39/03  | P49/04  | P54/04      | P56/04           | P56/03  | P57/01  | P48/01  | P00/01  | NSZ3/4   | E 1/3        | Ks25/9   | N 4     | Kra 8    | Kra 6        | KP 7/1         | P33/04  | P33/03  | P31/04  | P31/02             |                       | P25/00        | P25/03     | P25/02  | P24/04   | Probe              | ]      |
|--------|------------------|----------|-------|---------|------------|------------|------------------|---------|--------|---------|--------|------------|--------|----------|----------|--------|---------|----------|----------|----------|---------|---------|-------------|------------------|---------|---------|---------|---------|----------|--------------|----------|---------|----------|--------------|----------------|---------|---------|---------|--------------------|-----------------------|---------------|------------|---------|----------|--------------------|--------|
| 24     | 105              | 12       | 10    | 2       | 19<br>19   | 30<br>16   | 13               | 10      | 21     | 19      | 7      | 12         | 8      | 17       | Qmn      |        | 071     | 101      | 122      | 133      | 101     | 87      | 108         | 128              | 101     | 144     | 108     | 90      | 145      | 100          | 109      | 139     | 159      | 145          | 32             | 131     | 132     | 123     | 112                | 100                   | 136           | 152        | 143     | 136      | Qm                 |        |
| 68     | 3 33             | 131      | 119   | 28      | 90         | 108        | 108              | 93      | 100    | 105     | 102    | 117        | 124    | 117      | Qmu      |        | 76      | 00       | 113      | 108      | 81      | 114     | 13/         | 96               | 111     | 79      | 106     | 111     | 85       | 100          | 109      | 88      | 55       | 55           | 190            | 94      | 106     | 95      | 99                 | 100                   | 74            | 59         | 67      | 83       | ę                  |        |
| 18     | 43               | 9        | 14    | 47      | 11         | ۶ <u>ر</u> | 9                | 25      | 18     | 25      | 34     | 19         | 26     | 9        | Qpg      |        | 22      | 22       | 30       | ω        | 42      | 22      | 24<br>36    | 12               | 18      | 19      | 11      | 25      | 10       | 18           | 18       | 20      | 37       | 33           | 6<br>18        | 0       | 2       | 12      | 14                 |                       | 16            | 37         | 26      | 23       | P                  |        |
| 62     | 32               | 35       | 37    | 105     | 43<br>75   | 43         | 81               | 46      | 66     | 32      | 35     | 30         | 38     | 64       | Qps      |        | 0.      | 0        | 4        | 4        | 22      | 16      | 10          | 14               | 14      | 15      | 13      | 12      | 14       | 13           | 13       | 17      | 20       | 17           | 6<br>6         | 8       | 10      | 4       | 4 4                | <u>.</u>              | 11            | 30         | 20      | 19       | ~                  | F      |
| 13     | ;<br>ე           | ъ        | 1     | 20      | 7 4        | <u>ہ</u> د | , <u> </u>       | 6       | 6      | 9       | ъ      | σ          | 0      | ы        | QpI      |        | Ξ       | 4        | 13       | ъ        | ω       | ы       | <b>б</b> Г  | 7                | 4       | 12      | 20      | œ '     | 7 7      | 4 10         | 4        | 25      | 11       | 16           | n 1            | ი       | 6       | ъ       | 4                  | 3                     | 0<br>0        | h ω        | 16      | 9        | G                  |        |
| 16     | 7                | 6        | 3     | 18      | 22         | 20<br>16   | 6 4              | 23      | 19     | 8       | 7      | ъ          | ω      | ы        | c        |        | Ċ       | 5 0      | 4 0      | 8        | N       | 8       | 12 4        | . 9              | 8       | 2       | 11      | 14      | ω        | 4 a          | 6        | 13      | 7        | ∞ o          | ກພ             | 0       | 0       | 0       | - 4                | •                     | ס די          | 5 14       | 12      | 4        | 믿                  |        |
| 4      | . 19             | 0        | 0     | 0       | 6 0        |            | -                | 0       |        | 0       | 0      | 0          | 0      | 0        | St       | eich   | `       | 1 0      | 4        | 9        | 35      | 21      | 30          | ω                | 25      | 21      | 24      | 12      | 9 9      | 0 0          | 9        | 0       | 47       | 43           | 30             | 22      | 28      | 37      | 30 -               | • •                   | ∞ g           | 34         | 41      | 33       | Ł                  | ei al- |
| 87     | 3 -              | 1        | 8     | 16      | 19         | 16         | 4                | 17      | 27     | 11      | 10     | σ          | Сл     | ы        | Ssi      | tmin   | 40      | ŝ        | ა ფ      | 29       | 20      | 36      | 16<br>28    | 19               | 35      | 9       | 24      | 18      | 43       | л<br>29      | 56       | 20      | 20       | 14           | 28             | 27      | 24      | 12      | 25                 | 2 2                   | 3 5           | ;<br>9     | ∞       | 13       | Ls I               | Dau    |
| 20     | 3 0              | 6        | 7     | 8       | 13         | • 6        | 6                | 6       | 6      | 1       | ъ      | ω          | ω      | 8        | Ssa      | ieral  | 48      | s v      | 35<br>56 | 81       | 61      | 51      | 56<br>56    | 69               | 55      | 67      | 65      | 60      | 55       | 46<br>50     | 46       | 33      | 38       | 47           | 53             | 41      | 48      | 68      | 57                 | 1 6                   | 60<br>60      | 22         | 45      | 58       |                    |        |
| 4      | . 0              | ω        | 0     | 0       | ∞ c        |            | 0                | 2       | 0      | -       | 0      | -          | 0      | 0        | ŗ        | -Dat   | JY      | 8 2      | 53       | 25       | 36      | 45      | 36<br>36    | 50               | 33      | 45      | 40      | 59      | 36       | »<br>л б5    | 35       | 68      | 16       | 38 4         | 4n<br>46       | 76      | 50      | 49      | 54                 | 3                     | 73            | ; 34       | 34      | 30       | .hm                |        |
| 9      | 33               | ω        | 5     | 2       | 9 0        | 5 N        | 0 00             | 10      | 2      | 4       | 1      | 0          | 0      | ω        | Mt       | ten c  | 10      | 5 0      | 6        | ω        | 4       | 4       | 10          | 6                | 0       | 11      | 7       | 4       | <u> </u> | > 1          | 0        | _       | 4        | -            | ° ^            | 12      | 12      | 4       | 4                  | <u></u>               | 4 U           | 4          | ω       | -        | SM                 |        |
| 14     | : 0              | 4        | 4     | 14      | 10         | 12         | 4                | 19      | 17     | 7       | 7      | 4          | 8      | ω        | Mss      | ler H  |         |          | 2        | 0        | 0 1     | 0       | 0           | 0                | 0 2     | 0 2     | 0       | 0       | 0        | 0 4<br>9 2   | 0 2      | 0       | 2        | 0 + 0<br>2 + | 4 0            | 4 2     | 0 2     | 0 2     | 0 0                | 2 0<br>2 1            | 0 0<br>2 k    | 2 2        | 0 2     | 0        | ×                  | N P    |
| 6      | 0                | ъ        | 5     | 2       | 15         | 5 N        | 9                | 11      | 0      | 3       | 2      | 0          | ω      | ы        | Mph      | loch   | 12 4    |          | 35 1     | 42 .     | 83      | 2       | 92 d        | 24 2             | 13 3    | 22 3    | 14 2    | 2       | 30 0     | 100<br>100   | 18 3     | 27 3    | 14<br>E  | 3 6          | 23             | 25      | 38 1    | 19 1    | 11 1               |                       |               | 12<br>6    | 10 4    | 20 4     | <u>م</u>           |        |
| 16     | ; 0              | 26       | 33    | 34      | 13         | 32         | 48               | 17      | 38     | 49      | 27     | 18         | 34     | 50       | ) Mgc    | nwip   | ‡<br>-  | . t      | 10       | 7 15     | 34 15   | 38 16   | 16<br>16    | 26               | 31 1:   | 34 1.   | ?4 16   | 16      | й<br>12  | 29<br>1:     | 30 1:    | 39 10   | 12       | 0 F          | 28<br>28<br>16 | 8 1(    | 12 15   | 15 16   | 8 17               | •                     | 16            | 57<br>1:   | 16 1.   | 11 12    | т<br>–             |        |
| 27     | 36               | 12       | 33    | 32      | 34         | 42         | 49               | 50      | 55     | 61      | 15     | 28         | 22     | 30       | VBW I    | fel-F  | 44 20   | t<br>S ⊵ | 55 26    | 52 26    | 54 23   | 32 27   | 49<br>52 26 | 50 24            | 56 26   | 14 22   | 32 26   | 32 27   | 16 23    | 53 23<br>26  | 52 26    | 34 22   | 29 18    | 50 20<br>20  | 47 26          | 57 26   | 50 25   | 38 26   | 70 27              |                       | 3 fo          | 21 18      | 44 21   | 39 22    |                    |        |
| œ      | 29               | 4        | 5     | 13      | 6          | 1 0        | 0                | 4       | σ      | 12      | 2      | ъ          | 12     | 0        | Mgs      | orm    | ö       |          | 10       | 0 10     | 5       | 96      | 6<br>32     | 6 11             | 38 7    | 2 11    | 8 10    | 3<br>11 | 9, 0     | 2 10<br>8 11 | -1<br>8  | 2 10    | 4<br>5 9 | 27 C         | 9 00           | 11      | 36 9    | 11      | 0 11               |                       | 8 0<br>13 0   | 5 - 5      | 1 79    | 3 80     | -<br>5             | -      |
| 1      | . ω              | 0        | 0     | 0       | -          |            | 0                | 0       | 0      | 0       | 0      | 0          | 0      | 0        | Mgn      | atio   | 10      | +<br>-   | 9 12     | 6 11     | 7 35    | 22      | 30          | о<br>6<br>5<br>5 | 3 29    | 2 22    | 4 25    | 9 16    | 25       | 15           | 15       | 1       | 4 :      | 43           |                | 33      | 34      | 7 40    | -1 c<br>44 +       | ~ ·                   | 9<br>20<br>20 | 2 36       | 42      | 9 34     | n<br>L             |        |
|        | SS10             | P35/     | P38/  | P39/    | P49/       | 571        | P56/             | P56/    | P57/   | P48/    | P00/   | C 12       | Ks2    | E 1/3    | Pro      | n      | co      | 2 2 2    | 61       | 37       | 60      | 69      | 58          | 72               | - 55    | 62      | 63      | 84      | 55 6     | л 80         | 53       | 95      | 43       | 53 0         | 58 53          | 84      | 60      | 53      | 62                 | 6 00                  | 89            | 77         | 66      | 53       | n Lsn              | aupu   |
|        | 2                | 02       | 10 1  | 03 1    | 04         | 2 2        | 2<br>2<br>2<br>2 | 03      | 01 2   | 01 1    | 01 2   | Ģл         | 5/2 2  | 2        | Qr       | (ດ     | 11      | ; 0      | n 00     | 17       | 37      | 29      | 42          | 12               | 33      | 22      | 34      | 25      | 12       | 15           | 15       | 13      | 54       | 50           | 38             | 22      | 28      | 37      | ×<br>34            | ۍ د                   | 13            | 48         | 53      | 37       | n Mag              |        |
| ) 12   | 8                | 6 10     | 6 11  | 2 8     | 9 0<br>7 9 |            | 1                | 9       | 1-1-   | 1 9     | 36     | 4 8        | 4 8    | 0 10     | nn<br>Qr | luar   | 671     |          | 222      | 214      | 178     | 210     | 176         | 214              | 199     | 191     | 210     | 230     | 177      | 100          | 190      | 189     | 108      | 140          | 203            | 212     | 204     | 212     | 210                | 2 1                   | 210           | 115        | 147     | 172      | y Lme              | ain    |
| 1 02   | . 1              | )5 1     | 17 2  | 3 1     | 1          | 2 1        | . 7              | 2 5     | ю<br>1 | 4 2     | 0 3    | 9 1        | 5      | )9 1     | nu<br>Q  | z- ur  | 001     | 104      | 160      | 162      | 122     | 123     | 136         | 148              | 137     | 153     | 132     | 107     | 187      | 161          | 165      | 159     | 179      | 159          | 156<br>61      | 159     | 156     | 135     | 137                | 100                   | 149           | 161        | 150     | 150      | t Lsed             | Sola   |
| 2 6    | 0<br>0<br>0<br>0 | 2 6      | 2 6   | 55      | 5 2        | о 4<br>л 8 | 2 7              | 1 4     | з<br>6 | 57      | 55     | 7 3        | 8<br>6 | 1<br>5   | ရ<br>စ   | nd L   | α       |          | ა თ      | _        | 0       | _       | 0 0         | , <u> </u>       | 4       | 2       | -       | 4       | 5        | 4 מ          | 6        | 0       | 0        | _            | <b>ი</b> დ     | 12      | 6       | ω       | 13                 | ა -                   |               | <b>υ</b> ω | · _     | -        | Glas               |        |
| 8      |                  | 9 1      | 7 ç   | 9<br>(7 | 5 0        | 4          | . 01<br>         | 3 6     | 2      | 4 5     | 7 1:   | 2 1        | 2      | 1 8      | ي<br>م   | ithol  |         | ,        |          |          | •       | •       |             |                  | •       | •       | •       |         |          |              |          |         |          |              |                |         |         |         |                    | ,                     |               | •          | •       | •        | Sed                |        |
| +      | . •              | 0        | 9     | N       | 6 C        | 0<br>1     |                  | 1:      | 4      | 1       | 2 8    | μ          | 3      | ~<br>1   | <u>5</u> | klast  | 1,57    | 1,70     | 3,16     | 3,60     | 1,05    | 1,66    | 1,89        | 2,16             | 1,92    | 1,89    | 2,20    | 1.69    | 7,97     | 2,03         | 1,97     | 1,76    | 1,33     | 1 30         | 2,08           | 3,36    | 2,99    | 2,65    | 2,57               | 2,01                  | 1,39          | 1,15       | 1,51    | 1,68     | ۶ <b>۲</b>         |        |
| \$     |                  | 2        | 0     | ω       |            |            |                  | 2       | -      | 0       | °<br>( | 5          | 60     | 7 1      | v<br>v   | env    | 0,39    | 0,42     | 0,42     | 0,46     | 0,17    | 0,21    | 0,39        | 0,40             | 0,31    | 0,44    | 0,28    | 0.22    | 0,30     | 0,35         | 0,36     | 0,52    | 0,50     | 0,00         | 0,43           | 0,30    | 0,46    | 0,26    | 0,22               | 0,20                  | 0,31          | 0,56       | 0,38    | 0,46     | ٩Ľ                 |        |
| 1      | . 2              | 2        | 2     | -1      |            | ۔<br>د د   |                  | 2       | ~      | 2       | ) 1.   | 2          | N      | _        | ÷<br>ي   | ariet  | -0,11   | 0,08     | -0,33    | -0,28    | -0,38   | -0,54   | -0,96       | -0,37            | -0,38   | -0,22   | -0,46   | -0.76   | 0.06     | -0,22        | -0,14    | -0,17   | 0,50     | 0 13         | -0,26          | -0,29   | -0,27   | -0,45   | -0,36              | -0,04                 | -0,02         | 0,34       | 0,03    | -0,14    | Ln<br>Lmq/<br>Lsed |        |
| 2      | , 1<br>, 1       | 8        | 5     | 4       | 94         | × 6        |                  | 3       |        | 4       | 4 4    | 1          | 82     | ®        | si<br>Si | äter   | -0,36   | -2,74    | 0,00     | 0,15     | 2,89    | 86'0    | 0,92        | -0,98            | 1,18    | 2,40    | 0,81    | -0.15   | 1 25     | 0,41         | 0,34     | -3,48   | 1,90     | 1,07         | 1,20           | 3,99    | 4,25    | 4,54    | 2,08               | 0,4-                  | 1,33          | 0,86       | 1,24    | 2,12     | ⊾<br>⊾PI           |        |
| 4      | . 2              | 0        | ω     | °       |            |            |                  | 0       |        | 0       | ,<br>C | 3<br>8     | 4      | 1        | šă<br>L  | n in ' | ,       | ,        | '        | •        | •       | •       |             | •                | •       | •       | •       | •       | • •      |              | •        | •       | •        | • •          |                | '       | •       | •       |                    |                       | •             | •          | •       | •        | Sed/ I             | aiai   |
| )      |                  | 4        | 4     | 6       | ω<br>ω     | 0          | -                | )<br>~  | )<br>( | 7       | 2      | 1.         | 22     |          | V<br>N   | %)     | 1       | 1        | '        | •        | 1<br>1  | '       |             | ۰<br>۲           | •       | ۰<br>خ  | ·<br>خ  | ·       | ·   ·    | •            | ·        | بر      | ·        |              |                | '       | '<br>-  | ب       | · ·                |                       |               | ·          | ۰<br>۱  | ۰<br>۲   | Uag/<br>Met        | IIEK   |
| 2      |                  | -1<br>-1 | -<br> | о<br>С  | - 1~       |            | 0                | 1       | ) 6    | 7<br>(F | . 1.   | 2 C        | 3      | <u>с</u> | It M:    |        | 0,78 1  | 0,/1 1   | 0,51 1   | 0,42 1   | 1,20 0  | 0.98 1  | 0,70 1      | 0,64 1           | 0,81 1  | 0,65 1  | 0,81 1  | 0.98 1  | 0,73 1   | 0,73 1       | 0,73 1   | 0,56 1  | 0,72 0   | 1 00 L       | 0,62 1         | 0,67 1  | 0,46 1  | 0,76 1  | 0,57 1             | , 00                  | 0,93 1        | 0,72 C     | 0,81 1  | 0,67 1   | 2                  |        |
| 0      |                  | 4        |       | 6       |            |            | 6                | 0       | 3 1    | 5       | 2 8    | ) 1        |        | <u> </u> | IW ss    |        | ,06 -   | ,13 -(   | ,73 -    | ,76 -1   | ),83 -1 | .35     | 20 -1       | ,42 - 1          | ,39 -1  | ,24 -(  | ,57 -1  | .35     | 40 -     | ,40 -:       | ,37 -1   | ,06 -1  | ,71 -(   | 03 -         | ,36            | ,88 - í | ,65 -1  | ,81 -1  | .75 -1             | -<br>-<br>+<br>-<br>+ | 7,00          | ),46 -(    | ,03 -í  | ,07 -1   | D2                 | 10/    |
| 2      | 2                | 3        | 7     | 3       | ں م        | ى<br>ى د   | 0 3              | з;<br>З | 1<br>5 | 3 4     | 3 3    | 5 2        | 1      | 3        | bh Wi    |        | 1,30 -1 | 1- 68'0  | 1,22 -2  | 1,07 -2  | 1,57 -1 | 1.72 -1 | 1,77 -1     | 1,16 -1          | 1,52 -1 | ),97 -1 | 1,42 -1 | 1.68 -1 | ) 95 -1  | 1,12 -1      | 1,42 -1  | 1,05 -1 | ),80 -0  | 1 08 -1      | 1,40 -1        | 1,09 -2 | 1,09 -2 | 1,21 -1 | 1,23 -2            | 1,0, -1               | 1,31 -1       | ),91 -C    | 1,01 -1 | 1,08 -1  | D3 [               |        |
| 38     | 7                | б<br>л   | 2     | 39      | 5 K        | 3 <u>-</u> | 33               | 51      | ö      | 4       | 39 4   |            | 6<br>N | 57 E     | gd W     | -      | 1,40 -3 | -25,1    | 2,22 -3  | 2,20 -3  | 1,07 -4 | 1,76 -4 | 1,89 -5     | 1,77 -3          | 1,87 -4 | 1,45 -2 | 1,99 -4 | 1.82 -4 | 1.83 -4  | 1,67 -3      | 1,83 -4  | 1,36 -3 | 0,75 -2  | 2,92 -0      | 1,88<br>-4     | 2,19 -3 | 2,08 -3 | -36,1   | 2,03 -3            | , og - o              | 1,25 -3       | 0,56 -2    | 1,15 -2 | 1,33 -3  | 04                 | -      |
| 34     | . 3              | ŏ        | 94    | 32      | 14<br>1    |            | 4                | 27      | 34 1   | 33      | 17 1   | <b>3</b> 4 | 7      | 57       | gv M     |        | 3,69 2  | 61 2     | 3,70 3,  | 3,30 3,  | 1,30 1, | 1,88 3  | 5,06 3      | 3,43 3,          | 1,38 3, | 2,86 2, | 1,16 3, | .79 3   | 1,12 3   | 3,29 2       | 1,12 3,  | 1,03 2, | 26 1     | 78 4         | 1,08 3         | 3,37 3, | 3,34 3, | 1,64 3, | 3,68<br>1,02<br>3, | 3, 1 / <u>C</u>       | 3,68 2        | 2,48 0     | 2,88 1, | 3,11 2,  | 5                  |        |
| 5      | 17               | З        | _     | 4       | -          | 3 10       | 6                | 6       | 11     | 7       | 12     | З          | 8      | 8        | lgs M    |        | ,33     | ,11      | .77      | ,77      | ,72     | 80      | 40<br>40    | ,00              | ,13     | ,45     | 36      | .04     | ,07      | ,83<br>7     | ,07      | ,29     | .24      | 74           | °16            | ,74     | ,55     | 63      | 55<br>55           | 101                   | ,06<br>87     | ,89        | ,92     | ,23      | <u>о</u> б         |        |
| C      | 0                | 0        | 0     | 0       | 00         |            | 0                | 0       | 0      | 0       | 0      | 0          | -      | 0        | lgn      | J      | '       | '        | '        | <b>'</b> | '       | '       | · ·         | '                | '       | '       | '       | '       | •        | '            | '        | '       |          | '   '        | '              | '       | '       | '       | • •                | '                     | '             | '          | '       | <b>'</b> | <u>77</u> г        |        |
|        |                  |          |       |         |            |            |                  |         |        |         |        |            |        |          |          |        | '       | 1        | '        | 1        | '       | '       | ' '         | '                | '       | '       | '       | '       | ' '      | '            | <b>'</b> | '       | 1        | ·   ·        | '              | '       | '       | '       | ' '                | ľ                     | '             | '          | '       | '        | 96                 | ]      |

| P28/0       | J7     | P38/0; | P38/0  | P38/0         | P38/0- | P38/0          | P45/1      | P45/0                                                                                       | P44/0   | P43/0     | P43/0    | P58/1    | P59/0:       | Paul 1      | Dioho       |       | ZL 7/1  | ZL18/    | PP 3/1             | ZL13/   | ZL15/-  | ZL11/:           | ZI 11/                | P58/00               | P58/0    | P58/0-  | P58/0; | P 42    | P31/0   | P47/0;<br>P28/1;                       | P28/0   | J7      | P38/0  | P38/0       | P38/0            | P38/0   | P45/1:   | P45/1   | P45/0    | P44/0           | P43/0   | P 28/1      |            | Paul 1                      | Probe      | ]       |
|-------------|--------|--------|--------|---------------|--------|----------------|------------|---------------------------------------------------------------------------------------------|---------|-----------|----------|----------|--------------|-------------|-------------|-------|---------|----------|--------------------|---------|---------|------------------|-----------------------|----------------------|----------|---------|--------|---------|---------|----------------------------------------|---------|---------|--------|-------------|------------------|---------|----------|---------|----------|-----------------|---------|-------------|------------|-----------------------------|------------|---------|
| <b>3</b> 16 | 0      | 7 16   | о<br>8 | <b>5</b><br>4 | 4 12   | 15             | 2<br>15    | 4 03<br>4 0<br>4 0                                                                          | 10      | 7 24      | 7 17     | 0 14     | 3<br>18      | <b>ה</b>    | 2           |       | 87      | 87       | 84                 | 107     | 61      | 3 51             | 50<br>50              | о<br>795             | <b>9</b> | 4 80    | 86 8   | 74      | 106     | 2 105<br>3 92                          | 3<br>91 | 17      | 7 138  | 3 110       | 5 125            | 116     | 2 137    | 145     | 3 130    | 149             | 7 129   | 98 U        |            | 165                         | Qm         | 1       |
| 71          | 17     | 122    | 101    | 70            | 109    | 101            | 07         | 115                                                                                         | 135     | 103       | 108      | 76       | 143          | 87          | 2           |       | 104     | 103      | 104                | 92      | 85      | 89               | 86                    | 100                  | 73       | 76      | 59     | 80      | 86      | 44                                     | 77      | 126     | 96     | 103         | 144              | 96      | 76       | 79      | 83       | 70              | 87      | 7112        | 1100       | 88                          | Q          | 1       |
| 20          | 27     | 32     | 42     | 21            | 32     | 14             | 20         | 200<br>14                                                                                   | 19      | 16        | 9        | 28       | 11           | 10          |             |       | 14      | 20       | 21                 | 18      | ъ       | 9                | 20<br>1               | 10 9                 | 13       | 16      | 10     | 12      | 15      | 16<br>16                               | ∞       | 6       | 10     | ∞i          | 14<br>12         | 18      | 42       | 22      | 14       | 10              | 24      | 10          | 1          | 17                          | 2 D        | 1       |
| 36          | 40     | 55     | 44     | 68            | 52     | 67             | 8C         | 64                                                                                          | 44      | 51        | 60       | 58       | 31           | 85          |             |       | 7       | 8        | 12                 | 13      | ω       | 4                | 4                     | م <u>م</u>           | ъ        | 14      | 4      | 10      | сл      | 8                                      | 4       | 2       | ъ      | 6           | 13               | ი       | 22       | 12      | 10       | 4               | 10      | 3           | 5 -        | 7 8                         | , <b>x</b> |         |
| 16          | 29     | 6      | 10     | 12            | 5      | <b>б</b>       | 10         | 0                                                                                           | 2       | 16        | 6        | 14       | 9            | v <b>4</b>  | 2           |       | 14      | 8        | 0                  | -       | 6       | 14               | <u>ب</u>              | <u>ہ</u> م           | 12       | ъ       | 2      | 8       | 9       | 3                                      | 6       | 0       | 4      | . و         | 1                | 4       | ы        | 8       | 11 :     | 14              | 13 ¥    | 2 0         |            | A 1                         | ຸ<br>ດ     | eich    |
| 6           | 29     | 3      | 8      | 21            | 7      | 10             | ٥٥         | ° 6                                                                                         | 6       | 4         | 2        | 12       | 15           | 14          | 2           | _     | 12      | 20       | 20                 | 27      | 9       | œ (              | ж Г                   | సిం                  | 12       | ъ       | 6      | 4       | 2       | 2 4                                    | 4       | 6       | 4      | 2           | ωN               | ი       | თ        | 4       | 10       | 20              | 14      | 4 C         | <u>م</u> ر | οσ                          | , P        | Imin    |
| 6           | 8      | 6      | 0      | 0             | 0      | 0              | o 0        | 0                                                                                           | 0       | 0         | 0        | 2        | 7            | , <b>,</b>  | ?           | _eich | 19      | 4        | 8                  | ъ       | 13      | 1                | ω<br>N                | л<br>26              | 24       | 24      | 21     | 42      | 42      | 20<br>12                               | 20      | 44      | 32     | 17          | 13               | 4       | 54       | 38      | 29       | 19              | 20      |             | - c        | 1                           | ; F        | eral    |
| 26          | 69     | 22     | 10     | 28            | 9      | 29             | л 6        | 19                                                                                          | 6       | 18        | 19       | 40       | 22           | D 2         | <u>?</u> :  | ıtmi  | 61      | 117      | 49                 | 45      | 62      | 86               | 71                    | <u>8</u> 1           | 50       | 32      | 65     | 54      | 27      | 68<br>66                               | 44      | 152     | 33     | 11          | 36<br>CF         | 32      | ъ        | 22      | 25       | 10              | 30      | 2 4         | ۸ ر<br>۱   | с<br>Л                      | ; L        | -Dat    |
| 12          | 48     | 6      | 2      | ъ             | 6      | 4 0            | 0 N        | ა <b>ი</b>                                                                                  | 4       | 10        | 4        | 2        | 4            | D 00        | 222         | nera  | 52      | 1        | 62                 | 36      | 8       | Zi               | 3 ‡                   | 44<br>52             | 75       | 78      | 90     | 76      | 67      | 68<br>86                               | 85      | 19      | 55     | 57          | 48<br>5          | 68      | 30       | 50      | 62<br>1  | 62              | 48      | 20 2        | 3 3        | 40 g                        | , Lm       | en d    |
| 0           | 25     | 0      | 0      | з             | 0      | 0 0            |            | 0                                                                                           | 0       | 2         | 0        | 0        | 2            | ە<br>د      |             | I-Da  | 44      | 32       | 41                 | 59      | 81      | 71 :             | 7 5                   | 76<br>75             | 60       | 75      | 48     | 50      | 39      | 46<br>90                               | 67      | 27      | 28     | 86          | 44<br>39         | 53      | 29       | 30      | 37       | 66              | 40      | 7 34<br>2 4 | 2          | 2 2                         | hm         | er H    |
| 18          | 0      | 6      | 0      | з             | 2      | 2 -            | 4          | • 0                                                                                         | 2       | 2         | 2        | 0        | 4            |             | N/14        | ten   | ω       | 11       | 14                 | 8       | 11      | σr o             | ⊃ ►                   | ა 0                  | 7        | 8       | 8      | 0       | 10      | 0 36                                   | 10      | 0       | 7      | ~ (         | 3                | 0       | 8        | 2       | <b>б</b> | ი               | 4 4     | ა თ         | n -        | <del>ک</del> ل              | MS         | loch    |
| 30          | 17     | 10     | 17     | 20            | 13     | 1              | - o        | °                                                                                           | 8       | 4         | 13       | 18       | 1            | 0           | Moo         | der I | -       | 0        | 1                  | 0 1     | 0       | 0                |                       | 0 0<br>1             | 0        | 0 1     | 0      | 0       | 0       | 00                                     | 0       | 1       | 0      | 0           |                  |         | 0        | 0       | 0        | 0               | 0       | ა c<br>ა    |            |                             |            | - Mipt  |
| 16          | 0      | 6      | 2      | 1             | 5      | <del>ი</del> - | 1          | 2                                                                                           | 8       | 8         | 6        | 0        | 2 1          | 2 <b>1</b>  | Mak         | Hoch  | 91      | 68       | 88                 | 66      | 46      | 40               | 45                    | χ <sub>ρ</sub><br>Σο | 62       | 57 3    | 57     | 53      | 204     | 36                                     | 68      | 43      | .33    | 313         | 23               | 213     | 213 6    | 24      | 14       | 000             | 216     |             |            | 310                         | α<br>,     | el-F    |
| 22          | 2      | 33     | 38     | 24            | 65     | 50             | 28         | 49                                                                                          | 44      | 34        | 30       | 54       | 24           |             | Maa         | ۱wip  | 20 1:   | 28 1     | 33 1               | 31      | 8       | 13 1             | 2 2                   | л Б                  | 18       | 30 2    | 13 2:  | 22      | 20 1.   | 24<br>22<br>22                         | 12      | 8 2     | 15 15  | 3           | 24<br>11<br>125  | 1       | 33<br>1: | 34 1.   | 23 1     | 5               | 34 1    | 1 1         | 1 -        | 3 <u>1</u>                  | т<br>—     | orma    |
| 63          | 15     | 26     | 63     | 35            | 36     | 48             | 25         | 29                                                                                          | 62      | 34        | 56       | 32       | 44           |             | Max         | fel-F | 88 29   | 83 28    | 79 28              | 71 26   | 46 33   | 47 33            | 31 02                 | 34 29<br>36 33       | 21 29    | 13 28   | 30 28  | 25 30   | 76 27   | 21 26<br>42 28                         | 20 29   | 49 37   | 52 24  | 75 27       | 51 Zt            | 65 26   | 25 20    | 43 22   | 65 24    | 58 23           | 50 23   | 200         | 1 22       | 00 Z/                       |            | atior   |
| 4           | 8      | 2      | 23     | 9             | 4      | 6 1            | 4 0        | n œ                                                                                         | 4       | 6         | 17       | 2        | 7            | _ P         | . M22       | orm   | 92 96   | 36<br>4; | 33 10              | 2<br>9' | 31 16   | <sup>56</sup> 14 | 7 14                  | 90<br>7<br>7         | 94 13    | 39 15   | 39 13  | )4 12   | 4 10    | 56 13<br>15 33                         | 97 15   | 5 40    | 8      | 8<br>14     | 95 <sup>-1</sup> | 12      | )1 59    | 2 79    | 19<br>19 | 38              | 8 7     | 10          | 10 0       | 0<br>0<br>1                 |            | -       |
| 0           | 4      | 0      | 0      | 0             | 0      | 0              |            | 0                                                                                           | 0       | 0         | 0        | 0        | 0            | 0           | Man         | atio  | 26      | 12       | 3 12               | 4 10    | 1 16    | 2 -              | 11                    | 8<br>8<br>8<br>8     | 5 29     | 3 26    | 8 21   | 5 48    | 6 52    | 8 12                                   | 2 22    | 5 61    | 33     | 3 10        | 31               | 10      | 9 57     | 9 42    | 31       | 8 21            | 22 -    | ა თ<br>ა ლ  | 10         |                             | n Lv       | Ê       |
| ZL 7.       | ZL18   | PP 3   | ZL13   | ZL15          | ZL11   | ZL11           |            | P58/                                                                                        | /85d    | P58/      | P 42     | P31/     | P28/         | P47/        | 0.25        | n     | 63      | 59       | 70                 | 90      | 92      | 79               | 86 40                 | 487                  | 77       | 95      | 56     | 64      | 46      | 100                                    | 75      | 31      | 36     | 93          | 60<br>1 C        | 65      | 56       | 46      | 56       | 79              | 63      | 103         | 4 00       | 50 00                       | n Lsn      | aupt    |
| /1 1:       | 3/1 1: | 11 2   | 3/1 1: | 7             | /3 0   | 12             | ~ -        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 04<br>3 | <b>03</b> | 1        | 01 1:    | 1 <b>3</b> 3 | 1           | 5           | ິດ    | 31      | 24       | 28                 | 32      | 23      | 19               | 11 2                  | 75                   | 35       | 29      | 27     | 46      | 44      | )<br>14                                | 24      | 50      | 35     | 19          | 15<br>24         | 10      | 59       | 42      | 39       | 27              | ,<br>34 | -<br>       | 10         | 20<br>11                    | n Mag      |         |
| 9 68        | в<br>5 | 8 5!   | 8 89   | ,<br>Č        | 4      | 4              | ר -<br>ת ס | 2 7                                                                                         | 3 71    | 1 80      | 0<br>5   | 3 89     | 5            | 4           | 22          | luar  | 199     | 145      | 207                | 186     | 246     | 231              | 235                   | 184                  | 208      | 229     | 197    | 205     | 204     | 171<br>202                             | 230     | 172     | 178    | 246         | 235              | 218     | 135      | 158     | 183      | 199             | 174     | 2000        | 340        | 158                         |            | albe    |
| 8           | 7 8    | 5 3    | 9 4    | 4 4           | 8      | 2 1            | 2 C        | ο<br>- 1:                                                                                   | 5       | 0         | 4        | 9<br>33  | 0)<br>(0)    |             | 2           | z- ur | 149     | 204      | 133                | 152     | 124     | 137              | 130                   | 130                  | 139      | 112     | 163    | 127     | 133     | 171<br>160                             | 135     | 169     | 171    | 122         | 116              | 149     | 142      | 166     | 155      | 160             | 158     | 151         | 1 100      | 200                         | t Lsed     | estai   |
| ი<br>ი      | сл     | 2 3.   | 5      | 4             | 4      | υ<br>υ<br>υ    | ມ -<br>ມູບ | د -<br>ي ب                                                                                  | 7 4:    | 7 2       | ບົ       | 23       | ωı           |             | 2           | ۱d Li | 7       | ∞        | 4                  | თ       | ω       | 1                | ∞ <u>†</u>            | 1/                   | ъ        | з       | 0      | 6       | 11      | 0 4                                    | 2       | 17      | -      | 2           | 9 N              | ი       | ω        | 4       | NI       | 2               | 2       | 4 c         | <u> </u>   | 4 0                         | Glas       | ndte    |
| 3 10        | 1      | 4 1:   | 1 18   | 5 23          | 1:     | ω r            | 2 N        |                                                                                             | 2 7     | 8         | 8        | 1:       | 0,0          |             | )<br>)<br>) | thol  | •       | •        | •                  |         | •       |                  |                       | •                    | •        | •       | •      | •       | •       |                                        | •       | •       | •      | •           |                  | •       | •        | •       | •        |                 |         | •           |            |                             | Sed        | lle u   |
| 23          | 4 25   | 2 26   | 3 19   | 3 13          | 3 26   | 20             | -<br>> -   | 1 2                                                                                         | -,      | 6         | 18       | 2 20     | 0            | -<br>-      | -<br>>      | dast  | 2,23    | 1,93     | 1,74               | 1,87    | 2,91    | 2.34             | 4 70                  | 2,32                 | 2,18     | 1,64    | 2,46   | 1.95    | 2,33    | 1,46<br>1,73                           | 2,65    | 2,83    | 2,76   | 2 77        | 2,24             | 2,19    | 1,21     | 1,89    | 2,22     | 0 7 C           | 1.86    | 2,17        | CC., 2     | 2,00                        | <u>۽</u> ج | na p    |
| с<br>5      | ω      | 3<br>1 | 9 0    | 8 7           | 1      | 2              | - 0<br>4 0 |                                                                                             | -       | ~         | °°       | 4        | 4            | <u>د</u>    | ç           | enva  | 0,01    | 0,04     | 0,05               | 0,15    | -0,52   | -0.57            | -0,30                 | -0,44                | -0,31    | -0,31   | -0,38  | -0,38   | 0,15    | -0,42                                  | -0,27   | -0,56   | 0,43   | 0 20        | 0,36             | 0,25    | 0,53     | 0,45    | 0,26     | 0.07            | 0.36    | 0,24        | 0,40       | 0,33                        | ٩ <u>-</u> | ere     |
| с<br>С      | 80     | 32     | 37     | 24            | 38     | 28             | лu         | r 30                                                                                        | 24      | ω         | 40       | 15       | 40           | л <b>са</b> | 02          | ariet | -0,29   | 0,34 -   | -0,44 -            | -0,20 - | -0,69   | -0.52            | -0,∠0                 | -0,08                | -0,41    | -0,72   | -0,19  | -0,48   | -0,43   | 0,00<br>-0,23                          | -0,53   | -0,02   | -0,04  | -0 70       | -0,45            | -0,38 - | 0,05     | 0,05    | -0,16    | 0 22            | -0.00   | -0,43       | 0,24       | 0,84                        | Lmq/ Lsed  | hne     |
| 3 15        | ) 34   | 12     | 7<br>8 | 1 23          | 24     | 23             | 22 10      | 10                                                                                          | 8       | 25        | 0 10     | 6        | 11           | ~ <b>~</b>  | 0           | äten  | 0,44    | 1,61     | 0,92               | 1,66    | 0,36    | 0.29             | 4 4 0                 | 1,54                 | 0,69     | 1,50    | 1,30   | 2,35    | 3,04    | 1,61<br>1,79                           | 1,61    | 1,95    | 2,08   | 2 20        | 1,70<br>2 08     | 0,41    | 2,37     | 2,25    | 1,10     | 0.81            | 0.36    | 1,10        | 0,10       | 0,69                        |            | Ϊe<br>Γ |
| 7           | 0      | 0      | 0      | 6             | 15     | 0              | י<br>ט פ   | 2 4                                                                                         | 0       | 2         | 4        | 2        | 4            | ۔<br>۲      | ,<br>       | in %  | '       | '        | •                  | •       | •       | •                |                       | •                    | •        | •       | •      | •       | '       | • •                                    | '       | •       | •      | •           | • •              | •       | •        | •       | •        | •               | • •     | •           | '          | •                           | Sed/ N     | aran    |
| 10          | 4      | 7      | з      | 25            | 19     | 27             | n c        | о <b>л</b>                                                                                  | _       | 13        | 4        | 13       | œ (          | D 10        | N/14        | 6)    | ،<br>د  | '<br>-   | '<br>-             | '<br>   | '<br>   | ' '              | <br>                  | د د                  | '<br>-   | '<br>-  | '<br>- | '<br>-  | '<br>5  | '''''''''''''''''''''''''''''''''''''' | '<br>-  | '<br>-  | '<br>5 | 58          | '''              | '<br>-  | '<br>5   | '<br>5  |          | '<br>5 (        | '''     | '<br>       | י<br>לי מ  | '<br>> 6                    | lag/ [     | nete    |
| 0           | 0      | 0      | 0      | 0             | 0      | 1 0            | 21         | 25                                                                                          | 21      | 27        | 38       | 17       | 32           | 20          | M2          |       | ,18 1,  | ,19 1,   | ,20 1,             | ,03 1,  | .94 2   | .03 2            | 01 v<br>v             | ,84 2,               | ,66 2,   | ,71 1,  | ,75 2, | .78 2   | ,98 1,  | ,88 1,                                 | ,57 2,  | ,99 2,  | ,52 1, | 25 1        | ,69 1,           | ,83 1,  | ,72 0,   | ,62 1,  | ,82 1,   | 75 1            | ,93 1,  | ,87 1,      | ,04        | ,77 1,                      |            | Ē       |
| 25          | 0      | 5      | 0      | 24            | 23     | 23             | 4 4        | 13                                                                                          | 9       | . 21      | 8        | - 15     | ი<br>ე       |             | ~ M~        |       | 88 -1   | 70 -1.   | 58 -1.             | 54 -1   | 63 -2   | 55 -2            | 3<br>2<br>2<br>2<br>2 | 40 -1                | 24 -1    | 95 -1   | 38 -1  | 20 -1.  | 77 -1.  | 96 -1                                  | 32 -1   | 65 -2   | 62 -1  | 90 t        | 45 -1            | 63 -1   | 59 -1    | 22 -0   | 64 -1    | 81 -N           | 2/ -1   | 60 -1       | 40 -0      | 42 -1                       |            | ి       |
| 18          | 7      | 50     | 33     | 31            | 30     | 23             | 14         | 3 31                                                                                        | 46      | 29        | 26       | 23       | 22           | 48          | h Ma        |       | 69 -2,; | 71 -2,1  | 75 -1,             | 45 -1,  | 01 -2   | 15 -2.           | 00 -2,                | 58 -2,               | 66 -2,;  | 80 -2,0 | 54 -2, | 87 -2.3 | 44 -2.  | 47 -1,                                 | 63 -2,  | 59 -3,  | 02 -1, | 37 -2       | 20 -1,           | 31 -1,  | 11 -0,   | 96 -1,  | 13 -1,   | Ω7 <u>-</u> 1 · | 17 -1.  | 55 -2,      |            | 60 -1,                      | а<br>D     | -       |
| 34          | 26     | ) 29   | \$ 41  | 60            | 48     | 48 0           | 1          | 24                                                                                          | 55      | 40        | 38       | 33       | 84           | 2 <b>4</b>  | ~ ~         |       | 25 -4,9 | 08 -4,9  | 97 -4,9            | 84 -4,  | 78 -5,8 | 73 -6.3          | ло Э,                 | 33 -4,6              | 24 -4,8  | 07 -5,  | 34 -4, | 33 -5.4 | 11 -4,2 | 77 -4,2                                | 43 -4,8 | 15 -7,4 | 96 -3, | 15 -4       | 20 -2,5          | 84 -3,8 | 73 -3,0  | 44 -2,8 | 74 -3,3  | 70 - 2 - 2      | 40 -3,  | 08 -4,      | -2,        | 97 -4,6                     | 4          | -       |
| 10          | σ      | . 9    | 10     | 20            | 19     | 26             | ი თ        | -<br>                                                                                       | 20      | 6         | 12       | 6        | 6            | 10          | . Maa       |       | 91 3,7  | 91 3,4   | <del>3</del> 9 3,2 | 18 3,0  | 38 4,6  | 23 4.5           | 91<br>4,4             | 36 3,9               | 36 3,9   | 14 3,4  | 56 3,9 | 10 3.9  | 25 3,5  | 23 2,9<br>74 3,6                       | 30 4,1  | 16 5,2  | 12 3,3 | 11 3.8      | 54 3,1           | 37 3,3  | )5 1,3   | 34 2,4  | 38 3,1°  | 7 C7            | 10 2.6  | 52 3,4      |            | 51<br>3<br>3<br>3<br>3<br>3 | 5 0        | -       |
| 0           | 0      | 3      | 8      | 1             | 4      | ω 4            | 4 0        | , o                                                                                         | 0       | 2         | 0        | 0        | 0            |             | , Ma        |       |         |          | - 9                | 00      | 9       | - 0              | - c                   | ο<br>-               | Ň<br>,   | - 6     | 6      | <br>-   | 7 -     | ດ ດັ<br>· ·                            |         | - 7     | ъ<br>, | - 10<br>- 1 | ω<br>            | ω<br>,  | i<br>i   | 4       | 7        | -<br>-          | ი 4<br> | -<br>-      | , ~        | 4 <sup>11</sup>             | 5 D7       | -       |
|             | 1      |        |        | 1             |        |                |            |                                                                                             |         | <u> </u>  | <u> </u> | <u> </u> |              |             | ,           | l     | ,       |          |                    |         |         |                  |                       |                      |          |         |        |         |         |                                        |         |         |        |             |                  |         |          |         |          |                 |         |             |            |                             | ,<br>D8    | 1       |

| P 26/0. | P24/0: | P43/03 | P42/08 | P42/07 | P42/05 | P42/02           | P41/01      | P40/05 | P40/02 | P40/01 | P35/05 | P35/04 | P35/03 | P56/07 | Probe     |       | P16/04  | P16/01   | P13/03 | P13/02       | P19/09           | P07/04  | P19/00  | P08/02 | P08/01   | P18/16      | P28/10          | P 28/05    | P28/02      | P26/08  | P26/03         | P24/03         | P42/03       | P42/0,           | P42/05  | P42/02      | P38/08 | P41/01                                                                                      | P40/02           | P40/01  | P35/05 | P35/04 | P35/03 | P56/07  | Probe             |       |
|---------|--------|--------|--------|--------|--------|------------------|-------------|--------|--------|--------|--------|--------|--------|--------|-----------|-------|---------|----------|--------|--------------|------------------|---------|---------|--------|----------|-------------|-----------------|------------|-------------|---------|----------------|----------------|--------------|------------------|---------|-------------|--------|---------------------------------------------------------------------------------------------|------------------|---------|--------|--------|--------|---------|-------------------|-------|
| 12      | 30     | 8      | 10     | 6      | ი კ    | 1<br>π σ         | ົດ          | 16     | 15     | 21     | 10     | 15     | 16     | 18     | Qmr       |       | 87      | 101      | 101    | 103          | 138              | 101     | 75      | 94     | 83       | 136         | 79<br>79        |            | 129         | 3 119   | 66             | 85             | 104          | 81               | 101     | 79          | 104    | 102                                                                                         | 124              | 67.1    | 90     | 109    | 105    | 95      | Qm                |       |
| 81      | 55     | 89     | 69     | 72     | 89     | 64<br>90         | 89          | 108    | 59     | 96     | 78     | 92     | 76     | 67     | Qmu       |       | 91      | 65       | 105    | 74           | 68<br>68         | 75      | 130     | 94     | 108      | 65          | 101             | 80         | 71          | 78      | 77             | 89             | 93           | 8 6              | 54      | 83          | 96     | 85 G                                                                                        | 69<br>69         | 68      | 113    | 83     | 93     | 89      | Qp                |       |
| 18      | 26     | 13     | 21     | 9      | 12     | 17               | 15          | 6      | 25     | 11     | 21     | 17     | 16     | 12     | Qpg       |       | 22      | 21       | 13     | 22           | 1 <sup>7</sup> 0 | 26      | 9       | 16     | 10       | 17          | 10              | 2 5        | 12          | 17      | 14             | 23             | 17           | 22               | 27      | 23          | 21 !   | 21 :                                                                                        | 14               | 18      | 16     | 17     | 12     | 10      | Ρ                 |       |
| 53      | 46     | 62     | 45     | 43     | 21     | лgo              | 42          | 48     | 63     | 43     | 76     | 52     | 52     | 43     | Qps       |       | 7       | 11       | 7      | 16           | 43               | 14      | 6       | 14     | <b>б</b> | 13          | 4 9             | σ          | 10          | 11      | 8              | 16             | 9            | 18               | 23      | 16          | 10     |                                                                                             | 9                | 14      | 10     | 8      | 0      | 8       | ×                 |       |
| 2       | 12     | 8      | 7      | 4      | 10     | л                | <b>1</b> 00 | 2      | 7      | 4      | 6      | 4      | 14     | 12     | Qp        |       | 10      | 4        | 8      | 7 22         | 22<br>22         | 0       | 4       | 17     | စ        | 12          | 11              | <u>`</u> ` | 15          | 9       | 18             | 13             | 16           | 16               | 7       | 4           | ω (    | л [                                                                                         | у<br>У<br>Л      | 22      | 9 0    | ъ      | 8      | 11      | G                 | eich  |
| 4       | 6      | 10     | 7      | 14     | 12     | 1 <sub>3</sub> α | ° 21        | 13     | 6      | 11     | 10     | 11     | 12     | 22     | c         |       | 15      | 4        | σı     | υN           | د<br>۱۱          | з       | 9       | 9      | 0        | 4           | 0               | 5 0        | σ           | 6       | 6              | 14             | 8<br>12      | 10               | 4       | 13          | ω.     | 4 0                                                                                         | 94               | 4       | 4      | 2      | 4      | 4       | Ы                 | tmin  |
| 0       | 7      | 0      | _      | _      | 0 0    | ωc               | 0           | ω      | ъ      | 0      | 0      | ω      | 0      | 4      | St        | _eich | 24      | 33       | 19     | 20           | 38               | 22      | 24      | 1      | 21       | 6 i         | ъ<br>12         | o 4        | 22          | 34      | 44             | 33             | 33<br>16     | 37               | 33      | 26          | 19     | 19                                                                                          | 31               | 32      | 14     | 24     | 17     | 8       | Lv                | ieral |
| 38      | 46     | 26     | 24     | 21     | 19     | 37               | 21          | 28     | 41     | 14     | 12     | 35     | 43     | 20     | Ssi       | ntmi  | 29      | 50       | 36     | 61           | л 25<br>О        | 42      | 36      | 38     | 59       | 40          | 40<br>40        | 3 8        | 32          | 59      | 42             | 64             | 29<br>31     | 32               | 23      | 53          | 13     | 25                                                                                          | 43               | 14      | 16     | 47     | 52     | 32      | Ŀs                | -Dat  |
| 4       | 8      | сл     | -      | 9      | 4 7    | 1.2              | а 4         | ъ      | ъ      | 0      | 4      | 7      | 10     | 6      | Ssa       | nera  | 81      | 71       | 75     | 68 0         | 85<br>085        | 69      | 69      | 65     | 71       | 83          | 76<br>87        | 40 g       | 65          | 56      | 61             | 59             | 64           | 5                | 83      | 60          | 75     | 49                                                                                          | 59<br>76         | ğ       | 60     | 76     | 58     | 87      | Llm               | ien c |
| 0       | 2      | 0      | 1      |        | 0 -    | - N              | , o         | 0      | 2      | 0      | 0      | 2      | 0      | 2      | ۔<br>ح    | ıl-Da | 45      | 44       | 40     | 29           | 33 29            | 47      | 41      | 70     | 43       |             | 73<br>72        | 202        | 53          | 19      | 50             | 16             | 54           | 62               | 50      | 46          | 54     | 87 S                                                                                        | л<br>44          | 2       | 78     | 34     | 58     | 69      | Lhm               | der H |
| 2       | 12     | σı     | 8      | 8      | 2      | 1 0              | 0 10        | ы      | 8      | 0      | 0      | 15     | 0      | 10     | Mt        | iten  | ω       | 4        | 13     | 4            | 4                | . 0     | 0       | 11     | ω        | 10          | A 4             | ა <b>დ</b> | ່ດ          | 8       | 18             | 0              | 0 U          | ι ω              | 16      | ω           | 0.     | ⊳ 0                                                                                         | ∾ פ              | 4       | . 14   | 7      | 0      | 12      | SM                | loch  |
| 10      | сл     | 17     | 17     | 18     | 14     | 17 0             | 。11         | 20     | 15     | 14     | 20     | 11     | 12     | 20     | Ms        | der   | 0       | 0        | 0      | 0            |                  | 0       | 0       | 0      | 0        | (           | 0 0             |            | 0           | 0       | 0              | Ν              | 0 -          | • c              | 0       | 0           | 0      | э (                                                                                         | » 0              | c       | 0      | 0      | 0      | 0       | ⊼                 | wip   |
| 10      | 13     | 10     | 7      | ი<br>ი | 12     | 7 4              | <u> </u> 2  | 10     | ω      | 0      | 4      | _      | 0      | 18     | s Mp      | Hoc   | 178     | 167      | 205    | 178          | 1/4<br>2002      | 176     | 205     | 187    | 191      | 201         | 180             | 110        | 201         | 197     | 176            | 174            | 197          | 151              | 155     | 163         | 200    | 188                                                                                         | 174              | 196     | 203    | 192    | 198    | 183     | Q                 | fel-F |
| 40      | 29     | 31     | 34     | 31     | 56     | Ул<br>С          | 34          | 41     | 33     | 36     | 37     | 50     | 47     | 39     | h Mg      | hwip  | 29      | 33       | 20     | 38           | 77               | 40      | 15 、    | 31     | 16       | 29          | 14              | 20         | 22          | 29      | 22             | 39 、           | 26           | 44               | 50      | 38 、        | 31     | 3 5                                                                                         | 23               | 32      | 25     | 24     | 12     | 18      | п                 | orm   |
| 38      | 12     | 45     | - 51   | 49     | 37     | 32 40            | 66          | 51     | 39     | 43     | 64     | 31     | 49     | 55     | q Mg      | ofel- | 193 2   | 201 2    | 175 2  | 184 2        | 212 2            | 183     | 180 3   | 182 2  | 195      | 170 2       | 206 3           | 202        | 177         | 174 2   | 202 2          | 188 2          | 177 2        | 205              | 194 2   | 199 2       | 169    | 184                                                                                         | 190              | 1/1     | 172 2  | 183 2  | 190 2  | 199 2   | F                 | latio |
| 12      | . с    | 9      | 11     | 10     | 12     | α - C            | 10          | ы      | с<br>5 | 3 29   | 1-1-   | ω      | 10     | 12     | v Mg      | Forr  | .84 1   | 266 1    | 279 1  | .59          | 1 86;            | 259 1   | 310 1   | 276 1  | 303      | 35          | 1 207 1         | 100        | 249 1       | 253     | 279 1          | 278            | 270 1        | 2/5              | 249 1   | .82 1       | 265 1  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 290<br>1         | 19      | .85    | 266 1  | 283 1  | 288 1   |                   | n     |
| 0       | 0      | 0      | 0      | ~<br>0 | -      |                  |             | 0      | 0      | •      | +<br>0 | 0      | 0      | +<br>0 | s Mg      | natio | 26      | 15       | 15     | 80           | 38               | 16      | 11      | 35     | 13       | 20          | 54              | 202        | 18          | - 27    | 11 4           | 75             | 18           | 22               | 34      | 60          | 29     | 35 0                                                                                        | 30 2             | 21      | 39     | 10     | 17     | 56 、    | э<br>Г            | (†    |
| 2       | , v    | P      | P      | Pí     | P1 g   | 9                |             | Po     | Pí     | P2:    | P2:    | P2:    | P2:    | Ρ2     | n Pro     | on    | 24 6    | 58<br>58 | 00     | 2 2<br>(F) 1 | 3 <del>5</del>   | 6       | 30<br>5 | 6      | 24       | 12          | ο<br>16<br>7    |            | 25          | 0<br>0  | 9 <del>1</del> | 35             | 7 81         | 1 <del>.</del> . | 7 98    | 32 7        | 21 7   | 23 ·                                                                                        | 7 32             | 5       | 14     | 25 4   | 19 6   | 8 91    | vm Ls             | faup  |
| 0/04    | 6/01   | 3/03   | 3/02   | 8/11   | 9/09   | 7/04             | 8/02        | 8/01   | 3/16   | 8/12   | 8/10   | 8/05   | 8/02   | 6/08   | obe G     | _     | 37      | 59<br>3  | 22     | 0<br>2<br>2  | 4<br>4<br>5      | . 25    | ю<br>36 | 33     | 9<br>2   | 4<br>4<br>1 |                 | ŭ          | 3 99<br>4 2 | 36<br>4 | ы<br>ы         | 17 4           | 5 8<br>2 4   | 5 C              | 8       | 5 4         | 21     | ν<br>ν<br>ν                                                                                 | ა წ<br>- ა       | 39      | 22     | 4 2    | 22     | 31 1    | ŝm Ma             | otmo  |
| 13      | ∞      | 17     | 16     | 6      | 11     | 10 4             | 18          | 13     | 14     | 22     | 24     | 11     | 17     | 13     | 2mn 0     | Qua   | 8       | 6 18     | 4 22   | 5 1          | 3 22             | 5 19    | 4 24    | 0      | 1 22     | 0 1         | 2 25            | 4 -        | 7 18        | 0 15    | 0 18           | 7 16           | 8 4<br>21    | 8<br>70<br>8     | 7 18    | 0 18        | 7 22   | 3 I                                                                                         | 2<br>2<br>2<br>2 | 18      | 8 25   | 6 19   | 1 21   | 2 24    | ag Ln             | odall |
| 74      | 92     | 77     | 87     | 130    | 64     | 80               | 74          | 65     | 116    | 50     | 57     | 92     | 107    | 100    | 2mu G     | rz- u | 7 11    | 30 15    | 20 13  | 2 16         | 24<br>11         | )1 14   | 10 11   | .8 13  | 2 14     | 5<br>17     | 11              |            | 39<br>16    | 3 17    | 38 14          | <u>.</u><br>14 | 1 13         | 11               | 8 12    | 39 13       | 35 11  | 0 10                                                                                        | 12 12            | 59 14   | 10     | 3 15   | 0 15   | 14 12   | net Ls            | pesta |
| 22      | 13     | 15     | 17     | 8      | 15     | 21               | 5 œ         | 27     | 4      | 34     | 17     | 19     | 17     | 27     | 2pg G     | Ind   | 6 0     | 6        | 6      | 2            | α<br>4<br>13     | 2       | 1 6     | ъ      | ω        | 6<br>6      | 9 G<br>4 C      | 2 N        | ο<br>ω<br>ω | 9 8     | 2              | 9 2            | ωN           | 4 1<br>0 0       | 4 6     | р<br>2<br>5 | 7 2    | 7 4                                                                                         | 7 1              | 3 11    | 0      | 6 1    | 7 2    | 6 8     | ed Gla            | andt  |
| 54      | 29     | 77     | 46     | 22     | 57     | 38               | 64          | 67     | 40     | 46     | 55     | 39     | 40     | 40     | l sd      | Litho |         |          | ,      |              |                  |         |         |        |          |             |                 |            |             |         |                |                |              |                  |         |             |        |                                                                                             |                  |         |        |        |        |         | IS Se             | eile  |
| 11      | 10     | ∞      | 7      | 13     | 0 0    | л 🗧              | 11          | 4      | 7      | 10     | 8      | 4      | ∞      | 4      | p<br>Q    | oklas | 1,8     | 1,63     | 2,34   | 1.5          | 2,58             | 1,48    | 2,6     | 1.8    | 2.48     | 1 0,0       | 2 54            | 2,2        | 2,2         | 1,93    | 2,09           | 1,48           | 2.0          | 1,24             | 1,12    | 1,44        | 1,8    | 1 <u>1</u>                                                                                  | 3 1,55           | 1,8     | 2,08   | 2,06   | 2,83   | 2,34    | 85<br>85          | und   |
| 4       | 13     | σı     | Сл     | 21     | 13     | 10               | 11          | 11     | 15     | 12     | 9      | 8      | 6      | 8      | <u>()</u> | sten  | 1 -0,08 | 3 -0,19  | 4 0,16 | -0.0.        | -0,20            | 3 -0,0- | 1 0,13  | 0.03   | -0.0     | 0 17        | + -0,1          | -0,1       | 0,12        | 3 0,12  | 9 -0,14        | 3 -0,08        | 9 -0,20      | +-0,3            | 2 -0,22 | 4 -0,20     | 7 0,17 |                                                                                             | -0,00            | 1 0,14  | 3 0,17 | ŝ 0,05 | 3 0,04 | 4 -0,08 | Q/F               | ber   |
| 5       | N      | -      | ω      | 4      | N 1    | ა c              | 0           | 4      | ω      | 4      | ω      | 0      | 0      | 2      | ¥<br>w    | varie | 3 -0,62 | 9 -0,17  | -0,48  | -0.04        | 0,68             | 1 -0,29 | -0,77   | -0.55  | -0.45    | -0.07       | -0,15           | -0,26      | -0,16       | 0,15    | 1 -0,29        | -0,00          | -0,59        | -0,54            | 2 -0,42 | -0,36       | -0,65  | -0,-1                                                                                       | -0,47            | -0,28   | -0,87  | -0,21  | -0,29  | 3 -0,66 | Lmq<br>Lsed       | echr  |
| 20      | 34     | 28     | 50     | 21     | 19     | 30               | 29          | 48     | 26     | 30     | 70     | 51     | 23     | 46     | ŝi.       | etäte | 0,49    | 2,14     | 1,25   | 2,40         | 3 1,20           | 1,83    | 0,96    | -2.20  | 3.96     | 0.41        | -0,69           | -0,69      | 1,45        | 1,79    | 1,99           | 0,82           | 0,29         | 1,29             | 2,14    | 0,69        | 0,92   | 1,10                                                                                        | 2,05             | \$ 2,20 | 1,25   | 2,53   | 1,50   | 69,0    | Ln<br>Lv/Pi       | lete  |
| 2       | 13     | σı     | 7      | 23     | 4      | 1<br>Δ           | ° 10        | 7      | 10     | 2      | 9      | 6      | 4      | 11     | isa L     | }n in |         |          |        |              |                  |         |         |        |          |             |                 |            |             |         |                |                |              |                  |         |             |        |                                                                                             |                  |         |        |        |        |         | Ln<br>Sed/<br>Met | Para  |
| 2       | 0      | -      | 2      | 2      | 0      |                  | 0           | 0      | 0      | 4      | 0      | 0      | σı     | 0      | ×<br>م    | %)    | •       | •        | •      |              |                  |         |         | •      | •        |             |                 |            |             | •       |                | •              |              |                  | ,       |             | • •    |                                                                                             |                  |         | •      | •      | •      | •       | Ln<br>Mag/<br>Met | ame   |
| 16      | 8      | ω      | 4      | 31     | ის     | ∘ Ξ              | 2 12        | 9      | 7      | 16     | 8      | 4      | σı     | 11     | 1         |       | -1,37   | -1,54    | -0,96  | -1.35        | -1,47            | -1,36   | -0,98   | -1.22  | -1.20    | -1 00       | -1,50           | -1,45      | -1,03       | -1,06   | -1,42          | -1,41          | -1,56        | -1,76            | -1,67   | -1,58       | -1,01  | -1,10                                                                                       | -1,42            | -1,07   | -0,98  | -1,15  | -1,10  | -1,32   | D1                | ter i |
| 18      | 21     | 16     | 12     | 10     | ∞ [    | 23               | 27          | 28     | 24     | 30     | 45     | 28     | ∞      | 17     | Nss N     |       | 1,78    | 1,79     | 1,76   | 1.55         | 2,22             | 1,50    | 1,89    | 1.65   | 2.05     | 1 56        | 1,83            | 2,08       | 1,75        | 1,60    | 1,98           | 1,59           | 1,80         | 1,65             | 1,43    | 1,67        | 1,52   | 1 70                                                                                        | 1,62             | 1,52    | 1,64   | 1,76   | 2,04   | 2,02    | D2                | n %)  |
| 14      | 15     | 1      | ω      | 15     | ± •    | ω<br>α           | ° 1         | 9      | ⇒      | 12     | ω      | ი      | ω      | 4      | Nph N     |       | -1,71   | -1,52    | -1,51  | -1.51        | -1,65            | -1,54   | -1,84   | -1.62  | -1.74    | -1 07       | -1,79           | -1,45      | -1,14       | -1,29   | -1,54          | -1,75          | -1,73        | -1,80            | -1,56   | -1,82       | -1,49  | -1 ,<br>-1 ,<br>-1 ,<br>-1 ,<br>-1 ,<br>-1 ,<br>-1 ,<br>-1 ,                                | -1,89            | -1,17   | -1,66  | -1,41  | -1,45  | -1,59   | D3                |       |
| 33      | 27     | 46     | 50     | 10     | 55 4   | 37               | 25          | 25     | 41     | 30     | 20     | 32     | 49     | 23     | Ngq I     | -     | -2,04   | -1,84    | -2,15  | -1.68        | -2,41            | -1,65   | -2,49   | -1.95  | -2.32    | -1 63       | -2,07<br>-2.48  | -2,14      | -1,86       | -1,78   | -2,12          | -1,73          | -1,89        | -1,73            | -1,40   | -1,88       | -1,86  | 1 20                                                                                        | -1,97            | -1,62   | -2,11  | -1,97  | -2,32  | -2,26   | D4                |       |
| 34      | 42     | 32     | 26     | 27     | 49     | 46<br>46         | 59          | 41     | 30     | 57     | 18     | 58     | 40     | 15     | Ngv I     |       | -4,90   | -4,38    | -4,44  | -4.29        | -4,87            | -4,36   | -5,36   | -4.67  | -5.10    | -3.16       | -5,12<br>-7, 22 | -4,28      | -3,40       | -3,77   | -4,49          | -4,97          | -4,94        | -5,07            | -4,35   | -5,15       | -4,30  | -1 36                                                                                       | -5,37            | -3,41   | -4,81  | -4,12  | -4,31  | -4,66   | D5                |       |
| 11      | 2      | 8      | ω      | 6      | 9 -    | - o              | n 11        | 2      | 8      | 10     | 7      | 1      | 13     | 4      | Mgs       |       | 3,42    | 3,07     | 3,63   | 2,82         | 4,08             | 2,75    | 4,19    | 3.27   | 4 14     | 7,10        | 3,47            | 3,62       | 3,15        | 3,01    | 3,57           | 3,09           | 3,28<br>3,32 | 2,86             | 2,30    | 3,12        | 3,12   | 3 34                                                                                        | 3,27             | 2,72    | 3,54   | 3,32   | 3,93   | 3,81    | D6                |       |
| 0       | 0      | 0      | 0      | 0      | 0      |                  | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      | Mgn       |       | •       |          | •      | • •          | ·                |         |         | •      | •        | ·   ·       | .  .            |            | •           | •       |                | •              | • •          |                  |         |             | •      |                                                                                             |                  |         |        | •      | •      | •       | D7                |       |
|         |        |        |        |        |        |                  |             |        |        |        |        |        |        |        |           |       | •       | •        | •      |              |                  | •       | •       | •      | •        | •           | ·   ·           | ŀ          | •           | •       |                | •              | ·   ·        | •                | •       | i.          | •      |                                                                                             |                  | ŀ       | ŀ      | •      | •      | •       | D8                |       |

