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Abstract

Many engineering applications involve the solution of optimal control problems. Such prob-
lems cover a wide variety of different disciplines, starting from typical aerospace applications,
e.g. a fuel minimal launcher ascent trajectory, up to more exotic applications such as the opti-
mal motion of the human body in different sport disciplines.

This thesis presents a new method for solving a general class of multi-phase trajectory
optimization problems. This new method uses a combination of direct multiple shooting and
direct collocation. Depending on the specific demands of the problem to solve, a different kind
of transcription method can be used for each phase. In addition, the method can be combined
with the indirect method. Once the adjoint differential equations are available in addition to the
dynamic system, one or more phases can be modeled as indirect phases. Since the transversal-
ity conditions that are usually required for solving the multi-point boundary value problem are
contained in the Karush-Kuhn-Tucker conditions of the NLP-solver, they need not be formu-
lated explicitly.

The benefits of combining direct and indirect methods is demonstrated on an Ariane 5
dual payload mission. While the atmospheric parts of this mission are modelled with the direct
multiple-shooting technique, the upper stage is using the indirect method. An analysis of the
switching function, which is generated as a by-product of the indirect method, yields an
improved mission profile. This profile involves an additional coast-arc and improves the pay-
load performance by 66%.

An additional example demonstrates the advantages of using direct collocation and
direct multiple shooting to solve a complex branched trajectory optimization problem. The
ascent and return of the suborbital Hopper vehicle is optimized such that the payload delivered
to the geostationary transfer orbit by an upper stage is maximized. The robustness and large
convergence radius of the direct collocation method significantly simplifies the generation of
an approximate solution of the problem which is then refined by changing the transcription
method of the atmospheric parts of the trajectory to the direct multiple shooting technique.
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Zusammenfassung
Viele technische Anwendungen beinhalten die Lösung von Optimalsteuerungsproblemen.
Derartige Probleme decken einen weiten Bereich verschiedener Fachrichtungen ab, angefan-
gen bei typischen Raumfahrtanwendungen, wie z.B. der treibstoffoptimale Aufstieg einer
Rakete, bis hin zu exotischeren Gebieten wie z.B. der optimalen Bewegung des menschlichen
Körpers in verschiedenen Sportdisziplinen.

Diese Arbeit stellt eine neue Methode zur Lösung einer allgemeinen Klasse von mehr-
phasigen Bahnoptimierungsproblemen vor. Dieses Verfahren verwendet eine Kombination aus
direktem Mehrzielverfahren und direkter Kollokation. In Abhängigkeit von den spezifischen
Anforderungen des zu lösenden Problems kann für jede Phase die geeignete Transkriptionsme-
thode ausgewählt werden. Außerdem kann das Verfahren mit der indirekten Methode kombi-
niert werden. Sobald neben der Systemdynamik auch die Adjungierten-Differentialgleichun-
gen verfügbar sind, können eine oder mehrere Phasen auch mit Hilfe der indirekten Methode
modelliert werden. Da die Transversalitätsbedingungen bereits in den Karush-Kuhn-Tucker
Bedingungen des NLP-Verfahrens enthalten sind, müssen sie nicht explizit formuliert werden.

Die Vorteile einer Kombination aus direktem und indirektem Verfahren wird am Bei-
spiel einer Ariane 5 Mission mit zwei Nutzlasten demonstriert. Dabei werden die Missionsab-
schnitte innerhalb der Atmosphäre mit Hilfe des direkten Mehrzielverfahrens modelliert,
während das indirekte Verfahren in der Oberstufe zum Einsatz kommt. Eine Analyse der
Schaltfunktion, die sich als Nebenprodukt des indirekten Verfahrens ergibt, führt dabei zu
einer Verbesserung des Missionsablaufes. Durch Hinzufügen einer zusätzlichen Freiflugphase
kann die Nutzlast um 66% verbessert werden.

Ein weiteres Beispiel zeigt die Vorteile einer Kombination aus direkter Kollokation und
direktem Mehrzielverfahren für die Lösung eines verzweigten Bahnoptimierungsproblems.
Die Aufstiegs- und Rückkehrbahn des suborbitalen Hopper-Fahrzeuges wird derart optimiert,
dass die durch eine Oberstufe in den geostationären Transferorbit beförderte Nutzlast maxi-
miert wird. Dabei vereinfacht die Robustheit und der große Konvergenzradius des direkten
Kollokationsverfahrens die Berechnung einer Näherungslösung erheblich. Durch eine
Umschaltung der Transkription auf die direkte Mehrzielmethode in den atmosphärischen
Abschnitten der Trajektorie ermöglicht schließlich die Berechnung einer genauen Lösung.
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a semimajor axis [m]

Ae nozzle exit area [m2]
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f dynamics or flattening factor
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g0 gravity acceleration [m/s2]

h step size or altitude [s], [m]
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i orbit inclination or index [rad], -
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m mass [kg]

M Mach number
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T Thrust [N]

u control

v velocity or norm of velocity vector [m/s]

x state value

angle of attack [rad]

flight-path angle [rad]

declination [rad]

defect or delta

specific orbital energy [m2/s2]

machine accuracy

throttle factor

longitude

mass adjoint variable

gravity constant of central body or bank angle [m3/s2], [rad]

normalized time

Mayer cost term

argument of perigee [rad]

Matrices and Vectors

g path constraint vector

G gravity acceleration vector [m/s2]

i unity vector

if unity vector perpendicular to orbit plane

Q·

α

γ

δ

∆

ε

εm

η

λ

λm

µ

τ

φ

ω
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I3  identity matrix

P primer vector

p vector of optimizable parameters

Q Q-vector

R radius vector [m]

u control vector

V velocity vector [m/s]

x state vector

vector of constant Lagrange multipliers

vector of adjoint variables

boundary constraint vector

Subscripts and Superscripts

b body axis

E Earth

f final value

i initial value

l lower bound

N North

p perigee

r radius

rel relative

u upper bound

v velocity

vac vacuum

0 reference value

T Transpose of a matrix or a vector

Abbreviations

ASTOS Aerospace Trajectory Optimization Software

3 3×

ν

λ

ψ
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CAMTOS Collocation and Multiple Shooting Trajectory Optimization Software

DIRCOL Direct Collocation

ESTEC European Space Research and Technology Center

GESOP Graphical Environment for Simulation and Optimization

GISMO Graphical Iteration Sequence Monitor

GTO Geostationary Transfer Orbit

HISTOS High Speed Trajectory Optimization Software

IFR Institut für Flugmechanik und Flugregelung
(Institute of Flight Mechanics and Control)

LEO Low Earth Orbit

NLP Nonlinear Program

ODE Ordinary Differential Equation

OTIS Optimal Trajectories by Implicit Simulations

PROMIS Parameterized Trajectory Optimization by Direct Multiple Shooting

RAAN Right Ascension of Ascending Node

RAM Random Access Memory

SNOPT Sparse Nonlinear Optimizer

SOCS Sparse Optimal Control Software

SRB Solid Rocket Booster

SQP Sequential Quadratic Program

TAEM Target Area Energy Management

TOPS Trajectory Optimization Specification

TROPIC Trajectory Optimization by Direct Collocation
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1 Introduction

Solving an optimal control problem is not easy. Pieces of the puzzle are 
found scattered throughout many different disciplines.
John T. Betts in “Practical Methods for Optimal Control Using Nonlinear Programming”

Many engineering applications involve the calculation of “optimal trajectories”. Typical exam-
ples in the aerospace sector are a rocket ascent trajectory to maximize the payload delivered
into orbit (e.g. Refs. [3], [37], [39], [84] and many others), re-entry missions with several dif-
ferent performance criteria (e.g. Refs. [2], [52], [58], [68], [87]), or the calculation of a mini-
mum time, minimum fuel, or “minimum direct operating cost” trajectory for a supersonic
transport aircraft (Refs. [4] and [88]). Other space applications can be found in the framework
of orbital transfer maneuvers, including aeroassisted transfer vehicles (e.g. Ref. [66]) and low-
thrust engines (e.g. Ref. [14]).

Besides the aerospace sector, many other engineering disciplines involve problems
which can be formulated as optimal control problems. Examples are an energy-optimal robot
motion (Ref. [77]) or the optimization of chemical processes (Ref. [69]), human body motion
(Ref. [73]) or economic models (Refs. [15] and [53]).

The methodology developed in this thesis is a very general approach that is applicable to
all such problems. However, most examples presented are using the Aerospace Trajectory
Optimization Software ASTOS, which is a special, data-driven model for launch, re-entry, and
orbital transfer problems (Ref. [5]).

1.1 Motivation

Basically, two different methods are available for solving trajectory optimization problems:
The calculus of variation, which is also referred to as “indirect method” or the “Maximum
Principle of Pontryagin”, and the “direct methods”, which transform the original optimal con-
trol problem into a nonlinear parameter optimization problem. It turns out that existing soft-
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ware for trajectory optimization problems is often highly specialized on a rather small class of
problems. This especially applies for any software that is using the indirect methods (see
Section 1.3). Due to this high level of specialization, these methods are often hard to use for a
novice user and require a detailed knowledge on optimal control theory, calculus of variation,
and sometimes even about implementation specific behaviors. On the other hand, these meth-
ods often give additional information about the optimality of the problem structure itself. Such
information is usually not directly available when using alternative methods.

Nevertheless, several general purpose methods have been developed in recent years that
are able to handle a large variety of optimal control problems. By using the direct methods (see
Section 1.4), the user need not be very familiar with the basics of optimal control theory. How-
ever, such methods are often slow compared to indirect methods, and a specific problem dis-
cretization may not be suitable during certain phases of a trajectory.

Finally, most available methods are coded in a way that makes them hard to read and
understand by anyone who is not familiar with the code itself, thus making them hard to main-
tain or even change in order to incorporate improvements. In addition, in cases where FOR-
TRAN 77 is used, the resulting codes always require an a-priori knowledge about the required
workspace sizes since FORTRAN 77 does not allow for a dynamic memory allocation during
run-time.

The major goal of this thesis is to eliminate the major drawbacks of direct and indirect
methods discussed further below in detail, while their advantages are preserved. The approach
is a hybrid method that allows the user to select the appropriate optimization method for each
phase of a multi-phase trajectory optimization problem. This method combines direct multiple
shooting with direct collocation and is called CAMTOS (Collocation And Multiple Shooting
Trajectory Optimization Software). In addition, an indirect method is developed, which is
applicable for fuel-optimal rocket thrust arcs occurring in vacuum (Section 3). This method
can be used in conjuction with CAMTOS in order to obtain the switching function for further
optimality analysis. The resulting software involves a comprehensive user interface which
matches already existing standards in the GESOP/ASTOS environment, thus making it easy to
use for the end user by simply selecting the appropriate method with the click of a mouse but-
ton (see Fig. 1.1).

On the software engineering side, the major attention is drawn on applying a modular
software design and defining simple interfaces to all major elements of a trajectory optimiza-
tion method. It is not intended to incorporate the most elegant ways of object oriented design,
involving inheritance or generic classes and packages. However, a clear and straight forward
implementation is preferred wherever it seems to be reasonable in order to simplify future
maintenance and enhancement efforts. By using a modern computer language such as Ada-95,
features like dynamic memory allocation are readily available. Another important issue is the
source code compatibility over a large range of operating systems, from Windows NT and
2000 over Linux up to several different flavors of Unix. This compatibility is mainly achieved
by using the GNAT and GCC compiler suite which is available for almost every target plat-
form.
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Since the software is integrated into the GESOP environment, its design must allow for
the solution of a very general class of multi-phase trajectory optimization problems. The fol-
lowing section gives details on the specific, mathematical formulation of this problem class.

Fig. 1.1: Integration of CAMTOS into the GESOP environment

1.2 General Problem Formulation

In the framework of trajectory optimization, the time history of a control vector u(t) is calcu-
lated such that it minimizes a scalar performance index J. The performance index can be for-
mulated in Bolza-form (Eq. (1.1)) and consists of a Mayer term  and a Lagrange term with
the integrand L. A set of path constraints g and boundary constraints  and  must be satis-
fied at the solution. Both, path and boundary constraints, may be equality or inequality con-
straints. A general mathematical formulation for a single-phase problem is presented in
Eqs. (1.1)-(1.5).

Minimize (1.1)

subject to (1.2)

and  for , (1.3)

, (1.4)
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. (1.5)

This approach can easily be extended to multi-phase problems consisting of k phases by intro-
ducing a phase index i and phase connect conditions as shown in Eqs (1.11) and (1.12). In
addition, an initial cost term φ0 is introduced and each phase may have a final cost and a
Lagrange cost. Besides control time histories, technical optimization problems often involve
the optimization of design parameters p. For example, the mass of a payload is to be maxi-
mized while certain sizing factors for a rocket engine are optimally chosen as well (design
optimization, see Ref. [86]). In order to support the solution of such problems, design or real
parameters are included in the problem formulation. These real parameters can be optimizable
within user specified bounds and are constant within a phase ( ). Each phase may have
its own set of real parameters.

Minimize (1.6)

subject to  for , i = 1,...k, (1.7)

 for , i = 1,...k, (1.8)

, (1.9)

, i = 1,...k, (1.10)

 for i < k, (1.11)

 for i < k. (1.12)

In order to simplify the notation, the phase index i is omitted in most parts of the following dis-
cussion. The following sections give a brief overview of direct and indirect optimization meth-
ods, formulated for a single phase problem as shown in Eqs. (1.1)-(1.5). For an extensive
discussion of these methods applied to multi-phase problems, the reader is referred to other
references.

1.3 Indirect Trajectory Optimization Methods

Calculus of variation techniques were successfully applied for the first time by Sir Isaac New-
ton in 1686 for calculating the minimum-drag nose shape in hypersonic flow (see Ref. [23],
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p. 52ff). Since then, the theory was continuously developed. In 1744, the first order necessary
conditions were formulated by Euler and Lagrange (the so-called Euler-Lagrange equations).
In 1834/35, these conditions were posed in a more clear form by the introduction of the Hamil-
ton function. For a problem without path constraints, with terminal equality constraints, and
with an initial state vector whose components are either fixed or optimizable, the first order
necessary conditions can be formulated as shown in Eqs. (1.13)-(1.20):

Hamiltonian: (1.13)

Dynamics: (1.14)

Adjoint differential equations: (1.15)

Optimality condition: (1.16)

Initial conditions:  given or (1.17)

Terminal constraints: (1.18)

Transversality conditions: (1.19)

Transversality condition for optimizable tf : (1.20)

During the course of the 18th and 19th century, the Euler-Lagrange equations were extended by
the introduction of further necessary conditions, such as the Legendre-Clebsch condition
(1786)

, (1.21)

the Jacobi condition (1837), and the Weierstrass condition (1879). A detailed discussion on
these conditions can be found in Ref. [23]. Except for the Legendre-Clebsch condition and the
first order necessary conditions, none of the other necessary conditions are used in the frame-
work of this thesis.
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An important extension to the indirect methods as far as technical problems are con-
cerned is the Maximum Principle introduced in 1954 by the Russian mathematician Pontrya-
gin. His method allowed the introduction of constrained variables (path constraints), which are
inevitable in the formulation of technical problems. This achievement is also often attributed to
Hestenes (1950) and, together with Pontryagin, to Boltyanskii and Gamkreledize. An excellent
summary of all necessary conditions for a very general class of trajectory optimization prob-
lems can be found in Ref. [23]. According to Ref. [63], precursors of the Maximum Principle
can already be found in a book from Carathéodory, published in 1935. Catathéodory’s
approach was once called the “Royal Road in the Calculus of Variations” (Königsweg in der
Variationsrechnung). Ref. [63] gives an excellent summary of the historical background on the
development and relations between different approaches for solving optimal control problems.

The major drawback of indirect optimization methods is the requirement for a detailed
mathematical analysis of each single problem. Even slight changes in the dynamics or in the
boundary constraints can lead to a completely different solution structure, and often requires a
complete revision of any previous derivation of the necessary equations. On the other hand,
such an analysis yields an in-depth insight into the problem. The availability of additional indi-
cators for the optimality of the calculated solution often leads to even better solutions by
improving an a-priori estimate for the solution structure (e.g. a different burn/coast sequence
for rocket trajectories, see Ref. [39]).

The solution of single-phase trajectory optimization problems with indirect methods
requires the solution of a two-point boundary value problem using an appropriate, multi-
dimensional zero finding algorithm. In a more general setup, a multi-point boundary value
problem has to be solved. Several state-of-the-art algorithms such as BNDSCO (Ref. [59]) are
available for an efficient solution of these problems. When applying these methods, another
major difficulty arises in the requirement of supplying very accurate initial guesses for the
adjoint, or costate, variables . Usually, these variables do not have any physical meaning, but
the trajectory is highly sensitive to even small changes in the costates. This inevitably leads to
solution difficulties when new problems have to be solved and little knowledge is available on
the structure of the optimal solution. A good approach to enlarge the convergence radius is to
use a collocation approach like in Ref. [32] instead of using a multiple shooting approach as it
is used in BNDSCO. But still, such boundary value problems remain difficult to solve as soon
as the dynamic equations involve dissipative terms (see Ref. [23], Chapter 7).

1.4 Direct Trajectory Optimization Methods

With the development of digital computers in the middle of the 20th century, direct trajectory
optimization methods were developed in the 1970s. The beauty of these methods is the possi-
bility of solving very complex problems with a minimum effort of mathematical analysis. In
fact, only the physical equations (1.6)-(1.12) need to be coded by the user of such methods.
However, these methods require an efficient algorithm to solve constrained nonlinear pro-
gramming problems with thousands of variables and (nonlinear) constraints (e.g. Ref. [42]).

Direct trajectory optimization methods are divided into two subclasses: Direct shooting
methods (e.g. Ref. [13]) and direct collocation methods (e.g. Refs. [50], [51]). Both methods

λ



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 31
Introduction - Direct Trajectory Optimization Methods

are approximating the optimal control time history by using control approximations such as
piecewise constant or piecewise linear functions, or even spline approximations. Besides the
control discretization, path constraints are also discretized. The algorithms only satisfy path
constraints at path constraint evaluation points, i.e. they are approximated with a set of interior
point constraints.

Both, the control approximation and the discretization of path constraints, are usually not
critical in the framework of engineering problems. In general, the error made by calculating a
sub-optimal solution due to the discretization is well below the modelling error. The only
exception are differential-algebraic equations (DAEs). When working with DAEs, an equality
path constraint must be satisfied at each evaluation point of the dynamics.

It can be shown for the limiting case of the direct optimization methods that the gener-
ated solution is equivalent to the solution found by an indirect method (see Section 3.8 and
Refs. [11] Chapter 4.2, [24], [25], and [71]). In addition, there are methods available which can
be used to calculate the time histories of the adjoint variables based on the solution generated
with a direct optimization method (Ref. [71]).

1.4.1 Direct Shooting Methods

Direct shooting methods are based on the integration of the trajectory during the optimization
process. Such an integration is usually performed numerically with standard solvers for initial
value problems (see Refs. [45], [72]). 

Shooting methods are very popular for solving boundary value problems. An early appli-
cation of such methods is to aim a cannon such that the cannonball hits its target, hence the
name “shooting method”. The major problem of shooting methods is a great sensitivity of the
terminal constraints with respect to changes in the initial conditions. A first approach to reduce
this sensitivity is to “shoot” from both sides of the interval and try to match the two trajectories
at an intermediate point. Such methods are sometimes referred to as “shooting to a fitting
point” (Ref. [65]). In order to reduce the sensitivity of the terminal constraints with respect to
changes in the initial conditions even further, multiple shooting points are inserted to restart
the integration at intermediate points (see e.g. Ref. [74]). Such multiple-shooting points also
improve the numerical stability by preventing the growth of the error introduced by poor initial
guesses, discretization or round-off, and propagated by inherent instabilities in the dynamics
(see Ref. [13], p. 242).

One of the first direct shooting methods is described by Brusch in Refs. [20], [21] and
[22] and Hull in Ref. [46]. Direct multiple shooting methods have been proposed by several
authors (see e.g. Refs. [13] (MUSCOD), [49] (STOMP), [50], [70] (PROMIS), [54], [55]
(TOMP)). They are often based on the shooting methods originally developed to solve bound-
ary value problems, but they can also be used in the framework of direct trajectory optimiza-
tion. In the framework of direct shooting methods, the control time histories are discretized
using a parameter dependent control approximation. In addition to the controls, path con-
straints are discretized as well, and they are only satisfied at path constraint evaluation points.

Fig. 1.2 shows a phase discretized for single shooting that includes one state, one control,
and one path constraint. Note that the initial state remains a scalar optimization parameter
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while the control becomes a vector of discrete optimization parameters. The path constraint is
transformed into a vector of interior point constraints. A detailed description of the direct mul-
tiple shooting method implemented in the framework of this thesis is given in Section 2.1.

Fig. 1.2: Discretization of a shooting phase without multiple shooting points

1.4.2 Direct Collocation Methods

In contrast to the direct shooting methods, direct collocation methods are also approximating
the state time histories by using e.g. Hermite-Simpson polynomials. The basics for collocation
methods were first proposed by Dickmanns and Well in 1974 in the framework of indirect col-
location (Ref. [32]). It was extended to a direct collocation method by Hargraves and Paris in
1987 (Ref. [48]) and implemented in their OTIS software (Ref. [60]). More recent implemen-
tations of similar algorithms can be found in Refs. [50], [75], [76] and others. A major
improvement to collocation methods was made by Betts with the introduction of SOCS which
includes an automatic mesh refinement algorithm and an SQP method that is specialized on
solving very large, sparse problems including several ten-thousand parameters and constraints
(see Ref. [11]). The special property of SOCS is that it is not only able to exploit a sparsity pat-
tern in the gradients of the cost function and the constraint vector, but also in the Hessian
matrix. This is achieved by directly calculating the Hessian matrix using sparse finite differ-
encing. The code DIRCOL by von Stryk (Refs. [75] and [76]) also includes an algorithm for
mesh refinement and the possibility of adjusting the position of collocation grid points during
the optimization such that the discretization error is equidistributed.

The major advantages of using direct collocation methods in comparison to a direct mul-
tiple shooting method are a much better run-time performance as long as a relatively small
number of collocation intervals is used and a larger convergence radius. The latter advantage
can be attributed to the fact that a direct collocation method can be seen as an implicit integra-
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tion of the dynamic system, while multiple shooting methods are using explicit integration for-
mulas such as a Runge-Kutta method. In that sense, collocation methods are usually using
many more “multiple shooting points” (in the sense of collocation intervals) than a multiple
shooting method.

It is worth noting that direct collocation methods offer a convenient way to deal with
optimization problems that involve differential-algebraic equations (see Ref. [11], p. 69ff)
since it is possible to place a path constraint evaluation point at the exact same locations where
the dynamics are evaluated. Such a consistent node placement is not possible when direct mul-
tiple shooting methods are used that involve an integration method with step-size control.

1.5 Problems with the Current Methods

One of the major advantages of using multiple-shooting methods is the possibility of running
them with an ODE solver that includes a step-size control algorithm. Therefore, the algorithm
is almost independent of the discretization grid and will, if it converges, at least deliver a sub-
optimal solution. Using the computed control-time history of a converged solution in a simula-
tion will always deliver a feasible trajectory which satisfies all boundary conditions and the
path constraints at the path constraint evaluation nodes. However, the integration of the
dynamic equations requires a lot of computational effort, especially due to the numerical calcu-
lation of the gradients which are required by the SQP methods for solving the NLP problem.
The exact distribution of the run-time required for gradient calculation and other tasks in a tra-
jectory optimization method cannot be generalized, but it is usual for direct multiple shooting
methods that around 70% of the total execution time is spent for gradient calculations.

