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Abstract

The present thesis is concerned with the initiation and extension of microcracks in brittle,
granular materials, particularly in porous ceramics, and with the effect of this microsopic
damage on the macroscopic material properties. For an investigation of the damage
behaviour, a two-dimensional geometric model of the microstructure and a physical model
of its elastic and strength properties is developed.

The emerging computer algorithm represents a novel approach to the simulation of
microscopic damage since it combines elements of the purely analytical ‘micromechanical’
models, and ideas of the rather numerical ‘mesh models’. The numerical parts are due to
the discretization of the actual structure into a grid of grain boundaries, which is seen as
a network of potential cracks; the disorder immanent to the microstructure is accounted
for via random numbers during the grid generation. The analytical parts are involved in
the stress analysis: elementary analytical solutions for the single cavities (cracks, pores)
are employed to determine the local stress disturbances; crack interactions are explicitly
taken into consideration. The fracture criterion at the microscale relies on an energy
balance estimation for the individual grain boundaries (‘facets’).

This semi-numerical simulation model serves as a tool for investigation of progressive
damage under various loading conditions, in particular external compression and internal
pore pressure. Crack closure resulting from normal compression, internal friction between
sliding crack faces, and structural changes due to microcracking give rise to nonlinear
effects which are properly described in the formalism.

Exemplary simulations reproduce the various types of damage (unstable crack growth,
distributed microcracking, localization) and demonstrate their dependence on the loading
modes and on the level of structure heterogeneity. Under internal compression, micro-
cracks grow to connect pores, thus building chains or networks of defects.

In the investigations, high interest is focused on the statistical fluctuations of the
observables due to the microstructural disorder. The studies span the whole range between
nucleation of single microcracks and material failure.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Entstehung und Ausbreitung von Mikroris-
sen in spröden, granularen Medien, insbesondere in porösen Keramiken, und mit den
Auswirkungen dieser mikroskopischen Schädigung auf die makroskopischen Materialeigen-
schaften. Zur Untersuchung dieses Schädigungsverhaltens wird ein zweidimensionales
geometrisches Modell der Mikrostruktur und ein physikalisches Modell ihrer elastischen
Eigenschaften und ihrer Festigkeit entwickelt.

Der hieraus hervorgehende Computer-Algorithmus stellt einen neuartigen Ansatz zur
Simulation der Schädigung von Mikrostrukturen dar, denn er vereinigt Konzepte der rein
analytischen ‘mikromechanischen’ Modelle und Konzepte der überwiegend numerischen
‘Gitternetz’-Modelle. Die numerischen Anteile ergeben sich aus der Diskretisierung der
tatsächlichen Struktur in ein Gitter aus Korngrenzen, welches als ein Netzwerk poten-
zieller Risse aufgefasst wird. Der natürlichen mikrostrukturellen Unordnung wird durch
die Verwendung von Zufallszahlen bei der Gittergenerierung Rechnung getragen. Die
analytischen Anteile rühren von der Spannungsanalyse her: die lokalen Spannungsfelder
werden mittels elementarer analytischer Lösungen für die einzelnen Kavitäten (Risse,
Poren) berechnet; Wechselwirkungen zwischen den Rissen werden explizit berücksichtigt.
Das mikroskopische Bruchkriterium gründet auf eine Energieabschätzung für die einzelnen
Korngrenzen (‘Facetten’).

Mit diesem semi-numerischen Simulationsmodell wird die fortschreitende Schädigung
der Mikrostruktur insbesondere unter externen kompressiven Kräften und internem Poren-
druck untersucht. Das Schließen der Riss-Flächen unter Druckbelastung, interne Rei-
bungskräfte sowie Strukturänderungen verursachen nichtlineare Effekte, die im Formalis-
mus adäquat beschrieben werden.

Exemplarische Simulationen reproduzieren die unterschiedlichen Schädigungs-Typen
(instabiles Risswachstum, verteilte Mikrorisse, Lokalisierung) und zeigen deren Abhän-
gigkeit von den Belastungsformen und vom Grad der Struktur-Heterogenität auf. Unter
Innendruck bilden die Mikrorisse Verbindungen zwischen den Poren, so dass Ketten oder
Netzwerke von Defekten entstehen.

Ein wichtiges Thema bei den Untersuchungen sind die statistischen Schwankungen
der Resultate aufgrund der mikrostrukturellen Unordnung. Die durchgeführten Studien
erstrecken sich über die gesamte Bandbreite vom Entstehen einzelner Mikrorisse bis hin
zum Materialversagen.
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Zusammenfassung (Langform)

Modellierung der Mikrostruktur und Simulation fortschreitender
Schädigung in spröden, porösen Keramiken

Die vorliegende Arbeit beschäftigt sich mit der Entstehung und Ausbreitung von Mikroris-
sen in spröden, granularen Medien, insbesondere in porösen Keramiken, und mit den
Auswirkungen dieser mikroskopischen Schädigung auf die makroskopischen Materialeigen-
schaften. Zur Untersuchung dieses Schädigungsverhaltens wird ein zweidimensionales
geometrisches Modell der Mikrostruktur und ein physikalisches Modell ihrer elastischen
Eigenschaften und ihrer Festigkeit entwickelt; diese Modelle dienen als Grundlage für
Computersimulationen, mit denen verschiedene Fragestellungen aus dem Bereich der Schädi-
gungsmechanik bearbeitet werden.

Angelehnt an die maßgeblichen Struktureigenschaften eines heterogenen, dreiphasigen
Materials konzentriert sich das Strukturmodell auf die festen, granularen Bestandteile
und die Poren. Die Auflösungslänge des Modells ist demnach die Größe der Körner.
Unter Verwendung von ‘globalen’ Strukturinformationen, die aus stereologischen Auswer-
tungen elektronenmikroskopischer Bilder hervorgehen, sowie ‘lokalen’ Strukturinformatio-
nen, die aus empirischen Beobachtungen hervorgehen, erzeugt ein Computeralgorithmus
numerische Repräsentanten der Kornstruktur. Hierbei werden Zufallszahlen eingesetzt,
so dass diese Strukturmodelle als Stichproben des tatsächlichen Materials zu verstehen
sind.

Anhand dieser konkreten Strukturbilder wird dann mit dem physikalischen Modell die
Mikroriss-Bildung und der Mikroriss-Fortschritt unter vorgegebenen Belastungen simuliert.
Die Belastungsmodi sind angelehnt an die Situation beim industriellen Einsatz des Ma-
terials als Filterträger, wo externe, kompressive Kräfte und interne Belastungen (Flüs-
sigkeitsdruck in den Poren) dominieren. Das physikalische Modell geht von einem spröden
Bruchverhalten der Korngrenzen (Facetten) aus. Das Modellgitter der Korngrenzen dient
als ein Netzwerk potenzieller Risse, in dem die Simulation des Rissfortschritts nicht kon-
tinuierlich, sondern in diskreten Schritten abläuft. Als Ergebnis der Berechnungen erhält
man schließlich makroskopische elastische Parameter (z.B. effektive Steifigkeit, Gesamt-
dehnung), statistische Angaben für die Festigkeit, Strukturparameter (z.B. Rissdichte)
und topologische Rissmuster.

Das hier vorgestellte und ausgearbeitete Computermodell stellt einen neuartigen Ansatz
zur Simulation der Schädigung von Mikrostrukturen dar, denn es vereinigt Konzepte
der ‘mikromechanischen’ Modelle, die auf analytischen Beschreibungen beruhen, und
Konzepte der ‘Gitternetz’-Modelle, die in erster Linie numerisch sind. Die numerischen
Anteile ergeben sich hier aus der Diskretisierung der tatsächlichen Struktur in ein Git-
ter aus Korngrenzen; über diese Diskretisierung ist eine gewisse Verwandtschaft mit
dem bekannten Konzept des Voronoi-Gitters gegeben. Anders als bei konventionellen
Gitternetz-Methoden, z.B. Finite-Elemente-Methoden, ist das Korngrenzengitter jedoch
nicht konzipiert, um Lasten zu übertragen. Die Bestimmung der Spannungen und Dehnun-
gen im Material erfolgt hier nicht über die festen Strukturteile, sondern vielmehr über die
Defekte, d.h. die Poren und Risse: Es werden elementare analytische Lösungen für die
durch einzelne Kavitäten eingebrachten Störungen des lokalen Spannungsfeldes in den
festen Materialphasen verwendet. Die Wechselwirkungen zwischen den Rissen werden
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explizit berücksichtigt mittels Transmissionsfaktoren, einer Superpositions-Technik und
Lösen eines selbst-konsistenten Gleichungssystems. Effektive, d.h. makroskopische, Para-
meter wie z.B. die Flexibilitätsmatrix werden durch explizites Aufsummieren der Beiträge
der einzelnen Kavitäten berechnet.

Durch die Kombination von Gitternetz-Struktur und mikromechanischer Spannungs-
analyse entsteht ein semi-numerisches Modell. Zu den Vorteilen dieses alternativen Kon-
zepts zählt zunächst, dass die Spannungsanalyse aus der Perspektive der Kavitäten einen
umfassenden, kompakten Formalismus ermöglicht, der anwendbar sowohl unter Zug- als
auch unter Druckbelastungen ist. Gerade unter kompressiven Kräften, wo sich zusätzlich
zu den Mikroriss-induzierten Strukturänderungen weitere nichtlineare Effekte durch das
Schließen der Rissflächen und die Reibung beim Verschieben der Rissflächen ergeben, er-
weist sich die mikromechanische Beschreibungsweise als vorteilhaft. Aber im Unterschied
zu durchgehend mikromechanischen Modellen berücksichtigt der vorgestellte Ansatz auch
die räumlichen Korrelationen der Defekte und ist somit nicht-lokal. Andererseits ist
im Vergleich zu Finite-Elemente-Methoden der rechnerische Aufwand (Finite-Elemente-
Darstellung der Mikrodefekte, Matrixinversion etc.) gering, da das wechselwirkende Sys-
tem hier das Ensemble der Defekte und nicht die Gesamtzahl der Verbindungselemente
im Materialnetz ist. Zudem ergibt im vorgestellten Konzept die Diskretisierung der fes-
ten Materialphasen ein ungeordnetes Korngrenzengitter; dieses erscheint hinsichtlich der
Schädigungs-Simulation realitätsnäher und flexibler als die geordneten Gitternetze in stan-
dardisierten Finite-Elemente-Techniken.

Der semi-numerische Ansatz bringt freilich auch gewisse Nachteile mit sich. So er-
fordert die analytische Implementierung der verfügbaren Spannungslösungen eine sehr
grobe Näherung für die Kavitäten-Formen, beispielsweise elliptische Porengeometrien
oder geradlinige Risse. Insbesondere müssen Netzwerke aus Poren und Rissen durch ele-
mentare, eher ‘glatte’ Körper ersetzt werden. Eine weitere Schwäche des Modells ergibt
sich aus der Tatsache, dass die analytischen Spannungslösungen nur für gleichförmig an-
greifende Einheitskräfte zur Verfügung stehen: die Belastungskräfte müssen deshalb ent-
lang der Risslinien gemittelt werden. Diese Technik ist am besten vertretbar für verteilte
Risse vergleichbarer Länge, wird bisweilen aber unklar bei Lokalisierung der Risse und
bei stark unterschiedlichen Riss-Formen.

Zentrales Element in einem solchen Simulationsmodell für fortschreitende Schädigung
ist das mikroskopische Bruchkriterium. Bei dem vorgestellten Konzept handelt es sich
im Wesentlichen um ein Kriterium für die Energiebilanz, mit dem die Stabilität des
Korngitters während des Belastungspfads kontrolliert wird: Spontanes Versagen einer
Facette ist erst möglich, wenn die elastische Dehnungsenergie, die beim Trennen der
Korngrenze freigesetzt wird, die Erhöhung der freien Oberflächenenergie kompensiert.
Auf der Grundlage dieses Energiekriteriums und einzelner Ergänzungen berücksichtigt
das Simulationsmodell neben der Entstehung neuer Risse auch die Vergrößerung und das
Zusammenwachsen schon vorhandener Defekte (Risse und Poren) sowie das Entstehen
von Pore-Riss-Netzwerken. Eine Verzweigung von Rissen wird allerdings nicht behandelt.

Ein wichtiger Gesichtspunkt im Modell und bei den durchgeführten Untersuchun-
gen ist auch die Berücksichtigung natürlicher statistischer Schwankungen: Während die
makroskopischen Strukturparameter gewissermaßen unveränderlich sind, unterscheidet
sich die Mikrostruktur eines Werkstücks von Probe zu Probe, und dies hat Auswirkun-
gen auf deren elastisches und bruchmechanisches Verhalten. Im Modell wird eine Monte
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Carlo Simulations-Strategie angewandt, um — im Rahmen vorgegebener Verteilungsfunk-
tionen — durch zufälliges Streuen der Körner und Poren mikroskopisch verschiedene Mate-
rialausschnitte zu erzeugen. Deterministische Simulationen an einer großen Anzahl solcher
makroskopisch identischen Modellstrukturen liefern dann Daten, anhand derer mit einer
statistischen Analyse die wesentlichen Trends des Schädigungsprozesses und die Varianz
der beobachteten Größen ermittelt werden.

Kapitel 1 der vorliegenden Dissertationsschrift führt in wichtige Begriffe aus dem Be-
reich der Schädigungsmechanik ein und bietet einen Überblick über die aus der Literatur
bekannten Berechnungsmodelle. Der neue, semi-numerische Ansatz wird vorgestellt und
zwischen den traditionellen Modellen eingeordnet.

Im zweiten Kapitel wird das Verfahren zur Generierung von geometrischen Mikro-
struktur-Bildern erläutert. Hinsichtlich der benötigten Eingabe-Informationen wird ver-
deutlicht, dass die aus der stereologischen Analyse von elektronenmikroskopischen Aufnah-
men gewonnenen Daten die Mikrostruktur nicht ausreichend charakterisieren. In Bezug
auf die ‘lokalen’ Struktureigenschaften, z.B. die Form und Größe der individuellen Struk-
turelemente, sind daher zusätzliche Annahmen erforderlich. Letztendlich weisen die mit
dem zweidimensionalen Strukturmodell erzeugten Bilder aber eine beachtliche visuelle
Ähnlichkeit zu den experimentellen Strukturbildern auf.

Kapitel 3 beschäftigt sich mit dem Einfluss von Kavitäten auf die effektiven elasti-
schen Materialeigenschaften und auf die lokale Spannungsverteilung. Nach einer kurzen
Einführung in die Theorie der Homogenisierung werden die traditionellen mikromecha-
nischen Ansätze zur Berechnung der makroskopischen Steifigkeit bzw. Flexibilität, wie
etwa das selbst-konsistente Schema, skizziert. Anschließend werden die aus der Lite-
ratur verfügbaren analytischen Spannungslösungen für einzelne Kavitäten ausgewertet
und visualisiert. Für Strukturen mit zahlreichen, beliebig verteilten Rissen und/oder
Poren wird dann ein Formalismus zur Berechnung der lokalen Spannungen und Ver-
schiebungen entwickelt, der diese analytischen Lösungen numerisch verarbeitet. Über ein
Homogenisierungsverfahren können somit auch die Flexibilitätsmatrix und die Gesamt-
dehnung des betrachteten Materialausschnitts bestimmt werden. Aufgrund der bereits er-
wähnten nichtlinearen Effekte (Schließen der Riss-Flächen, Reibung, Strukturänderungen)
entsteht eine Abhängigkeit des Materialverhaltens vom vorangegangenen Belastungspfad;
dieser Rolle der Vergangenheit wird durch Inkrementierung im Computer-Algorithmus und
durch eine Reihe von Fallunterscheidungen Rechnung getragen. Von großer Bedeutung
sind hier zwei physikalische Größen, die den momentanen Zustand eines Risses kennze-
ichnen: seine Aktivitätsfaktoren und die Fehlanpassung seiner Scherungsöffnung (‘shear
mismatch’).

Als erste Anwendung dieses nicht-lokalen Formalismus’ wird die Bedeutung der Wech-
selwirkungen zwischen den Kavitäten untersucht. Hinsichtlich der makroskopischen Para-
meter wie Steifigkeit und Gesamtdehnung ist der Einfluss der Wechselwirkungen so lange
vernachlässigbar wie die Kavitäten zufällig verteilt sind. Sobald die Orientierung der Kav-
itäten eine Vorzugsrichtung aufweist und die gegenseitige Positionierung der Kavitäten
eine Tendenz zur Stapel- oder Kettenform andeutet, haben die Wechselwirkungen jedoch
entweder verstärkende oder abschwächende Wirkung. Eine spezielle Untersuchung unter
Einsatz des Computermodells verdeutlicht, dass die mikroskopischen Spannungskonzen-
trationen durch die Wechselwirkungen in jedem Fall verstärkt werden, auch bei zufälliger
Verteilung der Kavitäten.
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Im vierten Kapitel wird die Entstehung und Ausbreitung von Mikrorissen in einem
kompakten (d.h. nicht-porösen) Material untersucht. Mit exemplarischen Simulatio-
nen werden die unterschiedlichen Schädigungs-Typen (instabiles Risswachstum, verteilte
Mikrorisse, Lokalisierung) reproduziert und deren Abhängigkeit von der Belastungsform
(Zug, Druck, laterale Kräfte) und dem Grad der Struktur-Heterogenität aufgezeigt. Die
Untersuchungen erklären, dass das Lokalisierungsphänomen, also das ‘kooperative’ Verhal-
ten vieler Einzelrisse, eine Folge der verwinkelten Korngrenzen und der lokalen Störungs-
felder der Risse ist. Die verwinkelten Korngrenzen wirken als Energie-Barrieren für den
Rissfortschritt. Bei instabilem Risswachstum, das zu spontanem Versagen führt, sowie bei
Lokalisierung ist eine Homogenisierung der mikroskopischen Daten nutzlos; hier kann der
Übergang von mikroskopischer Schädigung zu makroskopischem Versagen ausschließlich
anhand der Rissmuster analysiert werden.

Weitergehende Simulationsrechnungen unter externem Druck illustrieren, wie sich
durch Mikrorisse die Steifigkeit des Materials verringert und eine Anisotropie entwickelt.
Aufgrund ihrer Abhängigkeit vom Aktivitätszustand der Risse ist die Steifigkeit jedoch
kaum geeignet, den Schädigungsgrad des Materials zu charakterisieren. Stattdessen bietet
sich hier die skalare Rissdichte als Kenngröße an, da diese in den Simulationen eine enge
Korrelation zu den Komponenten εxx and εyy der Gesamtdehnung aufweist und dem For-
malismus leicht zugänglich ist. Testreihen an statistischen Materialproben verdeutlichen,
wie die Unordnung im Korngitter die Resultate beeinflusst. Die absolute Streuung des
Schädigungsparameters erhöht sich mit zunehmender Schädigung, während der Variati-
onskoeffizient (d.h. die relative Streuung) mit zunehmender Schädigung abnimmt.

Wie die Untersuchungen bestätigen, wird die Schädigung im Material gefördert durch
die von den Rissen und ihren Wechselwirkungen induzierten lokalen Spannungsfelder.
Dagegen hat die Berücksichtigung interner Reibungskräfte in den Simulationen eine hem-
mende Wirkung auf die Ausbreitung der Schädigung.

Kapitel 5 ist einem speziellen Belastungs-Modus gewidmet, der beim industriellen
Einsatz von porösen keramischen Filterträgern dominiert, nämlich der Druckbelastung
innerhalb der Poren. Das Simulationsmodell wird hierbei dem Umstand angepasst, dass
die höchsten Spannungskonzentrationen in der Umgebung der Poren auftreten und die
Mikrorisse daher von den Poren ausgehen. Da jedoch schon die elementare Geome-
trie einer Pore-Riss-Kombination zu kompliziert für eine analytische Beschreibung des
umgebenden Spannungsfeldes ist, werden im Energie-Bruchkriterium nun Spannungs-
Intensitätsfaktoren eingesetzt. Zudem erweist es sich als notwendig, das Energiekriterium
durch weitere Bedingungen zu ergänzen. Unter dem Einfluss des Innendrucks werden die
Poren nun durch Mikrorisse verbunden, und es ergeben sich somit Netzwerke von Defek-
ten. Für die Simulationsrechnungen müssen solche Defekt-Agglomerate durch einfache
Kavitäten ersetzt werden, die vergleichbare Spannungskonzentrationen hervorrufen; in
den hier vorliegenden Berechnungen sind dies Ellipsen.

Simulationen an einfachen porösen Strukturen zeigen unter Innendruck ein plötzliches,
instabiles Ausbreiten der Defekte zu willkürlich orientierten, nahezu geradlinigen Fehler-
Ketten, die die Materialproben schließlich durchtrennen (Perkolation). Dieses spröde
Verhalten legt einen Vergleich mit statistischen ‘weakest-link’-Theorien (Theorien des
schwächsten Bindeglieds) nahe, insbesondere mit der Weibull-Theorie. Folglich wird die
Verteilung der kritischen Belastungen, die sich aus Simulationen an einer Reihe statisti-
scher Strukturproben ergibt, entsprechend der Weibull-Theorie analysiert. Für vorgegebe-
ne Größe des Materialausschnitts stimmen die Testergebnisse mit der Weibull-Theorie gut
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überein. Simulationen an unterschiedlich großen Proben zeigen hingegen einen deutlichen
Skalierungseffekt sowohl für den Mittelwert als auch für die Varianz der kritischen Be-
lastung: In Übereinstimmung mit dem Größeneffekt der ‘weakest-link’-Hypothesen sinkt
die kritische Belastung bei zunehmender Probengröße. Während aber im Skalierungsge-
setz der Standard-Weibull-Theorie die kritische Belastung asymptotisch gegen null strebt,
ist der berechnete asymptotische Grenzwert von null verschieden. Das Skalierungsgesetz
der Standard-Weibull-Theorie ist hier deshalb nicht anwendbar, weil das Material sich
nicht perfekt spröde verhält. (Ursache ist, dass bei der Modellierung die Porengröße be-
grenzt ist.) Deshalb wird ein alternatives Skalierungsgesetz formuliert, welches die für ver-
schiedene Probengrößen berechneten Resultate gut beschreibt und für ein Extrapolieren
der kritischen Belastung hin zu größeren Probendimensionen hilfreich erscheint.

Die Auswertung der darauf folgenden Simulationsreihen berücksichtigt das Skalierungs-
verhalten der Materialproben. Die Rechnungen bestätigen, dass die Größe des repräsenta-
tiven Volumenelements mit der Maximalgröße der maßgeblichen Strukturelemente wächst:
wichtig sind hier die statistischen Extreme, beispielsweise die größten Poren. Bei annä-
hernd monodispersen Poren-Größenverteilungen sinkt die mittlere kritische Belastung mit
dem spezifischen Poren-Umfang, d.h. sie steigt mit zunehmender ‘Feinheit’ der Phase. Die
kritische Belastung sinkt dagegen mit zunehmender Porosität, und sie ist bei elliptischer
Porenform geringer als bei kreisrunden Poren. Ähnlich wie im Fall der Poren hat auch
eine höhere Feinheit der Körner eine stärkende Wirkung auf die Materialstruktur; die
mikromechanischen Gründe sind allerdings verschieden.

Wie erwartet, ist die Varianz der kritischen Belastung in einem statistischen Proben-
Ensemble umso größer, je ungeordneter die Struktur ist; diese Unordnung wächst mit
der Anzahl der Freiheitsgrade im Strukturmodell (z.B. beliebige Position, Größe, Form,
Orientierung der Poren). Gleichzeitig sinkt der Mittelwert der kritischen Belastung mit
zunehmender Unordnung.

Als Fazit gilt festzustellen, dass der vorgestellte semi-numerische Ansatz selbstver-
ständlich nicht alle in der Literatur beschriebenen Modelle zur Schädigungssimulation
ersetzen kann. Wie die vorliegende Dissertation zeigt, ist dieser Ansatz jedoch eine nüt-
zliche Alternative, die für ganz unterschiedliche Problemstellungen gute Ergebnisse liefert.
Dies betrifft wesentliche Aspekte der spröden und quasi-spröden Schädigung, der internen
Reibung, oder der statistischen Unordnung in der Mikrostruktur. Bemerkenswert ist, dass
die gesamte Bandbreite vom Entstehen einzelner Mikrorisse bis hin zum Materialversagen
abgedeckt wird.

Obwohl die hier durchgeführten Modellrechnungen weitgehend auf eine Aluminium-
oxid/Titandioxid-Struktur abgestimmt sind, können viele Teile der dargestellten Theorie
und der Resultate auch auf andere mehrphasige (kompakte oder poröse) spröde Stoffe
übertragen werden, seien es Keramiken, keramische Komposite, Gesteine oder Beton.
Wie im letzten Kapitel der Dissertation skizziert, können durch Erweiterungen des Mod-
ells neben den rein mechanischen Belastungsformen auch thermische Restspannungen,
Spannungskorrosion oder Ermüdungsrisse berücksichtigt werden. Obwohl das vorgestellte
Modell auf vorgegebene Spannungen zugeschnitten ist, ist eine Kopplung mit makroskopis-
chen Untersuchungen (z.B. Finite-Elemente-Modellen), die eher von Verschiebungen aus-
gehen, gut denkbar.

Die Vorteile und Möglichkeiten des semi-numerischen Modellansatzes bei der quali-
tativen Untersuchung von Schädigungsprozessen können jedoch nicht darüber hinweg-
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täuschen, dass mit dem Modell in seiner gegenwärtigen Form die quantitative Beschrei-
bung des Material-Bruchverhaltens mitunter noch sehr unzulänglich ist. Dies wird deut-
lich am Beispiel des kritischen Innendrucks, der zur Schädigung der porösen Strukturen
aufgewandt werden muss: Während für die Modellstrukturen Schwellwerte oberhalb von
100 MPa berechnet werden, beobachtet man in industriellen Anwendungen schon bei
einem Flüssigkeitsdruck zwischen 1 und 5 MPa signifikante Schädigungen. Diese hohe
Diskrepanz ist nicht allein auf die Vernachlässigung thermischer, chemischer und zyk-
lischer Einflüsse oder die Beschränkung auf nur eine Korn-Phase (Titandioxid) bei den
Modell-Simulationen zurückzuführen. Die Gründe liegen auch auf einer tieferen, konzep-
tionellen Ebene:

Zum einen ist das Modell durch seine sehr grobe Näherung für die Kavitäten-Geome-
trien eingeschränkt. Reelle Poren sind weniger glatt und rund, sondern vielmehr kantig
und spitz; deshalb bewirken sie höhere Spannungskonzentrationen im Material, die das
Entstehen der Mikrorisse beträchtlich erleichtern. Um diese Spannungs-Spitzen im Mo-
dell zu berücksichtigen, wäre eine künstliche Variation der Spannungs-Intensitätsfaktoren
erforderlich. Außerdem ist für eine quantitativ gültige Rechnung eine wesentlich breitere
Streuung der Porengrößen bei der Struktur-Modellierung nötig — in den Materialproben
wird nämlich eine ‘offene’ Porosität beobachtet, die sich in den zweidimensionalen Quer-
schnitten durch vereinzelte sehr lange, schmale Poren bemerkbar macht.

Eine weitere konzeptionelle Einschränkung ergibt sich durch die zweidimensionale Be-
trachtungsweise. Die Beschränkung auf zwei Dimensionen kann für eine quantitative
Simulation nur in gewissen Sonderfällen genügen, aber sie hat ihre Berechtigung insofern,
als ein Verständnis der Probleme im zweidimensionalen Raum hilfreich für die Bewer-
tung der wesentlich komplexeren Situationen im dreidimensionalen Raum ist. (Prinzipiell
sind wesentliche Teile des Formalismus auch auf Situationen im Dreidimensionalen an-
wendbar, jedoch wäre die praktische Umsetzung sehr aufwändig und kaum lohnenswert.)
Eine kurze Diskussion am Ende des letzten Kapitels macht deutlich, dass die auf den
zweidimensionalen Raum beschränkte Sicht zwei gegensätzliche Konsequenzen hat: eine
‘reduzierte’ Wahrnehmung der Defekt-Geometrien einerseits, und eine Überschätzung der
Einflüsse der Defekte auf die elastischen Materialeigenschaften andererseits. Inwieweit
diese beiden konträren Effekte sich gegenseitig aufheben, dürfte wohl vom Einzelfall ab-
hängen.

Hinsichtlich ihrer quantitativen Gültigkeit sind die in Kapitel 4 vorgestellten Ergeb-
nisse generell realistischer einzuschätzen als die Ergebnisse von Kapitel 5. Denn Kapi-
tel 4 beschränkt sich auf kompakte Materialien, während die oben genannten konzep-
tionellen Einschränkungen in erster Linie mit den Poren zur Geltung kommen. Aber
bereits die Modellierung des kompakten Materials kann durch besser angepasste Eingabe-
Informationen optimiert werden — die Strukturparameter (genaue Korngrößen, Eigen-
schaften der Korn-Grenzflächen etc.), die Materialparameter (z.B. spezifische Oberflächen-
energie, elastische Konstanten) oder auch die Randbedingungen der Materialausschnitte
gehen nämlich bisher nur in sehr grober Näherung ins Modell ein. Ein exaktes Abbild der
Realität zu schaffen, ist jedoch kein vielversprechendes Ziel eines Computermodells. Die
Vorzüge des hier ausgearbeiteten Modells liegen in der Klarheit, mit der es die wesentlichen
Phänomene qualitativ wiedergibt, und nicht etwa in einer quantitativen, numerischen
Genauigkeit. Davon abgesehen gewinnt man ein Verständnis für die mikromechanischen
Schädigungsprozesse nicht erst mit dem Einsatz des ‘fertigen’ Modells in Simulationsrech-
nungen, sondern bereits mit der Entwicklung des Modells selbst.
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List of Symbols

symbol meaning

a, b lengths of ellipse semiaxes
ank, a

s
k crack activity factors

A area
bk crack opening displacement
C elastic compliance

(tensor resp. matrix)
d damage parameter / diameter
D specimen size (volume or area)
E Young’s modulus
ε elastic strain tensor
G energy release rate
γ specific surface energy
I unit matrix
K stress intensity factor
LA specific perimeter

(perimeter per unit area)
lk crack length
λ size factor (Weibull theory)
Λki traction transmission factor
m Weibull shape parameter
µy population mean
µm sliding friction coefficient
µs static (sticking) friction coeffi-

cient
NA number density

(number per unit area)
nk unit normal vector
Nθ projection matrix
ν Poisson ratio
p porosity / probability density
P internal (fluid) pressure

symbol meaning

Π cumulative failure probability
q shape factor
r radius / fitting parameter

(scaling law)
rkl correlation coefficient
ρ scalar crack density
ρ, θ curvilinear coordinates
sy sample standard deviation
S elastic stiffness

(tensor resp. matrix)
σy population standard deviation
σ stress tensor
SV specific surface (surface per

unit volume)
tk traction acting on a crack
tsk,mism shear traction mismatch
τ , T time
θk crack orientation angle
Θ temperature
U cumulative survival probabil-

ity
V volume
VV specific phase volume (phase

volume per unit volume)
W energy
x, y Cartesian coordinates
y observable
ȳ sample mean of y
ys characteristic strength

(Weibull theory)



16



Chapter 1

Introduction

The present dissertation has emerged from the BRITE-EURAM project N0 BE-3109
Extend-Nanofilters which run in the years 1997 to 2000. Essential parts of the work have
been developed and written in the bounds of the project, others have been motivated by
questions raised during that time, and have been elaborated later on. The context of the
European project and the cooperation with international partners suggested the English
language for the writing.

The project, fully named “Improvement of porous ceramic substrate for the extension
of nanofiltration”, addressed two main points of basic industrial and economical interest:
Firstly, the applicability of certain membranes to filtering nanoscale particles, and their
performance with respect to the separation rates; secondly, the reliability and lifetime of
the porous, multiphased ceramic supports on which the membranes are deposited.

The present work contributes to the second point. The objective was the geometrical
modelling of the structural properties and the simulation of damage evolution in the filter
support material at the microscale. These studies supplement the efforts of the project
partners for a better understanding of the filter support behaviour at the macroscopic level,
which included experimental measurements and loading tests on industrial components as
well as numerical simulations of the fabrication process and of service conditions via finite
element methods. Vice versa, the present account is supported and partially confirmed
by micrographic analyses of actual specimens performed by a project partner.

The computational model established and employed here represents a new approach
on the simulation of microcracking and irreversible structural changes, which combines
elementary analytical solutions, numerical meshing and statistical investigations. It is
attached to the essential characteristics of the micro-heterogeneous filter support material:
a granular microstructure consisting of several solid-phase constituents (Al2O3, TiO2) and
pores, and a brittle or quasi-brittle rupture behaviour. It concentrates on the special
industrial service conditions, which comprise remote as well as internal loading modes.
Nevertheless, the model is applicable to other multi-phased, compact or porous ceramics
subjected to mechanical stresses, and is extendable with respect to the impact of thermal
residual stresses and corrosion.

The computer programs for the numerical calculations have all been written in FOR-
TRAN 90 in the course of the project. The computations have been performed under a
UNIX operating system running on a Silicon Graphics “O2”workstation. Visualization of
the results has been done in the framework of the MATLAB engineering software. The
administration of data and of the different software modules has been supported by Perl
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scripts. Advantage has been gratefully taken of several further software tools running
under the GNU public license.

This introductory chapter will first outline the basic modes of damage and failure
from a general, rather phenomenological point of view (section 1.1.1), then review the
common concepts of modelling in damage mechanics (section 1.1.2), and finally describe
the objective and characteristics of the present approach (section 1.2 and 1.3).

1.1 Micromechanics and damage mechanics

Damage in materials is usually considered from three fundamental observation levels:

At the macroscopic scale, the corresponding scientific discipline is called ‘fracture
mechanics’; it deals with macroscopic cracks and notches. The resolution length of models
at the macroscale is the size of the ‘representative volume element’ (RVE) of the material.
Elementary fracture mechanics deals with the solid phases at the continuum level, i.e. it
neglects the heterogeneous character of the material at the microscale.

In many cases, failure of structural parts at the macroscale follows from irreversible
processes at the microscale. The corresponding scientific discipline is called ‘damage
mechanics’; it is concerned with microscopic defects, and microcracks in particular. A
typical resolution length of related models is the grain size or the size of the inclusions in
a ceramic material. Transition from considerations at the macroscopic level to models at
the microscopic level requires a procedure called ‘discretization’ [48]1, while the inverse
process is called ‘homogenization’.

At the molecular level, damage is expressed in ruptured inter-molecular bonds and
atomic dislocations. The resolution length is the atomic distance.

The present investigation must be attributed to the intermediate observation scale
(the microscale), and to the field of damage mechanics in brittle solids.

1.1.1 Microscopic damage from a general point of view

Generalizing, one may distinguish two basic ‘modes’ of damage evolution at the micro-
scopic level: nucleation of new microcracks resulting in distributed microcracking, on the
one hand, and propagation (growth) of already existing microcracks, on the other hand.
Accordingly, failure of a material may be ultimately dominated by unstable growth of a
singular crack or by the ‘collective’ impact of a number of cracks. The latter phenomenon
is called localization; it may be categorized in between the two limiting mechanisms of
unstable crack growth and randomly distributed microcrack nucleation.

The present thesis does not account for any plastic deformation, but consider an
idealization of the fracture process.

Distributed microcracking. A damage evolution dominated by microcrack nucleation
and stable propagation of existing microcracks requires a heterogeneity or a strongly
disordered structure of the material at the microscale: in this case, grain boundaries and
inclusions provide energy barriers which trap the nucleated microcracks and arrest their

1Alternatively, the macro-micro transition is often called ‘localization’ [56], but the present thesis will
use this term to describe a damage phenomenon (see p. 19).
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growth. Nucleation of new microcracks and the arising patterns of distributed cracks
result in a quasi-brittle response of these ‘damage tolerant solids’.