|                                             |                                                                                         | -                                                | _                                                 | _                                                                                                                                                                                      | _                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | _                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                            | _                                              |                                                  |                                                                     | -                                        |                                                                                      | _                                   |                                |                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                              | _                                                            |                                                                                                               |                                  | _                               |                              | _                | _                                    |                               |                                     |                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                           | _                           | -                                               |                                                                                                                         |                                                                          | _                                                                | _                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                              |                                                   |
|---------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------|------------------|--------------------------------------|-------------------------------|-------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Da 2/5                                      | C 10                                                                                    | BV10/3                                           | Pa 2/9                                            | K 18                                                                                                                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P18/07                  | P18/06                                         | P18/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P18/02                                                       | P16/06                                         | P16/05                                           | Probe                                                               |                                          | KP 5/3                                                                               | L 12                                | KS 33                          | P29/03                        | KP11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KO 13                          | K 16/2                                                       | S 10                                                                                                          | Pa 5                             | SS 4                            | Pa2/2                        | SS 5             | Pa 1                                 | Α5                            | S 15                                | Pa 2/5                         | C 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BV10/3                      | K 18<br>Pa 2/9              |                                                 | P18/07                                                                                                                  | P18/08                                                                   | P18/04                                                           | P18/02                                                                                                    | P I O/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P16/05                                                                                                                      | Probe                                                                                                                        |                                                   |
| 100                                         | 21                                                                                      | 55                                               | 106                                               | 64                                                                                                                                                                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                      | 14                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                            | 4                                              | 20                                               | Qmr                                                                 |                                          | 111                                                                                  | 226                                 | 184                            | 3 78                          | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 198                            | 230<br>C61                                                   | 290                                                                                                           | 139                              | 229                             | 237                          | 235<br>177       | 250                                  | 239                           | 252                                 | 197                            | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 227                         | 183<br>258                  |                                                 | 114                                                                                                                     | 40                                                                       | 83                                                               | 2<br>27<br>24                                                                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                         | Qm                                                                                                                           |                                                   |
| 8                                           | 165                                                                                     | 173                                              | 149                                               | 109                                                                                                                                                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102                     | 26                                             | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68                                                           | 112                                            | 65                                               | l Qmu                                                               |                                          | 243                                                                                  | 136                                 | 177                            | 292                           | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143                            | 1152                                                         | 52                                                                                                            | 211                              | 163                             | 145                          | 149<br>207       | 110                                  | 120                           | 109                                 | 166                            | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 146                         | 188<br>114                  |                                                 | 66                                                                                                                      | 128                                                                      | 5                                                                | 118                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                          | Qp                                                                                                                           |                                                   |
| 60                                          | 128                                                                                     | 78                                               | 69                                                | 117                                                                                                                                                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ъ                       | 24                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                            | 31                                             | 32                                               | u Qpg                                                               |                                          | c                                                                                    | 0                                   | 0                              | 0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                              | о с                                                          | 0                                                                                                             | 0                                | 0                               | 0                            | - c              | 0                                    | 0                             | 0                                   | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | o c                         | ,                                               | 14                                                                                                                      | 14                                                                       |                                                                  | , 10                                                                                                      | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                          | σ                                                                                                                            |                                                   |
| 110                                         | 59                                                                                      | 64                                               | 46                                                | 81                                                                                                                                                                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                      | 69                                             | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                           | 41                                             | 48                                               | Qps                                                                 |                                          | c                                                                                    | 0                                   | 0                              | 0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                              | о с                                                          | 0                                                                                                             | 0                                | 4                               | 0                            | о с              | 0                                    | 0                             | 0                                   | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | o c                         | )                                               | 17                                                                                                                      | α                                                                        | 4                                                                | . 6                                                                                                       | , c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>8                                                                                                                     | ▼                                                                                                                            | ٢                                                 |
| <u> </u>                                    | 0                                                                                       | 1                                                | 9                                                 | 4                                                                                                                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                       | 18                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                           | 2                                              | 8                                                | QpI                                                                 |                                          | c                                                                                    | 4                                   |                                | 1                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 i                           | 12                                                           | 19                                                                                                            | 19                               | ω                               | 4                            | 9                | 34                                   | 24                            | 24                                  | 22                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                          | 21                          | _<br>۲                                          | 9                                                                                                                       | Z                                                                        | 2                                                                | 211                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                          | G                                                                                                                            | eicht                                             |
| 4                                           | 1                                                                                       | 3                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     | ⊳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                       | 18                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                           | 4                                              | 9                                                | c                                                                   |                                          | -                                                                                    | 0                                   | 0                              | 0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                              | -<br>-                                                       | 0                                                                                                             | 0                                | 0                               | 0                            | -<br>-           | 0                                    | 0                             | 0                                   | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | o c                         | hicht                                           | 9                                                                                                                       | σ                                                                        | 4                                                                | . 2                                                                                                       | , c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | റം                                                                                                                          | ₽                                                                                                                            | imin                                              |
| 2                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     | ueri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                       | 0                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                            | 0                                              | 3                                                | St                                                                  | eich                                     | C                                                                                    | 0                                   | 0                              | 0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                              | o c                                                          | 0                                                                                                             | 0                                | 0                               | 0                            | -<br>-           | 0                                    | 0                             | 0                                   | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | 0 0                         | min                                             | 12                                                                                                                      | 32                                                                       | S G                                                              | ; 16                                                                                                      | ; 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                          | Ł                                                                                                                            | eral                                              |
| >                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     | nig-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                      | 51                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                                                           | 4                                              | 25                                               | Ssi                                                                 | Itmir                                    | 21                                                                                   | ! <b>→</b>                          | Сл                             | 0                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                             | - o                                                          | 24                                                                                                            | 10                               | 0                               | 0                            | -<br>-           | 0                                    | 0                             | 0                                   | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | 0 0                         | eral-                                           | 45                                                                                                                      | 79                                                                       | 3 2                                                              | ; 37                                                                                                      | ; t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41                                                                                                                          | ۲۵<br>ا                                                                                                                      | -Dat                                              |
| 2                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     | -orm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                       | 6                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                           | 0                                              | 12                                               | Ssa                                                                 | nera                                     | 11                                                                                   | 37                                  | 22                             | 27                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                             | 39                                                           | 4                                                                                                             | 1                                | -                               | 7                            |                  | 4                                    | 0                             | -                                   | ъ                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                           | ωc                          | Date                                            | 83                                                                                                                      | 64                                                                       | e og                                                             | ; 68                                                                                                      | 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | л<br>7<br>39                                                                                                                |                                                                                                                              | en d                                              |
| 2                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     | natio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                       | 0                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                            | 0                                              | 1                                                | Ŀy                                                                  | I-Da                                     | 12                                                                                   | 9                                   | 9                              | -                             | σı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σI                             | 213                                                          | ω                                                                                                             | 20                               | 0                               | ω.                           | - 0              |                                      | 0                             | 0                                   | 10                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ω                           | 0 6                         | en d                                            | 39                                                                                                                      | 51                                                                       | r a                                                              | 50                                                                                                        | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                         | -hm                                                                                                                          | er H                                              |
| 5                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      | -                                                   | ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                       | 7                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                           | 2                                              | 8                                                | Mt                                                                  | ten                                      | C                                                                                    | , 1                                 | 2                              | 0                             | ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ω                              | ωσ                                                           | n 00                                                                                                          | 0                                | 0                               | υ                            | 7 4              | -                                    | 12                            | 4                                   | 0                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                          | 7 6                         | er A                                            | 10                                                                                                                      | 4                                                                        | - U                                                              | 1 00                                                                                                      | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Δ 3                                                                                                                         | SM                                                                                                                           | loch                                              |
| 5                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      | -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                      | 32                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                           | 10                                             | 7                                                | Mss                                                                 | der I                                    | 0                                                                                    | 0                                   | 0                              | 0<br>()                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                              | 00                                                           | 0                                                                                                             | 0                                | 0                               | 0                            |                  | 0<br>()                              | 0<br>()                       | 0<br>()                             | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | 0 C                         | uerr                                            | 0 1                                                                                                                     | 1                                                                        |                                                                  | , o                                                                                                       | , c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                         | ~                                                                                                                            | wipf                                              |
| <u>ـ</u>                                    | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                      | 12                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                           | 2                                              | 5                                                | Mph                                                                 | Hoch                                     | 554                                                                                  | 63                                  | 60                             | 871                           | \$72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                             | 947<br>945                                                   | 342                                                                                                           | \$50                             | 392                             | 81                           | \$84<br>\$84     | 60                                   | 359                           | 860                                 | 864                            | \$73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$73                        | 871                         | lig-F                                           | 80                                                                                                                      | 89                                                                       | 3 9                                                              | - 20                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 80                                                                                                                        | Q                                                                                                                            | e-F                                               |
| 7                                           | 4                                                                                       | 1                                                | 0                                                 | 0                                                                                                                                                                                      | -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42                      | 14                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                            | 43                                             | 19                                               | Mgq                                                                 | hwip                                     | 0                                                                                    | 0                                   |                                | 0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0<br>4                       |                                                              | 0                                                                                                             | 0<br>3                           | 4                               | 0                            |                  | 0                                    | 0                             | 0                                   | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           |                             | orm                                             | 31 18                                                                                                                   | 2 2                                                                      | 2                                                                | , 6<br>, 1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 D                                                                                                                         | т<br>—                                                                                                                       | orm                                               |
| ø                                           | 1                                                                                       | 1                                                | 0                                                 | 0                                                                                                                                                                                      | -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                      | 49                                             | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                           | 82                                             | 19                                               | Mgv                                                                 | fel-F                                    | 22                                                                                   | 16                                  | 21                             | 28<br>32                      | 9 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 18                           | 15                                                           | 1 22                                                                                                          | 31 24                            | 1 16                            | 9 18                         | 0 7(             | 5                                    | 5                             | 2 12                                | 4 18                           | 5 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 12                        | 0 1                         | atio                                            | 39 25                                                                                                                   | 10 33                                                                    | 20 30                                                            | 92 31                                                                                                     | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 25                                                                                                                       |                                                                                                                              | atior                                             |
| <u>ـ</u>                                    | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | з                       | 2                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                           | 20                                             | 8                                                | Mgs                                                                 | orm                                      | 29                                                                                   | 3                                   | 2                              | 21 22                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36<br>33                       | 55 SG                                                        | 3 7                                                                                                           | 12 2.                            | <sup>54</sup>                   | 9                            |                  | сл<br>сл                             | 50                            | 1                                   | 31 1.                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 8                         | 8 8<br>0 0                  | n<br>T                                          | 5 12                                                                                                                    | 9 11                                                                     | 4                                                                | 1 13                                                                                                      | . =<br>3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 65                                                                                                                       | -<br>5                                                                                                                       |                                                   |
| >                                           | 0                                                                                       | 0                                                | 0                                                 | 0                                                                                                                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                       | 0                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                            | 0                                              | 0                                                | Mgn                                                                 | latio                                    | 41                                                                                   | 12                                  | 27                             | 4                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                             | 2 0<br>2 1                                                   | . 11                                                                                                          | 1 27                             | tà                              | 4 0                          | 5 œ              | 4                                    | 0                             | 7                                   | 4                              | ω.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                           | 0 0                         | laup                                            | 2 14                                                                                                                    | 6 36                                                                     | n 31                                                             | 22                                                                                                        | , c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a 45                                                                                                                        | n<br>L                                                                                                                       | Ŧ                                                 |
|                                             | x                                                                                       | τ                                                | X                                                 | Ā                                                                                                                                                                                      | Ŗ                                                   | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ç<br>Ç                  | D.                                             | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ś                                                            | Ţ                                              | A                                                | P                                                                   | Ъ                                        | _                                                                                    |                                     |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                              |                                                                                                               |                                  |                                 |                              |                  |                                      |                               |                                     |                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                             | fin                                             |                                                                                                                         |                                                                          |                                                                  | +                                                                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                           | n Ls                                                                                                                         | aup                                               |
| 13                                          | ŝ                                                                                       | 29/                                              | Ř                                                 | 2                                                                                                                                                                                      | õ                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ЛЬ                      | 2                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                            | 1                                              | 5                                                | rot                                                                 |                                          | 32                                                                                   | 33                                  | 17                             | 27                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38                             | 32                                                           | 28                                                                                                            | 12                               | -                               | 7                            | o c              | 4                                    | 4                             | -                                   | 01                             | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | 0 0                         | 0                                               | ő                                                                                                                       | ö                                                                        | n g                                                              | 3 8                                                                                                       | 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 00                                                                                                                        | š                                                                                                                            | -                                                 |
| 12 1                                        | (S 33 2                                                                                 | 29/03 2                                          | P11/2 6                                           | 013 6                                                                                                                                                                                  | 8 20/6                                              | 6/2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 4                     | 2/2 11                                         | <b>3</b><br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99                                                           | 1 12                                           | 5 10                                             | robe Qr                                                             | 6                                        | 32 2                                                                                 | 33 0                                | 27 0                           | 27 0                          | 13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 0                           | 38<br>0                                                      | 28 0                                                                                                          | 12 0                             | 1 0                             | 7<br>0                       |                  | 4 0                                  | 4 0                           | 1 0                                 | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           |                             | odalb                                           | 36<br>21                                                                                                                | 38                                                                       | 61. 50                                                           | 78 17<br>05 - 17                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 8 54 20                                                                                                                  | sm Mag                                                                                                                       | tmoc                                              |
| 10 10 11                                    | <b>(S 38</b> 28 12                                                                      | <b>29/03</b> 20 5                                | P11/2 66 14                                       | D13 67 12                                                                                                                                                                              | <b>19/07</b> 86 14                                  | <b>6/2</b> 85 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 230 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 116 10                | 2/2 118 1                                      | <b>3</b> 87 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>5</b> 93 10                                               | 1 125 12                                       | 5 105 10                                         | robe Qmn Qr                                                         | (Quar                                    | 32 2 -                                                                               | 33<br>0<br>-                        | 27 0 -                         | 27 0 -                        | 13 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 0                           | 38<br>0 0                                                    | 28 0 -                                                                                                        | 12 0 -                           | 1 0 -                           | 7 0                          |                  | 4 0 -                                | 4 0 -                         | 1 0 -                               | 0                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           | 0 0                         | odalbesta                                       | 6 21 188                                                                                                                | 38 244                                                                   | 65 19 242                                                        | 78 17 256                                                                                                 | 70 47 23/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 54 162                                                                                                                    | sm Mag Lmet                                                                                                                  | tmodalb                                           |
| <b>10</b> 152 7                             | <b>(S 38)</b> 28 126 7                                                                  | <b>29/03</b> 20 57 9                             | P11/2 66 144 2                                    | D13 67 127 7                                                                                                                                                                           | <b>9/07</b> 86 145 (                                | <b>6/2</b> 85 109 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 230 60 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 116 108 5             | 2/2 118 113 7                                  | <b>3</b> 87 90 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>5</b> 93 105 7                                            | 1 125 125 7                                    | 5 105 133 10                                     | robe Qmn Qmu Qp                                                     | (Quarz- ur                               | 32 2                                                                                 | 33<br>0<br>-                        | 27 0                           | 27 0                          | 13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 0                           | 38 0                                                         | 28 0                                                                                                          | 12 0                             | 1 0                             | 7 0 7                        |                  | 4 0                                  | 4 0 -                         | 1 0                                 | 0 -                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                           | 0 C                         | odalbestandte                                   | 36 21 188 160                                                                                                           | 55 38 244 97                                                             | 85 19 242 126                                                    | 78 17 256 111                                                                                             | 10 27 27 21 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144<br>10 20 237 124                                                                                               | sm Mag Lmet Lsed                                                                                                             | tmodalbesta                                       |
| 10 1E2 77 E                                 | <b>(S 33</b> 28 126 74 7                                                                | <b>29/03</b> 20 57 96 17                         | <b>P11/2</b> 66 144 28 12                         | <b>D13</b> 67 127 70 6                                                                                                                                                                 | <b>19/07</b> 86 145 0 11                            | <b>6/2</b> 85 109 107 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 230 60 36 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 116 108 59 7          | 2/2 118 113 79 6                               | 3 87 90 110 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55 93 105 74 6                                               | 1 125 125 75 4                                 | 5 105 133 100 3                                  | robe Qmn Qmu Qpg Qp                                                 | (Quarz- und Li                           | 32 2                                                                                 | 33 0                                | 27 0                           | 27 0                          | 13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 0 0                         | 38 0                                                         | 28 0                                                                                                          | 12 0                             | 1 0                             | 7 0                          |                  | 4 0                                  | 4 0                           | 1 0                                 | 0                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                           |                             | odalbestandteile u                              | 6 21 188 160 2                                                                                                          | 55 38 244 97 4                                                           |                                                                  | 78 17 256 111 14                                                                                          | 20 27 122 27 124 2<br>20 27 124 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 54 162 144 0<br>10 20 237 124 2                                                                                           | im Mag Lmet Lsed Glas                                                                                                        | tmodalbestandte                                   |
|                                             | <b>KS 33</b> 28 126 74 77 §                                                             | 29/03 20 57 96 175 1                             | P11/2 66 144 28 121 1                             | 013 67 127 70 65 3                                                                                                                                                                     | 9/07 86 145 0 113 6                                 | <b>5/2</b> 85 109 107 49 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 230 60 36 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 2/2 118 113 79 68 (                            | 3 87 90 110 105 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55 93 105 74 61 1                                            | 1 125 125 75 42 (                              | 5 105 133 100 32 0                               | robe Qmn Qmu Qpg Qps Qp                                             | (Quarz- und Lithol                       | 32 2 41                                                                              |                                     | 27 0 33                        | 27 0 20                       | 13 0 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 98 0 85<br>/8 0 c7                                           |                                                                                                               | 12 0 69                          | 1 0 116                         | 7 0 119                      |                  | 4 0 126                              | 4 0 106                       | 1 0 79                              | 0 100                          | 4 0 - 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0 - 55                    | 0 0 64                      | odalbestandteile und                            | 6 21 188 160 2 -                                                                                                        | 55 38 244 97 4 -                                                         | 85 19 242 126 16 -                                               |                                                                                                           | - 7 471 107 07 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 54 162 144 0 -                                                                                                            | im Mag Lmet Lsed Glas Sed                                                                                                    | tmodalbestandteile u                              |
|                                             | <b>(S 38)</b> 28 126 74 77 9 1                                                          | 29/03 20 57 96 175 19 3                          | P11/2 66 144 28 121 16 1                          | <b>D13</b> 67 127 70 65 3 1                                                                                                                                                            | 9/07 86 145 0 113 6 (                               | <b>6/2</b> 85 109 107 49 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>0</b> 230 60 36 10 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 116 108 59 79 12 1    | 2/2 118 113 79 68 0                            | 3         87         90         110         105         0         ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5</b> 5 93 105 74 61 11 9                                 | 1 125 125 75 42 0 3                            | 5 105 133 100 32 0 (                             | robe Qmn Qmu Qpg Qps QpI C                                          | (Quarz- und Lithoklas                    | 32 2 41 6,79                                                                         |                                     | 27 0 33 6,80                   | 27 0 20 6,83                  | 13 0 67 6,83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 38 0 86 676<br>38 0 0 c2                                     | 28 0 254 6,75                                                                                                 | 12 0 69 6,77                     | 1 0 116 4,58                    | 7 0 119 6.86                 | 0 0 94 6,87      | 4 0 126 6,80                         | 4 0 106 6,80                  | 1 0 79 6,80                         | 5 0 100 6,81                   | 4 0 22 6,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0 55 6.84                 | 0 0 107 684                 | odalbestandteile und bere                       | 6 21 188 160 2 - 1,75                                                                                                   | 55 38 244 97 4 - 2,04                                                    | 85 19 242 126 16 - 2,65                                          | $10^{-1}$ $11^{-256}$ $111^{-14}$ $-2,52^{-27}$                                                           | $\frac{1}{70}$ $\frac{2}{47}$ $\frac{2}{570}$ $\frac{124}{47}$ $\frac{2}{570}$ $\frac{2}{47}$ $\frac{2}{570}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 54 162 144 0 - 1,61<br>10 20 237 124 2 - 2,21                                                                             | im Mag Lmet Lsed Glas Sed Q/L                                                                                                | tmodalbestandteile und I                          |
|                                             | <b>(S 33</b> 28 126 74 77 9 19 0                                                        | <b>29/03</b> 20 57 96 175 19 3 0                 | P11/2 66 144 28 121 16 1 (                        | 013 67 127 70 65 3 11 1                                                                                                                                                                | <b>19/07</b> 86 145 0 113 6 0 0                     | <b>6/2</b> 85 109 107 49 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S         S         66         32         168         14         8         0           0         230         60         36         10         1         9         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 116 108 59 79 12 13 0 | 2/2 118 113 79 68 0 1 (                        | <b>3</b> 87 90 110 105 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55 93 105 74 61 11 9 (                                       | 1 125 125 75 42 0 3 (                          | 5 105 133 100 32 0 0 2                           | robe amn amu apg aps api c st                                       | (Quarz- und Lithoklastenv                | 32 2 41 6,79 2,04                                                                    |                                     | 27 0 33 6,80 2,31              | 27 0 20 6,83 2,57             | 13 0 67 6,83 2,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 25 U 8/ 6,76 2,23<br>38 0 86 6,76 2,23                       |                                                                                                               | 12 0 69 6,77 2,43                | 1 0 116 4,58 5,68               | 7 0 119 6.86 3.71            | 0 0 94 6,87 6,87 | 4 0 126 6,80 4,24                    | 4 0 106 6,80 4,21             | 1 0 79 6,80 3,41                    | 5 0 100 6,81 3,24              | 4 0 22 6,84 4,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0 55 6.84 4.94            | 0 0 64 6,83 6,83            | odalbestandteile und berechn                    | 36 21 188 160 2 - 1,75 -0,05                                                                                            | 38 244 97 4 - 2,04 -0,23                                                 |                                                                  | 78 17 256 111 14 - 2,52 0,00                                                                              | $\frac{1}{20}$ $\frac{1}{47}$ $\frac{1}{207}$ $\frac{1}{124}$ $\frac{2}{124}$ $\frac{2}{124}$ $\frac{2}{124}$ $\frac{2}{124}$ $\frac{2}{124}$ $\frac{2}{124}$ $\frac{1}{124}$ $\frac{1}{1$ | 8 54 162 144 0 - 1,61 0,21<br>10 20 237 124 2 - 2,21 0.00                                                                   | im Mag Lmet Lsed Glas Sed Q/L Q/F                                                                                            | tmodalbestandteile und bere                       |
|                                             | <b>\S 33</b> 28 126 74 77 9 19 0 2                                                      | <b>29/03</b> 20 57 96 175 19 3 0 0               | <b>P11/2</b> 66 144 28 121 16 1 0 1               | <b>D13</b> 67 127 70 65 3 11 1 5                                                                                                                                                       | 9/07 86 145 0 113 6 0 0 0                           | <b>6/2</b> 85 109 107 49 1 1 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 230 60 36 10 1 9 26 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 2/2 118 113 79 68 0 1 0 0                      | <b>3</b> 87 90 110 105 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>35</b> 93 105 74 61 11 9 0 (                              | 1 125 125 75 42 0 3 0 (                        | 5 105 133 100 32 0 0 4 (                         | robe Amn Amu Apg Aps Apl C St Ss                                    | (Quarz- und Lithoklastenvarie)           | 32 2 41 6,79 2,04 -                                                                  |                                     | 27 0 33 6,80 2,31 -            | 27 0 20 6,83 2,57 -           | 13 0 67 6,83 2,96 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 25 U 8/ 6,76 2,23 -<br>38 0 86 6,76 2,23 -                   |                                                                                                               | 12 0 69 6,77 2,43 -              | 1 0 116 4,58 5,68 -             | 7 0 119 6.86 3.71 -          |                  | 4 0 126 6,80 4,24 -                  | 4 0 106 6,80 4,21 -           | 1 0 79 6,80 3,41 -                  | 5 0 100 6,81 3,24 -            | 4 0 22 6,84 4,27 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | 0 0 64 6,83 6,83 -          | odalbestandteile und berechnete I               | 36 21 188 160 2 - 1,75 -0,05 -0,16                                                                                      | 35 38 244 97 4 - 2,04 -0,23 -0,92                                        |                                                                  | 78 $17$ $256$ $111$ $14$ - $2,52$ $0,00$ - $0,84$                                                         | 70 47 620 124 2 - 2,31 0,08 -0,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 54 162 144 0 - 1,61 0,21 -0,12                                                                                            | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/<br>Lsed Glas Sed Immodel Ln                       | tmodalbestandteile und berechne                   |
|                                             | <b>\S 33</b> 28 126 74 77 9 19 0 2 (                                                    | 29/03 20 57 96 175 19 3 0 0 (                    | P11/2 66 144 28 121 16 1 0 1 (                    | 013 67 127 70 65 3 11 1 5 4                                                                                                                                                            | 9/07 86 145 0 113 6 0 0 0 0                         | <b>6/2</b> 85 109 107 49 1 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9         39         96         32         168         14         8         0         0         1         9         26         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0< |                         | 2/2 118 113 79 68 0 1 0 0 0                    | 3 87 90 110 105 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>35</b> 93 105 74 61 11 9 0 0 (                            | 1 125 125 75 42 0 3 0 0 (                      | 5 105 133 100 32 0 0 4 0 0                       | robe Amn Amu Apg Aps Apl C St Ssi Ss                                | (Quarz- und Lithoklastenvarietätei       | 32 2 41 6,79 2,04                                                                    | 33 0 50 6,81 2,45                   | 27 0 33 6,80 2,31              | 27 0 20 6,83 2,57             | 13 0 67 6,83 2,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 25 U 86 676 2.23 38 0 86 676 2.23                            | 28 0 254 6,75 2,37                                                                                            | 12 0 69 6,77 2,43                | 1 0 116 4,58 5,68               | 7 0 119 6.86 3.71            |                  | 4 0 126 6,80 4,24                    | 4 0 106 6,80 4,21             | 1 0 79 6,80 3,41                    | 5 0 100 6,81 3,24              | 4 0 22 6,84 4,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0 55 6.84 4.94            | 0 0 64 6,83 6,83            | odalbestandteile und berechnete Para            | 36 21 188 160 2 - 1,75 -0,05 -0,16 0,29                                                                                 | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,67                                   | 25 19 242 126 16 - 2,65 -0,16 -0,65 1,39                         |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144 0 - 1,61 0,21 -0,12 1,58<br>10 20 237 124 2 - 232 0.00 0.65 2.00                                               | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi                                                                                 | tmodalbestandteile und berechnete F               |
|                                             | <b>\\$ 3\\$</b> 28 126 74 77 9 19 0 2 0 2                                               | 29/03 20 57 96 175 19 3 0 0 0 0                  | P11/2 66 144 28 121 16 1 0 1 0 (                  | 013 67 127 70 65 3 11 1 5 4 1                                                                                                                                                          | 9/07 86 145 0 113 6 0 0 0 0 0                       | 6/2         85         109         107         49         1         1         0         0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 230 60 36 10 1 9 26 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 2/2 118 113 79 68 0 1 0 0 0 0                  | <b>3</b> 87 90 110 105 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5</b> 93 105 74 61 11 9 0 0 0 0                           | 1 125 125 75 42 0 3 0 0 0 0                    | 5 105 133 100 32 0 0 4 0 0 (                     | robe Qmn Qmu Qpg Qps Qpt C St Ssi Ssa Ly                            | (Quarz- und Lithoklastenvarietäten in    | 32 2 41 6,79 2,04 0,58 -                                                             | 33 0 50 6,81 2,45 0,50 -            | 27 0 33 6,80 2,31 0,70 -       | 27 0 20 6,83 2,570,26 -       | 13         0         -         -         67         6,83         2,96         -         -         1,36         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 25 U 86 676 216 - 0,84 -                                     | 28 0 254 6,75 2,37 3,58 -                                                                                     | 12 0 69 6,77 2,43 1,35           | 1 0 116 4,58 5,68 4,25          | 7 0 119 6.86 3.71 2.57 -     |                  | 4 0 126 6,80 4,24 3,10 -             | 4 0 106 6,80 4,21 4,88        | 1 0 79 6,80 3,41 3,74 -             | 5 0 100 6,81 3,24 1,97 -       | 4 0 22 6,84 4,27 1,66 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0 55 6.84 4.94 2.45       |                             | odalbestandteile und berechnete Paramet         | 36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 -                                                                               | 55 38 244 97 4 - 2,04 -0,23 -0,92 1,67 -                                 |                                                                  | /8 1/ 256 111 14 - 2,52 0,00 -0,84 2,08 -                                                                 | 70 47 550 444 44 - 2,31 0,08 -0,65 3,89 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 54 162 144 0 - 1,61 0,21 -0,12 1,58 -                                                                                     | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ I<br>Lmg/ Lv/Pl Sed/ I<br>Lsed Met                                         | tmodalbestandteile und berechnete Para            |
| 10 10 153 77 50 8 A D 1 D D                 | <b>\\$ 38</b> 28 126 74 77 9 19 0 2 0 2 (                                               | 229/03 20 57 96 175 19 3 0 0 0 0 0               | P11/2 66 144 28 121 16 1 0 1 0 0 (                | 013 67 127 70 65 3 11 1 5 4 1 (                                                                                                                                                        | 9/07 86 145 0 113 6 0 0 0 0 0 0 0                   | 6/2         85         109         107         49         1         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         1         0         0         1         0         0         1         0         1         0         0         1         0         0         1         0         0         1         0         1         0 | 5         59         56         32         168         14         8         0         0         7         4         0           0         230         60         36         10         1         9         26         0         0         0         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 2/2 118 113 79 68 0 1 0 0 0 0 0                | 3         87         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td><b>35</b> 93 105 74 61 11 9 0 0 0 0 0 0</td> <td>1 125 125 75 42 0 3 0 0 0 0 0</td> <td>5 105 133 100 32 0 0 4 0 0 0 (</td> <th>robe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly Mt</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32 2 41 6,79 2,04 0,58 -2,66</td> <td>33 0 50 6,81 2,45 0,50 -4,04</td> <td>27 0 33 6,80 2,31 0,70 -3,66</td> <td>27 0 20 6,83 2,570,26 -3,57</td> <td>13 0 67 6,83 2,96 1,36 -3,07</td> <td></td> <td>25 U 86 676 2,23 0,84 -3,85<br/>38 0 86 676 2,16 - 0,73 -3.05</td> <td>28 0 254 6,75 2,37 3,58 -2,19</td> <td>12 0 69 6,77 2,43 1,35 -3,30</td> <td>1 0 116 4,58 5,68 4,25 -0,78</td> <td></td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,96</td> <td>4 0 106 6,80 4,21 4,88 0,00</td> <td>1 0 79 6,80 3,41 3,74 -0,85</td> <td>5 0 100 6,81 3,24 1,97 -2,94</td> <td>4 0 22 6,84 4,27 1,66 -1,93</td> <td>1 0 55 6.84 4.94 2.45 -1.79</td> <td></td> <td>odalbestandteile und berechnete Parameter in</td> <td>36 21 188 160 2 - 1,75 -0,05 -0,16 0,29</td> <td>36 244 97 4 - 2,04 -0,23 -0,92 1,67</td> <td>85 19 242 126 16 - 2,65 -0,16 -0,65 1,39</td> <td>/8 1/ 256 111 14 - 2,52 0,00 -0,84 2,08</td> <td>70 <math>47</math> <math>770</math> <math>201</math> <math>124</math> <math>2</math> <math> 2,31</math> <math>0,08</math> <math>-0,65</math> <math>3,89</math> <math>  -</math></td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,58</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/<br/>Lsed Met Met</td> <td>tmodalbestandteile und berechnete Paramete</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>35</b> 93 105 74 61 11 9 0 0 0 0 0 0                      | 1 125 125 75 42 0 3 0 0 0 0 0                  | 5 105 133 100 32 0 0 4 0 0 0 (                   | robe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly Mt                         | (Quarz- und Lithoklastenvarietäten in %) | 32 2 41 6,79 2,04 0,58 -2,66                                                         | 33 0 50 6,81 2,45 0,50 -4,04        | 27 0 33 6,80 2,31 0,70 -3,66   | 27 0 20 6,83 2,570,26 -3,57   | 13 0 67 6,83 2,96 1,36 -3,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 25 U 86 676 2,23 0,84 -3,85<br>38 0 86 676 2,16 - 0,73 -3.05 | 28 0 254 6,75 2,37 3,58 -2,19                                                                                 | 12 0 69 6,77 2,43 1,35 -3,30     | 1 0 116 4,58 5,68 4,25 -0,78    |                              |                  | 4 0 126 6,80 4,24 3,10 -1,96         | 4 0 106 6,80 4,21 4,88 0,00   | 1 0 79 6,80 3,41 3,74 -0,85         | 5 0 100 6,81 3,24 1,97 -2,94   | 4 0 22 6,84 4,27 1,66 -1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0 55 6.84 4.94 2.45 -1.79 |                             | odalbestandteile und berechnete Parameter in    | 36 21 188 160 2 - 1,75 -0,05 -0,16 0,29                                                                                 | 36 244 97 4 - 2,04 -0,23 -0,92 1,67                                      | 85 19 242 126 16 - 2,65 -0,16 -0,65 1,39                         | /8 1/ 256 111 14 - 2,52 0,00 -0,84 2,08                                                                   | 70 $47$ $770$ $201$ $124$ $2$ $ 2,31$ $0,08$ $-0,65$ $3,89$ $  -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 54 162 144 0 - 1,61 0,21 -0,12 1,58                                                                                       | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/<br>Lsed Met Met                                                       | tmodalbestandteile und berechnete Paramete        |
| 10 10 153 77 50 8 1 0 1 0 0 0               | <b>(S 33</b>   28   126   74   77   9   19   0   2   0   2   0   0                      | <b>229/03</b> 20 57 96 175 19 3 0 0 0 0 0 0      | <b>P11/2</b> 66 144 28 121 16 1 0 1 0 0 0 0       | 013 67 127 70 65 3 11 1 5 4 1 0 0                                                                                                                                                      | 9/07 86 145 0 113 6 0 0 0 0 0 0 0 0                 | 6/2         85         109         107         49         1         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 2/2 118 113 79 68 0 1 0 0 0 0 0 0              | 3         87         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td><b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0</td> <td>1 125 125 75 42 0 3 0 0 0 0 0 0 0</td> <td>5 105 133 100 32 0 0 4 0 0 0 0 0</td> <th>robe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly Mt Ms</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32   2   -   -   41   6,79   2,04   -   -   0,58  -2,66   -  </td> <td>33 0 50 6,81 2,45 0,50 -4,04 -</td> <td>27 0 33 6,80 2,31 0,70 -3,66 -</td> <td>27 0 20 6,83 2,570,26 -3,57 -</td> <td>13         0         -         -         67         6,83         2,96         -         -         1,36         -3,07         -</td> <td>38 0 79 6.75 2.06 0.92 -3.72 -</td> <td>25 U 87 6,76 2,23 0,84 -3,85</td> <td>28 0 254 6,75 2,37 3,58 -2,19 -</td> <td>12 0 69 6,77 2,43 1,35 -3,30 -</td> <td>1 0 116 4,58 5,68 4,25 -0,78 -</td> <td></td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,96 -</td> <td>4 0 106 6,80 4,21 4,88 0,00 -</td> <td>1 0 79 6,80 3,41 3,74 -0,85 -</td> <td>5 0 100 6,81 3,24 1,97 -2,94 -</td> <td>4 0 22 6,84 4,27 - 1,66 -1,93 -</td> <td></td> <td></td> <td>odalbestandteile und berechnete Parameter in %)</td> <td>36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 - 1,33 /</td> <td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2</td> <td></td> <td>/8 1/ 256 1111 14 - 2,52 0,00 -0,84 2,081,18</td> <td>70 <math>47</math> <math>720</math> <math>124</math> <math>124</math> <math>2</math> <math> 2.31</math> <math>0.08</math> <math>-0.65</math> <math>3.89</math> <math>  -1.07</math></td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1<br/>10 20 237 124 2 - 2,21 0,00 0,65 3,00 - 4,07 2</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ Mag/ D1<br/>Lsed Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ Mag/ D1</td> <td>tmodalbestandteile und berechnete Parameter in</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0                     | 1 125 125 75 42 0 3 0 0 0 0 0 0 0              | 5 105 133 100 32 0 0 4 0 0 0 0 0                 | robe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly Mt Ms                      | (Quarz- und Lithoklastenvarietäten in %) | 32   2   -   -   41   6,79   2,04   -   -   0,58  -2,66   -                          | 33 0 50 6,81 2,45 0,50 -4,04 -      | 27 0 33 6,80 2,31 0,70 -3,66 - | 27 0 20 6,83 2,570,26 -3,57 - | 13         0         -         -         67         6,83         2,96         -         -         1,36         -3,07         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38 0 79 6.75 2.06 0.92 -3.72 - | 25 U 87 6,76 2,23 0,84 -3,85                                 | 28 0 254 6,75 2,37 3,58 -2,19 -                                                                               | 12 0 69 6,77 2,43 1,35 -3,30 -   | 1 0 116 4,58 5,68 4,25 -0,78 -  |                              |                  | 4 0 126 6,80 4,24 3,10 -1,96 -       | 4 0 106 6,80 4,21 4,88 0,00 - | 1 0 79 6,80 3,41 3,74 -0,85 -       | 5 0 100 6,81 3,24 1,97 -2,94 - | 4 0 22 6,84 4,27 - 1,66 -1,93 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                             | odalbestandteile und berechnete Parameter in %) | 36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 - 1,33 /                                                                        | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2                             |                                                                  | /8 1/ 256 1111 14 - 2,52 0,00 -0,84 2,081,18                                                              | 70 $47$ $720$ $124$ $124$ $2$ $ 2.31$ $0.08$ $-0.65$ $3.89$ $  -1.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1<br>10 20 237 124 2 - 2,21 0,00 0,65 3,00 - 4,07 2                               | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ Mag/ D1<br>Lsed Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ Mag/ D1     | tmodalbestandteile und berechnete Parameter in    |
|                                             | <b>\\$ 33</b> 28 126 74 77 9 19 0 2 0 2 0 0 2                                           | 22/03 20 57 96 175 19 3 0 0 0 0 0 0 0            | <b>211/2</b> 66 144 28 121 16 1 0 1 0 0 0 0 2     | <b>313</b> 67 127 70 65 3 11 1 5 4 1 0 0 7                                                                                                                                             | 9/07 86 145 0 113 6 0 0 0 0 0 0 0 0 0 0             | 6/2         85         109         107         49         1         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | <b>2/2</b> 118 113 79 68 0 1 0 0 0 0 0 0 0 0   | 3         87         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td><b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0</td> <td>125 125 75 42 0 3 0 0 0 0 0 0 0 0</td> <td>5 105 133 100 32 0 0 4 0 0 0 0 0 0 0</td> <th>robe amn amu apg aps apt c St Ssi Ssa Ly Mt Mss Mr</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32 2 41 6,79 2,04 0,58 -2,66</td> <td>33 0 50 6,81 2,45 0,50 -4,04</td> <td>27 0 33 6,80 2,31 0,70 -3,66</td> <td>27 0 20 6,83 2,570,26 -3,57</td> <td>13         0         -         67         6,83         2,96         -         1,36         -3,07         -         -</td> <td>38 0 79 6.75 2.06 0.92 -3.72</td> <td>25 U 86 676 2,23 0,84 -3,85</td> <td>28 0 254 6,75 2,37 - 3,58 -2,19</td> <td>12 0 69 6,77 2,43 1,35 -3,30</td> <td>1 0 116 4,58 5,68 4,25 -0,78</td> <td>7 0 119 6.86 3.71 2.57 -2.48</td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,96</td> <td>4 0 106 6,80 4,21 4,88 0,00</td> <td>1 0 79 6,80 3,41 3,74 -0,85</td> <td>5 0 100 6,81 3,24 1,97 -2,94</td> <td>4 0 22 6,84 4,27 - 1,66 -1,93</td> <td>1 0 55 6.84 4.94 2.45 -1.79</td> <td>0 0 64 6,83 6,83 3,02 -1,52</td> <td>odalbestandteile und berechnete Parameter in %)</td> <td>36   21   188   160   2   -   1,75  -0,05  -0,16   0,29   -   -  -1,33   1,70  -1</td> <td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2</td> <td>85 19 242 126 16 - 2,65 -0,16 -0,65 1,391,40 2,20 -1</td> <td>/8 1/ 256 111 14 - 2,52 0,00 -0,84 2,081,18 1,99 -1</td> <td></td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ Mag/ D1 D2 I</td> <td>tmodalbestandteile und berechnete Parameter in %)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0                 | 125 125 75 42 0 3 0 0 0 0 0 0 0 0              | 5 105 133 100 32 0 0 4 0 0 0 0 0 0 0             | robe amn amu apg aps apt c St Ssi Ssa Ly Mt Mss Mr                  | (Quarz- und Lithoklastenvarietäten in %) | 32 2 41 6,79 2,04 0,58 -2,66                                                         | 33 0 50 6,81 2,45 0,50 -4,04        | 27 0 33 6,80 2,31 0,70 -3,66   | 27 0 20 6,83 2,570,26 -3,57   | 13         0         -         67         6,83         2,96         -         1,36         -3,07         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 0 79 6.75 2.06 0.92 -3.72   | 25 U 86 676 2,23 0,84 -3,85                                  | 28 0 254 6,75 2,37 - 3,58 -2,19                                                                               | 12 0 69 6,77 2,43 1,35 -3,30     | 1 0 116 4,58 5,68 4,25 -0,78    | 7 0 119 6.86 3.71 2.57 -2.48 |                  | 4 0 126 6,80 4,24 3,10 -1,96         | 4 0 106 6,80 4,21 4,88 0,00   | 1 0 79 6,80 3,41 3,74 -0,85         | 5 0 100 6,81 3,24 1,97 -2,94   | 4 0 22 6,84 4,27 - 1,66 -1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0 55 6.84 4.94 2.45 -1.79 | 0 0 64 6,83 6,83 3,02 -1,52 | odalbestandteile und berechnete Parameter in %) | 36   21   188   160   2   -   1,75  -0,05  -0,16   0,29   -   -  -1,33   1,70  -1                                       | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2                       | 85 19 242 126 16 - 2,65 -0,16 -0,65 1,391,40 2,20 -1             | /8 1/ 256 111 14 - 2,52 0,00 -0,84 2,081,18 1,99 -1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1                                                                           | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pl Sed/ Mag/ D1 D2 I                                                               | tmodalbestandteile und berechnete Parameter in %) |
|                                             | <b>(\$ 33</b> 28   126   74   77   9   19   0   2   0   2   0   0   2   2               | <b>22/03</b> 20 57 96 175 19 3 0 0 0 0 0 0 0 0 2 | <b>211/2</b> 66 144 28 121 16 1 0 1 0 0 0 0 4 8   | <b>3</b> 67 127 70 65 3 11 1 5 4 1 0 0 1 2                                                                                                                                             | 9/07 86 145 0 113 6 0 0 0 0 0 0 0 0 0 0 0 3         | 6/2         85         109         107         49         1         1         0         0         1         0         0         3         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | <b>2/2</b> 118 113 79 68 0 1 0 0 0 0 0 0 0 1 5 | 3         87         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td><b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0</td> <td>1 125 125 75 42 0 3 0 0 0 0 0 0 0 0 0 0 0</td> <td>5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0</td> <th>robe amn amu apg aps api c St Ssi Ssa Ly Mt Mss Mph Mg</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32 2 41 6,79 2,04 0,58 -2,66</td> <td>33 0 50 6,81 2,45 0,50 -4,04</td> <td>27 0 33 6,80 2,31 0,70 -3,66</td> <td>27 0 20 6,83 2,570,26 -3,57</td> <td>13         0         -         -         67         6,83         2,96         -         -         1,36         -3,07         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td> <td>38 0 79 6.75 2.06 0.92 -3.72</td> <td>25 0 86 676 2,23 0,84 -3,85</td> <td>28 0 254 6,75 2,37 3,58 -2,19</td> <td>12 0 69 6,77 2,43 1,35 -3,30</td> <td>1 0 116 4,58 5,68 4,25 -0,78</td> <td></td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,96</td> <td>4 0 106 6,80 4,21 4,88 0,00</td> <td>1 0 79 6,80 3,41 3,74 -0,85</td> <td>5 0 100 6,81 3,24 1,97 -2,94</td> <td>4 0 22 6,84 4,27 1,66 -1,93</td> <td></td> <td></td> <td>odalbestandteile und berechnete Parameter in %)</td> <td>36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 - 1,33 1,70 -1,35 -1</td> <td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2</td> <td>85 19 242 126 16 - 2,65 -0,16 -0,65 1,391,40 2,20 -1,73 -2</td> <td></td> <td>76 47 526 444 44 - 2,31 U,08 -0,65 3,891,07 1,83 -1,27 -2</td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1<br/>10 20 237 124 2 - 234 0,00 0,65 2,00</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/ D1 D2 D3 I<br/>Lsed Met Met</td> <td>tmodalbestandteile und berechnete Parameter in %)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0             | 1 125 125 75 42 0 3 0 0 0 0 0 0 0 0 0 0 0      | 5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0         | robe amn amu apg aps api c St Ssi Ssa Ly Mt Mss Mph Mg              | (Quarz- und Lithoklastenvarietäten in %) | 32 2 41 6,79 2,04 0,58 -2,66                                                         | 33 0 50 6,81 2,45 0,50 -4,04        | 27 0 33 6,80 2,31 0,70 -3,66   | 27 0 20 6,83 2,570,26 -3,57   | 13         0         -         -         67         6,83         2,96         -         -         1,36         -3,07         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 0 79 6.75 2.06 0.92 -3.72   | 25 0 86 676 2,23 0,84 -3,85                                  | 28 0 254 6,75 2,37 3,58 -2,19                                                                                 | 12 0 69 6,77 2,43 1,35 -3,30     | 1 0 116 4,58 5,68 4,25 -0,78    |                              |                  | 4 0 126 6,80 4,24 3,10 -1,96         | 4 0 106 6,80 4,21 4,88 0,00   | 1 0 79 6,80 3,41 3,74 -0,85         | 5 0 100 6,81 3,24 1,97 -2,94   | 4 0 22 6,84 4,27 1,66 -1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                             | odalbestandteile und berechnete Parameter in %) | 36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 - 1,33 1,70 -1,35 -1                                                            | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2                 | 85 19 242 126 16 - 2,65 -0,16 -0,65 1,391,40 2,20 -1,73 -2       |                                                                                                           | 76 47 526 444 44 - 2,31 U,08 -0,65 3,891,07 1,83 -1,27 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1<br>10 20 237 124 2 - 234 0,00 0,65 2,00                             | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/ D1 D2 D3 I<br>Lsed Met Met                                            | tmodalbestandteile und berechnete Parameter in %) |
| <b>12</b> 10 153 77 50 8 1 0 1 0 0 0 1 33 6 | <b>(\$ 33</b> 28   126   74   77   9   19   0   2   0   2   0   0   2   20   7          | 229/03 20 57 96 175 19 3 0 0 0 0 0 0 0 0 27 1    | <b>211/2</b> 66 144 28 121 16 1 0 1 0 0 0 0 4 8 4 | <b>313</b> 67 127 70 65 3 11 1 5 4 1 0 0 1 26 4                                                                                                                                        | 9/07 86 145 0 113 6 0 0 0 0 0 0 0 0 0 0 39 2        | 6/2         85         109         107         49         1         1         0         0         1         0         0         3         22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 2/2 118 113 79 68 0 1 0 0 0 0 0 0 1 5 3        | 37         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>5 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>1 125 125 75 42 0 3 0 0 0 0 0 0 0 0 4 1</td> <td>5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0</td> <th>robe amn amu apg aps api c St Ssi Ssa Ly Mt Mss Mph Mgq Mg</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32 2 41 6,79 2,04 0,58 -2,66</td> <td>33 0 50 6,81 2,45 0,50 -4,04</td> <td>27 0 33 6,80 2,31 0,70 -3,66</td> <td>27 0 20 6,83 2,57 0,26 -3,57</td> <td>13     0     -     -     67     6,83     2,96     -     -     1,36     -3,07     -     -     -</td> <td></td> <td>25 0 86 676 2,23 0,84 3,85</td> <td>28 0 254 6,75 2,37 3,58 -2,19</td> <td>12 0 69 6,77 2,43 1,35 -3,30</td> <td>1 0 116 4,58 5,68 4,25 -0,78</td> <td></td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,96</td> <td>4 0 106 6,80 4,21 4,88 0,00</td> <td>1 0 79 6,80 3,41 3,74 -0,85</td> <td>5 0 100 6,81 3,24 1,97 -2,94</td> <td>4 0 22 6,84 4,27 - 1,66 -1,93</td> <td></td> <td></td> <td>odalbestandteile und berechnete Parameter in %)</td> <td>36   21   188   160   2   -   1,75   -0,05   -0,16   0,29   -   -   -1,33   1,70   -1,35   -1,76   -3</td> <td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6</td> <td>85 19 242 126 16 - 2,65 -0,16 -0,65 1,391,40 2,20 -1,73 -2,48 -5</td> <td>/8 1 / 255 111 14 - 2,52 0,00 -0,84 2,081,18 1,99 -1,86 -2,49 -5</td> <td></td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 4<br/>10 20 237 124 2 - 232 0,00 0,65 3,001,00 1,29 -1,52 -1,65 4</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/ D1 D2 D3 D4 L<br/>Lsed Met Met Met Met Met Met Met Met Met Met</td> <td>tmodalbestandteile und berechnete Parameter in %)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0                  | 1 125 125 75 42 0 3 0 0 0 0 0 0 0 0 4 1        | 5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0       | robe amn amu apg aps api c St Ssi Ssa Ly Mt Mss Mph Mgq Mg          | (Quarz- und Lithoklastenvarietäten in %) | 32 2 41 6,79 2,04 0,58 -2,66                                                         | 33 0 50 6,81 2,45 0,50 -4,04        | 27 0 33 6,80 2,31 0,70 -3,66   | 27 0 20 6,83 2,57 0,26 -3,57  | 13     0     -     -     67     6,83     2,96     -     -     1,36     -3,07     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 25 0 86 676 2,23 0,84 3,85                                   | 28 0 254 6,75 2,37 3,58 -2,19                                                                                 | 12 0 69 6,77 2,43 1,35 -3,30     | 1 0 116 4,58 5,68 4,25 -0,78    |                              |                  | 4 0 126 6,80 4,24 3,10 -1,96         | 4 0 106 6,80 4,21 4,88 0,00   | 1 0 79 6,80 3,41 3,74 -0,85         | 5 0 100 6,81 3,24 1,97 -2,94   | 4 0 22 6,84 4,27 - 1,66 -1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                             | odalbestandteile und berechnete Parameter in %) | 36   21   188   160   2   -   1,75   -0,05   -0,16   0,29   -   -   -1,33   1,70   -1,35   -1,76   -3                   | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6           | 85 19 242 126 16 - 2,65 -0,16 -0,65 1,391,40 2,20 -1,73 -2,48 -5 | /8 1 / 255 111 14 - 2,52 0,00 -0,84 2,081,18 1,99 -1,86 -2,49 -5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 4<br>10 20 237 124 2 - 232 0,00 0,65 3,001,00 1,29 -1,52 -1,65 4 | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/ D1 D2 D3 D4 L<br>Lsed Met         | tmodalbestandteile und berechnete Parameter in %) |
|                                             | <b>\$33</b> 28 126 74 77 9 19 0 2 0 2 0 2 0 2 20 7                                      | 229/03 20 57 96 175 19 3 0 0 0 0 0 0 0 0 27 1 0  |                                                   | 013         67         127         70         65         3         11         1         5         4         1         0         0         1         26         4                       | 9/07 86 145 0 113 6 0 0 0 0 0 0 0 0 0 39 2 0        | 6/2         85         109         107         49         1         1         0         0         1         0         0         3         22         10         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 2/2 118 113 79 68 0 1 0 0 0 0 0 0 0 1 5 3 (    | 87         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td><b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>1 125 125 75 42 0 3 0 0 0 0 0 0 0 4 1 u</td> <td>5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0</td> <th>robe amn amu apg aps apl c St Ssi Ssa Ly Mt Mss Mph Mgq Mgv Mt</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32   2   -   -   41   6,79   2,04   -   -   0,58  -2,66   -   -   -   -   -   -   -</td> <td>33 0 50 6,81 2,45 0,50 -4,04</td> <td>27 0 33 6,80 2,31 0,70 -3,66</td> <td>27 0 20 6,83 2,570,26 -3,57</td> <td>13 0 67 6,83 2,96 1,36 -3,07</td> <td>38 0 79 6.75 2.06 0.92 -3.72</td> <td></td> <td>28 0 254 6,75 2,37 3,58 -2,19</td> <td>12 0 69 6,77 2,43 1,35 -3,30</td> <td>1 0 116 4,58 5,68 4,25 -0,78</td> <td></td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,96</td> <td>4 0 106 6,80 4,21 4,88 0,00</td> <td>1 0 79 6,80 3,41 3,74 -0,85</td> <td>5 0 100 6,81 3,24 1,97 -2,94</td> <td>4 0 22 6,84 4,27 - 1,66 -1,93</td> <td></td> <td></td> <td>odalbestandteile und berechnete Parameter in %)</td> <td>36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 1,33 1,70 -1,35 -1,76 -3,93 2</td> <td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,</td> <td></td> <td>/8   1/   258   111   14   -   2,52   0,00   -0,84   2,08   -   -1,18   1,99   -1,86   -2,49   -5,41   4,</td> <td></td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 4,33 2,<br/>10 20 237 124 2</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi Sed/ Mag/ D1 D2 D3 D4 D5 C</td> <td>tmodalbestandteile und berechnete Parameter in %)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0           | 1 125 125 75 42 0 3 0 0 0 0 0 0 0 4 1 u        | 5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0   | robe amn amu apg aps apl c St Ssi Ssa Ly Mt Mss Mph Mgq Mgv Mt      | (Quarz- und Lithoklastenvarietäten in %) | 32   2   -   -   41   6,79   2,04   -   -   0,58  -2,66   -   -   -   -   -   -   -  | 33 0 50 6,81 2,45 0,50 -4,04        | 27 0 33 6,80 2,31 0,70 -3,66   | 27 0 20 6,83 2,570,26 -3,57   | 13 0 67 6,83 2,96 1,36 -3,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38 0 79 6.75 2.06 0.92 -3.72   |                                                              | 28 0 254 6,75 2,37 3,58 -2,19                                                                                 | 12 0 69 6,77 2,43 1,35 -3,30     | 1 0 116 4,58 5,68 4,25 -0,78    |                              |                  | 4 0 126 6,80 4,24 3,10 -1,96         | 4 0 106 6,80 4,21 4,88 0,00   | 1 0 79 6,80 3,41 3,74 -0,85         | 5 0 100 6,81 3,24 1,97 -2,94   | 4 0 22 6,84 4,27 - 1,66 -1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                             | odalbestandteile und berechnete Parameter in %) | 36 21 188 160 2 - 1,75 -0,05 -0,16 0,29 1,33 1,70 -1,35 -1,76 -3,93 2                                                   | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,     |                                                                  | /8   1/   258   111   14   -   2,52   0,00   -0,84   2,08   -   -1,18   1,99   -1,86   -2,49   -5,41   4, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 4,33 2,<br>10 20 237 124 2                                       | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi Sed/ Mag/ D1 D2 D3 D4 D5 C                                                      | tmodalbestandteile und berechnete Parameter in %) |
|                                             | <b>\\$33</b> 28 126 74 77 9 19 0 2 0 2 0 2 0 2 2 20 7 1 0                               | 29/03 20 57 96 175 19 3 0 0 0 0 0 0 0 0 27 1 0 0 |                                                   | OTS         67         127         70         65         3         11         1         5         4         1         0         0         1         26         4         1         (1) | 9/07 86 145 0 113 6 0 0 0 0 0 0 0 0 0 39 2 0 (      | 6/2         85         109         107         49         1         1         0         0         1         0         0         3         22         10         3         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 2/2 118 113 79 68 0 1 0 0 0 0 0 0 0 1 5 3 0 0  | 37         90         110         105         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td><b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td><u>125</u> 125 75 42 0 3 0 0 0 0 0 0 0 4 1 0 (</td> <td>5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0</td> <th>robe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly Mt Mss Mph Mgq Mgv Mgs Mg</th> <th>(Quarz- und Lithoklastenvarietäten in %)</th> <td>32   2   -   -   41   6,79   2,04 -   -   0,58 -2,66 -   -   -   -   -   -   -   -2.</td> <td>33 0 50 6.81 2.45 0.50 -4.040.</td> <td>27 0 33 6,80 2,31 0,70 3,661,</td> <td>27 0 20 6,83 2,570,26 -3,57</td> <td>13     0     -     -     67     6,83     2,96     -     1,36     -3,07     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<td></td><td></td><td>28     0     -     -     254     6,75     2,37     -     -     3,58     -2,19     -     -     -     -     0,7</td><td>12 0 69 6,77 2,43 1,35 -3,30</td><td>1 0 116 4.58 5.68 4.25 -0.780.</td><td></td><td></td><td>4 0 126 6,80 4,24 3,10 -1,960,</td><td>4 0 106 6,80 4,21 4,88 0,000,</td><td>1 0 79 6,80 3,41 3,74 -0,850,</td><td>5 0 100 6,81 3,24 1,97 -2,94</td><td>4     0     -     -     22     6.84     4.27     -     1.66     -1.93     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<td></td><td></td><td>odalbestandteile und berechnete Parameter in %)</td><td>36   21   188   160   2   -   1,75  -0,05  -0,16   0,29   -   -  -1,33   1,70  -1,35  -1,76  -3,93   2,96   .</td><td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,38 .</td><td></td><td></td><td></td><td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 -4,33 2,74 .</td><td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi Sed/ Mag/ D1 D2 D3 D4 D5 D6 D</td><td>tmodalbestandteile und berechnete Parameter in %)</td></td></td> | <b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | <u>125</u> 125 75 42 0 3 0 0 0 0 0 0 0 4 1 0 ( | 5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0   | robe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly Mt Mss Mph Mgq Mgv Mgs Mg  | (Quarz- und Lithoklastenvarietäten in %) | 32   2   -   -   41   6,79   2,04 -   -   0,58 -2,66 -   -   -   -   -   -   -   -2. | 33 0 50 6.81 2.45 0.50 -4.040.      | 27 0 33 6,80 2,31 0,70 3,661,  | 27 0 20 6,83 2,570,26 -3,57   | 13     0     -     -     67     6,83     2,96     -     1,36     -3,07     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td></td> <td></td> <td>28     0     -     -     254     6,75     2,37     -     -     3,58     -2,19     -     -     -     -     0,7</td> <td>12 0 69 6,77 2,43 1,35 -3,30</td> <td>1 0 116 4.58 5.68 4.25 -0.780.</td> <td></td> <td></td> <td>4 0 126 6,80 4,24 3,10 -1,960,</td> <td>4 0 106 6,80 4,21 4,88 0,000,</td> <td>1 0 79 6,80 3,41 3,74 -0,850,</td> <td>5 0 100 6,81 3,24 1,97 -2,94</td> <td>4     0     -     -     22     6.84     4.27     -     1.66     -1.93     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<td></td><td></td><td>odalbestandteile und berechnete Parameter in %)</td><td>36   21   188   160   2   -   1,75  -0,05  -0,16   0,29   -   -  -1,33   1,70  -1,35  -1,76  -3,93   2,96   .</td><td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,38 .</td><td></td><td></td><td></td><td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 -4,33 2,74 .</td><td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi Sed/ Mag/ D1 D2 D3 D4 D5 D6 D</td><td>tmodalbestandteile und berechnete Parameter in %)</td></td> |                                |                                                              | 28     0     -     -     254     6,75     2,37     -     -     3,58     -2,19     -     -     -     -     0,7 | 12 0 69 6,77 2,43 1,35 -3,30     | 1 0 116 4.58 5.68 4.25 -0.780.  |                              |                  | 4 0 126 6,80 4,24 3,10 -1,960,       | 4 0 106 6,80 4,21 4,88 0,000, | 1 0 79 6,80 3,41 3,74 -0,850,       | 5 0 100 6,81 3,24 1,97 -2,94   | 4     0     -     -     22     6.84     4.27     -     1.66     -1.93     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td></td> <td></td> <td>odalbestandteile und berechnete Parameter in %)</td> <td>36   21   188   160   2   -   1,75  -0,05  -0,16   0,29   -   -  -1,33   1,70  -1,35  -1,76  -3,93   2,96   .</td> <td>35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,38 .</td> <td></td> <td></td> <td></td> <td>8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 -4,33 2,74 .</td> <td>im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi Sed/ Mag/ D1 D2 D3 D4 D5 D6 D</td> <td>tmodalbestandteile und berechnete Parameter in %)</td> |                             |                             | odalbestandteile und berechnete Parameter in %) | 36   21   188   160   2   -   1,75  -0,05  -0,16   0,29   -   -  -1,33   1,70  -1,35  -1,76  -3,93   2,96   .           | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,38 . |                                                                  |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 -4,33 2,74 .                                                     | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/Pi Sed/ Mag/ D1 D2 D3 D4 D5 D6 D                                                   | tmodalbestandteile und berechnete Parameter in %) |
|                                             | <b>(S</b> 33   28   126   74   77   9   19   0   2   0   2   0   0   2   20   7   1   0 | 29/03 20 57 96 175 19 3 0 0 0 0 0 0 0 27 1 0 0 0 | 2112 66 144 28 121 16 1 0 1 0 0 0 0 4 8 4 1 0     | OTS         67         127         70         65         3         11         1         5         4         1         0         0         1         26         4         1         0   | <b>5/07</b> 86 145 0 113 6 0 0 0 0 0 0 0 0 39 2 0 0 | 6/2         85         109         107         49         1         1         0         0         1         0         0         3         22         10         3         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5</b> 93 105 74 61 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                | 5 105 133 100 32 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 | robe amn amu apg aps apt c St Ssi Ssa Ly Mt Mss Mph Mgq Mgv Mgs Mgn | (Quarz- und Lithoklastenvarietäten in %) | 32 2 41 6,79 2,04 0,58 -2,66 2,63 1,2                                                | 33 0 50 6,81 2,45 0,50 4,040,77 1,0 | 27 0 33 6,80 2,31 0,70 -3,66   | 27 0 20 6,83 2,570,26 -3,57   | 13     0     -     -     67     6,83     2,96     -     1,36     -3,07     -     -     -     -     -1,02     1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                              | 28 0 254 6,75 2,37 3,58 -2,19 0,71 0,5                                                                        | 12 0 - 69 6,77 2,43 - 1,35 -3,30 | 1 0 - 116 4.58 5.68 - 4.25 0.78 |                              |                  | 4 0 126 6,80 4,24 3,10 -1,960,11 1,0 | 4 0 106 6,80 4,21 - 4,88 0,00 | 1 0 79 6,80 3,41 3,74 -0,850,04 1,0 | 5 0 100 6,81 3,24 1,97 -2,94   | 4     0     -     -     22     6,84     4,27     -     1,66     -1,93     -     -     -     -     -     -     -     1,12     1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                             | odalbestandteile und berechnete Parameter in %) | 36   21   188   160   2   -   1,75   -0,05   -0,16   0,29   -   -   -1,33   1,70   -1,35   -1,76   -3,93   2,96   -   . | 35 38 244 97 4 - 2,04 -0,23 -0,92 1,671,55 2,06 -2,32 -2,63 -6,62 4,38   |                                                                  |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 54 162 144 0 - 1,61 0,21 -0,12 1,581,00 1,29 -1,52 -1,65 4,33 2,74                                                        | im Mag Lmet Lsed Glas Sed Q/L Q/F Lmq/ Lv/PI Sed/ Mag/ D1 D2 D3 D4 D5 D6 D7 D<br>Lsed Met Met Met Met D1 D2 D3 D4 D5 D6 D7 D | tmodalbestandteile und berechnete Parameter in %) |

