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 i

Abstract  
 
Here we present a method of differential geometry, an intrinsic approach that allows deformation 
analysis of the real surface of the Earth on its own rights for a more reliable and suitable estimate 
of the surface deformation measures. The method takes advantage of the simplicity of the two-
dimensional Riemannian manifold spaces  versus the three dimensional Euclidean spaces  
without losing or neglecting information and effect of the third dimension in the results. 

2M 3E

 
Here we describe the regularized Earth’s surface as a graded two-dimensional Riemann 
manifold , namely a curved surface, embedded in a three dimensional Euclidean space .  
Thus, deformation of the surface can be completely specified by the change of the first and 
second fundamental tensors, namely changing of metric tensor and changing of curvature tensor, 
of the surface, which  changing of curvature tensor is responsible for detection of vertical 
displacements on the surface. 

2M 3E

 
This study describes analytical modelling, derivation, and implementation of the surface 
deformation measures based on the proposed method, particular attention to the formulation and 
implementation of the tensors of rotation and tensor of change of curvature in Earth deformation 
studies. The method is applied to a real data set of dense space geodetic positions and 
displacement vectors across the Southern California. A comparison of the patterns with the 
geological and geophysical evidences of the area indicated how well the patterns were able to 
reveal different geodynamical features of the region. 
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Zusammenfassung 
 
In dieser Arbeit stellen wir eine Methode der Differentialgeometrie basierend auf einem 
spezifischen Ansatz intrinsischen Flächenmethode vor, die es erlaubt, eine Deformationsanalyse 
der wahren Erdoberfläche mit zuverlässigeren und passenden Schätzungen der 
Deformationsmaße durchzuführen. Das Verfahren nutzt die Einfachheit der zweidimensionalen 
Riemann’schen Mannigfaltigkeit  gegenüber den dreidimensionalen Euklidischen Räumen 

aus, ohne Information und den Effekt der dritten Dimensionen in den Ergebnissen zu verlieren 
oder zu vernachlässigen. 

2M
3E

 
Wir beschreiben die regularisierte Erdoberfläche als eine abgestufte zweidimensionale 
Riemann’sche Mannigfaltigkeit , speziell eine gekrümmte Oberfläche, die in den 
dreidimensionalen Euklidischen Raum eingebettet ist. Aus diesem Grunde kann die Deformation 
einer Oberfläche vollständig durch die Veränderung der ersten und zweiten Fundamentalformen 
der Fläche, also der Veränderung des Metriktensors und des Krümmungstensors, erfasst werden, 
wobei die Veränderung des Krümmungstensors verantwortlich für die Ermittlung vertikaler 
Deformationen der Oberfläche ist.   

2M

 
Diese Studie beschreibt die analytische Modellierung, Herleitung und Umsetzung der 
Deformationsmaße basierend auf der vorgeschlagenen Methode, wobei der Formulierung und 
Umsetzung der Rotationstensoren und des Tensors der Krümmungsänderung für 
Deformationsanalysen besondere Aufmerksamkeit geschenkt wird. Die Methode wurde auf einen 
Realdatensatz, der aus mit geodätischen Raumverfahren bestimmten, dichten Positionen und 
Verschiebungsvektoren in der Region von Südkalifornien besteht, angewendet. Ein Vergleich der 
bestimmten Muster mit den geologischen und geophysikalischen Gegebenheiten des Gebietes 
zeigt, wie gut die Muster die verschiedenen geodynamischen Eigenschaften dieser Region offen 
legen können. 
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Chapter 1 

Introduction 

Following the classical separation of established geodetic techniques, namely triangulation and 

trilateration versus levelling, deformation of the Earth’s surface has been separated into horizontal and 

vertical components and has been treated individually.  The main reason for this conventional separate 

procedure is due to the horizontal and vertical networks in classical geodesy. Later space geodesy, 

such as GPS, VLBI, SLR, and DORIS has changed the rules of the game of positioning essentially.  