Crack nucleation is rather an intrinsic phenomenon depending on the constitutive
material properties and the micro-defect density, i.e. on effective (macroscopic, averaged)
parameters. Compressive loads, high temperatures, or corrosive effects of the environment
are further conditions favouring the distributed damage. A moderate lateral compression
renders the growth of microcracks stable by decreasing their stress intensity factors.

For example, a material under triaxial compression may keep hardening at the speci-
men scale while it is progressively crushing into smaller fragments; under these conditions,
the microcrack densities may reach and exceed the percolation limit without clearly affect-
ing the current macroscopic response of the material. The connectivity failure becomes
obvious only after removal of the confinement (and application of a minute tensile load).

Unstable crack growth. Unstable growth of a single crack is encountered in solids
with a rather homogeneous, ordered microstructure. Such materials are called ‘defect-
sensitive’, ‘damage-intolerant’, or ‘perfectly brittle’, and break without warning: in simple
terms, the first crack arising will immediately grow to divide the specimen into two or
more parts.

The exhibited sudden (brittle) failure does hardly depend on the effective material
parameters, on the density of the accumulated damage, or on overall stresses; the failure
threshold rather depends on the size, location and orientation of the largest defect, i.e.
on the statistical extremes, not on the averages.

The probability of finding such a critical defect in a specimen depends on the size and
shape of the specimen and on the loading conditions. The failure threshold is an extrinsic
(structural) parameter and a statistical variate; the scatter of the experimental data is
substantial.

The possibility of unstable crack growth is favoured in uncompressed specimens. Oth-
erwise, stable evolution of damage may cross over into unstable evolution if one of the
microcracks reaches its critical length.

Localization.2 If in a material “microcracks both nucleate and grow and the growth is
dependent on the direct interaction of microcracks”, then a cooperative phenomenon may
occur: closely spaced small microcracks tend to self-organize into long and thin clusters
where the cracks are roughly parallel and the interaction amplifies their stress intensity
factors and the elastic energy release rate. The short range correlation “crosses over to a
long range correlation which thereafter dominates the macro response”. This “threshold
of the short to long range correlation transition” is called localization.

The crack clusters form a narrow ‘band’ where the microcrack density is much higher
than in the rest of the volume. One may speak of a ‘shear band mode’ in case of com-
pressive loads, and of a ‘split’ (or ‘cleavage’) mode in case of tensile loads. A shear band
is nearly parallel (spanning a small angle in the range between 15 and 25 degrees) to
the compression axis and exhibits a very small shear resistance (1 to 5 % of the pristine
value) in the direction of the band tangent, whereas the split mode extends perpendicular
to the direction of tensile load. As soon as the shear band is formed, the undamaged ma-
terial domains undergo elastic unloading. The material is stable only under displacement

2The quotations in the current section refer to [48].
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controlled conditions.

In polycrystalline solids, the width of a localized band may typically span several
grains. The width of the band where the microcracks are correlated represents a charac-
teristic length, and the material must therefore be described by a non-local theory.

After the onset of localization, the material cannot be considered statistically ho-
mogeneous any more. “The material in the exterior of the band remains statistically
homogeneous in contrast to the material in the band interior”.

The localization phenomenon is essentially non-deterministic, so “the role of the dis-
order and dynamic nature of the localization cannot be overestimated”.

1.1.2 Review of model approaches in the literature

An immense variety of publications is available in the context of computational damage
mechanics; the present section is to give a coarse review of the multitude of model ap-
proaches. In order to reach some clarity, it establishes several classes of models, each based
upon a different fundamental concept, relating to a different viewpoint on the underlying
physical processes. Figure 1.1 shows a chart of the model classes and their relationships.

It is, however, significant that such a categorization is always too simplifying, since the
transition between the classes is smooth; they are “complementary (not competing)” [48].
A rational model must integrate several of them: for example, a micromechanical approach
is never complete without accounting for the statistical aspects.
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Figure 1.1: Fundamental model approaches in the field of damage mechanics.
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1.1.2.1 Micromechanical approaches

Micromechanical approaches are based upon elementary considerations in elasticity theory
and fracture; they establish and apply analytical terms and solutions for local stress
concentrations (in particular stress intensity factors), crack opening displacements, or
cavity compliances.

Conceptually, the impact of the defects or inclusions on the solid phases is the central
part of a micromechanical description. On the other hand, the emphasis of the defects
usually comes along with a neglection of the microscopic properties of the matrix material
(e.g., the grain structure), even though these are fundamental for microcracking. The
solid material phases are considered as a continuum, so that the micromechanical models
often are applicable to macroscopic problems as well. Vice versa, solutions from fracture
mechanics (e.g., stress intensity factors for macrocracks: [75], [44], [7]) are standard tools
employed in micromechanical studies (using the stress intensity factors for microcracks:
e.g., [67], [83]). In other words, the present class of models is not really specified to
micro- or macromechanical situations. Also those studies which are in close contact to
experiments, getting their input informations (typically the defect-size distribution) from
micrographic and fractographic studies of actual specimens, focus nevertheless on the
defects, not on the solid phases (e.g., [6], [35]).

Another essential characteristic of the micromechanical approaches is the analytical
formulation of the basic laws. As a matter of course, an analytical model must restrict to
simple geometries and thus involves rough approximations of the defect shapes: circular
pores, straight cracks etc. (see [43], [41] for a review). The important issue of connected
defects, e.g. cracks emanating from pores, necessitates a further reduction of the geometry:
the configuration of two equal cracks emanating axially from a circular pore is conveniently
approximated by an ellipse of equal overall extent (‘elliptical holes model’) or by superpo-
sition of a circular pore and a separate long crack (‘hole and crack model’) [83]. In three
dimensions, there are approaches which replace the configurations of cracks emanating
from a circular pore by a spheroid (e.g., [46]). For the description of stresses at arbitrarily
shaped pores with rounded (not sharp) borders, the ‘equivalent ellipse concept’ [51] is a
prominent representative: the local stress concentration at a rounded pole of the pore is
substituted by the stress concentration of an ellipse with the same linear extent and an
equal radius of curvature. In the study of [6], a three-dimensional defect is approximated
by the smallest envelopping disk (penny-shaped crack). A common feature of these re-
duced configurations is that they are suitable for a prediction of effective elastic material
properties and for an elementary comprehension of basic cracking mechanisms, but they
are not sufficient for a quantitative simulation of damage evolution from the complex de-
fect shapes encountered in actual materials. Statistical evaluations with appropriate size
distributions of the simple defects (see, e.g. [6]) may assist to account for the fact that
failure is governed by the extremes.

Studies on single defects or dilute defect concentrations can demonstrate the signifi-
cance of defect orientation, shape, size and loading conditions for the material response.
Due to the defect-centered approach, the description of correlations requires an explicit
modelling of the defect interactions. Even in a two-dimensional model, exact analytical
solutions must naturally be limited to very few defects (e.g., two cracks) or to periodical
arrays.

A higher number of defects, or arbitrary defect arrangements, necessitates transition
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from the purely analytical to semi-numerical formalisms: The loading conditions on the in-
dividual defects are replaced by ‘pseudotractions’, and the interactions in the multi-defect
array result in complex equation systems to be solved by numerical means ([42], [5]). The
even simpler ‘dipole asymptotics model’ [25] is another example for these semi-numerical
concepts which can manage configurations of hundreds and thousands of cracks with the
aid of modern computer facilities.

Alternatively, many approaches are founded on ensembles of identical defects centered
at the nodes of a perfectly periodic lattice, and thus ignore the fact that defects in real-
ity form clusters and other anomalous patterns. The assumption of periodicity (perfect
order) in these ‘cell models’ reduces the problem associated with the interactions to the
consideration of a single defect located in a cell of regular geometry. The boundary condi-
tions at the cell surfaces result easily from the periodicity. The assumption of periodicity
reduces the computational efforts significantly, but is seldom a good recipe to describe
the physical reality at the microstructural level. On the other hand, exact solutions are
available for certain periodic arrays of defects; semi-numerical model approaches may be
applied to the same periodic arrays, and the results may be compared with the exact
ones for an assessment of the model approaches, see [25] as an example. For an extended
discussion of solids with a periodic microstructure, see [62].

As for the damage evolution, micromechanical models predominantly deal with the
continuous growth of existing cracks or cavities. Rupture criteria are classically based on
Griffith’s model, which compares the stress intensity factor at a crack tip with the fracture
toughness (cohesive strength) of the material [76]. For prediction of the propagation of
elliptical notches (which have – in contrast to cracks – a finite radius of curvature and
thus cause no stress singularity), a simple stress criterion is often used ([58], [35]). The
present dissertation will show that simulation of defect nucleation is more challenging,
requiring different methods and further assumptions.

The vast majority of the approaches in the literature addresses systems subjected
to tensile or shear loads. Approaches on systems under compression are rather rare,
even though brittle materials, such as rock, concrete and ceramics, are primarily used in
applications subjected to compressive tractions. Modelling compressive loading conditions
requires to account for the variating state (passive/active) of the microcracks [62]. Simple
models ([84]) neglect the effect of friction between the closed crack faces. A special case
is the longitudinal splitting of specimens under uniaxial compression: cracks emanating
from pores in the axial direction are in fact under tension [83].

1.1.2.2 ‘Mesh’ techniques

Whereas the micromechanical approaches work from the perspective of the defects and
cavities, the mesh models (‘lattice’ models) focus main attention on the solid phase of
the material. The mesh models rely on a discretization of the solid structure into a finite
element mesh, which is assigned to contain the material and structural properties and
to carry the externally applied loads. The model simulations aim at the determination
of loads and displacements on each individual mesh node as a function of the boundary
conditions, involving extensive linear or nonlinear equation systems. Since closed-form
analytical solutions for the stresses and strains are not applicable to discretized structures,
the simulations make use of numerical techniques instead. Deterministic computational
algorithms of elementary structural mechanics can be applied, and available finite element
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algorithms (standard software) may be employed to facilitate the calculations.
The characteristic length (resolution length) in lattice models is the size of the links

(bonds) in the mesh. The discretization may be done on different resolution scales: At the
microscale, disordered meshes may correspond to certain properties of the solid structure,
e.g. to the network of grain boundaries, whereas ‘macroscopic’ finite element models veil
the microscopic characteristics and usually work on regular meshes. For special consid-
erations, the meshes sometimes are chosen to be even finer than the dimension of the
microscopic heterogeneities.

In lattice models, the discretization of the structure comes along with a discretization of
the damage evolution. Damage evolution can be simulated simply by a sequential removal
of links. The local load sharing effects are incorporated in a natural way: after failure of
a link, the algorithm computes the stress redistribution within the mesh structure — an
explicit consideration of the defect interactions is not necessary.

In that manner, both defect growth and defect nucleation are naturally incorporated:
damage is where the local stresses or strains exceed the rupture strength of the links.
Rupture criteria attributed to the links refer either to energy [45] or force considerations.
It is self-evident that the strength of the links is easier defined in terms of a critical tensile
load, whereas the more complex conditions of compressive loads are often left aside.

Simple lattices. The simplest examples from the class of lattice models are represented
by the one-dimensional parallel bar models (see, e.g., [48]). They consist of loose or
interconnected bundles of beams attributed with an axial stiffness and strength. They
exhibit no characteristic length, but suffice to illustrate the effect of stress redistribution:
Damage, i.e. removal of some of the beams, disturbes the orderly transfer of the forces
through the lattice structure; the imbalance of the forces in the beams increases with the
accumulation of damage.

In the two- or three-dimensional space, a classical and often applied example for a
lattice model is the Delaunay network. The Delaunay network consists of a number
of distributed points (nodes) which are connected to the neighboring points by straight
lines, respectively. In the simplest realization, the resulting cells are triangles (in 2-D, see
fig. 1.2) or tetrahedra (in 3-D). The links between the nodes may be axial, transverse,
rotational, or combinations of them.

Figure 1.2: Sketch of a Delaunay network (solid) and the dual Voronoi lattice (dashed).

The dual to the Delaunay network is the Voronoi lattice [28]: the edges of the Voronoi
polyhedra (also called ‘Poisson cells’ [50]) intersect the links of the Delaunay network in
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the perpendicular direction. Thus, the two-dimensional space may be tiled with polygons
(fig. 1.2), and the three-dimensional space may, correspondingly, be filled with polyhedra.
If the Voronoi polyhedra are considered as the grains of a polycrystalline ceramic [45],
then the sides of the Voronoi polyhedrons correspond to the grain boundaries, and the
links in the Delaunay lattice correspond to the cohesive strengths of the grain boundaries.
A missing Delaunay link then corresponds to an intergranular crack.

Finite element method (FEM). The standardized finite element method (see, e.g.
[85]), which relies on libraries of sophisticated numerical algorithms for solving the exten-
sive linear and non-linear equation systems, is a popular technique employed by engineers
for product design, structural analysis and strength computation. The specimens under
consideration are modelled by a regular-type mesh; for reasons of economy and accuracy,
those regions in the material which will receive larger amounts of stress are covered by
a higher node density than those which experience little or no stress. The generation
and adaptive modification of the meshes is usually supported by commercial software
packages.

As for the simulation of damage progression, FE-techniques are traditionally applied
to macroscopic cracks [58], but they may also be used for computational studies at a
lower (microscopic) level. Macroscopic criteria for modelling crack extension may refer to
a ‘contour integral’ (‘J-integral’: an energy density expression is integrated along a closed
path surrounding the crack tip), to the tearing modulus, or to the crack tip opening angle.
The increment of rupture is given by the element size, which is usually much smaller than
the crack [58]. Introduction of new crack surfaces into the mesh requires to double the
node at the center of the respective element (e.g., [45]).

The approach in [80] concerns the propagation and coalescence of microcracks pre-
existing around the granulates in a concrete structure. The propagation is controlled by
stress-intensity factors of linear elastic fracture mechanics; elastic behaviour is assumed
everywhere in the structure except at the crack tip. Typical for this class of approaches,
the analysis restricts to tensile stresses, and the finite element mesh is significantly finer
than the dimension of the (microscopic) heterogeneities. Remeshing is required to catch
the changes in the specimen topology.

A more distinct treatment of crack initiation and propagation is facilitated by introduc-
ing zero-thickness interface elements along the expected crack paths within the standard
continuum finite element mesh (which is considered linear elastic) [10]. The interface ele-
ments are associated with rather extensive, constitutive energy laws for cracking, which
may account for a fracture process zone (elastoplastic behaviour) in quasi-brittle materials
as well as rather complex loading modes such as shear/compression (see [11], which also
includes an extensive review of cracking models in the context of FE-methods).

The above mentioned approaches are applied to two-dimensional studies only. An
attempt on crack evolution in three dimensions is described by Kamiya et al. [45], but
it relies on very coarse approximations for the fracture criterion, and borders quickly on
restrictions imposed by computer facilities.

1.1.2.3 Approaches to the continuum

The ultimate goal of the considerations at the microscopic level is to obtain a general,
applicable, efficient model at the macroscopic observation scale, where the microscopic
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details become blurred. The transition to these continuum models is achieved by homo-
genization techniques.

Continuum models address volume averages and effective parameters of the material;
ideally, they provide constitutive equations for macroscopic stresses and strains. The
latter are nonlinear in the presence of damage evolution, and singular conditions along
the constitutive paths indicate failure of the material. Therefore, the failure condition in
continuum models claims a vanishing of the determinant (zero eigenvalue) of the tangent
stiffness tensor (see, e.g. [83]): the uniaxial stress-strain curve must reach a turning point.

Deduction from the microscale. Homogenization starting from the micromechanical
models often relies on simplifying assumptions for the defects at the microscopic level —
e.g., a dilute concentration, an ‘effective environment’ (see section 3.2 of the present
dissertation), or a periodic array ([83], [46], [25]). To mention an example, the conti-
nuum model presented in [65] accounts for defect interactions in a way motivated by the
micromechanical approach by Mark Kachanov ([42], see section 3.4.3 of the present thesis)
and the periodic cell model. Concerning the class of mesh models, the linear size of the
microscopic specimens may enter a continuum model as the resolution length.

Phenomenological approaches. Phenomenological approaches lead to a special, but
very convenient kind of continuum models which are not necessarily motivated by micro-
mechanical studies but may directly emanate from considerations at the macroscopic level.
They focus in “constitutive relations in which the mechanical effect of cracking and void
growth is introduced with internal state variables which act on the elastic stiffness of the
material” [65].

According to the literature, the origin of the continuum damage approaches is at-
tributed to L. M. Kachanov [40] who established a scalar theory focusing on uniaxial
problems. The extent of damage in a material is combined to a damage parameter d
which defines the loss of stiffness, entering the stress-strain relation as follows:

σ = E(1− d)
︸ ︷︷ ︸

Ed

ε (1.1)

The parameter d may assume values between 0 and 1; a value of 1 refers to total damage,
but failure generally occurs when a somewhat lower critical value is reached. Following this
simple approach, the evolution of the damage parameter can be determined experimentally
by measuring the easily accessible effective Young’s modulus Ed of the material.

The mathematical nature of the internal state variable is different among the various
continuum models. It may be a scalar (for isotropic damage, e.g. the porosity), a vector
or a tensor. One or more damage parameters may be involved. The continuum damage
model illustrated in [65] incorporates two scalar damage parameters, and accounts for
crack interactions, damage localization and a characteristic length. The non-local de-
scription of the material is realized by introducing a local weight factor for the damage
variable in the constitutive relation of the model. The approach in [29] uses an orthotropic
damage tensor which results in a fourth order compliance matrix (instead of the scalar
1/Ed in eq. 1.1); the model is further extended by distinguishing damage variables under
tension and compression, and expressing the evolution of damage parameters in terms of
a thermodynamic damage force. Anyway, many continuum mechanics models are based
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on thermodynamical approaches which describe the irreversible rearrangements of the
microstructure in the process of deformation by kinematic variables; energy dissipation is
reflected here in the evolution of an energy potential (Gibb’s energy density, see, e.g., [73],
which also contains an extended review of the concepts of continuum damage mechanics).

Attempts have been undertaken to extend the phenomenological damage models to
deactivation and reactivation of the damage effects. The approach presented in [30] in-
troduces smoothed Heaviside functions to account for the transition between active and
inactive states; it is elaborated with respect to elastoplasticity effects, but the phenomeno-
logical level does hardly allow for a consideration of delicate effects such as frictional
sliding.

All in all, “phenomenological modelling is a mixture of science, skill and experi-
ence” [48]. The elegant, closed formalism of many continuum damage models comes along
with physical clarity and tractability and renders this class suitable for reflecting certain
basic aspects of material behaviour. Expecting quantitatively realistic results from this
kind of models is, however, too much. In order to apply a continuum model in further
studies, such as (macroscopic) finite element calculations, the damage state variables are
sometimes fitted to macroscopic parameters from experiments [29].

1.1.2.4 Statistical considerations

The original micromechanical models and mesh models refer to deterministic defect ar-
rangements and structures, thus ignoring the inevitable stochastic disorder at the mi-
croscale. However, “randomness is the most prominent feature of a polycrystal” [50]. An
opening up of the above concepts to the actual stochastic nature may be accomplished by
a widening or a variation of the input informations. Usually, the introduction of statistics
concerns the microstructure modelling, while the calculation of elastic parameters and the
simulation of damage evolution remain deterministic.

Analytical methods. In an analytical framework, statistical input information may
be provided in terms of n-point correlation functions, which result from integration of
n-point probability density functions or may be determined by experimental methods. n-
point correlation functions have a macroscopic character, since the statistical fluctuations
at the microscopic level are averaged ([50], [49], [35]).

These functions firstly refer to elastic parameters such as the stiffness, or stress or
strain. Strictly speaking, the n-point correlation functions and probability density func-
tions describe the local values of these parameters at n specified points within a statistical
ensemble (‘ensemble averaging’), but the ergodic hypothesis [50] says that there is an equi-
valence to averaging between n arbitrary points within a single member of the ensemble.
Via the local values of the considered elastic parameters, the functions reflect the statisti-
cal properties of the structure, e.g. the distribution of grain shapes and orientations. The
full set of n-point correlation/probability functions contains the whole statistical informa-
tion, but “in many cases, it is satisfactory to work with correlations up to order 3” [50]:
the one-point correlation function represents the mean value (of the modulus, or of the
stress or strain); the two-point correlation function indicates the anisotropy of the grain
shapes (“mean value of the grain diameters, taken in the various directions”); the three-
point correlation function describes lengthy grains also if they are not aligned, i.e. in an
isotropic arrangement [49].
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The correlation functions allow for a determination of the tensors of effective elastic
moduli of macro-homogeneous polycrystals to within any desired accuracy, depending on
the available order n of the functions [50].

In a local approach where the correlations are disregarded, it is sufficient to consider
simple distribution functions or probability density functions of the structure elements.
Section 4.4 of the present thesis will demonstrate how such input information, representing
the distribution of grain boundary lengths and orientations, may be utilized to predict
the evolution of the effective moduli for the progressively fracturing system.

Numerical methods. In numerical approaches, especially mesh models, a statistical
treatment is executed by the introduction of randomness. For example, the strengths of
the links in a parallel bar model or in a Delaunay lattice may be randomly distributed
in space. Or the grain boundaries in a structure model may have random specific surface
energies. Or the inhomogeneities, e.g. pores, are randomly positioned across the model
image.

While most of the models are characterized by a random, disordered structure and
a deterministic analysis, it should be mentioned that other models start from ordered
systems and continue with stochastic rupturing processes or a random dilution of the
lattice.

The randomness introduced into single specimens often necessitates analyses of a large
number of physical realizations. The same kind of experiment should be performed on
many specimens which are prepared alike such that they appear to be macroscopically
equal though different in the microscopic details. The so-called Monte Carlo methods
can approximate expectation values and estimate errors where analytical methods do not
work. Depending on the computational power, the results are systematically improvable
by using larger samples and extended systems.

An extreme case is the study by Ju and Chen ([38], [39]) where the observations are
averaged over ‘all’ possible realizations of a random crack distribution (see section 3.2.2.4
in Chapter 3 and section 30 in Chapter 4).

Methods at the macroscopic scale. In defect-sensitive (perfectly brittle) materials,
the least resistant element is decisive: failure of the weakest element entails the fracture
of the whole solid. Up-scaling of the failure probability of small specimens to the fail-
ure probability of larger specimens may then be accomplished by weakest-link theories
assuming a Weibull distribution (‘algebraic law’/power law dependence on the applied
load, see section 5.5.1.2 of the present dissertation) or a Gumbel distribution (exponential
law dependence on the applied load), or even simpler laws for the distribution of small
specimen failure thresholds. The proper choice of the distribution of rupture strengths is
the crucial point in these models.

Weibull theory may be classified as a ‘phenomenological’ approach since it does not
account for the explicit microstructure or the stress fluctuations at the microscopic level.
Instead, macroscopic stresses are considered. If the distribution of defects systematically
varies within certain batches or areas in the material, then standard Weibull theory fails
to predict the results and must be replaced by a ‘multiscale’ approach [6].

The weakest-link theory does not apply to materials under compressive load and to
situations where the microcracks are stopped by microscopic heterogeneities [29]. As
outlined above, the latter situation represents a typical quasi-brittle behaviour.
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1.2 Objective and scope of the present study

The present thesis considers brittle sintered solids exhibiting a heterogeneous granular
structure, either compact or including pores, with ceramic materials as an application.
The materials are subjected to special loading conditions such as externally applied com-
pression, or fluid pressure acting inside the pores. The applied loads are high enough to
cause irreversible changes (damage) inside the specimens.

The scope is to gain a better comprehension of the macroscopic behaviour and resis-
tance of these materials by modelling the responsible processes on a finer, microscopic
level of the material structure. To this end, the facilities provided by a modern computer
system are to be employed, for computer simulations can deal with specimens that are
hardly obtainable and conditions that are not easily accessible to experimental analysis.

These special requirements suggest to establish a novel model approach which takes
advantage of the existing concepts outlined in the previous section 1.1.2, but goes beyond
them. The efforts in establishing and employing the model should particularly address
the following issues:

• identification of the microstructural parameters and characteristics
relevant for initiation of damage

• investigation of statistical effects due to the microstructural disorder

• inspection of the significance of certain micromechanical correlations
(e.g., defect interactions) for the evolution of damage

• considerations on the appropriate damage parameter/observable

• estimation of the macroscopic response of the system (homogenization)

The model should serve as a tool for the determination of universal trends and qualitative
attributes of the brittle rupture processes; it does not aim at exact quantitative results.
The essential modes of damage as portrayed in section 1.1.1 should be reproduced.

1.3 Principle and characteristics of the present

approach

The present approach emanates from a concept by Doltsinis that investigates micro-
cracking in brittle materials in conjunction with the microstructure. Following early
preparatory steps ([21], [20]), the theoretical constitutive framework was established
in [15]. Essential extensions have been outlined in [16], which concern the nonlinear
effects associated with crack closure and friction. The theoretical background is elabo-
rated here to a computational model procedure, the characteristics of which are compiled
in the following:

Resolution scale. The resolution length of the present model is the average size of
the smallest grains. Below this discretization level, details of the material texture and
fluctuations of stress and strain are smeared and summarized in empirical parameters (for
example, specific surface energy). The choice of this resolution length follows the numerous
observations that the heterogeneity between grains is fundamental for microcracking, and
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that the grains are a“natural choice for the discrete elements” in the case of polycrystalline
solids [48].

Classification. The present approach combines essential characteristics of both the
class of mesh models and the class of micromechanical models, and must therefore be
categorized somewhere intermediate:

• The microstructure model is discretized at the level of the grains. Accordingly,
the simulation of progressive damage is not performed in a continuous way, but in
discrete steps: the model grid of grain boundaries (facets) represents a network of
potential microcracks, and each grain boundary may only fail instantaneously with
the full dimension. The discretization of the model establishes a certain relationship
with the Voronoi lattice described in section 1.1.2.2. The resulting model images
are closer to the actual microstructures than common mesh models, and the same
holds for the simulation of damage.

• On the other hand, these facet meshes are not designed to carry any load — the
stress and strain analysis in the present approach is not founded on the solid parts
of the structure, but rather focuses on the defects (cracks, pores). A deterministic
analysis of the local stress field is performed with the aid of elementary, analytical
solutions for the disturbances induced by singular defects. The interactions between
the defects are directly accounted for via transmission factors and a superposition
technique. These concepts are borrowed from the class of micromechanical models
(section 1.1.2.1).

Microscopic rupture criterion. Fracturing of facets in the respective loading state is
decided by an energy estimation: the elastic strain energy released by separating facets
must exceed the associated increase in free surface energy. The energy criterion requires
the calculation of the actual local stress condition on each facet. (This is accomplished
by superposition of the tractions from external load, and those tractions ‘transmitted’ by
cracks and pores.) In case that the facet emanates from an existing defect, the shape and
size of the possibly growing defect must be accounted for in the calculation of the strain
contribution.

The specific surface energy may be individually adjusted to the boundaries between
the various grain phases.

Algorithm. The computer algorithm for generation of artificial geometrical microstruc-
ture images requires input informations on certain morphological parameters from actual
microstructures. The computer algorithm for simulation of microcracking requires input
informations on the elastic properties and certain material properties (such as the specific
surface energy) of the grain phases, and on the macroscopic loading conditions (stress or
internal pressure).

The simulation of progressive fracturing starts with a stable state of fracturing (usually
the undamaged state) in the model images. Afterwards, the loading state is incrementally
modified, and the current tractions on each facet are determined. The most critical facet
is singled out and – if the rupture criterion is fulfilled – ‘removed’, i.e. replaced by a crack.
Appearance of defect growth and coalescence of defects is recognized and approximately
accounted for:
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• If a new cracked facet touches an existing crack, then no additional crack is allo-
cated but the old one is extended; a kinked crack arising from this procedure is
subsequently approximated by a straight line.

• The spatial extent of chains and networks of connected pores and cracks is perma-
nently recorded; regarding the stress analysis, the flaw clusters are approximated by
large cavities of simple shape.

Then, a quasi-static redistribution of local stresses is calculated for the surviving network.
This procedure is repeated incrementally for each change of applied load. The analysis
ultimately ends when the final load is reached or a localization of damage (percolation,
failure) is observed.

The main instructions of the crack formation algorithm are presented in Table 1.1.
The model accounts for the different behaviour of cracks under tension and compres-

sion, and the constrained shear displacement of compressed crack faces due to static
friction.

The output of the damage simulation algorithm comprises effective elastic parameters
such as stiffness and overall strain, structural parameters such as the crack density, and
the topological microcrack pattern in the damaged microstructure.

loading loop start: zero load

• advance state of applied external stress σ or internal pres-
sure P along prescribed loading path

• calculate loading conditions on each unbroken facet; deter-
mine potential defect cluster and strain energy release in
case of facet failure

• calculate overall energy release in case of failure of any
facet; allocate a cracked facet if energy release is positive

• update cracks, facets, defect clusters

• in case of defect percolation or localization: stop loading
loop

• determine current strain state ε and effective compliance
C resp. stiffness S for the current structure

end: final load (input value)

Table 1.1: Scheme of the microcrack evolution algorithm to be employed on a given
model specimen.
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Statistical treatment. The model images attributed to a certain kind of material are
macroscopically almost ‘identical’, but are different at the microstructure level. A Monte
Carlo sampling strategy is employed which leads to microscopically different specimens
of a material structure by each time randomly distributing the individual constituents.
Fluctuations of the averaged structure parameters from specimen to specimen may be
allowed as well.

The damage simulations, which are deterministic for a given model structure, are
employed in a statistical procedure by successively performing tests on a large number of
such macroscopically identical specimens.

Then, a statistical analysis of the results identifies universal trends of the deformation
process and of the scatter of the observables.

Restrictions. The present approach is designed with respect to two-dimensional con-
siderations. Thus, the stress analysis assumes plane stress or plane strain conditions. The
restriction to two dimensions is at the expense of the generality of the model, but it yields
a manageability and applicability with respect to numerical calculations. Compared to
this, the applicability of any three-dimensional model for simulation of damage would be
limited to the very basics.

Anyway, one should be aware that detailed information on the actual three-dimensional
structural properties of the addressed materials is not available.

1.4 Organization of the present thesis

An appealing model study in the field of damage mechanics must cover four essential
points: description of the material structure, stress analysis, simulation of damage initi-
ation, and failure. The present thesis comprises four substantial chapters (2 to 5) which
are roughly dedicated to these stages:

The immediately following Chapter 2 is concerned with the properties of the actual
material structures in question, and the generation of geometrical model images reflecting
the essential characteristics.

Then, Chapter 3 deals with the stress fields around cavities and cracks, and with
the effective elastic properties and overall strains of structures containing such defects.
After reviewing some popular local continuum models, the non-local micromechanical
formalism is established which may be seen as the theoretical backbone of the present
work. At present, the formalism is rather general with respect to the loading conditions,
involving uniaxial or biaxial stresses and internal pressure. Micromechanical details are
discussed, and homogenization to the continuum level is demonstrated.

Different from Chapter 3, which refers to structures of a given, fixed state, the subse-
quent Chapters 4 and 5 pursue the issues of damage evolution and statistical fluctuations
in the microstructure — it is here where the discretization of the structure into a granular
mesh becomes important. Chapter 4 addresses the nucleation and growth of microcracks
under various loading conditions, with a focus on compressive loads. It introduces the
theoretical ideas for simulation of fracturing, and presents computer simulations illustrat-
ing various points, from the modes of fracturing to the friction coefficients. For practical
reasons, the studies are restricted to compact material structures, and to rather small
crack densities.
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The subject of Chapter 5 is the progressive damage in porous structures under internal
pressure. These particular conditions require a modification of the formalism, which is
outlined and illustrated first. The computational simulations then show how microcracks
emanate from the existing pores and thus connect the cavities to form large, growing defect
clusters. The simulations are continued until the failure of the specimens is recognized in
terms of percolation.

Finally, Chapter 6 provides a concluding assessment of the presented investigations, a
summary of the insights and results of each previous chapter, and an outlook at possible
extensions and further discussions.



Chapter 2

Modelling of porous granular
microstructures

The evolution of damage is simulated on two-dimensional geometrical ‘images’ (i.e., nu-
merical representations) of the microstructure (see fig. 2.1, right, as an example). At the
time of generation, no microcracks are present in the model images.

The morphological characteristics of the artificial two-dimensional model images are
specified by stereological analysis data from actual material structures (see fig. 2.1, left,
as an example1). The materials under consideration comprise three individual phases:
pores, and grains of different constitution. In the context of the present approach, the
grains are attributed to a titanium oxide (TiO2) phase and an aluminum oxide (Al2O3)
phase, but the model applies to different materials as well. The explicit geometry and
topology of the microstructure are statistical entities.
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Figure 2.1: Left: Scanning Electron Micrograph (SEM) of an aluminum oxide based filter
support with 28 % porosity. The size of the image is 170 µm × 230 µm. Right: model
structure. In both figures, black areas refer to pores, while the gray-coloured grains
represent the Al2O3 phase, and the white grains represent the TiO2 phase. In the model,
the grid of gray strokes represents the network of potential cracks along grain facets.

1The Scanning Electron Micrographs presented in the current chapter have been provided by Olivier
Vansse [63].
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Section 2.1 outlines the basics and features of the model generation algorithm, sec-
tion 2.2 discusses the available input parameters and the additional assumptions required.
Section 2.3 presents some exemplary model specimens, which are assessed with the aid of
image analysis methods, and are compared with micrographs of actual material structures.
The chapter closes with some reflections on three-dimensional structures (section 2.4).

2.1 Computer generation of two-dimensional

microstructure images

Artificial two-dimensional microstructure images with specified characteristics are gen-
erated by a computer algorithm. First steps reported in [19] have been considerably
extended in order to generate rather realistic images of observed microstructures contain-
ing several phases. The modelling algorithm essentially comprises four stages, which are
illustrated in fig. 2.2, and are elucidated in the following.
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Figure 2.2: Various stages in modelling, exemplified for a TiO2/Al2O3 porous structure:
1) Undistorted regular hexagonal lattice; 2) Distortion of the regular hexagonal lattice,
thus getting a basic grid of (TiO2) grain boundaries; 3) Implanting the second grain phase
(Al2O3) and adjustment of the basic grain boundaries; 4) Implanting pores of simple
geometrical shapes and adjustment of first and second grain phase boundaries.
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Figure 2.3: Anisotropic grain model structure.

• For the present purpose, an essential constituent of the microstructure model is a
network of potential cracks. Assuming intergranular fracture, the network is iden-
tical to the grid of grain boundaries (facets) in the ceramic material. The standard
algorithm allows for a two-phase mixture of grains:

– Generation of the first, basic grain phase starts with a regular hexagonal lattice
(‘honeycomb structure’); the cells are then subjected to random distortions by
displacing triple points. The general extent of distortion may be adjusted.
Anisotropic structures, consisting of elongated grains oriented in a preferred
direction, might be created by re-scaling of this lattice along a certain linear
axis (fig. 2.3).

– A second phase of grains, different in shape and of larger size, may be im-
planted into this basic lattice. The individual second-phase grains are created
as polygons with corners located on the boundary of imaginable ellipses; the
aspect ratio2 of the respective ellipse and the number of polygon corners are
specified by input parameters.

• For a representation of porosity, various cavities, differing in their effect on the stiff-
ness, can be distributed between the grains. These cavities are of simple geometrical
shape, since the local stress analysis in the model is based upon analytical stress
solutions for the cavities (see Chapter 3). The distribution of size and orientation
of the cavities may be adjusted individually for the various shapes.