S 15

KP 5/3 21

|   | P29/15     | P29/08        | P20/02 | P02/08 | KJ 4/1 | P21/02 | L 14      | P05/06  | P52/01 | P29/17 | P53/02 | P29/13 | TR14/1     | 500/4 6 | Probe |       | SS 13   | C 3      | P29/19            | P30/01             | P21/04           | P21/03   | P29/06   | P21/05   | P29/23        | P29/20        | A 11   | S 11<br>T 6     | P29/22 | P29/15 | P29/01  | P29/08      | P02/08         | KJ 4/1 | P21/02   | L 14                | P05/06           | P52/01 | P29/17 | P53/02   | P29/13   | TR14/1 | P29/16 | Probe        |
|---|------------|---------------|--------|--------|--------|--------|-----------|---------|--------|--------|--------|--------|------------|---------|-------|-------|---------|----------|-------------------|--------------------|------------------|----------|----------|----------|---------------|---------------|--------|-----------------|--------|--------|---------|-------------|----------------|--------|----------|---------------------|------------------|--------|--------|----------|----------|--------|--------|--------------|
|   | 37         | 67            | 53     | 17     | 16     | 28     | 16<br>24  | 19      | 33     | 25     | 26     | 30     | 21         | 8       | Qmr   |       | 184     | 158      | 193               | 105                | 152              | 157      | 168      | 197      | 148           | 154           | 246    | 191<br>313      | 229    | 88     | 96      | 165         | 49<br>87       | 111    | 66       | 125                 | 88               | 134    | 42     | 76       | 83       | 80     | 115    | Qm           |
|   | 50         | 55<br>98      | 34     | 32     | 95     | 39     | 101       | 50      | 102    | 17     | 50     | 53     | 8/<br>72   | 2       |       |       | 141     | 169      | 115               | 105                | 146              | 137      | 120      | 85       | 128           | 132<br>79     | 61     | 135<br>21       | 40     | 167    | 165     | 65          | 212<br>126     | 150    | 190      | 130                 | 197<br>193       | 100    | 205    | 177      | 170      | 138    | 110    | Qp           |
| i | 162        | 166           | 106    | 63     | 35     | 39     | 22        | 32      | 22     | 88     | 57     | 2      | 29         |         | u Qpg |       | 0       | 0        | 0                 |                    | 0                | 0        | 0        | 0        | 0             | 0 0           | 0      | 0 0             | 0      | 0      | 0       | 0           | 0              | 0      | 0        | 0                   | 0 0              | σ      | 0      | 0        | 0        | 0      | 0      | Ψ            |
|   | 45         | <sup>47</sup> | 55     | 151    | 120    | 151    | 121       | 142     | 39     | 113    | 109    | 152    | 131        | ¦ .     | Qps   |       | -       | 0        | 0                 |                    | 0                | 0        | 0        | 0        | 0             | 0 0           | 0      | 0 0             | 0      | 0      | 0       | 0           | 0 0            | 0      | 0        | 0                   | 0 0              | σ      | 0      | 0        | 0        | 0      | 0      | ×            |
|   | ი<br>ი     | - c           | 4      | 8      | 4      | 13     | n 33      | 24      | 14     | 8      | 7      | 22     | 4 0        |         | QpI   |       | 7       | 4        | 26                | 3 80               | 32               | 17       | 21       | 30       | 13            | 60<br>17      | 51     | 59<br>37        | 105    | 85     | 83      | 88          | 17<br>89       | 21     | 23       | 34                  | 4 1              | 16     | σ      | თ        | 12       | 54     | 34     | G            |
| • | ω -        | • 0           | 0      | 0      | 0      | 9      | 0         | ; 0     | 30     | 0      | 7      | 0      | Nα         | ,       | c     |       | -       | 0        | 0                 | 0                  | 0                | 0        | 0        | 0        | 4             | 0 0           | 0      | 0 0             | 0      | 0      | 0       | 13          | 90             | 4      | 9        | 0                   | 80<br>4          | С      | 0      | 0        | 0        | 0      | 2      | PI           |
| • | 0          | 0             | 0      | 0      | 0      | 0      | o c       | , o     | 2      | 0      | 0      | 0      | 0 0        | ,       | St    | -     | 0       | 0        |                   | τ <mark>α</mark> υ | 7 0              | 0        | 6        | 0        | 16<br>16      | 90            | 0      | 0 0             | 0      | 0      | 0       | 0           | 0 0            | 24     | 0        | 0                   | 1 <sub>6</sub> ω | 22     | 0      | 110      | 0        | 11     | თ      | Ł            |
| • | 0 0        | 0             | 0      | 0      | 0      | 0      | 0 32      | 30      | 18     | 0      | 0      | 0      | 0 N        | ,       | Ssi   | eich  | 23      | 28       | 2                 | - ∓                | 20               | 0        | 0        | N        | 14            | 4 0           | 38     | 00              | 0      | 0      | 0       | 0           | 0              | 11     | 0        | 0                   | 33 0             | 50     | 0      | 0        | 2        | σı     | 13     | Ls           |
| • | 0 0        | 0             | 0      | 0      | 0      | 0      | 0 N       | , 0     | 9      | 0      | 0      | 0      | 0 N        | ,       | Ssa   | tmii  | 30      | 28       | 47                | 22 22              | 5 63             | 77       | 65       | 82       | 41            | 59            | 4      | 4 -             | 26     | 58     | 58      | 71          | 85<br>85       | 70     | 65       | 86                  | 43               | 4/     | 108    | 29       | 68       | 82     | 77     | Lm           |
|   | 0 0        | 0             | 0      | 0      | 2      | 0      | o c       | , o     | 0      | 0      | 0      | 2      | 0 0        | , ·     | Ŀy    | nera  | 11      | 10       | 15                | ກ ວັ               | 26               | 15       | 15       | 2        | <u>3</u>      | 30            | 0      | 00              | 0      | 13     | ω       | 10          | 1 <sub>6</sub> | 14     | 43       | 22                  | 20<br>50         | 23     | 43     | -        | 69       | 29     | 53     | Lhm          |
|   | 0 0        | 0             | 0      | 0      | 0      | 0      | о с       | , 0     | 2      | 0      | 0      | 0      | 0 ~        | 1       | Mt    | I-Da  | ω       | 4        | <b>ი</b> (        | ى د                | ω                | 6        | 10       | 9        | . و           | 4             | 0      | 23              | 7      | 4      | 10      | 10          | 7 0            | 2      | 16       | 0                   | 0 0              | c      | 0      | ω        | -        | ω      | ω      | SM           |
|   | 0 0        | 12            | 0      | 0      | 0      | 0      | 0<br>BL   | ; ω     | 13     | 0      | 0      | 7      | 0 0        | ,       | Ms    | ten   | 0       | 0        | 0                 | - <del>.</del>     | ĥ O              | 0        | 0        | 0        | 9             | 00            | 41     | 0 0             | 0      | 0      | 0       | • :         | 10             | 10     | 0        | 0                   | 0 0              | 23     | 0      | 0        | 0        | 6      | 10     | ~            |
|   | 0 0        | 0             | 0      | 0      | 2      | 0      | 4 N       | , 0     | 0      | 0      | 0      | 0      | 8 ~        | , .     | s Mp  | der . | 325     | 327      | 308               | 200                | 297              | 294      | 288      | 282      | 276           | 286<br>276    | 306    | 326<br>335      | 269    | 255    | 260     | 230         | 261            | 261    | 256      | 255                 | 267<br>281       | 234    | 247    | 253      | 252      | 231    | 225    | Q            |
| - | 57 0       | 50            | 8      | 11     | 60     | 65 0   | 22        | , 4     | . Q    | 10     | 20     | 6,     | 2Z         | 2       | h Mg  | Aue   | -       | 0        | 0                 |                    | 0                | 0        | 0        | 0        | 0             | 0             | 0      | 00              | 0      | 0      | 0       | 0           | 0              | 0      | 0        | 0                   | 0 0              | 10     | 0      | 0        | 0        | 0      | 0      | П            |
| - |            |               | 7 1.   | 4 1.   | 9 1.   | 1 4    | 2 -       | ·       | 2      | 8 4:   | 1      | 1 6    | 4 u<br>2 4 |         | ld Mõ | rnig  | 64      | 66       | 60                | S og               | 8 8              | 88       | 81       | 78       | 102           | 29            | 42     | 5 12            | 19     | 55     | 47      | 71          | 93             | 117    | 105      | 110                 | 132              | 140    | 148    | 139      | 135      | 112    | 138    | Г            |
|   |            |               | 7      | 4      | 4      |        | 40        |         |        | 3      | 0      | 7      | 5 ~        |         | N N   | -For  | 205     | 235      | 175               | 220                | 231              | 225      | 201      | 163      | 230           | 161           | 103    | 147<br>27       | 59     | 223    | 211     | 136         | 334            | 267    | 295      | 241                 | 328              | 240    | 353    | 316      | 304      | 250    | 248    | Ŧ            |
| ľ | _          |               |        | -      | 0      |        |           | , 0     | · + ·  | 0      | 0      |        | ÷          |         | N st  | mat   | 40      | 38       | 57                | 41                 | 85               | 88       | 73       | 76       | 68            | 90<br>90      | 1      | 00              | 18     | 54     | 47      | 61          | 122<br>78      | 79     | 97       | 109                 | 49<br>62         | 67     | 148    | 30       | 133      | 94     | 119    | 5            |
|   | <br>ທີ່ (  | יי<br>איני    | 0      | 0<br>2 |        |        |           |         |        |        | 0 A    | 0      | 0 0<br>0 1 |         | gn Pi | ion   | 26      | 15       | 15                | 5 7                | 29               | 8        | 14       | ω        | చి :<br>చి    | 34            | -      | 00              | 0      | 12     | ω       | ∞i          | 3 3            | 13     | 47       | 20                  | <u>3</u> 5       | 00     | 42     | 8        | 67       | 26     | 55     | -vm L        |
|   | 3          | 29/19         | 12     | 30/01  | 21/04  | 21/03  | 29/06     | 29/23   | 29/12  | 29/20  | 11     | 6      | 11         | 50      | obe   | Qu    | 52      | 56       | 45                | од Ф               | 60               | 41       | 60       | 76       | 52            | 29<br>60      | 38     | 0 0             | 18     | 45     | 45      | 53          | 109<br>74      | 77     | 58       | 68                  | 44<br>76         | 95     | 106    | 29       | 68       | 75     | 83     | _sm N        |
| 0 | 83         | 64            | 35     | 12     | 1      | 35     | 29        | 38      | 26     | 55     | 165    | 154    | 136<br>145 |         | Qmn   | arz-  | 2       | 0        | - 7               | τ <mark>α</mark> υ | n 0              | 0        | 6        | 0        | 20<br>20      | 0             | 0      | 0 0             | 0      | 0      | 0       | 14          | 0              | 28     | 9        | 0                   | 20               | 22     | 0      | 110      | 0        | 11     | 7      | /lag L       |
| 0 | 90         | 129<br>74     | 70     | 117    | 151    | 122    | 139       | 110     | 171    | 99     | 81     | 160    | 92<br>46   | 8       | Qmu   | und   |         | •        | •                 | 1                  | '                | 1        | •        | '        |               |               | •      | • •             | •      | •      | '       |             |                | '      | •        | '                   | • •              | '      | '      | •        | 1        | •      | '      | met L        |
|   | 71         | 105           | 62     | 66     | 0      | 7      | 29        | 41      | 36     | 155    | 61     | 18     | 56<br>128  |         | Qpg   | Ľ     | '       | •        | •                 | '                  | '                | '        | •        | '        |               | ' '           | •      | • •             | •      | •      | '       | •           |                | '      | '        | '                   | ' '              | '      | '      | •        | •        | '      | '      | sed G        |
|   | 44         | 121<br>E0     | 125    | 105    | 148    | 150    | 93<br>101 | 81      | 42     | 11     | 9      | 5      | 33 0       | , ·     | Qps   | hokl  | -       | '        | · ·               | '                  | '                | '        | '        | '        | ' '           |               | '      | · ·             | -      | '      | '       | · ·         |                | '      | '        | '                   | • •              | '      | '      | '        | '        | '      | '      | las S        |
|   | 14         | ა ω           | 25     | 0      | 0      | 78     | о с       | ,<br>10 | 6      | 0      | 0      | 3      | σc         | , ·     | Qpl   | aste  | 06<br>5 | 90 0e    | 6<br>8<br>8       | 20                 | າ<br>6<br>0<br>6 | 36 6     | 29 6     | 3<br>6   | 52 G          | 30<br>55<br>6 | 203 6  | 54<br>6<br>6    | 37 6   | 37 6   | 41 6    | 6 80        | 61 18 6        | 27 6   | 28 č     | 24 6                | 19<br>6          | 83 3   | 25 6   | 26 6     | 32 6     | 26 6   | 41 6   | ed<br>o I    |
|   | 15 C       | л <u>-</u>    | 4      | 0      | 4      | 7      | o -       | 4       | 0      | -      | 0      | 0      | 0 0        | ,       | c     | inva  | ,49 1   | ,71 1    | р<br>Бл –<br>1    | 29<br>1            | ,61 1            | ,60 1    | ,58 1    | .56 1    | л (<br>1<br>1 | ,57<br>54 0   | ,64 1  | ,70 3,<br>73 4, | ,51 2  | ,46 1  | ,48 1   | 35 1        | ,48<br>0       | ,48 0, | ,46 0    | .46 0               | л<br>л<br>л<br>о | ,12 0  | ,43 0, | ,45 0    | ,45 0,   | ,36 0  | ,33 0  | <u>۲</u>     |
| , | 0          | 0             | 0      | 0      | 0      | 0      | 0 N       | , 0     | 0      | 0      | 3      | 0      | 0 0        | ,       | St    | rietä | 62      | 61       | 64<br>0           | 19                 | 25               | 20       | 27       | 29       | B a           | 29            | 86     | .14             | 62     | 53     | 71      | 17          | 276            | ,80    | 89       | 84                  | ,71<br>80        | 52     | 51     | 60       | 63       | ,72    | 49     | 년년<br>고고고    |
|   | 16         | 12            | 0      | 0      | 0      | 0      | o c       | 4       | 2      | 0      | 0      | 0      | 0 0        | ,       | Ssi   | iten  |         | •        |                   |                    |                  | '        | •        |          |               |               | •      |                 |        | '      | '       |             |                | '      | '        | '                   |                  | '      | '      | •        | '        | '      | '      | ĕáną́n<br>⊊  |
|   | 7 I        | 20            | 0      | 0      | 0      | 0      | o c       | > >     | 0      | 0      | 0      | 0      | 0 0        | ,       | Ssa   | in %  | - 1,0   | -<br>1,0 | , -<br>-          | י<br>ר             | -<br>- ,4        | -<br>-0, | '<br>و خ | '<br>ب ب | 5.            | - <u>,</u>    | ω      | 3,6             | - 1,6  | 0,     | '<br>.o | -<br>-<br>- | 5 .4           | 1,     | -<br>-1, | '<br>و <del>د</del> | - '<br>5 ,6      | - 0,-  | '<br>  | -<br>-0, | -<br>-1, | 1,     | '<br>  | Pin<br>S&⊏   |
| • | о и        | <b>،</b> ٥    | 0      | 0      | 0      | 0      |           | , o     | 2      | 0      | 0      | 0      | 0 0        | , '     | ŗ     | J     | 04 -3,  | 06<br>-3 | ן<br>קיין<br>קיין | 1 1<br>2           | 58 -4,           | 95 -4,   | 00 -2,   | 00 -4    | 30 -1 -       | 40            | 73 -1, | 30<br>-0,-1,-   | 36 -3, | 61 -4, | 39 -4,  | 19 -1       | 50 -5,         | 11 -1, | 36 -2,   | 61 -5 -             | 26 -1            | 17 -1, | 79 -5, | 15 1,2   | 46 -5,   | 45 -2, | 16 -2, | eté,⊐<br>Mar |
| • | 0          | 0             | 0      | 2      | 0      | 0      | - 0       | • 0     | 6      | 0      | 0      | 0      | 0 0        | ,       | Mt    |       | 15 -    | - 88     | 70 -              | - 55               |                  | 75 -     | - 56     | - 65     | - 7           | 97<br>        | 81 -   | 83 60           | 49 -   | 48 -   | 33      | 79          | 28 -           | 10 -   | 48 -     | -                   | 17 -             | 12 -   | - 23   | - 67     | 14 -     | - 24   | 94 -   | ¤é́⊐         |
| • | 0          | 0             | 0      | 0      | 0      | 0      | 4 0       | > œ     | 9      | 0      | 0      | 0      | 0 0        | ,       | Mss   |       |         |          |                   |                    |                  |          |          |          |               |               |        |                 |        |        |         |             |                |        |          |                     |                  |        |        |          |          | -      |        |              |
|   | ں <u>د</u> | <b>،</b> ٥    | 0      | 7      | 0      | 1 0    | ~ c       | , o     | . 8    | 0      | 0      | 0      | 0 0        | , .     | Mph   |       |         |          |                   |                    |                  |          |          |          | , ,           |               |        |                 |        |        |         |             |                |        |          | ,                   |                  |        |        |          |          |        |        | 2            |
|   | 29         | 9£            | 37     | 46     | 63     | 77     | 59        | 34      | 40     | 37     | 0      | 0      | 0          | 3       | Mgq   |       | -<br> - |          |                   |                    |                  |          |          |          | .   .         |               |        |                 |        | -      |         |             |                |        |          | ,                   |                  | ,      |        |          | -        |        |        | ~<br>7       |
| - | л u        | n<br>15       | 9      | 17     | 26     | 15     | 1.3       | 26      | 28     | 0      | 0      | 0      | 0 0        | , ,     | Mgv   |       |         |          |                   |                    |                  |          |          |          | .             |               |        |                 |        | -      |         |             |                |        |          | ,                   |                  | ,      |        |          |          |        |        | <br>5        |
| • | сл –       | <u> </u>      | 0      | 2      | 0      | 1 0    | v 0       | ი<br>ი  | 8      | 0      | 2      | 0      | 0 0        | , ,     | Mgs   |       |         |          | .  .              |                    |                  |          |          |          | , ,           |               |        |                 |        |        |         |             |                |        |          | ,                   |                  |        |        |          |          |        |        | D6           |
| н | 1          |               | 1      | 1      |        |        | - 1       | 1       |        |        |        |        | 1          | 1       | **    |       | 1       |          | - 1               |                    |                  |          |          |          | 1             |               |        | 1               | 1 1    |        | 1       |             | 1              | 1      |          | - 1                 | 1                |        | 1      |          |          |        | . 1    |              |

0

0 0 0 0

0 0 0

0 0 0

0 0 0 Mgn

 -2,03
 0,99

 -2,47
 1,28

 -1,04
 0,75

 -1,86
 0,99

 -1,41
 0,83

-1,55

0,88 0,79 0,71

0,66

-2,75 -0,17 -1,32 1,35 -0,06 -1,66 -0,71 -1,72 -0,69 -1,34

1,01 0,48

0,40

0,48

1,1

0,28

-1,99 -3,05 -2,24

1,00

-2,98 -2,69

0,95 0,87

0,62

-2,82 -3,45

-2,73 -2,21 -2,56

-1,79

0,31

D7

0,33 **D**8

-3,35 -2,91

1,02

-2,67 -1,21

\_ 0,59

0,26

Leichtmineral-Daten der Auernig-Formation (Hauptmodalbestandteile und berechnete Parameter in %)

| D>F-> |       | P03/05  | P21/01  | P20/07   | P03/03   | P02/09 | P02/07              | P05/09  | P05/08 | P32/01            | P32/03  | P11/01  | P02/06 | P32/04 | P29/21  | P32/05   | P29/02   | P32/02  | P21/07 | Probe            |       |
|-------|-------|---------|---------|----------|----------|--------|---------------------|---------|--------|-------------------|---------|---------|--------|--------|---------|----------|----------|---------|--------|------------------|-------|
|       |       | 52      | 45      | 89       | 104      | 53     | 176                 | 121     | 36     | 151               | 144     | 96      | 78     | 110    | 120     | 129      | 189      | 110     | 82     | Qm               |       |
| 2     |       | 63      | 85      | 79       | 73       | 132    | 45                  | 97      | 182    | 49                | 66      | 109     | 127    | 96     | 76      | 181      | 132      | 228     | 249    | Qp               |       |
|       |       | 0       | 0       | 0        | 0        | 0      | 0                   | 0       | 0      | 0                 | 0       | 0       | 0      | 0      | 0       | 0        | 0        | 0       | 0      | P                |       |
| )     |       | 0       | 0       | 0        | 0        | 0      | 0                   | 0       | 0      | 0                 | 0       | 0       | 0      | 0      | 0       | 0        | 0        | 0       | 0      | ×                |       |
| 2     |       | 9       | 37      | 19       | 21       | 43     | 11                  | 31      | 21     | 15                | 9       | 4       | 9      | 21     | 25      | 8        | 15       | 2       | 8      | G                | ٣     |
| )     |       | 132     | 134     | 12       | 84       | 0      | 0                   | 2       | 0      | 152               | 89      | 0       | 0      | 124    | 0       | 2        | 0        | 37      | 8      | Ы                | eicht |
| 2     | -     | 4       | 0       | 33       | 0        | 0      | 150                 | 6       | 0      | 7                 | 0       | 12      | 9      | 1      | 0       | 12       | 0        | 0       | 0      | Lv               | tmin  |
| 02:   | .eich | 0       | 0       | 29       | 0        | 0      | 0                   | 6       | 0      | 0                 | 0       | 20      | 2      | 0      | 160     | 15       | 6        | 0       | 0      | ۲s               | eral  |
| 2     | ıtmi  | 89      | 56      | 83       | 79       | 176    | 17                  | 102     | 118    | 23                | 57      | 53      | 132    | 35     | 14      | 41       | 38       | 15      | 44     | Llm              | -Dat  |
| -     | nera  | 58      | 56      | 64       | 46       | 6      | 0                   | 46      | 50     | 9                 | 39      | 107     | 46     | 20     | 0       | 14       | 12       | 8       | 12     | Lhm              | en c  |
|       | I-Da  | -       | 21      | 0        | 8        | 17     | ω                   | 0       | თ      | 2                 | 0       | 2       | 0      | 2      | 4       | 0        | 6        | 1       | 0      | SM               | ler / |
| 202   | iten  | 0       | 0       | 16       | 0        | 0      | 0                   | 0       | 0      | 0                 | 0       | 7       | 0      | 0      | 173     | 12       | 4        | 0       | 0      | ×                | huer  |
| ) N.  | der   | 115     | 131     | 168      | 177      | 185    | 220                 | 218     | 217    | 200               | 210     | 205     | 206    | 206    | 196     | 310      | 321      | 338     | 330    | ø                | nig-  |
|       | Aue   | 0       | 0       | 0        | 0        | 0      | 0                   | 0       | 0      | 0                 | 0       | 0       | 0      | 0      | 0       | 0        | 0        | 0       | 0      | П                | Forr  |
|       | rnig  | 275     | 211     | 213      | 193      | 155    | 166                 | 150     | 157    | 183               | 181     | 189     | 185    | 171    | 175     | 83       | 85       | 65      | 62     | F                | nati  |
| M     | -Foi  | 338     | 296     | 293      | 266      | 287    | 210                 | 248     | 339    | 233               | 247     | 299     | 313    | 267    | 251     | 263      | 191      | 287     | 311    | Ŀŧ               | 0n    |
|       | rmat  | 143     | 96      | 140      | 116      | 155    | 16                  | 136     | 157    | 31                | 94      | 158     | 174    | 53     | 13      | 54       | 47       | 23      | 54     | Lm               | (Hau  |
| ]     | ion   | 56      | 51      | 78       | 43       | ъ      | 0                   | 42      | 53     | 12                | 40      | 117     | 48     | 20     | 0       | 37       | 11       | 28      | 19     | -vm I            | Iptm  |
|       | (Qu   | 86      | 48      | 108      | 73       | 150    | 16                  | 99      | 111    | 22                | 55      | 72      | 131    | 33     | 173     | 56       | 42       | 15      | 43     | _sm I            | loda  |
|       | larz- | 136     | 135     | 45       | 84       | 0      | 150                 | 8       | 0      | 159               | 89      | 12      | 9      | 125    | 0       | 14       | 0        | 37      | 8      | Mag L            | Ibes  |
| 2     | unc   | •       | •       | •        | •        | •      | •                   | •       | •      | •                 | •       | •       | •      | •      | •       | •        | •        | •       | 1      | .met L           | stand |
| 2     | Lit   | •       | •       | •        | •        | •      | -                   | •       | •      | •                 | •       | -       | •      | •      | •       | •        | •        | •       | 1      | .sed G           | dteil |
| 2     | hokl  | •       | •       | •        | '        | •      | '                   | •       | •      | •                 | '       | 1       | •      | •      | '       | •        | •        | •       | 1      | ilas s           | e un  |
| 2     | aste  | 27 5    | 6<br>5  | 55 6     | 63 6     | 14 6   | 28 6                | 15 6    | 1 6    | 89 6              | 90 6    | 49 6    | 29 6   | 67 6   | 201 6   | 38 6     | 47 6     | 16 6    | 59 6   | ied o            | ld be |
| )     | nva   | ,66 -0  | ,79 -0  | ,04 -0   | ,09 -0   | ,14 0. | ,31 0,              | ,30 0.  | ,30 0. | ,21 0.            | ,27 0.  | ,24 0   | ,24 0, | ,24 0. | ,19 0.  | ,65 1.   | ,69 1    | ,74 1   | ,72 1  | 25               | erec  |
| 2     | rietä | ,88     | ,48     | ,24      | ,09      | 18     | 29                  | 37      | 32     | 60                | 15      | 80      | 00     | 19     | 11      | 32       | 70       | 74      | 67     | יי<br>רו<br>ע דו | hnet  |
| 2     | iten  |         |         |          |          |        |                     |         |        |                   |         |         |        |        | _       | <u> </u> |          |         |        | ed L∧            | e Pa  |
| 000   | in %  | ۔<br>د  | 2,      | -<br>-0, | -<br>-0, | 2,     | - 2,                | 2,      | 4,     | - 1,              | 0,      | 1,      | 1,     | - 0,;  | - 2,1   | 0,       | -<br>-0, | 0,      | - 0,1  | /PIS∈<br>M≊      | aram  |
| -     | 5     | 64 -0,  | 98 0,   | 99 -1,   | 63 -0,   | 54 -5, | 03 2,               | 31 -2,  | 95 -5, | 04 1,             | 05 -0,  | 15 -2,  | 75 -2, | 20 0,  | 63 -2,  | 36 -1,   | 07 -4,   | 23 0,   | 06 -1, | n L<br>et Ma     | lete  |
|       |       | - 80    | 18 -    | 18 -     | 39 -     | 43 .   | 18 -                | - 86    | 35 .   | 61 .              | 07 .    | 58 -    | 94 -   | . 81   | 90 -    | 40 .     | 15 .     | 49 -    | 90 -   | n<br>⊪g∕D<br>et  | rin   |
| M     |       |         |         |          |          |        | -                   |         |        |                   |         | -       |        |        | -       |          | -        | -       |        |                  | త     |
| M-1-  |       |         |         |          |          |        | -                   |         |        |                   |         | -       |        |        |         |          | -        | -       |        | 2                |       |
|       |       |         |         |          |          |        | -                   |         |        |                   |         | -       |        |        |         |          |          |         |        | 3 D              |       |
|       |       |         |         |          |          |        | -                   |         |        |                   |         | -       |        |        |         |          |          |         |        | 4 0              |       |
|       |       |         |         | ,        | ,        | ,      |                     |         |        | ,                 |         |         |        |        |         |          |          |         |        | 5                | -     |
|       |       | -2,8    | -3,6    | -2,4     | -2,2     | -3,1   | -0,9                | -1,9    | -3,4   | -1,5              | -1,7    | -2,4    | -2,8   | -2,1   | -1,8    | -2,1     | -1,0     | -2,5    | -3,6   | 5 D1             |       |
| •     |       | 35 -0,5 | 13 -0,2 | 11 -0,1  | ?1 -0,1  | 6 0,3  | <del>)</del> 9 -0,1 | ¥1 0,2. | 18 0,6 | <del>3</del> -0,2 | 71 -0,1 | 14 0,1. | 30 0,1 | 9,0,0  | 37 -0,0 | 3 1,0    | 19 0,9.  | 53 1,3: | )0 1,5 | 7 D.             | -     |
|       |       | 1       | ũ       | 7        | 8        | 4      | -                   | ω       | 7      | σĭ                | ω       | N       | 9      | œ      | 2       | 9        | ω        | 6       | 0      |                  | 1     |

|       | P      | P    | Ð    | J    | σ    | P           | J     | τ    | J    | J    | J                                                                                  | Ð                                                  | Ρ                                                                                                              |
|-------|--------|------|------|------|------|-------------|-------|------|------|------|------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 02/0  | 05/0   | 05/0 | 32/0 | 32/0 | 11/0 | 02/0        | 32/0. | 29/2 | 32/0 | 29/0 | 32/0                                                                               | 21/0                                               | robe                                                                                                           |
| 7 128 | 9<br>9 | 800  | í 88 | 3 90 | 1 29 | <b>3</b> 27 | 4 67  | í 41 | 23   | 2 42 | 2 16                                                                               | 7 58                                               | Qmi                                                                                                            |
| 47    | 112    | 35   | 61   | 53   | 64   | 49          | 42    | 79   | 106  | 147  | 92                                                                                 | 23                                                 | ר<br>Qmu                                                                                                       |
| 19    | 10     | 8    | 27   | 18   | 26   | 9           | 34    | 80   | 35   | 34   | 35                                                                                 | 103                                                | u Qpg                                                                                                          |
| 28    | 84     | 180  | 19   | 35   | 61   | 115         | 42    | 2    | 116  | 103  | 129                                                                                | 127                                                | Qps                                                                                                            |
| 0     | 12     | 0    | 2    | 12   | 12   | 3           | 25    | 0    | 10   | 4    | 46                                                                                 | 16                                                 | Qpl                                                                                                            |
| 0     | 0      | 6    | з    | 2    | 12   | з           | -     | 0    | 24   | 0    | 20                                                                                 | 8                                                  | с                                                                                                              |
| 0     | 0      | 0    | 0    | 0    | 0    | 0           | 0     | 0    | 0    | 2    | 0                                                                                  | 0                                                  | St                                                                                                             |
| 0     | 6      | 0    | 0    | 0    | 8    | 1           | 0     | 0    | 2    | 0    | 0                                                                                  | 0                                                  | Ssi                                                                                                            |
| 0     | 0      | 0    | 0    | 0    | 5    | 1           | 0     | 0    | 2    | 0    | 0                                                                                  | 0                                                  | Ssa                                                                                                            |
| 0     | 0      | 0    | 0    | 0    | 0    | 0           | 0     | 0    | 0    | 0    | 0                                                                                  | 0                                                  | Ly                                                                                                             |
| 0     | 4      | 0    | 0    | 0    | 2    | 0           | 1     | 0    | 2    | 4    | 0                                                                                  | 0                                                  | Mt                                                                                                             |
| 0     | 18     | 2    | 0    | 40   | 18   | 61          | -     | 0    | 0    | 0    | 0                                                                                  | 0                                                  | Mss                                                                                                            |
| 0     | 4      | 0    | 0    | з    | 10   | 13          | 2     | 0    | 0    | 2    | 0                                                                                  | 0                                                  | Mph                                                                                                            |
| 17    | 76     | 116  | 23   | 13   | 24   | 58          | 31    | 14   | 40   | 33   | 15                                                                                 | 44                                                 | Mgq                                                                                                            |
| 0     | 40     | 49   | 8    | 23   | 101  | 33          | 19    | 0    | 14   | 12   | 8                                                                                  | 12                                                 | Mgv                                                                                                            |
| 0     | 6      | 1    | 1    | 16   | 8    | 11          | 1     | 0    | 0    | 0    | 0                                                                                  | 0                                                  | Mgs                                                                                                            |
| 0     | 0      | _    |      |      |      |             |       |      |      |      |                                                                                    |                                                    | ~                                                                                                              |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0                                                                                  | 0                                                  | ∕lgn                                                                                                           |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05                                                                           | 0 P21/01                                           | /Ign Probe                                                                                                     |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27                                                                        | 0 P21/01 6                                         | /Ign Probe Qmn                                                                                                 |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24                                                                     | 0 P21/01 6 40                                      | /Ign Probe Qmn Qmu                                                                                             |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7                                                                   | 0 P21/01 6 40 19                                   | /Ign Probe Qmn Qmu Qpg                                                                                         |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50                                                                | 0 P21/01 6 40 19 53                                | Agn Probe Qmn Qmu Qpg Qps                                                                                      |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50 6                                                              | 0 P21/01 6 40 19 53 25                             | fign Probe Qmn Qmu Qpg Qps Qpi                                                                                 |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50 6 0                                                            | 0 P21/01 6 40 19 53 25 3                           | Agn Probe Amn Amu Apg Aps Apl C                                                                                |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50 6 0 0                                                          | 0 <b>P21/01</b> 6 40 19 53 25 3 0                  | Agn Probe Qmn Qmu Qpg Qps QpI C St                                                                             |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 <b>P03/05</b> 27 24 7 50 6 0 0 0                                                 | 0 <b>P21/01</b> 6 40 19 53 25 3 0 0                | Agn Probe Qmn Qmu Qpg Qps QpI C St Ssi                                                                         |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 <b>P03/05</b> 27 24 7 50 6 0 0 0 0                                               | 0 <b>P21/01</b> 6 40 19 53 25 3 0 0 0              | fign Probe Qmn Qmu Qpg Qps Qp1 C St Ssi Ssa                                                                    |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50 6 0 0 0 0 0 0                                                  | 0 <b>P21/01</b> 6 40 19 53 25 3 0 0 0 0            | ngn Probe Qmn Qmu Qpg Qps Qpl C St Ssi Ssa Ly الماري الم                                                       |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 <b>P03/05</b> 27 24 7 50 6 0 0 0 0 0 0 0                                         | 0 <b>P21/01</b> 6 40 19 53 25 3 0 0 0 0 0 0        | fign Probe amn amu apg aps apl c St Ssi Ssa Ly Mt                                                              |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 <b>P03/05</b> 27 24 7 50 6 0 0 0 0 0 0 0 1                                       | 0 <b>P21/01</b> 6 40 19 53 25 3 0 0 0 0 0 0 0      | fign Probe amn amu apg aps apl c St Ssi Ssa Ly Mt Mss                                                          |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 <b>P03/05</b> 27 24 7 50 6 0 0 0 0 0 0 0 1 3                                     | 0 P21/01 6 40 19 53 25 3 0 0 0 0 0 0 0 0 0         | fign Probe Qmn Qmu Qpg Qps Qp1 C St Ssi Ssa Ly Mt Mss Mph                                                      |
|       |        | 0    | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50 6 0 0 0 0 0 0 0 1 3 84                                         | 0 <b>P21/01</b> 6 40 19 53 25 3 0 0 0 0 0 0 0 0 56 | ngn Probe Qmn Qmu Qpg Qps Qp1 C St Ssi Ssa Ly Mt Mss Mph Mgq                                                   |
|       |        |      | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 P03/05 27 24 7 50 6 0 0 0 0 0 0 0 1 3 84 53                                      | 0 P21/01 6 40 19 53 25 3 0 0 0 0 0 0 0 0 56 53     | ngn Probe amn amu apg aps apı c St Ssi Ssa Ly Mt Mss Mph Mgq Mgv مايم Apri Apri Apri Apri Apri Apri Apri Apri  |
|       |        |      | 0    | 0    | 0    | 2           | 0     | 0    | 0    | 0    | 0 <b>P03/05</b> 27   24   7   50   6   0   0   0   0   0   0   1   3   84   53   4 | 0 P21/01 6 40 19 53 25 3 0 0 0 0 0 0 0 0 0 56 53 3 | ngn Probe amn amu apg aps apı c st si sa Ly Mt Mss Mph Mgq Mgv Mgs المالية Agn Probe amn amu apg aps مالية الم |