When using a direct collocation method, the trajectory is not integrated with an ODE
solver with step-size control. The direct collocation approach can be regarded as an implicit
integration of the trajectory without step-size control. For most aerospace applications, the rep-
resentation of state time histories using Hermite-Simpson polynomials is fairly accurate even
when only a few collocation intervals are used. Therefore, fewer evaluations of the dynamics
are required during the optimization process and the run-time critical part of collocation meth-
ods is shifted towards the routines dealing with vector and matrix algebra.

Fig. 1.3: Verification of an optimization result generated with a collocation method

The major drawback when using direct collocation methods is the possibility that the con-
verged solution does not reflect the physical behavior of the dynamic system. However, the
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solution can be verified by taking only the computed control time history for a simulation run
which integrates the trajectory with an ODE solver that includes a step-size control (see
Fig. 1.3). If the resulting simulation run does not satisfy the path and boundary constraints any-
more, additional collocation intervals need to be inserted. However, this can be very tedious to
do if certain parts of a trajectory involve large changes in the dynamics. Such regions require
many collocation intervals, thus leading to many additional parameters and constraints (see
e.g. Ref. [11]).

A typical example problem is a rocket ascent that involves solid rocket boosters (SRBs).
Such SRBs usually have a predefined, time-dependent thrust and massflow profile. Both,
thrust and massflow, may vary significantly during the ascent, thus leading to significant
changes in the dynamics (see Section 2.7.2 for an example). If the collocation interval bound-
aries are not placed exactly on the data points of the SRB profiles, the Hermite-Simpson
approximations of the state-time histories may be completely wrong when large collocation
intervals are used.

While the problem arising with time-dependent SRB profiles can be reduced by selecting
an appropriate collocation grid, similar problems will arise if the aerodynamic coefficients of a
vehicle vary significantly with Mach number and/or angle of attack. Such dependencies cannot
be reflected in a fixed collocation grid, since the time histories of Mach number and angle of
attack may change significantly during the course of the optimization process.

1.6 Design of a New Trajectory Optimization Method

The main goal of this thesis is to eliminate the major drawbacks of all the trajectory optimiza-
tion methods mentioned above by introducing a combination of direct multiple shooting and
direct collocation in a single optimization algorithm called CAMTOS (Collocation and Multi-
ple Shooting Trajectory Optimization Software). Each phase of a multi-phase trajectory opti-
mization problem can be discretized with a different transcription method. In addition, an
indirect method specialized for rocket trajectories is introduced which can be used in combina-
tion with the direct optimization methods for exo-atmospheric, finite-thrust maneuvers.

Fig. 1.4: Structure of GESOP including the new CAMTOS optimizer
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As shown in Fig. 1.4, CAMTOS is completely integrated into the Graphical Environment for
Simulation and Optimization (GESOP, see Ref. [40]). Since this environment also includes a
direct multiple shooting algorithm (Parameterized Optimal Control using Multiple Shooting,
PROMIS) and a direct collocation method (Trajectory Optimization by Direct Collocation,
TROPIC), a direct comparison with these methods can be performed.

Since CAMTOS is completely embedded into the GESOP software, it also uses the
GESOP model interface. Therefore, all models which are currently available for GESOP can
also be used with CAMTOS. Most comparisons presented in the following chapters are per-
formed by using the Aerospace Trajectory Optimization Software ASTOS, which represents a
completely data-driven model for GESOP, specialized in modelling launcher, re-entry, and
orbital transfer missions. In addition, the indirect method is implemented in the ASTOS soft-
ware in order to use it in combination with the direct methods (see Section 4).

While CAMTOS currently relies on the SQP solver SNOPT (Ref. [42]) for solving the
resulting NLP problem, the remainder of the software is coded in Ada95. This modern comput-
ing language allows for a structured, modular, and object-oriented design of the software.
Thereby, readability, maintainability, and extensibility of the resulting algorithm is greatly
improved. By the specification of very general and generic interfaces to ODE solvers, colloca-
tion schemes, and NLP solvers, it becomes an easy task to extend the software with new mod-
ules in future versions.

The hybrid approach of combining an indirect method with a more or less direct
approach can also be found in papers from Goodson, et al. (Ref. [43]), and Hanson and Duke-
man (Ref. [47]). These papers describe the optimization of orbit transfer missions involving a
large number of burns. The finite thrust arcs are optimized one-by-one by using an indirect
method and a two-point boundary value problem solver. In an outer loop, the orbital parame-
ters of the coast arcs connecting the single burn arcs are optimize such that a performance
index is minimized. The approach used in this thesis is a more integrated approach in which all
parameters are optimized at the same time, avoiding the necessity of an outer loop.

The following chapters discuss the details of each of the elements of the new trajectory
optimization software. Chapter 2 describes the design and implementation issues of the direct
optimization method. Chapter 3 deals with the design and implementation of the indirect
method for thrust arcs in vacuum. Chapters 4 and 5 are example applications and contain
numerical results for the combination of the direct and indirect method as well as for the com-
bination of direct collocation and direct multiple shooting. Conclusions are made in Chapter 6.
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2 The Direct Trajectory Optimization Method

“The optimizer exploits the weakness of your model.”
Henry J. Kelley

This chapter gives a detailed description of the direct optimization method that is developed in
the framework of this thesis. Due to the combination of a direct multiple shooting approach
with a direct collocation approach, the resulting optimization program is called Collocation
and Multiple Shooting Trajectory Optimization Software (CAMTOS). In CAMTOS, a differ-
ent discretization method can be selected for each single phase, i.e., some phases can be dis-
cretized using direct collocation while others can use a direct multiple shooting approach. If a
closed form solution for the propagation of the state vector is available, it is also possible to
avoid any discretization and insert an analytical phase which directly propagates the state time
histories without any numerical integration.

For most technical problems it is essential that discontinuities in the state time histories
can be handled. An example for such a discontinuity is a mass-drop during a launch vehicle
ascent mission. Such problems are called multi-phase or multi-stage problems. For a detailed
discussion on the formulation of such problems the reader is referred to Ref. [50]. Without any
loss of generality, only single-phase problems will be discussed in the majority of the follow-
ing Sections. However, this discussion is extended to multi-phase problems by introducing
phase connect conditions between the different phases in Section 2.5.

After giving details on both, the direct multiple shooting and the direct collocation
method, some overall implementation issues are discussed.

2.1 The Direct Multiple Shooting Method

As it is already mentioned in the introduction, one basic problem of shooting methods is their
great sensitivity of the final states of a trajectory with respect to small changes in the initial
states and controls. During the optimization process this may lead to numerical problems when
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the initial guess is not accurate enough. The numerical integration fails or numerical overflows
may occur due to the parameter changes performed by the optimization method.

In general, there are two possibilities to handle this difficulty. First, a better initial guess
can be constructed. However, this is often very tedious or even impossible to do within a rea-
sonable timeframe. A better approach is to improve the stability of the optimization algorithm
by introducing intermediate guesses for the states and restart the integrator at these multiple-
shooting points. Of course, such intermediate states must be optimizable parameters, and addi-
tional constraints must be introduced to the problem to ensure a continuous trajectory once the
optimizer is converged. These constraints are called continuity conditions or defects
(Ref. [11]).

2.1.1 Discretization of a Multiple Shooting Phase

The multiple shooting approach is shown in Fig. 2.1 for a phase with one state. Note that the
scalar optimization parameter x0 is replaced with a vector of optimization parameters x that
includes the guesses for the intermediate states. In addition, the defects or continuity condi-
tions  are introduced.

Fig. 2.1: Application of multiple shooting to a phase with one state

The continuity conditions are formulated as

, (2.1)

where ta is the initial time of the current shooting interval and tb is the final time of the shoot-
ing interval.

When selecting an appropriate control approximation, the convergence behavior can be
improved by selecting an approximation which has a local behavior. I.e., changing one param-
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eter of the control only has a local effect on the trajectory. This can be achieved by using a
piecewise constant or piecewise linear control approximation. Experiments using third order
splines as a control approximation often lead to problems where the resulting splines tend to
oscillate significantly, violating the user-specified bounds at the control nodes. Such a behavior
is not acceptable for most technical applications where many control variables, e.g. an engine
throttle setting, are specified with bounds that reflect physical boundaries. Since it is usually
sufficient to use a piecewise linear control approximation in the framework of engineering
problems, only a piecewise constant and a piecewise linear control approximation are imple-
mented in this multiple shooting method. The local influence of the control approximation is
also exploited during the numerical computation of the Jacobian matrix using finite differences
and is required to preserve the sparsity pattern of the Jacobian matrix. Especially the preserva-
tion of a sparse Jacobian matrix significantly increases the run-time performance of the result-
ing algorithm. A very detailed analysis can be found in Ref. [11].

For the numerical integration of a multiple shooting phase, the whole phase is split into
several separate integration intervals. These intervals are derived from the previously defined
multiple shooting, control refinement, and path constraint evaluation grids. Overlaying all of
these grids results in the structure of the integration intervals (see Fig. 2.2). In order to avoid a
change in the initial and final times of each integration interval, the whole phase is normalized
in time such that the initial normalized time is zero and the final normalized time is one. The
required transformations are

 and . (2.2)

Note that this transformation also requires a change in the definition of the dynamics and the
Lagrange cost:

(2.3)

(2.4)

Initial and final phase times need to be regarded as additional optimization parameters, just
like the design parameters. The advantage of introducing a normalized time  is that the inte-
gration grid does not change on this normalized time scale when the phase times t0 and tf are
changed. This becomes important when calculating numerical gradients with slightly per-
turbed trajectories. The integration methods need not deal with changes in the integration inter-
val length and can use the same step-size sequence (in normalized time) as for the reference
trajectory.
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Fig. 2.2: Relation between discretization grids and integration intervals

By arranging constraints and parameters in a convenient order, the corresponding Jacobian
matrix has a block diagonal structure as shown in Fig. 2.3 for a phase with one multiple shoot-
ing point. Note that the optimizable real parameters and phase times are duplicated at each
multiple shooting point and connected to the next shooting interval with the corresponding
continuity conditions. This method will produce a block diagonal structure for the Jacobian
matrix. Such a structure greatly simplifies the construction of the associated sparsity pattern.

Fig. 2.3: Sparsity pattern of the Jacobian matrix in a multiple shooting phase

2.1.2 Integration Methods

The core part of any multiple shooting optimization method is, besides the NLP solver, the
integration method that is used to propagate the states. Special care needs to be taken in order
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to be able to calculate gradients of all constraints w.r.t. variations in the optimization parame-
ters.

PROMIS (Ref. [51] and [70]) is equipped with a special Runge-Kutta 4/5 integration
method which is using a so-called “interior differentiation” technique (see Ref. [70], p. 10, and
Ref. [45], p. 183). Such an implementation is highly specialized and complicated in data man-
agement, since all derivatives must be calculated in parallel to a new reference trajectory.

Ref. [45], p. 183, shows an easy way to simplify the construction of derivatives by using
an integration method with step-size control to compute a new reference trajectory and saving
the generated step-size sequence for later use. Once parameters are perturbed to compute the
cost and constraint derivatives, the trajectories are re-integrated using the same integration
method without step-size control, but with the same step-size sequence that is used for the ref-
erence trajectory. Ref. [45] shows a nice example for the effects caused by a step-size control
algorithm during the computation of perturbed trajectories. The dynamic system used is a so-
called Brusselator, modeled by the equations

, (2.5)

where b can be regarded as an optimizable parameter. y is the value of the states at t = 20 when
Eq. (2.5) is integrated from t = 0 with the starting values x0 = [1.3 b]T. Fig. 2.4 shows a com-
parison of the computed gradients  with and without step-size control. Note that the
numerical integration accuracy is the same for both cases, and  is set to . Freezing the
step-size sequence for the gradient calculation is clearly giving better results.

The approach of freezing the step-size sequence gives the same good quality for the
derivatives as the more complicated “interior differentiation”. The important factor is, that the
gradient of the actually used integration method must be computed. If perturbed trajectories
are also computed with a step-size control, this may lead to a completely different step-size
sequence, generating inconsistent gradients.

Three different integration methods have been implemented for CAMTOS in the frame-
work of this thesis: a Runge-Kutta 2/3 method, a Runge-Kutta 4/5 method, and an integration
method according to Paus (Ref. [61]). A detailed description for each of the methods can be
found in Appendix A.

x·1

x·2

1 x1
2
x2 b 1+( )x1–+

bx1 x1
2
x2–

=

y∂ b∂⁄
∆b 10 4–



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 42
The Direct Trajectory Optimization Method - The Direct Multiple Shooting Method

Fig. 2.4: Gradient computation with and without stepsize control

2.1.3  Comparison of the Integration Methods

A detailed analysis of the computational performance of the Paus integration method can be
found in Ref. [35]. It turns out that the integration methods Runge-Kutta 2/3 and 4/5 are clearly
superior when they are compared to the Paus method in a general setup like CAMTOS. How-
ever, Paus has shown in Ref. [61] that the algorithm can be tuned to very specific models by
exploiting sparsity patterns in the dynamics and writing specialized code (including e.g. loop
unrolling) for a specific application. It should also be noted that, for some specific applica-
tions, the required system matrices A and B can be computed along with the system dynamics
with only slightly added labor. Although this is useful for a special guidance application
where only small perturbations occur and the same mission only needs to be re-optimized,
starting from a very good initial guess, such a setup is not applicable to a general optimization
algorithm like CAMTOS.

Another major drawback of the method of Paus is a fairly large memory consumption
due to the storage of many matrices at each integration step. For dynamic systems with many
states such an approach will easily run into problems with memory limitations and the sparsity
patters in the linearized dynamics should be exploited.
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The best performance for all of the problems investigated in the framework of this thesis
is shown by the Runge-Kutta 4/5 method. Since this method is also able to handle mildy-stiff
problems efficiently, it is the default integration method for multiple shooting phases.

2.2 The Direct Collocation Method

The direct collocation method implemented in CAMTOS is based on Refs. [11], [12], [48],
[50], and [51]. Slight modifications have been performed to the discretization of the optimal
control problem in order to allow for a piecewise constant control approximation. However, it
turns out that these modifications also improve the convergence behavior of the algorithm sig-
nificantly when a piecewise linear control approximation is used. This section gives a detailed
discussion on the different elements of the direct collocation method and discuss the advan-
tages compared to earlier implementations.

2.2.1 Discretization of a Collocation Phase

When using direct collocation, no control refinement points can be defined. The reason for this
is the assumption of a piecewise linear or constant control within one collocation interval.
Since the state time histories are approximated by using polynomials within one interval, it is
necessary to split the whole phase into several smaller collocation intervals.

In order to allow for discontinuities in the control between the collocation intervals, each
of the boundary points includes two optimization parameters for each control: a left-hand and a
right-hand control value (see Fig. 2.5). If a control function has to be continuous, an additional
control continuity constraint is introduced to the problem. This approach increases the number
of parameters and constraints, but it is found that this also improves the convergence behavior
of the optimization method significantly (see Ref. [38] and Section 2.7.2).

Assuming that a collocation phase consists of three collocation intervals, the sparsity pat-
tern of the corresponding Jacobian matrix is shown in Fig. 2.6. While other approaches usually
arrange path constraints such that they create a horizontal block after all the defects (see e.g.
Ref. [48]), CAMTOS groups the path constraints together with their corresponding collocation
intervals. Such an approach preserves a block diagonal structure of the Jacobian matrix. In
addition, it also simplifies the generation of the corresponding sparsity pattern data.

In contrast to the multiple shooting method discussed in Chapter 2.1, optimizable phase
times and real parameters are not duplicated for each collocation interval. Although such an
approach would lead to the same type of block diagonal structures as it was already con-
structed for the multiple shooting method, it can easily produce hundreds of additional param-
eters and constraints. This would easily lead to problems with the memory consumption of
SNOPT, since the internal approximation of the Hessian matrix always produces a dense
matrix. If this matrix becomes too large, hardware memory limits are easily exceeded.
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Fig. 2.5: Discretization of a collocation phase

Fig. 2.6: Sparsity pattern of Jacobian matrix in a collocation phase

2.2.2 State Approximation Using Hermite-Simpson Polynomials

The method of collocation using Hermite-Simpson polynomials was first described in the
framework of the solution of optimal control problems with indirect methods by Dickmanns
and Well (Ref. [32]). Later, Renes (Ref. [67]) proposed a direct collocation method which used
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the spline coefficients as optimization variables. However, he did not give any numerical
results. Hargraves and Paris (Ref. [48]) were the first to publish numerical results on a direct
collocation method using Hermite-Simpson polynomials for approximating the state time his-
tories. Their implementation is called OTIS (Ref. [60]).

The basic idea behind this collocation method is to approximate the state time histories
using a polynomial representation for the states such as

. (2.6)

In case of a Hermite-Simpson polynomial and a scalar for xc, the coefficients C0 through C3
can be calculated with the state values and the state derivatives at the boundaries of each collo-
cation interval (see Fig. 2.7) as

(2.7)

where h = t2 - t1 is the length of the current collocation interval. Note that

 and . (2.8)

Now, the state in the middle of the collocation interval can be calculated as

(2.9)

and the slope is

. (2.10)

Using Eq. (2.10), the defect  (see Fig. 2.7) can be calculated as

. (2.11)
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Fig. 2.7: State approximation using Hermite-Simpson polynomials

Note that Eq. (2.11) is obtained from Eq. (2.10) by multiplying Eq. (2.10) with h in order to
cancel out h in the denominator of Eq. (2.10). This procedure increases the numerical stability
for small values of h. Also note that Eq. (2.11) can be rewritten as

(2.12)

which is the same expression as given in Ref. [12] and can also be regarded as an implicit inte-
gration formula in case  is set to zero (also see e.g. Ref. [65], p. 132):

. (2.13)

The order of this method is four, i.e. O(h4). Note that all necessary equations derived above can
easily be extended from a scalar form to a vector form by simply applying the scalar equations
to each element of the state vector.

2.2.3 Other Collocation Schemes

The basic strategy presented in Section 2.2.2 can be used to add other collocation schemes of
different accuracy. Several possibilities are listed in Refs. [11] and [12]. Besides the Hermite-
Simpson approximation, two other methods are implemented in CAMTOS: a trapezoidal rule
and a Runge-Kutta 4 scheme.

Additional collocation schemes can easily be implemented. The only limitation is that
any collocation scheme may only depend on x1, x2, u1, u2, t1, and t2, since only these variables
are passed over to the corresponding routines.

h/2 h/2

∆12 = ∆(x1,x2,h/2)

xc
xc

f(xc)

x1 x2

f2
f1

.

t2t1

∆12 x2 x1– h
6
--- f1 4f xc( ) f2+ +[ ]–=

∆12

x2 x1
h
6
--- f1 4f xc( ) f2+ +[ ]+=



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 47
The Direct Trajectory Optimization Method - The Direct Collocation Method

2.2.3.1 Trapezoidal Scheme

The trapezoidal rule can be regarded as an implicit integration, too. The defect is calculated as

. (2.14)

The order of the trapezoidal method is two, i.e. O(h2).

2.2.3.2 Runge-Kutta 4 Scheme

The Runge-Kutta 4 scheme can be regarded as a shooting method with exactly one integration
step per interval. The defects are calculated as

, (2.15)

where

(2.16)

and

. (2.17)

The order of the Runge-Kutta 4 method is four, i.e. O(h4), as for the Hermite-Simpson method.
However, computational experience has shown that the Hermite-Simpson method is numeri-
cally more stable which lies in the nature of implicit integration methods.

2.2.4 Handling Path Constraints

As for the multiple shooting methods, path constraints are only enforced at path constraint
evaluation points. In the framework of collocation methods, such points can be placed exactly
at the locations of an evaluation of the dynamics. However, in order to supply the same flexi-
bility already present in the GESOP interface, a user is allowed to manually select the position
of path constraint evaluation points. Therefore, any collocation scheme must supply a routine
which returns the values of the state variables at any intermediate point of a collocation inter-
val.

In case of the implemented collocation schemes it is assumed that the state time histories
can be approximated with third order polynomials as shown in Eq. (2.6). The coefficients are
calculated based on Eq. (2.7). The numerically most efficient way to evaluate the cubic poly-
nomial is to use the Horner scheme. The principle is outlined in Ref. [65], Chapter 5.3:
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(2.18)

Special care needs to be taken in order to ensure numerical stability when the distance ∆t of the
evaluation point to the collocation interval boundaries is small. Evaluating Eq. (2.18) for very
small values of ∆t may lead to larger truncation errors. Therefore, a flag is passed to the corre-
sponding routine which supplies information whether an evaluation of the states should be per-
formed from the left side or from the right side of the collocation interval. An evaluation
should be performed from the left side if t-t0 > h/2 while it should be performed from the right
side when t-t0 < h/2. This logic always yields a  in Eq. (2.18).

2.3 Software Interfaces

A general purpose trajectory optimization software like CAMTOS must provide several differ-
ent interfaces. Since CAMTOS is embedded in the GESOP environment, it also has to reflect
several different interfaces already defined within this environment. Fig. 2.8 shows a general
overview of all relevant software interfaces. The end user is communicating with CAMTOS
through the graphical user interface only, and he also provides the mathematical optimization
model in a general format outlined in Section 2.3.1 and discussed in more detail in Ref. [40].

CAMTOS is also using the TOPS data format (Trajectory Optimization Specification).
This data structure contains all current values of the optimization parameters as well as pro-
gram specific settings. It allows the user to save any optimization result or an intermediate
solution and reload it later to completely restore all program settings.

The interfaces to the user model and to the NLP solver are discussed in Section 2.3.1 and
2.3.2. The generic interfaces to the integration methods and collocation schemes are discussed
in Section 2.3.3 and 2.3.4, respectively. 

Fig. 2.8: Interfaces of CAMTOS
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2.3.1 General User Model Interface

A general purpose trajectory optimization software like CAMTOS must supply a well defined
user model interface. Such an interface must allow the user to formulate the optimization prob-
lem with as little additional information as possible. An ideal setup would be an interface
which only requires the user to code the set of equations shown in Section 1.2, Eqs. (1.6)-
(1.12). The whole transcription of the problem into a nonlinear parameter optimization prob-
lem has to be performed automatically without any user interaction.

Fig. 2.9: User model interface and internal data flow

Since CAMTOS is embedded in the GESOP environment, it makes use of the already existing
GESOP model interface. This interface basically consists of a set of routines which supply the
set of (physical) equations shown in Section 1.2 plus a small overhead called “Description” to
communicate structural information to the underlying algorithms (e.g. number of phases,
states, controls, etc.). In addition to the structural information, the user is required to supply
upper and lower bounds for all optimization variables as well as an initial guess. The initial
guess can either be computed by using a control law in connection with a simulator (see e.g.
Ref. [57]), or by reading existing trajectory data from a file.

2.3.2 General Interface to NLP Solvers

Designing a general interface for an NLP solver is not as easy as for an integration method or a
collocation scheme. In order to maximize the flexibility of this interface, NLP solvers are
coded as sub-packages of the main package that is responsible for all trajectory calculations.
Therefore, NLP solvers can access any structural information that is required.