Available are ‘elastically isotropic’ and ‘elastically anisotropic’ cavities: circular
pores and pores with (approximately) regular triangular shape, on the one hand,
and elliptical pores as well as cracks, on the other hand. For elliptical pores, a

2aspect ratio: ratio of the semiaxis lengths
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discrete summation yields for the porosity (area fraction)

p =
1

A
π
∑

k

akbk , (2.1)

whereas the shape factor (‘eccentricity’) is defined as

q =
1

A
π
∑

k

(ak − bk)
2 , (2.2)

with ak and bk denoting the semiaxis lengths of pore k, and A being the area of the
material section. Special cases are circular pores: p = 1

A
π
∑

k(ak)
2 and q = 0, and

cracks (length lk = 2ak): p = 0 and q = 1
A
π
∑

k(lk/2)
2.

The shape factor q of cracks is closely related to the scalar crack density3 ρ:

ρ =
1

A

∑

k

(
lk
2

)2

(2.3)

q = πρ (2.4)

Regarding the effective elastic properties, ellipses represent a good approximation for
rectangles, too [41]. Modelling the actual ‘jagged’ contours of the pores by ellipses
(or, in 3-D, ellipsoids) represents a proper simplification since the inscribed and
circumscribed ellipses generate lower and upper bounds for the effective properties
(for references, see [71]).

Optionally, small triangular cavities can be implanted to represent triple point voids
between grains in sintered ceramics.

Due to the two-dimensional formulation, the approximation of open porosity is rather
poor: strictly speaking, open pore channels are assumed to extend in the third
dimension. The porosity in the modelling plane is of a closed type.

Shapes and sizes of the individual second-phase grains and pores are either fixed at
computation time or read from a data file in advance; the individual objects are then
successively implanted into the current structure. Apart from the constraint that pores
must neither touch nor overlap and second-phase grains may touch but must not overlap
too high, the location of second-phase grains and pores is generally random. The orien-
tation of second-phase grains and pores may be chosen individually or statistically, thus
attaining isotropy or certain anisotropies.

The adjustment of the previous structure to the presence of an implanted new object
(second-phase grain, pore) requires an extensive algorithm: grain boundaries located com-
pletely inside the new object need to be eliminated, grain boundaries crossing the border
or located close to the border of the new object need to be shifted towards the border,
etc.

3Under certain conditions, the scalar crack density is an important parameter for characterization of
the damage state (see Chapter 4).
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In the ultimate model structure, the individual grains (first phase, second phase) are
identified and related to unique numbers (see fig. 2.4). This procedure enables to assign
special properties to the grain elements, e.g. orientation angles of the crystalline planes.
The latter will be important if a micromechanical description of thermal residual stresses
([77], [54]) is to be added to the simulation algorithm.
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Figure 2.4: Three-phase microstructure image, and identification of the individual ele-
ments belonging to the first grain phase, second grain phase, and pore phase, respectively.
Main axis orientations are (randomly) assigned to the individual grains, a prerequisite for
consideration of thermal residual stresses.

In order to account for the effect of the surrounding material, the borders of the
specimen are designed such that the structure can be duplicated with respect to all four
sides. Thus, the specimen can be extended periodically (fig. 2.5). The presence of pores
located outside, but in close vicinity to the specimen border (red margin in fig. 2.5) is
recorded and accounted for in the stress analysis (Chapter 5).

Different specimens of a material structure are obtained by selecting different distri-
butions of the individual constituents (pores, second-phase grains). Usually, a random
positioning will be chosen since informations on the explicit spatial correlations are not
available. The random-number generator of the computer is extensively used for the
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generation of sizes, shapes, positions and orientations of the material constituents.
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Figure 2.5: Accounting for the material surrounding the specimen. The pore pattern
along the borders allows periodic continuation of the specimen as an option: pore parts
outside the specimen (red margin) are continued inside at the opposite border.

2.2 On the input parameters applied in the model

Stereological parameters from experiment. In order to generate a realistic micro-
structure image, morphological data of the actual material are required. These may be
supplied by analysis of Scanning Electron Micrographs. A pertinent tool in this context
is quantitative stereology, a branch of geometry employed for numerical characterization
of points, lines, surfaces and volumes from observations on two-dimensional sections in
three-dimensional specimens ([48], [78]). It takes advantage of the Euler-Poincaré charac-
teristic, which is suitable for studying n-dimensional structures (Rn) from measurements
of connectivity numbers in lower-dimensional spaces (Rn−1) (see [70] for details). The
most fundamental parameters provided here may serve as input parameters for the mod-
elling program: the specific area (area fraction) AA and specific perimeter (perimeter per
unit area) LA of the different grain and pore phases. In the following, it is presumed
that the considered stereological parameters actually exist, which means that the scatter
of these parameters in a statistical sample tends towards zero when the specimen size
increases towards infinite, or that the observed parameters in fact have a mean. (The
existence of the stereological parameters is not at all a general property of materials,
see [52]).

Although obtained from a local analysis of the medium, quantities such as area fraction
and specific perimeter are, in effect, global parameters: they refer to properties of a phase
(a ‘collective’) from a ‘global’ point of view. The global parameters forge links between
experiment and model, but the modelling of the individual structure elements (‘individual
analysis’, e.g. size and shape of the pores) still comes along with some arbitrariness.

It is therefore useful to discuss the limits of the information provided by the stere-
ological parameters, and to explain the additional assumptions underlying the present
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generation of microstructure images:

Additional assumptions. Given the specific area and specific perimeter of a certain
phase, one may first assume a simple case where the individual elements of that phase
conform to a monodisperse size and shape distribution. Then the global parameters are
directly related to the properties of the individual elements — the conversion factor is
NA, the number density of the elements —, and it can be stated:

• For a given specific area, the specific perimeter of the phase is a measure for the
‘fineness’ or the granularity of the phase. If a certain shape is prescribed, too, then
the size of the elements is a unique function of the specific perimeter (see fig. 2.6,
left, for illustration).

• For elements of an elliptical shape type and given size (length a of large semi-axis),
the exact shape (specified by length b of small semi-axis) is unique, i.e. a unique
function of (specific) area and (specific) perimeter (see fig. 2.6, right, for illustration).
This fact is of some importance since the largest linear extent of an element (which
corresponds to 2a) is rather easily accessible by image analysis.

• For elements of an elliptical shape type and given area, the exact shape (aspect ratio
a/b) of the elements is unique as well (see fig. 2.7, for illustration).
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Figure 2.6: Left: For a monodisperse distribution of circular phase elements with given
area fraction AA, the specific perimeter LA is a measure for the fineness (radius r) of the
elements: r = 2 AA/LA. (LU : length unit). Right: For an ellipse, there is a unique
relation between area, perimeter, length a of large semi-axis, and length b of small semi-
axis.

If a monodisperse shape distribution, but a polydisperse size distribution is given, then
the explicit size distribution cannot be deduced from area fraction and specific perimeter.
For the general case of polydisperse shape and size distributions, the properties of the
individual elements are even more vague.

The main point to emphasize here is that the above three items apply to polydisperse
size distributions in an approximate way, provided that the range of element sizes is
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Figure 2.7: Perimeter of an ellipse as a function of aspect ratio at constant ellipse area:
For an elliptical pore of given area, there is a unique (in the shown range: approximately
linear) relation between pore perimeter and pore shape (aspect ratio).

rationally bounded (not too small and not extremely large) — an assumption which
typically holds for the actual microstructures.

Finally, the present way of modelling is based on additional assumptions regarding
the type of the size distribution (Gaussian normal distribution, uniform distribution), the
range of the sizes, and the shapes. All the parameters involved here are chosen to fit to
primitive observations on micrographs.

Remarks on the specimen size. Another important input parameter is the size (area)
of the specimens. It is obvious that the analysis of a heterogeneous microstructure should
preferably be performed on specimens large enough to be representative. In that context,
it is essential to introduce the common term ‘Representative V olume Element’ (RVE).

As a rule, the RVE relates to a certain observable, and its size depends on the desired
accuracy of the observation. It is defined as the smallest material section for which the
distribution of the observable among a sufficient number of specimens conforms to the
corresponding distribution within a very large section. This means that the distribution
is the same (to within the defined accuracy), no matter how large the material section is if
only larger than the RVE. Thus, the RVE is statistically homogeneous: the properties are
invariant (or at least approximately invariant) with respect to translations of the RVE;
“any RVE at a specific point looks very much like any other RVE taken at random at
another point” [56]. In micromechanical models with a deterministic, periodic structure,
the basic cell is a paradigm of a RVE, representing the characteristic pattern. In random
structures, the RVE is much larger than the source of the heterogeneity, and may be called
a micro-continuum [69].

The structural parameters such as porosity are intrinsicmaterial properties for which a
representative volume element usually exists [48]. While the mean µy of such stereological
parameters y is expected not to depend on the specimen size D,

µy(D) = const., (2.5)
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the situation is different for the standard deviation σy of the estimate
4: For sizes below

RVE, the variance decreases with increasing specimen size D as follows [52]:

σy(D) ∝
1√
D
, (2.6)

tending to zero for D exceeding RVE. D denotes the area (in 2-D) or the volume (in 3-D)
(or, in 1-D, the length) of the specimen [37].

In the case that RVE-specimens are too large for the experimental analysis, eq. (2.6)
suggests to use nevertheless the maximum specimen size accessible. This will yield more
precision in the results, and a reduction of effort.

For the RVE in metals and ceramics, a characteristic magnitude of (0.1mm)3 has
been suggested (see [73]). Boundary effects are not present in the context of stereological
structure parameters.

2.3 Suiting the model to real microstructures

Stereological information from image analysis of scanning electron micrographs is a valu-
able input for the microstructure modelling, but an exact reproduction of these values
in the model images is not possible. The reason is that the procedure of successively
implanting the second-phase grains and the pores gives no perfect control on the global
parameters, which are coupled to one another in a complex way. One may be tempted
to variate certain individual input parameters in order to improve the results, but the
computer algorithm should rather be based upon input from physical observations than
from a try-and-error strategy.

The current section shows several exemplary results for microstructure images which
have been generated exclusively from experimental input: Figure 2.8 refers to a material
with a majority of titanium oxide grains, fig. 2.9 refers to a material with a majority of
aluminum oxide grains at high porosity, and fig. 2.10 refers to a material with a majority
of aluminum oxide grains at lower porosity. It should not be forgotten that the model
images shown in these figures are no reproductions of the scanning electron micrographs,
but single realizations of the statistical sampling.

For an assessment of the quality of the modelling, it suggests itself to apply here
the same image analysis techniques which are otherwise applied to the scanning electron
micrographs. The image analysis comprises two steps: The first step is a separate pre-
sentation of the three structure phases, as included in figures 2.8 to 2.10. A qualitative,
visual comparison of the separation images from SEM and modelling already reveals a
satisfactory agreement. As expected from the rough modelling with elementary geomet-
rical shapes, the poorest correspondence is seen for the porous phase. The second step of
the image analysis applies stereological methods to the separation images, thus providing
data for a quantitative comparison. Some results are compiled in table 2.2 (p. 46).

All in all, the two-dimensional modelling approach seems to sufficiently reflect the
properties of the considered microstructures.

The typical structural input parameters of the model approach, as well as the elas-
tic/energetic material parameters attributed to the specimens throughout the present
work, are compiled in table 2.1 (p. 45).

4For a detailed description of the statistical quantities, see section 4.3.1.1, p. 107.
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Figure 2.8: Left: Scanning electron micrograph of a TiO2 based microstructure (upper
row), and image analysis (below). Right: corresponding model specimen, and separate
presentation of the three phases in there. Second row: Al2O3 phase in white (AA(Al) =
0.17, LA(Al) = 36 mm/mm2). Third row: TiO2 phase in white (AA(Ti) = 0.43, LA(Ti) =
116 mm/mm2). Fourth row: pores in white (AA(po) = 0.41, LA(po) = 105 mm/mm2).
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Figure 2.9: Left column: Scanning electron micrograph (SEM) of an aluminum oxide
based microstructure with 40 % porosity (upper row), and image analysis (below). Right
column: corresponding model specimen, and separate presentation of the three phases in
there. Second row: Al2O3 phase in white. Third row: TiO2 phase in white. Fourth row:
porous phase in white.
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Figure 2.10: Left column: image analysis of the SEM of an aluminum oxide based filter
support with 28 % porosity (fig. 2.1, left). Right column: separate presentation of the
different phases in the model image (fig. 2.1, right). Above: Al2O3 phase. Middle: TiO2

phase. Below: porous phase.
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structural parameters

specimen size D (variating)

volume fraction
of grains and pores

AA(Ti)
AA(Al)
AA(po)

(variating)

specific perimeter
of grains and pores

LA(Ti)
LA(Al)
LA(po)

(variating)

average diameter
of grains and pores

d (Ti)
d (Al)
d (po)

5.4 µm
(variating)
(variating)

size distribution of grains and pores
Gaussian normal distr.
or uniform distr. (with
bounds); monodisperse

shape of grains
hexagonal (TiO2),
polygonal (Al2O3),
randomly distorted

shape of pores
circular, elliptical,

triangular
location and orientation of grains and pores (random, uniform distr.)

elastic material parameters

Young’s modulus of compact grain phases E 270 GPa
Poisson ratio of compact grain phases ν 0.15

miscellaneous

specific surface energy
between grain boundaries

γ(Ti/Ti)
γ(Al/Al)
γ(Ti/Al)

2.00 Jm−2

1.00 Jm−2

0.50 Jm−2

static friction coefficient µs (0.7)
sliding friction coefficient µm (0.6)

Table 2.1: Basic input parameters for modelling the microstructure, stress analysis, and
simulation of microcracking. Right column: respective values or assumptions as chosen
for the present studies.
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fig. 2.9 SEM model image
volume fraction of porous phase, AA(po) 0.39 0.42
volume fraction of Al2O3 phase, AA(Al) 0.43 0.41
volume fraction of TiO2 phase, AA(Ti) 0.18 0.17
specific perim. of porous phase, LA(po) [mm/mm

2] 137.6 129.33
specific perim. of Al2O3 phase, LA(Al) [mm/mm

2] 134.3 128.92
specific perim. of TiO2 phase, LA(Ti) [mm/mm

2] 92.3 95.89

fig. 2.10 SEM model image
volume fraction of porous phase, AA(po) 0.28 0.31
volume fraction of Al2O3 phase, AA(Al) 0.50 0.45
volume fraction of TiO2 phase, AA(Ti) 0.23 0.22
specific perim. of porous phase, LA(po) [mm/mm

2] 116.6 116.
specific perim. of Al2O3 phase, LA(Al) [mm/mm

2] 154.2 157.
specific perim. of TiO2 phase, LA(Ti) [mm/mm

2] 112.9 129.

Table 2.2: Comparison of basic structural parameters of the Al2O3-based SEM and model
images in fig. 2.9 and in fig. 2.10, respectively.

2.4 Deducing three-dimensional information from

two-dimensional analysis

A

l

Figure 2.11: Illustration of cross-section analysis in a 3-D material specimen.

For an estimation of the volume content of phase φ (φ = 1, . . . , n) from cross-section
analysis, consider the volume element V = A l in fig. 2.11.5 Denoting by A(φ) the area
of the phase in the cross section, the respective volume V (φ) is obtained by integration
along the z–axis:

V (φ) =

l∫

0

A(φ)dz (2.7)

5 Some parts of section 2.4, section 3.3.3, and sections 5.1 to 5.4.2 have already been published in [17]
and [18].
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The volume fraction of the phase is then

VV (φ) =
V (φ)

V
=

1

l

l∫

0

A(φ)

A
dz =

1

l

l∫

0

AA(φ)dz, (2.8)

and it can be determined as the average over the distance l of the area fraction AA(φ) =
A(φ)/A. The extremum values of AA(φ) along l represent bounds of the volume fraction:

min[AA(φ)] ≤ VV (φ) ≤ max[AA(φ)] (2.9)

Following [13], the above thoughts have already been presented in [14].
The assumption of the material being isotropic and statistically homogeneous simpli-

fies the situation in so far as the analysis may be restricted to a single, arbitrary 2-D
cross-section. In other words, the smaller the variation between cross-sections, the more
accurately the volume fraction is approximated by the area fraction of a single cross-
section. If the cross-section is sufficiently large to represent the phase content, the volume
fraction of a phase φ (in 3-D) is equal to the corresponding area fraction (in 2-D):

VV (φ) = AA(φ) (2.10)

A similarly straight relation holds for the specific perimeter LA(φ) (in 2-D) and its equi-
valent in 3-D, the specific surface SV (φ) (surface area of φ per unit volume, “surface-to-
volume-ratio”) [34]:

SV (φ) =
4

π
LA(φ) (2.11)

Since 4/π > 1, the specific perimeter of a phase is underestimated in a 2-D consideration.
Equation (2.11) may be transferred to cracks: if the size of a crack k is defined as its length
lk (in 2-D) or its area extent Ak (in 3-D), then the sum of crack sizes is underestimated
in a 2-D section:

1

V

∑

k∈V

Ak =
4

π

1

A

∑

k∈A

lk (2.12)

Regarding the shapes of the individual elements of a phase, one may consider the sim-
ple case of (randomly oriented) spheroidal pores in 3-D, which reduce to elliptical pores
in 2-D (planar) sections. The studies in [53] confirm that the sum of the aspect ratios per
area resp. volume is lower in 2-D than in 3-D, in fact much more for prolate spheroids
(approximately logarithmic relation between 2-D and 3-D) than for oblate spheroids (ap-
proximately linear relation). Thus, the average 3-D aspect ratio of the phase elements
is underestimated in a 2-D analysis, a fact which fits to the message of eq. (2.11) if one
recalls that the perimeter is related to the aspect ratio (fig. 2.7, p. 40). However, deduc-
ing relations for properties of the individual elements from relations for global parameters
such as eq. (2.11) is, as already discussed in section 2.2, only possible under very confined
assumptions.
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Chapter 3

Elastic properties and stress analysis
of solids with cavities

The impact of the micro-cavities on the effective elastic properties is of considerable inter-
est for both the constitutive modelling from the microscopic level, and for an assessment
of the material state from macroscopic observations. The scope in modelling is to deter-
mine macroscopic parameters such as the stiffness (Young’s modulus in particular) and
the overall strain of the heterogeneous material from the elastic parameters of its solid
constituents, from informations on the incorporated cavities (pores and cracks), and from
the loading conditions. The present chapter will first outline some general points in the
associated topic of homogenization (section 3.1).

Micromechanical models explicitly account for the reduction of the stiffness (of an
otherwise compact material) by the presence of the cavities, or sum up the contributions
of the cavities to the strain of the material. Among the common micromechanical ap-
proaches, two fundamentally different categories should be distinguished: A great deal
has been published on local theories which do not consider the mutual positions of the
cavities. These local approaches result in simple and thus very popular continuum models,
which are reviewed in section 3.2 and are very instructive with respect to the successive
accounts.

The second category is represented by non-localmodels which focus on explicit complex
and deterministic arrangements of cavities, especially of microcracks. The micromechani-
cal way of modelling is based upon analytical stress solutions for the isolated individual
cavities (section 3.3), which may be superposed to get a full description of the stress
field in a model specimen. Section 3.4 outlines the versatile method established by Mark
Kachanov [42], which is extended in section 3.5 with respect to normal compression and
frictional sliding of the crack faces, and to structural changes. The deduced expressions
essentially relate macroscopic stresses and macroscopic strains and serve as the theoretical
fundamentals for the elastic analysis of microstructures in the present thesis.

A useful application of the non-local micromechanical model addresses the stress-
strain response of specimens under tension-shear-compression loading cycles. The results
presented in section 3.7 clearly illustrate the nonlinear behaviour of solids with cracks.

It should be emphasized that the granular (i.e., discrete) structure of the material
is neglected in the present chapter. For the determination of effective moduli, the solid
phases are assumed to be linear elastic continua with constant, isotropic elastic moduli.
This implies that the elastic properties of both grain phases are equal, and that the grain
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interfaces are infinitely thin [50].

3.1 Remarks on homogenization and discretization

Micro-macro transition. The transition from a model on a fine scale to a model on
a coarser scale is referred to as homogenization (also called ‘coarse graining’ or simply
‘averaging’). Just as in the present work, this transition typically takes place between the
microscale and the macroscale, but it should be noted that the properties of the elements
at the microscale (grains, facets) result from homogenization of the physical phenomena
at an even lower level. From the viewpoint of damage, “the untold number of ruptured
bonds [at the atomic/molecular level] are replaced by tens of thousands of microcracks
[at the microscopic level] which are subsequently approximated by damage tensors [at the
macroscale]” [48].

Homogenization is the modelling of a statistical ensemble of micro-systems with a
heterogeneous, discrete, piece-wise continuous microstructure by means of a unique, ide-
alized, continuous medium, where the size of the heterogeneities is very small compared
to the characteristic length of this scale. The many body statistical mechanics problem is
reduced to simple, deterministic formulae and effective parameters, resulting in effective
continuum models or effective field models (see section 1.1.2.3). Homogenization reduces
the number of degrees of freedom and enhances the tractability of the model. Features
on the lower level are smeared out: details of the micro-defects as well as the local stress
and strain field fluctuations are neglected at the macroscale.1

“Homogenization assumes that we are able to solve a problem at the macroscopic
scale” [56]. It is justified only if the representative volume element (RVE) exists, i.e. if
the micro-systems are statistically homogeneous (see section 2.2, p. 40). Determining
effective elastic or damage parameters requires the band-width of the distribution of the
heterogeneities to be limited.

The formalism of homogenization can easily be demonstrated for the stresses and
strains in a linear-elastic material: The macroscopic stresses σ̄ and macroscopic strains ε̄
at a point X of the macro-continuum are evaluated by the unweighted mean values of the
microscopic stresses σ and microscopic strains ε ( 〈. . . 〉 is the averaging operator) [56]:

σ̄(X) = 〈σ〉 ≡ 1

V

∫

V

σ(X,x) dx (3.1)

ε̄(X) = 〈ε〉 ≡ 1

V

∫

V

ε(X,x) dx (3.2)

The integration is extended over all points x within the volume V of the RVE (“micro-con-
tinuum” [69]) which is associated to the point X of the macro-continuum. Equations (3.1)
and (3.2) yield the elastic fields for the macro-continuum.

1A number of methods also provides bounds for the macroscopic elastic moduli: Classical examples are
the Voigt and Reuss bounds (see [59], [50], or [1] for a review). Assuming that the strain throughout the
heterogeneous material is uniform, the Voigt approximation represents upper bounds of the true effective
moduli, whereas the Reuss approximation assumes a uniform stress and represents lower bounds. These
bounds, however, “are of practical significance only for small volume fractions and slight mismatch of
elastic moduli” of the material phases [1].
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Macro-micro transition. Modelling at the microscale requires a process which is in-
verse to the homogenization procedure, and is called discretization or ‘localization’. Such a
macro-micro transition addresses, for example, the determination of σ(X,x) and ε(X,x)
from σ̄(X) and ε̄(X). A particular point here concerns the boundary conditions at the
microscale. With div σ = 0, i.e. an equilibrium state of the microscopic stresses, the vol-
ume integral is equivalent to a surface integral along the boundary ∂V of the RVE (Gauss
theorem). If the RVE is sufficiently large compared to the size of the heterogeneities, then
the boundary conditions can be approximated by the value of the macroscopic field at
the considered point X; this means that the fluctuations at the boundary of the micro-
continuum are neglected. At the same time, the RVE should be chosen small enough so
that the macroscopic field may be considered uniform along the boundary.

As already mentioned in section 2.2 (p. 40), the size of the RVE is sometimes —
especially in periodic structures — reduced to the scale of the microscopic heterogeneities.
In this case, the micro- and macro-scale are “well separated” [55], so that the values of the
macroscopic field represent no permissible approximation for the boundary conditions,
and the task is more challenging:

The problem is firstly that there are no boundary conditions defined, and secondly
that the load is only given by the averaged value of a field. The boundary conditions
to be introduced “must, in some way, reproduce the internal state of the RVE in the
most satisfactory manner” [56]. Possible boundary conditions may be derived from the
Hill-Mandel relation between micro- and macro-scales (‘Hill-Mandel principle of macro-
homogeneity’, ‘Hill’s condition’), which reads in a simplified notation:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (3.3)

Provided that the microscopic displacement and stress fields are “admissible” ([56], [69]),
this important relation allows to describe the volume average of a work-like expression
at the microscale as a product of the corresponding macroscopic tensorfields, and thus
establishes the ‘equality of macroscopic and microscopic work’. In statistical theories, this
condition is considered as an ergodic hypothesis. For details and references, see e.g. [56].

The Hill-Mandel relation induces three possible conditions for the boundary ∂V of the
micro-continuum ([56], [69]):

1. uniform strains: displacement boundary conditions (Dirichlet bound. conditions)

2. uniform stresses: traction boundary conditions (Neumann boundary conditions)

3. local periodic stresses and strains: the local microscopic strains consist of the macro-
scopic mean 〈ε〉 and a superposed, periodic displacement fluctuation whose mean
vanishes; the local microscopic stresses are antiperiodic, i.e. tractions are opposite
on opposite faces of ∂V

Uniform-load boundary conditions (1 and 2) do not apply to periodic structures when
the RVE is chosen small so that the size of the RVE is of the order of the defects. This fact
is underlined by studies on a periodic model structure under large strains, as presented
in [69]: assuming traction boundary conditions (2), the deformed microstructure is “kine-
matically incompatible” for differently chosen (but equivalent) RVE sections; assuming
deformation boundary conditions (1), a wrong anisotropic material response is obtained
from the numerical computations. In this context, only periodic boundary conditions (3)
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supply consistent and correct results, and it is concluded that “the periodic boundary
condition offers due to their little constraints the most advantageous formulation for the
micro-macro transition” [69].

Examples in the present thesis. Regarding the structure properties, questions of
discretization have already been discussed in section 2.2 of the previous chapter. Regard-
ing the elastic properties, the model specimens are supposed to be large enough so that
the approximation of uniform stress boundary conditions is justified (Chapter 4). More
precisely, the traction acting on the boundary of a model specimen is assumed to be equal
to the average load in the macroscopic material. Chapter 5 is concerned with internal
pressure, a particular loading mode which renders the question of boundary conditions
negligible.

The process of homogenization is, first of all, carried out with respect to the structural
parameters, e.g. porosity (see eq. 2.1, p. 36) or crack density (see eq. 2.3, p. 36). More
importantly, the overall strains and effective moduli are obtained from a summation of the
discrete crack and pore contributions, see sections 3.4.2 and 3.5.5 of the present chapter.
Homogenization starting from a continuous distribution function for the micro-elements
is demonstrated in section 4.4 of the following chapter.

It is worth mentioning that homogenization has no meaning where the material be-
haviour is governed rather by the extreme statistical moments than by the mean values: In
contrast to the effective stiffness of a fixed-state material, which is governed by averaged
values such as porosity and crack density, the brittle rupture strength is sensitive to the
size of the largest individual defect — see Chapter 5.

3.2 Continuum approaches to the effective stiffness

A customary way of the estimation of macroscopic elastic properties is to apply cavity
compliance tensors deduced from complex potential theory ([68], [60], see section 3.3) or
from Eshelby’s equivalent inclusion method 2 ([27], [59]), and to treat the cavities as single
inclusions in an otherwise homogeneous medium. These effective continuum theories (as
reviewed in [62], [59], [41], [48]) do not account for spatial correlations of the cavities and
for the particular cavity sizes; they make no distinction between a small number of large
defects and a large number of small defects. Due to the absence of a characteristic length,
the models are strictly local.

The popularity of the continuum approaches can be attributed to their tractability and
elegance. The simplicity of these models, however, excludes the consideration of delicate
effects such as crack closure and friction, and it comes along with the disadvantage that
their range of applicability is not defined and that there is no rational set of criteria
to choose the best suited analytical model for a particular situation [48]. The models
differ considerably from each other at moderate to higher cavity densities (as illustrated

2The Eshelby method assumes that the material properties of both the inclusion and the matrix are
equal but the inclusion contains eigenstrains, which create tractions at the boundary of the inclusion
resulting in a disturbance of the stress field in the matrix. The eigenstrains are related to the Eshelby
tensor. In contrast to the complex potential theory, the Eshelby method may be applied to three-
dimensional problems also.
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in fig. 3.2, left). It must be supposed that the validity of all the approaches is limited to
‘low’ cavity densities.

3.2.1 Approximation of non-interacting cavities

In the limit of a very low concentration of cavities, the individual cavities may be so widely
spaced that the direct interactions between them can be neglected. Then, the stress field
acting on each microscopic cavity is equal to the average (macroscopic) stress in the
material. In a statistically homogeneous material, spatial correlations of the cavities are
remote, and the exact positions and orientations of cracks and pores are of no importance.
The effective elastic properties of the material are derived simply by superimposing the
contributions of all individual cavities, and a subsequent volume averaging.

As for the impact of the cavities on the effective stiffness, the following general state-
ments can be made (the formulae refer to prescribed external stress3):

• Cavities with concave borders and sharp corners have lower stiffness (i.e. higher
‘strain response’, ‘contribution to strain’, ‘compressibility’) than cavities with convex
borders and smooth corners. Consequently, triangular cavities have lower stiffness
than circular cavities (and ellipses with moderate aspect ratio, see also fig. 3.3).
This fact can be clearly seen by comparing the formula for Young’s modulus E of a
material containing non-interacting circular cavities:

E =
E0

1 + 3p
, (3.4)

and Young’s modulus of a material containing non-interacting cavities with approx-
imately triangular shape (see section 3.3.2, p. 65):

E =
E0

1 + 4.143 p
, (3.5)

where p denotes the porosity (volume fraction of the cavities), and E0 denotes
Young’s modulus for the compact matrix material. (See fig. 3.1 for illustration.)

• The stiffness of elliptical cavities is lower for the more ‘elongated’ ones. Especially,
the stiffness of elliptical cavities is lower than the stiffness of circular cavities: The
circle is the stiffest cavity of a given area (fig. 3.2, right). These facts are reflected in
the formula for the effective Young’s modulus of a material with randomly oriented
elliptical cavities:

E =
E0

1 + 3p+ q
, (3.6)

where q is the shape factor (‘eccentricity parameter’) of the elliptical cavities (see
eq. 2.2, p. 36).

• The orientation of triangular or approximately triangular cavities and, of course,
circular cavities, has no influence on its contribution to the effective stiffness matrix:
Triangles (as well as regular polygons with five or more sharp or smooth corners [41])
and circles are elastically isotropic.

3The approximation of non-interacting cavities yields considerably different results depending on
whether external stress or strain is prescribed [62].
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The formulae show that — for a given porosity and given shape of the cavities —
the size (or, equally, the number) of the individual cavities has no impact on the strain
contribution of the cavities.
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Figure 3.1: Decrease of effective Young’s modulus as a function of porosity for different
‘isotropic’ cavity shapes (approximation of non-interacting cavities).
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Figure 3.2: Left: Decrease of Young’s modulus as a function of porosity in a material with
randomly oriented elliptical cavities of fixed eccentricity. Right: Decrease of Young’s mod-
ulus as a function of eccentricity in a material with randomly oriented elliptical cavities
and fixed porosity.
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3.2.2 Interacting cavities: effective environment theories

At higher concentrations of microscopic cavities, the importance of direct interactions
on the effective stiffness can become substantial. The most frequently used theories for
estimating the effective elastic moduli account for interactions by placing representative
cavities into some ‘effective environment’ which combines the effect of all cavities. The
effective environment is an effective matrix material in effective continuum models such
as the self-consistent scheme and the differential scheme, or it is an effective stress field
in effective field models such as Mori-Tanaka’s scheme. These approaches smooth the
local fluctuations of stress/strain fields. The considered materials must be statistical
homogeneous, and the cavity correlations should be weak.

In the self-consistent and differential scheme (which is an incremental form of the self-
consistent scheme), the impact of interactions on a given cavity is simulated by a reduced
stiffness of the surrounding material [43]. The self-consistent and the differential scheme
do not take into account the actual mechanisms of interaction and predict that the effect
of interactions is always a softening of the overall moduli (which is quite strong in the
self-consistent scheme). In general, they substantially overestimate the impact of cracks
on the effective stiffness.

The prediction that the effective stiffness always reduces with the increase of the
micro-defect density is common to all effective continuum and effective field models [48].

3.2.2.1 Self-consistent scheme

The self-consistent scheme predicts for a material containing randomly oriented elliptical
cavities:

E = [1− 3p− q)] E0 , (3.7)

and for a material containing triangular cavities:

E = [1− 4.2p] E0 (3.8)

Following Krajcinovic [48], “the self consistent model provides very good estimates at
surprisingly large concentrations of micro defects”.

The self-consistent method results in a unique effective stiffness/compliance tensor, no
matter if external stress or external strain is prescribed [62].

3.2.2.2 Differential scheme

In contrast to the self-consistent scheme, where the representative cavity is put into the
effective matrix all at once, this process can be performed incrementally: starting from
ρ = 0 and E = E0, the cavity density is increased by small steps ∆ρ, and the moduli of
the effective matrix are recalculated at each step.4 The differential scheme predicts for a
material containing randomly oriented elliptical cavities:

E = [exp(−3p− q)] E0 (3.9)

4Vice versa, the self-consistent scheme can be deduced from the differential scheme by a linearization:
Expanding the exponential function in eq. (3.9) into a power series and truncating to the first-order term
yields eq. (3.7).
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Different from the self-consistent scheme, there is no ‘cut-off point’ where the stiffness
vanishes. Just as the approximation of non-interacting cavities, the differential scheme
predicts that the stiffness vanishes only if the defect density (or damage parameter) tends
to infinity.

Following Krajcinovic [48], the“widely held opinion that the differential model provides
more accurate results for large defect concentrations [than the self-consistent scheme] has
never been documented by compelling arguments”.

3.2.2.3 Approximation of the average stress field (Mori-Tanaka’s scheme)

Mori-Tanaka’s scheme is the simplest method among the effective field models, but it
appears to be a reasonable approximation when the mutual positions of the defects are
random. With this scheme, experimental data have been successfully described; it seems
to be accurate in both limits of small and high porosities [41]. The essential of this scheme
is to account for interactions by placing each cavity into the stress field averaged over the
solid phase (matrix). This average stress σ is expressed in terms of a remotely applied
stress σ0 as

σ =
σ0

1− p
. (3.10)

For a material with randomly oriented elliptical cavities (pores and/or cracks), Young’s
modulus is found to be

E =
E0

1 + 3p+q
1−p

. (3.11)

The factor 1/(1− p) accounts for the interactions. Since p = 0 for cracks, Mori-Tanaka’s
scheme coincides with the approximation of non-interacting cracks. This is not an incon-
sistency, but properly reflects the actual situation: Provided tractions are prescribed on
the material boundaries, introduction of cracks does not change the average stress in the
matrix, so there is no reason to expect any impact of interactions on the effective moduli
as long as the cracks are located randomly [43]. Different from the self-consistent scheme
and differential scheme (which ignore the impact of the shielding mode of interaction and
therefore substantially underestimate the stiffness of the cracked material), Mori-Tanaka’s
scheme apparently remains valid up to high crack densities.

Mori-Tanaka’s scheme predicts that the impact of cavities with larger area (and higher
contribution to total porosity) on cavities with smaller area is higher than vice versa. In
particular, cavities affect cracks, but cracks do not affect cavities — as far as the effective
elastic properties are concerned.

Further details of Mori-Tanaka’s scheme are described in [4].

The influence of porosity and eccentricity of elliptical cavities in the different effective
environment models is graphically displayed in fig. 3.2 (p. 54).