P03/03 P20/07

27 

c

0 0

0 0 c

C

0 4

4 37 ō

38

43 თ

38

| P40/01 | P39/01 | P28/02           | P26/08 | P24/03        | P19/09 | P18/16 | P18/07 | P18/04      | P16/04   | P13/03 | P08/02  | Kra 3  | E 4/3   | Probe                       |         | 000        | P55/01     | P54/0 | P51/04 | P53/00 | P59/05 | P59/02 | P58/02 | P43/08         | P43/03   | P43/01   | P42/07   | P40/03     | P40/01 | P39/01 | P28/05 | P28/02  | P24/03          | P19/09 | P18/16 | P18/07   | P18/04    | P16/04   | P13/03 | P08/02 | Kra 3 | Probe                    |
|--------|--------|------------------|--------|---------------|--------|--------|--------|-------------|----------|--------|---------|--------|---------|-----------------------------|---------|------------|------------|-------|--------|--------|--------|--------|--------|----------------|----------|----------|----------|------------|--------|--------|--------|---------|-----------------|--------|--------|----------|-----------|----------|--------|--------|-------|--------------------------|
| 22     | 10     | 0 11             | 5      | ъ             | 8      | 1      | 10     | 11          | 27       | 13     | 17      | 18     | ъ       | Tu<br>braun                 |         | ŧ          | 44         | 42    | 46     | 16     | 37     | 93     | 34     | 54             | 45       | 54       | 19       | 380        | 76     | 22     | 31     | 26      | 22<br>22        | 33     | 8      | 21       | 48        | 47       | 38     | 74     | 28    | - nalin                  |
| 2      | 0      | 0 4              | . 0    | 0             | 4      | 0      | 0      | 6           | 0        | 2      | 7       | 1      | 0       | Tu<br>grün                  |         | -          | 77         | 118   | 56     | 145    | 78     | 71     | 39     | 107            | 80       | 72       | 129      | 102        | 72     | 116    | 131    | 131     | 14              | 113    | 140    | 126      | 96<br>2.0 | 60       | 92     | 62     | 78    |                          |
| 9      | 0      | ω Ο              | ω      | ω             | 0      | 0      | 0      | 6           | 2        | 0      | 0       | 1      | 0       | ğ Z                         |         | 20         | 533        | 15    | 35     | 13     | 33     | 17     | 31     | 31             | 56       | 40       | 30       | ал<br>С    | : 31   | 30     | 17     | 21      | ာက္က<br>သူ ယ    | 35     | 23     | 44       | 33        | 19       | 40     | 21     | 24    |                          |
| 0      | 0      | 0 0              | ⊳ N    | 0             | 0      | 0      | 0      | 6           | 2        | 0      | 0       | з      | 0       | blau g                      |         | _          | , .        | (1)   | 6      | 6      | N      | (J     | 0      |                | 4        | _        | 0        |            |        | 0      | 0      |         |                 |        | 6      |          | _         | 6        | N      |        | ω.    | =<br>Bro                 |
| 23     | 7      | 10               | i m    | -             | ъ      | 3      | 5      | ъ           | 7        | 10     | 22      | 0      | 13      | grün/r<br>graun g           |         |            |            |       |        | 5      |        |        | -      |                |          |          |          |            |        |        | 0      |         |                 |        |        |          |           |          |        |        |       |                          |
| 18     | ъ      | <del>1</del> 8 б | 00     | -             | 15     | 3      | 6      | 13          | 9        | 12     | 29      | 5      | 6       | grün g                      | -       |            |            | 0     | З      | 0      | 2      | 0      | 6      | 0 0            | 2        | 0        | σı       | <u>ہ</u> د | ^<br>7 | 0      | 1      | 0 (     | 0 10            | 0      | 3      | 0        | 0.        | 4<br>i   | 12     | ω!     | 27    | ) orn-                   |
| 2      | 0      | 0 0              | 0      | 0             | 2      | 0      | 0      | 2           | 0        | 0      | 0       | 0      | 0       | yrün Tu<br>mici v           | urma    | c          | 0          | 0     | ω      | 0      | 0      | 0      | 0      | 0 0            | 2        | 0        | 0        |            | 0      | 0      | 0      | 0       | 0               | 0      | 0      | 0        | 0         | 4        | 0      | ω :    | 1 1   | rune ا                   |
| 4      | 9      | 10 13            | 18     | З             | 7 7    | 26 3   | 8      | 5<br>თ      | <b>л</b> | 11 2   | 4       | 15 1   | 5       | orph rur                    | linva   | c          | 0          | 0     | 0      | 0      | 2      | 0      | 6      | ο ω            | 0        | 0        | ы        | ی د        | 7      | 0      | 1      | 0 (     | 2 N             | 0      | з      | 0        | 0         | 0 ;      | 12     | 0      | 17    | sraune<br>Hbl.           |
| 8 3    | 4      | 5 8<br>4 4       | 39     | <u>د</u><br>س | 19 4.  | 34 4.  | 9 5    | 31          | 5 2      | 3<br>3 | 8 3     | 4 3    | 1<br>ຄຸ | ge-ru<br>Idet               | rietät  | -          | • œ        | 0     | 0      | 2      | 0      | 2      | 30     | 0 0            | 0        | 2        | 4 0      | νN         | 7      | 0      | з      | 2 0     | - c             | 2      | 0      | 2        | 5         | 0        | ω      | 0 1    | 2 0   | - lith                   |
| 9 61   | 4 74   | 9 5<br>93        | 7 95   | 7             | 4 10   | 7 10   | 5 92   | 2 67        | 7 47     | 3 68   | 9 61    | 1 61   | 4 90    | т <sub>ы</sub><br>Ч         | ien (T  | c          | 0          | 0     | 6      | 1      | 6      | 0      | 0      | - 0            | 0        | 0        | ω        | ωc         | 0      | ω      | 4      | 0 0     | 0               | 0      | 0      | 2        | 2         | ωr       | 2      | 14     | N     | Sthen                    |
| 0      | 8      | თი<br>ით         | 4      | ы             | 0 0    | 76     | 8      | 7<br>5      | 2        | 8<br>9 | 0       | 2      | 2       | f<br>idic<br>Zn             | u) ur   | 0          | ь <u>-</u> | 0     | 0      | 0      | 6      | 0      | 0      | -1 0           | 0        | 0        | 0        |            | 0      | 0      | 0      | u c     | 0               | 0      | 1      | 0        | 0         | 0        | 0      | 7      | 2.    | - En-                    |
| 9      | 19     | 16               | . 4    | 2             | 2      | 16     | 14     | 14          | 6        | 10     | 1       | 11     | 6       | → Zrr<br>→ ange             | ۱d Zir  | <u>د</u>   | 22         | 7     | 14     | 0      | 16     | 4      | 12     | 0 4            | . 0      | 11       | 4 2      | 13         | 10     | 21     | 4      | 7       | οω              | , 11   | 7      | 0        | 9         | <b>б</b> | σı     | 9      | 11 ;  | t spin                   |
| 2      | 14     | 15               | 9      | ω             | 10     | 11     | 12     | 9           | сл       | 5      | 0       | ъ      | 6       | rund                        | konv    |            | <u>`</u>   | 4     | 0      | 0      | 0      | 0      | N      | - 0            | 0        | 0        | 0        |            |        | 0      | 0      | 0       | 16              |        | 9      |          | 0         | 0        | 0      | 0      | N     | ell Gra                  |
| 11     | 42     | 38               | 17     | 7             | 13     | 33     | 34     | 28          | 13       | 24     | 1       | 18     | 14      | Zrr                         | arietä  |            |            |       |        |        | _      | _      |        |                |          |          |          |            |        | -      | _      |         | , <u> </u>      | •      |        |          | _         | _        | _      |        | _     | nat III                  |
| P55/04 | P55/01 | P51/04           | P53/00 | P59/05        | P59/02 | P58/02 | P57/10 | P43/06      | P43/03   | P43/01 | P42/07  | P42/02 | P40/05  | Probe                       | iten (i |            |            | 2     | 5      | 0      | _      | 0      | 0      | 0 4            | 0        | 7        | 0        |            | 0      | 2      | 0      | 0       |                 | , 0    | 3      | 2        | 0         | 0        | 0      | °.     | 4     |                          |
| 12     | 10     | 12               | σ      | 14            | 32     | 19     | 12     | 16          | 11       | 15     | з       | 9      | 9       | Tu<br>braun                 | Zrf= 2  | ō          | 15         | 4     | 27     | 9      | 0      | 0      | 43     | 0 0            | 4        | 2        | 4 (      | 4 6        | .ω     | 0      | 0      | 0       | 10              | D N    | 1      | ω        | υ         | 52       | 2      | 0      | 0 0   |                          |
| 4      | 6      | 5 -              | . ω    | -             | 10     | 5      | 3      | 4           | 7        | 7      | 7       | 2      | 0       | Tu<br>grün                  | Zirkoi  | ~          | o<br>د     | 2     | 0      | 2      | 4      | 0      | 0      | <u>→</u> №     | ω        | 0        | <u> </u> |            | 2      | 0      | 4      | N 0     | ω               | 0      | 0      | 0        | 0         | 0        | 0      | ω.     | 4     |                          |
| 0      | 4      | 3 О              | 0      | 8             | 3      | 0      | 2      | 6           | 0        | 0      | 1       | 0      | 2       | rot Tu                      | n farb  | -          | • 0        | 0     | -1     | 2      | 0      | 0      | 0      | 0 0            | 0        | 0        | 1 0      | <b>ა</b> с | 0      | 0      | 0      | N       | 0               | 0      | 0      | 0        | 2         | 0        | 0      | 0      | 0 -   | then                     |
| 2      | 0      | 0 0              | 0      | 0             | 0      | 0      | 0      | 0           | 1        | 0      | 0       | 0      | 0       | blau                        | los;    | c          | n 🗅        | 0     | 2      | 4      | 10     | 4      | 0      |                | <b>б</b> | -        | <u> </u> | ی د        | 0      | 6      | 1      | 0 -     | • 0             | 0      | 0      | 0        | 0         | 4        | 2      | ω      | 1 0   | sill-                    |
| 12     | 8      | 16               | 0      | 4             | 19     | 2      | 20     | 17          | 8        | 15     | -       | 3      | 6       | Tu<br>grün/<br>braun        | Zrr= 2  | ~          | ى 0        | 0     | 0      | 0      | 4      | 4      | ω      | 0 0            | _        | 0        | 0        |            | 0      | 0      | 2      | 2 0     | 0 10            |        | 0      | 0        | 0         | 0 1      | 2      | 0      | сл с  | Anda<br>Iusit            |
| 15     | 16     | 6<br>13          | ; œ    | 10            | 29     | 9      | 15     | 11          | 17       | 14     | 7       | 15     | 4       | grün g                      | Zirkoi  | 04,0       | 76,8       | 87,89 | 68,5   | 87,0   | 74,18  | 90,39  | 52,10  | 93,8<br>95.7   | 90,7     | 83,06    | 89,22    | 92,0,      | 89,50  | 83,80  | 89,7;  | 89.4    | 70.8/           | 90,3   | 85,4   | 95,20    | 88.2      | 62,4     | 85.2   | 78,40  | 65,0  | 28 0 28                  |
| 0      | -      | 0 0              | 0      | 0             | 0      | 0      | 2      | -           | -        | 2      | 0       | 0      | 0       | yrün Tu<br>mici v           | n rosa  | , .<br>, . | 10,9       | 9 3,5 | 4 9,8  | 4 0,4  | 3 10,9 | 9 1,7  | 6,2    | 0.1            | 0,1      | 5<br>5,4 | 2 3,7    | 8 1        | 0,1    | 0 12,0 | 3 4,3  | 3,4     | 1,3             | 5,6    | 7 3,4  | ;<br>0,9 | 5.8       | 4,3      | 3,1    | 0 11,7 | 6,4   |                          |
| 10 2   | 11 1   | 95               | 13 4   | 6 1           | 1      | 5      | 6      | 7 2         | 14 2     | 5 1    | 4       | 8<br>3 | 4 3     | orph rur                    | a)      | -<br>-     | )2<br>11   | 9 4,  | 6 16   | 69,    | 99 10  | 5<br>5 | 2 41   | 0 9            | 0        | 6 2,     | 2 7,     | о N<br>Б., | 0 10   | )4 3,  | 2 5,   | 0 0<br> | 3 1<br>15<br>15 | ς<br>γ | 2 6,   | 5 2,     | 5.5       | 9 30     | 1 10   | 4 4,   | 6 19  | ⊼ <mark>3%</mark> We     |
| 20 3   | 1<br>3 | 2 2<br>4 3       | - 4    | 8             | 7 3    | 4 2    | .8 4   | 3<br>3<br>3 | 2 3      | 4 3    | 15<br>4 | 31 3   | 33 4    | idet Z                      |         | , UU       | ,79<br>67, | 93 6  | ,43 6: | 26 6   | ,44 6: | 24 7   | ,63 4  | 69 35<br>8 8   | 49       | 73 7:    | 06       | 47 7       | ,50    | 24 6:  | 95 7   | 77<br>6 | 76, 72, 97      | 63     | 41 6   | 84 7:    | 37<br>17  | ,24 5    | .89 7: | 23 7   | .39 5 | ε a%<br>ε <b>γ</b>       |
| 1 60   | 4 57   | 0 47<br>7 76     | 6 10:  | 3 56          | 7 45   | 6 34   | 2 75   | 39 8        | 2 68     | 1 50   | 2 91    | 9 78   | 7 84    | т <sub>ы</sub><br>Ч         |         | 0,07       | 5,81       | 5,82  | 3,85   | 5,28 2 | 3,19 1 | 7,29 1 | 9,76   | 7,15           | 4,58     | 2,13 1   | 9,89     | 3,19       | 3,98   | 2,96 2 | 0,81 1 | 5.79    | 1,51            | 3,87   | 3,80 1 | 3,20 1   | 4.12 1    | 5,10     | 3,15 1 | 7.93   | 5.27  | 1 07 F                   |
| ) 3    | 2      | 4 0              | 9      | s 13          | 0      | 1      | 5      | 3 1         | с<br>с   | 0      | 5       | 8      | 1 2     | f<br>idio<br>morp           |         | J, JJ      | 10,04      | 21,08 | 4,69   | 21,76  | 10,99  | 13,10  | 2,39   | 6,70<br>15.68  | 6,17     | 10,93    | 19,33    | 13,83      | 5,52   | 20,83  | 18,92  | 22.64   | 3,61<br>8 37    | 6,45   | 16,67  | 17,06    | 14.12     | 6,34     | 12,06  | 0.47   | 8.75  | 7 10 L                   |
| 5      | 6      | 16               | 24     | з             | 5      | 0      | 15     | 3           | 4        | 9      | 14      | 9      | 7       | - Zrr<br>- ange<br>oh runde |         | 2,09       | າ,89       | 1,15  | 2,61   | 1,10   | 1,75   | 1,77   | 3,03   | 1.63           | 2,62     | 1,89     | 1,29     | 1,/3       | 2,72   | 1,11   | 1,32   | 1.08    | 0,97            | 2,56   | 1,42   | 1,52     | 1.66      | 2,18     | 1.80   | 5,11   | 1.86  | n(Uita)<br>Meta)<br>אפלמ |
| 3      | 12     | 22 5             | 10     | 6             | 21     | 4      | 11     | 9           | თ        | 13     | 19      | 8      | 18      | rund                        |         | -2,00      | -0,08      | -0,32 | -0,51  | -3,00  | 0,05   | -1,10  | -1,90  | -2.83          | -4,32    | 0,69     | -0,64    | 0,15       | -4,65  | 1,31   | -0,32  | -0.11   | -4,18           | 0,44   | -0,63  | -1,10    | 0.00      | -1,93    | -1.25  | 1,02   | -1.10 | لn(seu<br>/Prä)          |
| 11     | 20     | 42<br>9          | 44     | 22            | 26     | 5      | 31     | 13          | 12       | 22     | 39      | 24     | 28      | Zrr                         |         | 09,00      | 51,00      | 63,00 | 55,00  | 76,00  | 55,00  | 74,00  | 70,00  | 54,00<br>66.00 | 58,00    | 49,00    | 60,00    | 59,00      | 67,00  | 56,00  | 61,00  | 53.00   | 18,00           | 61,00  | 47,00  | 63,00    | 64.00     | 40,00    | 72.00  | 48,00  | 61.00 | Ораке                    |

## Schwermineral-Daten in % (Hochwipfel-Formation):

Anhang 4 – Schwermineralanalyse

| P15/01  | P14/03          | P07/06   | P00/01      | Les 1    | Kra 8  | E 1/3  | P58/06 | P58/05 | P58/03 | P56/07  | P57/04 | P56/01   | P55/06 | Probe                        |        | 101              | P45/08     | P38/10 | P38/05 | P38/04 | P33/04 | P31/04 | P31/02   | P28/06       | P 20/00  | P25/02     | P24/01 | P19/02 | P16/08 | P15/01 | P07/08             | P07/02       | P00/01 | Les 1    | Kra 8 | E 1/3 | P58/06   | P58/05       | P56/07     | P5//04   | P56/01  | P55/06 | Probe             |
|---------|-----------------|----------|-------------|----------|--------|--------|--------|--------|--------|---------|--------|----------|--------|------------------------------|--------|------------------|------------|--------|--------|--------|--------|--------|----------|--------------|----------|------------|--------|--------|--------|--------|--------------------|--------------|--------|----------|-------|-------|----------|--------------|------------|----------|---------|--------|-------------------|
| 4       | 35              | 21       | 14          | 45       | 14     | 12     | 13     | 9      | 15     | 14      | 14     | 7        | 19     | Tu<br>braun                  |        | ç                | 4C<br>6C   | 44     | 27     | 38     | 51     | 58     | 53       | 32           | 32       | 20<br>20   | 13     | 18     | 46     | 15     | 4 t                | 52           | 46     | 91       | 21    | 42    | 39       | 43           | 3/         | 78       | 52      | 66     | Tur-<br>malin     |
| 6       | 0               | σιo      | υ<br>σ      | 7        | 0      | 5      | 2      | 4      | ъ      | 4       | 5      | 8        | 2      | Tu<br>grün                   |        | 5                | л ог       | 105    | 125    | 56     | 79     | 86     | 122      | 105          | 71       | 3 8        | 23     | 6      | 81     | 140    | 28                 | 69           | 89     | 38       | 76    | 112   | 94       | 103          | 75         | 111      | 111     | 84     | ZIRKO             |
| 0       | 0               | 2        | 0 0         | 6        | 0      | 0      | 2      | ω      | ω      | -       | 2      | 0        | 5      | rot Tu                       |        | 5                | 24         | 32     | 14     | 60     | 14     | 14     | 9        | 46           | 77       | 2/<br>2/   | 4      | 4      | 48     | 16     | 9 #                | 60           | 20     | 30       | 14    | 12    | 40       | 23           | ло         | 20       | 29      | 42     | n<br>Kut          |
| 0       | 0               | 0        | 0           | 0        | 0      | 0      | 0      | 0      | 0      | -       | 0      | 0        | 0      | Tu<br>blau<br>k              |        |                  | n -        |        | 9      | N      | ω      | 0      | N        | 0 7          | <u>+</u> | <u> </u>   | 0      | N      | 4      | 4      | (O )               |              | -      | 8        | N     | 6     | 4        |              |            |          |         | ω      | Bro               |
| 2       | 7               | ი<br>შ   | 13 4        | 23       | ω      | 17     | 13     | თ      | ω      | 13      | 20     | 15       | 21     | Tu<br>grün/r<br>oraun g      |        | Ĺ                | /" C       |        | 9      | 10     | ~      | 0      |          |              |          |            |        | ->     | -      | -      |                    |              | 6      | ~        | 10    | Ű     | -        |              | ~ _        |          | -       | ~      | okit He           |
| 2       | -               | 10       | 36<br>17    | 10       | 4      | ъ      | 8      | 21     | 9      | 17      | 37     | 20       | 18     | Tu<br>'osa/ b<br>grün g      | -      | 4                | ں <u>م</u> | 7      | 14     | 2      | 0      | 2      | 2        | 0            |          |            | 0      | 113    | 4      | 2      | 0 0                | ο ω          | 4      | 0        | 4     | U     | 2        | 0 1          | <u> </u>   | <u> </u> | . 2     | 0      | ende              |
| 0       | -               | <u> </u> | υ Ο         | 0        | 0      | 4      | -      | 1      | 0      | 0       | 0      |          | 0      | Tu io<br>lau/io<br>yrün mo   | urma   | d                |            | 0      | 11     | 0      | 0      | 0      | 0        | 0            |          | 0          | 0      | 2      | N      | 0      | 0 1                | 0            | 4      | 0        |       | -     | 0        | 0            |            | -        | • •     | 0      | Hbl.              |
| 14 3    | 2               | 4 (      | ω σ<br>     | ω        | 4      | 23     | 10 3   | 9      | 6      | 5<br>сл | 6      | 4        | 7 2    | Zrf Z<br>dio-an<br>orphrur   | alinva | 4                | ں <u>م</u> | 7      | 3      | 2      | 0      | 2      | 2        | 0            |          | 0          | 0      | 111    | 2      | 2      | 4 0                | . ω          | 0      | 0        | 4     | 4     | 2        | 0 4          | <u> </u>   | <u> </u> | > 2     | 0      | sraune<br>Hbl.    |
| 38<br>3 | 7 1             | 6 2      | 8 22<br>3 4 | 7 2      | 7 3    | 5 3    | 30 3   | 23 3   | 9<br>3 | 37 4    | 22 2   | 26 4     | 20 4   | 1rf Z<br>ige-ru<br>idet      | rietät | c                | υα         | 10     | 0      | з      | 0      | 10     | 2        | 2 -          | - r      | ى 0        | 4      | 10     | 1      | 0      | 0 1                |              | 0      | 0        | 0     | 0     | 0        | <b>сл</b> -  | 4 0        |          | > N     | 4      | lith              |
| 8 89    | 9 28            | 8 .      | 2 60<br>56  | 1 30     | 8 59   | 7 75   | 7 76   | 39 9   | 4 59   | 4 86    | 9 57   | 8 78     | 6 73   | nd Zr                        | ten (T | ٦                | ა –        |        | 0      | 0      | 10     | 0      | 0        | 0            |          | 0          | 0      | 0      | 2      | 2      | 10                 | 0            | 0      | 19       | -     | 4     | 0        | 0 -          | <u> </u>   |          | , o     | 0      | Hyper<br>sthen    |
| 9 9     | °<br>0          | 2 1      | 2 2         | 0        | 3      | 8      | 3<br>3 | 3 10   | 9 1    | с;<br>З | 1      | 33       | 3 1    | f Zri<br>idic<br>mori        | u) ur  | -                | <u> </u>   | 0      | 4      | 0      | 7      | 0      | 0        | 0            |          | о <u>-</u> | 0      | 8      | ω      | 0      | 0 0                | 0 10         | 0      | 0        | 0     | 2     | 0        | (            |            | <u> </u> | , 0     | 0      | stati             |
| 20      | 0               | 2        | 64          | 2        | 5      | 9      | 9      | 10     | ъ      | 9       | 5      | 13       | -      | r Zrr<br>>- ange<br>ph runde | าd Zir | -                | 7 0        | 0 00   | 0      | 0      | 6      | 0      | 4        | ∞ +          | <u> </u> | 0          | 0      | 20     | 0      | 8      | 26                 | о <i>0</i> 1 | 18     | 7        | 4     | 4     | 13       | 4            | 4 4        | ں د      | n Un    | 0      | t spin            |
| 22      | 0               | 0        | 6           | ,<br>СЛ  | 9      | 19     | 6      | 15     | 10     | 13      | 8      | 17       | 10     | ÷-rund<br>et                 | konv   |                  |            |        | 0      | 0      | ()     | _      | 0        |              |          | » 1        | 15     | ~      | 0      | ~      |                    | •            |        | 0        | 6     | ~     |          | ~            |            |          |         |        | ell Gra           |
| 51      | 0               | σг :     | 20<br>14    | 7        | 17     | 37     | 18     | 35     | 15     | 25      | 15     | 33       | 11     | Zrr                          | arietż |                  |            |        | 0      | )      | 01     | 0      | 0        |              | ~ 0      | νĝ         | 4      | ~      | 0      | 0      | × +                |              | 0      | 0        | 7     | Ŭ     |          |              |            |          |         |        | nat lit           |
| P45/11  | P45/08          | P38/10   | P38/04      | P33/04   | P31/04 | P31/02 | P28/06 | P26/07 | P25/06 | P25/02  | P24/01 | P19/02   | P16/08 | Probe                        | iten ( | -                | - c        | . 0    | 1      | 0      | ω      | 0      | 0        | σ            | s c      |            | 0      | 2      | 0      | 0      | 2 0                | 0            | 0      | З        | 7     | 0     | 0        | 0            |            |          | , o     | -      | anıt Cr           |
| 20      | 10              | 14       | 9           | 32       | 22     | 18     | 12     | 13     | 26     |         | 6      | 4        | 3 15   | Tu<br>braun                  | Zrf= ; | ţ                | 3 5        | 80     | 0      | 0      | 0      | 19     | 6        | 2 -          | 2 4      | 0          | -      | -      | 0      | 6      | 59                 | 20           | N      | 0        | 4     | N     | <b>-</b> | <b>1</b> 3 Γ | 3 C        |          | , 0     | 0      | oid               |
| 2       | сл              | σιo      | ω _         | 0        | 8      | 6      | -      | з      | -      | 2       | -      | 0        | 2      | Tu<br>grün                   | Zirko  | ¢                |            | ω      | 0      | 0      | ω      | 0      | 0        | 0            |          | 0          | Ν      | 9      | 0      | 2      | 0 0                | 0            | 0      | 0        | 0     | 0     | 0        | 0            |            |          | , o     | 0      | :pidot            |
| 4       | 9               | 2        | ა თ         | 0        | 12     | ω      | Б      | 1      | 2      | 4       | 0      | 0        | 2      | Tu<br>rot                    | n fark | d                |            | 0      | 0      | 0      | 3      | 0      | 0        | 0            | 0 0      | 0          | 0      | 0      | 0      | 0      | 0                  | 0            | 2      | 2        | 0     | 0     | ω        | 0            |            | 0 0      | , o     | 0      | Dis-<br>then      |
| 0       | 2               | 0        | 0 0         | 0        | 0      | 0      | 0      | 0      | 0      | 0       | 0      | -        | 0      | Tu<br>blau                   | olos;  | 1                | ათ         | 1 -    | 3      | 0      | 6      | 0      | 0        | 0            | - c      | 10         | 0      | 0      | 5      | 4      | 7                  | ı N          | 4      | 3        | 0     | 0     | 4        | 1 0          |            | σ        | 10      | 0      | Silli-<br>manit   |
| 22      | ω               | 12       | = =         | 14       | 8      | 16     | 8      | 6      | 6      | -       | ω      | -        | 11     | Tu<br>grün/<br>braun         | Zrr= ; | -                | <u> </u>   | 0      | 3      | 0      | 8      | 0      | 0        | 0            |          |            | 0      | 0      | 7      | 0      | 0 0                | 0            | 0      | 0        | 0     | 0     | 2        | 0 0          | - c        | <u> </u> | • 0     | 0      | Anda<br>Iusit     |
| 20      | 28              | 10       | <u>→</u> ∞  | σı       | 7      | 8      | 4      | 1      | 2      | 0       | ω      | 12       | 16     | Tu<br>rosa/ I<br>grün        | Zirko  | 14,2             | 72,4       | 90,3   | 83,0   | 96,5   | 71,8   | 84,7   | 91,4     | 90.9         | 48,1     | 9,47       | 19,5   | 13,7   | 87,7   | 85,4   | 40.3               | 90,9         | 77,2   | 79,4     | 55,6  | 82,8  | 86.4     | 79,0<br>84.4 | 96,2       | 88,3     | 95,9    | 96,0   |                   |
| 0       | 0               | 0        | 0           | 0        | 0      | -      | з      | 0      | -      | 0       | 0      | 0        | 0      | Tu<br>blau/i<br>grünm        | n ros  | 4<br>4,0         | 4 0,4      | 9 4,3  | 0 0,1  | 4 0,1  | 6 8,2  | 5 0,1  | 0 2,1    | 9 4.0        | 0<br>0,1 | 0,1        | 8 0,1  | 8 10,  | 4 0,9  | 8 4.8  | 4 5,1<br>9 17      | 1 2,2        | 3 8,9  | 6 12,    | 8 2,2 | 7 3,7 | 0 6.5    | 1 2 1 2      | N N<br>N N | 6 2,6    | 7 2,4   | 5 0,1  |                   |
| 4       | ω               | 11 5     | 28<br>28    | 8        | ω      | ω      | 7      | З      | -      | -       | 0      | 0        | 9      | Zrf ar<br>dio-ar             | a)     | 0/               | 13         | 37 5   | 10 10  | 10 2   | 23 13  | 10 15  | 15 5     | 2 0          | 10<br>42 | 0 0        | 10 80  | 22 70  | 94 8   | 34 7   | 73 26              | 27 4         | 91 5   | 95 2     | 20 37 | 70 7  | 5 5      | 30 13        | 16         | 5        | 12<br>1 | 10 2   | a% Me             |
| 14      | UI<br>UI        | 30       | 38<br>38    | 14       | 36 3   | 42 6   | 20 2   | 18     | 11 1   | 2       | 8      | <u> </u> | 27 2   | Zrf Z<br>וge- ru<br>ndet     |        | 9, <del>04</del> | 1,55       | ,24 7  | 9,00 7 | ,42 8  | 3,85 6 | 5,25 7 | ,38<br>8 | .25 7        | 3,98     | 9,47       | ),42 1 | ),22 1 | ,02 7  | ,53 6  | 3,08<br>3,45<br>45 | ,55          | ,94 6  | ,23 7    | ,36 4 | ,87 6 | .26 7    | - AC 8       | 50,<br>80, | ,29      | ,61 7   | ,19 g  | ta%               |
| 26 4    | 5 <u>1</u><br>5 | 29 7     | 32<br>10    | 6        | 37 7   | )6 1.  | 7 Of   | 28 4   | 15 2   | 3       | 10 1   | 4        | 25 6   | nd Z                         |        | 00,00            | 0,69       | 2,93   | 2,00   | \$1,66 | 52,34  | 3,73   | \$6,02   | 3,73<br>7.03 | 14,08    | 8,07       | 7,08   | 2,89   | 7,83   | 0,22   | 10 39              | \$4,09       | 67,33  | 5,89     | 17,25 | 4,35  | 7.63     | 1,02         | 3,78       | 30,95    | 9,44    | 90,35  | ed%               |
| 4 1     | 9 0             | 0 7      | )3 5<br>3 4 | 0        | 6 0    | 1      | 7 4    | 8 1    | 6 0    | 0       | 8 0    | 0        | 1 4    | rf Zr<br>idio<br>mor         |        | 0,00             | 1,72       | 17,47  | 11,00  | 14,88  | 9,52   | 11,02  | 5,38     | 13.96        | 4,08     | 1,40       | 2,50   | 0,89   | 9,91   | 25,27  | 2,39               | 6,82         | 9,90   | 3,57     | 8,42  | 18,52 | 8,77     | 17 42        | 12,43      | 7,41     | 16,53   | 5,70   | Pra%              |
| 2       | 0               | 13       | 10          | 7        | 12     | 3      | 6      | 10     | Б      | 1       | 3      | 0        | 8      | r Zri<br>o- ang<br>ph rund   |        | 2,49             | 3,71       | 1,43   | 1,88   | 1,70   | 1,88   | 1,90   | 2,77     | 1.71         | 2,38     | 1,75       | 1,92   | 2,67   | 2,06   | 0,87   | 6 00               | 2,51         | 1,92   | 3,06     | 1,72  | 1,25  | 2.18     | 1 25         | 1,91       | 2,39     | 1,57    | 2,76   | _n(∪ita<br>/Meta) |
| 9       | ы               | 15       | 9 13        | 8        | 10     | 6      | 15     | 12     | З      | 2       | 2      | 2        | 9      | r Zrr<br>e- runc<br>let      |        | -1,44            | -3,91      | -0,18  | -4,61  | -3,19  | -0,52  | -5,03  | -0,92    | -0,99        | -6,19    | -6,80      | -6,69  | -1,93  | -2,14  | -0,44  | -1,/3              | -0,69        | 0,41   | 1,76     | -2,83 | -0,75 | 0.22     | -1 95        | 0,69       | -0,69    | 0,41    | -3,09  | Ln(Sec<br>/Prä)   |
| 11      | ы               | 35       | 22 30       | 19       | 22     | 11     | 28     | 23     | 8      | з       | 5      | 2        | 20     | - Zrr                        |        | 03,00            | 54,00      | 70,00  | 70,0C  | 60,0C  | 54,00  | 73,00  | 61,00    | 52.00        | 57,00    | 33,00      | 56,00  | 48,0C  | 55,00  | 38,00  | 60,00              | 60,00        | 68,00  | 60,0C    | 43,00 | 60,00 | 53.00    | 54 00        | 53,00      | 74,00    | 64,00   | 75,0C  | а Оран            |
| L       | 1               |          |             | <u> </u> | L      | 1      |        | L      | 1      | 1       | 1      | 1        |        |                              |        | Ľ                |            | Ľ      | Ľ      | -      | -      | -      | -        |              | 1        | 1          | Ľ      | 5      | _      | - (    | -1                 | Ľ            | Ľ      | <u> </u> | -     | -     | - (      | -1           |            | Ľ        | Ľ       | Ľ      | ê                 |

| P27/02 | P33/01 | P35/01 | P33/07 | P38/11 | P45/15   | P49/08 | P49/07 | P49/02 | P59/03 | P57/07 | P57/01 | P56/04 | P47/02 | Probe                       |        | TR 8/5 | P23/01  | P06/05  | P06/01 | P04/05 | P14/02         | P15/07 | P14/05  | P18/17     | P22/07  | P23/08       | P23/04      | P26/02  | P27/01     | P27/02     | P35/01            | P33/07     | P38/11 | P45/15 | P49/08   | P49/02     | P 59/03     | P57/07 | P57/01 | P56/04  | P47/02 | Probe             |
|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------------------|--------|--------|---------|---------|--------|--------|----------------|--------|---------|------------|---------|--------------|-------------|---------|------------|------------|-------------------|------------|--------|--------|----------|------------|-------------|--------|--------|---------|--------|-------------------|
| 6      | 22     | 4      | 10     | 18     | 12       | 3 18   | 10     | 8      | 12     | 8      | 17     | 19     | 10     | Tu<br>braun                 |        | 49     | 38      | 26      | 41     | 55     | 41             | 76     | 16      | 22         | 34      | 11 13        | 45          | 25      | 86         | 15         | 18<br>49          | 31         | 65     | 53     | 35<br>35 | 36         | 70          | 54     | 93     | 52      | 45     | Tur-<br>malin     |
| 2      | -      | 2      | 3      | 7      | 4        | 0      | 8      | ъ      | 9      | 14     | 6      | 3      | 4      | Tu<br>grün                  |        | 72     | 95      | 131     | 86     | 102    | 84             | 60     | 116     | 109        | 88      | 21           | 2 7         | 113     | 57         | 52         | 148<br>116        | 123        | 109    | 112    | 88       | 101        | r 91        | 116    | 71     | 76      | 97     | Zirko             |
| 2      | ъ      | 1      | 2      | з      | <b>б</b> | 0      | 2      | 0      | ω      | თ      | 8      | 3      | 2      | ₫₫                          |        | 48     | 28      | 24      | 38     | 33     | 51 9           | 54     | 53      | 57         | 32      | 25           | 10          | 22      | 37         | 12         | 20                | 12         | 15     | 20     | 20       | 90<br>48   | 34          | 23     | 18     | 36      | 40     | n<br>Rut          |
| 0      | 2      | 0      | 0      | -      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | -      | blau g                      |        | 7      | 2       | 1       | з      | 6      | 0 1            | σ      | ω       | 0          | 7       | 0 6          | ა თ         | 9       | 6          | 0          | - <u> </u>        | 0          | 0      | ω      | 12       | о <i>и</i> | , c         |        | 5      | 0       | 0      | il Broo           |
| -      | 7      | 7      | 13     | 20     | 16       | 6      | 8      | 11     | 15     | 10     | 28     | 7      | 14     | räun g                      |        |        |         |         | _      |        |                |        |         |            |         |              |             |         | _          | _          | _                 | _          |        |        |          |            |             |        |        |         | _      | ble               |
| σı     | 12     | 3      | 2      | 17     | 16       | 10     | 6      | 15     | 28     | 16     | 26     | 19     | 12     | Tu ]<br>osa/ bl<br>rün g    | Turi   | 0      | 2       | 8       | 4      | 010    |                | 0      | G       | 0          | 2       | - °          | 0 0         | ω       | 0          | 0          | - 0               | · 🛛        | 1      | N      |          |            |             | 4 0    | 0      | 7       | 0      | nde G             |
| 0      | 0      | 0      | 0      | 1 (    | 0        | 0      | 0      | 0      | 0      | 1      | 5 5    | 1 、    | 4 4    | ľu<br>au∕idi<br>rün mo      | nalin  | 0      | 0       | 0       | 0      | 0      | 0              | 0      | 0       | 0          | 0       | 0 0          | ο<br>C      | ω       | 0          | 0          | 0 0               | 0          | 0      | 0      | 0        |            |             | 0      | 0      | 4       | 0      | tbl. B            |
| 3      | 4 27   | 7 45   | 7 2,   | 9 3(   | ω<br>ω   | 2 18   | 2<br>S | 2 15   | 23     | 5 40   | 17     | 1 10   | 4 17   | rf Zr<br>io-ang<br>rph runc | varie  | 0      | 2       | 8       | 14     | σī     | ט תי           | 0      | СЛ      | 0          | 2       | <u>→</u> 0   | ით          | 0       | 0          | 0          | - 0               | . 13       | -      | 2      | 2        |            |             | 4      | 0      | ω       | 0      | raune /           |
| 4 12   | 7 47   | 5 44   | 1 50   | ) 36   | 46       | 3 59   | 4 36   | 25     | 3 44   | ) 43   | 7 33   | 3 40   | 7 34   | le f<br>In Zri              | täten  | 0      | ω       | 1       | 1      | 0      | თ თ            | 0      | 0       | 0          | 0       | o            | ით          | 8       | 4          | 6 I        | 2 -               |            | 1      | 0      | 2        | 0          |             | • •    | 0      | 13      | з      | Iith              |
| 32     | 78     | 96     | 77     | 75     | 84       | 80     | 75     | 41     | 75     | 87     | 55     | 53     | 54     | d Zrf                       | (Tu)   | 7      | 0       | 0       | 2      | 0      | ω Ο            | 0      | 0       | 0          | -       | c            | 0           | 2       | 0          | 0          | ωc                | -          | 2      | 4      | 01       | <b>о</b> и | o c         | 0      | -      | 0       | 1      | Hyper-<br>sthen   |
| ი      | 2      | 7      | 2      | з      | 2        | 0      | 4      | 0      | 0      | 6      | 2      | 0      | 6      | Zrr<br>idio-<br>morpt       | und Z  | 7      | 0       | 0       | 0      | 0      | 0 0            | 0      | 0       | 0          | -       | 0 0          | ى د         | -       | 0          | 0          | 0 0               |            | 1      | 0      | 0.       | 4 c        | o c         | 0      | 0      | 0       | 0      | En-               |
| σı     | 11     | 23     | 17     | 12     | 11       | 0      | 10     | ъ      | 10     | 11     | 5      | 6      | 15     | Zrr<br>ange-<br>n rundet    | Zirkor | 9      | 9       | 4       | 0      | 0      | » o            | თ      | ъ       | 4          | 11      | 4 13         | 13 1        | . 9     | 0          | 4          | 8 C               |            | 1      | 4      | 12       | ח ת        | ь <i>и</i>  | 0      | 9      | 10      | 8      | Chron             |
| 10     | 25     | 23     | 27     | 20     | 16       | 8      | 10     | თ      | 6      | 12     | 9      | 16     | 22     | Zrr<br>rund                 | Ivarie | 0      | 2       | 0       | 0      | 0      | 0              | 0      | 0       | 0          | 15      | 126          | 31          | 0       | 0          | 107        | 0 3               | 7          | 0      | 0      | 0        |            |             | ω      | 0      | 0       | 0      | <u>-</u> Gran     |
| 20     | 38     | 53     | 45     | 34     | 28       | 8      | 25     | 10     | 16     | 29     | 16     | 23     | 43     | Zrr                         | täten  | 1      | 11      | 0       | 0      | 0      |                | 0      | 0       | 0          | 0       |              |             | 0       | 0          | 0          | 0 0               | 0          | 0      | 0      | 2 0      |            |             | 0      | 0      | 3       | 0      | at Tita           |
| P23/01 | P06/05 | P06/01 | P04/05 | P04/02 | P14/02   | P15/07 | P14/05 | P18/17 | P22/07 | P22/01 | P23/08 | P23/04 | P26/02 | Probe                       | in %   | 0      | 1       | 0       | 0      |        | <del>-</del>   | 0      | 4       | 7          | œ .     | 0 -          | 4 N         | N       | 6          | 4          |                   |            | 0      | 0      | 6        |            |             |        | 0      | 2       | 0      | nit Chlo<br>oi    |
| 13     | ъ      | 5      | 19     | 12     | 36       | 17     | сл     | 10     | 14     | 4      | 3      | 16     | 10     | Tu<br>braun                 | (Zrf=  |        |         |         |        | _      |                |        |         |            | _       |              | -           |         |            |            |                   |            | _      | -      |          |            |             |        |        |         | _      | d <u>rit-</u> Ep  |
| 0      | -      | 7      | 4      | 2      | N        | 11     |        | 2      | -      | 0      | 0      | 4      | -      | <b>T</b> u<br>grün          | Zirko  | 0      | 0       | 0       | 1      | 0      | 0              | 0      | 0       | 0          | 0       |              | <u> </u>    | 0       | 0          | <u> </u>   | -                 |            | 0      | N      | 0        | 50         |             | , o    | ω      | 1       | 0      | idot<br>ti        |
| 11     | 0      | 3      | З      | ъ      | 15<br>5  | 7      | 2      | 2      | 0      |        | 0      | 0      | 0      | 로 <mark>-</mark>            | on far | 0      | 0       | 0       | 0      | 0      | 0              | 0      | 0       | 0          | 0       | 0            |             | 0       | 0          | 0          | 0 0               | 0          | 0      | 0      | 0        |            | 0 0         | 0      | 0      | 0       | 2      | nen n             |
|        | 0      | 1      | 0      | 0      | 0        | 2      | 0      | 0      | 0      | 0      | 0      | 0 1    | 2      | lau gr<br>bra               | ;sold  | 0      | 0       | 4       | ω      | 0      | 0 12           | 0      | 0       | -          | 0       | 0 0          |             |         | 0          | 0          | 0 C               | ) <u> </u> | 4      | 0      | 10       | <u> </u>   |             | • •    | 0      | 0       | -      | nanit             |
| 6      | 10 1   | 12 1   | 15 1   | 13 8   | 7        | 14 2   | 6      | 2      | 13 7   | 1      | 2      | 12 1   | 5      | un ros<br>aun gr⊓           | Zrr=   | 0      | 0       | 0       | 0      | 0      | 0 2            | 0      | 0       | 0          | 0       | c            |             | 0       | 4          | 0          | - 0               | • 0        | 0      | 0      | 0        | 0 0        | 0           | 0      | 0      | 0       | 4      | Anda-<br>Iusit    |
| 0      | 0      | 3 0    | 1 3    | 2      | 0        | 2 3    | 0      | 0      | ,<br>0 | 0      | 5      | 30     | 2      | u<br>šá/bla<br>un grü       | Zirko  | 84,42  | 80,41   | 91,08   | 88,19  | 94.55  | 67,98<br>88 74 | 95,15  | 92,13   | 93,94      | 77.07   | 23,01        | 63,32       | 80,17   | 90,20      | 39.29      | 96,36<br>02 31    | 82,87      | 94,57  | 92,55  | 71.43    | 94,26      | 96,14       | 96,40  | 90,55  | 81,85   | 91,27  | ZTR%              |
| 6      | 12     | 7      | 7      | 2      | 2        | 4      | ъ      | 8      | 8      | 1      | 1      | 2      | 4      | u∕idio<br>in morp           | on ros | 7,61   | 4,49    | 1,88    | 0,84   | 0.10   | 0,10<br>5 30   | 2,43   | 2,31    | 2,02       | 5.85    | 6,28<br>2.46 | 0,44        | 5,60    | 0,10       | 1.98       | 0,10<br>5,67      | 4,42       | 1,45   | 3,92   | 6.12     | 2,46       | 1,29        | 0,10   | 4,98   | 5,24    | 4,37   | Ultra%            |
| 24     | 39     | 28     | 15     | 18     | 26       | 6      | 38     | 20     | 25     | ъ      | 8      | 24     | 27     | - ange<br>h runde           | sa)    | 0,10   | 8,57    | 6,57    | 9,70   | 2.27   | 23,72          | 0,10   | 4,17    | 4,04       | 13.17   | 68,20        | 33,62       | 9,05    | 6,86       | 58.73      | 3,64              | 12,15      | 3,26   | 1,96   | 12.24    | 1,64       | 2,58        | 3,15   | 1,99   | 11,29   | 4,37   | Meta <sup>9</sup> |
| 34     | 47     | 33     | 43     | 34     | 21       | 35     | 36     | 36     | 41     | 6      | 6      | 30     | 56     | rund                        |        | 81,5;  | 65,3    | 74,18   | 73,00  | 76.3   | 73 D           | 87,38  | 73,6    | 71,72      | 70.2    | 21,3         | 55,40       | 67,24   | 76,4       | 29.3       | 70,04             | 60,22      | 77,5   | 78,4:  | 67.3     | 70 E       | 87,98       | 81,98  | 82,59  | 70,56   | 69,87  | Sed               |
| 64     | 86     | 68     | 65     | 54     | 49       | 45     | 62     | 65     | 74     | 12     | 18     | 55     | 87     | Zrf                         |        | 2 12,0 | 1 15,1  | 8 16,9  | 0 15,1 | 5 18.  | 1 1,9          | 8 7,7  | 1 18,5  | 2 22,2     | 4 .,0   | 1 1,6<br>4 5 | 6 7,8       | 4 12,9  | 7 13,7     | 7 9.9      | 4 26,3<br>8 10/   | 2 22,6     | 4 17,0 | 3 14.  | 5 12,v   | 4 4,9      | . 8         | 8 14,4 | 9 7,9  | 6 11,2  | 7 21,4 | % Prä             |
| 0      | 7      | 7      | 6      | 2      |          | 2      | 4      | 4      | 1      | -      | 0      | 2      | ω      | Zrr<br>idio-<br>morph       |        | )6 1,3 | 10 1,   | 90 1,   | 19 1,  | 1.     | 3 8<br>1 ,3    | 7 2,   | 52 1,   | 22 I,      | 2 .     | 6 /<br>1 /2  | - 6<br>- 1, | 93 1,   | -<br>73 1, | 2 1.       | 32<br>1<br>1<br>1 | 35<br>0,   | )3 1,  | 12     | 2.       | 1 2,2      | 5<br>5<br>5 | 1      | 6 2,:  | 29 1,   | 40 1,  | /Me               |
| _      | _      | -      | 14     | 15     | 2        | 6      | 14     | 21     | ъ      | 4      | 1      | 7      | 9      | Zrr<br>ange<br>runde        |        | 91     | 46      | 48      | 57     | 4      | য<br>য         | 42     | 88      | 17         | 3       | £ 8          | 18          | 5       | 72         | 09<br>10   | у<br>7<br>98      | 98         | 52     | 71     | 8 2      | 90<br>90   | 8           | 74     | 34     | 83      | 18     | ∪lta L            |
| 2      | ω      | _      | ·      |        |          | _      |        |        |        |        |        |        |        | g ⊺                         |        | 4      | ÷       | Ŀ       | 5      | با ٺ   | 5 14           | ω      | Ч       | <u>ا ہ</u> | 51.     | 5 2.         | 1           | ÷       | 7          | <u>ل</u> ا | 치                 | 1          | ÷      | 0      | 5        |            | 4           | 1.     | 0      | ÷       | 0      | ⊂⊊                |
| 2 18   | 13 14  | 1 13   | . 16   | 14     | 2        | 8      | 19     | 19     | 8      | 4      | 3      | 7      | 13     | ÷ rund<br>et                |        | 4,33 . | -0,65 t | -1,25 t | -2,44  | -3.12  | -0.17          | 3,19 t | -0,59 ( | -0,69      | -0.81 6 | -3.33        | -4,34       | -0,48 t | -4,23 4    | -3.39 4    | 1 25              | -1,01 '    | -0,81  | 0,69   | -0.69    | 0,41       | -0,69       | -3,45  | 0,92 t | -0,77 t | 0,00 ( | n(Sed C<br>/Prä)  |

P27/02 P27/01

N

ъ

N 

**б** 

22

29

N 

ъ

27

18

сл 

\_

œ 

ω

12

-

σı

ი

,

TR 8/5 P23/01 Schwermineral-Daten in % (Hochwipfel-Formation):

| P30/0 | P29/2       | P29/1       | P29/1  | P29/( | P29/(   | P52/( | P52/0    | P02/0 | P02/0   | P11/0        | P11/( | P11/0          | P53/0  | P05/(        | Prob              | ]     |        | P29/0  | P29/( | KP 7    | KP 3  | KP11           | TS 2/      |               | P21/0 | P21/0       | P21/0 | TR14   |               | P30/0   | P30/0 | P29/2  | P29/1 | P20/1      | P 29/0     | P32/0    | P52/0      | P02/0  | P02/0  | P11/(  | P11/( | P11/0        | P53/0  | P05/0  | Prob              |
|-------|-------------|-------------|--------|-------|---------|-------|----------|-------|---------|--------------|-------|----------------|--------|--------------|-------------------|-------|--------|--------|-------|---------|-------|----------------|------------|---------------|-------|-------------|-------|--------|---------------|---------|-------|--------|-------|------------|------------|----------|------------|--------|--------|--------|-------|--------------|--------|--------|-------------------|
| 14    | <b>3</b> 34 | <b>9</b> 26 | 3 14   | 32    | 6 8(    | )4 32 | 21       | 19    | 0 8(    | 04           | 2     | <b>)5</b><br>2 | 5      | )8 11        | e braun           |       |        | 129    | 132   | 53      | 43    | 11 31          | 4 100      | 48            | 8/ 8  | <b>1</b> 66 | 3 166 | 10 102 | 1 2/<br>111   | 130     | 92 92 | 23 147 | 9 55  | 3 128      | 0 127      | 94 8/    | 01 85      | )9 154 | 146 (1 | )4 28  | 23    | <b>)5</b> 24 | 16     | )8 111 | e Tur             |
| 6     | 27          | 10          | 5      | 11    | 13      | ъ     | 11       | 16    | 14      | 0            | 0     | 0              | ω      | 11           | grün              | 2     |        | 45     | 37    | 66      | 82    | 28             | 50         | 55            | 2 2   | 25          | 14    | 54     | 18            | 54      | 48    | 16     | 86    | 42         | 32         | 2<br>Q   | 8 8        | 15     | 18     | 36     | 15    | 13           | 14     | 12     | n Zirk            |
| 9     | ω           | 0           | ω      | 0     | 0       | 0     | 9        | 0     | 12      | 4            | 0     | 0              | 0      | 0            | rot               | 1     |        | ,<br>, |       | <i></i> | ~     | ~              |            |               |       |             | -     |        | ~ ~           | -       | ~     |        |       |            |            |          |            | ,<br>, | 3      | 、<br>( | 8     | <u>о</u>     | ,<br>С |        | on<br>R           |
| 0     | 2           | 0           | 0      | 4     | 2       | ъ     | 0        | 0     | 16      | 0            | 0     | 0              | 0      | 14           | blau              | 1     |        | 11     | 23    | 88      | 39    | <b>1</b> 0     | 14         | 5 ō           | 27    | 5           | 8     | 23     | 7             | 4       | 27    | 14     | 18    | υ<br>Γ     | 10         | 5 6      | 12         | 13     | 9      | 16     | 8     | 15           | 13     | 14     | util              |
| 31    | 50          | 0           | 66     | 60    | 19      | 33    | 31       | 54    | 25      | 0            | 12    | 8              | 0      | 30           | grün/<br>braun    | 1     |        | 6      | ω     | 10      | 8     | ი <sup>.</sup> | 7 5        | 29            | ; c   | ) <u> </u>  | 0     | 9      | <u>1</u> 0    | о<br>07 | 16    | 9      | 12    | ი.         | ₽ 2        | 4        | <b>с</b> л | 3      | 7      | 10     | З     | ъ            | 6      | 8      | rookit            |
| 32    | 25          | 18          | 31     | 15    | 56      | 11    | 11       | 59    | 70      | 18           | 8     | 14             | 8      | 22           | rosa/<br>grün     |       | 7      | 2      | 0     | 8       | 0     | 12             | 4          | - 0           | c     | 0           | 4     | 20     | 0 0           | 0       | з     | 0      | 4     | <u></u> .  | <u>-</u> 0 | лc       | 0          | 7      | 6      | 12     | 0     | 0            | 0      | 22     | Horn-<br>hlende   |
| 0     | 7           | 2           | 8      | 6     | 19      | 2     | ω        | 6     | 10      | 6            | 2     | 0              | 0      | 24           | blau/<br>grün     |       | Jrma   | 0      | 0     | 0       | 0     | 9              | 0          | 0 -           | . c   | 0           | 0     | 0      | - c           | 0       | 0     | 0      | 0     | 0 0        | 0 0        | лс       | 0          | 0      | 1      | 8      | 0     | 0            | 0      | 11     | Grüne             |
| 4     | 0           | 0           | 2      | ω     | 0       | 12    | 8        | 0     | 0       | 16           | 20    | 17             | 13     | 0            | idio-<br>morph    | 7-4   | linva  | 2      | 0     | 8       | 0     | ω              | 4          | 0 0           | , c   | 0           | 4     | 2 0    |               | 0       | з     | 0      | 4     | <u> </u>   | <u> </u>   |          | 0          | 7      | თ      | 4      | 0     | 0            | 0      | 11     | Braur             |
| 12    | 2           | 14          | 11     | 2     | -       | 26    | 28       | 3     | 6       | 22           | 60    | 44             | 43     | 0            | ange-<br>rundet   | 7.4   | rietät | 0      | 0     | 0       | 0     | ω              |            | 0 0           | , c   | 0           | ы     | 0 0    | 5 U           | 1 4     | 3     | -      | 4     | 0 0        | ωο         |          | 2 2        | 3      | з      | 0      | ъ     | 2            | 2      | 0      | ne Aktii          |
| 25    | 1           | 51          | 19     | 23    | 21      | 34    | 32       | 10    | 11      | 40           | 28    | 37             | 46     | 11           | rund              | 7. 1. | en (T  |        |       | _       | _     |                |            |               |       |             |       | _      |               |         |       | -      |       |            |            |          |            |        |        |        | _     | _            |        | _      | no-Hy             |
| 40    | 13          | 65          | 33     | 28    | 22      | 72    | 68       | 13    | 17      | 79           | 108   | 98             | 102    | 11           | 1                 | 7.4   | u) un  | 2      | 2     | 0       | 0     | 4              | 4          | <u></u> с     | 5 0   | 0           | 4     | 0      | р ~           |         | 3     | 0      | 8     | 5          |            | 0 -      | . 0        | 0      | 2      | 8      | 0     | 4            | _      | ω      | per-              |
| 0     | 0           | 0           | 0      | -     | 0       | ω     | ω        | 0     | 0       | 6            | 7     | 7              | 9      | 0            | idio-<br>norph ru |       | d Zir  | 0      | 0     | 0       | 0     | 0              | 0          | 0 0           |       | 0           | 0     | 0      |               | 0       | 0     | 0      | 10    | 0 0        | o -        | <u> </u> | 0          | 0      | 0      | 0      | 0     | 4            | 0      | 11     | fatit C           |
|       | -           | 10          | 2      | 0     | 0       | 6     | 6        | 0     | 0       | 10           | 33    | 21             | 24     | 0            | ange-r<br>undet   | 7     | konv   | 0      | 0     | 0       | 10    | ω              | 0 ·        | ~ ~           | 12    | 0           | 0     | 0      | σ             | 0       | 2     | 0      | 0     | 0          | 0          |          | ი          | 0      | 0      | 8      | 0     | 0            | 0      | 0      | hrom-             |
| 6     | ω           | 12          | 8      | თ     | ω       | 6     | 7        | 1     | -       | 4            | 10    | 8              | 10     | 2            | und               | 7     | arietä | 0      | 0     | 18      | 0     | 0              | 0          | 0 0           | 0 0   | 0           | 0     | 0 -    | - u           | 0       | 0     | -      | 0     | υ o        | 0 0        | ~        | 0          | 0      | 0      | 0      | 0     | 0            | 0      |        | Granat            |
| 7 92  | 3<br>3      | 22 KP       | 9 KP   | 6 KP  | 3<br>IS | 15 KP | 16<br>KJ | 1 P2  | 1<br>P2 | 20 <b>P2</b> | 50 TR | 37 TR          | 44 UR  | 2 <b>P</b> 3 |                   | D     | iten i | 0      | 0     | 0       | 13    | 0              | 0          | 0 0           | o c   | 0           | 0     | 1 0    | ა თ           | 2       | 0     | υ      | 0     | 0.0        | 16         |          | 2          | 0      | 0      | 9      | 0     | 0            | 0      | 0      | Titanit           |
| 9/07  | 9/01        | 7/7         | 3/1    | 11/11 | 2/4     | 1/1   | 4/1      | 1/08  | 1/05    | 1/03         | 14/10 | 14/1           | 1/1    | 0/02         | bi                |       | n % (  | 0      | 0     | ω       | 0     | 62             | <b>л</b> ( | 0 0           | , c   | 0           | 0     | 0      | 0             | 0       | 0     | 2      | 0     | 0 0        | ω          |          | 0          | 0      | 0      | 0      | 0     | 4            | 9      | ω      | Chlori            |
| 14    | 9           | 28          | 15     | 12    | 27      | 7     | 10       | 17    | 17      | 22           | 19 :  | 33             | 7      | 21           | raun g            |       | Zrf=   | 1      | 0     | 0       | 0     | 0              | 20         | 0 -           | - N   | <u>,</u> 1  | 0     | 0      | 0 4           | . 0     | 2     | 0      | 2     | 0 0        | 0 0        | лс       | 0          | 0      | 0      | 0      | 2     | 1            | 2      | 0      | it- Epid          |
| _     | 2           | σı          | 6      | 0     | 4       | -     | 2        | 8     | 10      | 27           | 26    | 14             | ω      | 4            | rün               |       | Zirko  | _      | 0     | _       | ~     |                |            |               |       |             | 0     |        |               |         | 0     | 0      | 0     | _          |            |          |            | 0      | 0      | 2      | 0     |              |        | ~      | 호<br>탄 탄          |
| 0     | 3           | 5           | 0      | 1     | 。<br>、  | 0     | ω        | 6     | 0       | 4            | 0     | N              | 0<br>0 | 4 (          | ot bi             |       | n farl | _      | Ŭ     |         | ~     |                |            |               |       |             | 0     |        |               |         | 0     | 0      | 0     |            |            |          |            | )      | )      | -      | )     |              | 10     | 0      | en en<br>S        |
| 6     | 0           | 1:          | 0<br>0 | 6     | ۔<br>چ  | 1     | 6        | 2     | 7 4:    | 5            | 2     | 4              | 3      | 0 7          | au grü<br>bra     |       | olos:  | 0      | -     | 0       | ω     | 7              | 2          | υ –           | · c   | 3           | -     | 0      | ο<br>Ο        | 0       | 2     | 0      | 0     | <u> </u>   | 0 2        | 4 c      | ω          | 0      | 5      | 8      | 0     | 4            | 4      | σ      | anit A            |
| 3 49  | 9 47        | ω<br>ω      | 12     | 10    | 9 30    | 1 29  | 48       | 6 21  | 3 65    | 6 46         | 7 30  | 3 13           | 0      | 0 29         | in/ros<br>un grü  |       | Zrr=   | 2      | 0     | თ       | 0     | 0              | 0          | 0             | о с   | 0           | 0     | 0      |               | 0       | 0     | 0      | 0     | 0          |            |          | » →        | 0      | 4      | 0      | 0     | 0            | 0      | 0      | Inda-             |
| 0     | 2           | 0           | -      | 2     | 0       | 0     | ω        | 0     | 23      | 11           | 0     | 4              | ы      | 2            | a/blau<br>n grü   |       | Zirko  | 92,05  | 96,06 | 78.48   | 81.67 | 49.01          | 86 75      | 89,66         | 91,53 | 97,84       | 94,07 | 89,45  | 26,18         | 94,44   | 83,03 | 88,70  | 79,41 | 00,02      | 11,53      | 93,67    | 90,56      | 91,18  | 86,61  | 71,72  | 95,00 | 87,30        | 87,04  | 68,72  | ZTR%              |
| -     | 4           | 10          | 15     | 0     | 1       | ъ     | _        | 3     | 1       | 0            | 6     | ъ              | 0      | 0            | u/ idio<br>n morp | 7.4   | n ros  | 0,76   | 1,18  | 0.10    | 5.00  | 3.56           | 1 81       | 0,10          | 7,63  | 0,10        | 2,22  | 5,05   | 6,81          | 0,10    | 2,29  | 0,10   | 3,92  | 0 10       | 3,93       | 0,45     | 3,00       | 0,10   | 0,89   | 0,10   | 0,10  | 2,12         | 0,46   | 6,61   | Ultra%            |
| 17    | 13          | 15          | 27     | 6     | 13      | 7     | σ        | 35    | 4       | 7            | ъ     | 4              | ы      | 10           | - ange<br>h runde | 7.4   | á      | 4,17   | 1,18  | 16.46   | 2.92  | 44 27          | 7 83       | 3,45          | 0,85  | 1,72        | 3,70  | 0,92   | 60,73         | 1,85    | 6,88  | 4,18   | 5,88  | 4 56       | 3 53       | 4,07     | 3,00       | 7,35   | 8,93   | 12,12  | 3,33  | 5,82         | 9,26   | 15,42  | Meta <sup>9</sup> |
| 23    | 15          | 41          | 39     | 20    | 35      | 43    | 23       | 21    | 16      | ъ            | 25    | 35             | 15     | 36           | - rund            | 74    |        | 90,5   | 93,7  | 78.4    | 81.2  | 47.8           | 81.0       | 21 2          | 82,2  | 95,6        | 93,3  | 80,2   | 26,1          | 90,0    | 79,3  | 87,0   | 68,6  | 878        | 6 C 0      | 45,9     | 82,4       | 90,4   | 86,1   | 61,6   | 70,0  | 68,7         | 65,2   | 67,8   | % Sed             |
| 42    | 32          | 66          | 81     | 25    | 49      | 55    | 29       | 59    | 21      | 13           | 36    | 44             | 18     | 45           | 1                 | 7.4   |        | 3 19,  | 0 12, | 8       | 5 3.6 | 5 0<br>5 0     | 5          | 8 1/,<br>0 16 | 0 5,1 | 9 5,3       | 3 10, | 8 -    | • 8<br>• 7, • | 0 10,   | 6 13, | 3 2,3  | 3 15  | ມ ເ<br>ຄຸດ | 0 4 10,    | 7 5,5    | 0 20,      | 4 18,  | 6 22,  | 2 21,  | 0 4,6 | 8 21,        | 8 13,  | 4 14,  | % Prä             |
| -     | 0           | 0           | 0      | 0     | 0       | 0     | 0        | 3     | 0       | 0            | ω     | -              | 0      | 0            | idio-<br>morph    | 7     |        | 33 1   | 07 2  | 37 2    | 31 3  | 25             | 34 -       | 67 1          | 70 2  | 33 2        | 04 2  | 47 J   | 12            | 99 2    | 10 1  | 39 3   | 68    | 20 2       | 17 7       | 2        | 83 1       | 92 1   | 64 1   | 08 1   | 39 2  | 76 1         | 83 1   | 12 1   | i%<br>In          |
| -     | 2           | 0           | -      | -     | 1       | 0     | 0        | 8     | 2       | 0            | თ     | -              | 0      | 1            | ange-<br>rundet   | 7     |        | ,54    | 05    | 24      | .11   | 88             | 5.5        | <u>4</u> л 05 | ,67   | ,89         | ,23   | ,14    | 3<br>3<br>8   | ,10     | ,80   | ,59    | 48    | 2          |            | ,74      | ,38        | ,56    | ,34    | ,07    | ,70   | ,15          | 55     | ,57    | (Ulta Li          |
| 2     | 2           | 0           | 0      | 2     | 8       | 0     |          | 7     | з       | _            | 11    | ω              | 0      | 7            | rund              | 7     |        | -1,70  | 0,00  | -5.10   | 0.54  | -2 52          | -1 47      | -3,54         | 2,20  | -2,85       | -0,51 | 1,70   | -2,19         | -2,92   | -1,10 | -3,73  | -0,41 | 2,00       | -1,00      | -2,20    | 0,00       | -4,30  | -2,30  | -4,80  | -3,51 | -1,01        | -3,00  | -0,85  | n(Sed<br>Prä)     |
| ω     | σı          | 0           | -      | 2     | 10      | 0     | -        | 19    | 4       |              | 18    | 4              | 0      | 9            | 1                 | 7     |        | 49,00  | 60,00 | 60.00   | 49.00 | 52 00          | 68 00      | 39,00         | 62,00 | 76,00       | 62,00 | 63,00  | 38,00         | 49,00   | 50,00 | 59,00  | 61,00 | 57 00      | 38,00      | 66,00    | 57,00      | 66,00  | 52,00  | 58,00  | 67,00 | 43,00        | 76,00  | 43,00  | Opake<br>%        |