The main program is calling three routines within the NLP solver interface. The first rou-
tine, “Initialize”, is responsible for the correct initialization of internal NLP solver data. It has
access to the TOPS data structure in order to get the user supplied values for all program
parameters, e.g. the optimization tolerance. It also gets several filenames such that output
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channels for the iteration log or additional, user supplied configuration files can be read. In
case the user has requested a warm start, a previously stored restart record is read and com-
pared to the current problem structure. If there is a mismatch between the restart record and the
current problem (e.g. a different number of parameters or constraints), the program automati-
cally switches back to the cold start mode.

Fig. 2.10: Structure of the NLP solver interface

The second routine, “Run”, starts the optimization process. In case of SNOPT, it calls
SNOPT’s main routine and supplies function pointers to the SNOPT-specific routines for eval-
uating the cost function and the constraint violation vector. These latter routines make use of
an additional support package called “Trajectory”. This package supplies high level routines to
perform all tasks that are required to calculate a reference trajectory and evaluate the cost func-
tion gradient and the Jacobian matrix using sparse finite differencing. The parameter vector as
well as its bounds and additional structural information, such as the sparsity pattern of the
Jacobian matrix, are obtained directly from the main program.

The “Status I/O” package is used to generate output information for the graphical user
interface of GESOP. The status output in the user’s iteration log is very similar to the output of
PROMIS and TROPIC. This way, the user can easily get familiar with the software (see
Fig. 2.11). The output level can be adjusted such that more or less details are shown.

An extremely useful output to evaluate the progress of the optimizer is generated by the
“GISMO I/O” package. The routines within this package generate output files for the Graphi-
cal Iteration Sequence Monitor (GISMO) that is integrated into the GESOP software
(Fig. 2.12). The information is split into two different kinds of output: scalar and grid informa-
tion. The scalar data contains all values that appear once during each iteration, e.g. boundary
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constraint violations, phase times or design parameters. Each NLP solver can add its own set of
additional status values to this set of standard output. In case of SNOPT, all information that is
available within the routine “s8user” is added to this data file (e.g. primal and dual infeasibil-
ity, see also the “Show Item” list in Fig. 2.12). The grid data contains information about all
values at the different grid points, e.g. states, controls and collocation defects. The data is writ-
ten during the optimization process and CAMTOS makes sure that any intermediate cache is
emptied and the data is completely written to the harddisk. Therefore, the display can fre-
quently be updated by GISMO, even while the optimizer is still running.

Fig. 2.11: Iteration log output

Fig. 2.12: Graphical Iteration Sequence Monitor (GISMO)
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Another very important feature of SNOPT is that the optimization process can be stopped after
each major iteration if a “stop-flag” is set to true. This feature enables the user to stop an on-
going optimization process before convergence is achieved or the maximum number of itera-
tions is reached. Such a feature is often very useful to prevent the optimizer from completely
destroying intermediate results in case of numerical problems, or to stop the optimization pro-
cess in case the required numerical tolerances cannot be achieved. Especially in connection
with GISMO this feature can save a lot of time during an optimization process.

In order to support such a “soft stop”, the GESOP user interface creates a file called
“stop_iteration” in the current problem directory whenever the user asks GESOP to stop the
optimization after the next major iteration. Within the “s8user” routine, which is called after
each major iteration from SNOPT, CAMTOS checks if this file is present and sets the stop-flag
of SNOPT accordingly. This approach may not be the most elegant way to perform this task,
but it ensures a source-code compatibility across many target platforms.

2.3.3 General Interface to Integration Methods

As it is mentioned above, a variety of different integration methods is implemented in the
CAMTOS software. However, it is easy to include additional methods due to a simple software
interface which is described in more detail in this section.

The basis for the implementation of any integration method is a generic definition of an
integrator interface. This interface consists of two subroutines and one integrator specific data
record. In Ada95, this interface is specified with a specification file including so-called
abstract record types and subroutines (see Ref. [7], chapter 13.3). In terms of object-oriented
programming, this can be seen as the definition of an abstract root-class.

Fig. 2.13: Structure of the general integrator interface
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The beauty of this approach is that the main program need not know anything about the details
of the available integration methods. When new methods are introduced, only a few small
changes have to be made in the initialization routine of the main program to include the new
integration method. All other subroutines are using the generic integrator interface only, and
the Ada95 compiler will automatically make sure that the correct routines are called during
run-time (see Fig. 2.13).

Each integration method is built on top of this basic declaration and is allowed to extend
the basic integrator data record with any additional information required. Usually, it becomes
necessary to include a dynamic list in this data structure in order to store the step-size
sequence. However, in case of the Paus integration method it also becomes necessary to store
the required matrices.

As it is mentioned above, two routines need to be coded for each integration method. The
first routine, “Integrate”, is called when a new reference trajectory is generated. It is expected
that this routine initializes the integrator specific data structure and integrates the trajectory
using a step-size control algorithm. Therefore, the following parameters are passed to this rou-
tine:

1. initial state vector
2. initial control vector
3. final control vector
4. real parameter vector
5. array of flags marking optimizable real parameters
6. initial (normalized) time of integration interval
7. final (normalized) time of integration interval
8. initial phase time
9. final phase time
10.flags indicating optimizable phase times
11.integrator specific data structure
12.values for required relative and absolute tolerance

The routine is expected to return

1. the state vector at final time and
2. an initialized (or updated) integrator specific data structure.

Note that CAMTOS is calling the integration routines with normalized times (see Section 2.1),
i.e. that these normalized times will not change during the optimization process. However, the
initial and/or final phase times may change and should be treated as additional optimization
parameters if necessary. Such an approach simplifies the construction of a routine for calculat-
ing perturbed trajectories, because the integration grid generated for the reference trajectory
does not shift in (normalized) time when the phase times are perturbed. It is also the reason for
the introduction of the additional derivatives ,  in the Paus inte-
gration method (see Section A.3).

All integrator routines have access to a package that includes routines to evaluate the
right-hand side of the dynamics as well as its derivatives (“Right_Hand_Side” and
“RHS_Deri”, respectively). The method of supplying a package instead of passing function
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pointers is advantageous, because future enhancements to this interface can easily be per-
formed without effecting existing integration methods. If new integration methods, e.g. an
integrator that includes event trapping, require additional routines from the user, these routines
can easily be included in the integrator model package in addition to the already existing rou-
tines. This process does not effect any other areas of the code.

The second routine, “Integrate_Perturbed”, is called during the calculation of the numer-
ical derivatives for the Jacobian matrix and the performance index gradient. Therefore, it only
gets a reduced set of inputs:

1. initial state vector
2. initial control vector
3. final control vector
4. real parameter vector
5. initial (normalized) time of integration interval
6. final (normalized) time of integration interval
7. initial phase time
8. final phase time
9. integrator specific data structure

The only output expected from this routine is the final state vector. No changes must be made
to the integrator specific data structure. Any implementation must ensure that the second rou-
tine performs exactly like the first routine if it is called with the same input values. In addition,
it should use the same algorithmic steps as were used for generating the reference trajectory
when it is called with slightly perturbed input values. I.e., it should serve as a “consistent func-
tion generator” as it is required for the computation of numerical gradients (see Ref. [11] and
[45] and Section 2.1.2).

2.3.4 General Interface to Collocation Schemes

The general structure of the collocation interface is very similar to the interface for integration
methods discussed in Section 2.3.3. The basic collocation interface consists of four subroutines
and a method-specific data structure. Again, an abstract specification of this interface is imple-
mented, and any real implementation of a collocation scheme is derived from this package (see
Fig. 2.14 and Ref. [7], Chapter 13.3 for details).

The method-specific data array should hold any data items which are required to com-
pute information on perturbed trajectories or intermediate states. The procedure
“Init_Colloc_Data” is used for the initialization of this data structure and is called once for
each collocation interval before the optimization starts.

A second subroutine, “Copy_Colloc_Data”, has to be supplied to copy this data structure
to a corresponding backup. This is required during the gradient calculation, and since the main
program does not have any knowledge on the type of data contained in any method-specific
data structure, each collocation method must supply a corresponding “copy” subroutine. Such
a routine is not required for the integration methods since only the initial states need to be
stored in a backup for the multiple shooting methods. Collocation methods, however, often
require additional information to be stored during the calculation of perturbed trajectories.
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Fig. 2.14: Structure of the general collocation method interface

The third subroutine, “Constr_Violation”, is responsible for calculating the defects. Therefore,
it gets a number of input arguments as there are:

1. initial state vector
2. initial control vector
3. initial time of collocation interval
4. final state vector
5. final control vector
6. final time of collocation interval
7. real parameter vector
8. length of collocation interval
9. flag indicating the existence of Lagrange cost
10.flag indicating if changes on left, right, or both sides of the interval have

occurred
11.method-specific data structure

The routine is expected to return

1. an updated method-specific data structure (if required),
2. Lagrange cost (if present), and
3. vector of defects.

Note that for collocation phases, the interval boundaries are not normalized in time. Computa-
tional experience with this approach has shown that such a normalization will in general cause
a degraded performance of the overall algorithm for phases with a long duration. This is
caused by a significant increase in the numerical round-off errors, because the length of the
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collocation intervals can get very small in terms of normalized time. Similar effects have also
been observed in the framework of branching with normalized times (see Ref. [36]).

On the other hand, the use of “real” time is causing an “accordion”-like grid-point move-
ment in case that the initial and/or final phase times are optimizable (see Ref. [11], p. 92).
Therefore, it is often useful to artificially insert phases with fixed initial and final times to
reduce the number of moving grid-points during the optimization process (see Fig. 2.15).

Fig. 2.15: Accordion-like grid-point movement when final time is changed

In case the current phase also involves the computation of a Lagrange cost (integral cost), the
collocation method is also expected to return the integrated value of this function over the cur-
rent interval. The initial value can be set to zero since the main algorithm will later compute
the sum over all collocation intervals. Computation of the Lagrange cost within a collocation
interval should be based on a simple quadrature formula, such as Simpson’s method which is
used by all fourth order collocation schemes currently implemented in CAMTOS:

(2.19)

Note that L usually does not only depend on time, but also on the state, control, and real param-
eter vectors. Especially the state and control vectors must be computed properly in order to
evaluate  correctly. If such an intermediate state is not available (e.g. in case of
a trapezoidal discretization), a lower order quadrature formula, such as the trapezoidal rule, is
used:

(2.20)
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An important performance issue for computing the defects is the fact that the main program
also supplies a flag which indicates on which side of the collocation interval changes have
been performed. During the generation of a reference trajectory, this flag is always set to
“both”. However, during the calculation of the Jacobian matrix and the performance index gra-
dient, it may be set to “left” or “right”, according to the current perturbations. Therefore, sev-
eral evaluations of the dynamics can be omitted if such values are stored in the method-specific
data structure during the calculation of a reference trajectory (or whenever the flag is set to
“both”), and if they are reused whenever possible.

The last routine, “Intermediate_States”, is expected to return the state vector at a specific
time within a collocation interval. As an input it gets

1. distance to the interval boundary
2. flag indicating if the evaluation has to be performed from left or right side of

the collocation interval
3. the method-specific data structure

and it is expected to return the state vector. “Intermediate_States” is called for evaluating path
constraints within a collocation interval.

2.4 Implementation Considerations

When implementing any complex software it is obvious that the resulting source code should
be well commented and as readable as possible. Especially in highly numerical applications
such as a trajectory optimization method, it is very beneficial to use a code profiler in order to
investigate the run-time performance of the different code sections. It is a well know fact that
the run-time performance of a software code can be significantly improved by improving only
a few routines which are frequently called during the execution.

In case of CAMTOS, these “bottle-necks” are the integrators in case of the multiple
shooting method, and the matrix and vector operations in case of the collocation method. In
addition, the calls to the user supplied model routines, such as the dynamics and constraint
evaluation routines, must be minimized. Especially when the ASTOS model is used and exten-
sive data tables must be interpolated, most of the run-time is spent for evaluations inside the
user model.

In order to improve the maintainability and enhanceability of the software, a straight-for-
ward implementation is usually preferred in those parts of the code that are not time critical.
Routines that involve some “numerical tricks” are equipped with extensive comments and ref-
erences to the original sources of the applied methods and algorithms.

2.4.1 Roundoff and Truncation Errors

One of the major problems in numerical computations are roundoff errors. Roundoff errors are
associated with the computer hardware and the way floating-point numbers are represented. In
Ref. [65], Chapter 1.3, a short but very comprehensive overview on this topic can be found. It
also gives some formulas to estimate the overall roundoff error after N arithmetic operations:
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(2.21)

where  is the machine accuracy. However, it is also mentioned that roundoff errors often
tend to accumulate preferentially in one direction, leading to an overall error of the order

. (2.22)

It is important to understand that  is not the smallest floating-point number that can be rep-
resented on a machine. However, it is the smallest value that can be added to the floating-point
value of one that still yields a change in the least significant bit of the mantissa. Any arithmetic
operation can be thought of introducing at least an error of . However, some operations tend
to introduce much larger errors, especially subtractions of two numbers in the same order of
magnitude. During such operations, the result will include only the (few) low-order significant
bits in which the two operands differ. It is important to avoid such situations in an optimization
code as much as possible (see also 2.4.3 for a possible workaround).

The second class of error encountered in numerical codes is the truncation error. This
error is not associated with any hardware and will also occur on a perfect computer with an
infinite floating-point accuracy. Furthermore, the truncation error is a characteristic of the
algorithm used. This error especially applies for numerical integration methods or any other
algorithm using a “discrete” approximation to some desired “continuous” quantity.

It is a general rule that there is not much a programmer can do about roundoff errors,
other than choosing algorithms that do not magnify them unnecessarily. On the other hand,
truncation errors can directly be influenced by choosing appropriate algorithms.

In some cases, roundoff and truncation errors can interact. In these cases, an otherwise
attractive algorithm becomes numerically unstable. This means that any roundoff error that is
introduced into the calculation at an early stage is being magnified until it comes to swamp the
true answer. Ref. [65] gives a very illustrative example for an unstable algorithm to calculate
powers of the so-called “Golden-Mean” given as

. (2.23)

Powers of this value can be calculated as

. (2.24)

Thus, knowing the first two values  and  given in Eq. (2.23), the powers of  can be
calculated by using a simple subtraction instead of a more time consuming multiplication at
each stage. Unfortunately, the recurrence in Eq. (2.24) has a second solution, namely

. Since the magnitude of this undesired solution is greater than one, any small
roundoff error introduced into the calculation will grow exponentially. Fig. 2.16 shows that the
recursion works fine for the first 40 iterations on a machine with 64-bit wordlength, and it
starts giving completely wrong results afterwards.
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Such effects need to be avoided especially by the NLP solver that is used. SNOPT, for
example, can be configured such that the approximated Hessian matrix is reset after a certain
number of iterations. In case of CAMTOS, such a reset of the Hessian matrix is forced after
every ten major iterations. If the user supplied optimization model exhibits a lot of numerical
noise, it may be required to reset the Hessian matrix more frequently, e.g. after every five
major iterations. However, the default value of ten is sufficient for all example problems dis-
cussed in this thesis.

Fig. 2.16: Power series of Golden Mean value evaluated with different algorithms

2.4.2  Parameter and Function Scaling

Scaling is essential for solving any practical optimization problem. Even though there exist
some algorithms that are theoretically invariant to scaling, any practical implementation is
more or less sensitive to the scaling of the problem. A very comprehensive discussion about
scaling can be found in Ref. [41], Chapter 8.5.

In the framework of CAMTOS, several “automatic” scaling methods are implemented
which have been found to work very well for the problems encountered during this thesis.
However, the user always has the option of turning off the automatic scaling, thereby supply-
ing a well-scaled problem by himself.
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2.4.2.1 Parameter Scaling

The major goal of the automatic scaling routines implemented in CAMTOS is to transform all
optimization parameters to the same order of magnitude. Two basic schemes are implemented.
First of all, a simple, linear scaling where a scaling factor is computed as

(2.25)

and p0 is the initial value of the parameter to be scaled. In case of a control node at the begin-
ning or at the end of a phase, this scaling factor is multiplied with  in order to reflect the
fact that these control nodes only influence one side of a collocation or shooting interval, while
control nodes within a phase influence the two bordering intervals. The scaled parameter is
calculated as

. (2.26)

The second option for automatic scaling is called “affine” and involves the user-supplied upper
and lower bounds for each parameter. All parameters are scaled such that their scaled values lie
in a range between plus and minus one. Such a scaling method involves a scaling factor

(2.27)

as well as an offset calculated as

(2.28)

where pl and pu are the parameter’s lower and upper bound, respectively. Again, the scaling
factor computed with Eq. (2.27) is multiplied with  in case of control nodes at the phase
boundaries. The upper and lower bounds are set to plus and minus one, respectively. The
scaled parameter is calculated as

(2.29)

Practical experience has shown that the simple linear scaling works very well for all optimiza-
tion problems encountered in the framework of this thesis. The affine approach requires the
user to supply reasonable bounds for all parameters which is sometimes difficult to do. In addi-
tion, the affine approach easily leads to larger round-off errors if there is a large difference in
the magnitudes of the bounds and the parameter value. Therefore, warnings are issued when-
ever the absolute difference between a bound and the original parameter value is greater than
1000.

Both scaling methods are also discussed in Ref. [41], Chapter 7.5.
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2.4.2.2 Scaling of the Performance Index

The performance index is scaled by using its initial value for calculating a scaling factor
according to Eq. (2.30). Note that sc is always set to one if the magnitude of J0 is less than 100.

(2.30)

2.4.2.3 Default Scaling of Constraints

The default scaling for all constraints is based on the initial constraint violation C0. The scaling
factor is computed as

. (2.31)

Note that sc is always set to one if the initial constraint violation C0 is less then 100. A special
treatment is applied for the continuity conditions at multiple shooting points, the defects in col-
location intervals, and for phase connect conditions.

2.4.2.4 Scaling of Continuity Conditions in Multiple Shooting Phases

For the continuity conditions in a multiple shooting phase the scaling factor is calculated as

, (2.32)

where xl and xr are the state values “just left” (the integrated state at the end of the current
shooting interval) and “just right” (the initial state of the next shooting interval) of the continu-
ity constraint, and C0 is the initial constraint violation. However, this scaling factor is only
applied if the denominator in Eq. (2.32) is greater than one. Otherwise, sc is set to one.

2.4.2.5 Scaling of Defects in Collocation Phases

For the collocation method, a similar approach for the scaling is chosen as for the multiple
shooting method connect conditions:

(2.33)

Again, this scaling factor is only applied when the denominator in Eq. (2.33) is greater than
one. Otherwise, sc is set to one.

2.4.2.6 Scaling of Phase Connect Conditions

In case of the phase connect conditions, a scaling factor of
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(2.34)

is applied in case the denominator of Eq. (2.34) is greater than one. Otherwise, sc is set to one.
xr is the initial value of the connected state at the beginning of the next phase,

2.4.3 Selecting the Parameter Perturbation Size for Gradient Calculation

Selecting a parameter perturbation size during the calculation of the Jacobian matrix and the
cost function gradient is based on the simple heuristic

, (2.35)

where  is the machine accuracy (approximately  for a Pentium-III processor
using double precision). Before applying this perturbation, it is made sure that the perturbed
parameter remains within its bounds. In case the upper bound is violated after applying the
parameter perturbation, the perturbation is applied in the opposite direction.

In addition, a numerical trick is employed in order to reduce truncation errors. After the
perturbed parameter is calculated as

, (2.36)

the perturbation used to calculate the gradients is calculated as

. (2.37)

Mathematically, Eq. (2.37) yields the same value as Eq. (2.35), but it is discussed in Ref. [65],
p. 388, that this procedure reduces the finite precision error introduced by the summation in
Eq. (2.36).

In Chapter 8.6.2 of Ref. [41], another procedure for an “Automatic Estimation of Finite-
Difference Intervals” is discussed. However, since the method shown above works very well in
practice, the much more complicated algorithm in Ref. [41] is not implemented.

2.5 Setup of Multi-Phase Problems

For multi-phase problems as defined in Section 1.2, Eqs. (1.6)-(1.12), it is possible to choose a
combination of direct multiple shooting and direct collocation. Each phase may use a different
transcription method. The different phases are connected by using the phase connect condi-
tions in Eq. (1.11) as well as the time connect condition in Eq. (1.12). The different sparsity
patterns are simply patched together, which yields an overall sparsity pattern of the Jacobian
matrix which looks similar to Fig. 2.17.
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Fig. 2.17: Sparsity pattern of Jacobian matrix in a multi-phase problem

2.6 NLP Solvers

Currently, SNOPT 6.1 is the only NLP solver completely integrated in the CAMTOS software.
However, initial experiments have been performed with a constrained simulated annealing
algorithm. Other NLP solvers can be integrated, as long as the general interface defined in
Section 2.3.2 provides enough functionality.

2.6.1 SNOPT 6.1

SNOPT (Ref. [42]) is an SQP method using a BFGS update formula to approximate the Hes-
sian matrix of the problem to be solved. Therefore, SNOPT requires the user to supply routines
that compute the performance index, the constraint vector, and the first derivatives of each of
them. While SNOPT does not exploit any sparsity in the gradient of the performance index, it
does exploit sparsity in the Jacobian matrix. It finds solutions that are locally optimal.

Besides nonlinear constraints, it is also possible to communicate a set of linear con-
straints to SNOPT. However, this feature is not used in the framework of CAMTOS since it
would significantly increase the implementation complexity, reduce generality, and hardly
increases the performance of the SQP method.

According to the SNOPT user manual, the algorithm is suitable for nonlinear problems
with thousands of parameters and constraints, but is not suited for problems with thousands of
degrees of freedom. That means, that for large problems, many constraints and parameter
bounds should be active at a solution. The latter fact makes SNOPT very useful in the frame-
work of trajectory optimization problems, since the continuity conditions and defects form a
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large set of equality constraints that are active at a solution. However, problems may occur
when a problem involves many path constraints that do not become active at the solution.

One important implementation specific detail of SNOPT is that in the final result, the
optimization parameters may be outside their bounds as much as the so-called “Minor feasibil-
ity tolerance”. This fact is important to know and must also be communicated to the end-user
of CAMTOS, since it prohibits a problem formulation, where the parameter bounds reflect the
boundaries of the permissible parameter domain. E.g., the lower state bound for eccentricity
when using Kepler elements for orbit propagation must not be specified as zero since negative
eccentricities do not exist by definition. Before saving a final result, CAMTOS makes sure that
all parameters are located within or at least at their bounds. Corresponding warning messages
are issued if some parameters have been found to be out of bounds.

2.6.2 Other Methods

Initial experiments have been performed with NLP solvers that are able to find a globally opti-
mal solution. Recent developments in the framework of simulated annealing and genetic algo-
rithms have resulted in codes that are able to handle constrained problems as well (see
Refs. [79]-[83]). The beauty of these methods is that they are derivative free and, in addition,
do not require the constraints and/or objective function to be continuous and/or differentiable.

However, both, simulated annealing and genetic algorithms, are computationally expen-
sive. Especially when they are applied in a framework where one evaluation of the perfor-
mance index and constraint vector is dominating any other operation, the specific parameters
of such methods must be tuned in order to reduce the number of function evaluations to a min-
imum.

Due to the serial nature of simulated annealing, it does not seem very promising to use
such an algorithm in the framework of direct trajectory optimization methods for performance
reasons. However, a genetic algorithm may be used if the computation of one population can
be performed in parallel on different processors or computers (see e.g. Ref. [10]).