3.2.2.4 Statistical second-order model based on ensemble averaging and pair-
wise crack interactions

In order to exemplify models based upon micro-defect distribution statistics, mention can
be made of the approach by Ju and Chen [38]. The general model manages systems
with arbitrary crack densities and arbitrary distributions of crack lengths, crack locations
and orientations. It claims to be valid even at higher crack densities and stronger crack
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interactions. The core theory is of the micromechanical type, and has some similarities
to the approach by Mark Kachanov [42] (see section 3.4 below). Crack interactions are
treated in a pairwise way, which means a coarse reduction. On the other hand, crack
closure is rudimentarily accounted for.5

Ju and Chen treat the interacting microcracks within the framework of the ‘ensemble-
average approach’: The local constitutive relation at a typical point within a statistical
RVE is “obtained by averaging over the ensemble of all statistical realizations, including
the locations, orientations, lengths, and relative configurations of randomly distributed
microcracks”. Given the first microcrack, the spatial location of the second microcrack is
random.

With the ensemble-average approach, the micromechanical model can be employed in
extensive numerical calculations to yield explicit closed-form (‘analytical’) solutions for
the overall moduli and the constitutive equations. Ju and Chen present results for simple,
idealized structures. More realistic structures, including cracks with non-uniform lengths,
or even crack length distributions, would involve considerably higher efforts.

For a material containing randomly distributed cracks of equal length, Ju and Chen
deduced the following formula where the effect of the cracks is reflected through the scalar
crack density ρ:

E =
1

1 + π(ρ + 0.373 ρ2)
E0 (3.13)

This is a local effective continuum formula of second order in crack density. The second-
order term (quadratic in ρ) can be traced back to the crack-crack interactions; it becomes
significant at ‘larger’ crack densities (e.g., ρ = 0.5). For ‘extremely large’ crack densities,
even higher-order terms should be included [39]. Neglection of the second-order term
leads to the approximation of non-interacting cracks (‘first-order microcrack contribu-
tions’, eq. (3.6)).

According to this model, the effect of interactions (focusing on the numerical value
“0.373”) is a further reduction of effective stiffness, but not as strong as in the self-
consistent scheme. In contrast to the self-consistent scheme, there is no ‘cut-off point’
where the stiffness vanishes.

The results of this approach seem questionable since the effects of crack interactions
are expected to cancel each other out in the case of a perfectly random crack distribution
(see section 3.6, p. 81), so that the second-order term should vanish.

5Using the nomenclature of section 3.4 and section 3.5, ‘pairwise interaction’ means that the effective
traction tk on a crack k is calculated from the single equation

〈tk〉 = t0k +Λki,open〈tki,effi 〉 (3.12)

in contrast to the extensive equation systems eq. (3.41) resp. eq. (3.60) below (p. 73, p. 77). In eq. (3.12),

〈tki,effi 〉 is the effective traction on crack i for the two-crack system comprising cracks i and k. Nevertheless,
〈tk〉 is seen as the effective traction on crack k in the all-crack system. This approximation reduces the
problem to a two-microcrack interaction problem. The ‘transmission factors’ Λki,open in eq. (3.12) take
into account that closed microcracks do not contribute. Thus, the first step in Ju and Chen’s model is to
determine the ‘open microcrack angle domain’ to restrict the calculation to those cracks which actually
contribute to the effective compliance. This involves an extensive set of case differentiations.
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3.2.3 Further concepts and reflections

3.2.3.1 Non-random cavity distributions
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Figure 3.3: Two microstructure model images with identical porosity (p = 0.41), but
different pore shapes. The structure containing triangular pores has a significantly lower
Young’s modulus (E/E0 = 0.366) than the structure containing elliptical pores (E/E0 ≈
0.403). The explicit modelling of the individual cavities (using cavity compliance tensors,
approximation of non-interacting cavities) enables to adjust or detect anisotropies: For
the specimen on the left, Ex/E0 = 0.394 whereas Ey/E0 = 0.411 GPa (Ex: horizontal
stiffness, Ey: vertical stiffness).

Crack density tensors and cavity compliance tensors. The simple effective conti-
nuum models presented so far apply to randomly oriented cavities, i.e. when the continuum
is isotropic. An elastic anisotropy due to a non-isotropic distribution of cavity orientations
can be approximately accounted for by using a higher order cavity density tensor (for crack
density tensors, see [43] or [48]) instead of the scalar cavity density, but the simplicity
of the models would be lost at the same time. Alternatively, the full fourth-order cavity
compliance tensors (see [41], [48]) can be employed in an explicit modelling of the cavity
arrangements (as in the present account, see fig. 3.3).

Point correlation functions. Some approaches, aiming at the effect of direct defect
interactions, employ two- and four-point correlation functions as an input information for
the structure geometry. These functions — which are typically obtained from analysis
of actual structure images — describe the spatial correlation between the defects. For
example, two neighboring cracks may be considered as correlated if their stress singularity
fields overlap (to some extent). In other words, two objects are correlated if their behaviour
depends on their exact relative positions (i.e., distance and orientation). An interaction
length may be defined as the maximum distance between two cracks so that the direct
interaction provides a contribution to their singularity fields which is large enough to
affect their growth and stability. The interaction length must be represented in the form
of a distribution, for the crack sizes are generally not uniform. In order to catch the
interaction effect between two cracks on their stress fields, two-point correlation functions
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summarizing the distances between centers or tips are not sufficient; since the orientations
are important as well, a full description requires even four scalar parameters for the
geometry (see [48]).

Correlation functions often are expressed as statistical quantities to sum up morpho-
logical information; then, the correlation function gives the probability of finding the
objects (particles, cracks, defects) at certain positions. The pair (two-point) correlation
function gives the probability of finding an object at a certain distance r from any other
object [28].

3.2.3.2 Percolation limit

Percolation arises when a cluster of interconnected (i.e., touching or overlapping) cavities
emerges to split the specimen into at least two parts. At the same time, the specimen
loses its capability to carry or transmit load — the effective stiffness in a certain direction
vanishes.

In percolation studies, the range of statistical homogeneity is trespassed, and volume
averages are meaningless, so the validity of critical porosities or ‘cut-off points’ deduced
from schemes like the self-consistent model is very restricted ([43], [48]). At least, they
may serve as upper limits: For a material containing randomly distributed and oriented
cracks, the self-consistent scheme predicts a critical crack density of ρc = 1/π = 0.32 (see
eq. (3.7), setting ‘porosity’ p = 0, ‘eccentricity’ q = πρ). The differential scheme yields
no finite values for the critical defect density.

In contrast, a class of models has been developed which explicitly addresses the per-
colation limit (see [48]). The so-called continuum percolation theories provide estimates
of the critical micro-defect density to which the effective continuum models should tend
as the defect concentration increases. Different from the wide class of lattice percolation
models (see section 1.1.2, p. 20) or to the studies in Chapter 5 of the present thesis, the
continuum percolation models deal with micro-defects which can nucleate but not grow.
The micro-defects are successively implanted into the structure until the connectivity
threshold is reached. For a material containing randomly distributed and oriented cracks,
the continuum percolation models yield non-unique values for the critical crack density:
e.g., ρc = 0.25, ρc = 0.20. The critical porosity of an elastic plate containing elliptical or
circular cavities is determined as pc = 0.45 ([48]). Solutions for the critical density are
far easier to find for defects of equal size than for problems with polydisperse defect size
distributions.

3.2.3.3 Specimen size and boundary-condition effects

In the context of an explicit micromechanical modelling of the defects, the issues of speci-
men size and boundary conditions become significant. Again, the term of the represen-
tative volume element (RVE) is of some importance here. The effective elastic moduli
usually are intrinsic material properties for which the RVE exists.6 The RVE must in-
clude a sufficient number of micro-defects, but must be much smaller than the scale over
which the macroscopic stresses fluctuate: a homogeneous stress and strain state is re-
quired. As an alternative to the definition of the RVE in section 2.2 (p. 40), a more

6In special materials with cavities or other unloaded defects, however, it is possible that the RVE does
not exist at all [32].
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specific and strict formulation claims that the RVE represents certain macroscopic mate-
rial properties independently from the current boundary conditions, and that no scatter
of these properties is allowed from one RVE specimen to another [32].

With respect to the effective stiffness/compliance, this means that the effective stiff-
ness (S) of an RVE obtained under displacement control (Dirichlet boundary conditions,
subscript ε) must be equal (within a small enough error) to the effective stiffness calculated
from the inverse of the effective compliance (C) measured under load control (Neumann
boundary conditions, subscript σ) (see [62], [48]):

Sε = Sσ with Sσ = (Cσ)
−1 (3.14)

Size effects and boundary-condition effects on the overall elastic properties of hetero-
geneous materials with cavities are apparent in specimens smaller than the RVE. The
elements of the effective elastic stiffness and compliance tensors of a specimen smaller
than the RVE under displacement control, load control and mixed (subscript m) bound-
ary conditions, respectively, are related as follows [32]:

Sσ ≤ Sm ≤ Sε (3.15)

Cε ≤ Cm ≤ Cσ (3.16)

The statistical effects of the specimen size, accompanied by strong scatter of the individual
results, are strongly coupled to the boundary condition effects. This fact is reflected in
the following two sets of hierarchical order relationships [32]:

Sσ,small ≤ Sσ,large ≤ Sε,large ≤ Sε,small (3.17)

Cε,small ≤ Cε,large ≤ Cσ,large ≤ Cσ,small (3.18)

where subscripts ‘small’ and ‘large’ indicate sets of smaller-sized specimens and sets of
larger-sized specimens, respectively, taken from the same material. Obviously, the trend
of the size effect is reversed when passing from load-controlled boundary conditions to
displacement-controlled boundary conditions. (The size effect can be non-monotonic in
the mixed case [32].)

3.3 Local stress analysis: Analytical stress solutions

for various single cavities

A detailed analysis of stresses below the continuum level is essential for the identification
of critical locations for microcracking, and will be founded here on analytical solutions
for stress fields around individual cavities. The stress solutions available in the literature
are restricted to simple geometrical shapes, a fact which enforces the rough geometrical
approximation of the porous phase in the microstructure model images. The exact so-
lutions refer to the idealized situation of a single cavity embedded in an infinite, elastic
plate under uniform stress applied at infinity.

The first and most popular formalism is the method of complex stress functions, which
is assigned to Kolosov [47] and Muskhelishvili [60]. The stress (and displacement) com-
ponents are treated as functions of the complex variable z = x + iy which is composed
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of the plane coordinates x and y. Since real part and imaginary part of these functions
are harmonic, the Cauchy-Riemann equations hold and the biharmonic functions can be
expressed in terms of two analytical functions φ(z) and ψ(z) of one complex variable z.
The plain stress components can be deduced from these complex stress functions with the
aid of the Kolosov’s formulae:

σxx + σyy = 2 [φ′(z) + φ
′
(z)] (3.19)

σxx − σyy + 2iσxy = −2 [zφ′′(z) + ψ
′
(z)] (3.20)

Thus, the problem is reduced to the determination of the functions φ(z) and ψ(z). The
complex stress functions must be specified in accordance with the boundary conditions.
The situation is considerably facilitated if the Kolosov-Muskhelishvili method is applied
to derive the stress (and displacement) fields around a unit circle, and if a conformal
mapping rule is found to transform these fields into the curvilinear orthogonal coordinate
system matched to the shape of the particular cavity (see [60]).

The present approach employs analytical stress solutions for elliptical and circular
cavities deduced from [74], and for cavities with approximately triangular shape deduced
from [68]. None of the original solutions could be utilized without further elaboration in
order that the ultimate implementations exactly fulfil the differential equations of elastic
equilibrium as well as the respective boundary conditions. The differential equations of
elastic equilibrium read in the absence of body forces:

∂σxx
∂x

+
∂σxy
∂y

= 0 (3.21)

∂σyy
∂y

+
∂σxy
∂x

= 0, (3.22)

whereas the boundary conditions require that superposition of the individual stress dis-
turbance fields to the macroscopic, homogeneous loading field must result in traction-free
cavity boundaries.

The figures in the present section reflect the well-known fact that the stress-concen-
tration coefficients7 depend on the radius of curvature of the cavity. The highest local
stresses appear where the curvature is highest, in the limit near tips or corners.

3.3.1 Stress fields around elastically anisotropic cavities

The most versatile cavity shape considered here is the ellipse. The conformal transforma-
tion rule mapping the interior of the circle of radius R in the ζ = ρ exp(iθ) plane on the
exterior of the elliptical cavity in the complex z = x+ iy plane is

z(ζ) = R

(
1

ζ
+ cζ

)

, (3.23)

where R = (a+ b)/2 and c = (a− b)/(a+ b) (a and b denote the length of the major and
the minor semi-axis, respectively).

The curvilinear coordinates ρ and θ matched to the elliptical cavity shape are displayed
in the z plane in fig. 3.4.

7The ‘stress-concentration coefficient’ is defined as the ratio of any component of the stress tensor at
any point in the vicinity of the cavity to the stress tensor component at the same point in the cavity-free
material, when the external forces acting on the material are equal in both cases.
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Figure 3.4: Representation of curvilinear coordinates matched to the elliptical cavity
shape. Left: ‘radial’ coordinate ρ (reaching from ∞ to R, where R depends on the
ratio of the semi-axes lengths); right: ‘polar’ (‘angular’, ‘circumferential’) coordinate θ
(reaching from 0 to 2π).

In the computer algorithm, the stress solutions employed for elliptical cavities follow
the analytical results by Stevenson [74]. Stevenson has developed a method of complex
stress functions independently from Kolosov at about the same time (1940/1941). Fig. 3.5
shows the disturbance of the local stress field components due to the presence of an
elliptical cavity in a material under external tensile and shear stresses of unit intensity.

Fig. 3.6 shows the corresponding stress field disturbances around a crack, which may
be regarded as a degenerated ellipse and therefore described by the same formalism [74].
However, the numerical model uses analytical solutions presented by Benveniste ([5])
which provide identical results but are specified to cracks and therefore reduce the an-
alytical and computational effort. Benveniste’s solutions are based upon the original
Kolosov-Muskhelishvili method.

It is instructive to see that for the elastic plane containing an elliptical cavity under
uniaxial tension σ0 perpendicular to the major semi-axis, the stress concentration σ/σ0
at the ends of the ellipse is given by a simple formula [61]:

σ

σ0
=

(

1 +
2a

b

)

(3.24)

Introducing the smallest radius of curvature, rc = b2/a, and assuming flat ellipses
(b� a), one can distinguish the effects of cavity size (a) and local curvature (rc):

σ

σ0
= 2

√
a

rc
(3.25)

Equation (3.25) leads to a stress singularity when the ellipse reduces to the limiting case
of a crack (b = 0).
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Figure 3.5: Stress field components in Cartesian coordinates around an elliptical cav-
ity under unit tension and shear. The stress field components due to compressive load
correspond to the fields displayed in the upper two rows if multiplied by (−1).
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Figure 3.6: Stress field components in Cartesian coordinates around a crack under unit
tension and shear. Due to crack closure, the stress field components under compressive
load are naturally not simply given by multiplying the fields displayed in the upper row
by (−1).
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Figure 3.7: Representation of curvilinear coordinates matched to the approximately tri-
angular cavity shape. Left: ‘radial’ coordinate ρ (reaching from ∞ to 0); right: ‘polar’
coordinate θ (reaching from 0 to 2π).
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Figure 3.8: Stress field components in Cartesian coordinates around a circular cavity
under unit tension and shear. The analytical solutions applied here are those for the
elliptical shape [74], with (nearly) equal ellipse semiaxes.

3.3.2 Stress fields around elastically isotropic cavities

Elastically isotropic cavities are exemplified by circular pores and pores with regular
triangular shape. The local stress fields for circular pores result from the Stevenson
solutions [74] in the special case a ≈ b and are illustrated in fig. 3.8.

The triangular cavities are approximated by regular (equilateral) polygons with side
number 3 as obtained by conformal transformation mapping the interior of a circle (of
radius a) in the ζ = ρ exp(iθ) plane on the exterior of the cavity in the complex z = x+iy
plane. The transformation rule

z(ζ) = R

(
1

ζ
+
1

3
ζ2
)

(3.26)

yields triangles showing rounded-off angles. The corners of the triangle would become
sharper by including a third or more terms into the transformation rule; however, the
mathematical and computational effort in handling the elastic fields around this geometry
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would increase considerably, whereas the increase of accuracy – at least with respect to
the strain contribution of the cavity — would be minimal (below 4 % according to [48]).

The curvilinear coordinates ρ and θ matched to the ‘triangular’ cavity shape are dis-
played in the z plane in fig. 3.7 (p. 64).

The determination of local stresses in the present thesis is managed with the solutions
by Savin ([68], based upon the Kolosov-Muskhelishvili method), which are originally rep-
resented in the curvilinear ζ plane. The applicability of the solutions in the numerical
model requires their transformation from curvilinear (fig. 3.9) into Cartesian coordinates
(fig. 3.10).

50 100150200250

50

100

150

200

250

load: σ
xx

   −   field: σρρ

−1

−0.5

0

0.5

1

50 100150200250

50

100

150

200

250

load: σ
xx

   −   field: σθθ

−1

−0.5

0

0.5

1

50 100150200250

50

100

150

200

250

load: σ
xx

   −   field: σρθ

−1

−0.5

0

0.5

50 100150200250

50

100

150

200

250

load: σ
yy

   −   field: σρρ

−1

−0.5

0

0.5

1

50 100150200250

50

100

150

200

250

load: σ
yy

   −   field: σθθ

−1

−0.5

0

0.5

1

50 100150200250

50

100

150

200

250

load: σ
yy

   −   field: σρθ

−1

−0.5

0

0.5

50 100150200250

50

100

150

200

250

load: σ
xy

   −   field: σρρ

−1

−0.5

0

0.5

1

50 100150200250

50

100

150

200

250

load: σ
xy

   −   field: σθθ

−1

−0.5

0

0.5

1

50 100150200250

50

100

150

200

250

load: σ
xy

   −   field: σρθ

−1

−0.5

0

0.5

Figure 3.9: Stress field components around approximately triangular cavity under unit
tension and shear. Representation in curvilinear coordinates.

In fig. 3.11, the local stress at a triangular cavity ‘tip’ is confronted with the corre-
sponding field at an elliptical cavity ‘tip’. The stress field plots illustrate that the near-field
stress distribution qualitatively depends on the local curvature of the cavity boundary.
(The quantitative level of the stresses, on the other hand, is essentially a function of the
cavity size.)
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Figure 3.10: Stress field components around approximately triangular cavity under unit
tension and shear. Representation in Cartesian coordinates. The stress field components
due to compressive load are equal to the fields displayed in the upper two rows multiplied
by (−1).
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Figure 3.11: For comparison: stress field component σxy close to a ‘tip’ of an approximately
triangular cavity (above) and of an elliptical cavity (below) under σyy tension.
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Figure 3.12: Stress field components around an elliptical cavity under unit internal pres-
sure. Above: representation in curvilinear coordinates. Below: representation in Carte-
sian coordinates.

3.3.3 Stress fields around cavities under internal pressure

The stress distributions on the elastic solid induced by the (fluid) pressure in the cavity
have been obtained from the respective analytical solutions for remote all-round tension
P (which is equal to the superposition of two orthogonal tensile tractions σxx = σyy = P )
by superposing the homogeneous stress state σxx = σyy = −P . This eliminates the remote
loading and introduces the pressure P within the cavity.

The stress fields in a plate with an elliptical cavity are illustrated in fig. 3.12 in curvi-
linear and Cartesian coordinates. The special case of a circular cavity is illustrated in
fig. 3.13 in curvilinear coordinates. For the circular cavity of radius a, the radial and
circumferential stress components are simply given by

σρρ = −a
2

r2
P (3.27)

and

σθθ =
a2

r2
P (3.28)

as a function of distance r from the cavity centre [76].
The local stress field components around a triangular cavity under internal pressure

are represented in fig. 3.14 in both curvilinear and Cartesian coordinates.
The resulting ‘radial’ field component σρρ due to the cavity has been proved to be

exactly σρρ = −σxx = −σyy at every location on the surface (i.e., ρ = 1): the applied
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solutions exactly satisfy the boundary conditions. This is illustrated in fig. 3.15, which
shows enlarged sections of the stress fields.
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Figure 3.13: Stress field components in curvilinear coordinates around a circular cavity
under unit internal pressure.
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Figure 3.14: Stress field components around approximately triangular cavity under inter-
nal pressure. Upper row: representation in curvilinear coordinates; lower row: represen-
tation in Cartesian coordinates.
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Figure 3.15: Radial stress field (left) and circumferential stress field (right) in the vicinity
of a ‘tip’ of the (approximately) triangular cavity under pressure. The radial stress field
representation shows that the boundary condition at the cavity surface is fulfilled.

3.4 Micromechanical description of deterministic

crack configurations: linear formalism

The formalism to be developed in the following relies on the micromechanical description
of the crack behaviour and a superposition technique for the ensemble of cavities present
in a material section. A prominent part is assigned here to the ‘transmission coefficients’,
which can be determined with the aid of the analytical stress solutions from the previous
section 3.3.

3.4.1 Crack opening displacement

In general, a crack is characterized by two identical surfaces (the so-called crack faces)
which are separated by the crack opening displacement (COD). The crack opening dis-
placement and the corresponding stresses (tractions) along the crack faces are the main
mechanical variables for the crack. Both sets of variables may be decomposed into normal
components (superscript “n”) and tangential (shear) components (superscript “s”).

In the present work – which restricts to two-dimensional configurations – the cracks
are assumed to be straight and the tractions are assumed to be uniform over the length of
the cracks. The displacement vector at a certain position on the crack denotes the relative
displacement of the corresponding points on the two crack faces, which is a function of
the local stresses and the elastic parameters of the matrix. It is assumed here that the
displacement is a linear function of the applied stresses.

For a crack k in the isotropic elastic plane, the familiar linear relation (see [42], [43],
[15]) between the averaged crack opening displacement 〈bk〉 = {〈bnk〉 〈bsk〉} and the effective
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crack traction8 tk = {tnk tsk} reads

〈bk〉 ≈
πlk
2E ′

tk , (3.29)

where lk denotes the length of the crack, and E ′ is Young’s modulus of the compact
surrounding material.9 The normal component 〈bnk〉 refers to an opening of the crack
faces, whereas the shear component 〈bsk〉 refers to a slip of the crack faces. The term
πlk/2E

′ may be called the scalar crack compliance.

3.4.2 Determination of macroscopic elastic properties

The properties of the discrete defect arrays at the microscopic level are to be homogenized
in order to get effective material parameters. The essential point in the homogenization
procedure is the determination of the average (macroscopic) strain ε over a representative
area A. The strain ε generally is related to the remotely applied (macroscopic) stress σ
via the effective elastic compliance C of the heterogeneous material:

ε = C σ (3.30)

In a tensor notation10, the compliance C is a fourth rank tensor. The overall strain may
be decomposed into a contribution ε0 of the solid parts of the material, and contributions
εk of each individual crack k (see [42], [43], [48]):

ε = C0 σ
︸ ︷︷ ︸

ε0

+
∑

k

1

2A
lk (nk〈bk〉+ 〈bk〉nk)

︸ ︷︷ ︸

εk

, (3.31)

where C0 denotes the compliance of the compact matrix material, and the summation
extends over all cracks located within the considered area A. Equation (3.31) involves a
dyadic multiplication of the unit normal vector nk on crack k and the average crack open-
ing displacement 〈bk〉. The εk terms are equivalent to surface integrals of the displacement
discontinuity bk over the cracks.

The crack opening displacements can be substituted by eq. (3.29):

ε = C0 σ +
π

2AE ′

∑

k

l2k (nktk + tknk), (3.32)

so that the problem of the macroscopic strain is reduced to the determination of the
(average) load tk on the cracks, an issue which is the subject of the following section 3.4.3.

Corresponding to the decomposition of the macroscopic strain, the effective elastic
compliance can be decomposed into a contribution C0 of the compact matrix material,
and a contribution Ck of each individual crack k:

C = C0 +
∑

k

Ck (3.33)

8 overall traction on the crack line in the absence of the crack
9E′ = E/(1− ν2) for plane strain conditions, whilst E ′ = E for plane stress conditions

10tensor notation in two dimensions:
[
εxx εxy
εyx εyy

]

= C

[
σxx σxy
σyx σyy

]
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The components of the crack contribution Ck to the compliance tensor relate the macro-
scopic stress components to the strain contribution of the crack. They can be found from
eq. (3.32) if the tractions are expressed in terms of the macroscopic stress σ. If the in-
teraction between the cracks is neglected, then the relation between stress and traction
along a crack line is a simple projection:

tk = σ nk (3.34)

Denoting the orientation angle of the crack with respect to the x-axis of the Cartesian coor-
dinate system by θk, the components of the normal unity vector are nk = {− sin θk cos θk},
and eq. (3.34) yields

tnk = σxx sin
2 θk + σyy cos

2 θk − 2σxy sin θk cos θk (3.35)

tsk = (σyy − σxx) sin θk cos θk + σxy(cos
2 θk − sin2 θk). (3.36)

In a matrix notation (Voigt notation)11, the contribution of the cracks to the compliance
matrix reads thus:

Ccracks ≡
∑

k

Ck =
π

2AE ′

∑

k

l2k





sin2 θk 0 − sin θk cos θk
0 cos2 θk − sin θk cos θk

− sin θk cos θk − sin θk cos θk 1





︸ ︷︷ ︸

Nk

,

(3.37)
where the ‘projection matrix’ Nk takes into account that the contribution of a crack
depends on its projection in the direction of loading.

In contrast, the relation is much complexer for interacting cracks (see eq. 3.38 below),
resulting in very extensive expressions for the crack compliance.

3.4.3 Determination of the effective load on a crack

The traction on each individual crack and, therefore, the displacement discontinuity along
its faces depend not only on the ‘externally’ applied, homogeneous load, but also on the
location, orientation and geometry of the neighboured cracks. Since exact solutions for
the interactions of two or more cracks are not available, numerical estimations are needed
instead. In order to account for the complex system of crack-crack interactions, the
simplifying self-consistent approach introduced by Mark Kachanov [42] is used in the
following: The unknown traction tk on crack k is the superposition of the traction t0k
induced from the external stress σ and the tractions ‘transmitted’ by all other cracks i:

tk(ξk) = [σ +
∑

i6=k

σki(ξk)] nk (3.38)

tk(ξk) = t0k(ξk) +
∑

i6=k

tki(ξk) (3.39)

11Voigt notation in two dimensions:





εxx
εyy
εxy



 = C





σxx
σyy
σxy
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Here ξk is a current point on crack k.
The basic simplifying assumption of Kachanov’s approach is that the ‘transmitted’

load σki resp. tki is taken as generated by a uniform average traction 〈ti〉 on crack i.
That means, the impact on crack k of traction non-uniformities (ti(ξi)− 〈ti〉) along each
crack i 6= k is neglected. The unknown traction tk, averaged along the crack line ξk, is
thus obtained as follows:

〈tk〉 = t0k +
∑

i6=k

〈tki〉 (3.40)

One may now set 〈tki〉 = Λki 〈ti〉, whereΛki denotes the ‘crack-crack transmission factors’,
i.e. the ‘standard’ stress fields generated by uniformly loaded cracks i averaged along the
lines of cracks k [42]. (The transmission factors can be determined with the aid of the
analytical stress solutions presented in the previous section 3.3 (fig. 3.6). Note that
Λkk = 0.) Then, eq. (3.40) can be re-written as follows:

〈tk〉 = t0k +Λki 〈ti〉 , (3.41)

where a summation over i = 1, ..., N (N : total number of cracks) is implicitly assumed.
Taking eq. (3.41) for each crack k establishes a system of N linear algebraic equations
(“self-consistency” equations) for the average tractions12:

(δkiI−Λki)〈ti〉 = t0k , (3.42)

which can be solved by numerical methods, namely numerical matrix inversion:

〈ti〉 = (δkiI−Λki)
−1 t0k (3.43)

Kachanov’s method of approximating the traction on a crack by its average over the
crack length corresponds to expanding the traction, which may actually be a rapidly
varying function of the position ξ on the crack, into a power series and truncating to
the zero-th order term. Other models have been proposed which account for higher-order
terms (see, e.g. [5]) and different series of orthogonal functions. While these approaches
gain some accuracy, they lose at the same time a lot of tractability. It is obvious that
the simplest approximation by Kachanov suffices to illustrate the essential aspects of the
effects of direct crack interactions.

3.5 Micromechanical description of deterministic

crack configurations: nonlinear formalism

The complexity of the formalism is considerably enhanced if nonlinear effects such as
crack closure, friction of the sliding crack faces, and irreversible changes of the micro-
structure (as will be the subject of Chapter 4) occur. The material response then exhibits
a path-dependence which necessitates incrementation of the loading process and of the
constitutive equation. The present section outlines the corresponding formalism, which is
fundamental for the numerical simulations. The incremental theory is supplemented by
the effects of pores and of pressure acting inside the cavities.

12In fact, it is a system of 2N equations, since each traction vector involves two scalar components.
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3.5.1 Accounting for crack closure and frictional sliding

The formalism for the cracked solid presented in section 3.4.3 refers to opening and free
sliding conditions for all cracks. If the loading system induces compressive stresses on
individual cracks, the displacement discontinuity is suppressed in the normal direction
(‘damage deactivation’), whilst the tangential motion may be prohibited by the appear-
ance of friction. The instantaneous response of the cracked solid to an incremental change
of load then depends on the current state of the microstructure, which results from the
entire history of loading and the associated irreversible changes and rearrangements in
the microstructure. In other words, there is a path-dependence of the material response.

The simplest illustrative example for the history dependence refers to a crack under
normal load: if uniaxial tension is applied first (leading to an active state of the crack),
then the change of material stiffness due to a superimposed incremental tension or com-
pression will have a different value than in the case when uniaxial compression is applied
first (leading to a passive state of the crack). A different example, referring to mixed load-
ing conditions (shear load and normal load), is illustrated in fig. 3.16. The description of
frictional cracks involves a complex set of conditions, as will be elaborated below.

321 321

Figure 3.16: Single-crack specimen subject to different loading paths: application of shear
traction followed by superposed compressive load produces non-zero shear opening dis-
placement (left), whereas reversing the sequence produces smaller displacement or no
displacement at all (right).

According to Krajcinovic [48], an accurate assessment of the magnitude of the friction
coefficient (which basically reflects the roughness of the crack faces) “is an absolutely
crucial prerequisite for the determination of the effective moduli” of materials in a state
of compression. In the present formalism, the movement of contacting grain surfaces is
assumed to be governed by a simple friction law: for a compressive load tn normal to the
contact surfaces, the tangential friction load tsfriction is given by

|tsfriction| = µm |tn| (3.44)

in sliding friction, and
|tsfriction| = µs |tn| (3.45)

in static friction (sticking friction, ‘stiction’). As a rule, the coefficient µs of static friction
is higher than the coefficient µm of sliding friction. The macroscopic coefficients of friction
for ceramics typically assume values in between 0.05 and 0.5 [29].
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Incremental crack opening displacement. Compared to eq. (3.29), the change
∆〈bk〉 of crack opening displacement due to an incremental change ∆tk of traction on the
crack must be written here as follows:

[
∆〈bnk〉
∆〈bsk〉

]

=
πlk
2E ′

[
ank (t

n
k,mism +∆〈tnk〉 )

ask (t
s
k,mism +∆〈tsk〉 )

]

(3.46)

The fundamental, nonlinear equation (3.46) introduces two additional parameters: The
activity factors, which are collected for the k-th crack in the vector array

ak = {ank ask}, (3.47)

and the (shear) traction mismatch, which reads in vector form:

tk,mism = {tnk,mism tsk,mism} (3.48)

These two parameters characterize the instantaneous kinematic condition of each crack
and will be described in the following:

Shear mismatch. Due to the nonlinear effects of closure and friction, the opening
displacement bk of the crack is not necessarily proportional to the acting traction tk (see
the illustrative example in fig. 3.17). Since the present model is inherently based upon
tractions, it is straightforward to introduce an ‘active traction’ tk,active, which is defined
to be proportional to bk (corresponding to eq. 3.29):

〈bk〉 ≈
πlk
2E ′

tk,active (3.49)

Then, as a matter of course, the incremental formula

∆〈bk〉 ≈
πlk
2E ′

∆tk,active (3.50)

holds as well. Comparing eq. (3.50) and eq. (3.46), the explicit definition of the change of
active traction must read

∆tk,active =

[
ank (t

n
k,mism +∆〈tnk〉 )

ask (t
s
k,mism +∆〈tsk〉 )

]

(3.51)

The current ‘mismatch’ between the actual, effective traction tk on the crack and the
traction tk,active proportional to the actual displacement of its faces is thus given as

tk,mism = tk − tk,active. (3.52)

For small increments ∆tnk, the mismatch in normal direction can be neglected13:

tnk,mism = 0 (3.53)

What remains in eq. (3.46) is a ‘shear mismatch’ tsk,mism:

[
∆〈bnk〉
∆〈bsk〉

]

=
πlk
2E ′

[
ank ( ∆〈tnk〉 )
ask (t

s
k,mism +∆〈tsk〉 )

]

(3.54)

13(The case tnk < 0 is not of interest here, since ank = 0 if tnk < 0.)
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0 3 41 2

Figure 3.17: Example for a transiently ‘locked’ shear displacement (‘mismatch’ between
effective traction on the crack and opening displacement): The normal load on a crack with
shear opening displacement is changed from tensile to compressive, and thus temporarily
‘locks’ the displaced crack faces (step 3). The shear mismatch is emphasized by the dashed
ellipse.

Activity factors. The activity factors ak describe whether (and to which extent) a
certain ‘mismatch traction’ (tk,mism+∆tk) on the crack faces results in a change of crack
opening displacement ∆bk.

14 For unconstrained crack opening ank = 1, ask = 1, whilst
ank = 0 and 0 ≤ ask ≤ 1 for the closed crack.

Just as the shear mismatch, the activity factors depend on the current state of local
stress; in the numerical algorithm, both parameters are stored and updated continuously.

The following list gives a detailed description of the crack activity factors and its
determination in the numerical algorithm.

1. If the normal traction tnk is positive (tensile), then the crack is ‘fully active’, and
both the ‘normal activity’ and ‘shear activity’ are equal to 1:

ank = 1 , ask = 1 (3.55)

In this case, there are currently no closure or friction effects of the respective crack.
The crack is open, and an incremental change of load results in a corresponding
change of crack opening displacement.

2. Cracks under normal compression are closed in normal direction. The special pro-
perties of closed cracks may be summarized as follows:

(a) The normal displacement is zero, and an incremental change of load results in
no change of normal opening displacement. The crack transmits the normal
compression just as the compact material. For this reason, the crack is called
‘passive’ in the normal direction, and the ‘normal activity factor’ an is set equal
to zero:

ank = 0 (3.56)

(b) Regarding the shear activity, two cases have to be distinguished depending on
the friction of the crack faces:

i. If the shear ‘mismatch’ tsk,mism on the crack is lower than the static friction
µs|tnk| hampering the sliding of the crack faces, then there is no variation
in crack shear displacement. The crack is in a ‘fully passive’ state:

ask = 0 (3.57)

14Note: The present definition of crack activity is different from Krajcinovic’s definition ([48]).
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ii. If the shear ‘mismatch’ tsk,mism on the crack is higher than the static friction
µs|tnk| hampering the sliding of the crack faces, then the crack faces will
move until a force equilibrium is reached:

|tsk,mism,new| = |µmtnk| (3.58)

The associated change in shear crack opening displacement is given by
eq. (3.54) if the simple expression

ask =
|tsk,mism| − |µmtnk|

|tsk,mism|
(3.59)

is assumed. The associated state is called a ‘reduced shear activity’.