Schwermineral-Daten in % (Auernig-Formation):
### Chromspinell-Analysen:

| Probe  |       | Ge    | messei | n in Ato | omproz | ent  |        | Gerech | Geha<br>net auf 3 | It pro F<br>2 O-Atom | ormele<br>e (Deer, I | einheit (<br>Howie & 2 | ( <b>p.f.u)</b><br>Zussmanr | n, 1983) | Be                    | erechnete We | rte      |
|--------|-------|-------|--------|----------|--------|------|--------|--------|-------------------|----------------------|----------------------|------------------------|-----------------------------|----------|-----------------------|--------------|----------|
|        | Cr    | Fe    | AI     | Mg       | Mn     | Ti   | Total  | Cr     | Fe                | AI                   | Mg                   | Mn                     | Ti                          | Total    | TiO <sub>2</sub> wt.% | Mg/Mg+Fe     | Cr/Cr+Al |
| Kra 8  | 42,02 | 13,3  | 22,97  | 21,24    | 0,36   | 0,12 | 100,01 | 9,673  | 3,019             | 5,796                | 5,647                | 0,081                  | 0,025                       | 24,241   | 0,133                 | 0,652        | 0,625    |
|        | 28,72 | 13,16 | 34,51  | 23,17    | 0,16   | 0,27 | 99,99  | 6,553  | 2,961             | 8,631                | 6,106                | 0,036                  | 0,060                       | 24,348   | 0,343                 | 0,673        | 0,432    |
|        | 53,88 | 21,86 | 13,05  | 11,08    | 0,13   | 0,31 | 100,31 | 12,552 | 5,022             | 3,332                | 2,981                | 0,030                  | 0,071                       | 23,987   | 0,350                 | 0,373        | 0,790    |
|        | 50,01 | 22,56 | 11,07  | 15,15    | 0,21   | 0,59 | 99,59  | 11,914 | 5,300             | 2,891                | 4,169                | 0,049                  | 0,137                       | 24,460   | 0,679                 | 0,440        | 0,805    |
| KRa3   | 15,43 | 7,15  | 47,45  | 29,8     | 0,11   | 0,05 | 99,99  | 3,457  | 1,580             | 11,652               | 7,711                | 0,024                  | 0,011                       | 24,435   | 0,068                 | 0,830        | 0,229    |
| P42/02 | 39,07 | 18,5  | 21,82  | 20,06    | 0,34   | 0,15 | 99,94  | 9,154  | 4,274             | 5,603                | 5,429                | 0,088                  | 0,037                       | 24,585   | 0,193                 | 0,559        | 0,620    |
|        | 39,81 | 17,88 | 16,37  | 25,72    | 0,12   | 0,08 | 99,98  | 9,489  | 4,202             | 4,279                | 7,081                | 0,028                  | 0,019                       | 25,097   | 0,097                 | 0,628        | 0,689    |
|        | 44,72 | 18,8  | 13,59  | 22,44    | 0,26   | 0,24 | 100,05 | 10,637 | 4,409             | 3,543                | 6,154                | 0,061                  | 0,053                       | 24,857   | 0,273                 | 0,583        | 0,750    |
| P59/02 | 28,17 | 13,38 | 31,6   | 26,48    | 0,08   | 0,12 | 99,83  | 6,509  | 3,048             | 8,003                | 7,112                | 0,018                  | 0,027                       | 24,717   | 0,153                 | 0,700        | 0,449    |
|        | 27,36 | 13,42 | 31,97  | 26,19    | 0,17   | 0,9  | 100,01 | 6,298  | 3,046             | 8,066                | 6,963                | 0,038                  | 0,202                       | 24,615   | 1,149                 | 0,696        | 0,438    |
| P18/04 | 38,18 | 13,87 | 19,78  | 27,74    | 0,19   | 0,23 | 99,99  | 8,974  | 3,215             | 5,096                | 7,531                | 0,044                  | 0,053                       | 24,912   | 0,284                 | 0,701        | 0,638    |
| P19/02 | 55,15 | 23,38 | 11,75  | 7,73     | 0,23   | 1,26 | 99,50  | 12,909 | 5,396             | 3,014                | 2,090                | 0,053                  | 0,288                       | 23,750   | 1,410                 | 0,279        | 0,811    |
|        | 56,4  | 23,32 | 10,24  | 7,41     | 0,31   | 1,9  | 99,58  | 13,173 | 5,371             | 2,621                | 1,999                | 0,071                  | 0,434                       | 23,669   | 2,112                 | 0,271        | 0,834    |
| P23/08 | 37,2  | 7,85  | 24,5   | 30,19    | 0,07   | 0,11 | 99,92  | 8,561  | 1,781             | 6,180                | 8,025                | 0,032                  | 0,025                       | 24,605   | 0,139                 | 0,818        | 0,581    |
|        | 44,15 | 12,15 | 22,05  | 20,15    | 0,08   | 0,43 | 99,01  | 10,190 | 2,765             | 5,578                | 5,371                | 0,018                  | 0,097                       | 24,019   | 0,523                 | 0,660        | 0,646    |

## Turmalin-Analysen:

| Probe  |      |       | Gerr  | nesser | in At | ompro | zent |      |       | G     | erechne | Gehalt<br>auf 29 | : <b>pro F</b><br>O-Atom | ormel<br>e (Deer, | einheit<br>Howie 8 | t <b>(p.f.u</b><br>Zussma | <b>)</b><br>ann, 198 | 3)    | Berechne   | ete Werte  |
|--------|------|-------|-------|--------|-------|-------|------|------|-------|-------|---------|------------------|--------------------------|-------------------|--------------------|---------------------------|----------------------|-------|------------|------------|
|        | Na   | Mg    | AI    | Si     | Са    | Ti    | Mn   | Fe   | Total | Na    | Mg      | AI               | Si                       | Са                | Ti                 | Mn                        | Fe                   | Total | Na/(Na+Ca) | Fe/(Fe+Mg) |
|        | 3,18 | 10,07 | 34,59 | 46,88  | 0,47  | 0,26  | 0,00 | 4,54 | 100,0 | 0,773 | 2,141   | 6,979            | 7,503                    | 0,081             | 0,047              | 0,000                     | 0,824                | 18,35 | 0,071      | 0,278      |
|        | 4,35 | 11,01 | 35,02 | 43,77  | 0,51  | 0,41  | 0,02 | 4,90 | 100,0 | 1,072 | 2,373   | 7,163            | 7,102                    | 0,089             | 0,075              | 0,004                     | 0,902                | 18,78 | 0,089      | 0,275      |
|        | 4,70 | 9,83  | 30,76 | 47,67  | 0,37  | 3,13  | 0,05 | 3,40 | 99,9  | 1,141 | 2,087   | 6,196            | 7,618                    | 0,064             | 0,562              | 0,009                     | 0,616                | 18,29 | 0,104      | 0,228      |
|        | 0,01 | 6,84  | 27,96 | 59,00  | 0,35  | 0,33  | 0,04 | 4,97 | 99,5  | 0,000 | 1,411   | 5,473            | 9,162                    | 0,058             | 0,058              | 0,007                     | 0,875                | 17,04 | 0,000      | 0,383      |
|        | 0,72 | 8,92  | 31,45 | 52,38  | 0,67  | 0,60  | 0,06 | 5,18 | 100,0 | 0,172 | 1,861   | 6,227            | 8,227                    | 0,113             | 0,106              | 0,011                     | 0,923                | 17,64 | 0,019      | 0,331      |
| P2/8   | 6,00 | 12,27 | 30,65 | 46,73  | 0,86  | 0,67  | 0,01 | 2,81 | 100,0 | 1,486 | 2,657   | 6,299            | 7,618                    | 0,151             | 0,123              | 0,000                     | 0,520                | 18,85 | 0,108      | 0,164      |
|        | 5,27 | 13,58 | 32,73 | 44,42  | 0,66  | 0,44  | 0,00 | 2,90 | 100,0 | 1,306 | 2,943   | 6,731            | 7,247                    | 0,116             | 0,081              | 0,000                     | 0,537                | 18,96 | 0,088      | 0,154      |
|        | 2,14 | 12,04 | 34,02 | 46,14  | 0,74  | 0,62  | 0,03 | 4,25 | 100,0 | 0,520 | 2,559   | 6,861            | 7,382                    | 0,127             | 0,111              | 0,005                     | 0,771                | 18,34 | 0,041      | 0,232      |
|        | 5,13 | 12,86 | 33,19 | 44,73  | 0,34  | 0,00  | 0,00 | 3,75 | 100,0 | 1,271 | 2,786   | 6,824            | 7,295                    | 0,060             | 0,000              | 0,000                     | 0,694                | 18,93 | 0,090      | 0,199      |
|        | 3,38 | 11,09 | 35,07 | 45,12  | 0,95  | 0,77  | 0,00 | 3,62 | 100,0 | 0,824 | 2,364   | 7,095            | 7,241                    | 0,164             | 0,139              | 0,000                     | 0,659                | 18,49 | 0,069      | 0,218      |
|        | 1,63 | 10,65 | 35,65 | 46,49  | 0,91  | 0,77  | 0,00 | 3,90 | 100,0 | 0,393 | 2,243   | 7,125            | 7,371                    | 0,155             | 0,137              | 0,000                     | 0,701                | 18,13 | 0,036      | 0,238      |
| P52/1  | 4,57 | 10,98 | 34,78 | 44,43  | 0,26  | 0,15  | 0,00 | 4,83 | 100,0 | 1,126 | 2,366   | 7,112            | 7,207                    | 0,045             | 0,027              | 0,000                     | 0,889                | 18,77 | 0,093      | 0,273      |
|        | 4,10 | 11,19 | 34,23 | 45,18  | 0,20  | 0,42  | 0,00 | 4,67 | 100,0 | 1,006 | 2,401   | 6,971            | 7,298                    | 0,035             | 0,076              | 0,000                     | 0,856                | 18,64 | 0,082      | 0,263      |
| P21/1  | 4,69 | 11,19 | 33,74 | 44,12  | 0,40  | 0,68  | 0,10 | 5,08 | 100,0 | 1,159 | 2,418   | 6,918            | 7,176                    | 0,070             | 0,124              | 0,018                     | 0,937                | 18,82 | 0,094      | 0,279      |
| P38/11 | 4,21 | 10,76 | 34,26 | 45,14  | 0,29  | 0,48  | 0,05 | 4,82 | 100,0 | 1,033 | 2,310   | 6,979            | 7,294                    | 0,050             | 0,087              | 0,009                     | 0,883                | 18,65 | 0,088      | 0,277      |
|        | 4,11 | 10,86 | 34,36 | 45,04  | 0,22  | 0,55  | 0,07 | 4,84 | 100,1 | 1,008 | 2,329   | 6,992            | 7,271                    | 0,038             | 0,100              | 0,013                     | 0,886                | 18,64 | 0,085      | 0,276      |
|        | 4,13 | 10,31 | 34,97 | 44,54  | 0,52  | 0,61  | 0,00 | 4,92 | 100,0 | 1,013 | 2,212   | 7,120            | 7,194                    | 0,090             | 0,111              | 0,000                     | 0,901                | 18,64 | 0,089      | 0,289      |
|        | 3,44 | 8,27  | 37,44 | 44,24  | 0,00  | 0,14  | 0,00 | 6,47 | 100,0 | 0,839 | 1,765   | 7,582            | 7,107                    | 0,000             | 0,025              | 0,000                     | 1,179                | 18,50 | 0,092      | 0,400      |
|        | 3,04 | 8,37  | 37,54 | 43,54  | 0,00  | 0,90  | 0,00 | 7,52 | 100,9 | 0,736 | 1,771   | 7,539            | 6,936                    | 0,000             | 0,161              | 0,000                     | 1,359                | 18,50 | 0,081      | 0,434      |
| P59/02 | 3,22 | 10,87 | 36,48 | 45,03  | 0,41  | 0,00  | 0,00 | 3,98 | 100,0 | 0,784 | 2,315   | 7,373            | 7,220                    | 0,071             | 0,000              | 0,000                     | 0,724                | 18,49 | 0,067      | 0,238      |
|        | 2,47 | 10,87 | 36,21 | 44,44  | 0,87  | 0,60  | 0,06 | 5,06 | 100,6 | 0,599 | 2,304   | 7,283            | 7,091                    | 0,149             | 0,108              | 0,011                     | 0,916                | 18,46 | 0,052      | 0,284      |
|        | 5,00 | 11,51 | 34,09 | 43,81  | 0,44  | 0,25  | 0,09 | 4,91 | 100,1 | 1,238 | 2,493   | 7,006            | 7,143                    | 0,077             | 0,046              | 0,017                     | 0,908                | 18,93 | 0,097      | 0,267      |
| P08/02 | 2,64 | 6,23  | 33,78 | 50,02  | 0,19  | 0,31  | 0,04 | 6,79 | 100,0 | 0,636 | 1,313   | 6,754            | 7,933                    | 0,032             | 0,055              | 0,007                     | 1,221                | 17,95 | 0,093      | 0,482      |
|        | 1,99 | 6,03  | 33,63 | 50,32  | 0,29  | 0,41  | 0,04 | 7,39 | 100,1 | 0,478 | 1,267   | 6,703            | 7,956                    | 0,049             | 0,073              | 0,007                     | 1,325                | 17,86 | 0,073      | 0,511      |
|        | 3,52 | 10,44 | 36,39 | 44,72  | 0,56  | 0,37  | 0,03 | 3,96 | 100,0 | 0,858 | 2,225   | 7,360            | 7,175                    | 0,097             | 0,067              | 0,005                     | 0,721                | 18,51 | 0,076      | 0,245      |
|        | 4,03 | 9,71  | 34,93 | 45,59  | 0,09  | 0,52  | 0,02 | 5,11 | 100,0 | 0,985 | 2,075   | 7,083            | 7,334                    | 0,016             | 0,094              | 0,004                     | 0,932                | 18,52 | 0,092      | 0,310      |
| P47/02 | 4,41 | 13,19 | 31,34 | 43,79  | 0,85  | 0,46  | 0,05 | 5,91 | 100,0 | 1,101 | 2,880   | 6,494            | 7,198                    | 0,150             | 0,085              | 0,009                     | 1,102                | 19,02 | 0,077      | 0,277      |
|        | 5,24 | 12,57 | 32,68 | 44,35  | 0,40  | 0,53  | 0,00 | 4,23 | 100,0 | 1,300 | 2,727   | 6,727            | 7,242                    | 0,070             | 0,097              | 0,000                     | 0,783                | 18,95 | 0,094      | 0,223      |
| Kra 3  | 3,26 | 11,81 | 35,44 | 44,73  | 0,85  | 0,66  | 0,00 | 3,26 | 100,0 | 0,795 | 2,517   | 7,169            | 7,177                    | 0,147             | 0,119              | 0,000                     | 0,593                | 18,52 | 0,063      | 0,191      |

#### Granat-Analysen:

|          |       | Ge    | messei | n in Ato | omproz | ent   |       | Ormak | Geh                            | alt pro          | Forme | leinhei | t (%) | (000)        |        | Berechne | ete Werte |        |
|----------|-------|-------|--------|----------|--------|-------|-------|-------|--------------------------------|------------------|-------|---------|-------|--------------|--------|----------|-----------|--------|
| Probe    | Ma    | AI    | Si     | Са       | Mn     | Fe    | Total | MaO   | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | CaO   | MnO     | FeO   | <b>Total</b> | Alm    | Sps      | Prp       | Grs    |
| P19/02   | 6.40  | 27.90 | 60.80  | 0.68     | 0.00   | 4.22  | 100.0 | 6.40  | 27.90                          | 60.80            | 0.68  | 0.00    | 5.77  | 100.0        | 32,949 | 0.000    | 61.517    | 5.534  |
|          | 15,83 | 27,55 | 43,06  | 0,00     | 0,00   | 13,56 | 100,0 | 15,83 | 27,55                          | 43,06            | 0,00  | 0,00    | 20,01 | 100,0        | 43,588 | 0,000    | 56,412    | 0,000  |
| Kra8     | 6,84  | 28,10 | 57,96  | 1,36     | 3,26   | 2,45  | 100,0 | 4,44  | 28,10                          | 57,16            | 1,36  | 3,26    | 3,28  | 100,0        | 19,480 | 21,059   | 49,154    | 10,306 |
|          | 14,65 | 20,58 | 56,08  | 0,00     | 0,00   | 8,69  | 100,0 | 14,65 | 20,58                          | 56,08            | 0,00  | 0,00    | 12,35 | 100,0        | 32,760 | 0,000    | 67,240    | 0,000  |
|          | 5,80  | 26,79 | 46,20  | 2,67     | 9,15   | 9,40  | 100,0 | 5,80  | 26,79                          | 46,20            | 2,67  | 9,15    | 13,23 | 100,0        | 35,162 | 30,349   | 24,896    | 9,593  |
|          | 11,83 | 25,14 | 44,89  | 7,71     | 0,00   | 10,44 | 100,0 | 11,83 | 25,14                          | 44,89            | 7,71  | 0,00    | 14,82 | 100,0        | 33,293 | 0,000    | 43,644    | 23,063 |
| P23/08   | 16,27 | 22,28 | 49,26  | 0,00     | 0,00   | 12,20 | 100,0 | 16,27 | 22,28                          | 49,26            | 0,00  | 0,00    | 15,35 | 100,0        | 33,875 | 0,000    | 66,125    | 0,000  |
|          | 23,29 | 6,72  | 55,63  | 9,69     | 0,00   | 4,70  | 100,0 | 23,19 | 6,72                           | 55,63            | 9,69  | 0,00    | 6,62  | 100,0        | 10,941 | 0,000    | 67,833    | 21,226 |
|          | 19,21 | 11,12 | 52,94  | 10,38    | 0,00   | 6,36  | 100,0 | 19,21 | 11,12                          | 52,94            | 10,38 | 0,00    | 8,91  | 100,0        | 15,942 | 0,000    | 59,334    | 24,724 |
| Kp 7/1   | 21,08 | 26,37 | 40,09  | 0,00     | 0,00   | 12,46 | 100,0 | 21,08 | 26,37                          | 40,09            | 0,00  | 0,00    | 17,88 | 100,0        | 33,244 | 0,000    | 66,756    | 0,000  |
|          | 20,25 | 22,58 | 44,49  | 0,00     | 1,83   | 10,82 | 100,0 | 20,25 | 22,58                          | 44,49            | 0,00  | 1,83    | 14,65 | 100,0        | 27,772 | 13,937   | 58,291    | 0,000  |
|          | 18,17 | 22,08 | 46,63  | 0,00     | 0,00   | 13,13 | 100,0 | 18,17 | 22,08                          | 46,63            | 0,00  | 0,00    | 20,65 | 100,0        | 41,352 | 0,000    | 58,648    | 0,000  |
|          | 20,64 | 22,52 | 43,50  | 0,00     | 0,00   | 13,37 | 100,1 | 20,64 | 22,62                          | 43,50            | 0,00  | 0,00    | 18,77 | 100,0        | 35,782 | 0,000    | 64,218    | 0,000  |
| P25/02   | 5,23  | 26,95 | 47,09  | 8,85     | 0,00   | 11,85 | 100,0 | 5,23  | 26,95                          | 47,09            | 8,85  | 0,00    | 16,48 | 100,0        | 44,663 | 0,000    | 22,144    | 33,192 |
|          | 0,00  | 30,15 | 47,88  | 8,00     | 1,69   | 12,28 | 100,0 | 0,00  | 30,15                          | 47,88            | 8,00  | 1,69    | 16,80 | 100,0        | 56,240 | 8,202    | 0,000     | 35,558 |
|          | 6,43  | 26,63 | 45,55  | 8,53     | 0,00   | 12,87 | 100,0 | 6,43  | 26,63                          | 45,55            | 8,53  | 0,00    | 18,16 | 100,0        | 46,033 | 0,000    | 25,283    | 28,684 |
|          | 6,34  | 28,07 | 47,31  | 1,92     | 7,43   | 8,95  | 100,0 | 6,34  | 28,07                          | 47,31            | 1,92  | 7,43    | 12,56 | 100,0        | 35,380 | 29,218   | 28,283    | 7,119  |
|          | 6,79  | 28,04 | 47,76  | 1,07     | 5,23   | 11,14 | 100,0 | 6,79  | 28,04                          | 47,76            | 1,07  | 5,23    | 15,71 | 100,1        | 45,021 | 20,925   | 30,033    | 4,021  |
|          | 3,28  | 28,47 | 47,11  | 8,57     | 0,77   | 11,83 | 100,0 | 3,28  | 28,47                          | 47,11            | 8,57  | 0,77    | 16,50 | 100,0        | 48,924 | 3,222    | 13,921    | 33,933 |
| P23/04   | 3,62  | 28,09 | 50,81  | 0,79     | 2,62   | 14,07 | 100,0 | 3,62  | 28,09                          | 50,81            | 0,79  | 2,62    | 19,77 | 100,0        | 65,419 | 11,892   | 19,329    | 3,360  |
|          | 4,96  | 31,72 | 52,43  | 0,96     | 0,00   | 9,94  | 100,0 | 4,96  | 31,72                          | 52,43            | 0,96  | 0,00    | 13,74 | 100,0        | 58,825 | 0,000    | 35,780    | 5,395  |
|          | 6,93  | 26,60 | 51,18  | 2,08     | 0,00   | 13,24 | 100,0 | 6,93  | 26,60                          | 51,18            | 2,08  | 0,00    | 18,07 | 100,0        | 57,113 | 0,000    | 34,713    | 8,174  |
| D 45/00  | 23,27 | 23,51 | 40,98  | 0,00     | 0,00   | 12,26 | 100,0 | 23,27 | 23,51                          | 40,98            | 0,00  | 0,00    | 17,60 | 100,0        | 30,920 | 0,000    | 69,080    | 0,000  |
| P45/08   | 21,88 | 24,38 | 41,46  | 0,00     | 0,00   | 12,14 | 100,1 | 21,88 | 24,58                          | 41,16            | 0,00  | 0,00    | 17,77 | 100,0        | 32,812 | 0,000    | 67,188    | 0,000  |
|          | 25,41 | 24,44 | 38,12  | 0,00     | 0,00   | 12,05 | 100,0 | 25,41 | 24,44                          | 38,12            | 0,00  | 0,00    | 17,32 | 100,0        | 28,782 | 0,000    | 71,218    | 0,000  |
| KD44/4   | 23,19 | 25,74 | 37,48  | 0,00     | 0,00   | 13,59 | 100,0 | 23,19 | 25,74                          | 37,48            | 0,00  | 0,00    | 19,70 | 100,0        | 34,081 | 0,000    | 65,919    | 0,000  |
| P24/03   | 15,86 | 32,33 | 36,62  | 0,00     | 0,00   | 15,18 | 100,0 | 15,86 | 32,33                          | 36,62            | 0,00  | 0,00    | 22,16 | 100,0        | 44,867 | 0,000    | 55,133    | 0,000  |
| 1 2-4/00 | 16,96 | 24,79 | 39,95  | 0,00     | 0,00   | 10,33 | 100,0 | 16,36 | 24,79                          | 39,95            | 0,00  | 0,00    | 25,93 | 100,0        | 20,005 | 0,000    | 49,409    | 0,000  |
|          | 5.20  | 24,39 | 37,05  | 3,32     | 14,17  | 19.20 | 100,0 | 5.30  | 24,39                          | 37,05            | 3,3Z  | 14,17   | 25,17 | 100,0        | 39,995 | 30,022   | 12,737    | 21 224 |
|          | 19.64 | 25.49 | 37.05  | 0,73     | 0,00   | 17.81 | 100,0 | 16.14 | 25.49                          | 37.05            | 0,75  | 0,00    | 25,31 | 100,0        | 46 600 | 0,000    | 10,000    | 9 280  |
|          | 1 0/  | 26.37 | 11 46  | 19.55    | 0,00   | 10.68 | 100,0 | 1 9/  | 26.37                          | 11 46            | 19.55 | 0,00    | 1/ 85 | 100,0        | 33 767 | 0,000    | 6 12/     | 60 108 |
| P14/03   | 17 38 | 20,37 | 33 55  | 0.00     | 0,00   | 10,00 | 100,0 | 17.88 | 20,37                          | 33 55            | 0.00  | 0,00    | 28.57 | 100,0        | 53 754 | 0,000    | 46 246    | 0,100  |
|          | 19.34 | 27 02 | 30.61  | 0.00     | 0.00   | 23.04 | 100,0 | 19.34 | 27 02                          | 30,61            | 0,00  | 0.00    | 32 77 | 100,0        | 54 081 | 0,000    | 45,919    | 0,000  |
|          | 21.36 | 24.86 | 35.27  | 0.00     | 0.00   | 18.53 | 100.0 | 21.36 | 24.86                          | 35.27            | 0.00  | 0.00    | 26.76 | 100.0        | 45.348 | 0.000    | 54.652    | 0.000  |
| P26/08   | 3.79  | 28.82 | 41.39  | 0.00     | 6.90   | 19,10 | 100.0 | 3.79  | 28.82                          | 41.29            | 0.00  | 6.90    | 26.09 | 100.0        | 64.104 | 23.001   | 12.895    | 0.000  |
|          | 9,89  | 26,73 | 40,63  | 1,05     | 0,48   | 21,23 | 100,0 | 9,89  | 26,73                          | 40,63            | 1,05  | 0,48    | 29,45 | 100,0        | 64,483 | 1,442    | 31,004    | 3,071  |
| P22/01   | 6,64  | 27,89 | 41,07  | 1,00     | 2,39   | 21,02 | 100,0 | 6,94  | 27,89                          | 41,07            | 1,00  | 2,39    | 28,68 | 100,0        | 67,208 | 7,481    | 21,763    | 3,548  |
|          | 11,62 | 29,24 | 37,09  | 0,00     | 0,60   | 21,46 | 100,0 | 11,62 | 29,24                          | 37,09            | 0,00  | 0,60    | 28,35 | 100,0        | 63,368 | 1,572    | 35,059    | 0,000  |
|          | 6,66  | 26,56 | 39,90  | 10,19    | 0,00   | 16,70 | 100,0 | 6,66  | 26,56                          | 39,90            | 10,19 | 0,00    | 23,20 | 100,0        | 49,714 | 0,000    | 20,858    | 29,428 |
| P27/02   | 10,70 | 24,53 | 44,89  | 5,00     | 0,00   | 16,84 | 102,0 | 10,70 | 24,53                          | 43,09            | 5,00  | 0,00    | 23,85 | 100,0        | 51,374 | 0,000    | 33,843    | 14,783 |
|          | 3,24  | 28,48 | 41,37  | 2,37     | 0,00   | 24,53 | 100,0 | 3,24  | 28,48                          | 41,37            | 2,37  | 0,00    | 33,37 | 100,0        | 81,696 | 0,000    | 10,618    | 7,686  |
|          | 3,94  | 27,14 | 42,30  | 1,44     | 5,28   | 19,92 | 100,0 | 3,94  | 27,14                          | 42,30            | 1,44  | 5,28    | 27,13 | 100,0        | 65,185 | 17,217   | 13,064    | 4,534  |
| P22/07   | 4,63  | 26,81 | 36,84  | 3,32     | 5,41   | 22,97 | 100,0 | 4,63  | 26,81                          | 36,84            | 3,32  | 3,41    | 33,69 | 100,0        | 69,863 | 7,999    | 14,361    | 7,776  |
|          | 5,11  | 23,68 | 35,90  | 1,68     | 2,16   | 31,43 | 100,0 | 5,21  | 23,68                          | 35,90            | 1,68  | 2,16    | 41,61 | 100,0        | 78,306 | 5,243    | 12,524    | 3,926  |
| P16/04   | 24,14 | 24,37 | 31,33  | 0,07     | 0,12   | 19,96 | 100,0 | 24,14 | 24,37                          | 31,33            | 0,07  | 0,12    | 28,96 | 100,0        | 44,501 | 0,248    | 55,091    | 0,160  |
| P14/02   | 18,75 | 23,16 | 35,66  | 0,17     | 0,00   | 22,27 | 100,0 | 18,75 | 23,16                          | 35,66            | 0,17  | 0,00    | 31,29 | 100,0        | 53,828 | 0,000    | 45,748    | 0,425  |
|          | 18,15 | 25,57 | 34,52  | 0,00     | 0,00   | 21,77 | 100,0 | 18,15 | 25,57                          | 34,52            | 0,00  | 0,00    | 30,53 | 100,0        | 53,313 | 0,000    | 46,687    | 0,000  |
|          | 4,54  | 27,88 | 42,50  | 2,22     | 0,00   | 22,86 | 100,0 | 4,54  | 27,88                          | 42,50            | 2,22  | 0,00    | 31,15 | 100,0        | 77,070 | 0,000    | 15,584    | 7,346  |

| Amp<br>Probe<br>KP11/<br>P05/08                           | hib<br>Na<br>4,2<br>1,7                                                                                                                                                                                                             | Ol-Ar                                                                                                                                                                                       | nalys                                                                                                                                             | G<br>G<br>G<br>4 44,4<br>Si<br>3 44,4        | emess<br>11 0,0<br>12 0,3  | sen in 1<br><u> <u> </u> </u> | 5 0,3    | <b>rozent</b> | 5 0,0<br>5 0,0<br>5 0,0 | 0 6 6,7 F               | 5 100                 | ,0 0,52<br>0,33    | <b>Mg</b><br>1,48  | Gerec<br>5 5,92<br>6 6,37     | <b>Geh</b><br>hnet auf<br><u>S</u><br>5,61<br>5,571 | alt pro<br>23 O-Ato<br>5 0,00<br>9 0,01 | Forme (Dee<br>0.06<br>1 0.06 | <b>eleinhe</b><br>ar, Howie<br><b>Ti</b><br>6 0,04<br>8 0,05 | iit (p.f.u       & Zussm       & Cr       6     0,0007       8     0,088       8     0,088 | <b>i)</b><br>ann, 198<br><b>Mn</b><br><u>0,009</u><br><u>0,009</u> | 3)<br>Fe<br>0,970<br>10,825 | <b>Tota</b><br>14,64          | Na/(Na+Ca)<br>0,888<br>0,903<br>0,791           | 0,5                                                                                                                       | <b>I+Si)</b><br>i13<br>i84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Berechnete W           Image: Mage of the second se | Berechnete Werte           Ing/(Mg+Fe <sup>2+</sup> )         FeO           113         0,604         8,78           184         0,701         7,44           135         0,551         8,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Berechnete Werte           Img/(Mg+Fe <sup>2+</sup> )         FeO         MgO           i13         0.604         8.78         7.52           i84         0.701         7.44         9.79           i35         0.551         8.15         5.62                                                | Berechnete Werte           Img/(Mg+Fe <sup>2+</sup> )         FeO         MgO         Al <sup>V</sup> I           i13         0.604         8.78         7.52         2.385           i84         0.701         7.44         9.79         2.281           i35         0.551         8.15         5.62         2.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Berechnete Werte         Mg/(Mg+Fe <sup>2+</sup> )         FeO         MgO         Al <sup>V</sup> Na(a)           i13         0.604         8.78         7.52         2.385         0.000           i84         0.701         7.44         9.79         2.281         0.000           i35         0.551         8.15         5.62         2.449         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------|----------|---------------|-------------------------|-------------------------|-----------------------|--------------------|--------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | 0         8,73         36,84         44,01         0,08         0,48           0         11,33         33,10         44,48         0,10         0,64           3         6,56         40,13         44,02         0,39         0,65 | 3         36,84         44,01         0,08         0,48           3         33,10         44,48         0,10         0,64           5         40,13         44,02         0,39         0,65 | 4         44,01         0,08         0,48           0         44,48         0,10         0,64           3         44,02         0,39         0,65 | 11 0,08 0,48<br>18 0,10 0,64<br>12 0,39 0,65 | 8 0,48<br>0 0,64<br>9 0,65 | 4 τυ                                                                                                  | 0,3      | 3 0,0         | 0 0,0                   | 6 6,7<br>6 5,6<br>6 6,2 | 70<br>99,<br>5<br>100 | 9 0,52<br>,6 0,82  | 1,48<br>1,48       | 10 5,92<br>15 5,36<br>18 6,37 | 9 5,55<br>5,55                                      | 5 0,00<br>9 0,01<br>1 0,04              | 1 0,06<br>4 0,08             | 6 0,04<br>8 0,05                                             | 6 0,000<br>5 0,089<br>8 0.007                                                              | 0,000                                                              |                             | 9 0,970<br>9 0,825<br>9 0,893 | 9 0,970 14,64<br>9 0,825 14,92<br>1 0,893 14,43 | 0.970         14.64         0.888           0.825         14.92         0.903           0.893         14.43         0.791 | 0         0.500         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.0 | 0.604         0.803         14.64         0.888         0.513         0.604           1 0.825         14.92         0.903         0.484         0.701           2 0.803         14.43         0.791         0.535         0.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <th0< th=""><th>0.070         14.64         0.888         0.7513         0.604         8.78         7.52           10.982         14.92         0.903         0.484         0.701         7.44         9.79           10.893         14.43         0.791         0.535         0.551         8.15         5.62</th><th>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</th><th>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</th></th0<> | 0.070         14.64         0.888         0.7513         0.604         8.78         7.52           10.982         14.92         0.903         0.484         0.701         7.44         9.79           10.893         14.43         0.791         0.535         0.551         8.15         5.62 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |
| 1,/3 6,56 40,13 44,02 0,39<br>0,01 15,06 10,48 49,56 0,95 | 3         6,56         40,13         44,02         0,39           1         15,06         10,48         49,56         0,95           2         50         50         50         50         50                                       | 6 10,48 49,56 0,95                                                                                                                                                                          | 3 44,02 0,39<br>8 49,56 0,95                                                                                                                      | 6 0,95                                       | 0 0 0                      | 12,8                                                                                                  | 30 0,1   | 7 0,0         | 5 0,1<br>6 0,1          | 0 10,5                  | 50 99,                | 7 0,00             | 1,09<br>2 2,77     | 7 1,83                        | 5 6,88                                              | 0 0,11                                  | 4 0,08<br>8 1,91             | 0 0,02                                                       | 8 0,00%                                                                                    | 3 0,016                                                            |                             | ,653                          | ,653 15,23                                      | ,893 14,43 0,791<br>,653 15,23 0,001                                                                                      | ,893 14,43 0,791 0,535<br>,653 15,23 0,001 0,211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,893 14,43 0,791 0,535 0,551<br>,653 15,23 0,001 0,211 0,627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,893         14,43         0,191         0,535         0,551         8,19           663         15,23         0,001         0,211         0,627         13,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15:23         16:23         0.001         0.211         8.15         5.62           15:23         0.001         0.211         0.627         13.10         13.10                                                                                                                                | 15:23         16:43         0.791         0.535         0.551         8.15         5.62         2.449           16:33         15:23         0.001         0.211         0.627         13:0         13.10         1.120           15:33         15:23         0.001         0.211         0.627         13:0         13.10         1.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15:23         0,791         0,535         0,551         8,15         5,62         2,449         0,000           15:23         0,001         0,211         0,627         13,10         13,10         1,120         0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,18 3,00 34,33 46,30<br>0,01 14,27 10,96 45,01           | 0 3,00 34,33 46,30<br>1 14,27 10,96 45,01                                                                                                                                                                                           | 7 10,96 45,01                                                                                                                                                                               | 5 40,30<br>6 45,01                                                                                                                                | ĭ, a                                         | 0,9                        | 3 1,0<br>1 15,1                                                                                       | 6 0,0    | 1 0,0         | 1 0,1                   | 0 0,9<br>3 13,2         | <u>23</u> 99,         | ,0 0,22<br>8 0,00  | 0,94<br>2 2,69     | -0 3,40<br>15 1,96            | 4 6,39                                              | 7 0,11                                  | 6 2,31                       | 4 0,00                                                       | 8 0,002                                                                                    | 2 0,021                                                            |                             | 2,133                         | 2,133 15,66                                     | 2,133 15,66 0,001                                                                                                         | 2,133 15,66 0,001 0,235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,133 15,66 0,001 0,235 0,558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,201 14,30 0,473 0,472 0,423 11,34<br>2,133 15,66 0,001 0,235 0,558 17,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,201 14,30 0,473 0,472 0,423 11,34 4,79<br>2,133 15,66 0,001 0,235 0,558 17,32 12,28                                                                                                                                                                                                          | <u>1,201   14,30     0,473     0,472     0,423     11,34   4,79    1,300</u><br>2,133   15,66     0,001     0,235     0,558     17,32   12,28   1,603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,261 14,30 0,473 0,472 0,423 11,34 4,79 1,300 0,000<br>2,133 15,66 0,001 0,235 0,558 17,32 12,28 1,603 0,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,01 18,21 11,82 4<br>1.99 23.48 6.85 4                   | 1 18,21 11,82 4<br>9 23.48 6.85 4                                                                                                                                                                                                   | 1 11,82 4<br>8 6.85 4                                                                                                                                                                       | 4 4                                                                                                                                               | 6,6                                          | 1,1<br>1,1                 | 0 12,0                                                                                                | 0,0      | 0 0,0         | 0 0,0                   | 0 10,2                  | 28 100                | ,3 0,00            | )2 3,36            | 6 2,07                        | 3 6,51                                              | 8 0,13                                  | 17 1,79                      | 9 0,00                                                       | 0 0,000                                                                                    | 0,000                                                              | ~ ~                         | 1,622                         | 1,622 15,51<br>1,110 15.70                      | 1,622 15,51 0,001<br>1.110 15.70 0.212                                                                                    | 1,622         15,51         0,001         0,241           1.110         15.70         0.212         0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,622         15,51         0,001         0,241         0,675           1,110         15,70         0,212         0,149         0,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,622         15,51         0,001         0,241         0,675         13,60           1,110         15,70         0,212         0,149         0,797         9,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,622         15,51         0,001         0,241         0,675         13,60         15,84           1,110         15,70         0.212         0.149         0.797         9,49         20,93                                                                                                   | 1,622         15,51         0,001         0,241         0,675         13,60         15,84         1,482           1,110         15,70         0,212         0,149         0,797         9,49         20,93         1,087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,622         15,51         0,001         0,241         0,675         13,60         15,84         1,482         0,000           1,110         15,70         0,212         0,149         0,797         9,49         20,93         1,087         0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2,73 14,44                                                | 3 14,44                                                                                                                                                                                                                             | 4                                                                                                                                                                                           | 17,8                                                                                                                                              | 5 51,9                                       | 3 0,0                      | 7 0,4                                                                                                 | 0 0,1    | 1 0,0         | 5 0,1                   | 6 12,2                  | 26 100                | ,0 0,54            | 19 2,53            | 9 2,97                        | 9 6,87                                              | 4 0,00                                  | IB 0,05                      | 7 0,01                                                       | 6 0,008                                                                                    | 3 0,024                                                            | -                           | 1,841                         | 1,841 14,89                                     | 1,841 14,89 0,906                                                                                                         | 1,841 14,89 0,906 0,302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,841 14,89 0,906 0,302 0,580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,841 14,89 0,906 0,302 0,580 16,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,841 14,89 0,906 0,302 0,580 16,06 12,43                                                                                                                                                                                                                                                      | 1,841 14,89 0,906 0,302 0,580 16,06 12,43 1,126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,841 14,89 0,906 0,302 0,580 16,06 12,43 1,126 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0,00 20                                                   | 0 20                                                                                                                                                                                                                                | 0,9                                                                                                                                                                                         | 0 11,0                                                                                                                                            | 2 48,0                                       | 9,0,9                      | 9,9                                                                                                   | 5 0,3    | 1 0,0         | 9 0,1                   | 9 8,4                   | 17 100                | ,0 0,00            | 0 3,83             | 3 1,91                        | 8 6,64                                              | 0 0,12                                  | 1 1,47                       | 6 0,04                                                       | 8 0,014                                                                                    | 0,030                                                              | <u> </u>                    | 1,326                         | 1,326 15,41                                     | 1,326 15,41 0,000                                                                                                         | 1,326 15,41 0,000 0,224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,326 15,41 0,000 0,224 0,743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,326 15,41 0,000 0,224 0,743 11,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,326 15,41 0,000 0,224 0,743 11,32 18,35                                                                                                                                                                                                                                                      | 1,326 15,41 0,000 0,224 0,743 11,32 18,35 1,360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,326 15,41 0,000 0,224 0,743 11,32 18,35 1,360 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2,0                                                       |                                                                                                                                                                                                                                     | 1 10,0                                                                                                                                                                                      | 5 36,7                                                                                                                                            | 3 46,0                                       | 0,1                        | 6 0,7                                                                                                 | 2 0,5    | 9 0,0         | 0 0,0                   | 0 3,6                   | )6 100                | ,0 0,38            | \$4 1,67           | 9 5,82                        | 5 5,79                                              | 8 0,01                                  | 8 0,09                       | 0,08                                                         | 3 0,000                                                                                    | 0,000                                                              | 0                           | ),522                         | 0,522 14,41                                     | 0,522 14,41 0,798                                                                                                         | 0,522 14,41 0,798 0,501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,522 14,41 0,798 0,501 0,763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,522 14,41 0,798 0,501 0,763 4,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,522 14,41 0,798 0,501 0,763 4,84 8,73                                                                                                                                                                                                                                                        | 0,522 14,41 0,798 0,501 0,763 4,84 8,73 2,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.522         14,41         0,798         0,501         0,763         4,84         8,73         2,202         0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,1                                                       |                                                                                                                                                                                                                                     | 8 20,4                                                                                                                                                                                      | .1 11,4                                                                                                                                           | 7 47,5                                       | 54 0,9                     | 2 9,5                                                                                                 | 6 0,1    | 5 0,0         | 0 0,0                   | 9 7,7                   | 2 100                 | ,1 0,46            | 30 3,76            | 9 2,01                        | 0 6,60                                              | 8 0,11                                  | 4 1,42                       | 3 0.03                                                       | 3 0,000                                                                                    | 0.030                                                              | -                           | 1,225                         | 1,225 15,65<br>1.547 15.43                      | 1,225 15,65 0,244<br>1.547 15.43 0.038                                                                                    | 1,225         15,65         0,244         0,233           1.547         15.43         0.038         0.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,225 15,65 0,244 0,233 0,755<br>1.547 15.43 0.038 0.237 0.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,225         15,65         0,244         0,233         0,755         10,45           1.547         15,43         0.038         0.237         0.676         13.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,225         15,65         0,244         0,233         0,755         10,45         18,05           1.547         15,43         0.038         0.237         0.676         13,02         15,23                                                                                                  | 1,225         15,65         0,244         0,233         0,755         10,45         18,05         1,392           1,547         15,43         0.038         0.237         0.676         13,02         15,23         1,408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,225         15,65         0,244         0,233         0,755         10,45         18,05         1,392         0,000           1.547         15,43         0.038         0.237         0.676         13,02         15,23         1,408         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0,0                                                       | 0 0                                                                                                                                                                                                                                 | 0 10,4                                                                                                                                                                                      | -1 7,38                                                                                                                                           | 3 35,2                                       | 36 1,6                     | 2 19,5                                                                                                | 55 0,6   | 2 0,2         | 0 0,5                   | 5 24,4                  | 40 100                | ,0 0,00            | )0 2,11            | 9 1,42                        | 16 5,40                                             | 4 0,22                                  | 2 3,22                       | 0 0,10                                                       | 7 0,035                                                                                    | 0,095                                                              |                             | 4,241                         | 4,241 16,87                                     | 4,241 16,87 0,000                                                                                                         | 4,241 16,87 0,000 0,209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,241 16,87 0,000 0,209 0,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,241 16,87 0,000 0,209 0,333 30,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,347 13,45 0,000 0,209 0,333 30,58 8,57                                                                                                                                                                                                                                                       | 1,3+7         13,72         0,000         0,201         13,72         13,72         1,400           4,241         16,87         0,000         0,209         0,333         30,58         8,57         1,426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3+7         13,22         13,22         13,22         1,400         0,000           4,241         16,87         0,000         0,209         0,333         30,58         8,57         1,426         0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                         | ,<br>O                                                                                                                                                                                                                              | 0 18,6                                                                                                                                                                                      | 0 9,36                                                                                                                                            | s 49,4                                       | 9,0 81                     | 2 11,8                                                                                                | 33 0,2   | 1 0,1         | 5 0,1                   | 9 9,2                   | 35 100                | ,0 0,00            | )0 3,42            | 5 1,63                        | 6 6,85                                              | 9 0,11                                  | 4 1,76                       | 2 0,03                                                       | 3 0,024                                                                                    | 1 0,030                                                            |                             | 1,454                         | 1,454 15,34                                     | 1,454 15,34 0,000                                                                                                         | ) 1,454 15,34 0,000 0,193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,454 15,34 0,000 0,193 0,702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,454 15,34 0,000 0,193 0,702 12,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 1,454 15,34 0,000 0,193 0,702 12,31 16,27                                                                                                                                                                                                                                                    | ) 1,454 15,34 0,000 0,193 0,702 12,31 16,27 1,141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,454 15,34 0,000 0,193 0,702 12,31 16,27 1,141 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -> (x)                                                    | iν                                                                                                                                                                                                                                  | 3 19,8<br>6 16.0                                                                                                                                                                            | 12,0<br>11.7                                                                                                                                      | 5 45,6                                       | 0,8<br>0,8                 | 6 9,8<br>1 13.(                                                                                       | 1<br>0,0 | 1 0,0         | 0 0,0<br>5 0.1          | 3 8,4                   | 15 100<br>19 100      | ,0 0,71<br>.4 0.27 | 2 3,71             | 6 2,13<br>5 2.08              | 7 6,41<br>2 6.28                                    | 6 0,10<br>7 0.03                        | 1.98<br>1.98                 | 3 0,00<br>0.01                                               | 0 0,000<br>7 0.008                                                                         | 0,005                                                              | _ 0                         | 2.092                         | 2.092 15.80                                     | 1,348 15,93 0,324<br>2.092 15.80 0.120                                                                                    | 1,348         15,93         0,324         0,250           2.092         15.80         0.120         0.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,348         15,93         0,324         0,250         0,734           2.092         15,80         0,120         0.249         0.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,348         15,93         0,324         0,250         0,734         11,37           2.092         15.80         0.120         0.249         0.590         17.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,348         15,93         0,324         0,250         0,734         11,37         17,59           2,092         15,80         0,120         0.249         0.590         17.07         13.76                                                                                                  | 1,348         15,93         0,324         0,250         0,734         11,37         17,59         1,584           2.092         15.80         0.120         0.249         0.590         17.07         13.76         1.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,348         15,93         0,324         0,250         0,734         11,37         17,59         1,584         0,195           2.092         15.80         0.120         0.249         0.590         17.07         13.76         1.713         0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                         | ņ                                                                                                                                                                                                                                   | 4 20,5                                                                                                                                                                                      | 2 11,8                                                                                                                                            | 1 47,6                                       | io 0,9                     | 6,6 8                                                                                                 | 8 0,2    | 5 0,1         | 0 0,1                   | 6 7,9                   | )5 100                | ,0 0,13            | \$4 3,76           | 8 2,05                        | 8 6,58                                              | 0 0,12                                  | 1 1,48                       | 3 0,03                                                       | 9 0,016                                                                                    | 3 0,025                                                            |                             | 5 1,246                       | 5 1,246 15,47                                   | i 1,246 15,47 0,083                                                                                                       | i 1,246 15,47 0,083 0,238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i 1,246 15,47 0,083 0,238 0,751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i 1,246 15,47 0,083 0,238 0,751 10,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i 1,246 15,47 0,083 0,238 0,751 10,65 18,07                                                                                                                                                                                                                                                    | i 1,246 15,47 0,083 0,238 0,751 10,65 18,07 1,420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i 1,246 15,47 0,083 0,238 0,751 10,65 18,07 1,420 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 0                                                       | 4                                                                                                                                                                                                                                   | 9 20.8                                                                                                                                                                                      | 1 10,7                                                                                                                                            | 0 40,0                                       | 93 0,7                     | 3 9.2                                                                                                 | 5 0,2    | 0,0           | 1 0,4<br>6 0,1          | 4 19,0                  | 0 100                 | 0,00               | 3.84               | 2 1.91                        | 2 6,66                                              | 2 0,09                                  | 1 1,38                       | 2 0.03                                                       | 1 0.010                                                                                    | 0,017                                                              |                             | 7 1,182                       | 7 1,182 15,65                                   | 7 1,182 15,65 0,276                                                                                                       | 7 1,182 15,65 0,276 0,223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 1.182 15.65 0.276 0.223 0.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 1,182 15,65 0,276 0,223 0,765 10,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 1,182 15,65 0,276 0,223 0,765 10,11 18,44                                                                                                                                                                                                                                                    | 7 1,182 15,65 0,276 0,223 0,765 10,11 18,44 1,338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 1,182 15,65 0,276 0,223 0,765 10,11 18,44 1,338 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~                                                         | 0,0                                                                                                                                                                                                                                 | 0 18,7                                                                                                                                                                                      | 6 8,69                                                                                                                                            | 9 50,6                                       | i0 1,0                     | 1 10,4                                                                                                | 17 0,7   | 2 0,1         | 0 0,2                   | 9 9,3                   | 6 100                 | ,0 0,00            | 0 3,43             | 2 1,50                        | 9 6,96                                              | 9 0,12                                  | 4 1,55                       | 0 0,11                                                       | 1 0,016                                                                                    | 0,045                                                              |                             | 5 1,462                       | 5 1,462 15,22                                   | 5 1,462 15,22 0,000                                                                                                       | 5 1,462 15,22 0,000 0,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 1,462 15,22 0,000 0,178 0,701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 1,462 15,22 0,000 0,178 0,701 12,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 1,462 15,22 0,000 0,178 0,701 12,43 16,37                                                                                                                                                                                                                                                    | 5 1,462 15,22 0,000 0,178 0,701 12,43 16,37 1,031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 1,462 15,22 0,000 0,178 0,701 12,43 16,37 1,031 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                           | 1,5                                                                                                                                                                                                                                 | 4 17,9                                                                                                                                                                                      | 9 10,0                                                                                                                                            | 8 48,9                                       | 93 0,8                     | 8 11, 1                                                                                               | 17 0,0   | 6 0,0         | 7 0,0                   | 7 9,2                   | 8 100                 | ,1 0,32            | 8 3,32             | 6 1,76                        | 9 6,81                                              | 0 0,10                                  | 9 1,67                       | .1 0,00                                                      | 9 0,011                                                                                    | 0,01                                                               | _                           | 1 1,465                       | 1 1,465 15,51                                   | 1 1,465 15,51 0,163                                                                                                       | 1 1,465 15,51 0,163 0,206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1,465 15,51 0,163 0,206 0,694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1,465 15,51 0,163 0,206 0,694 12,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1,465 15,51 0,163 0,206 0,694 12,38 15,78                                                                                                                                                                                                                                                    | 1 1,465 15,51 0,163 0,206 0,694 12,38 15,78 1,190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1,465 15,51 0,163 0,206 0,694 12,38 15,78 1,190 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                           | 2,3                                                                                                                                                                                                                                 | 0 21,1                                                                                                                                                                                      | 8 5,60                                                                                                                                            | ) 49,9                                       | 5 0,5                      | 6 10,8                                                                                                | 38 0,7   | 0,0           | 0 0,2                   | 5 8,5                   | 38 10C                | ,0 0,49            | )0 3,94            | 8 0,99                        | 1 7,00                                              | 9 0,07                                  | 0 1,64                       | .1 0,11                                                      | 0 0,000                                                                                    | 0,040                                                              |                             | 0 1,366                       | 0 1,366 15,67                                   | 0 1,366 15,67 0,230                                                                                                       | 0 1,366 15,67 0,230 0,124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1,366 15,67 0,230 0,124 0,743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1,366 15,67 0,230 0,124 0,743 11,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 1,366 15,67 0,230 0,124 0,743 11,53 18,70                                                                                                                                                                                                                                                    | 0 1,366 15,67 0,230 0,124 0,743 11,53 18,70 0,991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1,366 15,67 0,230 0,124 0,743 11,53 18,70 0,991 0,131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                           | 3 O,3                                                                                                                                                                                                                               | 4 16,5                                                                                                                                                                                      | 元<br>10<br>5<br>101                                                                                                                               | 2 51,3                                       | 19 0,1                     | 2 13,8<br>2 8 5                                                                                       | 32 2,9   | 3 0,1         | 1 0,2<br>0 1            | 1<br>9,1                | 12 100                | ,7 0,07            | 10 2,98            | 5 1,04                        | 9 6,99                                              | 9 0,01                                  | 5 2,02                       | 2 0,45                                                       | 6 0,017                                                                                    |                                                                    | D N                         | 52 1,409<br>57 1,200          | 52 1,409 15,05<br>55 1 302 15.62                | 52 1,409 15,05 0,034<br>55 1 302 15,62 0.355                                                                              | 12 1,409 15,05 0,034 0,130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 1,409 15,05 0,034 0,130 0,679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 1,409 15,05 0,034 0,130 0,679 11,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12         1,409         15,05         0,034         0,130         0,679         11,88         14,13           12         1,300         15,62         0,355         0,208         0,731         11,00         16,01                                                                            | 12     1,409     15,05     0,034     0,130     0,679     11,88     14,13     1,001       15     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12     1,409     15,05     0,034     0,130     0,679     11,88     14,13     1,001     0,070       15     1     302     15,62     0,355     0,208     0,731     11,00     16,01     1,000     0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           | 1,4                                                                                                                                                                                                                                 | 5 18,0                                                                                                                                                                                      | 1 11,1                                                                                                                                            | 3 46,6                                       | 9,0 6                      | 6 11,3                                                                                                | 35 0,1   | 6 0,0         | 9 0,2                   | 5 9,9                   | 100                   | ,0 0,30            | 9 3,35             | 3 1,96                        | 6 6,54                                              | 4 0,12                                  | 0 1,70                       | 9 0,02                                                       | 5 0,015                                                                                    | 5 0,0                                                              | 4                           | 40 1,574                      | 40 1,574 15,65                                  | 40 1,574 15,65 0,153                                                                                                      | 40 1,574 15,65 0,153 0,231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 1,574 15,65 0,153 0,231 0,681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 1,574 15,65 0,153 0,231 0,681 13,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 1,574 15,65 0,153 0,231 0,681 13,17 15,74                                                                                                                                                                                                                                                   | 40 1,574 15,65 0,153 0,231 0,681 13,17 15,74 1,456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 1,574 15,65 0,153 0,231 0,681 13,17 15,74 1,456 0,018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           | 1,3                                                                                                                                                                                                                                 | 2 21,6                                                                                                                                                                                      | 4 7,83                                                                                                                                            | 3 54,4                                       | 14 0,2                     | 6 8,6                                                                                                 | 6 0,0    | 3 0,0         | 3 0,0                   | 9 5,7                   | 0 100                 | ,0 0,27            | 2 3,90             | 0 1,33                        | 9 7,38                                              | 5 0,03                                  | 2 1,26                       | 2 0,00                                                       | 5 0,005                                                                                    | 5 0,C                                                              | 12                          | )14 0,877                     | 014 0,877 15,09                                 | )14 0,877 15,09 0,177                                                                                                     | 0,153 0,153 0,177 0,153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,14 0,877 15,09 0,177 0,153 0,816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,47 0,877 15,09 0,177 0,153 0,816 7,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 014 0,877 15,09 0,177 0,153 0,816 7,73 19,30                                                                                                                                                                                                                                                   | 014 0,877 15,09 0,177 0,153 0,816 7,73 19,30 0,615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 014 0,877 15,09 0,177 0,153 0,816 7,73 19,30 0,615 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           | 0,7                                                                                                                                                                                                                                 | 8 13,3                                                                                                                                                                                      | 3 23,9                                                                                                                                            | 4 42,2                                       | .4 0,2                     | 9 0,1                                                                                                 | 0,0      | 4 0,0         | 6 0,3                   | 1 18,9                  | 92 100                | ,0 0,16            | 0 2,39             | 2 4,07                        | 6 5,70                                              | 5 0,03                                  | 5 0,01                       | 5 0,00                                                       | 6 0,009                                                                                    | 0,0                                                                | 4                           | 047 2,898                     | 047 2,898 15,34                                 | 047 2,898 15,34 0,917                                                                                                     | 047 2,898 15,34 0,917 0,417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 047 2,898 15,34 0,917 0,417 0,452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 047 2,898 15,34 0,917 0,417 0,452 24,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,417 2,898 15,34 0,917 0,417 0,452 24,01 11,12                                                                                                                                                                                                                                                | 047 2,898 15,34 0,917 0,417 0,452 24,01 11,12 2,295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 047 2,898 15,34 0,917 0,417 0,452 24,01 11,12 2,295 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                         | ο<br>σ,ο                                                                                                                                                                                                                            | 4 13,3                                                                                                                                                                                      | 9 20,0                                                                                                                                            | 0 29,0<br>0 17 F                             | 5 U,1                      | 3 V,U                                                                                                 | , o o    | 0<br>0,1      | 0 0,2                   | 3 24,2<br>8 5           | 7 90,                 |                    | 0 Z,04             | 4 4,09                        | 14 4,35<br>А А ЛО                                   | 7 0,01                                  | 0,0C                         |                                                              |                                                                                            |                                                                    |                             | 034 4,083                     | 034 4,083 16,67                                 | 034 4,083 16,67 0,990                                                                                                     | 034 4,083 16,67 0,990 0,519<br>020 1 340 15.53 0.005 0.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 034 4,083 16,67 0,990 0,519 0,393<br>020 1 340 15.53 0.005 0.234 0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 034 4,083 16,67 0,990 0,519 0,393 31,46<br>020 1 340 15,53 0,005 0,234 0,734 11.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 034 4,083 16,67 0,990 0,519 0,383 31,46 11,43 17 81 0,597 1 14,48 17 81                                                                                                                                                                                                                        | 034 4,083 10,67 0,990 0,519 0,393 31,46 11,43 3,643<br>020 1 346 15.53 0,005 0,234 0,734 11,48 17 81 1,403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 034 4,083 16,67 0,390 0,519 0,383 31,46 11,43 3,643 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12.2                                                      | 1,2                                                                                                                                                                                                                                 | 2 14,6                                                                                                                                                                                      | 6 10,7                                                                                                                                            | 4 44,1                                       | 0 0,5                      | 6 15,0                                                                                                | )2 0,0   | 0 0,1         | 0 0,0                   | 6 13,2                  | 23 99,                | 7 0,26             | 6 2,79             | 0 1,93                        | 9 6,31                                              | 8 0,07                                  | 2 2,31                       | 3 0,00                                                       | 0 0,016                                                                                    | 0                                                                  | ,010                        | ,010 2,149                    | ,010 2,149 15,87                                | ,010 2,149 15,87 0,103                                                                                                    | ,010 2,149 15,87 0,103 0,235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,010 2,149 15,87 0,103 0,235 0,565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,010 2,149 15,87 0,103 0,235 0,565 17,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,010 2,149 15,87 0,103 0,235 0,565 17,37 12,66                                                                                                                                                                                                                                                 | 0.10 2,149 15,87 0,103 0,235 0,565 17,37 12,66 1,682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 010 2,149 15,87 0,103 0,235 0,565 17,37 12,66 1,682 0,266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| U U                                                       | 0,9                                                                                                                                                                                                                                 | 1 18,3                                                                                                                                                                                      | 8 11,3                                                                                                                                            | 3 45,9                                       | 98 1,1                     | 7 11,4                                                                                                | 11 0,3   | 5 0,1         | 7 0,1                   | 3 10,1                  | 17 100                | ,0 0,19            | )4 3,42            | 4 2,00                        | 3 6,44                                              | 7 0,14                                  | 7 1,71                       | 9 0,05                                                       | 5 0,027                                                                                    | ,0,1                                                               | 021                         | 021 1,617                     | 021 1,617 15,65                                 | 021 1,617 15,65 0,101                                                                                                     | 021 1,617 15,65 0,101 0,237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 021 1,617 15,65 0,101 0,237 0,679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 021 1,617 15,65 0,101 0,237 0,679 13,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 021 1,617 15,65 0,101 0,237 0,679 13,50 16,03                                                                                                                                                                                                                                                  | 021 1,617 15,65 0,101 0,237 0,679 13,50 16,03 1,553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 021 1,617 15,65 0,101 0,237 0,679 13,50 16,03 1,553 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 107                                                       | 2,3                                                                                                                                                                                                                                 | 7 9,85                                                                                                                                                                                      | 5 16,5                                                                                                                                            | 6 46,1                                       | 0 0,7                      | 5 10,9                                                                                                | 96 0,2   | 1 0,0         | 0 0,1                   | 3 13,0                  | 08 100                | ,0 0,49            | 99 1,81            | 3 2,89                        | 6,38                                                | 9 0,09                                  | 3 1,63                       | 2 0,03                                                       | 3 0,000                                                                                    | 0,0                                                                | 020                         | 020 2,056                     | 020 2,056 15,43                                 | 020 2,056 15,43 0,234                                                                                                     | 020 2,056 15,43 0,234 0,312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 020 2,056 15,43 0,234 0,312 0,469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020 2,056 15,43 0,234 0,312 0,469 17,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 020 2,056 15,43 0,234 0,312 0,469 17,02 8,43                                                                                                                                                                                                                                                   | 020 2,056 15,43 0,234 0,312 0,469 17,02 8,43 1,611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 020 2,056 15,43 0,234 0,312 0,469 17,02 8,43 1,611 0,131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           | 1,4                                                                                                                                                                                                                                 | 5 8,15                                                                                                                                                                                      | 5 15,3                                                                                                                                            | 9 50,C                                       | )2 0,2                     | 3 11,5                                                                                                | 58 0,3   | 1 0,0         | 8 0,1                   | 0 12,7                  | 72 100                | ,0 0,29            | 9 1,47             | 3 2,64                        | -1 6,80                                             | 8 0,02                                  | 8 1,69                       | 3 0,04                                                       | 7 0,013                                                                                    | 3 0,0                                                              | 216                         | 015 1,964                     | 015 1,964 14,98                                 | 015 1,964 14,98 0,150                                                                                                     | 015 1,964 14,98 0,150 0,279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 015 1,964 14,98 0,150 0,279 0,429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 015 1,964 14,98 0,150 0,279 0,429 16,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 015 1,964 14,98 0,150 0,279 0,429 16,49 6,94                                                                                                                                                                                                                                                   | 015 1,964 14,98 0,150 0,279 0,429 16,49 6,94 1,192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 015 1,964 14,98 0,150 0,279 0,429 16,49 6,94 1,192 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| б.                                                        | 2,6                                                                                                                                                                                                                                 | 6 20,1                                                                                                                                                                                      | 0 11,5                                                                                                                                            | 9 46,2                                       | 2 0,9                      | 0 9,9                                                                                                 | 0 0,3    | 0,1           | 1 0,1                   | 7 8,0                   | 14 100                | ,0 0,56            | 6 3,73             | 8 2,04                        | 5 6,47                                              | 0 0,11                                  | 3 1,48                       | 9 0,04                                                       | 9 0,018                                                                                    | 0,                                                                 | 027                         | 027 1,276                     | 027 1,276 15,79                                 | 027 1,276 15,79 0,275                                                                                                     | 027 1,276 15,79 0,275 0,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 027 1,276 15,79 0,275 0,240 0,745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 027 1,276 15,79 0,275 0,240 0,745 10,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 027 1,276 15,79 0,275 0,240 0,745 10,80 17,75                                                                                                                                                                                                                                                  | 027 1,276 15,79 0,275 0,240 0,745 10,80 17,75 1,530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 027 1,276 15,79 0,275 0,240 0,745 10,80 17,75 1,530 0,055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 0                                                       | 0,0                                                                                                                                                                                                                                 | 0 16,8<br>4 21,7                                                                                                                                                                            | 9 12,4<br>8 6,36                                                                                                                                  | 6 50,0<br>3 49,3                             | 3 1,0<br>5 0,1             | 2 9,7<br>5 12.4                                                                                       | 2 0,1    | 0 0,0<br>0,6  | 9 0,1<br>9 0,1          | 7 9,4                   | 15 100                | 0,00<br>0,17       | 00 3,06<br>78 4,04 | 4 2,14                        | 5 6,83                                              | 3 0,12                                  | 9 1,86                       | 7 0,02                                                       | 8 0,013<br>0 0,111                                                                         | - 30                                                               | 026                         | 026 1,464<br>024 1.310        | 026 1,464 15,12<br>024 1,310 15,58              | 026 1,464 15,12 0,000<br>024 1,310 15,58 0,087                                                                            | 026 1,464 15,12 0,000 0,239<br>024 1,310 15,58 0.087 0,140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 026 1,464 15,12 0,000 0,239 0,677<br>024 1,310 15,58 0.087 0,140 0.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 026 1,464 15,12 0,000 0,239 0,677 12,53<br>024 1,310 15,58 0,087 0,140 0,755 11,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>226</u> 1,464 15,12 0,000 0,239 0,677 12,53 14,72<br>224 1,310 15,58 0,087 0,140 0,755 11,07 19,19                                                                                                                                                                                          | <u>226</u> 1,464 15,12 0,000 0,239 0,677 12,53 14,72 1,167<br>224 1,310 15,58 0,087 0,140 0,755 11,07 19,19 1,097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>226 1,464 15,12 0,000 0,239 0,677 12,53 14,72 1,167 0,000</u><br>224 1.310 15,58 0.087 0,140 0,755 11.07 19,19 1,097 0,045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           | 0,0                                                                                                                                                                                                                                 | 0 20,0                                                                                                                                                                                      | 13 5,04                                                                                                                                           | 4 50, <del>5</del>                           | i0 0,2                     | 9 14,(                                                                                                | )5 0,1   | 8 0,1         | 3 0,1                   | 8 9,5                   | i9 100                | ,0 0,00            | )0 3,73            | 0 0,89                        | 1 7,07                                              | 9 0,03                                  | 6 2,11                       | 7 0,02                                                       | 8 0,021                                                                                    | -<br>0                                                             | 029                         | 029 1,525                     | 029 1,525 15,45                                 | 029 1,525 15,45 0,000                                                                                                     | 029 1,525 15,45 0,000 0,112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 029 1,525 15,45 0,000 0,112 0,710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 029 1,525 15,45 0,000 0,112 0,710 12,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 029 1,525 15,45 0,000 0,112 0,710 12,78 17,55                                                                                                                                                                                                                                                  | 029 1,525 15,45 0,000 0,112 0,710 12,78 17,55 0,921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 029 1,525 15,45 0,000 0,112 0,710 12,78 17,55 0,921 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                           | 0,0                                                                                                                                                                                                                                 | 1 11,6                                                                                                                                                                                      | 2 9,21                                                                                                                                            | 1 60,6                                       | i9 0,5                     | 1 8,2                                                                                                 | 3 0,3    | 1 0,1         | 3 0,2                   | 3 9,0                   | 100                   | ,0 0,00            | 2 2,03             | 2 1,52                        | 8 7,98                                              | 6 0,06                                  | 0 1,16                       | 4 0,04                                                       | 6 0,020                                                                                    | 0                                                                  | ,034                        | ,034 1,355                    | ,034 1,355 14,23                                | ,034 1,355 14,23 0,002                                                                                                    | ,034 1,355 14,23 0,002 0,161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,034 1,355 14,23 0,002 0,161 0,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,034 1,355 14,23 0,002 0,161 0,600 11,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,034 1,355 14,23 0,002 0,161 0,600 11,98 10,08                                                                                                                                                                                                                                                 | ,034 1,355 14,23 0,002 0,161 0,600 11,98 10,08 0,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,034 1,355 14,23 0,002 0,161 0,600 11,98 10,08 0,014 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                           | 0,0                                                                                                                                                                                                                                 | 9 16,4                                                                                                                                                                                      | 4 17,6                                                                                                                                            | 6 54,7<br>4 49,3                             | 6 0,2                      | 1 9,1<br>6 0,2                                                                                        | 2 0,1    | 5 0,0         | 0 0,1                   | 2 7,6                   | 37 99,<br>39 100      | 6 0,20             | )3 2,94<br>)2 1,66 | 2 2,82                        | 0 7,39<br>8 6,27                                    | 5 0,02<br>3 0,09                        | 1,32<br>1,32                 | 3 0,02<br>7 1,29                                             | 1 0,000<br>3 0,000                                                                         | 0 0                                                                | 0,018                       | 0,018 1,175                   | 0,018 1,175 14,83<br>0,101 1,787 14,07          | 0,018 1,175 14,83 0,133<br>0,101 1,787 14,07 0,066                                                                        | 0,018 1,175 14,83 0,133 0,190<br>0,101 1,787 14,07 0,066 0,311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,018 1,175 14,83 0,133 0,190 0,715<br>0,101 1,787 14,07 0,066 0,311 0,482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,018 1,175 14,83 0,133 0,190 0,715 10,29<br>0,101 1,787 14,07 0,066 0,311 0,482 15,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,018 1,175 14,83 0,133 0,190 0,715 10,29 14,46<br>0,101 1,787 14,07 0,066 0,311 0,482 15,41 8,04                                                                                                                                                                                              | 0,018 1,175 14,83 0,133 0,190 0,715 10,29 14,46 0,605<br>0,101 1,787 14,07 0,066 0,311 0,482 15,41 8,04 1,727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,018 1,175 14,83 0,133 0,190 0,715 10,29 14,46 0,605 0,000 0,001 1,787 14,07 0,066 0,311 0,482 15,41 8,04 1,727 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                             |                                                                                                                                                   |                                              |                            |                                                                                                       |          |               |                         | -                       | ļ                     |                    |                    |                               |                                                     |                                         |                              |                                                              |                                                                                            | ŀ                                                                  |                             |                               |                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