Positions of network points, containing both horizontal and vertical components, could be determined 

with high precision, enough to be used as an accurate and reliable source of information in Earth 

deformation studies.  The great number of studies of this type using displacement fields derived from 

repeated observations of space geodetic networks indicates how valuable and important role the space 

geodetic techniques play in present and future states of geodynamics.  A sample reference of surface 

deformation studying let us take notice of: Ahjos et al.,(1992), Argus et al., (1989), Bada et al., (1999), 

Bianco et al., (1998), Bock et al., (1989), Boucher et al., (1999), Caporali et al., (2000) , Castellarin et 

al., (1992), Chen (1991),Chan et al.,(2006) , Clarke et al., (1998), Cross et al.,(1987), DeMets et al., 

(1999), Dewey (1988), Gasparini et al., (1985), Goelke et al.,(1996), Harada et al.,(1978), Horner et 

al., (1983), James et al., (1993), Kahle et al., (1998), Kakkuri et al., (1992), Kakkuri (1997), Kakkuri 

et al., (1998), Lesne et al., (1998), Livieratos (1978), Lundgren et al., (1995),MacMillan et al., (1999), 

McCarthy (1996), McKenzie (1970), Miyazaki et al., (1997), Mueller et al., (1994), Pagarete et al., 

(1998), Plag et al., (1998), Reilinger et al., (1997a, 1997b), Renner et al., (1994), Sagiya et al., 

(1999), Scherneck et al., (1998), Smith et al.,(1990), Soudarin et al.,(2006) ,Terada et al., (1929), 

Tregoning et al. (1998), Tsuboi (1930), Vanbrabant et al., (1999), Vanıcek et al., (1981), Ward 

(1998a,b),  Wessel et al., (1998) ,Wu (1998). 

 
Despite the ability of space geodesy to provide 3-dimensional displacement fields, the crustal 

deformation studies are still carried out separately in horizontal and vertical components. The main 

reason of the separation is claimed to be the non-sufficient accuracy of height component of point 

position. However some people use also the third components of GPS measurements in order to 

http://www.springerlink.com/content/?Author=Laurent+Soudarin
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detection of vertical deformations of the crust when they have continuous recording of GPS 

measurements for several years, namely not campaign measurements.  

For instance, J.M. Johansson et al., (2002), G.A Milne et al., (2001) used of vertical component of 

GPS for detection of vertical deformation in the BIFORST (Baseline Inferences for Fennoscandian 

Rebound Observations Sea Level and Tectonic) project, Mazzotti et al., (2003) on vertical deformation 

over the north of Cascadia, Aoki et al., (2003) on vertical deformation over Japan, Beavan et al., 

(2004) on vertical deformation over the Southern Alps, and so on. 

 

Traditional crustal motions and deformations are described as elements of 3-dimensional Euclidean 

space .  Regarding the fact that in reality, crustal motions and deformations are embedded in a 3-

dimensional Euclidean space and do not exist purely horizontal or purely vertical in terms of 

deformations.  

3E

 

In the last two decades, some efforts have been made to formulate the problem in 3-dimensional 

embedding Euclidean space. J. Zaiser (1984) computes the displacement field, the strain field and the 

rotation field in the context of arbitrary shaped geodetic networks and three-dimensional finite 

elements. A curvilinear three-dimensional finite element method is introduced by E. W. Grafarend 

(1986) for representation of local strain and local rotation tensors in terms of ellipsoidal, Gauss-

Krüger or UTM coordinates. A study of the estimability-invariance characteristics of deformation 

parameters obtained through the finite element method by using a dimension free approach with results 

that can be immediately specialized to three or two dimensions, has been carried out by A. Dermanis 

and E. W. Grafarend (1993). 