3. The case of a zero normal load is ‘critical’, just as the case |tsk,mism| = µs|tnk| is
‘critical’ at negative normal load. The crack opening displacement will undergo a
change only if the incremental load-to-be-applied has the appropriate sign (∆tnk > 0
resp. |tsk,mism +∆tsk| > µs|tnk|).

Assuming vanishing friction (µs = µm = 0), the model can be significantly simplified:
Cracks are always active with respect to the shear mode (as = 1), whereas they may
be active (an = 1) or passive (an = 0) with respect to the normal mode, as before.
‘Mismatches’ in shear tractions (‘locked’ shear loads resp. displacements) are not present.

3.5.2 Incremental determination of the effective load on a crack

Assessment of the ‘activity’ of a crack k requires the determination of the effective load
tk acting on it. To this end, the approach outlined in section 3.4.3, which accounts for
interactions between the cracks in a deterministic arrangement, may serve as a starting
point. Again, the nonlinear effects of crack closure, friction and structural changes enforce
an incrementation of the formalism. Furthermore, the increments ∆〈tk〉 of the effective
load are directly entering the expression for the crack opening displacement (eq. (3.54)).

Compared to eq. (3.41), the change of effective traction ∆〈tk〉 during a step of the
loading loop comprises in the presence of crack closure, friction and possible structural
changes several contributions:

∆〈tk〉 = ∆(l)t
0
k + Λki ∆ti,active

+ ∆(s)t
0
k + ∆Λki ti,active

(3.60)

The meaning of the individual terms is:

basic terms (see also section 3.5.3):
∆(l)t

0
k change of traction on k due to change of ‘basic’ load

∆(s)t
0
k change of ‘basic’ traction on k due to change of geometry of k

(i.e., change of length and orientation resulting from a kinked crack
extension, see section 4.1.2, p. 97)

interaction terms:
Λki ∆ti,active change of traction on k due to change of the opening displacement

of any crack i
∆Λki ti,active change of traction on k due to change of the relative geometric

arrangement of k and any crack i; includes effects of crack extension
and crack nucleation (additional cracks i) — see Chapter 4
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Regarding the interactions, the ‘active’ load ti,active is the key parameter here. The
reason is that the disturbance of the stress field due to a certain crack i rather depends
on its opening displacement bi than on the traction ti, and ti,active is proportional to bi

(see equations (3.49) and (3.50)).
If ∆ti,active in eq. (3.60) is substituted by eq. (3.51), then a ‘self-consistent’ system of

N equations for the effective traction increments ∆ti is obtained. Collecting the terms
which comprise ∆〈ti〉, and separating the terms independent on ∆〈ti〉 yields

(δkiI−Λki,active) ∆〈ti〉 = ∆tsumk (3.61)

where

∆tsumk = ∆(l)t
0
k +Λki,activeti,mism +∆(s)t

0
k +∆Λkiti,active (3.62)

and

Λki,active =

[
(Λnn

ki a
n
i ) (Λns

ki a
s
i)

(Λsn
ki a

n
i ) (Λss

ki a
s
i)

]

(3.63)

In analogy to eq. (3.43) for the simple linear conditions, the equation system (3.61) can
be solved for the changes ∆〈ti〉 of effective crack load by numerical methods (matrix
inversion):

∆〈ti〉 = (δkiI−Λki,active)
−1 ∆tsumk (3.64)

The total effective load on a crack k is then obtained by

〈tk〉 = 〈tk,prev〉+∆〈tk〉, (3.65)

where the subscript “prev” indicates the traction in the previous step of the loading loop.
Based on these effective loads 〈tk〉, the current activity factors ak for all cracks can be
determined.

3.5.3 Accounting for pore-crack interactions and

internal pressure

The present subsection specifies the ‘basic’ load t0k on a crack k, which comprises all
effects that are not associated with the other cracks i 6= k. Namely, it comprises the
direct impacts of an externally applied load σ on crack k and possibly of a pressure P
acting in crack k, and the stress disturbances ‘transmitted’ from pores to the crack k.

In general, the change of t0k may be attributed to changes of load (indicated here by
subscript ‘l’), and to changes of the geometry of the respective crack k (indicated here by
subscript ‘s’):

∆t0k = ∆(l)t
0
k +∆(s)t

0
k (3.66)

Changes of the geometry of k may be due to a successive, kinked extension of k (see
section 4.1.2, p. 97).

Both contributions may be considered as a superposition of four different portions (the
summations extend over all pores p):

∆(l)t
0
k = Λ

(σ)
k∞ ∆σ +

∑

pΛ
(σ)
kp ∆σ

+ Λ
(P )
k∞ ∆P +

∑

pΛ
(P )
kp ∆P

(3.67)
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∆(s)t
0
k = ∆Λ

(σ)
k∞ σ +

∑

p∆Λ
(σ)
kp σ

+ ∆Λ
(P )
k∞ P +

∑

p∆Λ
(P )
kp P

(3.68)

The transmission coefficients Λ
(σ)
k∞ denote the direct change of load on crack k due to a

unit change of external stress σ. In a matrix notation (Voigt notation),

∆tk =

[
∆tnk
∆tsk

]

= Λ
(σ)
k∞





∆σxx
∆σyy
∆σxy



 (3.69)

with

Λ
(σ)
k∞ =

[
sin2 θk cos2 θk −2(sin θk)(cos θk)

−(sin θk)(cos θk) (sin θk)(cos θk) cos2 θk − sin2 θk

]

, (3.70)

where θk is the orientation angle of crack k (see equations 3.35 and 3.36, p. 72).

The transmission coefficients Λ
(P )
k∞ denote the direct change of load on crack k due to

a unit change of internal pressure P :
[
∆tnk
∆tsk

]

= Λ
(P )
k∞∆P (3.71)

with

Λ
(P )
k∞ =

[
mk

0

]

, (3.72)

where mk indicates whether crack k is under pressure (mk = 1) or not (mk = 0). Self-
evidently, crack-internal pressure is equivalent to an additional normal tensile load.

The transmission coefficients Λ
(σ)
kp relate the change of external stress σ on pore p to the

change of load on crack k, i.e. they represent the pore→crack transmission coefficients.
Correspondingly, the Λ

(P )
kp relate the change of pressure P inside pore p to the change

of load on crack k. Each of these coefficients can be numerically determined from the
analytical stress solutions presented in section 3.3.

3.5.4 Local stress analysis

The basic load t0f on any line element f located in the solid structure can be determined in
exact analogy to the basic load t0k on a crack k as outlined in the previous subsection 3.5.3.
In fact, the situation is easier here since a selected line element will not change its geometry,
so that the second term (∆(s)t

0
k) in eq. (3.66) vanishes.

The complete traction on the line element f is composed of the basic load t0f and the
load ‘transmitted’ from the cracks:

〈tf〉 = t0f +Λfktk,active, (3.73)

where Λfk denotes the transmission factors [crack k] → [line element f ], and tk,active is
associated with the actual opening displacement of crack k (see eq. (3.49)).

Equation (3.73) is suitable for two points: On the one hand, the line element f may
refer to a facet, so that the loading conditions on the network of grain boundaries are
determined. On the other hand, one may cover the solid phases of the material structure
with a mesh of small horizontal and vertical line elements; determination of 〈tf〉 for any
of these line elements then yields a numerical representation of the complete local stress
field in the material.
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3.5.5 Determination of macroscopic elastic properties

Overall strain. In extension to eq. (3.30), the average strain over a representative
area A may be decomposed into the contribution of the compact solid material (ε0), the
contributions of each individual crack (εk), and the contributions of each individual pore
(εp):

ε = ε0 +
∑

k

εk +
∑

p

εp (3.74)

The summations extend over all cracks k and pores p located in the range of A. The deter-
mination of the strain contributions ε0 and εk has already been described in section 3.4.2.
Accounting for crack closure and friction requires, however, to replace the actual tractions
tk by the ‘active’ tractions tk,active, since the latter are proportional to the crack opening
displacement (eq. 3.49):

εk =
π

2AE ′
l2k (nktk,active + tk,activenk) (3.75)

The contributions of the pores may be due to prescribed stresses σ as well as prescribed
internal pressure P :

εp = Cp [σ + P I] (3.76)

Cp denotes the contribution of pore p to the compliance tensor; it can be determined from
the cavity compliance tensors mentioned in section 3.2.3 (p. 58).

If there is a gradient of pressure across the considered area A, or if some of the pores are
not under pressure (closed porosity), then a pore-specific pressure Pp can be introduced.

Effective elastic compliance. For the nonlinear systems involving crack closure, fric-
tion and structural changes, the effective elastic compliance C is a function of current load
and the history of applied load. Consequently, the constitutive law must be formulated
incrementally:

∆ε = C (∆σ) + (∆C)σ (3.77)

In the discrete numerical algorithm, one may assume the increment ∆σ of prescribed
stress to be sufficiently small so that ∆C is momentarily equal to zero. The current
effective compliance can then be decomposed into the contribution of the compact solid
material (C0), the contributions of each individual crack (Ck), and the contributions of
each individual pore (Cp):

C = C0 +
∑

k

Ck +
∑

p

Cp (3.78)

While the contributions C0 and Cp are not difficult to find, the particular task here is
to determine the crack contributions Ck. This can be accomplished with the incremental
version of eq. (3.75):

∆εk =
π

2AE ′
l2k (nk∆tk,active +∆tk,activenk) (3.79)

The components of the respective crack contribution Ck to the compliance tensor can be
found from eq. (3.79) if ∆tk,active is substituted by eq. (3.51), ∆〈tk〉 is then substituted
by eq. (3.64), ∆tsumk is then substituted by eq. (3.62), and ∆(l)t

0
k is finally substituted by

eq. (3.67): In the end, a relation between ∆εk and ∆σ is obtained, and the individual
coefficients establish the elements of Ck. The explicit terms are completely implemented
in the computer program and are thus accounted for in the numerical calculations.
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3.6 On the significance of cavity interactions

The micromechanical models presented in sections 3.4 and 3.5 account for crack↔crack
interactions, and the nonlinear micromechanical model presented in section 3.5 addition-
ally accounts for the impact of pores on cracks (‘pore→crack interactions’). It is assumed
that the presence of cracks does not affect appreciably the deformation behaviour of the
pores: ‘crack→pore interactions’ are completely neglected.

The effect of the interactions between micro-cavities depends on their respective lo-
cations and orientations, on the specific loading conditions, the cavity density, the cavity
shapes, and on the relative cavity sizes. It is important to distinguish the impact of the
interactions on the macroscopic elastic properties and the impact of the interactions on
the microscopic stresses: The macroscopic effects may remain negligible, while at the
same time fluctuations of the microscopic stresses can be considerably intensified. The
consequences of those microscopic fluctuations for the damage behaviour of the material
may be substantial, but this point is to be discussed later (in Chapter 4).

‘Biased’ cavity distributions. Compare a model structure where cavity interactions
are present, and the same model structure when the cavity interactions are absent. As
soon as the locations and orientations of the cavities (in particular, cracks) tend to form
a parallel and ‘stacked’ arrangement (widely separated stacks of closely located parallel
cracks), the presence of the interactions enhances the material stiffness perpendicular to
the arrangement. On the other hand, if the arrangement is more ‘columnar’ (widely
separated rows of closely located collinear cracks), then the presence of the interactions
reduces this stiffness. [43]

The computational model has been utilized to illustrate this phenomenon. As an
example, fig. 3.18 (left) shows two specimens of equal size, either of them including 20
parallel cracks of equal length. A uniaxial tension perpendicular to the crack faces has
been applied to the specimens. In a calculation without interactions, the stiffness of the
specimens reduced by 35 % with respect to the undamaged material, independently on
the explicit crack arrangement. In contrast, the reduction of stiffness amounted to 19.5 %
for the ‘stacked’ arrangement of the cracks, and to 40 % for the ‘columnar’ arrangement of
the cracks. Similar observations have been made for configurations including both cracks
and pores (see fig. 3.18, right).

An important fact to point out here is that the presence of pores may locally reverse
the mode of applied load: Figure 3.19 illustrates how a crack in the vicinity of a pore may
be under compression while the pore is under external tension, and vice versa. This issue
can be understood with the aid of the stress field plots for pores (section 3.3). For the
particular configuration, the stress disturbance ‘transmitted’ by the pore is the only load
acting on the crack.

Random cavity distributions. The impact of crack-crack interactions on the effective
stiffness in a random crack distribution is controversely assessed in the literature. In the
effective continuum theories such as the self-consistent scheme and the differential scheme,
interactions generally augment the reduction of stiffness, a result which is confirmed by
more extensive approaches by Ju and Chen (see eq. (3.13)) or Huang et al. [31], and by
percolation theory. In contrast, there are second-order models which predict that “the
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Figure 3.18: Interactions in a ‘stacked’ arrangement of cracks or cracks and pores (above)
reduce, interactions in a ‘columnar’ arrangement of cracks or cracks and pores (below)
enhance the influence of the cracks on the overall elastic moduli.

kt 

σ0

Figure 3.19: A simple pore/crack configuration where an external vertical tension results
in a horizontal compression on the crack (left), and where an external compression results
in a horizontal tension on the crack (right).

effect of interactions on the effective stiffness is on the balance amplifying” (as reported
by Krajcinovic [48])!

On the other hand, it seems reasonable that in a perfectly random crack distribu-
tion the competing effects of stress shielding and stress amplification due to direct crack
interactions “cancel each other out rendering the results of the computer simulations prac-
tically indistinguishable from the dilute concentration estimates” [48]. This point of view
is supported by a number of extensive computer experiments (cf. [41]), and it is in ac-
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cordance with Mori-Tanaka’s scheme, too (see section 3.2.2). Kachanov [43] ascertains
the approximation of non-interacting cracks to remain accurate up to high crack densities
(ρ→ 0.35).

A perfect randomness is the prerequisite here. Placing slight constraints on the spatial
crack distribution — e.g., if crack centers are not allowed to be inside the circles drawn
around the other cracks — suffices to cause a ‘bias’ of the crack model and to make
the approximation of non-interacting cracks inappropriate [43]. But it is important to
note that a perfect randomness of the crack locations is “not always the case in naturally
occuring crack systems” [43]. For example, crack arrangements resulting from uniaxial
external tension are anything but random (see Chapter 4).

The semi-numerical model introduced in the present thesis has been employed to cal-
culate the impact of interactions of cracks randomly distributed in a ‘distorted honeycomb
facet grid’ (fig. 3.20, left). The computations show that the interactions slightly reduce
the effective stiffness of the material (fig. 3.20, right). This result indicates that the crack
distribution is slightly ‘biased’ towards a columnar arrangement. The crack distribution is
not perfectly random in the experiment, since the cracks are constrained to the honeycomb
facet grid.
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Figure 3.20: Left: ultimate, ‘random’ crack structure resulting from a model computation.
Each line is regarded as an individual crack. It is assumed that there are only fully active
cracks (as appearing under biaxial tension). Right: evolution of Young’s modulus and
Poisson’s ratio with increasing crack density.

A numerical study with fluid pressure. To take another example, consider a large
section of a material with pores, subject to internal fluid pressure (fig. 3.21, left). The
material specimen exhibits a pattern of distributed cracks which might have originated in
the presence of a chemically aggressive (corrosive) fluid. The cracks are emanating from
the pores. In order to study the effects of cavity interactions, the geometric structure is
simplified: for the stress analysis, the pores and pore-crack combinations are substituted
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by simple cracks (fig. 3.21, right). This approach leads to a coarser flaw pattern where
the micromechanical model introduced above can be employed.

Applying an internal fluid pressure of P = 150 MPa, extensive computations based
upon the full stress solutions for cracks (fig. 3.6) yield the local stress distributions il-
lustrated in fig. 3.22. What differentiates the calculations with cavity interactions from
those without is the local fluctuation of stress, as mentioned above: The plots for stress
interactions clearly show areas of higher tensile, compressive and shear loads. Mention
should also be made of the fact that in the interactive calculation 15 % of the cavities
are under compression (i.e., ‘closed’), whereas the non-interactive calculation naturally
cannot display this effect.

Regarding the macroscopic parameters, it appears that the interactions enhance the
material stiffness: The horizontal stiffness amounts to Ex = 130.8 MPa for interactions
and Ex = 125.7 MPa for no interactions, while the vertical stiffness amounts to Ey =
123.3 MPa for interactions and Ey = 121.7 MPa for no interactions.

The overall strain components are:

εxx εyy εxy
with interactions 0.0007 0.0008 0.0006
without interactions 0.0006 0.0007 0.0003

Obviously, neglection of interactions leads to an underestimation of the strains in the
present example.
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Figure 3.21: An extensive microstructure in the undamaged state (left), and with a mul-
titude of microcracks (right; crack density ρ = 0.38). The pore-crack combinations in the
figure on the right are approximated by single larger cracks, respectively.

Conclusion. As for the effective stiffness and overall strain, the impact of cavity in-
teractions is negligible if the cavities are randomly distributed. If the cavities exhibit a
preferred orientation and the mutual positioning of the cavities is ‘biased’ at the same
time, then the effect of the interactions may be of an augmenting or of a degrading type.

As for the microscopic stresses, the cavity interactions are generally important, since
they intensify the local fluctuations.
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Figure 3.22: Local stress distribution in the microstructure with flaws (approximated by
cracks) under internal pressure P = 150 MPa (fig. 3.21, right). Left column: calculation
with interactions. Right column: calculation without interactions.
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Figure 3.23: Simple model specimens comprising one resp. two facets or cracks.

3.7 Selected studies on the stress-strain response

As another application of the micromechanical theory introduced in the present chapter,
the stress-strain behaviour of some exemplary structures under tension, shear and com-
pression is to be examined now. Even if the structures are absolutely simple (comprising
just one or two cracks), they reveal nevertheless a great variety of features in the context
of crack closure and friction. For obvious reasons, the present studies already include the
issue of fracturing: The occurence of crack nucleation represents another nonlinear effect
which can clearly be monitored in the stress-strain diagrams, and it thus completes the
current account.15

At the same time, the numerical studies help to check for the correct implementation
of the background theory within the computer algorithm. It has been observed that
the considered loading cycles are very sensitive to errors in the program code. A main
condition to be preserved is that the stress-strain curves return to the origin as soon as
the applied load is removed, no matter how complex the loading cycle and how large the
number of incremental steps in the computer algorithm. (This condition holds since the
model does neither account for permanent interlocks nor for thermal residual stresses.)
Generally, the area enclosed by closed loops in the σ-ε-space equals half of the total elastic
energy per unit volume, which is lost by frictional sliding and irreversible rearrangements
of the structure.

The first example, presented in fig. 3.24, addresses the effect of fracturing on the
stress-strain response, and the significance of interactions on the overall strain. The
model specimen initially comprises two horizontally aligned facets (fig. 3.23, right), which
successively fail under a tensile load (step 1). The initially high slope of the curve reduces
to a much weaker slope in the damaged specimen. According to the ‘columnar’ arrange-
ment of the facets/cracks, the crack interaction promotes the fracturing and augments the
overall strain. The weaker slope of the stress-strain curve is maintained until the tensile
load decreases to zero.

A similar study has been performed on a more complex microstructure where many
microcracks arise in the course of step 1. Figure 3.25 shows the stress-strain diagram

15Concerning the theoretical fundamentals for crack nucleation, see the next chapter (section 4.1).
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Figure 3.24: Stress-strain diagram of a two-facet specimen (fig. 3.23, right), subject to ex-
ternal vertical tension (step 1). The cracks arise in the course of step 1; step 2 corresponds
to release of external tension. Left chart: calculation with interactions (crack→facet,
crack↔crack). Right chart: calculation without interactions.

where step 2 not only releases the tensile load but alternates to a compressive one. At the
point where the origin is traversed, the modulus of the damaged material is restored to
the undamaged value. A strong enhancement of the compressive load during step 2 may
lead then to damage in compression and a nonlinear curve even in the range of negative
stress/strain, but this is not shown here.
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Figure 3.25: Nonlinear stress-strain curve of a complex microstructure, progressively
fracturing under tension: step 1 increases the tensile load, step 2 changes from tensile to
compressive load, step 3 removes the loading (relaxation). The dashed line refers to the
pristine material under tension (absence of fracturing).

The remaining part of the subsection is dedicated to a more extended stress-controlled
loading cycle (fig. 3.26) imposing shear load and compression, so that the ‘mismatch’
effect (i.e., temporarily locked microcracks) is encountered.

The loading cycle is first applied to a single-facet specimen (fig. 3.27): The facet
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21 430 5

Figure 3.26: Illustration of the shear/compression loading cycle underlying the studies in
figures 3.27 to 3.31.

fails under the shear load applied in step 1. Superposition of a normal compressive load
(step 2) provides that the shear opening mode of the crack is retained when the shear load
is removed and reversed (step 3). Step 3 comes along with an increasing mismatch between
crack opening and load acting on the crack; the value of static friction (µs|tn|) decides on
the maximum mismatch that can build up. If the maximum is exceeded, then the crack
faces yield to the shear: under the present quasistatic conditions, they abruptly start to
slide and thus reduce the mismatch. The sliding stops right afterwards when the mismatch
and the sliding friction (µm|tn|) are in equilibrium again. For a moderate friction, several
such processes string together in the course of step 3, leading to a remarkable staircase-like
curve (fig. 3.27, left).16 In case of very high friction (i.e., large compression and/or high
coefficient of static friction), the moving of the crack faces is totally suppressed until the
compressive load is released in step 4 (fig. 3.27, right).
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Figure 3.27: Single facet specimen (fig. 3.23, left) subject to the shear/compression cycle
illustrated in fig. 3.26. The facet cracks in the course of step 1. Left: stress-strain response
in case of moderate friction (the crack faces start moving in the course of step 3). Right:
stress-strain response in case of high friction (the crack faces do not move throughout
step 3).

Similar observations can be made for a two-facet specimen, including interaction effects
(fig. 3.28). A variation of the friction coefficients points out here that the uneasy course of

16It should be emphasized that the staircase-like course at step 3 does not depend on the width of the
load increments.
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step 3 is indeed a consequence of the discrepancy in the coefficients of static friction and
sliding friction: If both coefficients are assumed to be equal, then the mismatch vanishes
immediately when it exceeds the friction. The figure also illustrates that no mismatch
will arise in case of zero friction, while in case of very large friction the mismatch reaches
its maximum at the end of step 3.

Figure 3.29 confirms that the model works for a specimen comprising two oblique facets
as well, and fig. 3.30 illustrates the same for complex defect configurations comprising
crack↔crack and pore→crack interactions. As intended, the model calculations end in
a zero strain when the applied stresses are removed. Regarding fig. 3.30, corresponding
calculations neglecting the interactions showed no observable effects at this scale; this
is in accordance to the random locations of the defects. Figure 3.31 supplements the
macroscopic stress-strain diagrams in fig. 3.30 by plots of the microscopic stresses σxy at
the end of the individual loading steps.
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Figure 3.28: Two-facet specimen (similar to fig. 3.23, right), subject to the
shear/compression cycle illustrated in fig. 3.26. Investigation of friction conditions: mod-
erate friction (µs = 0.7, µm = 0.6; above, left), moderate friction (µs = 0.7, µm = 0.7;
above, right), zero friction (below, left), sticking (below, right).
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Figure 3.29: Model specimen comprising two oblique cracks, subject to the
shear/compression cycle illustrated in fig. 3.26. Investigation of friction conditions: mod-
erate friction (above, right), zero friction (below, left), sticking (below, right). In the
latter example, the cracks do not arise until step 4 (shear upon release of compression).



3.7 Selected studies on the stress-strain response 91

10 20 30 40 50
5

10

15

20

25

30

35

40

45

µm

µm

10 20 30 40 50
5

10

15

20

25

30

35

40

45

µm
µm

−5 0 5
−400

−300

−200

−100

0

100

200

300

400

strain ε
xy

 [ × 10−3]

st
re

ss
 σ

xy
 [M

P
a]

1

2

3

4

5

step 1
step 2
step 3
step 4
step 5

−5 0 5
−400

−300

−200

−100

0

100

200

300

400

strain ε
xy

 [ × 10−3]

st
re

ss
 σ

xy
 [M

P
a]

1

2

3

4

5
step 1
step 2
step 3
step 4
step 5

−4 −3 −2 −1 0

−700

−600

−500

−400

−300

−200

−100

0

strain ε
yy

  [ × 10−3]

st
re

ss
 σ

yy
 [M

P
a]

1

2

3

4

5
step 1
step 2
step 3
step 4
step 5

−4 −3 −2 −1 0

−700

−600

−500

−400

−300

−200

−100

0

strain ε
yy

  [ × 10−3]

st
re

ss
 σ

yy
 [M

P
a]

1

2

3

4

5step 1
step 2
step 3
step 4
step 5

Figure 3.30: Stress-strain response of a microstructure with pores and cracks (left
column) and microstructure with cracks only (right column) when exposed to the
shear/compression cycle illustrated in fig. 3.26. Moderate friction.
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Figure 3.31: Corresponding to fig. 3.30: Local σxy stresses in a microstructure with pores
and cracks (left column), and in a microstructure with cracks only (right column) when
exposed to the shear/compression cycle illustrated in fig. 3.26. Upper row: stresses at the
end of step 1. Second row: stresses at the end of step 2. Third row: stresses at the end
of step 3. Lower row: stresses at the end of step 4.



Chapter 4

Microcrack nucleation and
progressive damage in compact solids

The non-local formalism for the microscopic stress fluctuations established in the previous
chapter is of fundamental importance now where the simulation of crack nucleation and
damage progression is addressed. For it is obvious that averaged properties and macro-
scopic parameters cannot suffice to describe the evolution of microcracks from the very
beginning. The actual local stress distributions are needed instead, together with the
local strength of the solid-phase texture.

As elaborated in the previous chapter, the local stresses are governed by the distur-
bance fields of existing, interacting cavities and cracks. On the other hand, the local
material strength is dominated by microscopic inhomogeneities associated with the disor-
der of the grain structure. To be exact, crack initiation and evolution is assumed to be
dictated by the grain boundaries. This assumption bases on several facts:

Firstly, grain boundaries are interfaces between two differently-oriented systems. Along
the interfaces, the atoms are in irregular positions, and the cohesive forces between them
deviate from those in the interior of the grains. The specific surface energy between two
grains reduces with increasing difference in the orientation angle of the crystallographic
planes. Hence it usually is easier to cause intergranular ruptures than transgranular
cleavages [29] (intragranular cracks).

Secondly, it has been observed that during sintering, the impurities on the surface of
the powder move into the boundaries of the grains. “The impurities tend to gather in the
grain boundaries where they form amorphous films which are fractured more easily than
the crystalline grains” [29].

Another important point is the discrete nature of fracturing in a granular structure,
which emerges from experimental experience. The observation refers to both nucleation
and extension of defects at the microscopic level. In order for an existing defect (pore or
crack) to propagate, “it is not sufficient that the stress reaches the critical value σc at the
tip of the indentation, but it must exceed this value over a certain minimum distance, for
example the length of a grain” [29]. Due to this insight, the present simulations assign
the smallest unit of microcracking to the facet length.

The present chapter is concerned with microcracking in compact granular structures.
The tentative restraint on compact structures enhances the tractability and clarity of
the exploration here, whereas microcracking in the presence of pores involves essential



94 Chapter 4. Microcrack nucleation and progressive damage in compact solids

peculiarities and thus calls for modified strategies (see the subsequent Chapter 5).

First of all, section 4.1 introduces the basic fracture criterion employed in the model,
which relies on energy considerations. The criterion is first formulated for the simple case
of tensile or shear load on a single facet, then extended with respect to compressive load,
friction effects, kinked crack extension and coalescence of cracks.

Section 4.2 provides some general considerations on the modes of damage evolution,
which are somewhat characteristic for the different loading conditions. The manifesta-
tions of damage comprise a wide spectrum in between unstable propagation of a single
defect and quite distributed, stable microcracking. Moreover, it will be demonstrated
how interactions are responsible for the phenomenon of localization encountered at high
stresses.

Section 4.3 concentrates on the stochastic features of microcracking in ensembles of
macroscopically identical specimens. A brief introduction to some fundamental terms in
statistics is followed by test series from different points of view. These Monte Carlo simu-
lations illustrate the effect of microscopic disorder on the scattering and the expectation
values of the individual tests. Emphasis is on microcracking under compressive loads.

The chapter is concluded by an attempt to establish a continuum model for evolution-
ary damage (section 4.4). The formalism utilizes the basic, micromechanical approaches
on fracture (section 4.1) and homogenization (section 3.4.2), but does not demand a nu-
merical, discrete input information on the structure.

4.1 Energy criterion for damage nucleation and

progression

The formation of a new crack (crack nucleation) or the lengthening of an existing crack
(crack extension) involves transformation of elastic energy to surface energy: The release
of strain energy stored in the material is associated with an increase of surface energy.
A crack will not propagate or nucleate if the elastic energy released by its growth is less
than the energy required to create the pair of new surfaces.

In the numerical simulation, fracturing is assumed to occur in discrete steps: individual
grain facets fail at once. Accordingly, crack nucleation as well as crack extension are
measured in terms of facet lengths. Interpreting Griffith’s energy criterion [33], it is
assumed that a facet of length lf fails and forms a crack of the same length if the elastic
energy released by this transition exceeds the energy required for the creation of the new
surfaces [23]. Formally,

∫

lf

G dl

︸ ︷︷ ︸

reduction of strain energy

≥ 2γf lf
︸ ︷︷ ︸

increase in surface energy

, (4.1)

where G denotes the energy release rate of the loaded system during crack extension
(energy released per unit crack area), and γf is the specific surface energy of the considered
facet (energy per unit crack surface). Here, the crack area is lf · 1 and the crack surface
2lf · 1, the unity referring to the thickness of the specimen.1

1In order to turn from the two-dimensional consideration into real energy terms, the equations should
be multiplied by the length (‘depth’) h of the facet/crack in the third dimension instead.
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Subsections 4.1.1, 4.1.2 and 4.1.3 summarize the energy expressions for nucleation and
extension of isolated cracks. The theory will be extended in Chapter 5 (subsection 5.2.1)
to pore–crack combinations.

4.1.1 Energy expressions for straight crack extension and crack
nucleation

In order to establish an energy condition of failure on an individual facet, consider first
the familiar case of infinitesimal extension of a straight crack under normal tension [76]:

G dl =
π l t2

2E ′
dl ≥ 2γ dl , (4.2)

where l is the length of the existing crack, dl is an infinitesimal virtual extension of the
crack, t is the applied tension, E ′ is Young’s modulus of the elastic compact matrix2, and
γ is the specific surface energy of the material.3

For fracturing of a facet, an integrated form of eq. (4.2) is needed: For straight crack
extension,

l0+lf∫

l0

G dl =

l0+lf∫

l0

π l t2

2E ′
dl ≥ 2γf lf , (4.3)

and thus,
π t2

4E ′
(l0 + lf )

2 − π t2

4E ′
l 2
0 ≥ 2γf lf , (4.4)

where lf is the length of the considered facet f , and l0 is the length of an already existing
crack touching f . Crack nucleation is covered by setting l0=0. A graphical representation
of the net energy profit Φf =

∫

lf
Gdl − 2γf lf for crack nucleation is shown in fig. 4.1.

The evolution of the ‘critical’ load for crack nucleation and crack extension as a function
of facet resp. crack length is shown in fig. 4.2: the higher the length, the sooner will the
failure of a facet or the unstable growth of a crack occur.

It is worth noticing that, generalizing, the quantity t is the magnitude of the traction
acting on the crack/facet system, which can consist of tensile and shear components,
and comprises contributions from the pressure of an intruding fluid (see sections 3.5.2
and 3.5.3).

So far, the energy release rate G associated with crack extension could be given in
terms of the applied load. Usually, under more general conditions one encounters in the
literature rather expressions for the crack tip stress intensity factor K. For the above
interior crack under normal tension (mode I condition), the stress intensity factor reads

KI(l, t) =
√

π l/2 t , (4.5)

and use in the energy criterion of eq. (4.2) leads to

G dl =
K 2

I

E ′
dl ≥ 2γ dl . (4.6)

2E′ = E/(1− ν2) for plane strain conditions, whilst E ′ = E for plane stress conditions
3Extensions of the Griffith equation by a ‘plastic work’ have been proposed to account for the plastic

deformation observed near the crack tips. These extended conditions predict thus a higher critical load
on the materials; see, e.g. [72]. For an extended description of the plastic zones around cracks, see [29].
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Figure 4.1: Net energy profit Φf =
∫

lf
Gdl − 2γf lf associated with crack nucleation, as

a function of facet length lf and local (tensile) traction tf . The energy release is positive
(red-coloured range) if the facet length or the traction exceeds a certain critical value. For
Φf ≥ 0, the slope of the Φf(lf ) and Φf(tf ) functions is generally positive. For Φf < 0,
the slope of the curve exhibits a non-monotoneous behaviour. (Calculations have been
performed with E ′ = 276.2 GPa, γf = 1 Jm−2).
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Figure 4.2: Critical load on a facet (→ crack nucleation) or crack (→ crack extension) as
a function of facet or crack length, respectively. (Nondimensional representation.) The
graph illustrates how microcracking is grain size dependent: Microcracks arise sooner at
the boundaries of larger grains than at the boundaries of smaller grains.

More generally, following [33], a relationship between the strain energy release rate and
the stress intensity factors for in-plane crack extension (modes I and II; the out-of-plane
shear mode III is not relevant for the present two-dimensional analysis) may be given as

G =
1

E ′
(K 2

I +K 2
II ) =

K2

E ′
. (4.7)

The definition of the above compound stress intensity factor K is obvious. For the interior
crack in the elastic plane the stress intensity factors KI and KII differ only with respect
to the value of the loading component and thus K has the same form as eq. (4.5) but
t =

√

t(n)2 + (ts)2 then denotes the magnitude of the traction vector, which possesses
components normal (tn) and tangential (ts) to the crack line.
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By eq. (4.7), fracturing of a facet requires that

l0+lf∫

l0

G dl =

l0+lf∫

l0

K2

E ′
dl ≥ 2γf lf , (4.8)

which is an alternative expression of the energy criterion of eq. (4.3). It is interesting
to consider transition from the energy concept of fracture to a stress intensity factor
concept [8]: With a generalized K in eq. (4.6), the local criterion for crack extension is
deduced as

K ≥
√

2γE ′ = Kc , (4.9)

where Kc represents a critical value (often called the ‘fracture toughness’ or ‘modulus of
cohesion’ of the material).

4.1.2 Kinked crack extensions
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Figure 4.3: Modelling of kinked crack extension and unification of two cracks (failure of a
facet bridging two existing cracks): The kinked crack is approximated by a straight line
(bold).

In the numerical model, the path of a crack composed of several failed facets is approxi-
mately represented by a straight line connecting the two end points of the path (fig. 4.3).
By this approach, kinked crack extension as well as formation of a kinked path by the
failure of a bridging facet relies on the following form of the energy criterion:

(∫

G dl

)

pot

−
(∫

G dl

)

anc

≥ 2γf lf , (4.10)

which substitutes the strain energy term for crack extension by the difference of two
corresponding terms for crack nucleation. Integration for the pot entially new crack is
over the artificial length lk whereas the anc estor crack refers to the length l0 (in the case
of bridging l0 = l01 + l02: fig. 4.3, right). The surface energy is associated with the length
lf of the facet in question.