50

|        |        |        |        |        |           |            |          |          |        |         |            |            | 00000      | Basis   |           | Profil 13   | Top     |         |          |         |        |        |         |              |            |            |                   |                  |              |            |          |          |              |            |            |        |        |        |        |               |         |          |                                         |                |          |             |          |           |              |              |          |           |              |          |            |            |         |         |        |         |        |        |         |         |        |        |        |        |             |        |        |        |         | 0000    | Rasis       | Profil 17  |
|--------|--------|--------|--------|--------|-----------|------------|----------|----------|--------|---------|------------|------------|------------|---------|-----------|-------------|---------|---------|----------|---------|--------|--------|---------|--------------|------------|------------|-------------------|------------------|--------------|------------|----------|----------|--------------|------------|------------|--------|--------|--------|--------|---------------|---------|----------|-----------------------------------------|----------------|----------|-------------|----------|-----------|--------------|--------------|----------|-----------|--------------|----------|------------|------------|---------|---------|--------|---------|--------|--------|---------|---------|--------|--------|--------|--------|-------------|--------|--------|--------|---------|---------|-------------|------------|
| 351,15 | 390.89 | 357 27 | 353,36 | 311,10 | 300,42    | 300,44     | 355 44   | 361 56   | 361 56 | 365 01  | 378,02     | 370.02     | 03 036     | 360.94  | strahlung | Gesamt-     | 374,24  | 357,43  | 377,99   | 370,64  | 362,98 | 300,93 | 367,74  | 009,70       | 350 75     | 377 85     | 300.06            | 2010,49          | 370 40       | 372 70     | 357.49   | 349.16   | 348,89       | 349,90     | 366,21     | 362,18 | 361,02 | 379,48 | 376,84 | 382,92        | 387,93  | 382,49   | 387,51                                  | 391,43         | 304,59   | 308,32      | 349,39   | 346,91    | 366,91       | 301,90       | 300,48   | 376,68    | 391,57       | 353,84   | 352,63     | 360,53     | 365,00  | 378,90  | 378,66 | 380,73  | 375,16 | 354,34 | 360,30  | 361,57  | 374,87 | 380,05 | 363,61 | 381,49 | 370,00      | 371,45 | 363,18 | 366.73 | 360,50  | 361.82  | 357.16      | Gesamt-    |
| 3,22   | 4.16   | 3,01   | 3,67   | 3,00   | 3,94      | 3,00       | 325      | 200      | 2 00   | 3 74    | 376        | 4 00       | 202        | 4.01    | in %      | ×           | 3,46    | 3,67    | 3,50     | 3,35    | 3,21   | 3,19   | 3,66    | 0,20         | 2,01       | о л<br>л л | 24,0<br>04,0      | 2,4,00           | 4 0 0        | 3 1 7      | 3.37     | 2.69     | 3,29         | 3,38       | 3,98       | 3,71   | 3,70   | 3,74   | 3,92   | 4,11          | 4,01    | 3,77     | 4,08                                    | 4,06           | 3,46     | 3,42        | 3,19     | 3,05      | 3,86         | 3,41         | 3,38     | 3,11      | 4,25         | 3,52     | 3,33       | 3,49       | 3,57    | 3,09    | 3,02   | 3,17    | 2,97   | 3,26   | 3,26    | 3,35    | 4,24   | 3,38   | 3,68   | 3,88   | 3,72        | 3,64   | 3.70   | 3.65   | 3,00    | 3.65    | 3 15        | ; <b>x</b> |
| 3,54   | 4.86   | 3,50   | 2,26   | 2,4,30 | 3,92      | 3,00<br>00 | 2 C, C   | 3 0,04   | 3 8/   | 2 O.C   | 3 2 2      | 0,4,07     | 4 07       | 2.33    | in ppm    | C           | 3,71    | 3,41    | 3,53     | 3,31    | 4,19   | 3,12   | 3,06    | 2,20         | 300,00     | 3 28       | A 1, 00           | 20, <del>1</del> | A 1,00       | 2 20       | 3.59     | 4.95     | 2,65         | 2,97       | 3,86       | 4,32   | 3.84   | 2,87   | 4,95   | 4,52          | 4,26    | 4,07     | 4,22                                    | 5,86           | 3,00     | 4,70        | 3,03     | 2,06      | 4,03         | 3,38         | 4,50     | 4,00      | 2,29         | 3,22     | 4,53       | 2,40       | 4,90    | 4,59    | 4,55   | 4,35    | 2,45   | 2,45   | 4,51    | 3,34    | 4,46   | 3,74   | 3,79   | 4,14   | 3,61        | 4,28   | 3.28   | 4.87   | 3,98    | 4.74    | 4 63        |            |
| 14,12  | 16.77  | 17 42  | 15,49  | 16 40  | 13,64     | 13.640     | 15,01    | 15.01    | 15.01  | 14 07   | 17 18      | 25 40      | 16.06      | 16.43   | in ppm    | Τh          | 15,18   | 16,48   | 14,59    | 16,42   | 16,08  | 12,03  | 18,68   | 10,02        | 15,00      | 15.05      | 47 60             | 47 40            | 15 30        | 13.50      | 13.87    | 12.00    | 14,58        | 15,12      | 13,88      | 16,36  | 15.82  | 17,40  | 17,11  | 15,48         | 16,38   | 17,13    | 15,53                                   | 13,90          | 14,72    | 10,03       | 10,07    | 15,86     | 11,45        | 10,99        | 12,50    | 17,57     | 18,25        | 16,75    | 14,36      | 16,38      | 15,85   | 15,96   | 14,79  | 15,84   | 13,82  | 14,60  | 12,35   | 17,95   | 18,57  | 15,54  | 17,27  | 15,56  | 15,50       | 18.29  | 15.67  | 15.01  | 17,21   | 15.38   | 16.64       | Th and     |
| 30     | 30     | 3      | 3      | 38     | 30        | 3 6        | 3 6      | 3 5      | 3 6    | 3 6     | 3 6        | 3          | 30         | 30      | in cm     | Abstand     |         | 30      | 30       | 30      | 30     | S      | 3       | 3 6          | 3 6        | 3 5        | 3                 | 3 6              | 88           | 30         | 30       | 30       | 30           | 30         | 30         | 30     | 30     | 30     | 30     | 30            | 30      | 30       | 30                                      | 30             | 3        | 30          | 30       | 3         | 3            | 3            | 3        | 30        | 30           | 100      | 100        | 100        | 30      | 30      | 30     | 30      | 30     | 30     | 30      | 30      | 30     | 30     | 30     | 30     | 30          | 30     | 30     | 30     | 30      | 30      | 30          | Abstand    |
|        | Quarz  |        |        |        | Π         |            |          |          |        |         |            |            |            |         |           |             |         |         | T        |         |        |        |         |              |            |            |                   |                  |              |            | basis    | 5m üb    |              | Profil     | Top        |        |        |        |        |               |         | Ι        | I                                       | Ī              |          | Ī           | Ī        | Ī         | Ī            | Ī            | Ī        | Daoio     | 2,5m u       |          | Profil     | Тор        |         |         |        |         |        |        |         |         |        |        |        |        |             |        |        |        |         |         | t           | Τ          |
| -      | 371,   | 367,   | 374,   | 382,   | 388,      | 377,       | 373,     | 368,     | 384,   | 377,    | 374,       | 377,       | 377,       | 381,    | 300,      | 320         | 370.    | 383     | 376      | 373.    | 378.   | 375,   | 362,    | 365,         | 396,       | 351,       | 378,              | 366,             | 367,         | 368,       | 2        | эr 373,  | strar        | 43 Ges     | 427,       | 420,   | 426,   | 415,   | 382,   | 386,          | 3/5,    | 311,     | 377,                                    | 370            | 379      | 360         | 357      | 362       | 354          | 364          | 353      | 365       | iber 365,    | strah    | 7 Ges      | 335,       | 349,    | 331,    | 355.   | 347,    | 357.   | 354.   | 356,    | 392,    | 389,   | 360,   | 367.   | 344.   | 378.        | 357    | 353    | 368.   | 361.    | 356     | 354         | 361,       |
|        | 37 3,  | 08 2,  | 21 3,  | 64 3,  | 07 3,     | 02 3,      | 52 3,    | 34 2,    | 71 3,  | 41 3,   | 06 3,      | 75 3,      | 95 3,      | 8/ 3,   | n 3,      | 1 UU        | 36      | 3       | 11 3     | 16 3.   | 32 3.  | 67 3,  | 22 2,   | 69 2,        | 56 3,      | 78 2,      | 93 2,             | 93 2,            | 42 2,        | 98         | 8        | 15<br>3, | nung in      | amt- K     | 95 4,      | 74 4,  | 27 4,  | 76 4,  | 07 3,  | 40 3,         | /4 3,   | 2.01     | 200                                     | 200            | 46 3     | 67 3        | 06 4     | 76 3      | 90 3         | 19 3.        | 74 3     | 51 4.     | 20 4,        | nung in  | amt- K     | 24 2,      | 48 3,   | 99 2,   | 76 3.  | 65      | 37 3.  | 59 3.  | 78 3,   | 41 4.   | 37 4,  | 00 2,  | 55     | 18 2.  | .0<br>89 4. | 46 3   | 23 .   | 45 4   | 04 3    | 04<br>3 | 3 4         | 51 3,      |
| -      | 20 4,  | 90 3,: | 23 3,  | 79 4,  | 70 4,     | 26 5,      | 01 5,    | 91 4,    | 76 4,  | 54 4,   | 38 4,      | 68 4,      | 62 3,      | /8 2,   | 14        | 1 00<br>1 4 | A 1     | 2,00    | 3.       | 05 4.   | 18 3.  | 31 4,  | 84 3,   | 81 3,        | 29 3,      | 14 3,      | 31 4,             | 83 3,            | 96 3,        | 87 4,      |          | 17 4,    | % in         | C          | 71 4,      | 33 4,  | 30 5,  | 32 4,  | 31 4,  | 67 3,         | 30 3,   | 20<br>2, | 2014                                    | 40<br>40<br>4, | 69 4     | 84 3        | 00       | 61 2      | 62<br>4      | 84 4         | 79 2     | 14 3      | 53           | in       | . С        | 76 2,      | 34 2,   | 41 3,   | 69 4.  | 27 3,   | 77 3.  | 73 2.  | 43 4,   | 64 4,   | 03 4,  | 78 3,: | 24 4,  | 79 1.  | 10 3.       | 98 2.  | 3      | 03 4   | 67 2.   | 74 2,   | 47 3        | 27 3,      |
|        | 11 13  | 58 13  | 71 15  | 35 15  | 05 18     | 10 15      | 33 15    | 57 12    | 15 15  | 42 13   | 31 13      | 41 13      | 49 13      | 15 17   | 10        | 10          | 15 15   | 47 16   | 23<br>16 | 13 12   | 31 15  | 74 11  | 45 12   | 79 15        | 30 15      | 36 10      | 22 9,7            | 56 14            | 35 14        | 22 12      | 5        | 30 12    | ppm in       | 1          | 95 19      | 01 18  | 22 21  | 30 18  | 11 13  | 39 15         | 3/ 13   | 1000     | 10                                      | 14             | 13 14    | JR 16       | 24 15    | 93<br>17  | 25 13        | 54 i<br>17   | 12 18    | 21 17     | 40 16        | ppm in   | . Η        | 56 11      | 41 14   | 18 9,1  | 33 16  | 03 13   | 96 14  | 23 18  | 58 14   | 11 18   | 36 18  | 51 13  | 16 12  | 75 13  | D9 18       | 97 14  | 34 14  | 07 14  | 10 14   | 5 16    | 17 12       | 17 17      |
| -      | ,60 15 | ,46 30 | ,08 30 | ,26 30 | ,93 30    | ,97 30     | ,54 30   | ,51 30   | ,57 30 | ,18 30  | ,09 30     | ,40 30     | ,75 30     | ,70 30  | ,87 JU    | 00,00       | 70 20   | 30      | 06 06    | .42 30  | .15 30 | ,01 30 | ,15 30  | ,11 30       | ,81 30     | ,10 30     | 76 30             | ,76 30           | ,01 30       | ,80 30     | 2        | ,92 30   | ppm in o     | Ab         | ,50        | ,20 30 | ,55 30 | ,97 30 | ,61 30 | ,45 30        | 32 30   | 00       | 04 00                                   | , 4 C          | 74 30    | 98 30       | 00<br>00 | 63 30     | .89 30       | 16 30        | 98 30    | .16 30    | ,48 30       | ppm in o | Ab         | ,18        | ,47 30  | 13 30   | .37 30 | ,46 30  | ,49 30 | .74 30 | ,83 30  | ,49 30  | ,03 30 | ,12 30 | .15 30 | .67 30 | .03 10      | .10 30 | 31 30  | 30     | .36 30  | 47 10   | 70 SC       | ,63 30     |
|        | 0      |        |        |        |           |            |          |          |        |         |            |            |            |         |           |             |         |         |          |         |        |        |         |              |            |            |                   |                  |              |            |          |          | m            | stand      |            |        |        |        |        |               |         |          |                                         |                |          |             |          |           |              |              |          |           |              | Sm       | stand      |            |         |         |        |         |        |        |         |         |        |        |        |        | 0           |        |        |        |         | 5       | ļ           |            |
|        |        |        |        |        |           |            |          |          | oben   | wie 59  | eventi iel |            |            |         |           |             |         |         |          |         |        |        | von 59  | (oberer Teil | ausgewalzt | Sandsteine | (Ms/GS)           | von 59           | inherer Teil | Sandsteine | (MS/GS)  | von 59   | (oberer Teil | ausgewalzt | Sandsteine |        |        |        |        |               |         |          |                                         |                |          |             | Teil     | im oberen | im Profil 59 | zu 59; liegt | hernann  | Protil 41 | mächtig      | 100      | Tops (50 - | steine des | darüber | 50 am   |        |         |        |        |         |         |        |        |        |        |             |        |        |        |         |         |             |            |
| 367,39 | 364,10 | 363,41 | 366.37 | 368 17 | 364.70    | 367.19     | 365.96   | 367.77   |        | 000,00  | 350 63     | 363 67     | 356 37     | 352,17  | 348,51    | 348,39      | 344,04  | 350,46  | 348,44   | 347,95  | 349,74 | 72 070 |         |              |            | 351,16     |                   |                  |              | 342,78     | 010 10   |          |              |            | 341.52     | 342.89 | 345.35 | 354,08 | 343.80 | 350,34        | 342,55  | 345,80   | 348,95                                  | 349,06         | 350,45   | 352,81      |          |           |              | 000,20       | 350.03   | Gesamt-   |              |          |            |            |         | 384,68  | 388,93 | 393,19  | 412,44 | 386,81 | 385,44  | 381,47  | 378,10 | 407,56 | 390,47 | 397,83 | 378.09      | 378.71 | 389.72 | 386 70 | 379.07  | 374.65  | 384,47      | 389,38     |
| 2,96   | 2,98   | 2,94   | 2.71   | 2 72   | 2.77      | 3 29       | 3.20     | 3.30     |        | 1,00    | 2 83       | 5 77       | 2 61       | 2,39    | 1,71      | 2,10        | 1,94    | 1,93    | 1,85     | 2,04    | 06,1   | 00     |         |              |            | 2,09       |                   |                  |              | 69,1       | 8        |          |              |            | 1.62       | 1.65   | 1.61   | 2,20   | 1,72   | 1,75          | 1,65    | 1,91     | 1,96                                    | 2,13           | 2,21     | 2,08        |          |           |              | 1,30         | 1 03     | 5 ×       |              |          |            |            |         | 3,63    | 3,37   | 3,80    | 3,71   | 3,78   | 3,78    | 3,45    | 3,64   | 3,56   | 3,37   | 3,75   | 3.42        | 3.57   | 3.56   | 3.34   | 3.26    | 3.02    | 3,04        | 3,69       |
| 3,65   | 2,60   | 3,04   | 3.19   | 23 C   | 3.15      | 3 16       | 4.62     | 3.41     |        | 1,00    | 2 C, C     | ο <u>1</u> | 3 47       | 2.59    | 5,01      | 3,72        | 3,07    | 3,46    | 3,74     | 2,76    | 2,99   | 3      |         |              |            | 3,90       |                   |                  |              | 1,70       | 4        |          |              |            | 2.66       | 3.60   | 3.89   | 3,76   | 2.91   | 2,86          | 2,59    | 2,54     | 3,45                                    | 2,42           | 3,10     | 3,55        |          |           |              | 0,00         | 3 30     |           | -            |          |            |            |         | 3,88    | 4,50   | 3,69    | 2,58   | 5,25   | 4,53    | 4,07    | 3,06   | 4,00   | 4,98   | 5,74   | 5.12        | 4.41   | 5.14   | 4.62   | 3.94    | 5.31    | 4,21        | 5,41       |
| 13,80  | 13,08  | 15,05  | 17.58  | 14 53  | 15.05     | 14.29      | 12.81    | 13.07    |        | 1,00    | 14 36      | 13 70      | 12 66      | 9.32    | 10,80     | 9,34        | 9,67    | 13,81   | 12,47    | 13,29   | 11,90  | 20.0   |         |              |            | 9,45       |                   |                  |              | 10,31      | 2002     |          |              |            | 9.64       | 8.69   | 80.6   | 10,29  | 9.37   | 12,48         | 9,06    | 9,87     | 9,05                                    | 10,81          | 11,07    | 11,16       | ;        |           |              | 1,40         | 11 / 2   | in norm   | 1            |          |            |            |         | 17,90   | 19,89  | 18,74   | 20,09  | 17,47  | 17,55   | 16,10   | 17,50  | 15,54  | 14,46  | 17,08  | 16.31       | 15.31  | 15.48  | 13.78  | 18.51   | 13.73   | 10,11       | 16,51      |
| 30     | 30     | 30     | 30     | 30     | 30        | 30         | 30       | 30       |        | 100     | 700        | 30         | 100        | 30      | 30        | 30          | 30      | 30      | 30       | 30      | 30     | 30     |         |              |            | 30         |                   |                  |              | 30         | 2        |          |              |            | 30         | 30     | 30     | 30     | 100    | 30            | 30      | 30       | 30                                      | 30             | 30       | 30          |          |           |              | 30           | 30       | Abstand   |              |          |            |            |         |         | 30     | 30      | 30     | 30     | 30      | 30      | 30     | 30     | 30     | 30     | 30          | 30     | 30     | 30     | 30      | 30      | 30          | 30         |
|        |        |        |        | Ī      |           | Ī          | Ī        | Ī        |        | ſ       |            | Ī          | Ī          |         | Vulkani   | Vulkanit    |         |         |          |         |        |        |         | ſ            |            | davor)     | en (340           | angefar          | Vulkanit     | tretende   | des auf- | Interha  |              | Profil 4   | Ubergai    |        | Ī      |        |        |               |         |          | T                                       | I              |          |             |          |           |              |              | sandste  | aröbere   |              |          |            |            |         |         |        |         |        |        |         |         |        |        |        |        |             |        |        |        | von P 4 | Grobsa  | T           | Ī          |
| 365,9  | 361.8  | 356,0  | 358,4  | 366,2  | 372,8     | 372,8      | 307,8    | 308,2    | 397,0  | 3/2,5   | 363,9      | 3/6,4      | 070.1      | 2577    | 349.3     | 382.3       | 375,1   | 385,6   | 378,3    | 375,8   | 373,0  | 377,1  | 378,2   | 3/0,/        | 309,1      | 1000       |                   | Ģ                | 8            | ä          |          | 1 222 0  | etrahl       | Gass       | 19 359,8   | 357,9  | 356,2  | 355,1  | 355,1  | 000,0         | 252 2   | 2577     | 362.7                                   | 364.4          | 362.2    | 360,1       | 353,0    | 356,0     | 357,5        | 358,6        | in .     | 356.8     | 3513         | 304,1    | 353,8      | 356,8      | 359,3   | 343,8   | 372,6  | 366,4   | 365,9  | 363,1  | 362,5   | 363,7   | 359,9  | 358,7  | 356,2  | 357,0  | 358,9       | 366,6  | 359,8  | 352,3  | 1 000,1 | nd 3564 | 267.3       | 366,9      |
| 5,5    | 3 2 4  | 4      | 0 2,1: | 2,30   | 9 3,0     | 0 2,6      | 9<br>∠,3 |          | 0 2,9  | × ×     | 2,1        | 2,9        | 2 4<br>7 4 | 210     | 4 2 2     | 8 2.6.      | 5 3,30  | 7 3,71  | 3,3,     | 4 3,3;  | 0 3,2: | 3,2    | 3,30    | 1 3,3        | 3,10       | n<br>2     |                   |                  |              |            | ¢,2      | 0 0 0    | in o         | mt-        | 2,5        | 4 2,5  | 2,4    | 2,50   | 4 2,4  | 1 C           | 2 L L L | 2 2 2 2  | 0 2 7                                   | 8 2 7 V        | 6 2.7:   | 3 2,3       | 7 2,3    | 4 2,5:    | 6 2,4:       | 3 2,5        | +<br>^,c | 4 2.3     | 2 2,2        | 0 ∠,4    | 3 2,1      | 2,6        | 2,6     | 3 1,6   | 6 3,2: | 7 3,19  | 0 3,0  | 5 3,1; | 3 2,6   | 2,9     | 2 2,8  | 9 2,5  | 3 3,0  | 1 2,7  | 5 2,4       | 2 2,9  | 5 2,6  | 5 2,0  | , v     | 0 1 0   | 0 Z Z       | 2,9        |
| 1 3,54 | 2 05   | 2,53   | 3 2,81 | 4,50   | 4,24      | 4,06       | 2,32     | 1,52     | 3,12   | 2,40    | 3,00       | 2,30       | 2,20       | 3 20,02 | 3 02      | 3.63        | 3,59    | 5 3,21  | 1 2,78   | 3 4,23  | 2 3,12 | 3,01   | 4,54    | 4,13         | 2,01       | 202        |                   |                  |              |            | 4,18     | 4 10     | 5. c         | =          | 3,15       | 3,99   | 3,79   | 2,55   | 3,28   | 2,00          | 2 22    | 2 J      | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2          | 3,85     | 4,11        | 3 1,86   | 2 1,24    | 2 3,14       | 3,07         | , u      | 3,01      | 0,01<br>0,01 | 2,02     | 3,14       | 1 2,57     | 3,36    | 2,74    | 3 3,42 | 3,68    | 7 4,53 | 2 2,92 | 1 3,63  | 3,65    | 3,32   | 9 4,49 | 2,69   | 5 3,05 | 2,91        | 1 2,83 | 4,03   | 3,35   | 0,01    | 3 54    | 4 83        | 4,47       |
| 15,3   | 12.2   | 13,2   | 12,5   | 13,9   | 12,6      | 12,7       | 13,2     | 13,8     | 17,1   | 14,5    | 13,4       | 13,8       | 10,2       | 10.0    | 8 11      | 8.13        | 13,6    | 16,7    | 17,3     | 12,7    | 14,8   | 16,7   | 13,1    | 10,3         | 10,1       | 4 6 4      |                   |                  |              |            | 9,00     | 0.8 0    |              | Ţ          | 14,9       | 12,1   | 8,82   | 10,3   | 12,4   | 10,4          | 12 3    | 10 0     | 126                                     | 16.0           | 13.6     | 12,6        | 14,3     | 14,1      | 14,1         | 12,7         | -u,o     | 13.8      | 11,0         | 10.0     | 13,2       | 12,3       | 12,1    | 12,1    | 13,5   | 12,5    | 14,5   | 13,6   | 14,3    | 12,8    | 12,0   | 10,1   | 10,9   | 12,9   | 13,1        | 11,7   | 11,3   | 12,3   | 10,6    | 13.2    | 13,0        | 14,1       |
| 30     | 30 20  | 200    | 30     | 30     | , 6<br>30 | 230        | 900      | 00<br>00 | 20     | 3 200   | 300        | 4 30       | 200        | 20      | 3         | 30          | 4 30    | 7 30    | 3 30     | 4 30    | 0 30   | 0.30   | 9 30    | 9<br>30      | 200        | 5<br>5     |                   |                  |              |            | 2        | 20       | in cm        | Δhet-      |            | 30     | 30     | 30     | 30     | 200           | 30 00   | 20 4     | 30                                      | 30             | 9 30     | 2 30        | 30       | 1 30      | 5 30         | 1 30         | 2        | 30        | 30           | 200      | 30         | 8 350      | 7 30    | 4 200   | 5 200  | 6<br>30 | 1 30   | 1 30   | 1 30    | 4 30    | 30     | 60     | 0 60   | 3 30   | 1 30        | 4 30   | 9 30   | 8 30   | r<br>S  | 30      | 20<br>20    | 30         |
|        |        |        |        |        |           |            |          |          |        | ko      | 22         |            |            |         |           |             |         |         | 1        |         |        | l      |         |              |            |            | T                 | T                | T            |            | 20.00    |          | 3 1          | 1          | Г          |        |        |        |        | I             |         |          |                                         |                | IS CO    | 20          | i c      | 2         |              | 1            | 1        |           |              |          |            |            |         |         |        |         |        |        |         |         |        |        |        |        |             |        |        |        |         |         | ļ           | <u> </u>   |
|        |        |        |        |        |           |            |          |          |        | mmt 58J | 3          | 2 6        |            |         | ω         | ω           | ω       | (1)     | ω        | 61      | 6      |        |         | 2 6          |            |            |                   |                  |              | 5          | te       | urzmohil |              |            |            |        | 6      |        |        | 3 6           | 20      |          |                                         | 5              | te Livoi | larzmohil 3 |          |           |              |              |          |           | 6            | G        | ω          | G          | ω       | ω       | ω      | ω       | (J)    | ω      | 63      | ω       | ω      | 63     | 63     | ŝ      |             |        |        |        |         | 5       |             |            |
|        |        |        |        |        |           |            |          |          |        | 04,00   | 54.05      | 50,00      | 73 53      | 72.17   | 173.55    | \$74,77     | \$74,94 | \$75,88 | \$71,60  | \$71,07 | 577,58 | 22,42  | 57 3,91 | 77,01        | 77 84      | 78 24      |                   | 74 46            | 74 54        | 66.52      |          |          | 84,09        | 84,90      | 83,92      | 82,06  | 85,12  | 578,84 | 511,32 | 10,19         | 72 70   | 77 87    | 101,00                                  | 91.35          | 101,21   | 101 27      | 69,48    | 66,55     | 59,09        | 55,59        | 65,24    | 58,00     | \$72,66      | \$77,02  | \$78,90    | \$72,61    | \$72,76 | \$71,23 | 172,96 | 69,66   | 69,31  | 172,87 | \$75,53 | \$71,36 | 964,12 | )64,66 | 55,89  | 64,62  | 64.67       | 58.86  | 64.96  | 75.61  | 69.20   | IGO 75  | 170 24      | 579,61     |
|        |        |        |        |        |           |            |          |          |        | 4,24    | 2,13       | 00,00      | 3 36       | 3.20    | 3,62      | 3,33        | 3,52    | 3,06    | 3,31     | 3,38    | 3,34   | 2,09   | 3,42    | 3, IO        | 3 16       | 399.00     | 2,7<br>7,7<br>7,7 | 3 40             | 3 10         | 2 04       |          |          | 3,91         | 3,14       | 3,73       | 3,83   | 3,78   | 3,64   | 3,39   | 0, IO         | 3 16    | 3 63     | 205                                     | 4 60           | 4,01     | 4 31        | 3,03     | 3,00      | 2,34         | 2,21         | 2,59     | 2,53      | 3,11         | 3,35     | 3,50       | 2,96       | 3,09    | 3,11    | 3,12   | 3,07    | 2,72   | 2,99   | 2,99    | 3,03    | 2,55   | 2,37   | 1,86   | 2,33   | 2.37        | 2.18   | 2.52   | 2.98   | 2.71    | 2,19    | 3,40        | 3,24       |
|        |        |        |        |        |           |            |          |          |        | 2,00    | 3,00       | 2,10       | 3 70       | 3.04    | 2,39      | 4,79        | 3,35    | 3,52    | 3,18     | 3,71    | 3,16   | 2,01   | 3,30    | 2,02         | л , . C    | 4 58       | 3 70              | 3 70             | 2 74         | 283        |          |          | 3,60         | 3,09       | 4,17       | 3,24   | 3,71   | 4,30   | 3,51   | 4,40<br>04,40 | 4 / 2   | 3 44     | 300                                     | 4 09           | 1,00     | 1 83        | 2,37     | 3,21      | 2,40         | 3,10         | 5,01     | 2,38      | 4,86         | 3,59     | 2,59       | 3,70       | 4,15    | 3,84    | 3,84   | 4,15    | 3,11   | 3,80   | 3,74    | 3,64    | 3,61   | 3,29   | 4,99   | 3,98   | 4.01        | 2.98   | 3.30   | 396    | 4.49    | 2 65    | 4,10<br>278 | 3,48       |
|        |        |        |        |        |           |            |          |          |        | 9,90    | 0 00       | 44 33      | 13 30      | 13.48   | 15,17     | 11,47       | 14,97   | 16,33   | 12,72    | 13,01   | 15,47  | 10,44  | 15,00   | 10,14        | 13 74      | 13.01      | 15.20             | 12 02            | 1204         | 12 46      |          |          | 17,40        | 10,11      | 14,00      | 12,91  | 15,49  | 13,40  | 13,53  | 10,12         | 15,01   | 12 51    | 15.04                                   | 13 68          | 0,00     | 10 05       | 15,12    | 12,30     | 11,97        | 11,31        | 12,01    | 11,72     | 12,68        | 14,13    | 15,54      | 13,09      | 15,16   | 12,09   | 14,71  | 11,82   | 12,70  | 13,78  | 15,85   | 12,35   | 14,21  | 11,29  | 11,98  | 12,99  | 11.20       | 11.94  | 10.90  | 16.64  | 12.78   | 12 27   | 10,21       | 15,47      |
|        |        |        |        |        |           |            |          |          | ſ      |         | 2          |            | 2          | ωĪ      | ωĪ        | 30          | ω       | ω       | ω        | ω       | σ      | 5 6    | ی اد    | ъĒ           | ωc         | ωc         | υC                | 2                | 3            | 3          |          |          |              | 5          | 16         | 16     | 5      | ی اد   | o Lu   | s c           | 16      | - 67     | . C                                     | . r            |          | പ്          | U.       | ıω        | sω           |              |          |           |              |          | 100        | 6.0        | 6.5     | 6.5     | ω      | ωĪ      | ωĒ     | ωĪ     | ωĪ      | 6.5     | ŝ      | 6.0    | T      | ۰.T    | co Tr       | ωľ     | ωľ     | ωl     | co le   | ъc      | ن در        | υu         |