2.7 Performance of the Direct Optimization Method

In this section, the direct optimization method CAMTOS is compared with the two existing
optimization methods within the GESOP environment: PROMIS and TROPIC. In addition, the
benefits of using a combination of direct multiple shooting and direct collocation is demon-
strated.

2.7.1 Performance of the Direct Multiple Shooting Method

For the performance evaluation of the direct multiple shooting method, a dual payload mission
of the Ariane 5 launcher is chosen. A detailed description of the test case setup is given in
Ref. [6], Appendix A.5. The same test case also serves as a basis for a more detailed investiga-
tion in Section 4 of this thesis.
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Starting from the same initial guess, the mission is optimized using PROMIS/SNOPT
and CAMTOS in a direct multiple shooting setup using the Runge-Kutta 4/5 integration
method. The resulting trajectories show no visible difference (see Fig. 2.18) and the computed
payloads are comparable within the numerical accuracy of 10-5 for the scaled performance
index that is used for this optimization. As shown in Table 2.1, CAMTOS requires a slightly
smaller number of iterations that PROMIS/SNOPT. However, this can easily change when a
different initial guess is used. When looking at a larger variety of test cases, it can be con-
cluded that the performance of PROMIS/SNOPT and CAMTOS using the Runge-Kutta 4/5
method is virtually the same. Since both methods are using the same discretization method and
the same SQP solver, this result shows that the new implementation achieves the same, good
performance as the existing method.

Fig. 2.18: Altitude profile for Ariane 5 dual payload mission

Method Iterations Payload [kg]

CAMTOS/RK45 42 1,986.7
PROMIS/SNOPT 56 1,985.5

Table 2.1:  Computational performance of CAMTOS versus PROMIS
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2.7.2 Performance of the Direct Collocation Method and its Combination with Direct 
Multiple Shooting

In order to evaluate the performance of the direct collocation method, an Ariane 5 mission to a
Molnija orbit is selected from Ref. [6], Appendix A.2. This testcase is fine-tuned for an optimi-
zation with the existing, direct collocation method TROPIC. TROPIC is also using SNOPT for
solving the discretized problem, and the transcription is based on Hermite-Simpson polynomi-
als.

The mission is optimized with TROPIC and CAMTOS using direct collocation with
Hermite-Simpson-Polynomials, starting from the same initial guess. The resulting trajectories
show no difference (see Fig. 2.19). The mission involves a rather long coast arc which makes it
highly sensitive to even small differences in the solution.

Table 2.2 shows that the computed payloads show a small deviation in the range of 5 kg.
This difference is caused by the slightly different transcription methods and could be reduced
by introducing additional collocation intervals into the problem. Note that CAMTOS is used in
a pure direct collocation mode using Hermite-Simpson polynomials (CAMTOS HS), and, in a
second optimization run, the first phase is discretized using multiple shooting with a Runge-
Kutta 4/5 integrator while all other phases are using Hermite-Simpson polynomials (CAMTOS
RK45/HS). The latter setup requires some additional iterations, but it significantly improves
the solution accuracy compared to a pure collocation setup. The reason is that the Ariane 5
boosters follow a predefined thrust profile during the first 123 seconds (see Fig. 2.20). For the
collocation setup, collocation nodes are placed exactly at the data points in order to achieve a
good approximation of the state time histories. When using a multiple shooting method during
this phase, there is no necessity of placing nodes exactly at the data points. The step-size con-
trol within the integration method ensures that this phase is accurately propagated.

Both, the pure collocation setup and the mixed setup, require a significantly smaller
number of iterations than the optimization with TROPIC. The same performance is achieved
when running several other test cases using the direct collocation method of CAMTOS and
comparing it to TROPIC. Since both algorithms are using SNOPT to solve the underlying NLP
problems, it can be concluded that the slightly different transcription of the optimal control
problem that also involves control continuity conditions at the boundaries of each collocation
interval significantly improves the convergence behavior of SNOPT. Even though additional
variables and constraints are introduced into the problem, the run-time performance of CAM-
TOS is between 1.5 and 2 times better than the performance of TROPIC.

Method Iterations Payload [kg]

CAMTOS HS 95 6,916.5

CAMTOS RK45/HS 149 6,921.3

TROPIC 177 6,920.9

Table 2.2: Computational performance of CAMTOS versus TROPIC
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Fig. 2.19: Altitude profile of Ariane 5 mission to a Molnija orbit

Fig. 2.20: Thrust profile of during the first phase of the rocket ascent
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3 Indirect Method for Optimal Thrust Arcs in Vacuum

The main difficulty with these methods is “getting started”, i.e. 
finding a first estimate of the unspecified conditions at one end 
that produces a solution reasonably close to the specified con-
ditions at the other end.
Arthur E. Bryson, Jr., Yu-Chi Ho in “Applied Optimal Control”, Chapter 7.3

One of the most serious drawbacks for the application of indirect optimization methods is the
requirement for an accurate estimate of the initial costates. Once the dynamics involve dissipa-
tive terms such as friction or drag, small errors in the initial costates may produce enormous
errors at final time. It is not unusual that the values at final time, or even earlier during the tra-
jectory integration, exceed the numerical range of the computer (see Ref. [23], p. 214f).

However, it turns out that it is possible to compute the initial costates for optimal thrust
arcs in vacuum fairly easy using almost arbitrary initial guesses. The method applied within
the framework of this thesis is based on Refs. [17], [26], [27], [33], [34], and [37].

3.1 Formulation of Dynamics

The dynamics of a rocket in vacuum can be represented in an inertial, Cartesian coordinate
frame (Fig. 3.1) as

, (3.1)

where G is the gravity acceleration vector, and ib is a unit vector along thrust direction which is
the control vector in this problem. Vacuum thrust T and massflow q may be given as constant

V·
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m·

G T
m
---- ib+

V

q–

=
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values or, in case of solid rocket boosters, as fixed functions of time. For a simple inverse
square gravity law, G can be calculated as

(3.2)

where  is a unit vector along .

Fig. 3.1: Definition of the inertial coordinate frame

3.1.1 Gravity Field with J2 terms

Due to the oblateness of the Earth, the simple inverse square gravity law shown in Eq. (3.2) is
often not accurate enough. Therefore, J2 terms are added to the problem formulation, which
yields

(3.3)

in a local horizontal system L (Ref. [9], p. 407 and Ref. [30], p. 204ff). Other zonal harmonics
such as J3 or J4 are neglected since they hardly have any influence for most central bodies and
missions of a rather short duration of up to a few hours. Eq. (3.3) can be transformed to the
inertial, Cartesian coordinate frame which yields

G µ
r

2
---- iR– G0= =

iR R

Equatorial Plane

Vernal Equinox
= x

North = z

y

R

V ib

G G0
µ
r

2
----

3
2
---J2

rE

r
----- 
  2

1 3sin2δ–( )

0

3J2
rE

r
----- 
  2

δ δcossin
L

–=



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 71
Indirect Method for Optimal Thrust Arcs in Vacuum - Formulation of Dynamics

, (3.4)

where  is a unit vector pointing north and  is the declination (see Fig. 3.2). The terms sin δ
and cos δ can be replaced with

 and . (3.5)

This also cancels out the potential singularity for δ = 90 deg in the last term of Eq. (3.4). Note
that the gravity acceleration only depends on the radius vector. Also note that G has one com-
ponent along the radius vector and one component perpendicular to the radius vector within the
plane of radius and north vector. Using Eqs. (3.4) and (3.5), the gravity acceleration vector can
be rewritten as

(3.6)

where GR is the acceleration component caused by J2 along iR and GN is the acceleration com-
ponent caused by J2 along . GR and GN are defined as

 and (3.7)

with . (3.8)

3.1.2 Altitude over an Oblate Planet

It turns out that the effect caused by the additional J2 accelerations on a launcher trajectory is
fairly small. However, the effect of the Earth’s oblateness on the altitude is much larger. There-
fore, it is important to incorporate the correct calculation of the altitude in any output generated
by such a method. As it is shown in Ref. [30], p. 75, the local Earth radius can be calculated as

(3.9)

where

(3.10)

is the flattening factor, req is the equatorial radius, and rpol is the polar radius. The geometry is
shown in Fig. 3.2.
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Fig. 3.2: Altitude over an oblate planet

Because the difference between  and  is usually very small for low Earth orbits,  in
Eq. (3.9) can be replaced with  which can easily be calculated by using Eq. (3.5). Substitut-
ing  in Eq. (3.9) yields:

(3.11)

An approximation for the altitude can now be computed as

. (3.12)

3.1.3 Including Backpressure in the Thrust Calculation

A small correction to incorporate atmospheric effects on thrust can easily be included in
Eq. (3.1) by changing the thrust calculation to

(3.13)

where Tvac is the vacuum thrust calculated as  (see Ref. [44], p. 165), Ae is the
nozzle exit area, and pa is the ambient atmospheric pressure.

A similar approach can be used to incorporate the aerodynamic effects. The required
equations are shown in Ref. [34]. However, such dissipative terms tend to destabilize the solu-
tion process of the two-point boundary value problem and a special solution process such as a
homotopy method is required to compute the initial costates. Since in the following only thrust
maneuvers in vacuum are discussed, the interested reader is referred to Refs. [33], [34], and
[37] for a further discussion on this topic.
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3.2 Adjoint Differential Equations

Based on Section 3.1, the Hamiltonian can be formulated as

, (3.14)

where L represents the integral part of the performance index

(3.15)

which is minimized. By setting  and  to minimize the fuel consumption, the
adjoint differential equations can be calculated as

. (3.16)

For the simple inverse square law gravity field shown in Eq. (3.2),  yields

(3.17)

where I3 is the  identity matrix.

3.2.1 Adjoint Differential Equations including J2 Terms

After applying some tedious algebra, it can be shown that the derivatives of Eqs. (3.7) w.r.t.
the radius vector can be computed as

(3.18)

and

(3.19)
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where

. (3.20)

3.2.2 Correction for Backpressure Term

If thrust is computed including a backpressure term, the adjoint equations need to be corrected
with additional terms for . Note that the Hamiltonian changes to

(3.21)

where the ambient pressure pa is assumed to depend on altitude only. Applying the chain rule
to construct the derivative for pa w.r.t. the radius vector yields

. (3.22)

Note that

(3.23)

where  is zero for a spherical Earth. In case an oblate Earth model is used, it can be
calculated from Eq. (3.11) as

. (3.24)

The corresponding values for  must be supplied by the atmospheric model.

3.3 Optimal Control

For calculating the optimal control ib it must be noted that ib is constrained to be a unit vector.
Therefore, a path constraint

(3.25)

can be formulated which is adjoined to the Hamiltonian with an associated Lagrange multiplier
 such that
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. (3.26)

Formulating the optimality condition yields

 or . (3.27)

Noting that the Legendre-Clebsch condition is

, (3.28)

the Lagrange multiplier  must be less or equal to zero. Therefore, the control vector ib must
point in the opposite direction of the unit vector along P:

(3.29)

This is a well-known result in the classical literature (see e.g. Refs. [17], [18]). It means that
the body axis (thrust vector) has to point in the opposite direction of the costate vector P,
which is also known as the “primer-vector”. It can easily be seen that the correction for the
backpressure term does not change anything in the derivation of the optimal control vector,
since the magnitude of T does not depend on the controls ib. In Ref. [56] a detailed mathemati-
cal proof for the optimality of Eq. (3.29) is presented.

3.4 Boundary Conditions

In order to correctly formulate an optimal control problem using the indirect approach, the
transversality conditions must be formulated in addition to the initial and final boundary condi-
tions. In the following, we expect the initial position, velocity, and mass to be fixed, and the
final conditions to be specified by a set of terminal constraints. Based on the choice of the ter-
minal constraints, the corresponding sets of transversality conditions are derived.

All transversality conditions are derived for a free final time problem, where the overall
fuel consumption is minimized (L = q, ). Therefore, as long as neither  nor any of the
terminal constraints  depends explicitly on time, the final value of the Hamiltonian must be
zero

. (3.30)

Note that Eq. (3.30) only holds as long as neither any terminal constraint nor the Mayer cost
term explicitly depend on time (see Ref. [23], Chapter 2.8 for a detailed discussion). When no
terminal constraint depends on mass, the final value for  must be zero.
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It is interesting to note that Eq. (3.30) is a very nonlinear equation. Computational expe-
rience has shown that the resulting two-point boundary value problem is hard to solve. How-
ever, Eq. (3.30) is basically only scaling the magnitude of the adjoint vector. Noting that all
transversality conditions (see Sections 3.4.1ff and Appendix C) depend linear on the adjoint
variables, the terminal constraint

(3.31)

can be introduced instead. A similar approach is suggested in Ref. [29], where the first element
of the primer vector is set to one. However, Eq. (3.31) will also work in a very general setup
where the optimal solution may require the first element of the primer vector to be zero. Using
Eq. (3.31) as a constraint yields a two-point boundary value problem which is much easier to
solve numerically. It only implies a positive scaling factor k for the Lagrange cost such that the
Hamiltonian becomes

. (3.32)

For H = 0, the scaling factor k can easily be calculated as

(3.33)

in case it is required at all. However, using Eq. (3.31) instead of Eq. (3.30) will not yield the
correct values for the switching function discussed below because the adjoint variables are
scaled differently (in order to compute corrected values for the switching function, the scaling
factor k needs to be included in the derivation of the switching function). However, the SQP
method will adjust the final time such that the performance index is minimized.

3.4.1 Boundary Conditions for Circular Orbits with a Fixed Inclination

A constraint for the orbital inclination can be formulated as

(3.34)

where

(3.35)

is a vector perpendicular to the orbit plane. The geometry is defined in Fig. 3.3 and Fig. 3.4.
The right ascension of the ascending node is regarded as an optimizable parameter.

In order to specify a circular orbit with the radius rp and an orbital, circular velocity of
vp, three more constraints are introduced as there are
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the magnitude of the final radius vector , (3.36)

the magnitude of the final velocity vector , (3.37)

and the fact that final radius and velocity vector are perpendicular to each other:

(3.38)

Fig. 3.3: Definition of RAAN and inclination

Fig. 3.4: Definition of important vectors
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The latter constraint can be introduced, because a circular orbit does not have a well-defined
argument of perigee. Therefore, an additional constraint can be introduced to completely
define the orbit. Eq. (3.38) can also be seen as a constraint for the final flight-path angle
( ). Note that Eqs. (3.36) - (3.38) can also be used for missions where the target orbit is
elliptical and the attachment point is either apogee or perigee. If Eq. (3.38) is not set to zero but
to a value reflecting the cosine between the final radius and velocity vector, any attachment
point location on an elliptical orbit can be modelled as well. Another option to model any
attachment point location is to insert a coast arc to the perigee (or apogee) point with an opti-
mizable duration.

The transversality conditions to the set of (physical) terminal constraints formed by
Eqs. (3.34) - (3.38) can be derived as

 and (3.39)

(3.40)

where

(3.41)

Further details on the derivation of Eqs. (3.39)-(3.41) are given in Appendix C.2 and
Refs. [33], [34], and [37].

3.4.2 Boundary Conditions for Equatorial Orbits

It turns out that Eq. (3.34) cannot be used in connection with equatorial orbits, because the
associated transversality condition (Eq. (3.39)) shows a singularity in the denominator of

 when the inclination becomes zero and R and V are perpendicular to iN. In this case,
 is perpendicular to if. However, Eq. (3.34) and the transversality condition (3.39) can

be replaced with the two physical constraints

 and (3.42)

. (3.43)

The reason for the problem with i = 0 can be explained by the fact that an equatorial orbit does
not have a well-defined right ascension of the ascending node.
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3.4.3 Boundary Conditions for Elliptical Orbits with a Fixed Argument of Perigee

In case of an attachment to an elliptic orbit at either apogee or perigee, rp and vp have to be
replaced with the corresponding values at perigee or apogee. In this kind of setup, an additional
constraint required for geostationary transfer-orbits can easily be incorporated. The argument
of perigee must be constrained to be  or 180°. For these special values of , the final
radius vector must be perpendicular to the unit vector pointing north (Eq. (3.42)). When using
Eqs. (3.34), (3.36), (3.37), (3.38), and (3.42) as the (physical) terminal constraints, the follow-
ing transversality condition can be derived (see also Ref. [34]):

or . (3.44)

Details are given in Appendix C.3. A more general constraint for the argument of perigee can
be found in Ref. [29]:

 for  and (3.45)

 for  bordering 0° and 180°. (3.46)

These constraints can be simplified further, if the fact that  is taken into
account, since this is ensured when Eq. (3.34) is simultaneously satisfied. When applying this
constraint in addition to the other four terminal constraints (Eqs. (3.34), (3.36), (3.37), (3.38)),
only one additional transversality condition is required:

. (3.47)

The derivation of this equation is shown in Appendix C.4.

3.4.4 Boundary Conditions for Elliptical Orbits with a Fixed Inclination

For elliptical orbits, a more general set of equations can be derived. As far as the inclination
constraint is concerned, Eqs. (3.34)/(3.39) or Eqs. (3.42)/(3.43) can be used as well. However,
a more general set of constraints must be incorporated for constraining perigee radius and
orbital energy of the final orbit. The constraint on perigee radius can be formulated as

(3.48)

ω 0°= ω

v
r
--P

T
iR Q

T
iV–

iN
T

iV( ) Q
T
if( )

iN
T

if

------------------------------+ 0= v
r
--P

T
iR Q

T
iV– i Q

T
if( )tan+ 0=

iR
T

iN if×( )
iN if×

------------------------ ωcos– 0= 0° ω 180°< <

iV
T

iN if×( )
iN if×

------------------------ ωsin– 0= ω

iN if× isin=

0 v
r
--P

T
iR Q

T
iV– i v

r
--P ω Q ωcos+sin 
  T

iftan+=

a 1 e–( ) rp– 0=



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 80
Indirect Method for Optimal Thrust Arcs in Vacuum - Boundary Conditions

where expressions for a and e as functions of R and V are given in Appendix B.3 and B.5,
respectively, and rp is the desired perigee radius of the target orbit. The constraint on orbital
energy can be computed as

(3.49)

where

(3.50)

is the desired orbital energy (see Ref. [30], p. 27) and ad is the desired semimajor axis. Note
that it is numerically not beneficial to substitute Eq. (3.50) into Eq. (3.48) because this would
yield a constraint for eccentricity. In Ref. [33] it is found that such an approach does not
exhibit a good convergence behavior for orbits with small eccentricities. The same problems
are encountered when using the square of the eccentricity or the magnitude of the orbital
momentum vector while the terminal constraint on perigee radius achieves the best conver-
gence behavior for elliptical orbits with a free attachment point.

Deriving the required transversality conditions and eliminating the corresponding
Lagrange multipliers is more complicated in this case. After applying some painful algebra, the
following set of terminal constraints can be derived (for details, see Appendix C.5):

(3.51)

(3.52)

(3.53)

where the values , ,  and  are defined in Appendix C.5.

In Ref. [29] another alternative of formulating the terminal constraints for elliptical
orbits with a free attachment point is mentioned. In that approach, an additional coast arc is
appended after the last burn arc. This coast arc involves an optimizable final time and the ter-
minal conditions are formulated at the end of this coast arc such that the coast arc is forced to
end either at apogee or perigee of the target orbit. Even though this approach exhibits an excel-
lent convergence behavior, it sometimes produces results where the duration of the final coast
arc is negative. This means that the burn out occurs “after” the perigee point. Since negative
phase times are not permitted in the framework of ASTOS, this approach is not investigated
any further. Still, it would easily be possible to append a coast arc after the last burn phase in
order to let the vehicle coast to apogee. However, especially when the target orbit is a GTO,
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this easily introduces a coast arc of approximately six hours duration to the problem, which is
likely to decrease the convergence behavior significantly.

3.5 Optimal Coast Arcs and Switching Function

In order to consider optimal coast arcs, an additional control  is introduced to the system. It
can be interpreted as a throttle setting for the engines and can take values between zero and
one. The Hamiltonian changes to

. (3.54)

The switching function is defined as the partial derivative of the Hamiltonian with respect to
:

(3.55)

In order to minimize the value of the Hamiltonian with respect to , S must be less than zero
during thrust arcs. On the other hand,  must be zero when S becomes greater than zero, which
basically means that the engine must be turned off. Both requirements for S can be used to
detect the desirability of further burn and coast arcs. The special situation of singular arcs with
S = 0, where a throttle setting between zero and one is the optimal solution, is not considered in
the framework of this thesis.

If the system is autonomous, i.e. neither q nor T depend explicitly on time, the Hamilto-
nian is a constant. In addition, H must be zero at final time for a free final time problem. In that
case, the switching function during burn arcs can be rewritten as

. (3.56)

Note that  cancels out and need not be determined during the solution of the optimal control
problem. In Ref. [17], Eq. (3.56) is referred to as the “transversality variable” which has to be
zero at each switching point. It is important to note that Eq. (3.56) is zero during a coast arc
since H and  are zero.

It is shown in the classical literature (e.g. Ref. [17]) that S must be zero at the beginning
and at the end of each coast arc. This yields two additional constraints for the two additional
variables (initial and final time of each coast arc). Note that Eq. (3.56) is not sufficient to deter-
mine the magnitude of the adjoint vectors P and Q, since both appear linear in this equation.
Therefore, it is necessary to use Eq. (3.54) or Eq. (3.55) instead of Eq. (3.56) at least at one
switching point of the trajectory, preferably at the end of a burn arc. It is interesting to note that
Eq. (3.55) can be rewritten as

(3.57)
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and since  and  are zero during a coast arc, the magnitude of the primer vector P at the
beginning and at the end of each coast arc must be equal.

Another important remark concerning the number of burns in an optimal trajectory is
made in Ref. [17] in the framework of a realistic problem statement: once a vehicle has
reached orbital velocity, it is possible to insert a coast arc at arbitrary points during a burn arc.
The vehicle can coast around the Earth once and ignite the engine again after one revolution
with no change in the cost functional at all (assuming a perfect two-body motion). Therefore,
either a limit on the number of burns must be imposed, a constraint on final time, or a non-zero
Lagrange cost must be introduced during coast arcs. In the framework of this thesis it is
assumed that the user limits the number of burns.

3.6 Generating an Initial Guess for the Initial Costates

As it is mentioned above, the two-point boundary value problem resulting for a thrust maneu-
ver in vacuum can be solved for almost arbitrary guesses for the initial costates. One of the few
restrictions is that the initial primer vector P must not be set to a zero vector because the opti-
mal control law relies on the existence of a unit vector along P. Besides the option that the user
supplies his own initial costate guesses, two different costate estimates can be generated auto-
matically.

3.6.1 Ad-Hoc Initial Guess for P and Q

As an ad-hoc initial guess for the initial costates, P0 is estimated to point along the initial, iner-
tial velocity vector such that

. (3.58)

Such an approach is also reported to be successful in Ref. [47]. The initial Q vector is initial-
ized to be perpendicular to P0 within the initial orbit plane. Its magnitude is set to 0.01:

(3.59)

3.6.2 Estimate based on Thrust-Acceleration and Target Radius

In Ref. [78] an approach is presented to calculate the initial costates for an orbital transfer
maneuver between two circular orbits. The approach is using several simplifying assumptions
and yields fairly simple equations for the initial costate estimates. In Appendix D, this
approach is generalized for a non-circular initial orbit. Based on an estimated (constant) thrust-
acceleration  and a target radius rf, the estimates for the initial costates are calculated as

(3.60)
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(3.61)

(3.62)

(3.63)

where  is the ratio between final and initial radius and  is a constant acceleration
given in multiplies of g0. Note that Eqs. (3.60)-(3.63) are given in a coordinate frame where
the x-axis is aligned with iR and the y-axis is aligned with . In order to calculate the cor-
responding vectors P and Q in the inertial coordinate frame, a coordinate transformations must
be performed:

(3.64)

(3.65)

Note that an approximation for the flight time can be calculated as

. (3.66)

It turns out that Eq. (3.66) is a good indicator for showing if the calculated costates are reason-
able enough.