 

Thus, the modelling of the problems connected with deformations in 3-dimensions Euclidean space by 

computing separately the 2- dimensional planar deformations and vertical motions cannot portray the 

real state of crustal deformations. On the other hand, the 3-dimensional Euclidean space methods of 

Earth deformation analysis lose the simplicity of computations in 2-dimensional manifold spaces.  
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Moreover, interpretation of the result of the analysis, namely 3-dimensional deformation tensors and 

particularly invariants associated with them, is not an easy task. 

 

The two-dimensional plane deformation analysis of the crust is limited to investigation of the 

alteration of the metric characteristics of the crust. In other words, the analysis allows us to bring the 

metric tensors of the two states of the body into a one-to-one correspondence. The Earth surface 

deformations can’t be completely specified by the change of the metric tensor, as a two dimensional 

Riemannian manifold which is embedded in three dimensional Euclidean space. 

 

These facts indicate the need for reevaluation of the theoretical foundations of the Earth deformation 

analysis methods. Regarding these disadvantages and difficulties as well as the fact that we have only 

surface geodetic measurements in our hands, it seems that a surface approach in the Earth’s surface 

deformation analysis based on 3-dimensional Euclidean displacement fields is an appropriate solution.  

In other words, an approach that keeps the simplicity of computations in 2-dimensional curvilinear 

spaces includes both vertical and horizontal components of the Earth deformations, and refers to the 

real surface of the Earth will be able to resolve the problems of the existing methods [Grafarend et al., 

2003].  

 
This study presents an analytical formulation and implementation of a method of Earth’s surface 

deformation analysis referring to the real surface of the Earth. We benefit from the mathematical 

models and tools of surface deformation analysis in shell theory [Mushtari et al., 1961, Naghdi 1972, 

Reissner 1974, Pietraszkiewicz 1977, Olszak 1980, and Libai 1998], differential geometry of surfaces, 

in order to develop appropriate modelling of deformations on the Earth’s surface.  Here we describe 

the Earth’s surface as a 2-dimensional Riemann manifold , namely a curved surface, embedded in a 

3-dimensional Euclidean space .  Thus, deformation of the surface can be completely specified by 

the change of the first and second fundamental tensors, namely changing of metric tensor and 

changing of curvature tensor, of the surface, which  changing of curvature tensor is responsible for 

detection of vertical displacements on the surface. Special emphasis is given to definition of proper 

invariants of the introduced surface deformation tensors with meaningful physical interpretations.  

2M

3E
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Following the conventions of continuum mechanics, all the coordinates related to reference state are 

printed in capital letters and coordinates related to current state are printed in the small letters.  

Hence, we apply the summation convention over the repeated indices and an index printed in Greek 

letter will take only values of 1, 2, and index printed in Latin letter will take values of 1, 2, and 3.  The 

partial derivatives of functions F with respect to surface coordinates xα will be denoted by ,Fα . 

 
The elements of differential geometry of the surfaces are developed in chapter 2, which is include the 

introducing the first fundamental form and second fundamental forms changing of curvature tensor. 

Particularly, the main concepts of surface vectors and spatial vectors are reviewed, together associated 

mathematical formulas from differential geometry.  Chapter 3 begins with the introduction into the 

concepts of surface deformation from the point of mapping. The Euler-Lagrange deformation tensors 

of first kind and second kind are defined. Then deformation measure formulas as a function of 

displacement vector are described. Application of deformation measure tools on the real surface of the 

Earth expressed in chapter 4.A Gaussian representation of the Earth surface in terms of the geodetic 

coordinates with respect to the reference ellipsoid is assumed and invariants of changing of metric 

tensor and changing of curvature tensor are extracted. The efficiency of developed deterministic 

method for geometrical modelling of the Earth surface deformation is demonstrated in chapter 5 by 

analysis of data sets. The southern California, which is selected for the analysis of the capacities of the 

intrinsic method, is known as an extraordinary natural laboratory the study of geodynamics process. 