| Тор             | 32<br>33<br>30 | 50 16,:<br>14 16,0 | 3,19 4,1<br>3,19 5,9 | 307,69                    |                                       | 30        | 13,02<br>16,40 | 4,24<br>3,41 | 3,32         | shicht 3 303,16 | Sc    | 45 <u>30</u><br>1,24 <u>30</u> | 4,17 7,1<br>3,60 11                     | 1,57 <u>*</u><br>2,35 3 | 344,91<br>339,04                        |             | 50      | 5,41<br>7,50 | 8 3,08<br>8 3,37       | 2 1,8                                 | 337,0              |
|-----------------|----------------|--------------------|----------------------|---------------------------|---------------------------------------|-----------|----------------|--------------|--------------|-----------------|-------|--------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------|---------|--------------|------------------------|---------------------------------------|--------------------|
| 14 160          |                | 38 19,             | 3,39 4,3             | 315,11                    |                                       | 30        | 13,82          | 5,52<br>4 94 | 3,/3         | 319,98          |       | 58 30                          | 2,45 9,1                                | 1,42 2                  | 341,19                                  |             | 38      | 5,14         | 0 2,69                 | 1 1,6                                 | 341,3              |
| 7.31 30         | 200            | 5                  | 3.55 3.7             | 314.35                    |                                       | 30        | 19,75          | 4,40         | 3,49         | hicht 2 319,42  | Sc    | 92 30                          | 2,47 9,9                                | 1,51                    | 342,84                                  |             | 30      | 9,49         | 2 2,22                 | 4 2,3                                 | 350,6              |
| 05 AC'7L        | 12/            | 3 2                | 3,21 3,              | 300,78                    |                                       | 30        | 22,03          | 3,85         | 3,71         | 316,99          |       | 26 30                          | 273 9.2                                 | 1.69                    | 327.91                                  |             | 30      | 8,48         | 8 3,40                 | 0 1,5                                 | 323,3              |
| 17 50 20        | 18,            | 3                  | 3,58 2,              | 309,35                    |                                       | 30        | 16,39          | 4,37         | 3,69         | 314,18          |       | 71 30                          | 333 9                                   | 1.43 2                  | 324.94                                  |             | 30      | 8,38         | 3 2,89                 | 9 1,9                                 | 326,5              |
| 18,15 40        | 18,            | ő                  | 3,59 3,              | 315,62                    |                                       | 30        | 18,97          | 5,45         | 3,92         | 322,18          |       | 16 30                          | 20 10                                   | 1.75 2                  | 344.35                                  |             | 30      | 6,94         | 3 2,16                 | 7 1,7                                 | 328,0              |
| 16,48 30        | 16,            | 17                 | 3,17 4,              | 1309,91                   |                                       | 30        | 19,76          | 4,24         | 3,51         | 312,43          |       | 0.04 30                        | 10 10                                   | 1 81 0                  | 328 71                                  |             | 30      | 9,29         | 0 2,48                 | 6 1,7                                 | 329,5              |
| 15,09 30        | 15,0           | 127                | 2,67 3,2             | 297,76                    |                                       | 30        | 18,04          | 3,10         | 4,02         | hicht 1 315,62  | So    | 0/ 30                          | 3,17 7,1                                | 1 70 2                  | 330,11                                  | T           | 30      | 8,61         | 7 1,84                 | · · · · · · · · · · · · · · · · · · · | 329,2              |
| 14,29 50        | 14,2           | 71                 | 3,72 4,0             | 310,34                    |                                       | in cm     | in pom         |              | in %         | d strahlung     | 1     | 1,05 30                        | 3,46 11                                 | 2,20                    | 357,20                                  | T           | 3       | 8.39         | 5 2 78                 | 7 1,0                                 | 332 0              |
| 19,21 30        | 19,2           | 31                 | 3,55 3,9             | 318,72                    |                                       | Abstand   | 22,0U          | 3,37         | 4, <i>21</i> | ofil Gesamt-    | Ų     | ),82 50                        | 3,37 10                                 | 2,00                    | 337,22                                  |             | 38      | 10 10        | 2 2 21                 | 0<br>2,2                              | 378 1              |
| 17,93 30        | 17,5           | 75                 | 3,27 3,7             | 311,14                    |                                       | 30        | 19,19          | 3,88         | 4,78         | 334,80          |       | 46 30                          | 3,85 9,4                                | 1,96 3                  | 340,21                                  |             | 30      | 9,00         | 3 3,51                 | 2,1                                   | 347,9              |
| 16,94 50        | 16,9           | б                  | 3,65 5,8             | 319,77                    |                                       | 30        | 21,83          | 4,61         | 4,84         | 341,84          |       | 65 30                          | 3,40 8,0                                | 2,18 3                  | 337,45                                  | Basis       | 30      | 9,57         | 4,10                   | 2,2                                   | 355,3              |
| 24,17 30        | 24.1           | ы,                 | 3,71 5.0             | 323,72                    |                                       | 30        | 19,62          | 4,80         | 4,10         | 324,78          | â     | ppm in                         | n ppm in                                | in % ii                 | strahlung                               |             | 30      | 9,51         | 7 4,66                 | 3 1,8                                 | 338,0              |
| 20.20 50        | 20.2           | <u>~</u> [8        | 4.32 4.8             | 327.22                    |                                       | 30        | 19,27          | 3,74         | 3,99         | 318,07          | stand | Ab                             |                                         |                         | Gesamt-                                 | Profil 23   | 30      | 12,45        | 2 2,41                 | 3 2,2                                 | 333,6              |
| 15 20 30        | 1,0            | รีได้              | а78<br>л.            | 320,37                    |                                       | 30        | 18,49          | 5,01         | 4,19         | 317,03          |       | 8                              | 2.66 9.0                                | 1.82 2                  | 321.15                                  | Basis       | 30      | 12,24        | 8 3,02                 | 9 2,5                                 | 350,1              |
| 18 72 100       | 10 1           | ã                  | 4 4 7 F 1            | 320,00                    |                                       | 30        | 19,95          | 5,04         | 3,96         | 317,62          | ╞     | 00 30                          | 1.89 12                                 | 1.75 1                  | 322.48                                  |             | 60      | 6,93         | 2 3,26                 | 5 1,7                                 | 324,8              |
| 10,00 00        | 301            | ő                  | 4,10 U,              | 32U,23                    | ┦                                     | 30        | 20,41          | 4,92         | 4,11         | chicht 4 316,74 | S     | 59 30                          | 1,01                                    | 148 2                   | 315.99                                  | Ϊ           | 30      | 8,10         | 7 3,52                 | 6 1,7                                 | 338,4              |
| 10,00 30        | 20,            | 5 ک                | 4,3/ 4,              | 323,06                    | Ţ                                     | in am     | in ppm         | in ppm       | in %         | c strahlung     |       | na 30                          | , so -,                                 | 1 81 2                  | 337.60                                  | T           | 30      | 8,03         | 5 3,14                 | 9 1,6                                 | 326,1              |
| 11,10 30        | 11,            | ĩР                 | 4,32 3,              | 322,90                    |                                       | Abstand   | Th             | с.           | ×            | ofil Gesamt-    | 2     | 20 30                          | - 08 9.6                                | 1 70 1                  | 210 27                                  | T           | 30      | 6,89         | 8 2,51                 | 2 1,7                                 | 326,0              |
| 10,/0 30        | 10,            | 4                  | 4,31 0,              | 329,10                    | 0~hinkt 15                            | 30        | 19,06          | 4,35         | 4,21         | 318,91          |       | 30                             | · · · · · · · · · · · · · · · · · · ·   | 1 81 0                  | 201 40                                  | T           | 30      | 7,95         | 6 3,41                 | 4 2,0                                 | 329,8              |
| 19,09 30        | 19,C           | ្រង                | 4,00 3,0             | 330,10                    |                                       | 30        | 21,17          | 5,36         | 4,66         | 329,73          |       | 10 30                          | · A1 11                                 | - л<br>л с              | 320.32                                  |             | 80      | 8,71         | 9 2,41                 | 3 1,5                                 | 323,2              |
| 21,37 30        | 21,            | i l'               | 4,25 4,              | 328,30                    |                                       | 30        | 20,71          | 6,64         | 5,10         | 336,58          |       | 38 30                          | 1,00 U,<br>1,58 7,                      | 1 60 1                  | 335 33                                  |             | 120     | 8,03         | 0 3,08                 | 8 1,7                                 | 327,2              |
| 18,01 30        | 18,            | ilά                | 4,08 5,.             | 320,51                    |                                       | 30        | 22,20          | 5,64         | 4,75         | hicht 3 332,22  | S     | 20 20                          | · 80 6.0                                | 1 80 0                  | 317 65                                  | Ī           | 100     | 9,51         | 7 2,68                 | 9 1,6                                 | 328,5              |
| 40.04 20        | 21,            | :12                | 4,30 4,              | 323,14                    | SCHICHL 14                            | 30        | 22,99          | 4,60         | 5,03         | hicht 2 336,25  | SS    | 77 30                          | - 05 Q                                  | 148                     | 318.42                                  |             | 50      | 8,41         | 3 1,82                 | 0 1,6                                 | 323,9              |
| 15,87 1000      | 15,            | 5 lõ               | 3,02 4,              | 304,80                    | Dobio Ht A A                          |           | 16,06          | 5,06         | 4,73         | hicht 7 323,80  | S     | 14 30                          | ) g7 0,                                 | 1 50 5                  | 322,10                                  | - 00        | 40      | 7,17         | 5 1,44                 | 1 1,5                                 | 320,1              |
| 18,68 30        | 18,            | i lu               | 3,1/ 5,:             | 311,28                    |                                       | 20        | 17.01          | 2.88         | 3.94         | hicht 6 312.20  | So    | 10 00                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100                     | 303 40                                  | Top         | 100     | 8,63         | 7 2,90                 | 0 1,8                                 | 333,9              |
| 10 60 30        | 10,            | SIS                | 4,00 4,1             | 317,03                    |                                       | 20        | 15,96          | 3,42         | 4,11         | 311,99          |       | in Z                           | in in in                                | 57<br>%                 | strahlung                               | 250         | -       |              |                        | -                                     | ocker)             |
| 20,81 30        | 20,2           | :10                | 3,5/ 3,.             | 313,83                    |                                       | 20        | 16,21          | 2,24         | 3,12         | hicht 5 294,80  | So    | , IO                           | 2,00 II                                 | 1,90 v                  | 320,22                                  | Dasis       | 0       | 9,27         | 4,00                   | - <i>ک</i> ,ک                         | andstein           |
| 05 00,91        |                | i D                | 3,/6 3,              | 315,19                    |                                       | 30        | 12,06          | 2,76         | 2,65         | 284,90          |       | 15 10                          | 3,00 10                                 | 4,00                    | 339,01                                  | 0           | 000     | 0.07         | 7 3,34                 | 2,2                                   | ndoror 044,0       |
| 17,01 100       | 10.1           | 112                | 10,20                | 312,10                    |                                       | Top von 4 | 10,00          | ļ            |              | 100100          | 5     | 100 202                        | 3,00 12                                 | 2 2 2                   | 330 04                                  |             | 3       | 110,34       | 0 3.4/                 | 5 0                                   | 344 5              |
| 21,39 30        | 27             | 5                  | 4,33 3,0             | 326,32                    |                                       | 90 unter  | 15.60          | 2.86         | 2.72         | 290.66          |       | +,47 JU                        | 1,99 14                                 | 2,04                    | 341 36                                  |             | 3 2     | 10.34        | 0 3,00                 | - 0<br>0,1                            | 353 7              |
| 10,00 30        | 10,0           | 3                  | 3,00 1,.             | 317,30                    |                                       | linka     | 13.02          | 282          | 2 46         | 290.62          |       | 3,00 00,00                     | 2,04                                    | 2024                    | 33E 30                                  | I           | 3       | 2            | 0<br>2<br>2            | 1                                     | IDEI DEISIS        |
| 16.09 30        | 16.0           | 3 d                | 3 56 7               | 317 58                    |                                       | 30        | 12,46          | 3,25         | 2,88         | 300,17          |       | 208 30                         | 984 13                                  | 253                     | 337 18                                  |             | JU      | 98,UL        | 2 3,1/                 | e't. /                                | a 2-2,0 m 333,6    |
| 19,10 00        | 10/            | 5 6                | 3 54 3               | 314 46                    |                                       | 30        | 12.96          | 2.13         | 2.57         | hicht 4 293.30  | S     | 58 50                          | A7 10                                   | 201                     | 327 64                                  |             | n in cm | in ppm       | o in pp                | ni gur                                | strani             |
| 10 15 20        | 101            | ŏ 2                | 3 00 4 0             | 343 77                    |                                       | 30        | 14.05          | 2.88         | 2.73         | 301.44          |       | 30 50                          | 100 10                                  | 2 A.5 C                 | 320.16                                  |             | Abstand | ЧT           | . C                    | nt-                                   | rofil 24 Gesar     |
| 10.00 20        | 10,4           | 18                 | 3,19 4,0             | 317,51                    |                                       | 30        | 11.40          | 3.51         | 2.40         | 288.19          |       | 20 02 02                       | ) DE 10                                 | 202                     | 321,41                                  |             |         | 11,96        | 3 3,26                 | 9 2,7                                 | Top 362,6          |
| 40 20 20        | 40,            | ыß                 | 3,00 3,0             | 310,30                    |                                       | 30        | 13.55          | 1.45         | 2.23         | hicht 3 283.94  | S     | 30 30                          | 2,20 10                                 | 211 2                   | 307 /14                                 |             | 30      | 10,92        | 1 2,05                 | 5 2,5                                 | 339,7              |
| 20,07 20        | 202            | 5                  | 3 80 36              | 318 50                    |                                       | in cm     | in ppm         | in ppm       | in %         | strahlung       |       | 11 30                          | 306 10                                  | 210                     | 333 74                                  | l           | 30      | 14,12        | 6 3,50                 | 3,1                                   | 350,1              |
| 73 00           | 200            | ĭ a                | 308 50               | 310.41                    |                                       | Abstand   | T,             | с.           | ×,           | ofil 6 Gesamt-  | Pr    | 27 30                          | 2.78 12                                 | 2.34 2                  | 336.30                                  |             | s<br>S  | 10,31        | 1 4,13                 | 2 3,9                                 | 37 2,5             |
| 17 22 20        | 10,1           | 500                | 4,07 5,              | 371 71                    |                                       | 00        | 7.72           | 3 64         | 1,00         | 334.02          | T     | 30 30                          | 38 12                                   | 205 2                   | 338 68                                  |             | 30      | 15,65        | 0 3,50                 | 3,5                                   | 359,7              |
| 17,07 30        | 11/            | ő                  | 3,51 3,0             | 310,41                    |                                       | 50        | 8,00           | 2,70         | 1 80         | 328.09          |       | -,JO JO                        | +,40<br>12                              | × × × ×                 | 33/ 07                                  |             | 30      | 17,81        | 6 3,89                 | 8 3,9                                 | 364,7              |
| 17.97 30        | 17             | б đ                | 3 1 2 4,2            | 310,09                    |                                       | 50        | 9.03           | 3 78         | 1.58         | 324 34          |       | 38 30                          | 146 11                                  | 1031 4                  | 330 11                                  |             | 30      | 12,32        | 2 5,15                 | 2 3,8                                 | 361,6              |
| 17.07 30        | 10,            | 5                  | 3,40 4,5             | 310,72                    |                                       | 50        | 8 66           | 2 37         | 30 c         | 327 61          |       | 100 20                         | 1,02 10                                 | - 22 0                  | 330 58                                  |             | 30      | 14,34        | 2 3,80                 | 4 4,1                                 | 364,5              |
| 16 50 30        | 10             | 5                  | 3/6 0,.              | 310 73                    |                                       | 50        | 8.02           | 2.09         | 1.65         | 319.66          |       | 100 20                         | 100 11                                  | 103 4                   | 332 74                                  |             | 30      | 11,79        | 1 2,48                 | 9 2,8                                 | 340,3              |
| 17 42 20        | 10             | 5 8                | 2,00<br>1,00         | 310.06                    |                                       | 50        | 7.71           | 2.59         | 1.75         | 321.23          |       | 192 30                         | 3 54 10                                 | 80.01                   | 345.67                                  | - 00        | 30      | 14,47        | 6 4,22                 | 3,6                                   | 6,695              |
| 18.36 30        | 18.3           | 5                  | 363 48               | 316.95                    |                                       | 30        | 7,71           | 2,59         | 1,75         | 321,23          |       | 23 30                          | 3.09 00.5                               | 2.69 3                  | 350.82                                  | Top         | 200     | 11,32        | 4,33                   | 0 U<br>0 U<br>0 U                     | 350.0              |
| 15.51 30        | 15.5           | ស                  | 3.63 3.8             | 311.71                    |                                       | 50        | 6,56           | 3,50         | 1,62         | 323,32          | â     | ppm in                         | n ppm in                                | in %ii                  | strahlung                               | 25b         | 3       | 11 7.01      | л <del>4</del><br>4,10 | л с<br>                               | 255 7              |
| 18,54 30        | 18,5           | 1                  | 3,80 4,1             | 316,38                    |                                       | 30        | 8,95           | 2,57         | 1,54         | 318,98          | stand | Ab                             | U Th                                    | x C                     | Gesamt-                                 | Profil      | 30      | 15.57        | 4 4 10                 | 95                                    | 362 1              |
| 23,39 30        | 23,3           | 39                 | 4,74 5,t             | 336,87                    | Schicht 13                            | 30        | 9,18           | 2,57         | 1,48         | 320,78          |       |                                |                                         |                         |                                         | Тор         | 30      | 17.00        | 4 3.34                 | 5 3.3                                 | 360.1              |
| in ppm in cm    | in p           | ppm                | in % in              | strahlung                 |                                       | 2         | 2              | 1            |              | aus coo         | E     | 26                             | 3,08 8,2                                | 1,79 3                  | 331,31                                  | ca. 400 vor | 30      | 15,23        | 1 2,82                 | 3 3,6                                 | 355,2              |
| Th Absta        | Ļ              |                    |                      | Gesamt-                   | Profil 45                             |           |                |              |              | nterm           | : hir | 0,17 50                        | 3,35 10                                 | 2,43 3                  | 337,32                                  |             | 30      | . 19,06      | 6 3,54                 | 8 3,9                                 | 368,2              |
| 17,89           | 11,5           | 5                  | 3,22 2,0             | 302,08                    |                                       | 30        | 9,32           | 2,28         | 1,63         | indstein 322,48 | Sa    | 07 50                          | 2,77 9,0                                | 1,29 2                  | 324,31                                  |             | 30      | 14,31        | 9 4,11                 | 6 3,1                                 | 358,2              |
| 14,56 30        | 14,            | 5                  | 3,50 3,3             | 313,39                    |                                       | 30        | 8,44           | 2,60         | 1,67         | 321,66          |       | 98 50                          | 2,96 6,1                                | 1,62                    | 327,19                                  |             | 30      | 14,67        | 9 3,64                 | 2 3,6                                 | 361,5              |
| 18,15 30        | ļā             | 4                  | 4,30 3,0             | 320,98                    |                                       | 30        | 9,05           | 2,48         | 1,65         | 320,03          |       | 1,51 50                        | 2,13 11                                 | 2,49 2                  | 336,20                                  |             | 30      | 11,80        | 7 4,15                 | 1 2,9                                 | 344,3              |
| 10.12 30        | 10,            | F                  | 3,20 3,              | 302,40                    |                                       | 30        | 7,43           | 2,40         | 1,44         | 322,23          |       | 14 50                          | 2,58 7,                                 | 1,69                    | 328,08                                  |             | 30      | 14,26        | 6 3,08                 | 4 3,6                                 | 373,1              |
| 14,27 30        | 4              | 115                | 3,10 3,              | 302,00                    |                                       | 30        | 7,64           | 1,45         | 1,46         | 316,00          |       | 56 50                          | 2,92 7,:                                | 1,80                    | 330,13                                  |             | 30      | 14,58        | 7 4,57                 | 5 3,4                                 | 360,7              |
| 14,00 00        | 4 4            | 3                  | 340 4,               | 303.05                    |                                       | 30        | 5,62           | 3,62         | 1,34         | 317,44          |       | 02 20                          | 4,06 8,1                                | 7 68'L                  | 334,00                                  | l           | 30      | 17,26        | 4,89                   | 3,0                                   | 363,5              |
| 14 00 00        | 10,1           | ž lõ               | 0,00 4,              | 2002,10                   |                                       | 30        | 0,90           | 2,31         | 1,27         | 319,01          |       | J, / O DU                      | 3,11                                    | ≥ Sol                   | 344,30                                  |             | 200     | 13,01        | 1 3,11                 | 2,0                                   | 309,4              |
| 16 28 30        | 16.5           | 5                  | 3.36 24              | 302 13                    |                                       | 30        | 0,00           | 3 24         | 1 37         | 240.64          |       | 170 50                         | 11 10                                   |                         | 344.50                                  |             | 38      | 1301         | 1 2 77                 | 30                                    | 250.4              |
| 14,37 30        | 14.3           | 4                  | 3.60 5,3             | 315,65                    |                                       | 30        | 8.5.3          | 86.6         | 1 40         | 343 44          | +     | 50 50                          | -73 23                                  | 000                     | 337 77                                  |             | 30      | 12 45        | 4 4 60                 | x o<br>3.1                            | 353.9              |
| 15,59 30        | 15,5           | 30                 | 3,82 2,8             | 314,40                    | ┛                                     | 30        | 7.84           | 2,96         | 1.42         | 325.92          | _     | 76 50                          | 3 83 8.                                 | 1.78 2                  | 328.25                                  | -           | 30      | 15.30        | 5 3.31                 | 3 3,5                                 | 358,6              |
| 18,77 30        | 18,            | 27                 | 4,58 4,              | 322,62                    |                                       | 30        | 10,19          | 2,44         | 1,35         | 340,63          | L     | 1,53 50                        | 1,10 11                                 | 2,29 1                  | 331,93                                  |             | 60      | 13,10        | 8 3,49                 | 1 3,8                                 | 360,3              |
| 17,22 30        | 1.             | .4                 | 4,24 3,              | 316,47                    | SCHICTL 1                             | 30        | 9,46           | 2,48         | 1,41         | 342,09          | Ļ     | ),26 50                        | 2,38 10                                 | 1,70 2                  | 329,85                                  |             | 30      | 14,57        | 5 4,24                 | 6 3,6                                 | 360,9              |
| 10111 1104 11   | ÷              | 1001               | - C                  | Pinning                   | Onkinkt 1                             | 30        | 8,03           | 3,14         | 1,08         | 333,08          | Ļ     | 0,40 DU                        | 1,58 10                                 | 1,80                    | 320,30                                  | ľ           | J       | 14,/9        | 2 3,12                 | 1 3,1                                 | 352,2              |
| in ppm lin rm   | 5              | 'n                 | ii<br>s<br>ii        | strahlung                 | ـــــــــــــــــــــــــــــــــــــ | 300       | \$ N 2         | 2 14         | 1 20         | 222 80          | _     | 1 2 20                         | - <u></u>                               | 4 -,00                  | 337 37                                  | T           | 3 8     | 1/ 70        | 2 12                   | ۲<br>ب<br>د در                        | 250.0              |
| Th Absta        | 3              |                    | K U                  | Gesamt-                   | Profil 48                             | 30        | 10.01          | 3,02         | 2.23         | 349.65          | 4     | 34 50                          | 3 12 9.3                                | 1.68 3                  | 326.28                                  |             | 30      | 13.16        | 3 4.03                 | 3,8                                   | 358,8              |
| 18,70           | 18,7           | ż                  | 4,45 4,2             | 316,19                    |                                       | 30        | 11.33          | 2.50         | 2.56         | 352.45          | _     | 94 50                          | 2.40 8.9                                | 1.70 2                  | 325.15                                  | -           | 30      | 14.21        | 0 3.77                 | 1 3,3                                 | 355,6              |
| ,65             | Š.             | 31 16              | 4,57 5,3             | 320,28                    |                                       | 30        | 10,94          | 2,89         | 2,53         | 338,92          | _     | 1,81 30                        | 2.23 11                                 | 1,95 2                  | 339,91                                  |             | 50      | 14,60        | 9 2,50                 | 1 3,1                                 | 350,6              |
| 50              | 1.0            | 16 10,i            | 4,44 4,              | 319,83                    |                                       | 30        | 14,03          | 2,76         | 2,99         | 360,81          |       | 0,13 30                        | 4,26 10                                 | 2,04 4                  | 333,20                                  |             | 50      | 12,61        | 7 2,78                 | 3 2,6                                 | 346,6              |
| -               | ALC: Y         | 14 18,             | 4,42 4,              | 377,93                    |                                       | 30        | 13,5/          | 3,15         | 3,36         | 366,79          | Ļ     | 55 30                          | 2,31 0,                                 | 1,22                    | 314,37                                  |             | 30      | 12,38        | 9 3,12                 | 5 3,4                                 | 351,5              |
| 04              | 216            | 40                 | - C -                | Printinine<br>Bildininine |                                       | 200       | 50,01          | 2,00         | 2,00         | 04,00           | ļ     | 100                            | 2,00 0,                                 | +0,4                    | 210,21                                  | T           | 200     | 1,1,1        | , i i                  | 10                                    | 040,1              |
|                 | }              |                    | ; 7<br>?<br>; 0      | Gesanit-                  |                                       | 200       | 11,10          | 7 4,20       | 0,20         | 334,10          | ļ     | 00<br>00<br>87                 | 2,0/ 1,                                 | - + -<br>+ + -<br>      | 210,70                                  | t           | 30      | 11,00        | 1 0 4, 14              | 10                                    | 3/10, <del>2</del> |
| 100             | 12             | 10                 | 4,02                 | Connet                    | Diofil                                | 200       | 11,11          | × ,0         | 0 )F         | 05475           |       |                                | 5.70 0,                                 | 1 .0 -                  | 04 C 7E                                 | I           | 3       | 11,02        |                        | 200                                   | 200,1              |
| 20              | 210            | 3 10,              | 1,0                  | 210,70                    |                                       | 200       | 11,20          | 2,01         | 3V C         | 3/1 20          | ļ     | 30                             | 2,20 c,                                 | 20,1                    | 22U,01                                  | t           | 30      | 22,5         | 1 4 4 4 4 4 4          | 0 C                                   | 222.2              |
| 84 20           | n15            | 10                 | 172 A 2              | 348 70                    | CohioHt J                             | 300       | 14 32          | 79 C         | 2 0 0 V      | 2/1 70          | _     | 20                             | 200                                     | ч лоо<br>о              | 330 57                                  | T           | 3 6     | 0 22         | c 2,10                 | 100                                   | 0.555              |
| 1 30            | יו יי          | 30 19.3            | 416 5.3              | 301.88                    |                                       | 30        | 10.65          | 2.24         | 2.65         | 350.52          | 5     | 50 10                          | 9.64 9.5                                | 160 2                   | 377.83                                  |             | 30      | 12.66        | R 2.75                 | 7 3.2                                 | 364.0              |
| , <u>3</u> 5 60 | 6              | 18 17              | 3,75 3,              | 312,73                    | Schicht 4                             | 30        | 12,52          | 2,62         | 2,40         | 339,81          |       | 0.01 30                        | 3.08 10                                 | 2,11 3                  | 338,69                                  |             | 30      | 13,31        | 2 3,37                 | 0 3,2                                 | 360,3              |
| ,u/ 30          | 5              | 31. 65             | 4,04 3,1             | 327,10                    |                                       | 30        | 12,20          | 2,84         | 1,99         | 336,80          | L     | 41 JU                          | 3,/3 ×,·                                | 2,00                    | 349,38                                  |             | 30      | 9,67         | 9 2,13                 | 0,2                                   | 335,4              |
| ~~ ~~           | 3              | ز<br>د             | 10 101               | 274 12                    | -                                     | 22        | 5 22           | 202          | 3            | 200 000         |       | :                              | 3                                       | 222                     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |             | >       | 10 1         | 2 2 2 2                | 30                                    | V 200              |

|         |                |                    |             |             |                  |                |              |         |                  |          |            |                         |                  |         |         |         |                    |           |        |          | Basis             | 2 m linter      | Profil 22      |         |           |                                         |         |          |         |         |          |         |        |                   |               |              |           |                |         |           |                    | Basis   | 29 c      |            |         |          |             | Kongi.  | Beginn  |            |           |         |         |         |                    |         | T        | 2 do 1    | Schicht 1 | 29b      | Profil  |
|---------|----------------|--------------------|-------------|-------------|------------------|----------------|--------------|---------|------------------|----------|------------|-------------------------|------------------|---------|---------|---------|--------------------|-----------|--------|----------|-------------------|-----------------|----------------|---------|-----------|-----------------------------------------|---------|----------|---------|---------|----------|---------|--------|-------------------|---------------|--------------|-----------|----------------|---------|-----------|--------------------|---------|-----------|------------|---------|----------|-------------|---------|---------|------------|-----------|---------|---------|---------|--------------------|---------|----------|-----------|-----------|----------|---------|
| 291,82  | 282,96         | 279,57             | 284,50      | 288,50      | 292,43           | 292,16         | 290,84       | 292.75  | 273,46           | 283,40   | 276,25     | 279,85                  | 276.90           | 292,18  | 272,48  | 277,20  | 275.64             | 288,20    | 279,06 | 274,50   | £1 0,3£           | strahlun        | Gesamt         | 248,26  | 243,78    | 280,45                                  | 298.26  | 306,00   | 303,12  | 321,41  | 339,05   | 366,56  | 329,10 | 357.56            | 321,62        | 321,66       | 301,96    | 302,86         | 301.34  | 285,88    | 282,48             | 280 35  | 308,01    | 244,07     | 242,42  | 240,45   | 240,05      | 243 44  | 245,41  | 269,83     | 270.35    | 264,96  | 261,77  | 266,72  | 264,37             | 270,05  | 268,70   | 269,59    | 275,83    | strahlun | Gesamt  |
| 2,3     | 2,2            | 2,0                | 2,6         | 2,5         | 2,3              | 2,8            | 2,3          | 2.5     | 20               | 1,9      | 1,9        | 2,3                     | 2,3              | 2,9     | 1,9     | 1,9     | 1.9                | 2,3       | 2,3    | 2,1      | د, ب              | g<br>N N<br>S N | ; <del>-</del> | 0,8     | 0,6       | 1,7                                     | 2.5     | 2,2      | 2,4     | 2,4     | 1,9      | 2,1     | 1,6    | 1,4               | 1,4           | 1,3          | 1,3       | 1,0            | 1,4     | 1,2       | 1,6                | 0 0     | 1,9       | 0,4        | 0,5     | 0,2      | 0,4         | 04      | 0,7     | 1,7        | 1.6       | 1,6     | 1,4     | 2,0     | 1,5                | 2,1     | 1,8      | 1.8       | 2,0       | g in %   | -<br>-  |
| 0 2,41  | 6 2,69         | 5 1,62             | 9 2,57      | 8 2,08      | / 4,20<br>0 2,49 | 5 3,47         | 9 3,52       | 7 3.47  | 2 2,91           | 1 3,48   | 9 1,37     | 3 2,00                  | 3 3,08<br>0 2.66 | 1 3,09  | 2 2,66  | 4 2,29  | 0 2.67             | 7 3,42    | 6 3,49 | 7 1,78   | 0 <u></u> <u></u> | o o o o o o o   | . C            | 6 0,73  | 6 0,70    | 5 3,17                                  | 1 2.74  | 0 4,03   | 3 4,61  | 2 5,57  | 9 7,89   | 7 8,23  | 9 7,44 | 7 10.0            | - 0<br>- 8,92 | 7 7,07       | 4 5,56    | 0 6,28         | 1 5,72  | 8 5,19    | 3 2,57             | 3 81    | 5 4,38    | 4 0,77     | 6 0,50  | 6 0,50   | 0 0,29      | 9 0 40  | 4 0,92  | 5 1,14     | 7 1,43    | 1,62    | 6 1,67  | 5 1,97  | 9 1,43             | 2 0,17  | 3 1,94   | 6 1.65    | 4 3,37    | 6 in pr  | C       |
| 10,36   | 8,08           | 11,44              | 12,4        | 12,74       | 12,6             | 10,65          | 12,80        | 12.69   | 9,80             | 10,4     | 11,46      | 12,30                   | 9,44             | 13,4    | 10,01   | 12,07   | 8.83               | 13,7      | 8,68   | 11,02    |                   | in pp           | Υ.             | 6,56    | 6,12      | 13,19                                   | 24.89   | 18.75    | 10 40   | 25,69   | 29,90    | 39,5    | 32,97  | 3,00,00           | 23,0          | 28,85        | 22,25     | 25,16          | 22.02   | 14,43     | 13,26              | 16.85   | 22,05     | 4,25       | 4,97    | 2,29     | 2,06        | 2 91    | 5,73    | 12,46      | 9,95      | 9,44    | 8,16    | 8,76    | 9,01               | 10,5    | 9,51     | 9.17      | 12,04     | om in pp | Ŧ       |
| 30      | 30             | 4 30               | 30          | 4 30        | 30               | 38             | 40           | 30      | 30               | 30       | 30<br>30   | 30                      | 30 30            | 30      | 1 30    | 7 30    | 30                 | 30 6      | 33     | 2 30     | 5                 | » in cm         | Absta          |         | 50        | 30                                      | 30 50   | 38       | 30      | 30      | 30       | 7 30    | 30     | 30                | 36            | 30           | 5 30      | 88             | 30 6    | 30        | 30                 | 3       | 20        | ç          | 3 8     | 30       | 8           | 30      | 30      | 88         | 30 50     | 88      | 30      | 30      | 30                 | 1 30    | 30       | 30        | 30        | m in cm  | Absta   |
| _       |                |                    |             |             |                  |                |              |         | top              |          | Profil     | Lieger                  | T                |         |         |         | T                  |           | ab 32  | Hange    | Schich            | Hange           | đ              | IJ      |           | T                                       | T       | 2_2      | Profil  | Π       | Ι        |         | T      | T                 | Π             | <u> </u><br> | μ         | T              |         |           |                    |         |           | T          |         |          | T           | T       |         |            |           |         |         |         |                    | Basis   |          | Profi     | Η         |          | ž       |
| 299,    | 301,3          | 302,               | 296,        | 296,0       | 305,             | 304,           | 300,0        | 306.9   | 301,2            | strah    | 16 Gesa    | nd 254,                 | 230,             | 229,1   | 231,0   | 226,    | 233,               | 234,      | ~      | end 234, | ≓ a               | nd 255,0        | 252,           | 241.    | 235       | 230,                                    | 230,    | strah    | Gesa    | 246,:   | 244.     | 240,    | 246,   | 246,-             | 243,9         | 245,0        | 240,      | 245,2          | 245,    | 243,0     | 250,2              | 247,    | 247,1     | 249,       | 269,    | 249.3    | 247,        | 259,0   | 245,0   | 249,       | 247,      | 248,0   | 245,    | 246,    | 251,               | 248,    | trah     | 294,0     | 287,      | 279,     | 271,0   |
| 8       | <del>3</del> 6 | 56                 | 47          | 0           | 16               | 13             | 8            | Ξ.      | 75 120           | lung     | Imt-       | 10                      | 2 2              | 31      | 99      | 22      | 55 -               | 1 22      |        | 19       |                   | 55              | 62             | æ i     | 3 2       |                                         | 3 6     | lung     | Imt-    | 32      | <u> </u> | 04      | tt 72  | 19                | 97            | 97           | 50 2      | 3 10           | 14      | 0         | 66                 | 6       | 8         |            | 11      | 37       | 4 8         | 59      | )2      | 78         | 19        | 3 8     | 37      | 37      | 99                 | 16      | lung     | 54        | 86        | 18<br>18 | ર<br>ર  |
| 3,32 4  | 3,38 4         | 3,39               | 3,56        | 3,26 2      | 3,45 4           | 3,31 5         | 3,00         | 3.59    | 3,42             | in % i   | ×,         | 0.90                    | 0,47             | 0,34 0  | 0,40 0  | 0,20    | 0,40               | 0,44 0    |        | 0,40 0   |                   | 1,22            | 1,07 1         | 0,62    | 0.52 0    | 0,57 0                                  | 0,46    | in %     | K I     | 0,84 (  | 0,64 1   | 0 70 1  | 1,01 0 | 0,90 1            | 0,60 1        | 0,96 1       | 0,34 1    | 0,94           | 0,89 1  | 0,75 1    | 0,72 2             | 0,82 0  | 0,89      | 0,93       | 1,46 2  | 0,87 1   | 0,59        | 0,75 1  | 0,88 (  | 0,80 1     | 0,73 0    | 0,89 1  | 0,62 1  | 0,70 1  | 0.75 0             | 0,71 1  | in %     | 2,56      | 2,20 4    | 1,80     | 1.73 1  |
| 1,02 14 | 1,20 16        | 3,81 11            | 2,83 16     | 2,58 10     | 1,77 10          | 5,04 1.        | 3,29 16      | 2.96 14 | 3,38<br>70<br>15 | n ppm in | П          | 1.03 6.                 | 0,10 1,          | 0,26 1, | ),28 2, | 0,07 1, | 0,00 2,            | ),76 1,   |        | ),39 3,  |                   | 2,47 6,         | ,39 7,         | 1,08 3. | ) 83<br>3 | ),42<br>2,42<br>3                       | 2,68    | n ppm in | L L     | ),46 7, | 1,08 7,  | 1,19    | 10 2   | 1,08 7,           | 1,18 5,       | 1,20 5,      | .80 6 /,  | 07 5,          | 1,08 6, | ,42 6,    | 2,39 6,<br>1.12 6. | ),91 5, | ,44<br>6, | 1,10<br>6, | 2,25 12 | 1,66 6,  | 1,89 6,     | I,61 9, | ),47 6, | ,34<br>8,9 | 1,62 9,   | 1,21 7, | 1,79 6, | ,91 7,  | ),24 6,<br>9.16 9. | 1,20 7, | n ppm in | 3,22<br>T | 1,24 10   | 2,37 9,  | 79 7.   |
| 4,44 30 | 5,44 30        | 5,64 30            | 5,67 30     | 5,67 30     | 3,87 <u>30</u>   | 7,18 30        | 5,71 30      | 4.41 30 | 5,80<br>30       | ppm in   | Ab         | 77                      | 72 30            | 71 30   | 29 30   | 04 30   | 27 30              | 41 30     |        | 46 30    |                   | 79 30           | 29 30          | 60 30   | 40 30     | 44 30                                   | 48 30   | ppm in   | n Ab    | 90      | 61 30    | 19 30   | 27 30  | 23 30             | 48 30         | 66 <u>30</u> | 69 30     | 13<br>30<br>30 | 52 30   | 14 30     | 04 30<br>41 30     | 96 30   | 48 30     | 34<br>30   | 2,71 30 | 57 30    | 07 30<br>30 | 33 30   | 59 30   | 86 30      | 38 30     | 80 30   | 35 30   | 40 30   | 97 30              | 48 30   | ppm in   | 2,01      | 0,16 30   | 11 10    | 17 30   |
| 6)      | ρœ             |                    |             |             |                  |                |              |         |                  | am       | stand      |                         |                  |         |         |         |                    |           |        |          | 1                 |                 |                |         |           |                                         |         | am       | stand   |         |          |         |        |                   |               |              |           |                |         |           |                    |         |           |            |         |          |             |         |         |            |           |         |         |         |                    |         | om ic    | stand     |           | 0        |         |
|         | Tobe 1-        |                    | rofil 14 G  | 2 3 3       | <u>ш</u>         |                | G            | G       | <u>ш</u>         | 3 64     | ы<br>С. С. | G                       | ω.               | 2 (1)   | о ш     | 3       | G                  | ω.        | 2 6    | » ш      | ω                 | G               | ω (            |         | 2 6       | 2 64                                    |         | ω        | сu<br>u | G       | ω ι      | 2 4     | ۵<br>۵ | 3                 | ы             | ω 1          | <b>N</b>  | ى<br>ى         | ш       | ω.        |                    | ω       | ω ι       | ۵ Cu       | G       | 60 6     | <u>ه</u> د. | 0.00    | G       | <u>د</u>   | 2 (1)     | о<br>60 | ω       | ω.      | 2 60               | ы       | ω.       | 2 (1)     | Б. С.     | ω.       | ω       |
|         | 08,43          | trahlung           | desamt-     | 05,43       | 05,92            | 06,96<br>06.03 | 05,63        | 04,58   | 08,88            | 108,20   | 14,33      | 12,39                   | 14,52            | 05,05   | 02,76   | 10,91   | 08,33              | 06.51     | 09,21  | 08,64    | 16,02             | 11,08           | 18,16          | 16 41   | 10,87     | 15,63                                   | 18,76   | 23,96    | :11,76  | 21,00   | 15.98    | 109,14  | 05,00  | 03,00             | 02,44         | 02,67        | 78.80     | 08,39          | 12,70   | 12,95     | 20,32              | 26,74   | 23,87     | 23,37      | 26,59   | 30.01    | 30,37       | 26,15   | 21,30   | 18,94      | 26,24     | 24,75   | 17,62   | 10,85   | 10,70              | 10,36   | 14,03    | 12,61     | 07,45     | 06,48    | 05.91   |
| -       | 3,63           | in%                | x,31        | 3,38        | 3,24             | 3,45<br>3,40   | 3,42         | 3,17    | 3,17             | 3,71     | 3,76       | 3,60                    | 3,62             | 3,33    | 3,12    | 3,55    | 3,56               | 3.58      | 3,70   | 3,06     | 3,34              | 3,52            | 3,47           | 3 79    | 3,83      | 3,59                                    | 3,92    | 4,33     | 3,46    | 4,03    | 3.76     | 3,00    | 3,52   | 3,34              | 3,37          | 3,43         | 2,33      | 3,13           | 3,85    | 3,87      | 4,43               | 4,23    | 4,47      | 4,26       | 4,28    | 4.67     | 5,01        | 4,81    | 4,26    | 4,46       | 4,46      | 4,27    | 4,17    | 3,55    | 3,96               | 3,95    | 3,44     | 3,95      | 3,44      | 3,35     | 3,75    |
| -       | 3,39           | in ppm             | ⊂ ,oo       | 3,61        | 2,36             | 3,99<br>3.46   | 3,81         | 3,61    | 5,08             | 3,76     | 4,25       | 4,51                    | 3,21             | 3,62    | 2,57    | 3,93    | 2,73               | 3.89      | 3,74   | 4,54     | 4,59              | 3,48            | 5,18           | 4 01    | 3,83      | 3,63                                    | 3,90    | 4,88     | 3,49    | 4,27    | 3.53     | 4,UZ    | 3,47   | 4,78              | 3,97          | 2,74         | 2,30      | 3,99           | 3,45    | 3,29      | 3,37               | 5,40    | 3,35      | 4,76       | 4,76    | 5,49     | 3,15        | 4,38    | 4,81    | 3,77       | 3 74      | 5,14    | 4,00    | 5,05    | 3,16               | 3,81    | 3,79     | 3,79      | 2,90      | 3,34     | 3.83    |
|         | 17,33          | in ppm             | zu,uo<br>Th | 15,20       | 18,93            | 17,16          | 12,56        | 17,00   | 15,19            | 10,50    | 19,38      | 18,40                   | 18,19            | 13,31   | 15,13   | 17,88   | 15,53              | 15.84     | 15,10  | 16,46    | 18,45             | 20,56           | 18,57          | 18 09   | 71,10     | 20,53                                   | 16,43   | 20,07    | 17,25   | 17,68   | 19.44    | 10,07   | 13,42  | 12,22             | 16,10         | 16,00        | 11 17     | 17,10          | 17,19   | 18,87     | 18,68              | 19,31   | 21,17     | 19,26      | 19,24   | 19,12    | 19,11       | 19,10   | 19,24   | 16,96      | 19,61     | 17,20   | 17,20   | 16,80   | 17,32              | 16,53   | 21.71    | 17,61     | 18,60     | 18,93    | 15.36   |
|         | 00             | in cm              | Abstand     | 30          | 30               | 30             | 30           | 30      | 30               | 30       | 30         | 50                      | 30               | 30      | 30      | 30      | 30                 | 30        | 30     | 30       | 30                | 30              | 30             | 30      | 30        | 30                                      | 30      | 30       | 30      | 30      | 30       | 30      | 30     | 30                | 30            | 30           | 30        | 30             | 30      | 30        | 30                 | 30      | 30        | 30         | 30      | 30       | 30          | 30      | 30      | 30         | 30        | 30      | 30      | 30      | 30                 | 30      | 30       | 30        | 30        | 100      | 30      |
|         |                |                    |             |             |                  |                |              |         |                  |          | Schicht 1  | Profil 12               |                  |         | I       |         |                    |           |        |          |                   |                 |                |         |           |                                         |         |          |         |         |          |         |        |                   |               | Basis        |           | Top            | I       |           |                    |         |           |            |         |          |             |         |         |            |           |         |         |         |                    |         |          |           | Π         |          |         |
| 300,96  | 305.90         | 304,68             | 309,05      | 298.62      | 310,11           | 314,10         | 316,11       | 306,96  | 318,98           | 319.76   | 314 16     | Gesamt-                 | 277,85           | 287.84  | 293,77  | 290,85  | 296,32             | 296,28    | 294.91 | 303.07   | 299,10            | 307,92          | 298,30         | 309,48  | 306.92    | 300,00                                  | 294,41  | 289,87   |         | 286,51  | 284,87   | 278.82  | 287,73 | 277,12            | 277,04        | 281,33       | strahlund | 303,52         | 323,01  | 306,48    | 302.91             | 306,06  | 314.61    | 323,86     | 337,07  | 322.21   | 318,77      | 320,67  | 315,97  | 318,78     | 320,37    | 322,20  | 317,09  | 322,04  | 315,84             | 323,76  | 315,86   | 317,75    | 313,71    | 313,71   | 305.60  |
| 3,3;    | 3 1            | 3,4                | 3,4         | 3,4         | 3,3              | 3,40           | 3,70         | 3,21    | 3,5              | 3.9      | 3 IN 9     | , <b>T</b>              | 2,2              | 2,4     | 2,7     | 2,90    | 2,8;               | 2,8       | 2.9    | 3,3      | 3,4.              | 3,3             | 3,10           | 3,6     | 3.2       | ο.<br>υ.υ                               | 2,9     | 2,8      |         | 2,3     | 2,40     | .0 C    | 2,3    | 1,9               | 1,9           | 2,0          | 5.2       | 3,3,           | 3,90    | 3,4       | 3,9                | 3,6     | 4,3       | 4,4;       | 4,70    | 3,8      | 3,8         | 3,79    | 3,71    | 3,9,0      | 3,1       | 3,90    | 3,8     | 4,0;    | 4,0                | 4,0     | 3,0;     | 3,7       | 3,8       | 4,3      | ω.<br>5 |
| 3,16    | 4,09           | 3,12               | 4,41        | 2.31        | 3,57             | 4,00           | 5,05         | 4,08    | 4,16             | 4.73     | 3 38       | C                       | 1,48             | 3.51    | 3,35    | 3,22    | 3 2,93             | 2,90      | 3.85   | 2,54     | 3,35              | 3,86            | 3,89           | 3,37    | 2.75      | 3 J J J J J J J J J J J J J J J J J J J | 3,20    | 2,92     |         | 3,70    | 3,33     | 2,32    | 3,24   | 2,39              | \$ 2,11       | 2,66         |           | 3,94           | 4,13    | 3,31      | 3,83               | 2,98    | 2,56      | 4,39       | 3,68    | 3.07     | 3,54        | 4,63    | 3 2,84  | 2,99       | 3,40      | 3,69    | 3,16    | 4,27    | 2 A0               | 3 4,49  | 4,59     | 3,00      | 3,68      | 1,80     | 3.42    |
| 16,68   | 15 12          | 15,12              | 13,67       | 13.08       | 16,87            | 18,10          | 17,61        | 13,74   | 17,97            | 16.91    | m in ppr   | . 7                     | 12,25            | 12,00   | 14,80   | 16,35   | 17,36              | 16,29     | 14.97  | 17 21    | 18,29             | 17,23           | 15,45          | 21,26   | 19.56     | 18.01                                   | 15,63   | 12,84    |         | 13,88   | 15,56    | 11.37   | 12,28  | 12,06             | 13,63         | 14,51        | m in ppr  | 15,05          | 19,61   | 17,14     | 15.34              | 15,96   | 18,53     | 20,22      | 25,61   | 18,55    | 16,45       | 16,84   | 16,31   | 20,32      | 19,42     | 20,00   | 18,04   | 18,37   | 17,02              | 19,65   | 18,59    | 19,84     | 16,11     | 16,97    | 16.73   |
| 30      | 30             | 30                 | 30          | 30          | 30               | 30             | 30           | 30      | 30               | 30       | 30 m       | Abstan                  |                  | 30      | 30      | 30      | 30                 | 30        | 30     | 30       | 30                | 30              | 30             | 30      | 30        | 30                                      | 30      | 30       | cke     | Schich  | 30       | 60      | 30     | 30                | 30            |              | n in cm   | Abotoo         | 50      | 50        | 50                 | 280     | 50        | 50         | 50      | 100      | 50          | 200     | 100     | 100        | л 60      | 50      | 50      | 50      | 50                 | 50      | 100      | 100       | 50        | 50       | 50      |
|         |                | T                  | Basis       |             | Drofi            |                |              |         |                  |          | +          | ā                       |                  |         |         | T       | Basis              | 3_2       | Profil | Top      |                   |                 |                |         |           |                                         |         |          |         | ťü      |          |         |        | Ī                 |               |              | ā         |                | FS      | Schich    | Profi              |         | +         |            |         |          |             |         |         | 1          |           |         |         |         |                    |         | -        |           | +         | ┝╋       | -       |
| 294,9   | 305,4          | 299,5<br>304.6     | 296,5       | strah       | 8 305,3          | 245,8          | 249,1        | 249,7   | 252,9            | 255,6    | 255,7      | 250,6                   | 250,8            | 250,2   | 247.7   | 250,8   | 253,7              | strah     | Gesa   | 258.4    | 200,0             | 259,7           | 255,1          | 254,0   | 261,3     | 252.5                                   | 257 8   | 219,8    | 279,4   | 271,9   | 285,7    | 277,3   | 279,6  | 287,0             | 294,8         | 292,0        | 281,8     | 281.7          | 0 2 8 6 | t 1 293,3 | 3 Gesa<br>strah    | 311,3   | 315,0     | 308,4      | 305,4   | 303.4    | 325,0       | 303,5   | 318,6   | 317,9      | 316,/     | 304,3   | 305,0   | 291,8   | 307,1              | 300,3   | 304,5    | 302,8     | 306,8     | 309,9    | 309,2   |
| 33      | ت              | 51 60              | 8           | lung        | 12               | 0              |              | 6       | 2                | ð        | 01         | 2 2                     |                  | 4       | ω č     | 5       | 4                  | lung      | mt-    | 4 -      | 3 K               | 57              | 5              | 0       | 6         | 6                                       |         | - C      | 5 10    | 5       | 5        | 5       | ω F    | 3 8               | 5 2           | 4            | σ,        | 70             | ž       | 5         | una -              | 22      | ¥ 0       | 50         | 6       | ة ت<br>ت | ۵<br>۵      | 6       | 5       | 90 N       | 3 6       |         | 8       |         | 10                 | 5       | 86 -     | 3 8       | 4         | 7        | ກັ      |
| 3,18 4  | 4,13           | 3,33               | 3,26 3      | n% ii       | 3,73 4           | 0,38 1         | 3,82         | 0,77    | 0,84 1           | 0,91 1   | 0,89       | 1,67                    | 0,63             | 0,75 1  | 2,50    | 1,39    | 0,56               | n%i       |        | 0.43     | 1,00              | 0,50            | D,69 1         | 0,54 1  | 0,65      | 0.28                                    | 1,50    | 1,93     | 1,16    | 0,99 1  | 2,00 2   | 1,65    | 1,77   | 1,98              | 1,80          | 2,24 1       | 1,82      | 1,86           | 1 73    | 1,97 3    | - ×                | 3,25 5  | 3,11 5    | 3,23       | 3,35    | 3.25     | 3,98        | 3,18    | 4,17 4  | 3,66 2     | 4,26      | 3,92 4  | 3,54 3  | 2,95    | 3,20               | 2,93 4  | 3.32     | 3,28      | 3,06      | 3,13     | 3 56    |
| 1,00 1  | 42 10          | 1,17<br>1,17<br>10 | 3,01 1.     | י<br>ppm in | 1,06 1.          | ,10 5,         | 08 7<br>08 7 | 1,52 1. | ,32 9            | ,39 9    | .57 9      | 1,13 /<br>88 1/         | ,46 9            | ,17 7,  | 48 0    | 45 8    | 1,52 6             | n ppm in  | л      | .81      | 46 1              | 48              | ,10 1.         | ,35 1   | ,29       | .95                                     | 58<br>1 | 1,98     | 2,04    | 1,90 1. | 3,64 1   | ,58 1:  | 1,23 1 | 53<br>1<br>2<br>1 | 1,87          | ,67 1.       | 211 1     | .04 <u>1</u>   | 16 1    | 1,69 10   | J pppm lin         | 5,56 1. | :.06 11   | 1,72       | 1,51 1. | ;32 1    | 1,31 1      | 3,17 1. | 1,54 1  | ,60 1.     | 2,04<br>1 | 1,01 1  | 1,52 1. | ,67 1:  | 1,74 1             | 1,51 1. | .90 1:   | 46 1      | 1,87 1    | ,66 1    | 06 1    |
| 4,33 5  | 6,67 5         | 4,65 5             | 3,37 1      | ו ppm in    | 4,75             | ,76 3,         | 5,28         | 0,98 3  | ,45 3            | ,80 3,   | ,19 3      | ,38<br>3<br>3<br>3<br>3 | ,35              | 83 3    | 52 30   | 30 30   | ,99<br>3<br>3<br>3 | ו ppm ir. | 'h A   | 1.35     | 4 22 31           | 3,63            | 0,33 4         | 1,16 4  | 1,39 3,   | 1.24 3                                  | 1 73 3  | 0,10 3   | 6,12 3  | 4,72 3  | 6,06 3   | 5,62 3, | 4,59 3 | 7,84 3            | 6,67 3        | 8,31 3       | 8,75 3,   | 5,18 3         | 7 A7 3  | 6,80 3    | h A                | 5,00    | 6,96 3    | 5,92 3     | 6,63 3  | 7,63 3   | 7,82 3      | 5,28 3  | 7,03 3  | 4,11 3     | 8,95 3    | 1,99 3  | 6,72 3: | 3,46 3, | 4,38 3             | 5,62 3  | 5.75 3   | 3,89 3    | 5,57 3    | 6,06 3   | 4 65 3  |
| 0       | 0              | oló                | 00          | 1 cm        | hetand           | 0              | 5 6          | ō       | Ö                | 0        | oč         | ō                       | ö                | 0       | 00      | οć      | ö                  | ר cm      | bstand | č        |                   | ö               | 0              | 0       | 0         | 0                                       | 00      | ő        | Ö       | ő       | Ö        | 0       | 0      | 00                | ö             | Ö            | Ó         | oč             | Þ       | 0         | 1 cm               |         | o č       | ō          | Ō       | oč       | ō           | 0       | Ö       | oč         | 00        | ö       | 0       | 0       | ō                  | Ō       | 0        | o ĉ       | Ő         | 0        | Ċ       |

| Γ      |          |        |       |        |       |       |        |       |       |            | Basis |                            | Profi    |       |       |       |       |       |       |       |       | Schic    |          |         |         |        |         |        |         |        |       |          |
|--------|----------|--------|-------|--------|-------|-------|--------|-------|-------|------------|-------|----------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|---------|---------|--------|---------|--------|---------|--------|-------|----------|
| 21     | 27       | 28     | 27    | 28     | 28    | 28    | 28     | 28    | 27    | 27         | ŝ 27  | str                        | 142<br>G | 29    | 29    | 30    | 30    | 30    | 29    | 29    | 30    | ht 12 30 |          | 30      | 30      | 30     | 31      | 27     | 27      | 28     | 30    | 30       |
| 0,12   | 6,09     | \$0,70 | 7,52  | \$0,40 | 34,14 | 19,36 | \$6,03 | 34,94 | 2,42  | 3,90       | 6,64  | rahlung                    | esamt-   | 13,60 | 0,97  | )0,74 | )4,19 | )3,27 | 1,93  | 98,12 | )4,68 | )5,83    |          | )7,74   | )9,94   | )5,42  | 5,39    | 4,32   | 4,50    | \$1,82 | 1,80  | )3,28    |
| 2,31   | 1,94     | 2,36   | 2,35  | 2,18   | 2,25  | 2,53  | 2,71   | 2,42  | 2,09  | 1,99       | 2,15  | in %                       | ~        | 3,44  | 2,94  | 3,49  | 3,78  | 3,54  | 2,84  | 3,14  | 3,35  | 3,46     |          | 3,51    | 3,91    | 3,80   | 4,13    | 1,91   | 2,12    | 2,51   | 3,34  | 3,78     |
| 1,00   | 1,71     | 3,08   | 1,82  | 2,82   | 3,58  | 3,10  | 2,96   | 2,98  | 1,66  | 2,58       | 2,65  | in ppm                     | C        | 2,79  | 2,68  | 4,46  | 3,60  | 4,88  | 4,04  | 3,99  | 4,20  | 4,04     |          | 3,42    | 3,59    | 3,12   | 2,51    | 2,06   | 2,78    | 2,82   | 3,46  | 3,98     |
| 14,00  | 14,16    | 11,33  | 11,95 | 11,27  | 12,60 | 15,48 | 13,68  | 11,57 | 11,18 | 9,89       | 12,59 | <ul> <li>in ppm</li> </ul> | ł        | 15,50 | 12,26 | 14,60 | 15,97 | 14,42 | 14,38 | 16,13 | 17,86 | 16,69    |          | 16,51   | 17,64   | 14,74  | 22,01   | 11,73  | 12,69   | 12,29  | 18,54 | 17,47    |
| 30     | 30       | 30     | 30    | 30     | 30    | 30    | 30     | 30    | 30    | 30         | 30    | in am                      | Abstan   |       | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50       | cke      | Schicht | 50      | 50     | 50      | 50     | 50      | 50     | 50    | 50       |
| F      |          |        |       |        |       |       |        |       |       |            |       |                            | Ω.       |       |       |       |       |       |       |       |       |          |          | ü       |         |        |         |        |         |        |       |          |
| 30     | 30       | 30     | 28    | 29     | 29    | 27    | 28     | 27    | 27    | 28         | 27    | 28                         | 28       | 28    | 27.   | 28    | 28    | 28    | 28    | 28    | 29    | 30       | 27       | 28      | 28      | 27     | 26      | 27.    | 27      | 28     | 27    | 27       |
| 8,45   | 7,39     | 0,18   | 7,30  | 8,24   | 6,88  | 6,61  | 2,35   | 7,44  | 3,51  | 2,66       | 7,80  | 3,82                       | 6,05     | 4,38  | 8,36  | 7,59  | 8,15  | 3,09  | 7,06  | 3,69  | 3,70  | 4,05     | 6,83     | 2,18    | 0,17    | 5,16   | 9,46    | 4,63   | 9,44    | 0,50   | 3,70  | 2,22     |
| 4,17   | 3,66     | 3,69   | 2,49  | 3,01   | 3,17  | 1,75  | 1,94   | 2,14  | 1,60  | 2,30       | 1,97  | 2,53                       | 2,59     | 2,59  | 2,45  | 2,46  | 2,76  | 2,54  | 2,62  | 2,27  | 2,84  | 2,88     | 1,86     | 2,18    | 1,99    | 1,99   | 1,60    | 2,29   | 2,16    | 2,37   | 1,76  | 2,10     |
| 2,70   | 3,59     | 3,08   | 4,24  | 4,40   | 3,74  | 1,29  | 2,95   | 2,85  | 3,15  | 3,83       | 3,17  | 3,76                       | 3,34     | 2,58  | 2,59  | 3,01  | 2,32  | 2,31  | 2,51  | 3,47  | 2,92  | 3,38     | 2,88     | 2,96    | 3,68    | 1,98   | 2,90    | 2,99   | 2,07    | 2,02   | 2,63  | 2,70     |
| 16,98  | 15,65    | 16,66  | 12,38 | 13,72  | 18,30 | 12,22 | 11,52  | 12,58 | 11,19 | 13,04      | 9,95  | 11,83                      | 12,58    | 13,38 | 11,25 | 15,25 | 15,29 | 13,07 | 12,56 | 9,53  | 11,91 | 13,51    | 12,84    | 15,17   | 12,97   | 13,06  | 10,73   | 9,69   | 13,97   | 12,65  | 12,41 | 11,64    |
| 30     | 30       | 30     | 30    | 30     | 30    | 30    | 30     | 30    | 30    | 30         | 30    | 30                         | 30       | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30       | 30       | 30      | 30      | 30     | 30      | 30     | 30      | 30     | 30    | 30       |
| L      | Γ        | I      | L     | Ι      |       | T     |        | T     |       | T          | Ι     | Ι                          |          | Ι     | Τ     |       | Ι     | Ι     | Ι     | Ι     |       |          | Ι        | Ι       | Ι       | P28    | 24 m    | د      | Prof    |        |       |          |
| 22     | 200      | 20     | 22    | 229    | 200   | 29    | 29     | 29    | 29    | 29         | 29    | 29                         | 30       | 67.   | 67.   | 30    | 30    | 29    | 3 60  | 27    | 27    | 2/       | 27       | 22      | 20      | 3      | über 27 | str    | 158 Ge  | 27     | 30    | 32       |
| 1,07   | 9,35     | 0,11   | 3,12  | 5,81   | 1,75  | 8,44  | 8,12   | 4,75  | 4,75  | 4,01       | 6,64  | 1,67                       | 1,75     | 2,80  | 7,82  | 7,99  | 1,04  | 8,64  | 1,35  | 4,89  | 9,30  | 9,3/     | 3,34     | 2,06    | 0,03    | 2      | 7,29    | ahlung | esamt-  | 9,17   | 5,82  | 0,07     |
| 2,00   | 3,54     | 2,11   | 3,00  | 2,80   | 3,29  | 3,20  | 3,42   | 3,05  | 2,85  | 3,03       | 3,26  | 3,04                       | 3,45     | 3,00  | 3,53  | 3,84  | 3,82  | 3,11  | 3,65  | 2,42  | 2,48  | 2,50     | 2,56     | 2,64    | 20,2    | 2      | 2,41    | in %   | ×       | 2,45   | 3,95  | 4,64     |
| 0,01   | 2,80     | 0,49   | 2,60  | 2,70   | 4,10  | 3,53  | 3,91   | 5,46  | 3,99  | 3,82       | 3,97  | 2,72                       | 3,53     | 3,31  | 4,25  | 3,17  | 3,64  | 3,79  | 3,99  | 2,80  | 2,01  | 2,36     | 1,42     | 2,91    | 3,67    | 2      | 2,97    | in ppm | C       | 2,57   | 5,38  | 4,50     |
| 10,01  | 10,09    | 14,81  | 15,00 | 17,03  | 15,51 | 17,12 | 15,86  | 12,17 | 15,33 | 16,28      | 14,69 | 14,85                      | 16,26    | 15,63 | 14,13 | 17,57 | 13,82 | 14,26 | 13,92 | 11,71 | 13,57 | 11,40    | 10,42    | 14,1/   | 13,13   | 10 10  | 9,43    | in ppm | Τh      | 11,15  | 13,49 | 18,17    |
| 00     | 30       | 30     | 30    | 30     | 30    | 30    | 30     | 30    | 30    | 30         | 30    | 30                         | 30       | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 60       | 30       | 30      | 30      | 8      | 30      | in cm  | Abstand |        | 30    | 30       |
| ſ      | Profil 2 | J 85   |       |        |       |       |        |       |       |            |       |                            |          | -     |       |       |       |       |       |       |       |          |          | 1       |         |        |         |        |         |        |       |          |
| strah  | 22f Gesa | 301,   | 290,  | 296,   | 298,0 | 291,1 | 287,   | 304,  | 300,0 | 299;       | 295,: | 295,                       | 292,:    | 293,: | 295,0 | 285,  | 294,: | 294,  | 297,: | 295,: | 294,1 | 284,     | 296,     | 297,:   | 293,    | 292,:  | 292,    | 289,   | 303,:   | 303,   | 299,: | 306,     |
| lung   | imt-     | 17     | 78    | 32     | 95    | 5     | 72     | 32    | ĸ     | 29         | 34    | 77                         | <b>%</b> | 22    | 57    | 73    | 23    | 19    | 25    | 30    | 33    | 16       | <u>6</u> | 22      | 75      | 25     | 52      | 3      | 37      | 72     | 39    | 32       |
| ın %   | х        | 3,16   | 2,97  | 3,21   | 3,31  | 2,84  | 2,36   | 3,41  | 3,39  | 3,06       | 2,87  | 2,84                       | 3,25     | 2,68  | 3,01  | 2,53  | 2,91  | 2,93  | 3,12  | 2,93  | 3,21  | 2,59     | 3,25     | 3,27    | 3,20    | 3,04   | 60'E    | 96'7   | 3,46    | 85'2   | 3,34  | 4,06     |
| in ppm | C        | 4,44   | 3,77  | 4,36   | 2,83  | 3,67  | 3,04   | 3,56  | 3,43  | 2,85       | 2,21  | 4,24                       | 2,50     | 3,32  | 3,59  | 3,91  | 5,40  | 3,34  | 3,38  | 4,69  | 3,45  | 3,06     | 3,06     | 4,40    | 3,29    | 2,34   | 3,58    | 2,28   | 4,37    | 2,80   | 3,21  | 2,41     |
| in ppm | μĻ       | 13,70  | 14,86 | 15,24  | 16,36 | 15,10 | 14,43  | 18,76 | 16,27 | 16,62      | 15,54 | 15,30                      | 16,50    | 16,02 | 16,65 | 13,23 | 12,55 | 15,51 | 17,85 | 15,96 | 12,75 | 12,26    | 13,85    | 25'21   | 14,88   | 14,55  | 14,75   | 16,57  | 16,05   | 16,09  | 16,19 | 17,27    |
| in cm  | Abstand  |        | 40    | 30     | 00    | 30    | 30     | 30    | 30    | 30         | 00    | 00                         | 00       | 00    | 30    | 00    | 00    | 00    | 30    | 00    | 00    | 00       | 00       | 00      | 30      | 30     | 30      | 30     | 00      | 30     | 30    | 30       |
|        |          |        |       |        |       |       |        |       |       |            | ſ     | ſ                          |          | Ι     |       |       | ſ     |       | I     | Ī     |       |          | Ī        | Ι       | I       | Ī      |         | I      | Ī       |        | 22 an | schließt |
|        |          |        |       |        |       |       |        |       |       | 276,5      | 269,7 | 263,8                      | 265,3    | 267,8 | 269,9 | 268,0 | 264,6 | 266,5 | 268,6 | 267,1 | 272,5 | 268,9    | 277,4    | 284,0   | 288,8   | 280,5  | 280,7   | 280,9  | 276,1   | 279,4  |       | an 289,4 |
|        |          |        |       |        |       |       |        |       |       | 4          | ·     | 6                          | õ        | 9     | 0     | 7     | õ     | õ     | 9     | 2     | Ō     | 6        | ćo       | 9       | 7       | ŭ<br>G | 9       | 2      | 4       | . ότ   |       | ò        |
|        |          |        |       |        |       |       |        |       |       | 2,01       | 1,73  | 1,51                       | 1,66     | 1,68  | 1,66  | 1,52  | 1,57  | 1,51  | 1,46  | 1,61  | 1,86  | 1,52     | 1,78     | 2,11    | 2,97    | 1,90   | 1,99    | 2,01   | 1,86    | 1,88   |       | 2,20     |
|        |          |        |       |        |       |       |        |       |       | 2,91       | 2,86  | 2,09                       | 2,21     | 3,24  | 2,31  | 2,83  | 2,34  | 2,55  | 3,67  | 1,60  | 1,86  | 4,04 (   | 3,59     | 1,82    | 1,77    | 3,86   | 2,26    | 3,07   | 2,27    | 2,34   |       | 3,08     |
|        |          |        |       |        |       |       |        |       |       | 10,45      | 9,66  | 9,89                       | 9,50     | 8,56  | 9,49  | 8,03  | 7,95  | 7,00  | 8,54  | 3,88  | 10,83 | 5,47     | 8,51     | 14,48   | 12,61 ( | 9,05   | 11,72   | 11,16  | 10,77   | 10,89  |       | 12,44    |
|        |          |        |       |        |       |       |        |       |       |            | 30    | 30                         | 30       | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 30       | 30       | 30      | ca:350  | 30     | 30      | 30     | 30      | 30     |       | 30       |
|        |          |        |       |        |       |       |        |       |       | <u>ـــ</u> | •     | •                          |          | •     | •     |       | •     | •     | •     | •     |       |          | •        | •       | •       |        | •       | •      | •       | •      | •     |          |