3.7 Solution of the Two-Point Boundary Value Problem

Solving a two-point boundary value problem requires a multi-dimensional zero finding algo-
rithm. One of the most sophisticated, general methods is the code BNDSCO (Ref. [59]), which
is based on a multiple-shooting method. However, the special problem encountered in this
setup can easily be solved using a slightly modified Newton method as described in Refs. [33],
[34], and [37]. The method described there also relies on the almost analytical propagation of
the trajectory using a closed form solution for the propagation of states and costates during
coast arcs, and a closed form solution with a small numerical correction during burn arcs. In
addition, the required Jacobian matrix becomes available in an analytical form as a by-product
of the trajectory propagation and some slightly added labor in the calculation of the terminal
constraints. Details on this approach are given in the references mentioned above.

The same quality of solution can be achieved when the trajectory is integrated with an
ordinary Runge-Kutta 4/5 method, as presented in Section A.2, and applying the same princi-
ple of freezing the corresponding step-size sequence for calculating a numerical Jacobian
matrix (see Section 2.1.2). This greatly simplifies the implementation and the flexibility of the
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whole procedure, and it ensures an accurate trajectory calculation while it hardly decreases the
computational performance of the algorithm.

It also means that the problem can be implemented as a simple GESOP model, and
CAMTOS, or any other optimization method available in this environment, can be used as a
solver for the two-point boundary value problem. The only elements that have to be supplied
by the user are the differential equations (states and costates), terminal constraints, and trans-
versality conditions. The performance index for the SQP method is simply set to zero, since it
is implicitly included in the adjoint differential equations (Lagrange term) and the transversal-
ity conditions (Mayer term).

A nice side-effect of using GESOP is that the user can easily switch between using a
shooting method or a collocation method for solving the boundary value problem. Although
both methods are originally coded as direct optimization methods, they can also be used for the
solution of an indirect problem.

Numerical experiments have been performed in such a setup to verify the performance of
CAMTOS in the framework of solving boundary value problems. It turns out that the perfor-
mance of CAMTOS when solving a boundary value problem is not as good as an algorithm
especially designed for such problems. However, several simple vacuum ascent cases can be
solved.

3.8 Solution in the Framework of an SQP Method

The beauty of having an SQP method available for the solution of a trajectory optimization
problem is that the user can avoid the formulation of transversality conditions if the perfor-
mance index of the SQP method is used instead. A detailed mathematical analysis for this is
given in Ref. [24] with a short summary in Ref. [25].

In such a setup, both, the state and costate differential equations are coded. In addition,
the initial values of the costates  are introduced as optimization parameters for the NLP
method. The value of the cost functional is used as a cost function for the NLP solver. The con-
straint vector  only consists of the physical terminal constraints.

The basic approach to prove the equivalence of this approach and the method discussed
in Section 3.7 is to carefully construct the Karush-Kuhn-Tucker conditions for the resulting
NLP problem. First of all, note that the Mayer term  and the terminal constraints  only
depend on the final states. The final states xf are introduced as additional variables to the NLP
problem. Noting that xf is computed by a nonlinear function , an additional set of termi-
nal constraints  can be introduced, and the Lagrangian for the parameter opti-
mization problem can be formulated as

. (3.67)

 represents the numerical integration of the state and costate differential equations
including the optimality condition. In this setup, xf and  are the parameters to be optimized
by the SQP method. The corresponding Karush-Kuhn-Tucker conditions for this problem are

λ0

ψ

φ ψ

h λ0( )
h λ0( ) xf– 0=

L φ xf( ) νTψ xf( ) λf
T

h λ0( ) xf–[ ]+ +=

h λ0( )
λ0
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 and (3.68)

. (3.69)

Comparing Eq. (3.68) with the transversality conditions for the optimal control problem (see
Ref. [23], p. 89)

(3.70)

shows the equivalence of the obtained solution.

The discussion can be extended to a problem with interior point constraints  at t1.
In such a case, jumps may occur in the costate variables of the optimal control problem. Again,
these jump conditions are already included in the Karush-Kuhn-Tucker conditions when the
problem is solved with an SQP method. Assuming that the intermediate state x1 is calculated
by a nonlinear function  and the final state xf is calculated by another nonlinear func-
tion . The Lagrangian can now be formulated as

. (3.71)

The Karush-Kuhn-Tucker conditions are readily derived as

, (3.72)

, (3.73)

 and (3.74)

. (3.75)

Eq. (3.72) represents the final transversality conditions. If this expression is used for  and hf
is replaced by xf, Eq. (3.73) can be rewritten as

. (3.76)
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Noting that  is the gradient of  with respect to changes in x1 (see
Ref. [23], p. 49), Eq. (3.76) can be written as

(3.77)

which is equivalent to the jump condition in the costates of the optimal control problem (see
Ref. [23], p. 101). This proof can easily be extended to problems with more interior point con-
straints at different times.

If the approach described in this Section is used to formulate a problem including the
adjoint differential equations, it is much easier for CAMTOS to obtain a solution compared to
a setup as a pure boundary value problem. In addition, it becomes possible to construct prob-
lems involving both, direct and indirect phases. An example for this approach is discussed in
Section 4.

3.9 Verification of the Indirect Method

In order to verify the correct derivation of the adjoint differential equations, the optimality con-
dition, and the transversality conditions, all derivatives are checked numerically using MAT-
LAB. In addition, a simple GESOP model is coded which models a one-stage rocket ascent
from 30 deg northern latitude to a 200 km, circular orbit over an oblate Earth according to
Appendix E.1 and E.2. The launch mass of the vehicle is 270,000 kg, vacuum thrust is
3,000 kN with a massflow of 600 kg/s. In this setup, a small amount of backpressure, calcu-
lated with a nozzle exit area of 0.9 m2, is also included in order to verify the equations derived
for the backpressure and the altitude calculation over an oblate planet.

The problem is formulated as a two-point boundary value problem including the trans-
versality conditions for circular orbits. The resulting altitude profile is shown in Fig. 3.5. The
trajectory ends at an altitude higher than 200 km because the terminal constraints are formu-
lated such that the magnitude of the final radius vector is the sum of the equatorial radius plus
200 km, while Fig. 3.5 shows the altitude computed according to Eq. (3.12).

The correct implementation of the optimality condition and the adjoint differential equa-
tions can be verified by checking the Hamiltonian. Since the example dynamics is an autono-
mous system, the value of the Hamiltonian must be constant along the trajectory. Fig. 3.6
shows some very small oscillations which are well within the numerical accuracy of the inte-
gration method. In addition, some small jumps can be observed which occur exactly at the
multiple shooting nodes. Therefore, it can be concluded that the implemented equations are
correct. The solution is also verified by comparing it with an equivalent setup where a direct
optimization method is used for the solution. No visible differences can be observed.

It is interesting to note that CAMTOS exhibits a quadratic convergence rate as soon as
the parameter vector comes close to the solution (see Fig. 3.7). Since this example includes a
small amount of backpressure (see thrust profile in Fig. 3.8), the problem becomes very sensi-
tive to the initial guess for the costate vector. When the same problem is optimized without the
backpressure, CAMTOS converges in eight iterations (Fig. 3.9). Therefore, the final imple-

λ+ t1( ) φ xf( ) νTψ xf( )+

λ+ t1( ) λ-
T

– πT N∂
x1∂

--------+ 0=
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mentation of the indirect method in ASTOS does not include the backpressure term and is only
made available for thrust arcs in vacuum.

Fig. 3.5: Altitude profile of indirect rocket ascent example

Fig. 3.6: Hamiltonian for rocket ascent example
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Fig. 3.7: Convergence behavior of CAMTOS for solving a two-point boundary value 
problem that involves dissipative terms

Fig. 3.8: Thrust profile of example rocket ascent including backpressure
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Fig. 3.9: Convergence behavior of CAMTOS for a rocket ascent without backpres-
sure
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4 Example 1: Ariane 5 Dual Payload Mission Analysis

It is true that, on account of the complex nature of the majority of practi-
cal problems in this field, recourse to numerical techniques is usually
inevitable before an acceptable solution is forthcoming, but the analytical
approach is none the less valuable for the following reasons: Experience
teaches us that the form of an optimal trajectory is rarely, if ever, very
critically dependent upon the data of a problem and consequently if, by
making suitable simplifying approximations, the actual problem can be
transformed into an idealized problem whose solution is analytically trac-
table, then this latter solution will often provide an excellent substitute for
the optimal motor thrust programme in the actual situation. All that then
remains to be done is to recompute the trajectory employing this pro-
gramme and taking account of the real circumstances.
D.F. Lawden, Optimal Trajectories for Space Navigation, 1963

The first example problem shows the advantages of using an indirect optimization method for
the identification of possible improvements in the switching structure. In this setup, an
Ariane 5 dual payload mission involving a re-ignitable upper stage is analyzed. While the
lower stage is modelled using the direct multiple shooting method and includes all atmospheric
effects, the indirect method discussed in Section 3 is used for the upper stage burns. The initial
guess is generated by using a sequence of guidance laws for the lower stage, and the ad-hoc
initial guess discussed in Section 3.6.1 is used for the costates in indirect phases. By analyzing
the switching function during the upper stage burns for the original burn-coast-burn sequence,
an improved structure is identified which leads to a significant increase in payload perfor-
mance.
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4.1 Reference Mission Scenario

The objective of this mission is to deliver two payloads into their target orbits. The first pay-
load has a fixed mass of 3,000 kg and is to be delivered into a 600 km circular orbit with 7 deg
inclination. The mass of the second payload is optimizable and is delivered into a modified
geostationary transfer orbit with an apogee altitude of 35,800 km, 7 deg inclination, and
270 deg argument of perigee. The launch site is Kourou. The environment models used for this
mission are given in Appendix E, the data used for the Ariane 5 launcher is given in Ref. [6],
Appendix A.5.

In addition to the payloads’ target orbits, several path constraints must be included into
the scenario. The payload fairing is jettisoned once the heatflux falls below 1,135 W/m2. In
order to demonstrate the applicability of the method in the presence of path constraints, a path
constraint on dynamic pressure of 30 kPa is also included. Finally, a splash-down constraint
for the main tank is required. The main tank is forced to splash-down in a safe distance from
the African coastline into the Indian Ocean. This constraint is approximated by propagating the
orbital elements at burnout of the main tank until this intermediate orbit intersects the Earth
surface. No aerodynamic forces are included for the return path of the main tank.

The first setup for the mission is split into 8 phases as shown in Table 4.1. In order to
avoid a singularity in the initial yaw angle, the mission starts with a vertical ascent phase
where pitch is fixed to 90 deg, followed by a pitch over phase with a linear control law for

Time [sec] Active Prop. Path Constr. Boundary Constr. Remark

1 0 - tf,1
2 x P230

1 x H155
-

h0 = 1 m

 = -52.7686 deg

 = 5.2434 deg

VNorth,0 = 0 m/s

VRel,East,0 = 0 m/s

VRel,0 = 5 m/s

vertical ascent

2 tf,1 - 20
2 x P230

1 x H155
- -

pitch over
pitch plane optimized

3 20 - 129.1
2 x P230

1 x H155
- boosters are jettisoned

4 129.1 - tf,4 1 x H155 - fairing jettisoned

5 tf,4 - 567.764 1 x H155 - H155 splash-down H155 jettisoned

6 567.764 - tf,6 1 x L9 - payload 1 target orbit payload 1 jettisoned

7 tf,6 - tf,7 - - - coast arc

8 tf,7 - tf,8 1 x L9 - payload 2 target orbit -

Table 4.1: Phase structure of the dual payload reference mission scenario

λ0

δ0

q 30kPa≤

Q
·

1135W m
2⁄≤
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pitch. The final pitch value at the end of phase two as well as the plane of the pitch-over
maneuver are optimizable.

Since the target orbit of payload one is a circular orbit, a special set of terminal condi-
tions is applied:

i = 7 deg

r = 6,978.135 km

v = = 7.529 km/s

= 0 deg

This special set of terminal constraints avoids singularities in the constraint derivatives which
would otherwise appear when eccentricity or apogee and perigee radius are used instead (see
Appendix B.6 and Ref. [19], p. 503).

4.1.1 Generating the Initial Guess

The initial guess for this mission is constructed by applying a sequence of guidance laws as
described in Ref. [6] and [57]. The phase structure for the initial guess is shown in Table 4.2.

Time [sec] Active Prop. Guidance Law Boundary Constr. Remark

1 0 - 5
2 x P230

1 x H155
vertical ascent

h0 = 1 m

 = -52.7686 deg

 = 5.2434 deg

VNorth,0 = 0 m/s

VRel,East,0 = 0 m/s

VRel,0 = 5 m/s

vertical ascent

2 5 - 15
2 x P230

1 x H155
final pitch 84 deg -

pitch over

pitch plane optimized

3 15 - 20
2 x P230

1 x H155
constant pitch - pitch constant

3 15 - 129.1
2 x P230

1 x H155
gravity turn - boosters are jettisoned

4 129.1 -142 1 x H155 gravity turn fairing jettisoned

5 142 - 567.764 1 x H155 required velocity H155 splash-down H155 jettisoned

6 567.764 - 857 1 x L9 required velocity payload 1 target orbit payload 1 jettisoned

7 857 - 3710 - - - coast arc

8 3710 - 4400 1 x L9 required velocity payload 2 target orbit -

Table 4.2: Phase structure for the initial guess of the dual payload reference mission scenario

µ r⁄

γ

λ0

δ0

Q· 1135W m
2⁄≤
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As an alternative, an initial guess could also be generated by using the indirect method in con-
nection with a multi-dimensional zero finding algorithm to generate a vacuum ascent. A
detailed discussion of this approach can be found in Ref. [39].

4.1.2 Optimization using CAMTOS

Using the control law sequence of the initial guess phase structure shown above, an optimal
solution including all constraints and atmospheric effects can quickly be generated. All phases
are discretized using multiple shooting with a Runge-Kutta 4/5 integration method due to the
thrust profiles of the solid rocket boosters in the first phases and in order to compute a trajec-
tory of high accuracy. It is necessary to model the upper stages with a shooting method in order
to model the behavior of the costates accurately enough. The switching function as well as the
Hamiltonian are highly sensitive to even small inaccuracies in the numerical integration.
Therefore, many collocation nodes would be required to obtain exact results while the auto-
matic step-size adaption in the shooting method always delivers results that are accurate within
the numerical integration accuracy.

The resulting altitude profile is shown in Fig. 4.1 and Fig. 4.2. The slight drop in altitude
is caused by the oblateness of the Earth. This already has been shown in Ref. [85]. The crosses
in Fig. 4.1 show the phase boundaries while the dashed line is representing the coast arc of
phase 7 and the thin, continuous line is the trajectory of the empty H155 stage until splash-
down.

In order to obtain the switching function, the mission is optimized in a hybrid setup. In
this setup, phases 6 and 8 are using an indirect problem formulation involving the adjoint dif-
ferential equations (see Section 3.2). All the remaining phases are using the direct approach.
Since both indirect phases are outside the atmosphere, the neglection of the atmospheric
effects does not produce any errors. However, the switching function is now available for anal-
ysis. After phase 6, the constraints for the 600 km circular orbit are applied. Such constraints
yield additional jump conditions for the adjoint variables. The formulation of these jump con-
ditions can be omitted, because the initial values of the adjoints in phase 8 are treated as addi-
tional optimization parameters. The SQP method selects all adjoint variables such that the
second payload mass is maximized and the corresponding jump conditions and transversality
conditions are satisfied implicitly due to the Karush-Kuhn-Tucker conditions (see discussion
in Section 3.8).

Fig. 4.3 depicts the value of the switching function during the two upper stage burns. It
can clearly be seen that the first upper stage burn is not optimal since the switching function is
greater than zero. However, the coast arc and the second upper stage burn exhibit an optimal
behavior of the switching function: it is positive during the coast arc and negative during the
burn arc. The large jump in the switching function at the beginning of the coast arc is caused
by the interior point constraints for the circular orbit of the first payload. Even though the cor-
responding jump and transversality conditions are not explicitly enforced during the optimiza-
tion process, they are satisfied in the framework of the Karush-Kuhn-Tucker conditions very
accurately within a numerical accuracy of  (see Section 3.8).10 5–



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 95
Example 1: Ariane 5 Dual Payload Mission Analysis - Reference Mission Scenario

Fig. 4.4 shows the control time histories during the ascent mission. It can be observed
that the vehicle is thrusting with negative pitch during the first upper stage burn. This explains
the behavior of the switching function discussed above. In order to drive the flight-path angle
to zero for the intermediate circular orbit, it would be better to insert a coast arc after the burn
out of the main stage. In the next section, an improved mission profile with such an additional
coast arc is presented in order to obtain an optimal switching function profile. Fig. 4.4 also
shows a small discontinuity in yaw and pitch during the first burn phase at the beginning of
phase 6. This discontinuity occurs when the main tank is jettisoned and is caused by the associ-
ated boundary constraint for the splash-down.

The payload delivered to GTO is calculated as 1,938 kg for this reference mission pro-
file. In order to verify the correct implementation of the costate differential equations and the
optimality condition, the Hamiltonian is plotted during the two indirect phases. Fig. 4.5 shows
a perfectly constant Hamiltonian which only exhibits some small jumps at the multiple shoot-
ing points. These could further be reduced by lowering the constraint tolerance or removing
the multiple shooting points in subsequent optimization runs.

Fig. 4.1: Altitude profile for the dual payload reference mission
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Fig. 4.2: 3D trajectory representation of the dual payload reference mission

Fig. 4.3: Switching function during the upper stage burns of the dual payload refer-
ence mission
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Fig. 4.4: Control time histories for the dual payload reference mission

Fig. 4.5: Hamiltonian during upper stage burns
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4.2 Improved Mission Profile with Two Coast Arcs

The reference mission profile clearly shows a potential for a further payload improvement. As
it is mentioned above, the structure of the switching function during the first burn arc suggests
that an additional coast arc should be inserted into the mission in order to increase the payload
performance. This additional coast arc splits the first upper stage burn into two burns: The first
burn is required to avoid a re-entry of the upper stage due to the splash-down constraint of the
main tank and raises the perigee altitude to at least 200 km. The second burn is used to circu-
larize the orbit for the first payload. Table 4.3 shows the phase structure of the modified mis-
sion.

Since the second upper stage burn is very short, the whole setup is using “normalized
times”. I.e., the flight time is scaled such that each phase has a normalized duration of one. In
addition, real parameters for initial and final time as well as for the phase duration are intro-
duced in each phase. These parameters are associated with constraints such that they hold a
consistent set of time information. A detailed discussion on this approach can be found in
Ref. [36]. Experience has shown that the normalized time approach works best in connection
with multiple shooting methods.

Time [sec] Active Prop. Path Constr. Boundary Constr. Remark

1 0 - tf,1
2 x P230

1 x H155
-

h0 = 1 m

 = -52.7686 deg

 = 5.2434 deg

VNorth,0 = 0 m/s

VRel,East,0 = 0 m/s

VRel,0 = 5 m/s

vertical ascent

2 tf,1 - 20
2 x P230

1 x H155
- -

pitch over

pitch plane optimized

3 20 - 129.1
2 x P230

1 x H155
- boosters are jettisoned

4 129.1 - tf,4 1 x H155 - fairing jettisoned

5 tf,4 - 567.764 1 x H155 - H155 splash-down H155 jettisoned

6 567.764 - tf,6 1 x L9 - hperi > 200 km target for first orbit

7 tf,6 - tf,7 - - - coast arc

8 tf,7 - tf,8 1 x L9 - payload 1 target orbit payload 1 jettisoned

9 tf,8 - tf,9 - - - coast arc

10 tf,9 - tf,10 1 x L9 - payload 2 target orbit -

Table 4.3: Phase structure of the modified dual payload mission scenario

λ0

δ0

q 30kPa≤

Q
·

1135W m
2⁄≤
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4.2.1 Generating the Initial Guess

Just as for the reference mission, the initial guess for the modified mission scenario is gener-
ated by using a sequence of guidance laws. It can be observed that generating such a sequence
from scratch becomes more and more difficult once additional coast arcs are introduced. A
good approach for such cases is to optimize submissions first and patch the results together for
initializing the overall mission scenario. Such an approach is demonstrated in Section 5.

The guidance law sequence used to generate the initial guess for the modified dual pay-
load mission is shown in Table 4.4. The upper stage is now using indirect phases in connection
with the ad-hoc initial guess for the costates. By changing the burn times of these phases the
trajectory can easily be shaped such that the upper stage does not reenter the atmosphere, espe-
cially during the first coast arc.

4.2.2 Optimization using CAMTOS

It turns out that the optimization process for this mission is far more complicated than for the
reference mission. This is a well-known problem for missions involving many coast arcs. Such
coast arcs create a problem which is highly sensitive to even small changes in the initial condi-

Time [sec] Active Prop. Guidance Law Boundary Constr. Remark

1 0 - 5
2 x P230

1 x H155
vertical ascent

h0 = 1 m

 = -52.7686 deg

 = 5.2434 deg

VNorth,0 = 0 m/s

VRel,East,0 = 0 m/s

VRel,0 = 5 m/s

vertical ascent

2 5 - 15
2 x P230

1 x H155
final pitch 84 deg -

pitch over

pitch plane optimized

3 15 - 20
2 x P230

1 x H155
constant pitch - pitch constant

4 15 - 129.1
2 x P230

1 x H155
gravity turn - boosters are jettisoned

5 129.1 - 142 1 x H155 gravity turn fairing jettisoned

6 142 - 567.764 1 x H155 required velocity H155 splash-down H155 jettisoned

7 567.764 -836 1 x L9 indirect raise perigee

8 836 - 4500 - - - coast arc

9 4500 - 4570 1 x L9 indirect payload 1 target orbit payload 1 jettisoned

10 4570 - 8950 - - - coast arc

11 8950 - 9830 1 x L9 indirect payload 2 target orbit -

Table 4.4: Phase structure for the initial guess of the modified dual payload reference mission scenario

λ0

δ0

Q· 1135W m
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tions of a coast. However, the multiple shooting approach, compared to a single shooting
approach, greatly improves the convergence behavior.

Fig. 4.6 and Fig. 4.7 show the altitude profile of the modified mission. It can be observed
that the second upper stage burn is very short. The controls in Fig. 4.8 show that the pitch
angle is now positive during the first burn of the upper stage. It can also be observed that there
is a discontinuity in the controls at the beginning of the upper stage burn. This discontinuity is
caused by the splash-down constraint for the H155 stage.

Again, the upper stage uses the indirect method during the optimization. Fig. 4.9 and
Fig. 4.10 show the resulting switching function structure. It can clearly be seen that the value
of the switching function is now always negative during the burn arcs and positive during coast
arcs. Again, the jumps in the switching function are caused be the interior point constraints.
During the second upper stage burn, the value of the switching function is close to zero which
means that this burn is close to being a singular arc (see Fig. 4.10). In order to obtain the cor-
rect structure of the switching function it is necessary to incorporate additional constraints into
the optimization problem to make sure that the scaling of the adjoint variables is correct.
According to the analysis presented in Chapter 3.5, the value of the switching function should
be zero at the beginning and at the end of each (optimal) burn arc. These additional constraints
are introduced to the problem as well, in addition to a constraint that forces the value of the
Hamiltonian to zero at the end of a burn arc. The switching function at the beginning of the
first upper stage burn must not be forced to zero because this burn must be started right after
the burn out of the main stage. Otherwise, the upper stage would re-enter the atmosphere. Such
situations are also mentioned in Ref. [17].