If the cracking facet touches no existing cracks, then
(∫

G dl
)

anc
= 0. Generally,

application of the energy criterion on a facet requires determination of the crack structure
for an assumed event of failure of this facet.
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4.1.3 Cracking under compression and friction

So far, the case of a compressive normal load and the impact of friction has not been
considered in the energy relations. This is accomplished by replacing the actual (‘effec-
tive’) load tk acting on the potential crack k by the active load tk,active as introduced
in section 3.5.1. Moreover, in the presence of friction, crack formation under normal
compression comes along with a heat loss of energy4,

Wk,fric =

{
π(lk)

2

4E′

(
|tsk,active| · µm|tnk|

)
if tnk ≤ 0

0 if tnk ≥ 0

}

(4.11)

which may be set off against the reduction of strain energy:
∫

lk

G dl =
π(lk)

2

4E ′
(tk,active)

2 −Wk,fric (4.12)

Eq. (4.12) is the general expression for the energy available to build new surfaces while
nucleating a single crack k.

4.2 Progressive microcracking: general considerations

The energy criterion is employed now for some general considerations on crack initiation
and propagation, starting with quite simple microstructure specimens. The first part of
the present subsection addresses the identification of critical locations in a microstructure,
i.e. locations where crack nucleation may occur (section 4.2.1). The second part deals with
damage progression under tensile load, and the difficulties in simulation and assessment
of failure in the micromechanical model (section 4.2.2). The third part finally focuses on
the special characteristics of microcracking under external compression (section 4.2.3).

4.2.1 Critical locations in a simple structure

Prior to simulation of any structural changes, the energy criterion allows for an iden-
tification of locations in the microstructure where nucleation and successive growth of
microcracks has to be expected. Such a description in terms of the potential energy re-
lease goes beyond the classical stress analysis as presented in Chapter 3 since it accounts
for the local properties of the grain phases, too.

To illustrate this, fig. 4.4 emphasizes those facets within a simple microstructure whose
failure would become energetically possible at various levels and modes of externally ap-
plied load. It turns out that the orientation of the potential cracks is close to the direction
of external load in case of compression, whereas it is perpendicular to the direction of ex-
ternal load in case of tension. In simple terms, larger facets are more ‘critical’ than
smaller ones, but the decisive quantity is in fact the projection of the facet length onto
the direction of applied load.

In addition to the length and orientation of the facets, the third important quantity
is the specific surface energy of the grain boundaries. Figure 4.5 refers to a specimen
comprising two different grain phases, namely a mixture of TiO2 and Al2O3 grains. Since
the specific surface energy is lower at the inter-phase boundaries, the most critical locations
are observed right there rather than in between the TiO2 grains.

4for an isolated crack: Wk,fric = 〈bk〉(µmtnk · lk) with 〈bk〉 = πlk
2E′

tnk,active
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facet structure vertical tension σyy = 700 MPa compression σyy = −2000 MPa
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Figure 4.4: ‘Critical locations’ in a simple microstructure under various loading conditions.
Assuming γf = 2 Jm−2 for the specific surface energy, the red-colored facets would have
failed under the respective loading condition.
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Figure 4.5: ‘Critical locations’ in a microstructure comprising two grain phases (TiO2

in white, Al2O3 in gray) under horizontal tension. Assuming γ(TiO2/TiO2)=2 Jm−2,
γ(Al2O3/Al2O3)=1 Jm

−2, and γ(TiO2/Al2O3)=0.5 Jm
−2 for the specific surface energies,

the red-colored facets would have failed under σxx = 500 MPa.

4.2.2 From microcrack initiation to simulation of failure

Consider now the process of crack nucleation and damage progression in a simple, one-
phase structure under external uniaxial tension. Both the structure and the loading mode
promote a brittle behaviour of the specimen.

The typical scenario of fracturing in the numerical simulation begins with the nucle-
ation of a first microcrack at the most critical location. Due to the disturbance of the
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local stresses by the first microcrack, one or more additional microcracks will then nucle-
ate in the vicinity. The microcracks finally coalesce to an unstably growing (macro-)crack
separating the specimen (fig. 4.6). It is straightforward to associate the resulting pattern
with the failure of the specimen. More precisely, the percolation of a specimen (i.e., a
crack extending from one border of the specimen to the opposite border) may be defined
as its failure.
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Figure 4.6: Crack nucleation and evolution under external horizontal tension. The second,
smaller crack in the left figure propagates unstable, ‘swallows’ the first crack, and perco-
lation of the specimen is reached in the end (figure on the right).

The situation encountered in modelling, however, is not always that clear. Since
the structures are neither perfectly homogeneous nor distinctly heterogeneous (but just
granular), the growth of a defect may be blocked at the irregular kinks of the grain
boundaries, and the group of closely located microcracks may coalesce only partially:
The cooperative phenomenon leading to localization (see section 1.1.1 in the introductory
chapter) arises, which is difficult to catch or describe in a quantitative way (see fig. 4.7).
The situation is further complicated if the unstable growth of a defect is stopped into one
direction only, so that the growing crack runs into one border of the specimen only. Since
the damage does not reach the percolation level, no failure of the specimen is recorded, and
continued calculations will be dominated by boundary effects (see fig. 4.7, too). Especially
if the specimen is not assumed to be isolated, but embedded in a larger structure, then
the calculations may go well beyond the validity of the model. As a matter of course, the
point where the simulation starts to diverge from the actual behaviour of a brittle granular
structure is hard to define. An automatized finishing of the simulation algorithm would
require a very sophisticated failure criterion. Defining a limit in terms of a ‘critical’ crack
density is not adequate since this quantity does not include any information on whether
the crack growth is stable or not.

This observation only goes to show that the crack patterns resulting in the simula-
tions have to be permanently assessed with respect to their rationality. If necessary, the
simulations must be restricted to lower crack densities or lower loads in order to avoid
model artifacts. The current chapter does not deal with percolation and failure. Moderate
levels of stably growing damage are considered instead, as encountered under compressive
loading conditions.
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Figure 4.7: Crack nucleation and evolution under external horizontal tension. The crack
pattern (which does not depend on the specific surface energy γ) grows within a narrow
band and represents the phenomenon of localization. After step 8, the model calculations
are dominated by boundary effects and must be assessed with increased prudence.
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Figure 4.8: Crack nucleation and evolution under external horizontal tension. Neglection
of the local stress disturbance due to the cracks (neglection of crack–facet interactions).
The resulting crack pattern is quite different from fig. 4.7; the fact that no distinct local-
ization occurs underlines the importance of the local stresses.
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4.2.3 Microcracking under external compression

In contrast to the more unstable growth of cracks in specimens under tension (see also the
localization phenomenon in fig. 4.9, left), a rather distributed pattern of stable microcracks
is observed in materials under compressive load. This can be explained as follows: A
tendency to unstable crack growth is given if an existing crack entails intense disturbances
of the local stress field and has thus a violent impact on its environment. This situation is
given if the crack exhibits a large opening displacement (COD). Under compressive load,
however, the opening displacement is repressed due to crack closure and friction effects.
Accordingly, the unstable crack growth is favored under tension, whereas a distributed
crack pattern is more likely to occur under compression. Besides, the phenomenon of
distributed microcracking is promoted by more heterogeneous structures (consisting of
two grain phases, see e.g. fig. 4.9, right).

The expected orientation of microcracks arising under external uniaxial compression
has already been demonstrated in fig. 4.4. The next step is to consider the further evo-
lution of microscopic damage under particular circumstances. To this end, some mecha-
nisms will be described from a phenomenological point of view, and the reflections will be
supplemented by selected numerical simulations.
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Figure 4.9: Left: crack pattern in a specimen under vertical tension (σyy = 250 MPa); a
strong localization of the damage (and boundary effects as well) is clearly visible. Middle:
crack pattern (crack density 0.004) in a specimen under vertical compression (σyy =
−650 MPa). Right: crack pattern (crack density 0.152) in a specimen under higher
vertical compression (σyy = −900 MPa). As for the specimens under compression, the
microcracks are rather uniformly distributed.

Preexisting flaws. Though the evolution of damage from preexisting flaws is not con-
cerned here, some points are worth mentioning in that context: Preexisting micro- or
macro-flaws (cavities, cracks, inclusions) represent sources of local tensile stresses and,
thus, tensile microcracks, even if the applied loads are compressive (see fig. 3.19, p. 82).
In experiments, ensuing ‘tension cracks’ (‘tension wings’, see e.g. [79] or [48]) are observed
to emanate from flaws of elongated shape, to curve toward the direction of (maximum)
compression, and to grow with increasing compression, eventually orientating parallel to
this loading direction. Under these conditions, the crack growth initially is stable. (This
behaviour is in contrast to the initially unstable growth of cracks emanating from circular
pores under vertical compression, see [67].)

The presence of a slight lateral tension (4% − 8% of the applied compression), can
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render the crack growth unstable: As soon as a critical crack length is attained, the crack
grows spontaneousely, leading to axial splitting of the specimen [62].

Lateral tension. The study presented in fig. 4.10 shows the microcrack patterns and
the damage evolution due to increasing vertical compression in a specimen under variated
lateral tension. Obviously, the uniform distribution of microcracks for low tensile loads
gives way to a strongly localized crack band if the lateral tension σxx exceeds a value of
about 140 MPa. This means that high values of σxx reduce the crack initiation level for
vertical compression σyy and promote the brittle failure of the material. (For comparison:
The crack initiation level under a single uniaxial tension would be at about 200 MPa.)

Confinement. If the axial compression is accompanied by a lateral confinement (mod-
erate levels of lateral compressive stresses, typically 25 − 30% of the peak stress), then
the growth of larger cracks is certainly arrested. The macroscale response of the material
is stabilized. However, a region of high-density microcracks may emerge, the so-called
‘shear band’, spanning an angle between 100 and 300 [62] (150 and 250 [48]) with respect
to the direction of maximum axial compression. The shear band is a consequence of the
cooperative effect (localization) of the microscopic flaws; it finally represents the failure
plane.

On the other hand, sufficiently high confining pressures (exceeding 20%− 25% of the
applied compression) promote a “more or less uniform distribution of microcracks within
the specimen” [62]. At this stage, brittle failure is suppressed (no shear band emerges),
and one can speak of a brittle-ductile transition.

Significance of friction. The compressive resistance of the specimens is increased if
the material has high static and sliding friction coefficients (µs, µm). Regarding the
graphical analysis, changing the friction coefficients shifts the damage curves along the
axis of applied load, but the critical locations and the resulting crack patterns seem — by
and large — not to be affected. These observations are illustrated by fig. 4.11.

Evolution of effective parameters. Figure 4.12 shows the stress-strain response of
a specimen under vertical compression σyy. Vertical compression results in a negative
vertical strain (εyy < 0) and in a positive lateral strain (εxx > 0). The linearity of the
stress-strain curves is lost at the point where the first microcrack is nucleated (here: at
about σyy = −500 MPa). Nucleation of microcracks results in a loss of stiffness and
an increased (negative resp. positive) strain of the specimen. Due to the simple uniaxial
loading mode, the variation of the shear strain is very weak; the oszillations around εxy = 0
reflect the random sign of the orientation angle of the nucleating microcracks.

The loss of material stiffness as a function of increasing external compression is repre-
sented in fig. 4.13. As outlined in the previous chapter (section 3.5.5, eq. 3.77, p. 80), the
compressive loading conditions cause the stiffness to be a function of the current load (and
of the load history), relating increments of stress and strain. Due to the preferred orien-
tation of the microcracks (rather parallel to the direction of uniaxial compression), the
lateral component of Young’s modulus (Ex) is stronger affected by the progressive damage
than the vertical component (Ey). The contribution of the cracks predominantly results
from their shear compliance, since the majority of them is under normal compression,
i.e. inactive with respect to the normal mode.
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Figure 4.10: Microcracking under lateral tension σxx (applied first) and vertical compres-
sion σyy (applied afterwards). The tension σxx amounts to 0 MPa (first row), 60 MPa
(second row), 100 MPa (third row), 140 MPa (fourth row), 180 MPa (fifth row), and is
– on its own – not sufficient to cause any damage. Microcracking starts if the tension is
supplemented by a vertical compression: the graphs in the middle show the crack density
as a function of σyy , while the diagrams on the right show the evolution of lat. strain εxx.
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Figure 4.11: Studying the effect of friction on microcracking in a specimen under vertical
compression σyy = −550 MPa. The setting of the friction coefficients µ decreases from
the upper to the lower row. (First row: 100 %, second row: 75 %, third row: 50 %, fourth
row: 25 %). The static friction µs exceeds the sliding friction µm by 17 %, respectively.
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Figure 4.12: Specimen under a vertical compressive load which is increased to σyy =
−900 MPa. The diagrams show the evolution of crack density, and the strain response
(εxx, εyy, εxy) as a function of σyy.
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4.3 Statistical studies on compact materials under

compression: effect of structural disorder

The following considerations are dedicated to the stochastic behaviour of damage evolution
in compact microstructures as revealed by Monte Carlo simulations. The investigations
aim at an exploration of statistical trends attributable to certain intrinsic and extrin-
sic conditions. The complex subject necessitates some introductory accounts (subsec-
tion 4.3.1), before several explicit numerical studies will be presented in subsection 4.3.2.

4.3.1 Fundamental remarks

This section is first to outline some basic terms in statistics, and to summarize those
statistical quantities that are employed in the rest of the current chapter and in the
following Chapter 5. Then, some reflections on the appropriate observable in the numerical
simulations are added. The last part is on the statistical input for the simulations, i.e. on
the microstructure parameters and their variation.

4.3.1.1 Some terms and definitions in statistics

Applying the language of statistics to the issues of the present thesis, a statistical sample
(or statistical ensemble) comprises the total number of events subject to observation, while
the single realization of the material microstructure (and its response under specified
conditions) is termed a specimen representing a single member of the ensemble, or simply
a test. The observations on the multitude of tests focus in one or more selected physical
quantities y, respectively. The first two moments of the statistical distribution of these
observables represent the main output parameters of the statistical studies: firstly, the
mean value ȳ of a set of n observations (sample mean), which reads

ȳ =
1

n

n∑

i=1

yi , (4.13)

and, secondly, the standard deviation for a set of n observations (sample standard devia-
tion), which is defined as

sy =

√
∑n

i=1(yi − ȳ)2

n− 1
. (4.14)

The square of the standard deviation is called the variance, which represents the average
squared deviation of the values of y from the mean, indicating the extent of scatter in the
variable.

Another useful quantity is the standard error (deviation) of the mean:

sȳ =
sy√
n
=

√
∑n

i=1(yi − ȳ)2

n(n− 1)
, (4.15)

which is a measure for the accuracy of the statistical test results — it indicates the range
of confidence for the mean.

The population mean (also called ‘expected value’), which is defined as the mean of
all possible values of y, is denoted as µy (not to be confused with the friction coefficient
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introduced in Chapter 3). The corresponding standard deviation of the population is
denoted as σy (not to be confused with the similarly called stress) [22].

Some considerations address the relationship between two variables k and l, say one
input parameter and one observable (output parameter). A meaningful indicator in this
context is the correlation coefficient of the statistical sample:

rkl =
skl
sksl

, (4.16)

where skl denotes the mutual covariance of the variables and indicates their tendency to
stay on the same side of the mean (see, e.g., [22] for a detailed description). For a visual
assessment of the correlation, ‘scatter plots’ are a suitable tool; they show the pairs of
values as points in an orthogonal coordinate system (see, e.g., fig. 4.14).

For the presentation of the distribution of an observable y over the individual observa-
tions, histogram plots are employed (see, e.g., fig. 4.18): the whole range of y is subdivided
into intervals of equal width (∆y), and the frequency of tests exhibiting a value of the
observable lying in the respective range is assigned to these intervals. In the limit of
an infinitesimal interval width dy and an infinite number of tests, one would get to the
probability

pD0
(y) dy (4.17)

of finding the observable in the range between y and y + dy (for a specimen of size D0).
The parameter pD0

(y) represents the probability density as a function of y. The probability
density is to be distinguished from the cumulative probability (see eq. 5.6, p. 139).

In the simulations, random sampling will be continued until the mean of the obser-
vable is stabilized (see the curves representing the evolution of the mean with increasing
number of tests, e.g. in fig. 4.21, right).

4.3.1.2 On the appropriate damage observable

The proper choice of the observable in the context of progressive damage is sometimes
an objective of research by itself, but some remarks should be sufficient here. Ideally
the observable should reflect both the actual structural changes in the material and the
significance of these changes on the macroscopic response of the material. This is a difficult
demand since the macroscopic response depends on the active defects only, and thus on the
loading conditions, the load history, etc. Certainly there is no generally suitable damage
parameter, instead it must be selected with respect to the present material properties,
loading conditions, failure modes, and with respect to the observation scale. Last but not
least, a damage parameter should be measurable by experiment. Some possible candidates
for the damage parameters will be discussed in the following.

Damage parameters at the microscale. At the microscale, the observable is a dam-
age parameter in the actual sense since it refers to the structural properties rather than to
the mechanic or elastic behaviour. In defect-sensitive materials, the size of the largest
defect will be of importance, especially in weakest-link theories (see Chapter 5, sec-
tion 5.5.1.2). For distributed defects, recording the total length of cracked grain interfaces
or the additional internal surface energy introduced by the microcracks may be more ap-
propriate.
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The most prominent damage parameter is doubtlessly the crack density. If the micro-
crack distribution is approximately isotropic (random), then it can be characterized by
a scalar damage variable (see eq. 2.3, p. 36). The isotropic distribution is a special case
which is rather rarely encountered in nature but extensively assumed by analysts because
of the easy tractability. In a general case, the microcrack distribution is characterized by
a varying degree of anisotropy. An orthotropic microcrack distribution (which may result
from uniaxial loading conditions) which induces an orthotropic behaviour of the macro-
scopic material properties is a frequently encountered situation. This class of microcrack
distributions may be adequately represented by a second order damage tensor.5

The detection of microcracks and the determination of the mentioned damage para-
meters is difficult or even impossible in actual experiments. In the simulations, however,
these quantities are easy output parameters.

Observables at the macroscale. In typical laboratory experiments on actual mate-
rial specimens, the stiffness is easily accessible and therefore a reasonable (if not the most
appropriate [48]) candidate for the observable at the macroscale. With respect to progres-
sive damage, the change of the effective stiffness is to be favored, since the initial damage
is seldom known. In typical cases, the effective stiffness allows a rough estimation of the
microcrack density, and the course of the stiffness expresses the thresholds of the intrin-
sic failure modes (localization, percolation). Recording the effective stiffness is useful but
rarely sufficient for the prediction of the macroscopic failure threshold. Unfortunately, the
stiffness is not appropriate under compressive loading conditions, because it is strongly
coupled to the activity status of the cracks — passive cracks are completely ignored (see
fig. 4.15, fig. 4.16).

An alternative to the stiffness is the overall strain at a certain load, or – strictly
speaking – the additional strain due to the damage. Even though strains are strongly
dependent on the loading conditions, too, they nevertheless have the advantage that
passive cracks may contribute by means of locked shear displacements.

Depending on the scope of the respective studies, other possible observables may be
the rupture strength resp. failure threshold of the specimens (see Chapter 5).

Damage parameter in the model simulations. As already noted, the above micro-
scopic parameters have no general and immediate impact on the macroscopic response of
the material. Nevertheless, analysis of the test results shows that — for the compressive
load and the associated distributed microcracks patterns — the scalar crack density is
highly correlated to the overall strains (fig. 4.14 and fig. 4.15 reveal an approximately
linear relationship). Thus, the crack density seems to be representative for the change in
strain, i.e. for the macroscopic response of the material.

For convenience, the crack density will therefore be employed as the principal observ-
able. Most of the statistical studies will address the crack density at a certain value of
applied load, while a different setting concerns the load required to cause a certain crack
density. The latter is approximately equivalent to the load required for exposing the
material to a certain strain.

5In principle, higher accuracies can be reached by applying higher order damage tensors, but it seems
that the second order tensor representation of damage satisfies all rational criteria of accuracy for the
approximation of effective properties [41].
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Figures 4.15 (lower row) and 4.16 illustrate that the elastic stiffness (Young’s modulus)
is definitely not suitable for an assessment of microscopic damage under compression.
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Figure 4.14: Scatter plots for investigation of two-parameter correlations. Correlation of
crack density and overall strain for specimens under a compressive load σyy = −900 MPa.
A strong correlation is seen for the εxx and εyy strain components. (In contrast, there is
no significant correlation for the shear strain εxy: r = 0.27)
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Figure 4.15: Scatter plots for investigation of two-parameter correlations. Correlation of
crack density and overall strain (above), and of crack density and Young’s moduli (below)
for specimens under a lateral compressive load σxx = −20 MPa (applied first) and a
vertical compressive load σyy = −900 MPa. A strong correlation is seen for the εxx and
εyy strain components.
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Figure 4.16: Investigation of the correlation between crack density and Young’s moduli
for specimens under a lateral tensile load σxx = 50 MPa (applied first) and a vertical
compressive load σyy = −850 MPa.

4.3.1.3 Statistical input in the simulations

The studies refer to compact heterogeneous structures comprising two phases of grains
(Al2O3, TiO2). The majority of tests is performed on specimens of size D = 37905 µm2,
which are exposed to an external vertical compression. The default values for the friction
coefficients are µs = 0.7, µm = 0.6.

A local statistical disorder is obtained by randomly determining the sizes, shapes
and positions of the individual grains according to uniform distributions within certain
bounds (see Chapter 2). In addition, the global parameters ‘area density’ and ‘specific
perimeter’ fluctuate among the individual members of the ensemble as well. The mean
values of the global parameters of the second grain phase in the specimens are: area
density AA(Al2O3) = 0.43, specific perimeter LA(Al2O3) = 103 mm/mm2. It is seen
that the fluctuations in the global parameters have no direct correlation to the respective
damage resistance (see fig. 4.17).
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Figure 4.17: Scatter plots for investigation of two-parameter correlations. Correlation of
crack density and structural parameters for specimens under a compressive load σyy =
−900 MPa. Similarly low correlations are observed for crack density and specific interface
TiO2/TiO2, and for crack density and specific interface Al2O3/TiO2.



112 Chapter 4. Microcrack nucleation and progressive damage in compact solids

4.3.2 Selected studies

The subsequent studies refer to four selected issues: confinement, friction, crack interac-
tions, and specimen size. The particular scope of the first two studies is to illustrate the
evolution of the mean and of the scatter (standard deviation) of the crack density as a
function of load and friction.

Vertical compression, and significance of lateral stresses. A series of tests on
microcracking has been performed for specimens under biaxial stress: a predominating
vertical compression, accompanied by a weak lateral tensile or compressive load. The crack
density distributions for variated levels of vertical and lateral load have been recorded,
and are displayed in fig. 4.18.

For loading states moderately exceeding the crack initiation level, fig. 4.19 (left) in-
dicates that the mean of the crack density increases roughly linear with the vertical
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Figure 4.18: Studies on the crack density in specimens under lateral stress (applied
first) and vertical compression (applied afterwards). The lateral stress amounts to
σxx = −20 MPa (upper row), σxx = 0 MPa (middle), σxx = 50 MPa (lower row). The
compression is increased to σyy = −650 MPa (first column), σyy = −750 MPa (second
column), σyy = −850 MPa (third column). Each statistical series relies on 100 tests
minimum.
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compression σyy and the lateral load σxx. As for the lateral load, the linear course of the
function seems to be not affected by a transition from negative to positive values.

The results suggest that the absolute scatter of the damage parameter increases with
increasing load. This may be explained as follows: Increasing load enables the evolution of
larger cracks. From the micromechanical point of view, evolution of larger cracks depends
on the respective spatial arrangement of several grains. In contrast, the nucleation of small
cracks is affected by the immediate vicinity of a single grain only. The correlation of an
increasing number of grains makes the situation more and more complex. The drastically
growing ‘number of degrees of freedom’ is reflected in the scatter of the damage parameter.

The coefficient of variation (standard deviation devided by the mean), however, clearly
decreases with increasing load (fig. 4.19, right).
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Figure 4.19: Evolution of the mean value (left) and coefficient of variation (right) of the
crack density as a function of vertical compression (above) and of lateral stress (below).
The plots summarize the results presented in fig. 4.18, and contain further calculations.
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Figure 4.20: Statistical investigations on the effect of friction in specimens (size
37905 µm2) under uniaxial compression σyy = −550 MPa. Left column: the observed
distribution of crack density shifts towards zero when the values of the friction coefficients
are increased. (The static friction µs exceeds the sliding friction µm by 17 %, respectively.)
The diagrams on the right refer to the mean, the absolute standard deviation, and the
coefficient of variation of the crack density as a function of friction.
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Significance of friction. As has been illustrated in fig. 4.11, a sufficiently strong fric-
tion within a material may suppress the evolution of damage under compression. Fig-
ure 4.20 now shows how the mean — and, at the same time, the absolute scatter — of
the crack density tends towards zero with increasing values of the friction coefficients. It
turns out that there is no sharp ‘friction threshold’ above which no microcracks occur,
but the transition from a linear decrease to zero damage is rather smooth. As above, the
coefficient of variation of the damage parameter decreases with increasing overall damage.

Significance of local stresses around cracks. According to the theoretical frame-
work outlined in Chapter 3, the numerical simulations account for local stress disturbances
by means of explicit crack↔crack interactions and crack→facet interactions. Comparison
of the structure images in fig. 4.7 and fig. 4.8 above (p. 101) demonstrates the importance
of these interactions for the deterministic crack patterns, and for the occurrence of the
localization phenomenon.

The statistical significance of these interactions is to be checked now for specimens
under uniaxial vertical compression. The observable is the load required to produce a crack
density ρ = 0.07. In the first series of computational tests, the interaction effects have
been included (as throughout the present chapter). In the second series of tests, however,
the local stress disturbances have been neglected. The results, which are presented in
fig. 4.21, reveal that the mean value of required load is significantly higher in the second
test series than in the first test series (814 MPa to 779 MPa). The logical conclusion is
that the local stress fluctuations must not be neglected. If cracks have nucleated under
certain loading conditions, and if these loading conditions are retained, then the local
stress disturbances due to these cracks promote the nucleation of further cracks.
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Figure 4.21: Studies on specimens (size 37905 µm2) under compression. The compression
is increased until the crack density reaches a value of ρ = 0.07. The figures on the left
represent exemplary specimens of each test series. Above: calculation with interactions
(crack↔crack, crack→facet). Below: calculation without interactions.
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Significance of specimen size. Figure 4.22 shows a test series performed on specimens
sized 57% larger than the other specimens of the current section. The results are to be
compared with those presented in fig. 4.21 (first series, above). It is seen that the average
resistance is higher for the larger specimens than for the smaller specimens (819 MPa to
779 MPa). One must suppose that this obvious effect is due to the reduced boundary
effects in the larger specimens. Indeed, the specimen borders act as barriers for microcrack
expansion, and the interaction between cracks located inside a specimen and cracks located
outside are completely disregarded. These shortcomings are coupled to the specimen size
and must not be ignored.

Another point to mention here concerns the size of the representative volume element:
In the course of damage progression, the length over which the cracks are correlated
increases, and the RVE grows in size. In this context, smaller specimens will sooner cease
to be statistically homogeneous than larger specimens.
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Figure 4.22: Studies on specimens (size 59676 µm2) under compression. The compression
is increased until the crack density reaches a value of ρ = 0.07. The figure on the left
shows an exemplary specimen of the test series.

4.4 Stochastic analytical approaches on progressive

fracturing

The previous section has demonstrated how the numerical model can be employed in
Monte Carlo simulations to obtain expectation values for ‘global’ parameters such as the
crack density, or macroscopic material properties such as the overall strain. In principle,
the results for deliberate test series could be collected and concentrated into macroscopic
expectation laws for the material behaviour.

To round off the considerations on progressive damage in compact materials, the
present section tries to outline an alternative, more elementary way to deduce a conti-
nuum law for the progressively fracturing material from the background micromechanical
theory. Typically for such ‘evolutionary’ continuum damage models, the present approach
aims at the change and evolution of the effective moduli as a function of applied load.
The formalism is intended to be throughout analytical, a demand which necessitates a
transition from the previous discrete system to a continuum, namely from the discrete
facet and crack arrangement to a continuous facet and crack distribution. To this end,
the statistical input information must be available in terms of distribution functions or
probability density functions.
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The presented formalism restricts to crack nucleation under simple conditions. Crack
interactions and effects of crack closure are not accounted for. In the second part of the
section, a different approach will be sketched which deals with crack extension (but not
crack nucleation), and accounts for crack interactions and crack closure.

Establishing an elementary analytical approach. In general, the effect of damage
on the response of the material is a degradation of its elastic stiffness and, inversely, an
enhancement of its elastic compliance. To establish a continuum law for this phenomenon,
the micromechanical equation (3.37) (p. 72) in the previous chapter serves as a starting
point; it expresses the contribution Ccracks of a discrete ensemble of non-interacting cracks
to the total compliance C of the two-dimensional structure.

If the density of microcracks is high and the distribution of crack lengths and orien-
tations is considered continuous, then the summation can be replaced by an integration
over the entire range of crack lengths and crack orientations ([48], [62]). A crack den-
sity function ρc(l, θ) can be introduced such that ρc(l, θ) dl dθ represents the number of
microcracks per unit area with lengths in the range [l, l+dl] and orientations in the range
[θ, θ + dθ] (fig. 4.23).6 If the structural information on the respective specimen is not ex-
actly known, the density distribution function ρc may possibly be given by a probability
density function p in the sense of eq. (4.17) (p. 108):

ρc(l, θ) =
N

A
p(l, θ) , (4.18)

where N/A denotes the total number of cracks per area.
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Figure 4.23: Normal distribution as an example for the crack (or facet) density function
ρ(l, θ).

Using this quantity, the contribution of the continuous crack ensemble to the effective
compliance can be expressed as follows:

Ccracks =
π

2E ′

∫

θ

∫ lmax

lmin

l2c Nθ ρc(lc, θ) dlc dθ , (4.19)

6The crack density distribution function ρc(l, θ) must be strictly distinguished from the crack density
parameter ρ (eq. 2.3, p. 36).
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where the integrations have to be performed over the entire distribution range of the
variables l and θ, respectively.7

The next step is the case of progressive fracture. The scope is to determine the change
dC(σ) = dCcracks(σ) of the compliance due to microcracking when the applied stress is
enhanced by an infinitesimal step from σ to σ+dσ. Obviously, one has to deal here with
the density function ρf (l, θ) of the potential cracks instead of a crack density function ρc.
Following the assumptions of the present thesis, ρf represents a facet density function.
Substituting ρc in eq. (4.19) by ρf , and accounting for only those facets of orientation θ
which have — at the current load σ — the ‘critical’ length l(σ,θ), one obtains

dC(σ) =
π

2E ′

∫

θ

(
l(σ,θ)

)2
Nθ ρf (l(σ,θ), θ)

dl(σ,θ)

dσ
dσ dθ . (4.20)

The ‘critical’ length l(σ,θ) is the crucial term here; facets with orientation angle θ and
length l(σ,θ) will fail as soon as the applied stress assumes a value σ. The function l(σ,θ)

thus denotes the ‘fracture surface’ (compare [24]) in the l-θ-σ-space.
An explicit expression for l(σ,θ) can be deduced from the energy criterion introduced

in section 4.1. In the ‘critical’ case of energy balance, eq. (4.3) reads

π l(σ,θ)
2 |t(σ, θ) |2
4E ′

= 2γ l(σ,θ) , (4.21)

so that one finds

l(σ,θ) =
8γE ′

π|t(σ, θ) |2 . (4.22)

The explicit components of the traction vector t(σ, θ) can be directly adopted from
equations (3.35) and (3.36) (p. 72).

Ultimately, integration of the increments dC in eq. (4.20) along the stress path σ

yields the desired continuum evolution law for the compliance.

7If one can assume that the crack lengths and orientations are independently distributed, then the
density function admits the multiplicative decomposition [48]:

ρc(l, θ) = ρc(l)ρc(θ) ,

where the individual density functions have to be normalized such that

∫ lmax

lmin

ρc(l) dl =
N

A

and
∫ θmax

θmin

ρc(θ) dθ = 1.

The contribution of the crack ensemble to the effective compliance is then:

Ccracks =
π

2E′

[
∫ lmax

lmin

(lc)
2ρc(l) dl

][
∫ θmax

θmin

Nθ ρc(θ) dθ

]

.
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A different approach from the literature. Most of the evolutionary damage models
available in the literature either neglect the crack interactions (which means they restrict
to small crack densities) or account for them in a quite simplified manner, e.g. by means
of the self-consistent method (see [38] for literature informations). On the other hand,
the strong microcrack interaction models (see [38] for literature informations) usually
restrict to deterministic and stationary crack arrays and thus do not belong to the class
of evolutionary damage models.

As an example for a formalism which includes damage evolution, statistical input,
explicit crack interactions and even crack closure, mention can be made of the approach by
Ju and Chen [39], which is an extension of the stationary model outlined in section 3.2.2.4
(p. 56). The underlying ideas of ‘pairwise’ interactions and ‘ensemble averaging’ have
already been described there.

The approach by Ju and Chen to damage evolution accounts for the growth of pre-
existing microcracks in the course of loading. The growth is described in a rather sim-
plified manner: Once the local fracture energy is reached, the microcrack length changes
instantaneously from an initial value to a previously specified final value (which can be
associated with a full facet length, for example). Multiple crack extensions, kinked crack
extensions, coalescence of cracks etc. are not considered. The fracture criterion employed
by Ju and Chen is a function of the stress intensity factors of the initial crack. With
respect to the pairwise crack interactions, sometimes extensive case distinctions have to
be performed in order to assess whether the second of the two cracks has still initial or
already extended length.

Depending on the external loading conditions and the respective crack orientation
angle, the set of all cracks has to be permanently divided into ‘process domains’ of active,
unstable cracks and domains of stable, closed cracks.

The common feature of all ‘strong interaction’ models, including that by Ju and Chen,
is the high numerical computational effort required to get closed-form solutions.
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Chapter 5

Progressive damage under internal
pore pressure

The present chapter focuses on microcracking in porous ceramics under pressure acting
inside the pores. This loading mode, typically transmitted by a fluid, is dominant under
service conditions in filtration equipments.

Figure 5.1: Scanning electron micrograph of a porous ceramic (TiO2 and Al2O3 grains,
porosity 0.4) after industrial use as a filter support [64]. Left: Specimen from the vicinity
of a flow channel. Microcracks are observed within the agglomerates of TiO2 grains as well
as in the Al2O3 grains. Right: Far from the channels, microcracks are observed primarily
between or within Al2O3 grains. Some cracks are pointed out by the dashed circles.

The particular mode of loading by internal pressure raises some crucial tasks which
necessitate an adjustment of the background numerical approach. A first idea of the
subject is gained when one considers the local stress distribution in the model images
(section 5.1): Locations critical to damage are observed in the immediate vicinity of pores,
especially in narrow solid ligaments between pores. This feature corresponds to crack
patterns detected by scanning electron microscopy in industrial filter supports (fig. 5.1).

In contrast to cracking far from or in absence of pores, description of crack formation
at these locations involves a first fundamental difficulty: Applying the fracture criterion
introduced in the previous chapter to decide on failure of grain facets requires knowledge of
the stress distribution around cracks emanating from pores. The availability of analytical
stress solutions is restricted to very simple geometries, and extrapolation to arbitrary
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configurations is necessary. The associated theory, which is outlined in section 5.2, allows
for the identification of ‘critical facets’ in explicit grain structure models (section 5.3).

A second essential problem, subject of section 5.4, is ensuing from damage progression:
patterns of local pore–crack networks have to be recognized since the maximum extent of
such connected flaws is decisive in assessing the actual state of damage; common parame-
ters as the crack density lose their meaning here where cracks are connected to pores. The
limiting state of a flaw chain separating the specimen (percolation) is considered as failure
of the material. In addition, analytical stress distributions do not suit with the complex
shape of pore–crack networks. Therefore, in a simplified treatment the flaw networks are
modelled as larger cavities, and fracturing is effectively considered at the extremities of
the flaw network, thus assuming that the intrusion of a fluid in the solid via microcracking
is driven by the tips of the flaw network.