We investigated the links between various patterns of the surface deformation measure tools with 

geophysical and seismological evidence of the test area to judge the validity of our results. Chapter 6 

concludes the main contribution and results in this study and makes a prospect of further applications 

of developed theory and methods conclude the study.  
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  Chapter 2  
 
Elements of Differential Geometry of a Surface 
 
Differential geometry of a surface has been developed in details in many mathematical monographs.  

An excellent introduction to differential geometry of a surface, within the scope necessary in shells 

theory and map projection, may be found in the books of E. Grafarend and  Friedrich W. Krumm 

(2006) , A. Visconti (1992), D. Martin (1991), N. Prakash (1981).Here we present an introduction to 

differential geometry of a surface and Riemannian manifolds.  Thus, the basic definitions and 

principles of the theory of manifolds, within the scope necessary for this study, are recapitulated here.  

In fact, this chapter introduces the mathematical language of this thesis. 

 

2-1. Geometry of a surface  
 
An embedded Riemann manifold   in 3–dimensional Euclidean space , namely embedding 

space, can be defined by three scalar functions of two parameters  

2M 3E

  (2.1)
{ }

1 1 1 2 2 2 1 2 3 3 1 2

3
1 2 1 2

1

( , ) , ( , ) , ( , )

( , ) ( , ) , 1, 2,3k k
k k

k

x f x f x f

OM f x k

θ θ θ θ θ θ

θ θ θ θ
=

= = =
→

= = = = ∈∑x f j j

 
where the summation convention over the repeated index k has been used .  The vector  is known as 

the position vector of the surface points 

x

2M ∈M while { }, 1, 2,kx k∈ 3  and { }, 1,αθ α ∈ 2  are 

called Cartesian and curvilinear Gaussian coordinates of the Riemann manifold, respectively.  In 

other words, a generic point in Euclidean space  can be a set of three coordinates while  a generic 

point on the Riemann manifold can be characterized by a set of two Gaussian surface coordinates 

3E

2M

αθ  .  Latin indices will refer to space coordinates while Greek indices will refer to surface 

coordinates.  The partial derivatives of functions F with respect to surface coordinates xα will be 

denoted by ,Fα .The subscripts in this notation must be understood as indices, which are subject to the 

summation convention. The first partial derivatives of the vector  with respect to Gaussian 

coordinates, tangent to the Riemann manifold at point

x

M , are the so-called tangential base vectors.    
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                                          Fig 2-1: Gaussian base vectors { }1 2 3, ,a a a  
 
They characterized the directions of the curvilinear coordinates on the Riemann manifold  and 

defined by  

2M

                                               Box 2-1 : Gaussian base vectors 
 

                                                 

3 1 2 1 2)

,
( )

,

(

k
kxα α α

β

α
θ
θ

∂
= ≡ =

∂

= × / ×

f
a x j

a a a a a
 (2.2)

 
where αa   is the covariant base vectors of the two dimensional tangent vector space and  denotes 

vector product, which is taken according to the right-hand rule.  The vector   called the unit normal 

vector to the Riemann manifold, since .The base vectors 

×

3a

3, α< >=a a 0 αa define at 2M ∈M  a two-

dimensional linear vector space in which we can introduce the contravariant base vectors  V αa , dual 

to those of  αa  , by the relations , β α
βα δ< >=a a  where α

βδ   is the Kronecker delta.  In the other 

word, the vector αa  is an element of the vector spaceV , αa   is an element of its dual space.  
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Meanwhile it is space of the linear functions over the elements of  V  [Grafarend 2004].It is easy to 

see that the vectors αa satisfying the equations , β α
βα δ< >=a a   have the form  

 1 22 1

1 2 1 2

3 3

3 3, ,
versus× ×

= =
< × > < ×

a a a a
a a

a a a a a a >
 (2.3)

 
2-2. First fundamental form  
 
The coefficients defined by , ,, k l

kla xαβ α β α βx δ=< >=a a  are known as the covariant components of 

the surface metric tensor or first fundamental form tensor of the surface.  The contravariant 

components aαβ of the surface metric tensor may be obtained from the following set of linear 

algebraic equations a aαβ α
βγ γδ= .It follows now from the equations   ,α α

β βδ< >=a a   and equations 

(2.3) that  

  (2.4), ,a aα αβ αβ α β
β= =<a a a a >

 
Indeed equation (2.4) transforms the covariant base vectors into the contravariant base vectors.  