Fig. 4.6: Altitude profile for the modified dual payload mission
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The payload to GTO is calculated as 3,224 kg for the modified mission profile. This is 66%
more than for the reference mission. At the same time, the mission duration is more than dou-
bled from 1 h 11 min 16 s (4,276 s) in the reference mission to 2 h 43 min 51 s (9,831 s) in the
modified mission scenario. Such a significant increase in the mission duration must be consid-
ered in the design of the electronic equipment that is used for the upper stage, since it is usually
not designed for such a long exposure to the space environment (see also Ref. [17]).

Fig. 4.7: 3D trajectory representation of the modified dual payload mission

Fig. 4.8: Control time histories for the modified dual payload mission
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Fig. 4.9: Switching function for the modified dual payload mission

Fig. 4.10: Switching function during burn arcs for the modified dual payload mission
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4.3 Summary

The hybrid approach of using direct and indirect optimization methods in one setup leads to
optimal solutions for both mission scenarios. An analysis of the first mission revealed that the
payload mass can be increased by using a different switching structure. Such a modification is
presented in the second mission.

Even though it can be observed that the solution of a problem involving both, direct and
indirect phases, is more challenging, the selection of initial guesses for the adjoint variables is
not critical to achieve convergence. In both setups, the “ad-hoc” approach discussed in
Section 3.6.1 is used to calculate initial guesses for the adjoints. This approach is reported to be
successful in other similar applications as well (see Ref. [47]).

As for any trajectory optimization problem, it is very important to use smoothly interpo-
lated data during the optimization process. In this case, the data points given for thrust and
aerodynamics are interpolated using Akima splines (Ref. [1]).

In addition, it is necessary to carefully avoid any potential singularity in the constraints
or in the differential equations. This is the reason for the special set of terminal constraints
used to define the circular target orbit of the first payload, and for the vertical ascent and pitch
over phase. During the vertical ascent with a pitch angle of 90 deg, the yaw angle is undefined.
Therefore, it is modelled by using a constant real parameter which is connected to the control
variable yaw once the pitch angle gets less than 90 deg after the pitch over phase and the yaw
angle becomes defined.

Using the indirect method during the upper stage burns greatly enhances the possibilities
of a post-optimality analysis. Especially the information provided by the switching function
can significantly support the user in finding possible improvements to the selected burn-coast-
burn structure. Even though a certain set of transversality conditions has been implemented
into the software, it is not necessary to explicitly enforce these constraints during the optimiza-
tion. Therefore, other combinations of terminal constraints could easily be used in connection
with the indirect phases as well if the problem is solved in the framework of an SQP method.
However, in most cases, the insertion of indirect phases decreases the convergence perfor-
mance compared to a purely direct formulation of the problem. This is usually caused by the
great sensitivity of the trajectory w.r.t. changes in the adjoint variables. In addition, in cases
where the switching function is getting close to zero during burn arcs, it becomes necessary to
introduce the switching conditions at the beginning and end of each coast arc in order to obtain
the correct switching function values. If these conditions are not introduced, the accuracy
obtained with the SQP method may not be sufficient to obtain exact switching function values.

Fig. 4.11 shows the development of the performance index and the merit function during
the optimization of the dual payload reference mission. Around iteration number 40, both have
almost reached their final value and the optimizer can only slightly improve the performance
index afterwards. Fig. 4.12 shows the development of primal and dual infeasibility during the
course of the optimization process. It can be observed that the primal infeasibility is reaching
fairly low values very rapidly during the first 20 iterations. Afterwards, the optimizer only
slightly improves the performance index as well as the constraint satisfaction until it finally
achieves convergence after 70 iterations.
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The reference mission is optimized using a mixture of multiple shooting and collocation
phases, too. Using the collocation method for the coast arc and the two upper stage burns does
not improve the convergence behavior compared to the multiple shooting solution in this case.
However, it is shown in the next example that collocation phases can significantly improve the
convergence behavior if only bad initial guesses are available.

As far as the second mission is concerned, the optimization process is much more diffi-
cult. While a first approximate solution is achieved after 98 iterations, obtaining a solution of
higher accuracy requires several restarts of the optimizer. This seems to be caused by a very
flat minimum. While the performance index is only slightly increased for solutions with higher
accuracy demands, the shape of the trajectory may change significantly as the timing of the
second upper stage burn is altered.

An indicator showing that the optimizer is having trouble converging this case is the
optimization step-size shown in Fig. 4.14. While the convergence history of the reference mis-
sion shows the optimal step of one almost during the whole optimization process (see
Fig. 4.12), this is not the case for the modified mission scenario. Again, the final value of the
performance index is achieved fairly fast as shown in Fig. 4.13.

Both problems can be considered as medium sized for the NLP solver SNOPT. The refer-
ence mission involves 286 optimization parameters and 228 constraints (215 equality con-
straints). The sparsity of the Jacobian matrix (Fig. 4.15) is 8.72%. The modified mission
involves 420 optimization parameters and 360 constraints (345 equality constraints). The spar-
sity of the Jacobian matrix (Fig. 4.16) is 6.15%.

Fig. 4.11: Performance index and merit function value during optimization of the 
dual payload reference mission
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Fig. 4.12: Primal and dual infeasibility and optimization step size during the optimi-
zation of the dual payload reference mission.

Fig. 4.13: Performance index and merit function value during optimization of the 
modified dual payload mission
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Fig. 4.14: Primal and dual infeasibility and optimization step size during the optimi-
zation of the modified dual payload mission

Fig. 4.15: Sparsity structure of the Jacobian matrix for the dual payload reference 
mission
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Fig. 4.16: Sparsity structure of the Jacobian matrix for the modified dual payload 
mission
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5 Example 2: Branched Mission Scenario

May the wind under your wings bear you 
where the sun sails and the moon walks.
Gandalf in J.R.R. Tolkien, “The Hobbit”

The second example problem is based on the Hopper concept from the Astrium GmbH. Pre-
liminary data for this mission and for the vehicle was kindly provided by J. Spies from the
Astrium GmbH, Bremen. The mission is optimized using a mixture of direct collocation and
direct multiple shooting.

Fig. 5.1: The Hopper concept [89]
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5.1 Mission Scenario

The Hopper is a suborbital, winged launch and re-entry vehicle (Fig. 5.1). It will be launched
horizontally from a slide at Kourou spaceport and perform a rocket-powered ascent using the
three Vulcain-2 engines up to an altitude of about 110 km. An upper stage using one Vinci
engine will then be jettisoned and delivers the payload into its target orbit. The Hopper vehicle
itself returns in an un-powered descent to a landing site (see Fig. 5.2). Propellant and structural
masses used for this example mission are shown in Table 5.1, the propulsion system data is
given in Table 5.2. The environment models are defined in Appendix E. The Objective of the
optimization problem in this example is to maximize the payload delivered into the target
orbit.

The problem must be treated as a branched trajectory optimization problem, since the require-
ment of a lower stage return significantly influences the trajectory shape and the payload per-
formance. In addition, the return leg cannot be modeled by a simple constraint due to the
aerodynamic maneuvering capabilities of the Hopper vehicle and the requirement of a safe
return without violating the vehicle’s limitations on maximum heatflux, dynamic pressure, and
load factor.

In this example, a mission is optimized where the payload is delivered to a geostationary
transfer orbit with 200 km perigee altitude, 7 deg inclination, and 180 deg argument of perigee.
The apogee altitude is 35,800 km. The Hopper vehicle returns to Ascension Island.

In order to allow for a smooth interpolation of the aerodynamic data for the ascent, the
original data set is split into two Mach-domains. The first domain is for Mach numbers less
than two, the second one for Mach numbers greater than two. Splitting the original data set at

Component Structure [kg] Propellant [kg]

Hopper 50,130.0 272,250.0

Upper stage 2,714.65 15,000.0

Payload maximized -

Table 5.1: Vehicle components of the Hopper mission

Vulcain-2 Vinci

Vacuum ISP 440.0 s 460.0 s

Thrust 1,350 kN 150.0 kN

Nozzle exit area 3.22724 m2 0.0 m2

Number of engines 3 1

Table 5.2: Propulsion system properties



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 111
Example 2: Branched Mission Scenario - Mission Scenario

Mach two yields the best interpolation results when applying the minimum curvature B-spline
method shown in Ref. [11], Chapter 5.2.3. The interpolated aerodynamic data is shown in
Fig. 5.3 and Fig. 5.4.

Fig. 5.2: 3D trajectory representation of the Hopper mission scenario

Fig. 5.3: Drag coefficient for Hopper vehicle
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Fig. 5.4: Lift coefficient for Hopper vehicle

The phase structure used for the optimization is shown in Table 5.3 while Table 5.4 depicts the
initial conditions. The first four phases could also be merged into one large phase. However,
smaller phases are used to improve the handling in the graphical user interface. It also reflects
the structure of the control law sequence that is used for the initial guess generation.

Time [sec] Active Prop. Path Constr. Boundary Constr. Remark

1 0 - 20 3 x Vulcain 2 - Kourou launch site
2 20 - 30 3 x Vulcain 2 - -
3 30 - 54 3 x Vulcain 2 -
4 54 - tf,4 3 x Vulcain 2 M = 2
5 tf,4 - 290 3 x Vulcain 2 - lower stage burnout branch upper stage
6 290 - tf,6 - - coast arc
7 tf,6 - tf,7 1 x L9 - GTO conditions payload jettisoned
8 tf,7 - tf,8 - - hf = 120 km coast arc

9 tf,8 - tf,9 - TAEM
(Ascension Island) -

Table 5.3:  Phase structure of the branched Hopper mission scenario
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5.2  Initial Guess Generation for the Hopper Mission
Before the complete branching case is optimized, a simple ascent to GTO without the lower
stage return path is optimized using a direct collocation setup. The initial guess for this ascent
mission is constructed by using a sequence of phases with constant controls for  and . Val-
ues and timing are found interactively by performing simulations in the GESOP environment
and subsequently adding additional phases when the vehicle seems to fly a reasonable trajec-
tory. During the upper stage burn, yaw and pitch are used as controls. For the initial guess they
are simply kept constant; their initial values automatically correspond to the final values of 
and  (see Table 5.5). No effort was taken to perform any fine tuning of this initial guess since
the whole setup required approximately half an hour, and it is sufficient to get the optimizer
started.

In order to achieve convergence for this submission, a complete direct collocation setup is
used. This greatly accelerates the computation compared to a direct multiple shooting setup.
Since the Hopper vehicle does not involve any solid rocket boosters with thrust profiles, the
trajectory can be discretized with fairly few collocation intervals in order to achieve a suffi-
cient accuracy. The resulting NLP problem has 1,457 optimization parameters and 1,244 con-

Value

Altitude 1 m
Longitude -52.775 deg
Declination 5.232 deg
Flight-path velocity 100 m/s
Flight-path angle 0 deg
Flight-path azimuth 90 deg

Table 5.4:  Initial conditions of the branched Hopper mission scenario

Flight time [sec] Angle of attack [deg] Bank angle [deg]

0 - 20 20 0
20 - 30 13 0
30 - 54 0 30
54 - 70 2 10
70 - 290 5 0

290 - 310 - -
310 - 760 pitch = constant yaw = constant

Table 5.5:  Initial guess for the ascent branch of the Hopper mission

α µ

α
µ
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straints (1,213 equality constraints). The density of the Jacobian matrix is 1.7%. All constraints
are enforced right from the beginning of the optimization process, and the optimizer rapidly
converges to an approximate solution. This solution is only an approximate solution, since
additional collocation nodes would have to be inserted in order to accurately represent the
dynamics.

However, such an approximate solution is sufficient to initialize a new optimization
problem which includes the return leg for the lower stage. For this mission, phases 8 and 9
need to be added to the scenario. Phase 8 is a coast arc to the entry interface in 120 km altitude,
and phase 9 represents a guided re-entry phase to the target area energy management interface
(TAEM). The latter one is defined as:

27 km < h < 40 km

0.8 km/s < Vrel < 1.2 km/s

λ = -14.388 deg

δ = 7.937 deg

For the initial guess of the guided re-entry phase, the bank angle is set to a linear function
increasing from 20 to 30 deg. The angle of attack is held constant at 20 deg. The control time
history of the remaining phases is initialized by using the results from the simple GTO mission
obtained previously. These settings produce an initial guess trajectory that involves several
skips, but guide the lower stage towards Ascension Island (see Fig. 5.5).

Fig. 5.5: Initial guess trajectory for branched Hopper mission
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5.3  Optimization of the Branched Mission Scenario
The optimization of the branched mission scenario is started with a complete collocation setup
as well. This setup results in an NLP problem with 2,052 optimization parameters and 1,869
constraints (1,749 equality constraints). The density of the Jacobian matrix is 1.35%. The typi-
cal sparsity pattern of this matrix is shown in Fig. 5.7. Initially, the path constraint on the
flight-path angle are not enforced, which yields an intermediate trajectory with several skips.
In a subsequent optimization run, the missing constraint are enforced.

Finally, the bank angle during the first 10 seconds of the ascent is fixed to zero and the
angle of attack is fixed to its maximum value of 20 deg in order to make sure that the vehicle
does not drop too far below ground level at the beginning. Fixing the controls in this manner
leads to a much better convergence behavior as compared to the introduction of a path con-
straint on altitude. Unfortunately, the vehicle still drops several meters below its launch alti-
tude which suggests that either the payload mass has to be reduced or the launch area and
procedure must permit such a drop, e.g. by using an elevated slide, a higher take-off speed, or
permitting an initial flight-path angle greater than zero.

Fig. 5.6: Altitude drop right after launch

In order to maintain a reserve in the control authority during the re-entry part of the trajectory,
the bank angle is also constrained to be a minimum of 30 deg in the region where the maxi-
mum heatflux and load factor are encountered.

By activating the additional constraints, the problem size quickly grows to 2,052 optimi-
zation parameters and 1,926 constraints (1,749 equality constraints). Such a problem requires
about 600 MB of RAM during the solution process. In order to reduce the number of parame-
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ters and constraints, and therefore also memory consumption, the first three phases are
changed to multiple shooting phases with no multiple shooting points. This reduces the num-
ber of optimization parameters to 1,715 and the number of constraints to 1,620 (1,422 equality
constraints). Due to the multiple shooting method, the density of the Jacobian slightly
increases to 1.7%.

Using the collocation method during the re-entry phase has shown to be superior com-
pared to the multiple shooting method. The latter one significantly increases the required com-
putation time and is much more sensitive to the path constraints, especially to the flight-path
angle path constraint. The direct collocation method is much more robust with respect to the
initial path constraint violations during the optimization process. With the direct collocation
method, it is even possible to find a solution from a fairly bad initial guess with which it is not
possible to use the direct multiple shooting approach.

Once the optimization process is converged, the re-entry phase is changed to a multiple
shooting phase, too, in order to obtain a final solution of high accuracy. The final NLP problem
includes 1,471 optimization parameters and 1,351 constraints (1,170 equality constraints). The
density of the Jacobian matrix increases to 2.05%. Run-time also significantly increases by a
factor of approximately four compared to the previous setup. However, the final result ensures
a flyable trajectory which does not violate the critical path constraints during re-entry.

Fig. 5.7: Sparsity patter of the Jacobian matrix for the branched Hopper mission
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Fig. 5.8: Ground track of the Hopper vehicle and the upper stage

5.4  Optimization Results
The optimization yields a payload of 5,055 kg to GTO. In order to obtain this result, the opti-
mization is run until a tight convergence is achieved. The final primal infeasibility obtained is

 and the dual feasibility is .

The resulting trajectory shows a long gliding phase for the lower stage to Ascension
Island (Fig. 5.8 and Fig. 5.9). The entry interface in 120 km altitude is encountered at 2.3 deg
northern latitude. The total duration of the gliding phase from the entry interface to the TAEM
interface is 963 s. At the very beginning of the guided re-entry phase, control saturation during
the maximum acceleration phase is avoided by constraining the bank angle to a minimum of
30 deg (see Fig. 5.10 and Fig. 5.11). For a reference trajectory, such a constraint in the bank
angle needs to be included in the setup in order to have a sufficient control margin available for
the correction of any disturbances.

The heatflux limit is encountered shortly after the maximum acceleration. However, this
is not as critical since there is a sufficient control margin in . The remainder of the trajectory
is far away from any of the constraints and also shows sufficient reserves in lift and cross-
range capabilities (see Fig. 5.10, Fig. 5.11 and Fig. 5.12). The drag-velocity diagram in
Fig. 5.12 shows a very small violation of the load-factor limit which can also be observed in
Fig. 5.11. These violations could be removed by adding further path constraint refinement
points.
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During the ascent phase, the Hopper vehicle performs some small roll maneuvers during
the first few seconds, followed by a larger roll maneuver at around 50 s. The larger maneuver
is used to guide the vehicle in a south-eastern direction. The small bank maneuvers at the very
beginning are used to maintain an optimal angle of attack. Similar results have been found in
Ref. [31] (p. 1187). The small bank angle slightly reduces the vertical component of the lift
force in order to maintain an optimal climb path. The heading change is corrected by a roll
maneuver in the opposite direction shortly afterwards. Note that for low Mach numbers, the
vehicle has a positive lift even for an angle of attack of zero (see Fig. 5.4).

The upper stage controls are depicted in Fig. 5.13, the resulting thrust vector is illustrated
in Fig. 5.14. It can be observed that the pitch angle does not follow a simple bilinear tangent
guidance law but changes its behavior at 600 s into the flight. Fig. 5.14 shows that the thrust
vector is almost tangential to the trajectory at the end of the upper stage burn while it follows
the typical bilinear tangent guidance law in the remainder of the burn arc. This behavior can be
explained by considering the additional constraint on the argument of perigee for the GTO
orbit in connection with the lower stage return to Ascension Island. The geographic location at
the beginning of the upper stage burn is not optimal in terms of orbital mechanics. Therefore,
the vehicle does not perform a simple guidance scheme during the whole upper stage burn. In
addition, the vehicle first raises the perigee radius to the required 200 km altitude. Beginning at
600 s during the flight, the required perigee altitude is achieved and the apogee altitude is
raised (see Fig. 5.15).

Fig. 5.9: Altitude profile of the Hopper mission
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Fig. 5.10: Control time histories for the Hopper vehicle

Fig. 5.11: Path constraints during the Hopper re-entry
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Fig. 5.12: Drag velocity diagram for Hopper re-entry

Fig. 5.13: Control time histories of upper stage
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Fig. 5.14: Thrust direction during upper stage ascent

Fig. 5.15: Orbital elements during the upper stage ascent
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6 Conclusions and Future Research

The trend in the numerical treatment of optimal control problems in aero-
space engineering points towards problems of increasing complexity in 
order to approximate reality as close as possible. These problems lead 
rather to an increasing number of constraints than to an increasing num-
ber of unknowns involved in the problem. Thus, engineers and mathemati-
cians who are involved in the design and development of future aerospace 
enterprises have a strong demand for reliable and efficient software that 
can handle optimal control problems with different types of constraints.
H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Ref. [64]

6.1 Conclusions

The objective of this thesis is the development of a hybrid trajectory optimization method that
combines the benefits of existing direct and indirect methods. This new method called CAM-
TOS allows for a phase-wise discretization using either direct multiple shooting or direct collo-
cation. If the user also supplies the adjoint differential equations, CAMTOS is also able to
compute the required values of the initial costates. It can even be used to solve the correspond-
ing boundary value problem when the transversality conditions are available as well. However,
the derivation of the transversality conditions can be avoided if the cost function of the under-
lying NLP solver is used. In these cases, the NLP solver will select the initial adjoint variables
such that they minimize the performance index. The latter approach works very well for com-
puting rocket thrust arcs in vacuum.

Using the combination of direct and indirect methods also allows for an analysis of the
switching function. This method gives a lot of insight into the problem and the optimality of
the chosen burn-coast-burn structure in case of rocket ascent trajectories. At the same time, it
requires a minimum amount of effort from the user’s side since the transversality conditions
need not be coded since they are computed numerically in the Karush-Kuhn-Tucker conditions
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within the NLP solver. Therefore, a large variety of terminal conditions becomes readily avail-
able without any additional effort. As far as the computation time is concerned, the indirect
method sometimes achieves a better performance in this setup when it is compared to an equiv-
alent setup that uses the direct method. However, it usually requires more computation time
since states and costates need to be integrated numerically. In the Ariane 5 dual payload exam-
ple, the setup with the indirect method in the upper stage requires eight times more computa-
tion time for the reference mission and 1.3 times more computation time for the modified
mission scenario. Therefore, the main advantage of this method is the availability of additional
information about the optimality of the burn-coast-burn sequence.

The combination of direct multiple shooting and direct collocation simplifies the overall
process of obtaining optimal results for new problems. While initial solutions can be obtained
quickly by using the fast and robust direct collocation method with only a few collocation
intervals, a final solution of high accuracy can readily be achieved by switching critical phases
to use a multiple shooting discretization.

The general applicability is shown on two complex mission scenarios that involve sev-
eral Ariane 5 launcher scenarios. These scenarios include missions with up to two coast arcs
and a set of realistic path and boundary constraints. By using the combination of direct and
indirect phases, an improved burn-coast-burn sequence is identified for an Ariane 5 dual-pay-
load mission. This improvement leads to an increase in the payload mass of approximately
66%.

In addition, a branched trajectory scenario is optimized, where the rocket-powered lower
stage returns in a controlled, gliding flight to a landing site while the upper stage delivers a
payload into GTO. This optimization problem is solved by starting from a fairly bad initial
guess using the direct collocation method. Once an approximate solution is obtained, the criti-
cal phases within the atmosphere are changed to the direct multiple shooting method in order
to obtain a result with higher accuracy.

The investigation of several different integration methods for the direct multiple shoot-
ing method shows that for all problems that are encountered in the framework of this thesis, the
Runge-Kutta 4/5 method exhibits the best convergence behavior. The integration method sug-
gested by Paus (Ref. [61]) is not able to achieve the same performance as a simple Runge-
Kutta 2/3 method with the same order of accuracy in such a general setup. It can therefore be
concluded that an application of the Paus method requires a significant amount of fine-tuning
between the integration method and the optimization model. An exploitation of sparsity pat-
terns in the dynamics as well as the computation of the linearized system matrices A and B
should be performed in an efficient manor.

The performance of CAMTOS is compared to an existing direct multiple shooting
method as well as to an existing direct collocation method. All codes are using SNOPT to solve
the underlying NLP problem. The direct multiple shooting method implemented in CAMTOS
provides the same computational performance as the existing PROMIS code, while the direct
collocation method exhibits an improved convergence behavior and run-time performance
compared to the direct collocation method TROPIC. This improvement is achieved by intro-
ducing additional control variables and constraints at the boundaries of the collocation inter-
vals. These additional variables do not only permit for a piece-wise constant control
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approximation, which is not possible with TROPIC, but they also relax the transcribed optimal
control problem such that it can be solved more efficiently by the SQP solver.