| Probe    |       | L 4    | S 3    | P 23/1 | A 20   | L 6    | P 49/8  | P 18/9 | P 23/8      | P 22/1       | P 14/2 | P 17/1  | P 45/8 | P 33/1 |
|----------|-------|--------|--------|--------|--------|--------|---------|--------|-------------|--------------|--------|---------|--------|--------|
|          |       |        |        |        |        | Hau    | pteleme | nte    |             |              |        |         |        |        |
| SiO2     | [%]   | 71,79  | 74,80  | 75,76  | 80,19  | 72,78  | 65,91   | 63,98  | 65,54       | 71,69        | 62,61  | 53,96   | 63,31  | 69,03  |
| AI2O3    | [%]   | 10,34  | 11,28  | 8,86   | 8,21   | 12,19  | 14,44   | 15,12  | 8,71        | 12,02        | 10,12  | 18,94   | 11,06  | 10,71  |
| Fe2O3    | [%]   | 4,76   | 4,34   | 3,29   | 3,11   | 4,50   | 4,10    | 6,26   | 4,75        | 5,21         | 3,41   | 8,67    | 4,48   | 4,10   |
| MnO      | [%]   | 0,12   | 0,07   | 0,09   | 0,09   | 0,07   | 0,08    | 0,05   | 0,51        | 0,04         | 0,09   | 0,10    | 0,07   | 0,08   |
| MgO      | [%]   | 1,89   | 1,18   | 1,43   | 0,81   | 1,90   | 1,83    | 2,23   | 2,85        | 1,58         | 1,76   | 2,82    | 2,27   | 1,59   |
| CaO      | [%]   | 1,11   | 0,07   | 2,26   | 0,66   | 0,73   | 1,32    | 0,16   | 6,70        | 0,18         | 14,02  | 0,13    | 0,27   | 3,45   |
| Na2O     | [%]   | 2,58   | 2,14   | 2,60   | 2,06   | 2,49   | 3,14    | 2,29   | 3,09        | 3,14         | 3,05   | 2,20    | 3,04   | 1,03   |
| K2O      | [%]   | 1,32   | 1,85   | 0,99   | 1,84   | 1,50   | 1,82    | 2,33   | 1,16        | 1,34         | 1,15   | 3,16    | 1,45   | 1,23   |
| TiO2     | [%]   | 0,76   | 0,62   | 0,48   | 0,55   | 0,73   | 0,68    | 0,95   | 0,84        | 0,86         | 0,49   | 0,92    | 0,70   | 0,63   |
| P2O5     | [%]   | 0,11   | 0,09   | 0,09   | 0,10   | 0,14   | 0,12    | 0,14   | 0,18        | 0,11         | 0,07   | 0,15    | 0,09   | 0,08   |
| LOI      | [%]   | 4,37   | 2,38   | 3,74   | 3,01   | 3,54   | 4,81    | 3,22   | 2,79        | 3,91         | 1,76   | 4,20    | 9,66   | 8,07   |
| Summe    | [%]   | 99,16  | 98,84  | 99,59  | 100,62 | 100,58 | 98,25   | 96,73  | 97,11       | 100,08       | 98,52  | 95,26   | 96,41  | 100,00 |
|          |       |        |        |        |        |        |         |        |             |              |        |         |        |        |
| Ba       | [nnm] | 248.02 | 224.49 | 100 40 | 254.00 | NeD    |         | 424.00 | 275 24      | 000 00       | 164.00 | 620.04  | 101.01 | 100.00 |
| Da<br>Cr | [ppm] | 248,02 | 321,18 | 180,42 | 354,99 | 299,13 | 287,40  | 431,96 | 375,31      | 238,00       | 164,98 | 638,81  | 191,21 | 100,00 |
|          | [ppm] | 21 97  | 10.62  | 30,73  | 30,01  | 94,99  | 20.02   | 95,38  | 78,04       | 42,00        | 10,38  | 25 71   | 40,08  | 8.00   |
| Ga       | [ppm] | 31,87  | 19,62  | 14,19  | 17,17  | 20,05  | 20,92   | 30,02  | 24,13       | 12.00        | 2,54   | 35,71   | 13,01  | 8,00   |
| Nh       | [ppm] | -      | -      | -      | -      | -      | -       | -      | -           | 7.60         | -      | - 11 69 | -      | 0,00   |
| Ni       | [ppm] | 1,21   | 26 77  | 29.09  | 22.54  | 7,90   | 26.46   | 9,00   | 10,55       | 27.00        | 20.99  | 69.27   | 4,04   | 5,00   |
| Rh       | [ppm] | 70.65  | 94.09  | 40.44  | 67.80  | 00,00  | 70.07   | 104.92 | 72.02       | 53.00        | 50.01  | 145.09  | 58.00  | 31.00  |
| Sc       | [ppm] | 0.32   | 04,90  | 8 80   | 07,09  | 90,03  | 7 1 /   | 104,02 | 8 13        | 9.00<br>9.00 | 50,91  | 4 67    | 30,00  | 2 00   |
| Sr       | [ppm] | 78.01  | 68 68  | 133.22 | 78.08  | 71.80  | 127.54  | 71 77  | 133.14      | 60.00        | 844 53 | 59.53   | 102.08 | 42.00  |
| V        | [ppm] | 113 28 | 76 94  | 70.00  | 75.09  | 99.04  | 92.60   | 147.00 | 135 22      | 76.00        | 33.63  | 178.89  | 71 70  | 32.00  |
| Zn       | [mag] | 81 49  | 64 65  | 41.36  | 26.46  | 49.88  | 74 70   | 69.43  | 87 50       | 61.00        | 41 93  | 137 27  | 53.82  | 19.00  |
| Zr       | [ppm] | 134 48 | 120.95 | 83.01  | 115 13 | 97 14  | 143 77  | 134 32 | 371 41      | 151 93       | 126.36 | 131 64  | 46.84  | 45 73  |
|          |       | ,      | ,      |        | ,      | .,     | ,       |        | <b>.</b> ., | ,            | ,      |         | ,      |        |
|          |       |        |        |        |        | Selte  | ne Elem | ente   |             |              |        |         |        |        |
| La       | [ppm] | 17,76  | 20,83  | 9,73   | 13,64  | 21,83  | 19,04   | 21,73  | 48,52       | 14,59        | 15,55  | 26,46   | 7,20   | 5,34   |
| Ce       | [ppm] | 44,93  | 51,63  | 27,28  | 33,04  | 54,02  | 46,50   | 59,73  | 111,68      | 36,82        | 36,57  | 72,39   | 20,23  | 15,00  |
| Pr       | [ppm] | 5,10   | 5,96   | 2,93   | 3,96   | 6,32   | 5,36    | 6,53   | 13,21       | 4,27         | 4,44   | 7,55    | 2,38   | 1,91   |
| Nd       | [ppm] | 4,84   | 22,67  | 11,58  | 15,31  | 24,61  | 5,02    | 24,62  | 52,93       | 16,74        | 17,16  | 27,52   | 8,94   | 7,41   |
| Sm       | [ppm] | 4,41   | 4,62   | 2,60   | 3,19   | 4,94   | 4,72    | 5,23   | 11,46       | 3,63         | 3,81   | 5,52    | 1,86   | 1,58   |
| Eu       | [ppm] | 3,98   | 0,92   | 0,78   | 0,77   | 1,07   | 3,53    | 1,28   | 2,65        | 0,98         | 0,85   | 1,19    | 0,44   | 0,39   |
| Tb       | [ppm] | 0,67   | 0,71   | 0,36   | 0,47   | 0,73   | 0,69    | 0,80   | 1,82        | 0,65         | 0,54   | 0,79    | 0,29   | 0,24   |
| Gd       | [ppm] | 3,91   | 4,76   | 2,35   | 3,14   | 4,83   | 4,18    | 5,27   | 12,31       | 3,94         | 3,53   | 5,13    | 1,76   | 1,58   |
| Dy       | [ppm] | 3,46   | 4,62   | 2,02   | 2,77   | 4,11   | 3,55    | 4,93   | 10,48       | 3,82         | 3,06   | 4,89    | 1,72   | 1,35   |
| Ho       | [ppm] | 0,78   | 0,87   | 0,45   | 0,53   | 0,82   | 0,81    | 0,95   | 2,04        | 0,80         | 0,56   | 0,99    | 0,31   | 0,25   |
| Er       | [ppm] | 0,66   | 2,59   | 1,14   | 1,80   | 2,48   | 0,67    | 2,85   | 6,64        | 2,48         | 1,72   | 3,04    | 1,03   | 0,76   |
| Tm       | [ppm] | 0,32   | 0,44   | 0,23   | 0,30   | 0,39   | 0,32    | 0,44   | 1,03        | 0,40         | 0,28   | 0,49    | 0,18   | 0,14   |
| Yb       | [ppm] | 0,32   | 2,46   | 1,37   | 1,79   | 2,36   | 0,34    | 2,67   | 6,26        | 2,39         | 1,70   | 2,87    | 1,03   | 0,87   |
| Lu       | [ppm] | 0,32   | 0,39   | 0,16   | 0,29   | 0,37   | 0,33    | 0,42   | 1,07        | 0,38         | 0,25   | 0,46    | 0,17   | 0,13   |
| Hf       | [ppm] | 4,46   | 5,84   | 2,88   | 5,10   | 5,18   | 4,44    | 5,12   | 20,81       | 4,82         | 4,30   | 4,48    | 2,23   | 1,62   |
| Bi       | [ppm] | 0,03   | 0,04   | 0,03   | 0,03   | 0,05   | 0,03    | 0,05   | 0,07        | 0,04         | 0,01   | 0,07    | 0,01   | 0,03   |
| Th       | [ppm] | 5,61   | 7,40   | 3,00   | 5,20   | 8,74   | 5,96    | 6,60   | 17,01       | 5,60         | 4,84   | 7,97    | 2,60   | 2,24   |
| U        | [ppm] | 1,67   | 2,49   | 1,19   | 1,87   | 2,83   | 1,65    | 2,98   | 5,75        | 2,66         | 1,82   | 3,00    | 1,17   | 0,85   |
| Pb       | [ppm] | 17,32  | 13,25  | 9,51   | 7,74   | 5,44   | 11,62   | 7,99   | 41,37       | 22,10        | 6,34   | 8,33    | 6,40   | 4,03   |
| Y        | [ppm] | 19,58  | 16,65  | 12,03  | 11,16  | 13,81  | 20,77   | 21,10  | 35,64       | 15,12        | 15,82  | 24,87   | 6,72   | 7,64   |

| Probe |       | P 19/7 | P 19/2 | P 25/2 | P 58/2 | P 43/6    | P 55/6  | P 16/4 | P 24/3 | P 35/5 | P 29/19 | Vulkanit | Diabas |
|-------|-------|--------|--------|--------|--------|-----------|---------|--------|--------|--------|---------|----------|--------|
|       |       |        |        |        |        | Hauptel   | emente  |        |        |        |         |          |        |
| SiO2  | [%]   | 71,76  | 55,74  | 69,45  | 52,85  | 74,60     | 65,35   | 73,49  | 68,31  | 75,84  | 88,06   | 64,67    | 46,71  |
| AI2O3 | [%]   | 13,12  | 20,19  | 13,87  | 11,05  | 14,82     | 13,51   | 12,84  | 12,68  | 9,57   | 4,45    | 14,09    | 13,34  |
| Fe2O3 | [%]   | 5,79   | 8,35   | 4,65   | 6,83   | 5,05      | 5,29    | 4,53   | 5,37   | 3,77   | 2,08    | 3,68     | 12,59  |
| MnO   | [%]   | 0,11   | 0,07   | 0,07   | 0,46   | 0,07      | 0,10    | 0,10   | 0,10   | 0,06   | 0,00    | 0,07     | 0,14   |
| MgO   | [%]   | 0,69   | 3,25   | 2,68   | 4,06   | 0,36      | 1,77    | 1,22   | 3,35   | 0,77   | 0,06    | 0,23     | 5,21   |
| CaO   | [%]   | 0,08   | 0,19   | 0,24   | 7,95   | 0,19      | 1,29    | 0,13   | 1,35   | 0,04   | 0,00    | 2,73     | 7,82   |
| Na2O  | [%]   | 1,84   | 2,14   | 3,20   | 1,62   | 2,86      | 1,75    | 2,81   | 3,15   | 2,31   | 0,05    | 2,51     | 3,51   |
| K2O   | [%]   | 2,66   | 3,34   | 1,99   | 1,90   | 2,14      | 2,31    | 0,54   | 1,56   | 1,38   | 0,70    | 2,63     | 0,19   |
| TiO2  | [%]   | 0,81   | 1,07   | 0,82   | 0,71   | 0,87      | 0,77    | 0,72   | 0,97   | 0,71   | 1,87    | 0,42     | 3,03   |
| P2O5  | [%]   | 0,14   | 0,15   | 0,13   | 0,13   | 0,15      | 0,11    | 0,10   | 0,15   | 0,08   | 0,02    | 0,10     | 0,46   |
| loi   | [%]   | 2,76   | 4,22   | 2,78   | 12,83  | 3,22      | 7,73    | 2,93   | 3,33   | 2,73   | 1,52    | 4,65     | 2,55   |
| Summe | [%]   | 99,75  | 98,72  | 99,88  | 100,39 | 104,33    | 99,98   | 99,40  | 100,32 | 97,26  | 98,81   | 95,77    | 95,55  |
|       |       |        |        |        |        |           |         |        |        |        |         |          |        |
|       |       | r      | r      |        |        | Nebenel   | emente  |        |        |        |         |          |        |
| Ва    | [ppm] | 354,99 | 299,13 | 287,40 | 431,96 | 375,31    | 238,00  | 164,98 | 386,00 | 372,00 | 475,00  | 333,00   | 292,00 |
| Cr    | [ppm] | 0,10   | 0,10   | 12,77  | 13,00  | 7,00      | 15,00   | 17,56  | 10,18  | 10,64  | 19,00   | 17,10    | 0,97   |
| Cu    | [ppm] | 5,45   | 7,02   | 11,97  | 14,34  | 5,94      | 18,00   | 7,96   | 11,25  | 9,11   | 24,43   | 20,44    | 2,45   |
| Ga    | [ppm] | -      | -      | -      | 15,00  | 16,00     | 18,00   | -      | -      | -      | 16,00   | 17,00    | -      |
| Nb    | [ppm] | 14,11  | 12,69  | 4,83   | 7,00   | 6,00      | 8,00    | 6,40   | 8,12   | 7,19   | 11,00   | 17,20    | 6,35   |
| Ni    | [ppm] | 8,94   | 8,39   | 4,67   | 5,54   | 9,11      | 7,79    | 4,73   | 5,59   | 5,27   | 18,04   | 18,75    | 2,88   |
| Rb    | [ppm] | 121,44 | 140,75 | 83,81  | 69,00  | 64,00     | 94,00   | 81,85  | 69,92  | 63,32  | 88,72   | 104,00   | 36,88  |
| Sc    | [ppm] | 3,46   | 3,30   | 2,75   | 1,00   | 2,00      | 2,00    | 3,46   | 8,10   | 2,76   | 2,00    | 3,70     | 0,88   |
| Sr    | [ppm] | 2,27   | 2,19   | 2,06   | 1,25   | 2,75      | 3,19    | 1,25   | 1,87   | 2,00   | 5,50    | 4,88     | 0,75   |
| V     | [ppm] | 94,21  | 183,00 | 135,31 | 117,00 | 80,00     | 116,00  | 104,07 | 149,95 | 110,36 | 76,00   | 49,00    | 310,30 |
| Zn    | [ppm] | 35,53  | 114,59 | 77,74  | 34,00  | 54,00     | 75,00   | 41,31  | 76,94  | 66,87  | 28,00   | 52,00    | 100,07 |
| Zr    | [ppm] | 94,21  | 183,00 | 135,31 | 117,00 | 80,00     | 116,00  | 104,07 | 149,95 | 110,36 | 76,00   | 49,00    | 310,30 |
|       |       |        |        |        | c      | Soltono E | Iomonto |        |        |        |         |          |        |
| la    | [mag] | 25.80  | 25 75  | 1/ 50  | 21.27  | 28.18     | 2/ 00   | 1/10   | 17.64  | 1/ 50  | 36.57   | 39.45    | 26 55  |
| Ce    | [ppm] | 62 14  | 67.38  | 36.82  | 5/ /3  | 63 53     | 62.36   | 36.60  | 17,04  | 36.82  | 87.80   | 85 30    | 56.08  |
| Pr    | [ppm] | 6.62   | 7 50   | 1 27   | 6 1 1  | 8.04      | 6.97    | 4 15   | 4 88   | 1 27   | 10.23   | 9.66     | 7.68   |
| Nd    | [ppm] | 5.85   | 7,30   | 16 74  | 22.45  | 32 72     | 26.20   | 3 92   | 4,68   | 16 74  | 38 54   | 34.94    | 32.82  |
| Sm    | [ppm] | 1 91   | 7,20   | 3.63   | 4 72   | 6 79      | 5 20    | 3.34   | 4 20   | 3.63   | 7 80    | 7 1 2    | 7 36   |
| Fu    | [ppm] | 4.26   | 8.18   | 0.98   | 1.54   | 1 38      | 1.24    | 1 23   | 5.73   | 0.98   | 1,03    | 1.27     | 2 30   |
| Tb    | [mag] | 0.65   | 0,10   | 0,50   | 0.68   | 1,00      | 0.80    | 0.52   | 0.62   | 0,50   | 0.83    | 1,27     | 1 1 1  |
| Gd    | [mag] | 3 77   | 5.61   | 3 94   | 4 4 1  | 7.52      | 5 14    | 3 19   | 3.87   | 3 94   | 6,60    | 7 17     | 8.09   |
| Dy    | [ppm] | 3 45   | 4 57   | 3.82   | 3.83   | 6.88      | 4 85    | 2 75   | 3 28   | 3.82   | 4 80    | 6.62     | 6.31   |
| Ho    | [ppm] | 0.76   | 1.08   | 0.80   | 0.69   | 1 28      | 0.92    | 0.58   | 0.74   | 0.80   | 0.92    | 1.32     | 1 13   |
| Er    | [ppm] | 0.68   | 0.91   | 2 48   | 2 04   | 4 05      | 2 77    | 0.51   | 0.66   | 2 48   | 3.52    | 4.06     | 2.97   |
| Tm    | [ppm] | 0.34   | 0.46   | 0.40   | 0.33   | 0.65      | 0.46    | 0.25   | 0.33   | 0.40   | 0.65    | 0.64     | 0.41   |
| Yb    | [ppm] | 0.33   | 0.44   | 2 39   | 2 01   | 3.97      | 2 74    | 0.24   | 0.33   | 2 39   | 4 51    | 4 02     | 2 24   |
| Lu    | [ppm] | 0.34   | 0.48   | 0.38   | 0.30   | 0.64      | 0.43    | 0.26   | 0.33   | 0.38   | 0.79    | 0.63     | 0.35   |
| Hf    | [ppm] | 6.52   | 5.13   | 4.82   | 3,71   | 8.54      | 5,33    | 3.52   | 4,94   | 4,82   | 25.73   | 7,12     | 6.07   |
| Bi    | [ppm] | 0.05   | 0.05   | 0.04   | 0.04   | 0.01      | 0.08    | 0.02   | 0.02   | 0.04   | 0.20    | 0.04     | 0.03   |
| Th    | [ppm] | 8.94   | 8.39   | 4.67   | 5.54   | 9.11      | 7.79    | 4.73   | 5.59   | 5.27   | 18.04   | 18.75    | 2.88   |
| U     | [ppm] | 2,27   | 2,19   | 2,06   | 1,25   | 2,75      | 3,19    | 1,25   | 1,87   | 2,00   | 5,50    | 4,88     | 0,75   |
| Pb    | [ppm] | 5,45   | 7,02   | 11.97  | 14.34  | 5,94      | 18.00   | 7,96   | 11.25  | 9,11   | 24,43   | 20,44    | 2,45   |
| Y     | [ppm] | 6,51   | 12,17  | 0,00   | 20,00  | 3,68      | 13,00   | 4,02   | 8,10   | 0,00   | 16,00   | 11,00    | 0,00   |

| Probe |       | P15/7  | P38/11 | P27/2  | P22/7  | P35/1  | P4/5     | P26/2  | P22/1  | P6/3   | P7/2   | P7/6   | P10/1  | P4/6   | P6/1   |
|-------|-------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|       |       |        |        |        |        | F      | lauptele | emente |        |        |        |        |        |        |        |
| SiO2  | [%]   | 68,94  | 77,43  | 76,10  | 72,00  | 78,33  | 81,18    | 73,72  | 70,81  | 75,23  | 69,24  | 69,71  | 55,46  | 84,75  | 67,05  |
| AI2O3 | [%]   | 13,59  | 10,80  | 8,52   | 12,97  | 9,28   | 9,34     | 7,27   | 11,45  | 11,86  | 11,46  | 13,39  | 18,76  | 6,75   | 13,04  |
| Fe2O3 | [%]   | 5,65   | 2,64   | 3,64   | 4,59   | 3,65   | 2,42     | 3,19   | 5,18   | 4,26   | 5,55   | 6,32   | 7,99   | 3,27   | 6,22   |
| MnO   | [%]   | 0,06   | 0,03   | 0,06   | 0,06   | 0,05   | 0,03     | 0,12   | 0,05   | 0,60   | 0,23   | 0,13   | 0,09   | 0,01   | 0,10   |
| MgO   | [%]   | 0,64   | 0,70   | 1,52   | 1,88   | 0,48   | 0,44     | 1,39   | 1,84   | 0,96   | 0,51   | 1,57   | 2,70   | 0,10   | 1,49   |
| CaO   | [%]   | 0,06   | 0,13   | 0,19   | 0,23   | 0,04   | 0,07     | 2,28   | 0,20   | 0,20   | 2,95   | 0,43   | 0,18   | 0,05   | 0,59   |
| Na2O  | [%]   | 2,12   | 1,84   | 2,45   | 3,53   | 1,57   | 1,99     | 2,28   | 3,15   | 2,80   | 2,47   | 2,37   | 2,18   | 2,16   | 2,47   |
| K2O   | [%]   | 1,91   | 1,99   | 1,05   | 1,38   | 1,50   | 1,38     | 0,76   | 1,39   | 1,54   | 1,49   | 1,65   | 3,43   | 0,77   | 2,41   |
| TiO2  | [%]   | 0,85   | 0,63   | 0,62   | 0,68   | 0,71   | 0,57     | 0,51   | 0,88   | 0,66   | 0,65   | 0,76   | 0,91   | 0,25   | 0,68   |
| P2O5  | [%]   | 0,13   | 0,10   | 0,09   | 0,09   | 0,11   | 0,10     | 0,08   | 0,12   | 0,11   | 0,12   | 0,16   | 0,14   | 0,07   | 0,11   |
| loi   | [%]   | 3,92   | 2,86   | 2,00   | 2,61   | 2,64   | 2,09     | 5,28   | 3,73   | 2,39   | 5,49   | 3,45   | 4,55   | 1,54   | 5,90   |
| Summe | [%]   | 97,87  | 99,15  | 96,24  | 100,02 | 98,34  | 99,61    | 96,89  | 98,79  | 100,61 | 100,16 | 99,94  | 96,37  | 99,72  | 100,06 |
|       |       |        |        |        |        |        |          |        |        |        |        |        |        |        |        |
|       |       |        |        |        |        | N      | lebenel  | emente |        |        |        |        |        |        |        |
| Ва    | [ppm] | 371,56 | 352,13 | 173,84 | 241,00 | 299,22 | 273,06   | 153,35 | 261,26 | 305,00 | 273,00 | 321,00 | 699,77 | 180,00 | 445,00 |
| Cr    | [ppm] | 81,22  | 31,95  | 42,93  | 89,00  | 49,68  | 30,41    | 31,73  | 85,81  | 59,00  | 65,00  | 74,00  | 111,75 | 22,00  | 61,00  |
| Cu    | [ppm] | 35,57  | 19,86  | 16,55  | 20,00  | 24,30  | 27,77    | 12,29  | 26,85  | 16,00  | 17,00  | 26,00  | 57,24  | 14,00  | 19,00  |
| Ga    | [ppm] | -      | -      | -      | 15,00  | -      | -        | -      | -      | 15,00  | 15,00  | 17,00  | -      | 9,00   | 15,00  |
| Nb    | [ppm] | -      | -      | -      | 11,00  | -      | -        | -      | -      | 11,00  | 10,00  | 12,00  | -      | 5,00   | 11,00  |
| Ni    | [ppm] | 60,66  | 29,62  | 29,43  | 26,00  | 33,76  | 25,29    | 26,40  | 36,09  | 25,00  | 29,00  | 37,00  | 60,48  | 18,00  | 33,00  |
| Rb    | [ppm] | 90,11  | 87,91  | 53,79  | 52,00  | 72,29  | 64,58    | 40,31  | 65,46  | 62,00  | 61,00  | 70,00  | 148,11 | 30,00  | 92,00  |
| Sc    | [ppm] | -      | -      | -      | -      | -      | -        | -      | -      | 11,00  | 14,00  | 14,00  | -      | 4,00   | 12,00  |
| Sr    | [ppm] | 56,89  | 55,16  | 70,37  | 74,00  | 54,79  | 49,66    | 70,98  | 86,13  | 62,00  | 60,00  | 54,00  | 64,52  | 41,00  | 72,00  |
| V     | [ppm] | 135,34 | 91,56  | -      | 113,00 | 102,54 | 87,68    | 62,01  | 137,57 | 82,00  | 89,00  | 113,00 | 176,20 | 44,00  | 89,00  |
| Y     | [ppm] | -      | -      | -      | 22,00  | -      | -        | -      | -      | 21,00  | 24,00  | 27,00  | -      | 12,00  | 25,00  |
| Zn    | [ppm] | 77,01  | 25,98  | 44,62  | 61,00  | 56,72  | 49,47    | 47,60  | 69,73  | 41,00  | 66,00  | 93,00  | 128,37 | 107,00 | 67,00  |
| Zr    | [ppm] | 179,00 | 182,00 | 178,00 | 221,00 | 228,00 | 178,00   | 141,00 | 230,00 | 151,00 | 177,00 | 148,00 | 194,00 | 67,00  | 154    |
| Th    | [ppm] | 9,74   | 5,70   | 4,31   | 7,00   | 9,34   | 6,87     | 4,80   | 6,29   | 8,50   | 7,80   | 6,00   | 17,82  | 2,60   | 9,00   |
| U     | [ppm] | 3,62   | 4,47   | 2,51   | 1,00   | 3,47   | 3,68     | 2,02   | 3,80   | 2,30   | 2,40   | 3,00   | 3,66   | 0,60   | 1,00   |
| Pb    | [ppm] | 5,86   | 2,51   | 5,71   | 21,00  | 10,03  | 12,83    | 15,70  | 26,59  | 10,10  | 15,60  | 18,00  | 39,00  | 17,70  | 7,00   |

| Probe         |       | P59/3  | P15/1  | P38/4  | P28/5  | P33/7  | P43/1   | P43/3  | P14/3  | P 7/1  | P24/1  | P26/7  | P9/1   | P58/8  | P56/7  |
|---------------|-------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Hauptelemente |       |        |        |        |        |        |         |        |        |        |        |        |        |        |        |
| SiO2          | [%]   | 61,03  | 66,51  | 75,46  | 72,11  | 72,54  | 69,51   | 73,34  | 18,32  | 70,41  | 69,33  | 73,06  | 52,50  | 64,07  | 72,85  |
| AI2O3         | [%]   | 11,77  | 14,71  | 11,28  | 10,32  | 11,60  | 14,81   | 12,60  | 3,34   | 12,16  | 11,84  | 12,49  | 4,15   | 15,37  | 13,95  |
| Fe2O3         | [%]   | 6,40   | 5,85   | 3,96   | 4,59   | 4,27   | 5,99    | 4,66   | 1,60   | 5,25   | 4,81   | 3,84   | 9,74   | 6,44   | 4,00   |
| MnO           | [%]   | 0,34   | 0,05   | 0,06   | 0,07   | 0,10   | 0,10    | 0,06   | 0,13   | 0,08   | 0,10   | 0,07   | 0,30   | 0,10   | 0,06   |
| MgO           | [%]   | 2,47   | 1,98   | 0,55   | 1,42   | 0,29   | 0,30    | 0,67   | 2,03   | 1,19   | 2,59   | 0,72   | 4,24   | 2,20   | 0,31   |
| CaO           | [%]   | 3,97   | 0,17   | 0,02   | 1,44   | 2,15   | 0,10    | 0,40   | 38,00  | 0,55   | 2,57   | 0,26   | 8,41   | 0,76   | 0,09   |
| Na2O          | [%]   | 1,04   | 2,10   | 1,92   | 2,12   | 1,07   | 2,27    | 2,89   | 0,05   | 2,68   | 3,17   | 3,00   | 0,01   | 1,90   | 1,85   |
| K2O           | [%]   | 1,70   | 2,35   | 2,18   | 1,46   | 1,48   | 2,34    | 1,58   | 0,26   | 1,64   | 1,30   | 1,89   | 1,46   | 2,78   | 2,29   |
| TiO2          | [%]   | 0,76   | 0,81   | 0,64   | 0,63   | 0,74   | 0,79    | 0,59   | 0,12   | 0,83   | 0,73   | 0,78   | 0,23   | 0,93   | 0,84   |
| P2O5          | [%]   | 0,15   | 0,14   | 0,09   | 0,08   | 0,10   | 0,12    | 0,09   | 0,05   | 0,16   | 0,11   | 0,13   | 0,09   | 0,14   | 0,15   |
| LOI           | [%]   | 9,48   | 3,29   | 2,50   | 5,61   | 5,00   | 3,56    | 3,04   | 32,66  | 4,51   | 4,24   | 3,08   | 16,13  | 5,47   | 3,20   |
| Summe         | [%]   | 99,11  | 97,97  | 98,65  | 99,85  | 99,34  | 99,89   | 99,92  | 96,56  | 99,46  | 100,77 | 100,20 | 97,28  | 100,16 | 99,59  |
|               |       |        |        |        |        |        |         |        |        |        |        |        |        |        |        |
|               |       |        |        |        |        | N      | lebenel | emente |        |        |        |        |        |        |        |
| Ba            | [ppm] | 357,00 | 432,96 | 434,75 | 330,00 | 269,00 | 247,00  | 400,00 | 43,20  | 305,00 | 432,44 | 355,81 | 156,38 | 335,00 | 384,00 |
| Cr            | [ppm] | 94,00  | 73,53  | 48,50  | 77,00  | 69,00  | 101,00  | 74,00  | 0,10   | 101,00 | 69,26  | 78,36  | 56,66  | 110,00 | 81,00  |
| Cu            | [ppm] | 16,00  | 26,19  | 23,36  | 18,00  | 9,00   | 14,00   | 20,00  | 0,10   | 18,00  | 25,76  | 31,31  | 90,19  | 25,00  | 13,00  |
| Ga            | [ppm] | 20,00  | -      | -      | 16,00  | 14,00  | 14,00   | 19,00  | -      | 15,00  | -      | -      | -      | 16,00  | 17,00  |
| Nb            | [ppm] | 14,00  | -      | -      | 9,00   | 8,00   | 12,00   | 12,00  | -      | 14,00  | -      | -      | -      | 11,00  | 16,00  |
| Ni            | [ppm] | 41,00  | 45,90  | 36,26  | 34,00  | 25,00  | 48,00   | 32,00  | 13,74  | 51,00  | 42,83  | 37,26  | 43,45  | 46,00  | 41,00  |
| Rb            | [ppm] | 106,00 | 110,71 | 91,47  | 55,00  | 50,00  | 60,00   | 98,00  | 22,31  | 68,00  | 67,72  | 81,41  | 52,03  | 76,00  | 90,00  |
| Sc            | [ppm] | 13,00  | -      | -      | 13,00  | 14,00  | 11,00   | 14,00  | -      | 11,00  | -      | -      | -      | 19,00  | 12,00  |
| Sr            | [ppm] | 66,00  | 59,62  | 65,76  | 101,00 | 291,00 | 77,00   | 69,00  | 1186,8 | 77,00  | 167,74 | 96,50  | 138,59 | 49,00  | 71,00  |
| V             | [ppm] | 99,00  | 128,92 | 94,30  | 109,00 | 93,00  | 81,00   | 107,00 | -      | 82,00  | 123,23 | 138,75 | -      | 142,00 | 96,00  |
| Y             | [ppm] | 27,00  | -      | -      | 18,00  | 18,00  | 19,00   | 27,00  | -      | 26,00  | -      | -      | -      | 24,00  | 24,00  |
| Zn            | [ppm] | 70,00  | 88,25  | 50,82  | 74,00  | 54,00  | 48,00   | 70,00  | 25,21  | 64,00  | 66,85  | 82,59  | 33,86  | 70,00  | 40,00  |
| Zr            | [ppm] | 194,00 | 189,00 | 167,00 | 138,00 | 128,00 | 147,00  | 184,00 | 146,00 | 228,00 | 147,00 | 173,00 | 81,00  | 175,00 | 169,00 |
| Th            | [ppm] | 7,00   | 12,59  | 4,98   | 5,00   | 3,00   | 8,00    | 9,00   | 8,67   | 9,00   | 2,99   | 8,07   | 5,05   | 10,00  | 8,00   |
| U             | [ppm] | 1,00   | 3,51   | 3,53   | 2,00   | 2,00   | 2,00    | 2,00   | 1,71   | 3,00   | 1,98   | 3,00   | 3,91   | 3,00   | 1,00   |
| Pb            | [ppm] | 26,00  | 11,80  | 7,67   | 13,00  | 10,00  | 9,00    | 13,00  | 9,71   | 12,00  | 16,77  | 27,21  | 7,92   | 8,00   | 6,00   |

| Probe         |       | P18/16 | P57/10 | P58/6  | P56/1  | P18/1  | P18/7  | P55/1  | P13/3  | P35/3  | P42/2  | P59/5  | P28/13 | P42/2  | P42/2  |
|---------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Hauptelemente |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| SiO2          | [%]   | 74,62  | 67,94  | 74,64  | 69,79  | 74,60  | 71,15  | 72,73  | 78,58  | 79,24  | 66,26  | 70,89  | 72,28  | 70,38  | 70,80  |
| AI2O3         | [%]   | 10,82  | 11,40  | 12,22  | 12,36  | 12,61  | 13,50  | 12,13  | 9,00   | 9,97   | 11,87  | 13,28  | 12,41  | 12,48  | 12,52  |
| Fe2O3         | [%]   | 4,61   | 5,00   | 4,63   | 4,29   | 4,28   | 5,46   | 5,69   | 3,24   | 3,89   | 4,77   | 4,33   | 4,16   | 4,73   | 4,74   |
| MnO           | [%]   | 0,10   | 0,11   | 0,06   | 0,08   | 0,07   | 0,12   | 0,13   | 0,05   | 0,04   | 0,07   | 0,05   | 0,04   | 0,06   | 0,06   |
| MgO           | [%]   | 0,98   | 1,70   | 0,33   | 1,33   | 0,24   | 1,21   | 1,33   | 0,49   | 0,49   | 1,86   | 1,05   | 0,89   | 1,60   | 1,63   |
| CaO           | [%]   | 1,24   | 1,87   | 0,06   | 1,22   | 0,06   | 0,14   | 0,08   | 0,08   | 0,04   | 0,72   | 0,17   | 0,32   | 0,67   | 0,67   |
| Na2O          | [%]   | 2,50   | 2,38   | 1,99   | 2,53   | 3,15   | 2,47   | 2,74   | 2,02   | 2,04   | 2,37   | 2,46   | 1,95   | 2,45   | 2,43   |
| K2O           | [%]   | 1,25   | 1,72   | 1,83   | 1,91   | 1,48   | 1,94   | 1,21   | 1,62   | 1,34   | 1,81   | 1,90   | 2,12   | 1,77   | 1,77   |
| TiO2          | [%]   | 0,53   | 0,72   | 0,73   | 0,67   | 0,66   | 0,73   | 0,69   | 0,58   | 0,67   | 0,75   | 0,78   | 0,72   | 0,73   | 0,74   |
| P2O5          | [%]   | 0,09   | 0,13   | 0,13   | 0,12   | 0,09   | 0,12   | 0,11   | 0,10   | 0,10   | 0,13   | 0,13   | 0,10   | 0,13   | 0,13   |
| loi           | [%]   | 3,11   | 6,68   | 3,13   | 5,37   | 2,92   | 2,73   | 2,61   | 2,24   | 2,69   | 4,20   | 4,65   | 4,88   | 4,40   | 4,40   |
| Summe         | [%]   | 99,85  | 99,65  | 99,75  | 99,67  | 100,16 | 99,57  | 99,45  | 98,00  | 100,52 | 94,80  | 99,69  | 99,87  | 99,40  | 99,89  |
|               |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Nebenelemente |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Ba            | [ppm] | 349,00 | 305,00 | 305,00 | 375,00 | 411,00 | 348,00 | 249,00 | 257,41 | 275,50 | 306,59 | 335,00 | 341,00 | 291,00 | 293,00 |
| Cr            | [ppm] | 63,00  | 81,00  | 74,00  | 96,00  | 71,00  | 56,00  | 54,00  | 39,04  | 56,08  | 91,48  | 111,00 | 53,00  | 74,00  | 108,00 |
| Cu            | [ppm] | 17,00  | 16,00  | 23,00  | 14,00  | 20,00  | 12,00  | 16,00  | 21,07  | 27,03  | 21,82  | 19,00  | 15,00  | 14,00  | 14,00  |
| Ga            | [ppm] | 15,00  | 15,00  | 15,00  | 16,00  | 20,00  | 15,00  | 14,00  | -      | -      | -      | 15,00  | 13,00  | 14,00  | 16,00  |
| Nb            | [ppm] | 10,00  | 14,00  | 11,00  | 12,00  | 13,00  | 11,00  | 10,00  | -      | -      | -      | 14,00  | 8,00   | 10,00  | 14,00  |
| Ni            | [ppm] | 38,00  | 35,00  | 33,00  | 40,00  | 25,00  | 22,00  | 41,00  | 28,36  | 35,48  | 59,64  | 52,00  | 23,00  | 28,00  | 53,00  |
| Rb            | [ppm] | 82,00  | 68,00  | 80,00  | 75,00  | 90,00  | 58,00  | 51,00  | 77,88  | 62,98  | 86,54  | 72,00  | 55,00  | 61,00  | 72,00  |
| Sc            | [ppm] | 12,00  | 12,00  | 14,00  | 12,00  | 13,00  | 10,00  | 11,00  | -      | -      | -      | 10,00  | 11,00  | 13,00  | 10,00  |
| Sr            | [ppm] | 66,00  | 77,00  | 158,00 | 108,00 | 86,00  | 73,00  | 54,00  | 49,28  | 51,41  | 75,22  | 159,00 | 99,00  | 139,00 | 65,00  |
| V             | [ppm] | 94,00  | 84,00  | 100,00 | 80,00  | 103,00 | 81,00  | 83,00  | 85,53  | 111,42 | 97,25  | 91,00  | 91,00  | 103,00 | 86,00  |
| Y             | [ppm] | 23,00  | 26,00  | 23,00  | 20,00  | 30,00  | 18,00  | 21,00  | -      | -      | -      | 25,00  | 18,00  | 19,00  | 19,00  |
| Zn            | [ppm] | 62,00  | 34,00  | 72,00  | 53,00  | 49,00  | 61,00  | 74,00  | 50,36  | 70,50  | 63,59  | 70,00  | 44,00  | 40,00  | 56,00  |
| Zr            | [ppm] | 183,00 | 228,00 | 151,00 | 154,00 | 248,00 | 135,00 | 183,00 | 178,00 | 151,00 | 163,00 | 87,00  | 163,00 | 164,00 | 164,00 |
| Th            | [ppm] | 10,00  | 7,00   | 7,00   | 8,00   | 11,00  | 6,00   | 7,00   | 4,63   | 5,78   | 10,52  | 9,00   | 5,00   | 6,00   | 9,00   |
| U             | [ppm] | 2,00   | 1,00   | 2,00   | 2,00   | 1,00   | 2,00   | 2,00   | 3,54   | 3,20   | 2,88   | 2,00   | 1,00   | 1,00   | 2,00   |
| Pb            | [ppm] | 11,00  | 7,00   | 16,00  | 12,00  | 8,00   | 18,00  | 18,00  | 9,78   | 9,00   | 4,25   | 10,00  | 5,00   | 10,00  | 8,00   |

| Probe         |       | P42/2  | P42/7  | P2/8   | P21/3  | P11/4  | P3/6   | P20/3  | P2/5   | P30/1  | P29/12 | P2/9   | P5/8   | P29/0  | P52/1  |
|---------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Hauptelemente |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| SiO2          | [%]   | 70,85  | 71,84  | 87,65  | 92,71  | 88,81  | 88,30  | 71,32  | 88,23  | 86,85  | 83,19  | 90,39  | 89,35  | 47,71  | 78,87  |
| AI2O3         | [%]   | 12,57  | 11,48  | 3,98   | 2,24   | 5,76   | 7,05   | 14,57  | 5,61   | 6,28   | 6,50   | 4,46   | 6,04   | 11,02  | 11,27  |
| Fe2O3         | [%]   | 4,73   | 4,69   | 0,40   | 0,40   | 2,01   | 2,45   | 3,51   | 2,08   | 0,91   | 2,70   | 1,15   | 0,29   | 6,59   | 1,75   |
| MnO           | [%]   | 0,06   | 0,09   | 0,00   | 0,02   | 0,02   | 0,00   | 0,01   | 0,02   | 0,01   | 0,02   | 0,00   | 0,00   | 0,37   | 0,02   |
| MgO           | [%]   | 1,62   | 1,71   | 0,20   | 0,35   | 1,42   | 0,37   | 1,63   | 0,85   | 0,39   | 0,47   | 0,09   | 0,14   | 4,14   | 0,27   |
| CaO           | [%]   | 0,67   | 1,35   | 0,02   | 0,01   | 0,01   | 0,04   | 0,03   | 0,04   | 0,04   | 0,01   | 0,01   | 0,00   | 10,36  | 0,65   |
| Na2O          | [%]   | 2,47   | 2,42   | 0,12   | 0,07   | 0,10   | 0,11   | 0,08   | 0,10   | 0,01   | 0,14   | 0,17   | 0,25   | 0,21   | 1,02   |
| K2O           | [%]   | 1,78   | 1,48   | 0,66   | 1,00   | 0,63   | 0,43   | 2,94   | 0,71   | 1,04   | 1,46   | 1,07   | 1,31   | 2,43   | 2,33   |
| TiO2          | [%]   | 0,73   | 0,66   | 0,56   | 0,20   | 0,14   | 0,24   | 0,52   | 0,20   | 1,56   | 2,19   | 1,05   | 1,08   | 0,87   | 0,42   |
| P2O5          | [%]   | 0,13   | 0,12   | 0,10   | 0,01   | 0,02   | 0,05   | 0,05   | 0,06   | 0,02   | 0,03   | 0,01   | 0,01   | 0,08   | 0,05   |
| LOI           | [%]   | 4,40   | 4,10   | 3,77   | 0,64   | 2,19   | 1,31   | 3,09   | 1,73   | 1,58   | 1,84   | 1,30   | 1,22   | 16,42  | 2,72   |
| Summe         | [%]   | 100,01 | 99,94  | 97,46  | 97,65  | 101,11 | 100,34 | 97,73  | 99,64  | 98,68  | 98,55  | 99,70  | 99,69  | 100,20 | 99,37  |
|               |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               |       |        |        |        |        | N      | ebenel | emente |        |        |        |        |        |        |        |
| Ba            | [ppm] | 306,00 | 304,00 | 135,51 | 127,31 | 153,23 | 159,58 | 378,74 | 145,10 | 157,31 | 360,05 | 223,00 | 195,00 | 417,00 | 343,00 |
| Cr            | [ppm] | 108,00 | 106,00 | 0,10   | 0,10   | 0,10   | 4,51   | 16,62  | 0,10   | 0,10   | 59,84  | 14,00  | 20,00  | 67,00  | 23,00  |
| Cu            | [ppm] | 15,00  | 18,00  | 6,04   | 7,68   | 8,30   | 6,04   | 2,42   | 6,77   | 6,68   | 23,41  | 8,00   | 8,00   | 21,00  | 9,00   |
| Ga            | [ppm] | 16,00  | 16,00  | -      | -      | -      | -      | -      | -      | -      | -      | 8,00   | 10,00  | 15,00  | 14,00  |
| Nb            | [ppm] | 13,00  | 13,00  | -      | -      | -      | -      | -      | -      | -      | -      | 13,00  | 14,00  | 10,00  | 10,00  |
| Ni            | [ppm] | 54,00  | 50,00  | 3,95   | 3,98   | 12,89  | 10,21  | 21,62  | 16,38  | 8,11   | 38,22  | 6,00   | 3,00   | 32,00  | 10,00  |
| Rb            | [ppm] | 72,00  | 72,00  | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Sc            | [ppm] | 10,00  | 11,00  | -      | -      | -      | -      | -      | -      | -      | -      | 4,00   | 3,00   | 13,00  | 5,00   |
| Sr            | [ppm] | 66,00  | 66,00  | 32,14  | 20,68  | 50,90  | 170,03 | 137,91 | 182,98 | 50,50  | 86,82  | 35,00  | 42,00  | 64,00  | 69,00  |
| V             | [ppm] | 87,00  | 88,00  | 2,18   | 4,41   | 12,54  | 19,23  | -      | 14,33  | 83,15  | 98,65  | 26,00  | 34,00  | 100,00 | 34,00  |
| Y             | [ppm] | 20,00  | 21,00  | -      | -      | -      | -      | -      | -      | -      | -      | 10,00  | 11,00  | 20,00  | 13,00  |
| Zn            | [ppm] | 56,00  | 55,00  | 0,10   | 2,52   | 29,87  | 3,48   | 30,07  | 11,76  | 11,50  | 77,29  | 7,00   | 4,00   | 32,00  | 28,00  |
| Zr            | [ppm] | 165,00 | 166,00 | 37,00  | 36,00  | 67,00  | 104,00 | 240,00 | 85,00  | 279,00 | 188,00 | 80,00  | 80,00  | 173,00 | 239,00 |
| Th            | [ppm] | 9,00   | 8,00   | 0,10   | 0,10   | 9,23   | 6,94   | 0,14   | 5,15   | 5,78   | 9,11   | 3,10   | 4,00   | 5,00   | 9,00   |
| U             | [ppm] | 2,00   | 2,00   | 2,30   | 2,74   | 3,28   | 3,08   | 2,98   | 2,64   | 2,95   | 2,98   | 0,70   | 0,40   | 2,00   | 2,00   |
| Pb            | [ppm] | 8,00   | 8,00   | 7,91   | 7,87   | 2,68   | 14,18  | 7,91   | 9,36   | 8,07   | 7,56   | 5,50   | 6,40   | 4,00   | 11,00  |

## CURRICULUM VITAE Steffen Kutterolf Sülzbacher Weg 20 D-74182 Obersulm

Geburtsdatum 27.04.1968 Geburtsort Heilbronn Staatsangehörigkeit Deutsch Verheiratet, 3 Kinder

# Ausbildung:

| Seit Oktober 2001 | Postdoc-Stelle im Rahmen des SFB-574 in der Abteilung Vulkanologie<br>und Petrologie am GEOMAR Forschungszentrum in Kiel bei Prof. Dr.<br>H-U. Schmincke und PD Dr. A. Freundt                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2001              | Geostatistik Kurs im Rahmen der Sediment-Tagung in Jena (Prof. Dr.<br>V. Pawlowsky & Dr. H. von Eynatten)                                                                                                                                      |
| 2001              | Fluid Inclusions-Kurs bei Dr. A. Willner aus Bochum                                                                                                                                                                                            |
| 2000/2001         | Mikrosondenkurs am mineralogischen Institut der Universität Stuttgart                                                                                                                                                                          |
| 1999 Mai          | Vulkanologisches Geländepraktikum auf Gran Canaria (Prof. Dr. H-U. Schmincke)                                                                                                                                                                  |
| 1999 Februar      | Interuniversitärer Kurs: "Pyroklastische Gesteine" (Prof. Dr. H-U. Schmincke)                                                                                                                                                                  |
| 1998-2001         | Dissertation am geologischen und paläontologischen Institut der Universität Stuttgart                                                                                                                                                          |
|                   | Thema: Sedimentologische, sedimentpetrographische und                                                                                                                                                                                          |
|                   | (Österreich/Slowenien) (Betreuerin: PD. Dr. H. Krawinkel)                                                                                                                                                                                      |
| 1997              | Interuniversitärer Kurs: "Bilanzierte Profile" (Prof. Dr. O. Oncken)                                                                                                                                                                           |
| 1997              | Interuniversitärer Kurs: "Diagenese klastischer Sedimente" (Prof. Dr. R. Hesse)                                                                                                                                                                |
| 1997              | Erziehungsjahr und unentgeltliche Vorbereitung des Forschungs-<br>projektes "Paläozoikum in den Karawanken"                                                                                                                                    |
| 1996              | Vulkanologisches Geländepraktikum am Kaiserstuhl (Dr. P. Sachs)                                                                                                                                                                                |
| 1996              | Kurs am Röntgendiffraktometer im mineralogischen Institut der Universität Stuttgart                                                                                                                                                            |
| 1996              | Diplomarbeit am Institut für Geologie und Paläontologie der Universität<br>Stuttgart. Thema: Strukturgeologische Untersuchungen im Forearc von<br>Südwest - Costa Rica (Raum Dominical) (Betreuung: Dr.H. Krawinkel &<br>Prof. Fr. H. Seyfried |
| 1996              | Interuniversitärer Kurs: "Trace Fossils" (Prof. Dr. R. Bromley)                                                                                                                                                                                |
| 1990-1996         | Studium der Geologie und Paläontologie am Institut für Geologie und Paläontologie in Stuttgart                                                                                                                                                 |
| 1988-1990         | Zivildienst in der Kinder und Jugendpsychatrie Weinsberg                                                                                                                                                                                       |
| 1985-1988         | Technisches Gymnasium Heilbronn                                                                                                                                                                                                                |
| 1980-1988         | Justinus Kerner Gymnasium Weinsberg                                                                                                                                                                                                            |
| 1978-1980         | Elly-Heuss Knapp Gymnasium Heilbronn                                                                                                                                                                                                           |
| 1974-1978         | Elly-Heuss Knapp Grundschule Heilbronn                                                                                                                                                                                                         |