These equations relate the covariant and contravariant basic vectors.  It should be noted, that due to 

the  normality of the unit normal vector and its orthogonality to the tangent base vectors the unit 

normal vector and its reciprocal vector are equal and consequently there is no difference between the 

contravariant and covariant coordinates of normal vector.  In various geometrical formulae, it is 

convenient to make use of surface quantities: 3 3, ,versus α β
αβ α β

αβε ε=< > =< ××a a a a a a >  

which are known as covariant and contravariant compoents of surface alternation tensor 

,respectively.  Using some algebraic transformations it is shown that [Ernst 1981] 

 [ ]
1 1 1 2 1 3

2
1 2 3 2 1 2 2 2 3

3 1 3 2 3 3

, , ,
, , , ,

, , ,
a

< > < > < >

< × > = < > < >< > = >
< > < > < >

a a a a a a
a a a a a a a a a

a a a a a a
0  (2.5)

 
and for alternative tensor components we obtain  
 

 
12 21 11 22

12 21 11 22

, 0
1 , 0

a

a

ε ε ε ε

ε ε ε ε

= − = = =

= − = = =
 (2.6) 
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where 
 

                                           
3 3

3 3

3

,

,
1 1( ) ( )
2 2

α β αβ
α β αβ

β α αβ
α αβ β

α β
αβ α β αβ

ε ε

ε

ε ε

× = × =

× = × =

= × = ×

a a a a a a

a a a a a a

a a a a

ε

a

                       (2.7) 

  
These formulae are very useful in general discussion of various geometrical relations at a Riemann 

manifold. 

 
2-3. Second fundamental form  
 
Differentiating the unit normal with respect to surface coordinates, we obtain two vectors tangent to 

the Riemann manifold at point M , 3,α ∈a V .The coefficients defined by  

  (2.8)3, 3, 3 ,, , ,bαβ α β β α α β= − < >= − < >=< >a a a a a a
 
where are known covariant components of a surface curvature tensor or second fundamental form 

.Having the covariant coordinates of the first fundamental tensor aαβ  and the second fundamental 

tensor bαβ  of the Riemann manifold.  The components bαβ can also be given in terms of Cartesian 

components of the normal vector and the partial derivatives of the direction coefficients:  

.Gaussian curvature K and mean curvature H can be determined as two geometric 

invariants associated with these tensors 

, 3
k

kb x aαβ αβ=

 

1 ,
2
1
2

bK b b b
a

H a b

αγ βµ bαβ λµ αβ

αβ
αβ

ε ε= =

=

=
 (2.9)

 
2-4. Surface vectors  
 
Any surface vector ∈v V  may be represented by its components, covariant bases or contravariant 

bases, respectively, according to the linear relations  

  (2.10): , ,v v where v versus vα α α α
α α α α= = =< > =<v a a v a v a >
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where vα  and vα are called contravariant and covariant components of surface vector , 

respectively.  By means of the equation (2.4) we obtain  

v

 ,v a v v a vα αβ β
β α= αβ=  (2.11)

 
This established a law for raising and lowering of indices of the vector components.  The geometrical 

meaning of these components is illustrated in the figure 2-2. 