The overall design of CAMTOS allows for an easy implementation of future enhance-
ments. Such enhancements can be additional integration methods, collocation schemes, or
even NLP solvers. Some of these possibilities are discussed in the next Section.

6.2 Future Research

There are several interesting possibilities for future enhancements of the developed trajectory
optimization algorithms.

For phases that are discretized with the direct collocation method, it is beneficial to have
an algorithm that performs an automatic mesh refinement. Such an algorithm requires an esti-
mator for the discretization error in each interval. Based on this information, a strategy can be
developed that adds additional grid points in regions that exhibit a large discretization error. It
may also be interesting to include a logic that removes grid points from regions in which the
discretization error is much smaller than the required accuracy. Such an approach might avoid
situations, in which many additional grid points are inserted in early stages of the mesh refine-
ment in regions, where these points may not be required anymore in later stages.

Especially for engineering design problems, it is also very beneficial to perform a post-
optimality and sensitivity analysis. However, additional research is required in order to find a
general approach for such analyses that covers many different kinds of questions that arise in
the framework of vehicle design and system identification. The Lagrange multipliers calcu-
lated by the SQP method should be exploited in order to compute some of the required deriva-
tive information.

Many real-world problems involve not only one (global) minimum, but include several
different local minima. The current NLP solver included in CAMTOS is only able to find a
local solution. It depends on the initial guess that is provided, which local solution is found. By
using the method of multiple restarts with different initial guesses, it is possible to find other
local solutions and, possibly, also the global solution. However, such a process is usually very
tedious to do and often requires a lot of system knowledge by the user. Recent developments in
the area of genetic algorithms has produced methods that are not only able to handle uncon-
strained minimization problems. With the new methods, it is also possible to find globally opti-
mal solutions for problems that involve nonlinear constraints. Such methods are also
interesting for applications that involve constraints or performance indices that are not contin-
uous or differentiable.

While the results obtained with constrained genetic algorithms are often very impressive,
they also require a lot of computation time. It is common that such algorithms need several
thousand times longer to obtain a solution than SQP methods. Therefore, it will most likely
become necessary to perform a distributed and/or parallel computation for the whole popula-
tion of one generation. Such a distributed computation could be performed on a cluster of
fairly cheep standard PCs that are communicating via TCP/IP sockets. Also, the computation
of the Jacobian matrix when using the direct multiple shooting or direct collocation method
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could be performed on several computers at once. Additional research needs to be performed
in order to find an easy way to establish such a parallel computation with a minimum amount
of overhead for the communication protocol. It is also necessary to incorporate provisions to
handle a failure of one or more computers during the optimization process. In such cases, the
corresponding work packages should be sent out again to a different computer so that the over-
all optimization can continue and does not stall only because one computer has failed.

Another enhancement for the multiple shooting method is a special integration method
that allows for event handling. While special events can also be modelled by using the multi-
phase approach, many problems exist where the required number of phases cannot be pre-
determined. Example are a linearly interpolated data table or an integrator that involves upper
and lower limits. While a Runge-Kutta 4/5 method is often able to handle such discontinuities
in the dynamics, it may deliver results that are not accurate enough because the exact position
of an event is not determined. If the user supplies an additional function that changes sign at
such events, these can be trapped during the computation of a reference trajectory. Such an
approach can also save computation time in the step-size control algorithm that may otherwise
be spent by adjusting the step-size to a very small value in order to reduce the local error intro-
duced by a local discontinuity in the dynamics.
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A Integration Methods for Direct Multiple Shooting

This appendix describes the integration methods that are implemented for the direct multiple
shooting method.

A.1 Runge-Kutta 2/3 Method

A lower-order integration method is implemented for the fast computation of approximate
results to trajectory optimization problems. It is also used for a performance comparison with
the Paus integration algorithm presented in Section A.3.

One integration step of size h involves three evaluations of the dynamics.

(A.1)

The propagated state at t + h is computed as

. (A.2)

In order to get an error estimate for the current integration step, an additional evaluation of the
dynamics is performed at x(t+h):

(A.3)

k1 h f x u p t, , ,( )

k2

⋅

h f x 1
2
---k1 u h

2
---u· p t h

2
---+, ,+,+ 

 

k3

⋅

h f x 3
4
---k1 u 3h

4
------u· p t 3h

4
------+, ,+,+ 

 ⋅

=

=

=

x t h+( ) x 1
9
--- 2k1 3k2 4k3+ +( )+=

k4 h f x t h+( ) u, hu· p t h+, ,+( )⋅=



CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods 136
Integration Methods for Direct Multiple Shooting - Runge-Kutta 2/3 Method

An error approximation for x(t+h) is calculated as

. (A.4)

The error is now normalized for each component such that

(A.5)

with

, (A.6)

where  is the machine accuracy, representing the smallest value which can be added to one
(see Ref. [65] Section 1.3 and 20.1). tolabs and tolrel are the required absolute and relative inte-
gration tolerances.

The error in the current integration step is then calculated as

. (A.7)

If  is less or equal to tolrel, the current step is accepted, the stepsize for the next integration
step is estimated by calculating

. (A.8)

The factor s is modified if it meets one of the following conditions:

1. If s > 5 then s is set to 5.

2. If s < 1/10 then s is set to 1/10.

The new stepsize is then calculated as

. (A.9)

In case the error in the current integration step is larger than tolrel, the step is repeated with the
stepsize (A.8), (A.9). This applies to the first failure. Otherwise, s is simply set to two and the
integration step is repeated again until it meets the error criterion. In case h becomes less then
eps, an integration error is raised. As an initial estimate for h in the first integration step, the
formula
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(A.10)

where = 1/3 and k1 is computed with the first equation in Eq. (A.1). The initial step-size is
now estimated as

 if , and (A.11)

 if . (A.12)

This heuristic is based on Ref. [45], p. 182.

At the beginning of each integration step it is checked if the final time tf can be reached if
the current step-length is increased by a maximum of 10%. This often increases the numerical
stability of the algorithm and also leads to an increase in performance since very small final
steps are avoided and several evaluations of the dynamics can be omitted.

For calculating the perturbed trajectories, only Eqs. (A.1) are used in conjunction with
the previously generated step-size sequence.

A.2 Runge-Kutta 4/5 Method

The implementation of the Runge-Kutta 4/5 method is based on Ref. [72] and the integration
method implemented in PROMIS. It is very similar to the Runge-Kutta 2/3 method presented
in Section A.1. However, a slightly different error estimator is used. For the sake of complete-
ness, the methods coefficients are given below.
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The propagated state at t + h is computed as

. (A.14)

In order to get an error estimate for the current integration step, an additional evaluation of the
dynamics is performed at x(t+h)

. (A.15)

and an error approximation for x(t+h) is calculated as

. (A.16)

Again, the error estimate is normalized for each component based on Eqs. (A.5) and (A.6). The
error in the current integration step is then calculated as

. (A.17)

If  is less or equal to tolrel, the current step is accepted. The stepsize for the next integration
step is estimated by calculating

. (A.18)

The factor s is modified in the same manner as for the Runge-Kutta 2/3 method in Section A.1
and the same logic for a step-size update or correction is applied. The same applies for estimat-
ing an initial step-size, only the factor  in Eq. (A.10) is replaced with 1/5.

For calculating the perturbed trajectories, only Eqs. (A.13) are used in conjunction with
the previously generated step-size sequence.

A.3 Integration Method of Paus

In Ref. [61], Paus presents an integration method which is especially suitable for applications
in the framework of trajectory optimization. The beauty of this method is that the computation
of gradients does not involve any evaluation of the dynamics, but only some matrix computa-
tions. A brief summary of this method is presented in Ref. [62].

The method was originally only applied in the framework of optimal guidance, i.e. that
updated trajectories were computed based on an already available, almost optimal solution. For
CAMTOS, this method is generalized and a new step-size control algorithm is developed
which significantly improves the performance of the algorithm by a factor of about two com-
pared to the approach suggested in Ref. [62]. The new step-size control algorithm is mainly
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based on the strategy used for the Runge-Kutta 2/3 method, because the Paus algorithm is a
second order integration method as well.

Based on Refs. [61] and [62], the integration algorithm is extended in order to allow for
optimizable phase times as well. The nonlinear dynamics

, (A.19)

where ti and tf are the initial and final phase time, respectively, is linearized about (x,u,p,ti,tf)0:

, , , , (A.20)

A linearization of Eq. (A.19) about a reference point yields:

(A.21)

Using the definitions

, , , , , (A.22)

the linear system in Eq. (A.21) can be integrated using the assumption of a linear control:

(A.23)

Note that  becomes  for a piecewise constant control
and cancels out with the second term in line two of Eq. (A.23). Also note that the last three
terms in Eq. (A.23) only need to be evaluated if optimizable real parameters or phase times are
present.

As shown in Refs. [61] and [62], the integrals in Eq. (A.23) can be approximated by
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(A.24)

(A.25)

(A.26)

In is an  unity matrix. It is shown in Ref. [62] that the power series only need to be evalu-
ated up to the second term. Evaluating additional terms does not decrease the local discretiza-
tion error. Using these definitions, Eq. (A.23) can be rewritten as

(A.27)

Note that once the system matrices (Eqs. (A.20)) are evaluated, F0 through F2 can be com-
puted and stored for a later use during the calculation of perturbed trajectories. In order to
reduce the number of matrix operations, all constant matrix products in Eq. (A.27) should be
calculated and stored during the generation of a new reference trajectory.

The basic procedure for calculating the local discretization error is taken from Ref. [62].
It requires the derivatives  and . These derivatives are estimated by calculating finite
differences:
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In addition, matrix operations during the calculation of perturbed trajectories are only
performed for those components in Eq. (A.27) where changes have occurred. If a parameter
did not change compared to the reference trajectory, the corresponding term is completely
omitted.

Experiments are performed in which the reference trajectory is not updated in each major
iteration of the SQP method. An update of the corresponding matrices is only performed when
the deviation from the previously generated reference trajectory is larger than a certain trigger
value. However, this method does not improve the computational performance of the overall
algorithm, since a matrix update is triggered for each major iteration when small trigger values
(e.g. 10-6) are used, while larger trigger values (e.g. 10-3) significantly degrade the accuracy of
the trajectory and cause serious convergence problems during the optimization process.
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B Derivation of Important Derivatives

This appendix gives the derivation of several important derivatives which are required for the
computation of transversality conditions in the framework of the indirect optimization method.
The derivations of the transversality conditions are given in Appendix C.

B.1 Derivatives of Inclination w.r.t. Radius and Velocity Vectors

The orbit inclination can be calculated based on the current inertial radius and velocity vectors
as

. (B.1)

The derivative w.r.t. V can now be calculated as

(B.2)

Note that the second term in Eq. (B.2) has components along  and , and
the first term in Eq. (B.2) is only a component along . It can now be shown that

 only has a component along . That means, the projection of  on
 has to cancel out the first term in Eq. (B.2). The projection can be calculated as

. (B.3)
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It can clearly be seen that the scalar term  can be canceled out immediately. It only
remains to be shown that

. (B.4)

Ref. [16], p. 556 shows that , so the left side of Eq. (B.4) can
be rewritten as

(B.5)

Note that  is perpendicular to iR and therefore the first product on the left side in
Eq. (B.5) is zero. Also note that .

Ref. [16], p. 556 also shows that  which directly yields that

 q.e.d. (B.6)

Therefore,  can be computed as

 where (B.7)

A similar procedure can be applied to the derivative of inclination w.r.t. the radius vector R,
which finally yields

. (B.8)

B.2 Derivatives of Orbital Momentum w.r.t. Radius and Velocity Vectors

The orbital momentum vector is defined as
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The derivatives of h w.r.t. R and V yields
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where  and (B.11)

The magnitude of the orbital momentum vector is

. (B.12)

Applying the chain rule during the construction of the derivatives of Eq. (B.12) w.r.t. R and V
finally yields the following expressions:

 and (B.13)

B.3 Derivatives of Semimajor Axis w.r.t. Radius and Velocity Vectors

Based on the vis-viva equation, the semimajor axis a can be calculated as
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The derivatives of a w.r.t. R and V can now be calculated as
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Based on radius and velocity vector, the orbital energy can be computed as
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B.5 Derivatives of Eccentricity w.r.t. Radius and Velocity Vectors

Before calculating the derivatives of eccentricity e w.r.t. radius and velocity, an expression for
eccentricity must be derived which depends on R and V. The orbital momentum can be calcu-
lated as

(B.18)

where rp is the perigee radius and vp is the orbital velocity at perigee of the current orbit. Peri-
gee radius can be calculated as (see Ref. [30])
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The orbital velocity at perigee is given by

 where . (B.20)

Using Eqs. (B.19) and (B.20) in (B.18) and solving for e finally yields
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Note that e is always greater than zero by definition. Applying the chain rule and using the
results from Sections B.2 and B.3 finally yields

(B.22)
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Note that e appears in the denominator of the derivatives which means that these expressions
must not be used in connection with circular or almost circular orbits.

B.6 Derivatives of Apogee and Perigee Radius w.r.t. Radius and Velocity 
Vectors

Apogee and perigee radius can be calculated as (Ref. [30])
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. (B.25)

Using the chain rule and the results from Section B.3 and B.5 yields
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Note that e appears in the denominator of several terms which means that Eqs. (B.26) through
(B.29) must not be used in connection with circular or almost circular orbits.
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When the final position vector is located at perigee, the argument of perigee can be calculated
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 and , (B.33)

the required derivatives of  can be calculated as
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Now, the derivatives of  can be calculated as

 and (B.37)

(B.38)

where . By evaluating the matrix-vector products, Eqs. (B.37)
and (B.38) can be rewritten as

(B.39)

and . (B.40)

Because the derivation is performed at perigee (or apogee), radius and velocity vector are per-
pendicular to each other and Eqs. (B.39) and (B.40) can be rewritten as
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(B.41)

and . (B.42)

Note that Eq. (B.41) only has components in the iR/iV plane while Eq. (B.42) also has a compo-
nent along iN.
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C Derivation of Transversality Conditions

This appendix gives the derivation of the transversality conditions which are required for the
indirect optimization method. Note that all values are evaluated at final time.

C.1 Preliminaries

In the framework of the indirect optimization method presented, the transversality conditions
can be formulated as

(C.1)

(C.2)

(C.3)

where k is the number of terminal constraints. Note that all equations are evaluated at final
time.

In order reduce the number of unknown parameters, Eqs. (C.1) and (C.2) are multiplied
with different vectors and the resulting scalar equations are used to eliminate the unknown
parameters .
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C.2 Transversality Conditions for Circular Orbit with Free Argument of 
Perigee

The set of constraints for a circular orbit with a free argument of perigee is

(C.4)

Assuming that  does not depend on R or V, the transversality conditions for P and Q can be
written as

 and (C.5)

. (C.6)

Multiplying Eqs. (C.5) and (C.6) with  yields

(C.7)

as a first transversality condition. Multiplying (C.5) with  and (C.6) with  yields

(C.8)

as the second transversality condition. Note that  is perpendicular to  and , and due to
the last constraint in Eq. (C.4) .

C.3 Transversality Conditions for Circular Orbit with Zero Argument of 
Perigee

The set of constraints for a circular orbit with a fixed argument of perigee is
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(C.9)

Assuming that  does not depend on R or V, the transversality conditions for P and Q can be
written as

 and (C.10)

. (C.11)

Noting that

, (C.12)

Eq. (C.11) simplifies to

. (C.13)

Multiplying Eq. (C.13) with  yields

(C.14)

Multiplying Eq. (C.10) with  yields

. (C.15)

Now, Eq. (C.13) can be multiplied with  which yields the transversality condition

. (C.16)
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C.4 Transversality Conditions for Circular Orbit with Fixed Argument of 
Perigee

The set of constraints for a circular orbit with a fixed argument of perigee is

. (C.17)

Assuming that  does not depend on R or V, the transversality conditions for P and Q can be
written as

 and (C.18)

. (C.19)

Multiplying Eq. (C.18) with  yields

. (C.20)

Multiplying Eq. (C.19) with  yields and substituting  with Eq. (C.20) yields

(C.21)

Multiplying Eq. (C.19) with  yields

. (C.22)

Finally, multiplying Eq. (C.20) with  and substituting  and  with Eqs. (C.21) and
(C.22) yields the transversality condition
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(C.23)

Note that Eq. (C.23) can be rewritten as

. (C.24)

Note that Eq. (C.16) is the limiting expression of Eq. (C.24) for .

A similar procedure can be applied for the when using an alternative set of constraints
for  around 0° or 180° (see Appendix B.7):

. (C.25)

The set of transversality conditions can now be written as

 and (C.26)

(C.27)

Applying the same strategy as above ultimately yields Eq. (C.24) again.

C.5 Transversality Conditions for Elliptical Orbits

The set of constraints for an elliptical orbit with a free attachment point and a free argument of
perigee can be formulated as
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. (C.28)

The transversality conditions at final time can be written as

(C.29)

(C.30)

Noting that all terms behind  and  are perpendicular to if, the first transversality condition
can be computed by multiplying Eqs. (C.29) and (C.30) with  and eliminating :

(C.31)

which is the same as Eq. (C.7). The remaining two transversality conditions are derived by first
building the scalar products of Eqs. (C.29) and (C.30) with :
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where
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and

(C.36)

and multiplying Eq. (C.32) with  and Eq. (C.33) with  yields

(C.37)

and

(C.38)

Since the eccentricity e appears in the denominator of A, B, c2R and c2V, these values are multi-
plied with e to improve the stability for small values of e. The following values are defined:
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Based on these definitions, the remaining two transversality conditions can be derived as

(C.45)

(C.46)
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D Initial Guesses for the Initial Costates

This appendix gives the derivation a method for estimating the initial costate values based on
an approach presented in Ref. [78].

D.1 Preliminaries

In the framework of Ref. [78], all values are expressed in canonical units (see Ref. [8]). I.e.,
the gravity constant  is normalized to one which also yields that the initial circular radius and
circular velocity are set to one. All equations are specified in an orbital coordinate frame as
shown in Fig. D.1.

Fig. D.1: Definition of orbit coordinate frame

µ

x

y

V

R

Initial orbit, r = 1

Final orbit, r = rf
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In the following notation,  is the thrust acceleration expressed in canonical units and  is the
final orbit radius expressed in canonical units. Note that the required scaling factors to convert
physical units to canonical units are

, ,  and . (D.1)

D.2 Derivation of Initial Costate Approximation

As a first approximation, massflow as well as the gravity constant are set to zero in the equa-
tions of motion which yields

, (D.2)

, (D.3)

, (D.4)

, (D.5)

The equations for the costates can be integrated immediately which yields:

, , , (D.6)

Where a, b, c and d are the integration constants. Defining  and ,
the equations for velocity can be written as

 and (D.7)

. (D.8)

Because the Lagrange multipliers appear as linear terms in the Hamiltonian, a is scaled to one
in the following. The Hamiltonian can be expressed in polar and Cartesian coordinates. For
polar coordinates, r is the scalar distance from the attracting center, u is the velocity compo-
nent along r, and w is the velocity component perpendicular to u.

(D.9)
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(D.10)

Evaluating both expressions for at the initial time for the initial conditions

r(0) = 1, u(0) = 0, w(0) = v0 (D.11)

x(0) = 1, y(0) = 0, vx(0) = 0, vy(0) = v0 (D.12)

and equating both expressions yields

. (D.13)

By equating the coefficients of  and  it can be determined that

 and (D.14)

and therefore

or or . (D.15)

The integration constants k1 and k2 can be eliminated by evaluating the expressions (D.7) and
(D.8) at initial and final time which yields

(D.16)

(D.17)

where

. (D.18)

In the special case where the initial and final velocity components are all equal to zero, the
optimal trajectory is a straight line. If , the thrust will switch directions midway through
the trajectory to decelerate to a stop. Noting that  for s = rf -r0 yields

. (D.19)
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This straight line case also allows for a simplification of Eqs. (D.16) and (D.17). They take the
form

 and (D.20)

(D.21)

The only difference in these two equations is the coefficient of the logarithmic term L. There-
fore, these coefficients must be equal which yields the relationship

(D.22)

Eq. (D.22) can only be satisfied if bc = d or, using the results of Eq. (D.15):

(D.23)

Since q > 1 by definition, p0 and pf must be equal as well. Using the definition for p yields

. (D.24)

After substituting c and d with the results from above finally yields

. (D.25)

Therefore, the initial costates can be estimated as

, (D.26)

, (D.27)

Ref. [78] also states a correction scaling factor which should be applied if . The scaling
factor q is calculated as

(D.28)

and is applied to c and d such that

 and . (D.29)
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E Environment Models

This appendix defines the environment models used for the two example problems presented
in Chapters 4 and 5.

E.1 Earth Model

The Earth model is a rotating ellipsoid with J2 terms included in the gravity potential. All prop-
erties are given in Table E.1. The detailed equations are given in Ref. [5].

E.2 Atmosphere Models

The simple rocket example in Chapter 3.9 is using a smoothly interpolated US Standard 1976
atmosphere model. The following equations are used to calculate the ambient pressure and its
derivative with respect to altitude:

Item Value

Equatorial radius 6378.135 km

Polar radius 6356.912 km

Angular velocity  rad/s

Gravity constant  km3/s2

J2

Table E.1: Properties of the Earth model

7.2921
5–×10

3.98602 5×10

1.0827
3–×10
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(E.1)

(E.2)

where  and the coefficients are given in Table E.2.

The Ariane 5 example problem in Chapter 4 is using altitude dependent data tables for ambient
pressure, density, and speed of sound. The tables are interpolated using Akima splines
(Ref. [1]) and can be found in Ref. [6]. The Hopper example in Chapter 5 is using the US Stan-
dard atmosphere 1976 model. No winds are included.

i ai bi

0 11.8229 -

1 -0.16026 1.43783

2 -0.000370874 -0.0657968

3 0.0000309506 0.00115937

4 -4.48838e-7 -9.09543e-6

5 1.86338e-9 2.61544e-8

Table E.2: Coefficients for the interpolated US-Standard atmosphere
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Deutsche Kurzfassung

Als den gelehrten Astronomen ich hörte,
Als die Beweise, die Zahlen in langen Reihen er vor mir

entwickelt’,
Als die Tabellen und Diagramme er mir zeigte, sie zu

addieren, zu teilen und sie zu messen,
Als den Astronomen ich hörte, der seinen Vortrag hielt

unter großem Applaus,
Wie bald wurde ich da so sonderbar müde und krank,
Bis ich mich erhob, aus dem Saale mich schlich und

einsam wanderte
Hinaus in die feuchte, mystische Nacht, wo von Zeit zu

Zeit den Blick still ich erhob nach den Sternen...
Walt Whitman, “Als den gelehrten Astronomen ich hörte”

Viele Probleme im Bereich der Ingenieurwissenschaften beinhalten die Berechnung “optimaler
Trajektorien”. Typische Beispiele aus dem Luft- und Raumfahrtsektor sind nutzlastoptimale
Aufstiegsbahnen von Raketen, Wiedereintrittsmissionen mit verschiedenen Zielfunktionalen
oder auch die Berechnung von Zeit-, Treibstoff- und Kostenoptimalen Flugbahnen eines Über-
schall-Transportflugzeuges.

Auch außerhalb der Luft- und Raumfahrttechnik treten immer wieder Probleme auf, die
als Optimalsteuerungsproblem formuliert werden können. Dies kann z.B. die Berechnung
energieoptimaler Roboterbewegungen, die Optimierung chemischer Prozesse oder die Opti-
mierung von Wirtschaftsmodellen zur Gewinnmaximierung sein.