Finally, the performance of the damage model under the specified conditions is inves-
tigated for selected test cases in section 5.5. A number of statistical studies addressing
effects of specimen size and of pore phase properties on the strength of the material is
presented and evaluated. The connection to failure in weakest-link theories is discussed.

5.1 Local stresses in porous microstructures under

internal pressure

Accounting for the location and orientation of the pores in the microstructure model,
superposition of the stress solutions for the individual pores under internal pressure (sec-
tion 3.3.3, p. 68) leads to a complex distribution of the stresses (fig. 5.2). The simulation
relies on a dilute approximation, which means that the pores are considered isolated and
the interactions between them are neglected.

The local stress fields clearly reveal the sectors in the solid material phase which are
exposed to the highest load: locations in the vicinity of strongly curved pore borders, and
even more where two of these pore ‘tips’ are close together. Regarding the simulation of
progressive damage, this makes clear that the attention must be directed to the ligaments
between the pores.

As has already been sketched in Chapter 2 (fig. 2.5, p. 38), the consideration of the ma-
terial bounding the respective specimen is restricted to a certain margin. Stresses induced
by pores located within the margin are accounted for within the specimen. Figure 5.3
illustrates for the present mode of internal pressure that those pores located remotely out-
side the specimen can indeed be disregarded; the stresses from pores within the margin
represent sufficiently the effect of the surroundings.
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Figure 5.2: Local stress distribution in a porous microstructure (in the absence of micro-
cracks) under internal pressure. The enlarged detail of the σyy field demonstrates that
narrow solid ligaments between pores are most critical to damage.

Figure 5.3: Local σyy–stress field induced by single pores under internal pressure (above
and middle). In a superposition approach (below), the respective stress disturbance ob-
viously is negligible beyond the neighbouring pore.
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5.2 Elastic description of cracks emanating from pores

Since stress concentrations are encountered in the vicinity of pores, the microcracks are
expected to start from the border of the existing cavities. Therefore, the energetical
description of crack nucleation from pore boundaries and of subsequent crack extension
is a main topic of the current chapter.

In the following, a suitable analytical solution is presented for the stress concentration
at a crack which emanates from a pore, and it is outlined how the solution is employed
in the numerical model: in the fracture criterion, and for determination of the strain
contribution.

Without exception, the considerations in the current chapter refer to the loading con-
ditions of internal pressure.

5.2.1 Stress concentration at cracks emanating from pores

b

CP

l

a

Figure 5.4: Crack emanating from an elliptical pore in the direction of a semi-axis.

An essential situation encountered in structures with pores under pressure concerns
cracks emanating from a pore or connecting two pores. The most comprehensive analytical
stress solution found in the literature is given by Berezhnitskii [7] and refers to cracks in
the elongation of the axes of elliptical pores (fig. 5.4).

According to this solution, the internal pressure P or

t =
K

π

√

1

a + l
2

√
√
√
√
√

[

1− m
(1+l/a)2

] [

1 + m
1+l/a

]

[

1− 1
(1+l/a)2

] [

1 + 1
1+l/a

] , (5.1)

where a and b denote the semi-axis lengths of the elliptical pore, and l is the length of
the crack (see configuration in fig. 5.4); m = (a − b)/(a + b) is a shape parameter of the
elliptical pore. A graphical representation of the stress intensity factor is given in fig. 5.5.
(A similar relation corresponding to eq. (5.1) for uniaxial tension can be found in [44].
Relations for cracks emanating from hypocycloid cavities1 are presented in [7] also.)

Equation (5.1) has to be appropriately extrapolated for arbitrary crack–pore config-
urations regarding the position of the crack, the relative orientation of crack and pore
semi-axes, and the different shapes of the pore. Figure 5.6 illustrates the way of extra-
polation. Triangular pores are approximated by circular pores of equal area (since both
triangular and circular cavities are isotropic inhomogeneities).

1cavities with concave borders and sharp corners
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Figure 5.5: Stress intensity factor for a crack emanating from an elliptical pore (see
fig. 5.4), as a function of normalized crack length and for various shapes of the pore,
following the analytical results by Berezhnitskii [7].
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Figure 5.6: Left: Regarding the stress intensity factor, a crack with arbitrary orientation
to the pore (dashed bold line) is treated as emanating ‘radially’ from the pore (solid bold
line). Regarding the surface of the crack, the pristine (actual) facet length lf is stored.
Right: Approximation of the stress intensity factor K of a crack emanating in an arbitrary
way from an elliptical pore: K = Ka + α/

(
π
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)
(Kb −Ka)

5.2.2 On the strain energy release

Equation (5.1) enters the strain energy term in the fracture criterion. For straight exten-
sion of a crack (length l0) along a grain facet of length lf , the stress intensity factor K
can be directly employed in eq. (4.8) (see section 4.1, p. 94):

l0+lf∫

l0

G dl =

l0+lf∫

l0

K2

E ′
dl ≥ 2γf lf ; (5.2)

the case l0 = 0 refers to crack formation from the elliptical pore. The complicated
expression forK from eq. (5.1) necessitates numerical evaluation of the integral in eq. (5.2).
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Figure 5.7 shows plots of the critical loads for both crack extension and crack nucleation,
as a function of relative crack length and of pore shape (ratio of semi-axes).
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Figure 5.7: Critical biaxial tension resp. critical internal pressure on the pore–crack
combinations (fig. 5.4), as a function of normalized crack length for various shapes of the
pore. It can be concluded that for short cracks (length l/a), the stability of the system
reduces with decreasing pore semi-axis b/a, while for long cracks the stability reduces
with increasing semi-axis b/a. The solid-line curves refer to the critical load for unstable
crack extension (as a function of crack length), while the dashed curves refer to the load
necessary for crack nucleation (as a function of facet length).

For a determination of the individual contribution to the overall strain, an important
quantity is the average opening displacement 〈b〉 of the crack emanating from the pore.
It can be determined from the reduction of strain energy in the material due to formation
of the crack, which reads

l∫

0

G dl =

l∫

0

K2

E ′
dl . (5.3)

By assigning the total amount of strain energy release (
∫ l

0
G dl) to a work on the crack

only, a relation can be established as follows:

1

2
〈b〉(t · l) =

l∫

0

K2

E ′
dl , (5.4)

where t denotes the load on the crack (internal pressure P or biaxial tension). Due to the
particular loading mode, the shear components of 〈b〉 and t can be assumed to vanish, so
that a scalar expression for the normal crack opening displacement (note that tn = P ) is
obtained:

〈bn〉 = 2

tn l

l∫

0

K2

E ′
dl (5.5)

This expression for the opening displacement can be employed in eq. (3.31) (p. 71) to
deduce the strain contribution of the crack in question.
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Another important point to mention concerns the strain release associated with failure
of a bridging facet between two pores. The approximation model separates the pore-crack-
pore combination into two individual pore-crack combinations (see fig. 5.8 for illustration),
and sums up three terms: the strain energy released by an isolated crack (length l equal to
the facet length), the additional strain energy release due to the fact that the crack opens
into the one pore, and the additional strain energy release due to the fact that the crack
opens into the second pore. The actual strain energy release, however, is underestimated
to some extent by this approach.

l

Figure 5.8: Model approach for the failure of a bridge facet (length l) between two pores:
the pore-crack-pore combination is virtually separated into a pore-crack combination (on
the left) and a crack-pore combination (on the right).

5.3 Critical locations for microcracking

As a first step, the fracture criterion may be applied for an identification of critical lo-
cations in the microstructure, i.e. locations where nucleation and successive growth of
microcracks has to be expected. (The present section corresponds to section 4.2.1 for
compact materials).

In extension of the observations in section 5.1, which reflect the effect of the porous
phase only, the present consideration accounts for the local properties of the grain phases,
too. In particular, the length, orientation, and specific surface energy of the grain bound-
aries is playing an important role now.

Figures 5.9 and 5.10 illustrate those facets within a simple microstructure whose failure
would become energetically possible at a certain level of the pore pressure.

The driving force for facet failure is not exclusively the local load transmitted by the
solid material around pores under internal pressure (fig. 3.12, fig. 3.13, fig. 3.14). To this
one has to add the impact of a pressure acting inside the potential new crack. The latter
must not be neglected in the energy criterion, which compares the energetical states of
the material before and after cracking.

On the other hand, fig. 5.10 reveals that the energy criterion is not sufficient for
deciding on microcrack nucleation: The interpretation of several facets located at the flat
parts of the triangle border as ‘critical’ is due to the consideration of pressure inside the
potential crack, but this does not match with reality since the normal compression acting
on the facet prevents its failure (consider fig. 3.14, p. 69).

This observation leads to the conclusion that a hierarchy of conditions is needed to
decide on facet failure under internal pressure: the first one claiming the load on a candi-
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Figure 5.9: Left: a single elliptical pore surrounded by a grid of grain boundaries (network
of potential cracks). Right: ‘Critical locations’ (identified by the energy release due to
facet cracking) under internal pore pressure. Assuming γ = 2 Jm−2 for the surface energy,
the indicated facets would have failed at a pressure P = 1500 MPa.
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Figure 5.10: Left: a single triangular pore surrounded by a grid of grain boundaries
(network of potential cracks). Right: ‘Critical locations’ (identified by the energy release
due to facet cracking) under internal pore pressure. Assuming γ = 2 Jm−2 for the surface
energy, the indicated facets would have failed at a pressure P = 1500 MPa. (Note:
The interpretation of the single facets located at the flat parts of the triangle border as
‘critical’ is due to the consideration of pressure inside the potential crack (see section 4.1);
this approach is obviously not appropriate in the current example, since these facets are
under external compression (fig. 3.14).)

date facet to be not negative, the second one claiming a lower energy state of the cracked
configuration.

Figure 5.11 finally shows critical locations in a complex microstructure. Even if the
process of fracture is not yet considered at the moment, the sensitivity of ligaments be-
tween closely located pores to cracking becomes obvious. The calculations presented in
the following sections will confirm that unstable damage progression mostly starts with
the failure of a bridge facet.
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Figure 5.11: Porous microstructure containing already several cracks (black lines): Po-
tential energy release identifies critical locations due to internal pressure in the pores.

5.4 Formation of flaw networks and percolation

The next step addresses the flaw patterns which result from coalescence of the pores
by microcracks. They require extended efforts with respect to the geometric assessment
(subsection 5.4.1) and to the stress analysis (subsection 5.4.2).2 A look at some single
simulations at the microscopic level (subsection 5.4.3) will provide deeper insight into the
features of progressive damage under pore pressure.

5.4.1 Assessment of damage

From all the observations in the preceding sections, there is an obvious tendency in porous
microstructures under internal pressure to connect pores by microcracks. Regarding the
damage simulation, this suggests the transition from the original grid of grain boundaries
to a coarser lattice which restricts to direct paths between neighboured pores. Beyond
that, there is a need to detect the formation of local pore–crack networks, and to treat
these connected flaws as single large flaws. While the classical crack density parameter
has no meaning in this context, a different, equally simple parameter is desirable for an
assessment of the state of damage in the structure: In order to assess the significance of
an individual pore–crack network, its largest linear extent is recorded here (fig. 5.12); in
order to assess the overall damage in a specimen, the length of the largest flaw group is
recorded, which ultimately indicates percolation. Percolation, i.e. the appearance of a flaw
network (a cluster of interconnected defects) which separates the rectangular specimen
by extending from one boundary to the opposite boundary, is considered as failure of the
material.

2 The present approach has a certain affinity to that of Jeulin (see, e.g., [36] or [35]), which deals with
cracking paths minimizing the energy consumption in porous meshes under uniaxial tension. The present
approach, however, goes beyond that by considering the entire flaw chain for the strain release, and by
imposing much less restrictions on the possible crack pattern.
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Figure 5.12: Left: undamaged microstructure. Right: After formation of some micro-
cracks, flaw combinations (connected pores) have been recognized, and each individual
flaw group is represented by a simple geometry.

5.4.2 Simulation of damage progression

The arbitrary, complex shapes of arising pore–crack networks cannot be handled by ana-
lytical stress solutions. In order to apply the available solutions in the way suggested in
section 5.2, the damage simulation is confined to extension of existing flaws (i.e., pores or
pore–crack networks), and the flaw networks are approximated by larger, elliptical cavities
(figures 5.13 and 5.14); thus the respective extent of the flaw is accounted for in the stress
analysis (section 5.2.1).

Nucleation of isolated microcracks not adjacent to pores is considered of secondary im-
portance, and it is disregarded in view of uncertainties concerning the stress distribution.
For the same reason, interactions between the individual defects (flaw combinations) are
neglected.

Thus, evolution of damage is exclusively attributed to the spread of pressure from the
extremities of a flaw.

5.4.3 Some general considerations

Before turning to studies on statistical samples, a consideration of some stand-alone tests
should help to elucidate some phenomena.

Firstly, fig. 5.15 illustrates how the propagation of a pore/crack flaw chain may be
stopped by a grain representing an energy barrier, or by the borders of the specimen.
Since only a flaw chain extending from one border to the opposite border is defined as
percolation and causes the simulation algorithm to stop, the case of a flaw running across
a corner of the specimen involves an inevitable boundary effect.
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Figure 5.13: For the determination of the critical load on a facet or crack (red-coloured
stroke), the pore–crack network is approximated by an elliptical cavity.
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Figure 5.14: Damage progression under internal pressure in a ‘solitary’ pore: unstable
crack growth starts (left) and finally leads to percolation (right). The bold black line
indicates the maximum linear extent of the flaw.
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Figure 5.15: Damage propagation may be stopped by a grain (center of the specimen;
green) or by the specimen border (right above, and left). The flaw chain on the left (red)
is defined as percolation.
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The trapping of the propagating crack by a grain is a rather rare feature in the present
simple microstructures; the dominant mode is unstable propagation. Figure 5.16 demon-
strates for four specimens of a statistical ensemble that neither the direction of the splitting
paths nor the respective ultimate load can be predicted from the global parameters. A
common fact is, however, that the spatial correlation of the pores significantly reduces
the failure load in comparison to solitary pores: Microcracking generally starts with the
failure of a bridge facet contacting two pores.3
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Figure 5.16: Patterns of percolation in four specimens of equal size D = 59676 µm2,
porosity (AA = 0.30), and specific perimeter of the porous phase (LA = 101 mm/mm2).
Ultimate load is 171.6 MPa, 205.4 MPa, 174.2 MPa, 187.2 MPa, respectively.

The effect of the progressive damage on some (scalar) ‘damage parameters’ is shown in
figures 5.17 and 5.18. The diagrams in fig. 5.17 refer to the evolution of the overall strain
components, i.e. to a macroscopic ‘damage parameter’. The structures under consideration
are rather heterogeneous, comprising several grain phases. The studies reveal a ‘quasi-
brittle’ behaviour of the first specimen, and an almost perfectly brittle failure of the
second specimen. The difference may be traced back to a slightly more inhomogeneous

3For a quantitative comparison, see fig. 5.28 (p. 147).
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(disordered) grain structure in the first specimen; in the second specimen, the propagating
flaw finds a path of rather equally-sized facets.
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Figure 5.17: Examples of ‘quasi-brittle’ failure (above) and ‘perfectly brittle’ failure (be-
low) under pore pressure, reflected by crack patterns and evolution of strain. (The set
of pores is equal in both specimens, but the pores are randomly distributed. The grain
phase parameters are different: Above: AA(Al2O3) = 0.36, AA(TiO2) = 0.31; below:
AA(Al2O3) = 0.40, AA(TiO2) = 0.27.)

The diagrams in fig. 5.18 refer to the additional internal surface energy produced by
the microcracks, and to the linear extent of the largest flaw chain. It is obvious that
initiation of microcracking is immediately followed here by total failure: the considered
material exhibits a rather brittle failure.
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Figure 5.18: Damage evolution as a function of increasing load for a typical specimen.
The upper graph shows the increase of internal surface energy due to microcracking, while
the lower graph shows the length of the largest flaw chain in relation to the specimen size
(x-/y-projections, a value of “1” indicates percolation).

5.5 Statistical studies on the failure of brittle

microstructures under pore pressure

Now the studies will be directed to the failure of statistical samples as obtained by Monte
Carlo simulation. The investigations in section 5.5.1 aim at the specimen-size effect,
i.e. the scaling law, whereas section 5.5.2 explores the significance of pore-phase and
grain-phase parameters. In view of the complex interrelations, the considerations restrict
here to quite elementary model classes: two-phase structures, the porous phase consisting
of circular resp. elliptical pores, randomly distributed within a single grain phase. In each
study, basically one structure parameter is varied. Throughout the current section, the
observed quantity y is the critical internal pressure (‘rupture strength’) Pc which causes
the microstructure to fail by percolation.

The observations are fluctuating among the different units of a statistical sample. The
statistical fluctuations are due to the microstructural disorder, which basically refers to
the sizes, shapes and mutual positions of the pores. These ‘individual’ parameters repre-
sent the characteristics of a single specimen. On the other hand, the ‘global’, averaged
structural parameters (specific areas, specific perimeters, size distributions, shape distri-
butions) are equal in each specimen of a statistical sample, in fact equal to the statistical
mean.4

For a review on the fundamental statistical terms and quantities appearing in the
current section, see section 4.3.1.1 (p. 107) in the previous chapter.

4This means that the linear size of the specimen volume is presumed to be larger than the fluctuation
length of the parameters (‘mean field model’, compare [48]).
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Figure 5.19: Percolation studies on specimens of different size: (1) 21044 µm2, (2) 46023 µm2,
(3) 69757 µm2, (4) 92276 µm2, (5) 124838 µm2 . The structure includes a monodisperse pore
size distribution, porosity AA(po) = 0.33, pore diameter 23.0 µm. The left column shows an
exemplary specimen of each test series. The histogram plots in the middle show the relative
frequency (probability) of failure for the resp. interval of internal pressure. The right column
illustrates the convergence of the mean of the critical pressure with increasing number of tests.
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Figure 5.20: Percolation studies similar to fig. 5.19, but on specimens with polydisperse
pore size distribution: the pore sizes conform to a Gaussian normal distribution (mean:
23 µm, standard deviation: 5 µm; allowed range of pore diameters: 3 µm to 40 µm;
pore sizes exceeding these limits have been set equal to these limits). The porosity is
AA(po) = 0.33. The average size of the grains is 5.4 µm.
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5.5.1 Effect of specimen size

As mentioned in section 2.2, the scatter of the structural parameters (porosity, specific
perimeter) is a function of the specimen size, whereas the mean values remain unaffected.
In contrast, the present section will outline that the mean of the strength of the specimens
is indeed a function of specimen size — an effect which is due to the statistical disorder in
brittle materials, important to consider in both computational and experimental analyses.

Statistical size effects associated with fluctuating boundary conditions (as mentioned
in section 3.2.3.3) do not occur in the present studies since interactions between the defects
are assumed negligible. In addition, it is facilitating here that the loading conditions are
not specified at the specimen boundary but at the boundaries of the defects.

Figures 5.19 and 5.20 show exemplary calculations on the specimen size effect in a
material with monodisperse circular pores and in a material with polydisperse circular
pores, respectively. The corresponding test results, which are summarized in fig. 5.21,
serve as a basis for the subsequent detailed discussions: A brief description of the observed
phenomena (5.5.1.1) is followed by approaches on an appropriate scaling law (5.5.1.2).
Remarks on the existence of an RVE are added in subsection 5.5.1.3.
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Figure 5.21: Summary of the test results in fig. 5.19 (AA = 0.33, d = 23 µm), and fig. 5.20
(AA = 0.33, d = 23± 5 µm).

5.5.1.1 Qualitative description of the test results

The numerical studies presented in figures 5.19 and 5.20 (as well as in figures 5.28 to 5.30
below) illustrate a significant correlation of specimen size and average rupture strength:
The mean of the maximum internal pressure reduces with increasing specimen size.

In order to explain this, one should recall that brittle failure of a specimen is governed
by the weakest location inside, since the weakest location is seen as the source of damage
nucleation and unstable crack growth. In the model structures under consideration, criti-
cal locations are formed by closely neighboured pores. As mentioned in section 5.4.3, the
most critical location is where a facet of maximum length contacts two pores of maximum
size. It is obvious that the probability to encounter a very critical location in a specimen
increases with its size.
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Fig. 5.21 indicates that the asymptotical limit of the average critical load in the model
simulations is different from zero. This observation is a consequence of the fact that upper
(and lower) bounds in both grain size distributions and pore size distributions are defined
here. This step results in a limitation of the most critical situation possible — if the
specimen size exceeds a certain value, then the most critical location is present in nearly
each specimen. At the same time, upper (and lower) bounds on the maximum rupture
strength are established. This property of the model structures should be in rational
accordance with actual industrial specimens.

It remains to mention that the number of observations required for getting a sta-
ble result of the mean critical internal pressure decreases with increasing specimen size.
Computational results on a different material (porosity: 0.30) are illustrated in fig. 5.22.

Pursuant to the decreasing number of specimens needed for convergence of the mean,
it is seen that the scatter of the maximum internal pressure from specimen to specimen
decreases with increasing specimen size.
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Figure 5.22: Evolution of the mean and of the standard deviation of the critical load, and
of the number of tests needed for stable results in statistics. (Extracted from studies on
a material with porosity AA = 0.3.)

5.5.1.2 Quantitative analysis of the test results

The ultimate goal is to establish a scaling law appropriate for the considered model sit-
uations. To this end, the computational test data will first be analyzed with the aid
of Weibull theory, an engineering standard approach for determination of the rupture
strength of brittle materials with heterogeneous microstructure. The emphasis is on the
scaling law involved therein, which follows from simple probability theory.

As will become clear, the original Weibull scaling law is not quite appropriate here,
and therefore an alternative description is presented, too.
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Basics of Weibull theory. 5 Consider material specimens of equal size D0 which have
a cumulative failure probability ΠD0

(y) when subjected to an externally applied stress
(or, in the context of the current chapter, an internal pressure) y. The cumulative failure
probability function, which is generally defined as

ΠD0
(Pc ≤ y) =

∫ y

0

pD0
(y) dy, (5.6)

represents the probability that a specimen of size D0 will fail until a load Pc = y is
reached (in other words: the probability that the strength of a specimen is lower than the
applied load y). The parameter pD0

(y) represents the probability density at load y (see
also eq. 4.17, p. 108).

Vice versa, the survival probability UD0
(y) of a specimen for an applied load y is

UD0
(y) = 1− ΠD0

(y). (5.7)

If the specimens are pieces of a larger object of size D, and if failure of any piece results
in failure of the object as a whole, then the survival probability UD(y) of the large object
is given by multiplication of the survival probabilites of the pieces:

UD(y) = [UD0
(y)]λ = [1− ΠD0

(y)]λ , (5.8)

with a size factor λ = D/D0. For very large values of λ (i.e., if the large object incorporates
many pieces), or for very low cumulative failure probabilities ΠD0

(y) (which holds for
practical applications [3]) an elementary mathematical relation yields

UD(y) = exp [−λ ΠD0
(y)] , (5.9)

or, vice verca, for the cumulative failure probability of the large object:

ΠD(y) = 1− exp [−λ ΠD0
(y)] (5.10)

For the cumulative failure probability ΠD0
(y) of the pieces, an empirical power law can

be assumed:

ΠD0
(y) =

(
y − y∞
ys

)m

(5.11)

This so-called Weibull distribution involves the two Weibull parameters m and ys: m (al-
ways positive, usually much larger than 5) is the Weibull shape parameter (Weibull mod-
ulus, Weibull exponent) of the material, which gives an idea of the dispersion of the
specimen strengths (see eq. 5.18 below); the characteristic strength ys approaches (with
increasing specimen size) the mean rupture load ȳ.

The classical Weibull law in general involves a load threshold6 y∞ below which the
failure probability is zero (eq. 5.11). For the sake of simplicity and reliability of the
data fitting, in practical applications this lower threshold is almost always taken as zero:
y∞ = 0 (see [26], [3], [29]). Then, putting eq. (5.11) in eq. (5.10) yields

ΠD(y) = 1− exp

[

−λ
(
y

ys

)m]

. (5.12)

5The present expositions follow roughly the presentation in [48], but contain important additions, and
a treacherous error has been removed.

6sometimes called ‘location parameter’ [58]
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The failure probability density function pD(y) = dΠD(y)/dy is obtained by differentiation
of eq. (5.12):

pD(y) =
m

ys
λ

(
y

ys

)m−1

exp

[

−λ
(
y

ys

)m]

(5.13)

Using eq. (5.13), the expected value for the mean of the rupture strength ȳ(λ) of a material
of size D = λ D0 can be derived as

µy(λ) =

∫ ∞

0

y pD(y) dy = ys λ
−1/m Γ

(

1 +
1

m

)

, (5.14)

where Γ denotes the Gamma function. Since ys and Γ are not functions of λ, one may
write:

µy(λ) ∝ λ−1/m (5.15)

as well as
µy(D) ∝ D− 1

m . (5.16)

Finally, the power law in eq. (5.16) is the scaling formula for the average rupture strength
(critical load) predicted by Weibull theory. The parameter D represents the volume (in
three dimensions), area (in two dimensions), or length (in one dimension) of the specimen.

Following [48], the variance of the rupture strength, (σy)
2, can be deduced from

eq. (5.13) as

(σy)
2 =

√

Γ(1 + 2/m)

Γ2(1 + 1/m)
− 1 , (5.17)

which for large values of m reduces to

(σy)
2 ∝ 1

m
. (5.18)

Equation (5.18) predicts that the dispersion is higher for lower values of m.7 In contrast
to eq. (5.18), one should expect the variance to be a function of the specimen size D.

Summarizing, Weibull-type analysis accounts for statistical size effects due to the
random spatial distribution of material strength, not for deterministic size effects. The
principal assumptions underlying the approach are firstly the independence of the ‘scaled
down specimens’ (neglection of spatial correlations), and secondly the sensitivity of the
whole structure to its parts: failure of a part will result in failure of the whole (which is
certainly valid for one-dimensional structures such as a chain of links or a long fiber under
tension; moreover, it should apply to perfectly brittle materials where the origin of a very
small crack suffices to cause an overall failure.). Both assumptions might approximately
be applicable to microstructures under internal pressure as studied in the current chapter
(since the failure is mostly driven by immediate unstable growth/merging of flaws, see
fig. 5.18, p. 134).8

7Following [58], the relative scatter in strength (‘coefficient of variation’) is for m > 5 approximately

sy
ȳ
≈ 1.2

m
. (5.19)

8Theoretical considerations ([26], [3]) reveal that a power-type size effect as in eq. (5.16) only applies
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Application to the test data. Weibull analysis basically consists of three successive
steps: firstly performing tests, then fitting of the test data, and finally upscaling of the
results:

1. A series of tests on scaled down laboratory specimens is needed. The specimen size
D0 must be constant in the experiments. In the following, several of the numerical
test series presented in figures 5.19 and 5.20 will be used.

2. The two Weibull parameters m and ys must be determined so that the experimental
data fit best to the Weibull distribution law presented in eq. (5.11). Presuming a zero
threshold (y∞ = 0), the procedure for application of the linear regression method
is as follows: First, the cumulative probability of failure (ΠD0

(y), see eq. 5.6) is
represented by a graph of ln ln [1/ (1− ΠD0

(y))] against ln y. Then, the relation
between ΠD0

and y following from the algebraic Weibull distribution law (eq. 5.11)
and the assumptions discussed above claim that Weibull’s theory is applicable if the
points lie on a straight line. The slope of the line gives the Weibull exponent m,
whereas the intersection of the line with the abscissa gives Weibull’s characteristic
strength ys.

Figures 5.23 and 5.24 show the Weibull plots for the numerical test series. It comes

to materials which have — at the observation scale in question — no characteristic length. Thus, Weibull
theory might be unrealistic for structures on the microscopic level where characteristic lengths (or distri-
butions of characteristic lengths), which are provided by the material inhomogeneities (grain boundary
sizes, distances between micro-defects, diameters of cavities etc.), are apparent. In any case, it is clear
that Weibull theory is inapplicable to quasi-brittle materials [26].
For this reason, Bazant [2] proposed an adaptation of Weibull theory which applies to quasi-brittle

structures (e.g. concrete) involving a characteristic length. The size effect predicted by this non-local
theory reads

µy ∝
[(

D

D0

) 2

m

+
D

D0

]− 1

2

, (5.20)

D0 being the size of a reference structure. According to this formula, the Weibull-type statistical size
effect is approached for sufficiently small sizes, while the statistical size effect asymptotically disappears
for large structure sizes, leading to a size effect of purely mechanical, deterministic origin:

µy ∝ D−
1

2 (5.21)

Instead of the power-type Weibull distribution, the probability of a single specimen failure is sometimes
assumed to be an exponential function of the applied load (Gumbel distribution), which leads to a scaling
behaviour like [48]

µy ∝ (lnD)
−γ

, (5.22)

where γ is a material parameter.
Equations (5.16), (5.20), (5.21), (5.22) predict that the mean stress of rupture asymptotically ap-

proaches zero with increasing specimen size. The essential difference is related to the damage evolution
mode: Weibull distribution is favoured in the case when crack growth is the dominant process (and,
thus, rupture depends on the extreme tail end of the defect size/‘strength’ distribution), while Gumbel
distribution should be more appropriate when the crack propagation mode is crack nucleation domi-
nated. Nevertheless, “the difference between the two distributions (Weibull and Gumbel) is, in view of
the substantial scatter of experimental data, often indistinguishable” [48].
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out that the tests on the smaller specimens fit fairly well (fig. 5.23), and the tests
on the larger specimens fit even better to straight lines (fig. 5.24). Furthermore,
the Weibull plots in fig. 5.23 illustrate that the characteristic strength ys of the
specimens decreases with increasing specimen size (see also fig. 5.25, right).

The observation that the fluctuations of the maximum internal pressure from speci-
men to specimen decrease with increasing specimen size (fig. 5.22) is correctly re-
flected in the slopes of the Weibull plots of the test series (fig. 5.23, and fig. 5.25,
left).

3. The studies at constant specimen size must be extrapolated (scaled up) according to
eq. (5.16) in order to predict the strength of larger specimens or prototypes. Using
the data from specimens of size D0 = 21044 µm2, and the data from specimens
of size D0 = 69757 µm2, the results are presented in figure 5.26. For moderately
larger specimen sizes, the prediction of Weibull theory is close to the test results,
but it exhibits a tendency different from the simulations: The Weibull scaling law
ultimately approaches a zero critical load, while the asymptotical limit of the average
critical load in the model simulations is a non-zero value: limD→∞ ȳ = y∞ > 0.

The overall picture shows that the ‘standard’ Weibull analysis (with the assumption of a
zero threshold limD→∞ ȳ = y∞ = 0) is not adequate to predict the size effect, whereas an
extended analysis with y∞ 6= 0 (which is fundamentally more difficult) could be.
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Figure 5.23: Determination of the Weibull parameters: Weibull plots for the tests on the
material structures with monodisperse (fig. 5.19) and polydisperse (fig. 5.20) pore size
distribution, respectively. The slope becomes steeper (Weibull exponent m increases) and
the curves move towards the left (characteristic strength ys decreases) with increasing
specimen size: see fig. 5.25.
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the larger specimen sizes, where the test data lie close to a straight line.
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Figure 5.25: Evolution of the Weibull parameters as a function of specimen size. Left:
Weibull exponent m. Right: characteristic strength ys.
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Figure 5.26: Upscaling with Weibull theory, and comparing with results from tests on
specimens of different sizes (fig. 5.19 and fig. 5.20). The dashed lines are based on Weibull
analysis of the test results at specimen size 21044 µm2, the dotted lines are based on
Weibull analysis of the test results at specimen size 69757 µm2.
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Proposal of a more appropriate scaling law. An alternative approach may be
to combine the presence of a non-zero asymptotical limit and the power-type scaling
behaviour into one concise scaling law. Proposing

µy(D)− y∞ ∝ D− 1

r (5.23)

suggests itself and fits quite well to the various test results (fig. 5.27, left; see also fig. 5.31
at p. 150). Concerning the material structures investigated in the current chapter, the
numerical simulations yield for the parameter r values in between 0.5 and 1.6. It turns out
that with increasing specimen size, the mean of the observable approaches its asymptotic
limit y∞ sooner for higher values of r.

It is important to be aware that these parameters entering eq. (5.23) are determined
from a genuine study of size effects, i.e. from studies on specimens of different sizes, while
the Weibull parameters deduced above inherently result from studies on specimens of
constant size.

Corresponding to the scaling law for the mean as introduced above (eq. 5.23), a power
law may be proposed for the size effect on the variance (square of the standard deviation)
as follows,

σy(D) ∝ D− 1

r . (5.24)

Herewith, fitting of the results in fig. 5.19 and fig. 5.20 yields for the parameter r values
in between 0.3 and 1.9 (see fig. 5.27, right); these values are roughly in accordance to the
results for r from the fittings of the means.

0 5 10 15

x 10
4

150

155

160

165

170

175

180

specimen size [ µm2]

m
ea

n 
of

 c
rit

ic
al

 fl
ui

d 
pr

es
su

re
 P

 / 
M

P
a

monodisperse pore sizes (d=23.0 µm)         
polydisp. pore size distr. (d=23.0 +/− 5 µm)

0 5 10 15

x 10
4

2

4

6

8

10

12

14

specimen size [ µm2]

st
an

da
rd

 d
ev

. o
f c

rit
. f

lu
id

 p
re

ss
ur

e 
P

 / 
M

P
a

monodisperse pore sizes (d=23.0 µm)         
polydisp. pore size distr. (d=23.0 +/− 5 µm)

fitting of the mean values ȳ fitt. of the variances (sy)
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Figure 5.27: Nonlinear least squares curve fittings according to the scaling formulas in
eq. (5.23) and eq. (5.24) have been added to the test results (fig. 5.21). The values of the
fitting parameters are listed in the table below. The accordance of fitting curve and test
results is better for the mean values than for the standard deviations.
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5.5.1.3 Remarks on the existence and size of the RVE

Strength usually is considered to be an extrinsic property of brittle solids [48], which
means that it not only depends on the material but also on the specimen size and shape.
For extrinsic properties, a representative volume element (RVE) does not exist at all.

The standard assumption of a zero threshold in Weibull analysis is in accordance to the
extrinsic property of the strength: It means that no upper bounds on the size distribution
of the individual material constituents do exist, which — at the same time — means that
there are no lower limitations on the rupture strength of a specimen. Any specimen of
sufficient size contains a ‘fatal’ defect (e.g., a huge pore).

In the simulations of the present investigation, the strength may appear to be an
extrinsic parameter since it is changing with the respective specimen size. The fact that
upper bounds are put on the size distribution of the cavities renders, however, the critical
load to an intrinsic structure property, i.e. to a genuine material property (which is
independent of the specimen size and shape). Thus, one may assume that — with respect
to the rupture strength — an RVE does exist for the structures under study.

It has been shown that with increasing specimen size the variance of the observable
asymptotically approaches zero and the mean asymptotically approaches a certain value
above zero, therefore a specimen can be ‘sufficiently representative’ even at a moderate
size — the size depends on the accuracy with which this observable should be satisfied.
Roughly speaking, the size of the RVE is equal to the specimen size where the scatter of
the observable vanishes and the observable (as a function of specimen size) converges to
the ultimate value. Regarding the parameter r introduced in eq. (5.23), it can be stressed
that the size of the RVE is smaller for comparable materials with higher r.9

5.5.2 Significance of structure parameters

The specimen size effect outlined in the previous section has to be accounted for now where
the sensitivity of the rupture strength to some ‘global’ characteristics of the material
phases is to be investigated. The studies presented below refer predominantly to the
porous phase, and are concluded by a brief consideration of the grain-size effect.