Die in dieser Arbeit entwickelte Methode zur Berechnung von Optimalsteuerungsproble-
men ist ein sehr allgemeiner Ansatz zur Lösung einer umfangreichen Klasse von Problemen.
Bei dem Verfahren handelt sich dabei um die Kombination zweier sogenannter “direkter Ver-
fahren”: der direkten Kollokation und dem direkten Mehrzielverfahren. Außerdem wurde für
die Berechnung optimaler Schubmanöver einer Rakete im Vakuum ein sogenanntes “indirektes
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Verfahren” implementiert, welches auch in Kombination mit den direkten Verfahren eingesetzt
werden kann.

Motivation

Sowohl die auf den Prinzipien der Variationsrechnung beruhenden indirekten Verfahren, als
auch die direkten Verfahren weisen sowohl Vor- als auch Nachteile im praktischen Einsatz auf.
Im Falle der indirekten Verfahren bestehen die Hauptnachteile in der umfangreichen mathema-
tischen Analyse des Problems und der Formulierung der notwendigen Bedingungen (Euler-
Lagrange Gleichungen). Häufig sind dabei bereits Annahmen über die Struktur der erwarteten
Lösung zu treffen was bei völlig neuen Problemstellungen oft nur schwer möglich ist. Zudem
gestaltet sich die Lösung des entstehenden Mehrpunkt-Randwertproblemes meist schwierig
und die eingesetzten Verfahren weisen bei realistisch formulierten Problemen einen sehr klei-
nen Konvergenzradius auf. Ein großer Vorteil der indirekten Verfahren ist jedoch die Möglich-
keit, zusätzliche Informationen über die Qualität der berechneten Lösung zu erhalten,
beispielsweise durch die Berechnung einer Schaltfunktion.

Der Hauptnachteil bestehender direkter Verfahren ist darin zu sehen, dass diese oft sehr
unstrukturiert programmiert und somit nur sehr schwer zu warten und zu erweitern sind.
Außerdem zeigt sich, dass sich die Anwendung eines reinen direkten Kollokationsverfahrens
bei einigen Problemstellungen schwierig gestaltet. Direkte Mehrzielverfahren hingegen liefern
zwar sehr genaue Ergebnisse, weisen jedoch einen kleineren Konvergenzradius als die direkten
Kollokationsverfahren auf und benötigen wesentlich größere Rechenzeiten. Im Vergleich zu
den indirekten Verfahren gestaltet sich die Lösung realistischer Probleme jedoch wesentlich
einfacher und der Konvergenzradius der direkten Verfahren ist wesentlich größer als bei indi-
rekten Verfahren.

Hauptziel dieser Arbeit ist die Erstellung eines hybriden Verfahrens, welches die Vorteile
vorhandener Optimierungsverfahren in sich vereint während die Nachteile weitestgehend aus-
geschaltet werden. Der Ansatz ist ein Verfahren zur Lösung mehrphasiger Optimalsteuerungs-
probleme, bei dem der Benutzer phasenweise zwischen den verschiedenen Lösungsverfahren
wählen kann. Die dazu entwickelte Software CAMTOS (Collocation And Multiple Shooting
Trajectory Optimization Software) ist vollständig in die grafische Benutzeroberfläche GESOP
integriert und vollständig kompatibel zur umfangreichen ASTOS Modellbibliothek sowie
sämtlichen Modellen für die GESOP Umgebung.

Bei der Entwicklung wurde das Hauptaugenmerk auf ein möglichst modulares Design
der Software gelegt. Dabei wurden einfach zu bedienende Schnittstellen zu den wesentlichen
Elementen eines direkten Bahnoptimierungsverfahrens entwickelt. Somit können in künftigen
Entwicklungen leicht zusätzliche Integrationsverfahren für das direkte Mehrzielverfahren hin-
zugefügt werden, neue Schemata für direkte Kollokationsverfahren entwickelt, oder auch neue
NLP-Löser zur Verfügung gestellt werden.

Das erstellte direkte Optimierungsverfahren kann auch in Verbindung mit dem indirek-
ten Verfahren angewandt werden. Dabei müssen zusätzlich zu den System-Differentialglei-
chungen auch die adjungierten Differentialgleichungen zur Verfügung gestellt werden. Dies
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wird für die Optimierung des Steuerungsverlaufes von Raketen-Oberstufen im Vakuum
demonstriert.

Betrachtete Problemklasse

Die mit CAMTOS lösbaren, mehrphasigen Bahnoptimierungsprobleme können aus k Phasen
bestehen. Jede Phase kann neben einer beliebigen Anzahl von Zuständen x und Steuerungen u
auch einen Vektor mit konstanten Designparametern p enthalten. Eine allgemeine, mathemati-
sche Formulierung ist in Gl. (1.1)-(1.7) widergegeben.

Minimiere (1.1)

mit  für , i = 1,...k, (1.2)

Pfadbeschränkungen  für , i = 1,...k, (1.3)

Anfangsbedingungen , (1.4)

Endbedingungen , i = 1,...k, (1.5)

Phasen-Verknüpfungsbedingungen  für i < k, (1.6)

 für i < k. (1.7)

Im Rahmen des indirekten Verfahrens werden ausschließlich die Bewegungsgleichung einer
Rakete im Vakuum über einem Erdellipsoid betrachtet. Pfadbeschränkungen werden dabei
nicht berücksichtigt.

Das direkte Optimierungsverfahren

CAMTOS stellt sowohl direkte Kollokationsverfahren als auch direkte Mehrzielverfahren zur
Verfügung. Beide Verfahren führen das ursprüngliche Optimalsteuerungsproblem durch eine
Diskretisierung auf ein Parameteroptimierungsproblem mit nichtlinearen Beschränkungen
zurück (NLP-Problem). Pfadbeschränkungen werden in beiden Verfahren durch eine Anzahl
von punktförmigen Beschränkungen innerhalb der jeweiligen Phase erfasst. Zur Lösung des
NLP-Problems wird der SQP-Löser SNOPT 6.1 verwendet. Jedoch ist die Schnittstelle zu die-
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sem Lösungsverfahren so gestaltet, dass zukünftig auch andere Verfahren verwendet werden
können.

Das direkte Kollokationsverfahren

Beim direkten Kollokationsverfahren werden die Steuerungsverläufe durch stückweise kon-
stante oder stückweise lineare Verläufe approximiert. Die Zustandsverläufe werden mit Hilfe
von Hermite-Simpson Polynomen, der Trapezregel oder einem Runge-Kutta Verfahren 4. Ord-
nung abgebildet. Letztere Approximation kann auch als Mehrzielverfahren mit einem einzigen
Integrationsschritt pro Mehrzielintervall verstanden werden. Im Vergleich zu anderen direkten
Kollokationsverfahren wird im Rahmen von CAMTOS an den Intervallgrenzen für jede Steue-
rung ein links- und ein rechtsseitiger Wert verwendet. Dies ermöglicht die Verwendung einer
stückweise konstanten Steuerungsapproximation. Im Falle einer stückweisen linearen Steue-
rung werden zusätzliche Kontinuitätsbedingungen an den Intervallgrenzen hinzugefügt. Das
dadurch entstehende nichtlineare Programm weist dann zwar mehr Parameter und Beschrän-
kungen auf, jedoch zeigt sich, dass die benötigte Rechenzeit sowie die benötigte Anzahl an Ite-
rationen durch diesen Ansatz deutlich reduziert wird.

Für die im Rahmen dieser Arbeit betrachteten Probleme zeigt sich, dass die Approxima-
tion der Zustandsverläufe mit Hermite-Simpson Polynomen am besten geeignet ist. Obwohl
das Runge-Kutta Verfahren ebenfalls genau 4. Ordnung ist zeigt sich, dass der Konvergenzra-
dius des Verfahrens mit Hermite-Simpson Polynomen größer ist. Dies ist zu erwarten, da die
Diskretisierung mit Hermite-Simpson Polynomen als implizite Integration der Bahngleichun-
gen angesehen werden. Implizite Integrationsverfahren weisen im Vergleich zu expliziten
Runge-Kutta Verfahren im Allgemeinen eine größere Robustheit auf.

Das direkte Mehrzielverfahren

Auch beim direkten Mehrzielverfahren werden die Steuerungsverläufe durch stückweise kon-
stante oder stückweise lineare Verläufe approximiert. Zur Berechnung der Zustandsverläufe
stehen drei verschiedene numerische Integrationsverfahren mit eingebauter Schrittweitenkon-
trolle zur Verfügung: ein Runge-Kutta Verfahren 2./3. und 4./5. Ordnung sowie ein Integrati-
onsverfahren nach Paus (Ref. [61]). Um eine konsistente Berechnung der vom SQP-Verfahren
benötigten Gradienten der Zielfunktion sowie der Beschränkungen zu ermöglichen, stellt jeder
Integrator zwei verschiedene Integrationsroutinen zur Verfügung: die erste Routine berechnet
eine Referenzbahn inklusive der notwendigen Schrittweitenanpassung. Die zweite Routine
verwendet die dabei generierte Schrittweitensequenz zur Berechnung leicht variierter Bahnen
im Rahmen der numerischen Gradientenberechnung mit Hilfe finiter Differenzen. Dieses Ver-
fahren ist dem der sogenannten “inneren Differenzierung” gleichwertig, ermöglicht jedoch
eine sehr einfache Anwendung auf eine Vielzahl verschiedener Integrationsverfahren.

Ein Vergleich der implementierten Integrationsverfahren zeigt, dass das Runge-Kutta
Verfahren 4./5. Ordnung für die im Rahmen dieser Arbeit betrachteten Probleme am besten
geeignet ist. Das Paus-Verfahren entfaltet seine Vorteile erst, wenn es spezielle Problem und
Modelleigenschaften ausnutzen kann. Dies war jedoch nicht Ziel dieser Arbeit, so dass bei
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einer allgemeinen Anwendung mit niedrigen Genauigkeitsanforderungen das Runge-Kutta
Verfahren 2./3. Ordnung dem Paus-Verfahren vorzuziehen ist.

Kombination von direkter Kollokation und direktem Mehrzielverfahren

In CAMTOS kann für jede Phase das geeignete Diskretisierungsverfahren ausgewählt werden.
So ist beispielsweise bei der Optimierung von Raketenaufstiegsbahnen beim Einsatz von Fest-
stoffboostern in den ersten Phasen das Mehrzielverfahren zu bevorzugen. Zwar ist auch eine
Optimierung mit einem Kollokationsverfahren möglich, jedoch ist dabei eine präzise Platzie-
rung der Kollokationsintervalle notwendig. Liegen die Intervallgrenzen nicht exakt auf den
Datenpunkten der Schub- und Massenflussprofile der Boosterraketen, so treten durch die
Approximation der Zustandsverläufe erhöhte Diskretisierungsfehler auf. Da in der Regel auch
der Verlauf der aerodynamischen Koeffizienten auf Datentabellen basiert und diese nicht von
der Flugzeit sondern im Wesentlichen von der Machzahl und dem Anstellwinkel abhängen, ist
somit eine gute Platzierung der Kollokationsintervalle schwierig. Wird in diesen Phasen
jedoch das Mehrzielverfahren eingesetzt, so sorgt die im Integrator enthaltene Schrittweiten-
kontrolle automatisch für eine genaue Berechnung der Zustandsverläufe.

In anderen Phasen eines Optimierungsproblemes, in denen weitgehend analytische Glei-
chungen vorliegen, kann hingegen auf das deutlich schnellere Kollokationsverfahren zurück-
gegriffen werden. Es zeigt sich außerdem, dass der größere Konvergenzradius des
Kollokationsverfahrens sehr gut ausgenutzt werden kann, um eine erste Lösung für ein Pro-
blem zu erhalten, welche dann durch das Umschalten auf das Mehrzielverfahren leicht verfei-
nert werden kann.

Zusätzlich zur phasenweisen Diskretisierung ist es in CAMTOS auch möglich, vollstän-
dig analytische Phasen zu verwenden. Dabei wird vorausgesetzt, dass der Benutzer eine Rou-
tine zur Verfügung stellen kann, die aus einem gegebenen Zustandvektor am Anfang der Phase
den Zustandsvektor am Ende der Phase ohne Einsatz einer numerischen Integration berechnen
kann.

Das indirekte Optimierungsverfahren

Das im Rahmen dieser Arbeit implementierte indirekte Optimierungsverfahren ist auf die
Optimierung von Raketenbahnen im Vakuum spezialisiert. Dabei werden die Abplattung der
Erde sowie J2 Gravitationsstörterme berücksichtigt. Die Berücksichtigung zusätzlicher dissi-
pativer Kräfte, wie z.B. der Einfluss des Luftdrucks auf den Triebwerksschub, führt zu einem
stark verkleinerten Konvergenzradius des Verfahrens. Zwar kann in diesen Fällen auf ein
Homotopieverfahren zurückgegriffen werden, jedoch sind für den atmosphärischen Teil einer
Raketenbahn auch eine Vielzahl von zustandsabhängigen Pfadbeschränkungen einzuhalten,
die im Rahmen des direkten Optimierungsverfahrens sehr viel eleganter erfasst werden kön-
nen. Bei einer Betrachtung im Vakuum ohne jegliche Pfadbeschränkungen lässt sich das ent-
stehende Randwertproblem jedoch relativ leicht lösen, und die Schätzung von Startwerten für
den Adjungiertenvektor ist weniger kritisch.
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Neben den adjungierten Differentialgleichungen und der optimalen Steuerung stehen die
physikalischen Endbedingungen sowie die dazugehörigen Transversalitätsbedingungen für
verschiedene Kombinationen typischer Brennschlussbedingungen zur Verfügung. Sämtliche
notwendigen Bedingungen werden dabei im Hinblick auf eine Minimierung des Treibstoffbe-
darfs hergeleitet.

Als wichtigstes Element wird, neben den optimalen Steuerungsverläufen, auch eine
Schaltfunktion berechnet. Der Wert dieser Schaltfunktion muss bei einer optimalen Lösung
innerhalb einer Schubphase kleiner als Null und während einer Freiflugphase größer als Null
sein. Ist diese Bedingung nicht erfüllt, so deutet dies auf die Notwendigkeit zusätzlicher Frei-
flugphasen hin. Somit steht eine elegante Methode zur Analyse einer zu untersuchenden Missi-
onssequenz im Hinblick auf mögliche Treibstoffeinsparungen oder Nutzlastverbesserungen
zur Verfügung.

Lösung des Randwertproblemes mit einem SQP Verfahren

Das indirekte Optimierungsverfahren kann auch mit Hilfe von CAMTOS gelöst werden. Es
zeigt sich dabei, dass CAMTOS als reiner Randwertlöser verwendet werden kann, wenn die
Zielfunktion des SQP-Verfahrens zu Null gesetzt wird, die Transversalitätsbedingungen zur
Verfügung stehen und nur die Anfangswerte der Adjungierten “optimiert” werden. In diesem
Modus wird CAMTOS als reines Verfahren zur mehrdimensionalen Nullstellensuche verwen-
det. Erwartungsgemäß zeigt sich dabei ein quadratisches Konvergenzverhalten, sobald der
Parametervektor in die Nähe der Lösung kommt.

Weitaus attraktiver ist jedoch die Möglichkeit, auf die explizite Formulierung der Trans-
versalitätsbedingungen zu verzichten und statt dessen die Zielfunktion des SQP-Verfahrens
derart einzusetzen, dass die Anfangswerte der Adjungierten den Wert der Zielfunktion mini-
mieren. Es zeigt sich, dass die im SQP-Verfahren verwendeten Karush-Kuhn-Tucker Bedin-
gungen den ansonsten benötigten Transversalitätsbedingungen entsprechen.

Kombination des direkten und des indirekten Verfahrens

Am Beispiel einer Ariane 5 Mission mit zwei Nutzlasten wird die Kombination aus direkten
und indirekten Phasen in einem Bahnoptimierungsproblem demonstriert. In der untersuchten
Mission wird eine erste Nutzlast in einem Kreisorbit in 600 km Höhe abgesetzt, während die
zweite Nutzlast ein einen modifiziert geostationären Transferorbit mit einem Argument des
Perigäums von 270 Grad gebracht wird. Die Masse der ersten Nutzlast ist dabei konstant, die
Masse der zweiten Nutzlast wird maximiert.

Der atmosphärische Teil des Aufstieges ist mit Hilfe des direkten Mehrzielverfahrens
und einer linearen Steuerungsapproximation diskretisiert. Da Schubphasen der Oberstufe
außerhalb der Atmosphäre liegen, wird hier das indirekte Verfahren eingesetzt. Auf eine expli-
zite Formulierung der Transversalitätsbedingungen wird dabei verzichtet.

Für die Referenzmission mit einer Freiflugphase zeigt sich an der Schaltfunktion deut-
lich, dass durch Einführung einer weiteren Freiflugphase nach Brennschluss der Unterstufe
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eine weitere Verbesserung der Nutzlast erreicht werden kann. Um zu gewährleisten, dass die
Oberstufe innerhalb dieser ersten Freiflugphase nicht wieder in die Atmosphäre eintritt, wird
zusätzlich gefordert, dass das Perigäum der ersten Freiflugphase in mindestens 200 km Höhe
liegt. Für die derart modifizierte Mission ergibt sich schließlich eine Nutzlaststeigerung um
etwa 66% im Vergleich zur Referenzmission mit einer Freiflugphase.

Kombination des direkten Kollokations- und direkten Mehrzielverfahrens

Die Kombination des direkten Kollokationsverfahrens mit dem direkten Mehrzielverfahren
wird am Beispiel einer Mission eines zukünftigen Raumtransporters demonstriert. Dabei wird
das sogenannte Hopper-Konzept der Astrium GmbH, Bremen, untersucht, in dem ein suborbi-
tales, rückkehrfähiges Fahrzeug vom Raumfahrtbahnhof in Kourou eine Oberstufe zunächst in
einer Höhe von ca. 90 km absetzt und dann zur Insel Ascension im Atlantischen Ozean zurück-
kehrt. Die Oberstufe bringt die Nutzlast schließlich in den geostationären Transferorbit.

Das Problem muss als verzweigtes Bahnoptimierungsproblem betrachtet werden, da die
Randbedingung einer Rückkehr der Unterstufe einen Einfluss auf die Nutzlastmasse hat. Mit
Hilfe des direkten Kollokationsverfahrens wird für dieses Problem zunächst eine Näherungslö-
sung berechnet. Die atmosphärischen Phasen des Aufstieges und des Wiedereintritts der Unter-
stufe werden dann auf eine Diskretisierung für das direkte Mehrzielverfahren umgestellt, um
in einer weiteren Rechnung eine genaue Lösung zu erhalten. Die Umstellung auf das Mehrziel-
verfahren ermöglicht dabei nicht nur die Berechnung einer genaueren Lösung, sondern redu-
ziert auch die Größe des NLP-Problems.

Zusammenfassung und Ausblick

Die neuartige Kombination aus direktem Kollokations- und Mehrzielverfahren stellt eine
Methode zur Lösung einer umfangreichen Klasse von Bahnoptimierungsproblemen zur Verfü-
gung, die optimal an die Anforderungen des Problems angepasst werden kann. Für die ver-
schiedenen Phasen kann das jeweils am besten geeignete Verfahren zur Diskretisierung
verwendet werden. Außerdem ist mit dem gleichen Verfahren die Lösung von Randwertprob-
lemen sowohl mit der indirekter Kollokation als auch mit der Mehrzielmethode möglich. Ins-
besondere ist dabei der Verzicht auf die explizite Formulierung der
Transversalitätsbedingungen hervorzuheben, der die ansonsten notwendige analytische Vorar-
beit erheblich vereinfacht.

Der modulare Aufbau von CAMTOS erlaubt eine leichte Implementierung zukünftiger
Erweiterungen sowie eine einfache Wartung bereits vorhandener Komponenten. Ein Vergleich
mit bereits existierender Software zeigt, dass die Leistung von CAMTOS im Bereich des
direkten Mehrzielverfahrens anderen Verfahren zumindest ebenbürtig ist, im Bereich des
direkten Kollokationsverfahrens wird durch eine geänderte Diskretisierung des Problems eine
deutliche Leistungssteigerung erzielt.

Im Rahmen zukünftiger Entwicklungen ist insbesondere der Einsatz von Methoden zur
automatischen Gitteranpassung und -verfeinerung bei Phasen mit direkter Kollokation sinn-
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voll. Dabei ist sowohl das Hinzufügen zusätzlicher Intervalle zur Reduktion des Diskretisie-
rungsfehlers, als auch das Entfernen von überflüssigen Intervallen zur Verkleinerung des NLP-
Problems sinnvoll.

Für eine verstärkte Anwendung im Missionsentwurf sind zusätzliche Analysen der opti-
malen Lösung, insbesondere Sensitivitätsanalysen, erforderlich. Zusätzliche Forschung ist hier
notwendig, um eine allgemein nutzbare Formulierung zu ermöglichen, die sowohl im Bereich
des Missionsentwurfs und Fahrzeugdesigns, als auch bei Systemidentifikationen eingesetzt
werden kann. Dabei sollten die vom SQP-Verfahren berechneten Lagrange Multiplikatoren
ausgenutzt werden um die notwendigen Derivativa zu berechnen.

Viele Optimierungsprobleme weisen außerdem mehrere lokale Minima auf. Hierbei
scheint insbesondere der Einsatz von genetischen Algorithmen vielversprechend. Im Rahmen
einer solchen Entwicklung muss auch der Aspekt einer Lösung des Optimierungsproblemes in
einem Netzwerk von einzelnen PCs berücksichtigt werden (verteiltes Rechnen). Da bei evolu-
tionären Algorithmen die benötigte Rechenzeit um ein vielfaches größer ist als bei SQP-Ver-
fahren, ist es hier sinnvoll, einen solchen Algorithmus weitestgehend zu parallelisieren.

Eine Parallelisierung ist auch für die Berechnung der Jakobimatrix im Rahmen des
direkten Mehrzielverfahrens interessant. Weitere Untersuchungen müssen zeigen, ob und in
welchem Umfang sich eine solche Parallelisierung lohnt und welchen zusätzlichen Rechenauf-
wand die notwendigen Kommunikationsprotokolle erfordern.

Für spezielle Anwendungen kann die Implementierung zusätzlicher Integrationsverfah-
ren interessant sein. Im Falle von interplanetaren Missionen käme hierbei z.B. ein Runge-
Kutta Verfahren höherer Ordnung in Frage. Außerdem stellen Integrationsverfahren mit einer
internen Ereignisdetektion eine interessante Verbesserungsmöglichkeit bei der Handhabung
linear interpolierter Daten oder anderer Nicht-Differenzierbarkeiten in der Dynamik dar. Der-
artige Integrationsverfahren stellen sicher, dass der numerische Integrationsprozess genau an
bestimmten Ereignissen anhält, indem neben der Integration eine Nullstellensuche in den vom
Modell zur Verfügung gestellten Ereignisindikatoren durchgeführt wird. Zwar ist ein Runge-
Kutta Verfahren 4./5. Ordnung in der Lage, mit derartigen Nicht-Differenzierbarkeiten umzu-
gehen, jedoch führt dies häufig zu sehr kleinen Schrittweiten innerhalb eines Integrationsinter-
valls. Ereignisbasierte Integratoren können hier zu Leistungssteigerungen im Hinblick auf
Rechenzeit und Genauigkeit der Lösung führen.