5.5.2.1 Significance of pore-phase parameters

In the following, the attention will be directed to the impact of

• the size distribution of the pores
(monodisperse/polydisperse: see figures 5.19, p. 135, and 5.20, p. 136)

• the specific perimeter (‘fineness’) of the porous phase
(high/low: see figures 5.28, p. 147, and 5.29, p. 148)

• the shape of the pores
(circular/elliptical: see figures 5.29, p. 148, and 5.30, p. 149) .

Each comparative pair of structures is designed so that only one property is different,
while the others — especially the porosity — are approximately equal.

9‘Comparable materials’ means ‘materials with equal porosity’: see fig. 5.27 (porosity: 0.33) or fig. 5.31
(porosity: 0.30).
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The importance of accounting for the specimen size effect becomes clear if one com-
pares the test series presented in figures 5.28 and 5.30: even though the structures with
elongated (elliptical) pores turn out to be less resistant than the structures with circular
pores at each specimen size under study, upscaling of the results according to eq. (5.23)
leads one to assume a reversed situation for the asymptotic limits. This amazing feature
(see the red and green curves in fig. 5.31), which cannot be predicted by standard Weibull
analysis, is due to the different values of the parameters in the scaling function. It should
be further investigated by simulations on larger specimens.

The studies try to elucidate how the above parameters affect the respective size of the
RVE, the asymptotic limits y∞ of the mean values, and the scatter of the results. The
values for r and y∞ come out of analyses of the numerical tests, using the fitting function
introduced in eq. (5.23).

Size of the RVE. Comparing the tests on materials with high specific perimeter (pore
diameter: 12.0 µm) and materials with low specific perimeter (pore diameter: 15.5 µm),
it is seen that for the material with larger pores, the RVE is larger (size: not below D =
80, 000 µm2) than for the material with smaller pores (size: not below D = 40, 000 µm2;
see fig. 5.31). Obviously, the size of the RVE increases with the size of the largest influential
components in the structure: for materials with even larger pores such as in the tests
on monodisperse/polydisperse pore size distributions presented above (pore diameter:
23 µm), the RVE expands to significantly higher sizes (D > 150, 000 µm2, see fig. 5.27).

Asymptotic mean of the rupture strength. For structures with given porosity and
pore shape (circular), it is observed that the asymptotic limit of the average strength
descends with the value of the specific pore perimeter: Reducing the specific perimeter by
22 % may reduce the critical load by 9 % (fig. 5.31). This not only holds for monodisperse
pore size distributions, but also for the tests on monodisperse/polydisperse pores: The
lower average strength is attributed to the polydisperse structure (see fig. 5.27), which
has a lower specific perimeter than the monodisperse structure (this becomes clear when
the mean values of the specific perimeter of the model specimens are compared). Since
the specific perimeter is related to the ‘fineness’ of the respective phase, one may — as a
rule — say that a monodisperse distribution is finer than a polydisperse distribution, and
the ‘finer’ material has a higher strength.

These observations can be explained as follows: The ‘coarser’ material, i.e. the material
with lower specific perimeter of the porous phase, involves the larger cavities. It has
been repeatedly mentioned that these extremes are decisively diminishing the damage
resistance. The most critical locations are found in the vicinity of the largest pores, since
the largest pores come along with the most extended ranges of high local stresses.

A striking point is that with increasing specimen size (below RVE), the mean values
of the critical load are diverging for the monodisperse/monodisperse tests (red and green
curves in fig. 5.31), whereas they are rather converging for the monodisperse/polydisperse
tests (fig. 5.27).

As for the significance of the pore shape, the simulations on structures with simi-
lar porosity, specific pore perimeter, and equal area of the individual pores (figures 5.29
and 5.30) clearly demonstrate that the circular pore shape is the most stable one; elon-
gating the pores to ellipses (aspect ratio: b/a = 0.56) results in a reduction of the critical
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load by 6.5 %.
For materials with given specific pore perimeter, monodisperse pore sizes and shapes

(circular), the significance of the porosity should be obvious: Increasing porosity comes
along with larger pores and, consequently, decreasing material resistance. This assertion is
supported by the tests presented in fig. 5.32, even though these tests have been performed
at one specimen size only.
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Figure 5.28: Tests on specimens with low specific perimeter of the porous phase (LA =
79 mm/mm2). The porosity is AA = 0.30. The diameter of the pores is 15.5 µm, while the
average size of the grains is 5.4 µm. If there would be no coalescence of cavities (isolated
pores — no awareness of spatial correlation), then the critical load would not be below
225 MPa in any specimen.
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Figure 5.29: Tests on specimens with high specific perimeter of the porous phase (LA =
101 mm/mm2). The porosity is AA = 0.30. The diameter of the pores is 12.0 µm, while
the average size of the grains is 5.4 µm.
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Figure 5.30: Tests on specimens with high specific perimeter of the porous phase (LA =
109 mm/mm2) and elliptical pore shape. The porosity is AA = 0.307, the aspect ratio of
the elliptical pores is b/a = 0.56 (semiaxis lengths: 16.0 µm and 8.5 µm). The area of a
single pore is equal to the area of a circular pore as in fig. 5.29. The average size of the
grains is 5.4 µm.
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Figure 5.31: Left: Summary of test results on specimens of porosity AA = 0.30, supple-
mented by fitted scaling curves according to eq. (5.23). The dashed lines indicate the
asymptotic limits y∞ of the average critical load for very large specimens. Comparing
the two lower-resistant materials, it appears that the strength of structures with elliptical
pores (green curve) is higher for very small specimens (D < 1×104 µm2) and for very large
specimens (D > 10×104 µm2), while the structure with circular pores (red curve) is more
resistant for moderate specimen sizes (1×104 µm2 < D < 10×104 µm2)! Right: For the
two lower-resistant materials, upscaling the results at specimen size D = 21040 µm2 with
Weibull theory (dashed curves) does not reflect the actual, reversing scaling behaviour
(solid curves).

Variance/scatter of the results. It is expected that the scatter of the observable
for specimen sizes below RVE increases with the ‘number of degrees of freedom’ in the
respective structure. A certain degree of freedom common to all model structures under
study is related to the random positioning of the pores. Another degree of freedom may
be the orientation of the pores, which is significant only for the elongated pore shapes.
Comparing the tests on circular pores and the tests on elliptical pores in fig. 5.29/fig. 5.30
or in fig. 5.32, one finds indeed that the scatter of the results is wider for the specimens
with elliptical pores.

A non-monodisperse size distribution of the pores represents another possible degree
of freedom. The test results illustrated in fig. 5.27 confirm that the standard deviation
of the observable decreases much sooner for the monodisperse pore sizes than for the
polydisperse distribution, a characteristic which is clearly reflected in the parameter r of
the respective fitting curves.

Another overall picture of the tests is that the number of observations needed to
provide stable results of the mean increases with the number of degrees of freedom.
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Figure 5.32: Above and middle: percolation studies on specimens with equal specific
perimeter of the porous phase (LA = 94 mm/mm2), but different porosity (above:
AA = 0.22, middle: AA = 0.385). Middle and below: percolation studies on spec-
imens with equal porosity (AA = 0.38) and specific perimeter of the porous phase
(LA = 94 mm/mm2), but different ratio of the pore semiaxes (middle: b/a = 1, be-
low: b/a = 0.73); a higher eccentricity of the pores results in a lower average failure load,
but causes a higher scatter of the results.
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5.5.2.2 Significance of the grain size

So far, the investigations have confirmed that the critical pressure becomes higher for a
finer pore distribution. To some extent, the result can be applied to the grain phase as
well: In the exemplary calculations of fig. 5.33, a reduction of the average grain diameter
by 28 % achieved an increase of the average strength by 10 %. The observation that
material strength benefits from a fine granularity is a consequence of the energy criterion
introduced in Chapter 4, which favors the failure of the larger facets (see fig. 4.2, p. 96),
and agrees to the empirical knowledge of material scientists.

In actual ceramics, there are several reasons for the increased damage resistance of
the fine-grained structures. To mention one of them, one should recall that the process
of sintering can never be perfect; some tiny voids will always remain, which then act
as generators of stress concentrations. If, however, the fineness of the powder before
sintering is increased, then both the size of the grains and the size of the voids will be
smaller. Consequently, the stress concentrations are reduced, and the breaking strength
of the ceramic is higher in materials with smaller grains [29].
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Figure 5.33: Percolation studies on specimens of equal size (20900 µm2), porosity (AA =
0.30) and specific perimeter of the porous phase ( LA = 80 mm/mm2), but different
average grain size (above: 6.48 µm, below: 4.63 µm). The left column shows one specimen
of each test series.



Chapter 6

Summary and conclusions

This final chapter provides a concluding survey of the ideas and the assets and drawbacks
of the presented work (section 6.1), a brief summary of the basic results, including refer-
ences to figures and text passages (section 6.2), and it suggests possible extensions and
further discussions (section 6.3).

6.1 General assessment

A computational model has been presented which describes the nucleation and evolution
of microcracks in granular material structures, and accounts for the impact of cavities
(pores and cracks) on the local stress distributions and on the effective elastic properties.
With the aid of this model, various subjects in the field of damage mechanics have been
investigated.

The presented approach differs from the existing ones in that it combines concepts of
the ‘micromechanical’ models, which are rather analytical in nature, and of the ‘mesh’
models, which are numerical in nature. The idea was to generate geometrical sampling
images of actual microstructures, reduced to the mesh of grain boundaries, on the one
hand, and to the cavities, on the other hand. In the simulations, stress analysis was then
founded on analytical solutions for the cavities, which disturbe the otherwise homogeneous
stress field in the solid material phases. The mesh of grain boundaries was subject to
discrete, spontaneous fracturing in the course of loading, supervised by an energy criterion.

The stress analysis from the perspective of pores and cracks allows for a general, com-
pact formalism applicable to tensile and compressive, linear and nonlinear conditions.
(Nonlinearity results from structural changes, crack closure and frictional sliding of the
crack faces.) Different from pure micromechanical models, the presented approach ac-
counts for spatial correlations of the arbitrarily distributed defects and is thus non-local.
In contrast to finite element methods, the computational effort (finite element represen-
tation of microdefects, matrix inversion etc.) is reduced since the interacting system is
the ensemble of cracks, not the complete set of solid-phase mesh links. The meshing of
the solid phases into a disordered grid of grain boundaries fits to the damage behaviour
observed in actual materials and is thus more flexible than the regular meshes of standard
finite element techniques.

The analytical description of stress disturbances enforces, though, a rough approxima-
tion of the defects by simple shapes (elementary cavity geometries, straight crack lines).
In particular, the arising networks of connected pores and cracks must be substituted.
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Another shortcoming is due to the averaging of tractions along the crack lines for the
determination of local stresses and defect interactions. This technique is accurate rather
for distributed cracks of similar size. In certain situations, however, interactions may be
disregarded.

The presented attempt is certainly no substitute to the various models existing in
the literature, but it proved to work fine in many situations and may thus serve as an
alternative. It reflects a number of key features in the context of brittle and quasi-
brittle damage, internal friction and statistical disorder, spanning the full bandwidth
from microcrack nucleation to overall failure, including the intermediate range. Many
parts of the presented theory and results are applicable to diverse brittle materials such
as ceramics, ceramic composites, rocks and concrete. Extensions can be made with respect
to thermal residual stresses, stress corrosion cracking, fatigue cracks. Cooperation with
macroscopic approaches (e.g., finite element models) is very conceivable, although these
are often displacement-driven, whereas the presented model relies on prescribed stresses.

Even the process of developing the model and suiting it to particular problems has
elucidated several core points, for example the ‘cooperative’ behaviour (localization) of
defects, or the coalescence of pores by means of cracks. Further comprehension of the ma-
terial behaviour was gained by applying the model in a number of computational studies,
the results of which will be summarized in the following section 6.2. Randomness of the
microstructural configuration, introduced by distortion of the grain mesh and variability
of pores and grains, was seen to influence the results. The statistical explorations were
based upon Monte Carlo simulations of simply defined models. Scaling effects were ob-
served, revealing the significance of boundary conditions and specimen size.
The studies at the microscopic level ultimately aimed at the effects at the macroscale.
To this end, homogenization has been performed to obtain effective elastic and damage
parameters where possible. In a series of studies, where averaging was meaningless, the
transition from microscopic damage to macroscopic failure has been demonstrated via the
crack patterns.

However, it cannot be ignored that the model at the current stage may get into trouble
concerning the quantitative prediction of the material response. To give an example, the
actual internal pressure in industrial applications amounts to P = 1− 5 MPa in contrast
to the damage thresholds exceeding 100 MPa for the test structures in Chapter 5. This
is a high discrepancy which must not only be traced back to the neglection of thermal,
chemical and cyclic impacts, or to the restriction to one grain phase (titanium oxide).
The reasons should also be searched at a more fundamental level of the model:

Firstly, there is a conceptual limitation due to the rough geometrical approximation
of the cavities. In contrast to the smoothed shapes of the model cavities, actual pores
have edges and even tips. Actual pores thus involve higher stress concentrations within
the material which significantly facilitate the initiation of microcracks. Accounting for
these stress singularities would require an artificial variation of the stress intensity factors
in the model. Moreover, the bandwidth of the pore sizes has been chosen too small until
now — actual material specimens exhibit an open porosity which becomes noticeable by
some very extended pores observed in the two-dimensional material sections. The latter
have been neglected in the present thesis (see e.g. fig. 2.10 below, p. 44), but are essential
for a quantitative prediction.

Another conceptual limitation is due to the two-dimensional consideration. One must
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be aware of the fact that a restriction to two dimensions cannot be sufficient, but it
seems that a comprehension of the problems in 2-D is suitable before approaching the
much complexer situations in 3-D. Essential parts of the formalism are – in principle –
applicable to 3-D situations as well, but the implementation in a computer algorithm
would be extremely extensive. Forthcoming studies should therefore aim at a rather
phenomenological discussion of the 2-D/3-D correlation of the fundamental issues, as
started in section 6.3 below.

As for the quantitative validity, the results of Chapter 4 are expected to be closer to
reality than the results of Chapter 5. The reason is that Chapter 4 restricts to compact,
i.e. pore-free materials, whereas the conceptual limitations mentioned above mainly come
to light by the pores. But already the compact grain structure model can be improved
by a better-adjusted input. This holds for structure properties such as the accurate grain
sizes and the nature of the interfaces, as well as for material parameters such as the specific
surface energy or the elastic constants, and for the specimen boundary conditions. A great
deal is demanded here of the experimentalists, too; in particular, detailed informations
on 3-D structure characteristics are lacking at the moment.

Anyhow, it seems that chasing after an exact picture of the reality by a computational
model has never been a promising track. The benefit of the presented approach is given
by its clarity to show qualitatively the phenomena, not by any quantitative, numerical
accuracy. Accordingly, restricting the studies to elementary situations turned out to be a
rational principle here.

6.2 Review of the individual results

In the following, some important issues from each of the preceding chapters are briefly
recapitulated, and reference is given to selected figures illustrating the most appealing
results.

Chapter 1. A rough categorization of the numerous approaches to damage modelling
in the literature has been proposed (fig. 1.1, p. 20). At the microscale, two contrary model
types have been distinguished: micromechanical models based upon analytical solutions
for the defects, and mesh models based upon numerical calculations for the discretized
matrix material.

The approach underlying the present study has been introduced and classified in be-
tween these major model types.

Chapter 2. As a prerequisite for the new model approach, generation of the two-
dimensional microstructure images has been outlined, and the input informations obtained
by stereological analyses of actual materials have been discussed. Since stereological data
are not sufficient, additional assumptions on the ‘local’ characteristics of the structure
elements have been described. A respectable visual accordance of the model images and
the experimental micrographs in two dimensions has been achieved (e.g. fig. 2.10, p. 44).

Chapter 3. The available analytical stress solutions for cracks and various pores (i.e.,
single cavities in an infinitely extended homogeneous medium) have been evaluated and
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utilized in a computational framework. Visualizations of the elementary stress fields have
been presented in section 3.3.

In order to investigate the delicate behaviour of elastic solids with cracks, a complete
formalism for determination of local stresses and displacements has been established.
The associated homogenization technique aims at the effective compliance tensor and the
overall strain (sections 3.4.2 and 3.5.5). It has been demonstrated that the nonlinear
effects of crack closure, friction and structural changes (due to microcracking) involve a
history dependence of the material response, and necessitate the incrementation of the
computational algorithm as well as a complex set of case distinctions.

The key formula established for the single-crack characteristics under compression and
frictional sliding is eq. 3.54 (p. 75); it makes use of two important quantities which describe
the current crack state: these are the activity factors and the shear mismatch.

An interesting application of this formalism pointed to the constrained motion of crack
faces under a quasistatic shear/compression cycle. The stress-strain response exhibits
here a conspicuous, jerky course, and thus illustrates the significance of both the shear
mismatch and the crack activity (fig. 3.27, p. 88).

The formalism has been extended to direct micromechanical interactions between the
cracks by means of a superposition technique and solution of a self-consistent equation
system. The significance of the interactions has been discussed and investigated firstly
regarding the local stresses. It turned out that the interactions promote the strength
of local stress concentrations (e.g., fig. 3.22, p. 85). Concerning averaged macroscopic
parameters such as overall strain and effective stiffness, the computations confirmed the
well-known fact that the parameters may be enhanced or degraded, depending on the
tendency of the cavities to form rather a ‘stacked’ or a ‘columnar’ arrangement.

Chapter 4. The simulation of progressive fracturing at the microscale has been founded
on the meshing of the matrix material: An energy balance equation for any facet between
two grains establishes the microscopic fracture criterion. Equation 4.3 (p. 95), expressed
in terms of average traction, first refers to crack nucleation, whilst eq. 4.8 (p. 97), in terms
of the stress intensity factor, inherently refers to crack extension. The model has been
designed for crack nucleation, extension and bridging; crack branching (bifurcation) is
disregarded.

In a compact material structure, the model simulations reproduced the fundamental
modes of damage; these were seen to depend on the loading conditions and on the hetero-
geneity of the structure. Recording exemplary crack patterns showed up both the brittle
failure mode (fig. 4.6, p. 100) and the quasi-brittle damage behaviour (fig. 4.9 right, p. 102;
fig. 4.10 above, p. 104). The occurrence of the localization of several cracks (fig. 4.7, p. 101;
fig. 4.9 left, p. 102; fig. 4.10 below, p. 104) has been traced back to the ‘energy barriers’
in the granular structure, in connection with the stress disturbance fields by the cracks.

Moreover, the model simulations illustrated the microcrack-induced degradation of the
material stiffness under external compression, and the emergence of an elastic anisotropy
(fig. 4.13, p. 106). The overall strain components εxx and εyy have been observed to be
strongly correlated to the scalar crack density, even under compression (fig. 4.14, p. 110).
For this reason, the scalar crack density could serve as a simple but meaningful damage
parameter. The model calculations confirmed that damage is a steady function of vertical
compression and lateral stresses, and that it is retarded when internal friction is accounted
for.
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The statistical fluctuations in the global structural parameters (area density, specific
perimeter, interface length of certain grain phases) showed no evident correlation to the
damage resistance of the specimens (fig. 4.17, p. 111). This observation confirmed that
the fluctuations in material resistance are dominated by the local disorder, i.e. the random
distribution of the grains.

Studies on statistical ensembles of specimens aimed at the quasi-brittle damage under
a prescribed compression. The distribution of the damage parameter has been recorded in
terms of its first two moments: mean value and standard deviation. The absolute scatter
of the results increased with the damage level (e.g., fig. 4.18, p. 112), whilst the coefficient
of variation decreased at the same time.

The local stress disturbances due to the cracks and their interactions proved to promote
the evolution of damage (fig. 4.21, p. 115) and must therefore not be neglected.

As for the significance of specimen size, the mechanical strength of larger specimens
appeared to be higher than the strength of smaller specimens. The underlying reasons
should be further investigated.

Chapter 5. A particular loading mode, relevant to ceramic filter supports, has been
adapted: The stress field in a porous material has been induced here by a pressure acting
inside the pores. The highest stress concentrations were thus found in the vicinity of
pores, and narrow solid ligaments between pores were prone to cracking (fig. 5.2, p. 123).
Consequently, failure would emanate from pore borders. Due to the lack of analytical
stress solutions for pore-crack combinations in the literature, stress-intensity factors for
certain configurations (eq. 5.1, p. 124) have been employed in the energy fracture criterion.
It turned out that the energy criterion is not sufficient here, but must be supplemented
by a hierarchy of conditions.

The progression of damage by microcracking proved to connect pores and hence to
create flaw networks. Since such defect agglomerates are not suitable for the analysis,
they need to be collectively replaced by elliptical cavities (fig. 5.13, p. 131) before the
fracturing algorithm is continued, respectively.

For structures sufficiently ‘heterogeneous’, the simulations reflected a quasi-brittle ma-
terial behaviour (fig. 5.17, p. 133). For simpler structures, failure is dominated by a
sudden, unstable defect growth where the internal pressure splits up the specimens in
arbitrary directions by percolating flaw chains (fig. 5.16, p. 132).

The brittle behaviour of the simpler structures suggested a comparison with statis-
tical weakest-link theories (Weibull theory in particular), which hold for perfectly brit-
tle materials. Given the specimen size, Weibull analysis proved to fit quite well to the
computational results on statistical model ensembles (fig. 5.24, p. 143). Simulations on
differently-sized specimens reflected a clear scaling effect for both the mean and the scatter
of the rupture strength (fig. 5.21, p. 137): Increasing the specimen size showed to lower the
strength in affinity with the size effect of the weakest link hypothesis. While the scatter
of the strength tended to zero, the asymptotical limit of the mean, however, represented
a non-zero threshold, so that the standard Weibull scaling law (eq. 5.16, p. 140) turned
out to be not appropriate (fig. 5.26, p. 143).

On this account, an alternative scaling law has been proposed, involving a non-zero
threshold and a second, exponential parameter (eq. 5.23, p. 144). This alternative law
describes quite well the computational results for different specimen sizes (fig. 5.27, p. 144);
it may serve for further upscaling, i.e. extrapolation of the experimental or computational
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results (as obtained from small specimens) to larger pieces of the material.
The presented simulations advise against drawing conclusions from studies on speci-

mens whose size is chosen too small, because neglection of the respective scaling law may
possibly lead to wrong conclusions (see fig. 5.31 left, p. 150). By accounting for the scaling
behaviour, the simulations confirm that the size of the ‘representative’ volume element
increases with the size of the largest structural elements. For fairly monodisperse pore size
distributions, the average strength descends with the value of the specific pore perimeter,
i.e. with the ‘fineness’ of the phase (fig. 5.31 left, p. 150). Obviously, the strength also de-
creases with increasing porosity (fig. 5.32, p. 151), and it is lower for elliptical pores than
for circular pores. The material strength proved to benefit from the fineness of the grain
phase just as from the fineness of the pore phase, although the underlying mechanisms
are different.

Another point concerned the scatter of the failure load among the members of the
statistical ensemble. As expected, a widening of the scatter has been observed for the
more disordered structures: Enhancing the ‘number of degrees of freedom’ in the structure
(by allowing an arbitrary location, size, shape or orientation of the pores) yields a higher
scatter of the critical pressure, whereas the mean decreases. These points have emerged
from comparison of studies on material structures with circular pores and structures with
elliptical pores.

6.3 Still open issues and suggestions for future work

As a matter of course, the present dissertation touches on a multitude of issues that cannot
be treated exhaustively; it raises questions that remain to be answered, and ignores topics
that would be fundamental for any further assessment and employment. This final section
will sketch some points which deserve more attention in future studies.

First, a number of interesting subjects could be investigated without further extension
of the model. At the current stage, the computer programs may be employed to cal-
culations on the significance of the volume fraction and granularity of the second-phase
(Al2O3) grains, and of their size and shape. The simulations of the present thesis, which
had mainly been restricted to two-phase structures for reasons of clarity, could be extended
to three-phase materials, and a multivariate analysis of the many-parameter correlation
could be performed. Moreover, a detailed study of the specimen boundary effects — in
modelling as well as in reality — is recommendable for understanding the scaling effect
observed in Chapter 4.

Besides that, forthcoming studies should address the following subjects, which require
extensions to the computational model (sections 6.3.1, 6.3.2), or should be discussed
separately from it (section 6.3.3):

6.3.1 Incorporation of thermal stresses

Due to the high sintering temperature and subsequent cooling-down, most of the ceramics
are subject to high temperature changes during fabrication. Since the randomly oriented
material constituents may differ in their thermal expansion coefficients, or there may be an
anisotropy of the thermal expansion coefficients within the single grains, these temperature
changes result in mismatch of thermal strains between the individual grains. The strains
in turn give rise to intrinsic microstructural stresses. These so-called thermal residual
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stresses are self-equilibrating (i.e., the average residual stress components are vanishing),
but they have important consequences on the evolution of microcracking.

In the presented model, some of these effects may be included by assigning statistically
distributed thermal anisotropy coefficients 0 ≤ af ≤ 1 to the grain boundary [12], and
introducing an additional energy contribution in the fracture criterion (left-hand side of
eq. 4.3/eq. 4.8): Following [9], the ‘thermal contribution’ to the elastic energy release
during fracturing of a facet f may be approximated by






l0+lf∫

l0

G dl






thermal

=
1

48
E ′ (∆α ∆Θ)2a2f l

2
f , (6.1)

where ∆α denotes the mismatch of the thermal expansion coefficients, and ∆Θ the tem-
perature change. This approach (see also [23]) is to some extent equivalent to a statistical
distribution of the specific surface energy γf ; it should enrich the present model in that the
transition from distributed microcrack patterns to damage localization can be simulated.

For a simulation of the strain response in the context of thermal residual stresses, how-
ever, a more sophisticated approach is needed. Assigning random main axis orientations
to the individual grains (fig. 2.4, p. 37), the theoretical concepts established in [54] or [77]
could be exploited here. In loading cycles similar to those of section 3.7, the damaged
model specimens should finally exhibit overall residual strains when the applied load is
removed.

6.3.2 Accounting for stress corrosion cracking

Stress corrosion cracking is a damage phenomenon resulting from the combined actions of
an aggressive environment, especially of humidity, and a steady (or cyclic) tensile stress.
This kind of fracturing is brittle and to a large part intergranular [29], so that it can be
incorporated into the presented model.

Assuming that a grain facet f is touched by a fluid-filled crack at either tip, the impact
of the stress corrosion on its failure may be accounted for by an additional term Wf,corr

in the energy criterion for crack extension (see eq. 4.8, p. 97):

l0+lf∫

l0

G dl ≥ 2γf lf −Wf,corr (6.2)

Wf,corr denotes a time- and stress-dependent increase of free surface energy in the material,
which needs not to be supplied by a reduction of strain energy. From the physical point
of view it would be rational to associate the corrosion with a reduction of the specific
surface energy parameter (dγf), but a decrease in facet length (dlf) should turn out more
functional in the present formalism:

dWf,corr = 2γf dlf,corr , (6.3)

where dlf,corr represents a crack growth along the facet due to corrosion. It may be adopted
from a common relation in the literature (see [81], [82], [57], [66]):

dlk
dτ

= A (Kk)
n , (6.4)
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where lk is the length of the existing crack, τ is the time, Kk is the mode I stress intensity
factor at the crack tip, A is a constant characterizing the corrosive environment, and n
is a material constant.1 The fact that there is no crack growth below a certain threshold
value of Kk should be taken into account [8]. Modelling of the characteristic three stages
of corrosion cracking (as reported e.g. in [57] or [82]) might be accomplished by stress-
dependent parameters A and n.

Inserting eq. (6.4) into eq. (6.3) yields the ‘equivalent’ surface energy due to corrosion
on facet f at a time T :

Wf,corr = 2γf

(

A

∫ T

Tf

(Kk)
n dτ

)

, (6.5)

where Tf denotes the time instant when the corrosive fluid starts to affect the facet tip.
Supplementing the computer algorithm by eq. (6.5), failure of the facet must be triggered
as soon as inequality (6.2) is fulfilled.

Some preliminary simulations on the time dependency of damage introduced by cor-
rosion have already been presented in the framework of the BRITE-EURAM project. A
question to be debated is whether stress corrosion cracking requires stress singularities
(at crack tips) or whether it may start from pore borders as well. The latter case would
require a proper adaptation of the corrosion law (eq. 6.4).

6.3.3 Effect of the reduced dimensionality

The following remarks might serve as clues for an extended discussion of the relation
between two-dimensional simulation and actual three-dimensional material behaviour.
The considerations refer firstly to the micromechanical point of view (stress disturbance
and strain contribution of the cavities), and subsequently to the grain structure mesh
(relevant for discrete fracturing).

Micromechanical view. From the micromechanical point of view, it must be recalled
that the 2-D model works with images of 2-D sections of the actual material. 2-D sections
would indisputably be sufficient for modelling a ‘tubular’ structure which does not change
in the third dimension. Assuming a tubular pore structure is not quite devious in the
actual situation since open channels are required to transport the fluid and to transmit
the pressure.

Irrespective of that, it has been sketched in section 2.4 that for a certain phase the area
fraction in a 2-D cross-section equals the actual volume fraction, and the specific perimeter
in a 2-D section is explicitly correlated (by a multiplication factor 4/π) to the actual spe-
cific surface. In a structure with three-dimensional characteristics, however, these global
parameters alone are not decisive for the effective elastic properties and for the stresses.
The relevant quantities are rather the ‘local’ parameters here, such as the shape and size
of the individual defects. In a sense, 2-D sections mostly ‘reduce’ the size and/or the shape
of the 3-D objects: e.g., a sphere is reduced to a circle of a lower radius, an ellipsoid is
reduced to an ellipse of a smaller aspect ratio, or a penny-shaped crack is reduced to a slit-
like crack of a smaller ‘diameter’ (length) in most cases. In other words, the actual spatial

1Beside the power-law type eq. (6.4), various exponential forms have been proposed and could be
adopted as well.
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extent —say the largest diameter— and the shape —say the maximum aspect ratio—
are underestimated in a 2-D section. Such geometrical reductions are usually associated
with lower stress concentrations, a smaller range of the stress disturbance, or a lower
strain contribution of the cavities in question.

On the other hand, one is tempted to expect a correspondence between 2-D modelling
results and 3-D material properties if there is a ‘similarity’ of the structure elements in
2-D and in 3-D, for example a circular pore shape in 2-D and a spherical pore shape in
3-D. From this perspective, however, the 2-D modelling will overestimate the effect on
the elastic properties. To give some examples:

• stresses in the vicinity of cavities: The maximum circumferential stress concentra-
tion at the border of a circular pore (in 2-D) and a spherical pore (in 3-D) under
remote uniaxial tension σ0 is [59]

2-D case:
σ

σ0
= 3 3-D case:

σ

σ0
≈ 2 . (6.6)

Obviously, the stress concentration at a 3-D cavity is lower than at a 2-D cavity of
similar shape (cross-section). In other words, a limitation of the cavity extent in the
third dimension reduces the stress concentration.

• stiffness reduction due to cavities: Consider an isotropic elastic material containing
randomly distributed spherical pores. Interactions between the pores are neglected.
2-D sections of this material reduce the problem to circular pores. For prescribed
macroscopic stress, as a function of porosity p, Young’s modulus is given by2

E =
E0

1 + 3p
E ≈ E0

1 + 2p
(6.7)

for the material with circular pores and spherical pores, respectively. Obviously, the
effect of the pores on the effective stiffness is overestimated in a 2-D consideration.

• stiffness reduction due to cracks: Consider a material with randomly distributed,
non-interacting cracks. In order to compare the stiffness reduction due to slit-like
cracks (in 2-D) and penny-shaped cracks (in 3-D), the crack density should be
defined in an equivalent way for the 2-D and 3-D cases. Such an ‘equivalent’ crack
density ρe may be the relative area (in 2-D) and relative volume (in 3-D) swept by
the cracks when they are rotated about their centers (in 2-D) or diameters (in 3-D),
respectively [43]:

ρe =
1

A

∑

k

π

(
lk
2

)2

ρe =
1

V

∑

k

4

3
π(ak)

3, (6.8)

where lk denotes the length of crack k (in 2-D), and ak denotes the radius of the
penny-shaped crack k (in 3-D). For prescribed macroscopic stress and ν0 = 0.25,
Young’s modulus is then given by3

E =
E0

1 + ρe
E =

E0

1 + 0.42ρe
. (6.9)

2The general expressions are given in [41].
3The general expressions are given in [62] and [43].
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It is seen that for the comparable crack density ρe, the stiffness reduction is substan-
tially weaker in 3-D. Similar conclusions hold for non-randomly distributed cracks,
and for interacting cracks [43].

• stress-intensity factors: Consider again the simplest representation of a crack in 2-
D, a slit-like crack (length l), and in 3-D, a penny-shaped crack (diameter 2a). The
corresponding mode I stress intensity factors are as follows:

KI =
√

π l/2 t KI =
2

π

√
π a t (6.10)

If the size of the cracks is defined as l resp. 2a, then the stress intensity factor is
higher in 2-D than in 3-D. (Identical K-values are given for l/2 = 4/π2 a ≈ 0.4 a).
An equivalent correspondence holds for the Griffith fracture criterion: Under plane
strain conditions, the critical load tc for extension of a 2-D crack (length l) is by a
factor

√

4/π2 ≈ 0.64 smaller than for extension of a penny-shaped 3-D crack (radius
a = l/2) [59].

Thus it is clear that two contrary effects are present in a 2-D model: a ‘reduced’ detection
of the defect geometries, on the one hand, and an overestimation of the impact of the
2-D defects on the elastic properties, on the other hand. The crucial question is whether
the two effects are somewhat balancing themselves out, or which of them is dominant.
To find an answer, statistical studies on a number of sections of a 3-D structure (similar
to [53]) might be helpful.

‘Mesh’ view. While the previous ideas concerned the cavities or defects in an otherwise
homogeneous material, the discrete two-dimensional meshing of the grain structure is the
second important point to be analyzed. It is clear that a realistic description of the
three-dimensional topology of polyhedral grains represents a non-trivial problem; some
geometrical methods to characterize the local (dis)order in polycrystalline structures are
outlined in [28].

Different from the pores, which are considered as separated elements distributed in
the solid matrix, an underestimation of the grain shapes in 2-D sections is minor, since
the grains form a compact mesh of adjacent patches, and they have a narrower size and
shape distribution.

Secondly, one should note that a 2-D model implicitly assumes a uniform structure in
the third dimension: the energy barriers imposed by grain boundaries in this dimension
are completely disregarded. It is to be expected that the complexity of actual 3-D grain
structures establishes additional obstacles for the crack propagation. So it seems that the
2-D model here underestimates the material strength. Mention should be made of the
work by Kamiya et al. [45], which is based upon a finite element model of crystal grains,
emanating from a regular mesh of Voronoi polyhedra. Under combined external load and
thermal residual stresses, the studies indicate that an unstable crack propagation observed
in a 2-D simulation may give way to a rather stable damage growth when the simulation
is performed on a full 3-D grain boundary grid.

Generally, the number of possible loading modes on the grain boundaries is higher in
3-D structures, and the arising crack patterns are complexer than a 2-D simulation can
reflect. Terms such as ‘percolation’ and ‘failure’ require a much more distinct definition in
a 3-D context. Regarding the microscopic damage, it is clear that additional phenomena
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are present which cannot be explored without 3-D approaches — the account by Kamiya
et al. [45] indicates a possible way here.

Two-dimensional models are nevertheless needed to gain an overall picture of the ma-
terial behaviour. For they reflect features that appear in the three-dimensional world as
well, but are not accessible there with a rational effort in theory, modelling and compu-
tational time.
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