 

                       Fig 2-2: Illustration of surface vector components (covariant, contravariant) 

 
2-41. Covariant differentiation  
 
The partial derivatives of the tangential base vectors may be decompose with respect to the tangential 

base vectors themselves and the unit normal vector by means of Gauss’ formula: 

  (2.12), , bκ
α β αβ αβ κ αβΓ= = +a r a 3a

 
The components  κ

αβΓ  are called surface Christoffel symbols of the second kind, which is defined as 

vector components of the partial derivatives of the base vector αa .  They can be expressed in terms of 

the components of the metric tensor by means of  
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, ,

, , ,

, ,

1 ( )
2

a

a a a

µ µγ µ µ β
αβ αβγ α β α

αβγ βγ α γα β αβ γ

Γ Γ

Γ

= =< >= − < >

= + −

a a a a
 (2.13)

 
The components αβγΓ  are called surface Christoffel symbols of the first kind.  Let us differentiate a 

surface vector field  ∈v V  along the coordinate lines  

                        Box 2-2 : Differentiate a surface vector  w.r.t surface coordinates 

 , ,

3 | 3

( ) ( )

|

v v v b v

v b v v b v

α α α λ
β α β λβ α αβ

α α β α
β α αβ α β β α

Γ
θ
∂

= = + +
∂

= + = +

v a a

a a a a

3
α

β a

, v

 (2.14)

where operations defined by  

 , ||v v v versus v vα α α λ λ
β β λβ α β α β αβΓ= + = − λΓ  (2.15) 

 
are called the covariant derivative of the surface vector components.   
 
 
2-5. Spatial vectors  
 
We shall have to deal with spatial vectors ∈ ≡ ×u U V N , where is a one-dimensional vector 

space, orthogonal to   , having the unit normal vector as its basis, and 

N

V 3a ×  in here is the Cartesian 

product operation.  The spatial vector  is expressible in terms of its components in the spatial basis u

{ }, 1, 2,k k =a 3

a

3

3)

a

  or    according to  ka

                                Box 2-3 : Differentiate spatial vector w.r.t surface coordinates 

  (2.16)3
3u uα

α= +u a

and using  (2.14) we obtain  

  (2.17)
3 3

, ,

3 3
| ,

( | ) ( )

( ) (

u b u u b u

u b u u b u

α α α
β β β α β αβ

α α
α β αβ β β α

= − + +

= − + +

u a

a a
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Chapter 3  
 
Deformation of the Surface  
 
By surface deformation, we understood a one-to-one mapping from one Riemann manifold, namely 

left, on another Riemann manifold, namely right.  In shells theory literatures left one is called 

reference or un-deformed surface while the right one is called the current or deformed surface.  In 

terms of the geometry of surfaces, this is taking reference to its first fundamental form, and second 

fundamental form.  In particular, in order to derive certain invariant measure of such mapping, namely 

deformation measures, a canonical formalism is applied: The simultaneous diagonalization of two 

symmetry matrices is of focal interest.  Such diagonalization is in the following form 

                              Simultaneous diagonalization of two symmetric matrices : 
 
If  is a symmetric matrix and n nA ×∈R n nB ×∈R is a symmetric positive-definite matrix such that 

 exists, then there exists a non-singular matrix 1AB− X such that both 
1 2( , , , )T

nX AX diag λ λ λ= … and  are diagonal matrices, namely (1,1, 1)T
nX BX I diag= = …

nI the  dimensional unit matrix. n
 
 
3-1. Mapping from the left to the right two dimensional Riemann manifold 
 
Let there be given the left two–dimensional Riemann manifold { }2 ,l MNGM and the right two–

dimensional Riemann manifold { }2, gr vµ
�M with standard metric [ ] [ ]MN NMG G= and v vg gµ µ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , 

respectively, both symmetric and positive-definite.  An open subset  and   

respectively, is covered by chart {

2
lU ⊂ �M l

2
r rU ⊂M

},l lUΦ�  and { },r rUΦ  respectively.  Such charts are constituted by 

surface coordinates { }1 2 2,l l lθ θ Φ∈ ⊂ R and { }1 2 2,r r rθ θ Φ∈ ⊂ R over the open sets  

and  , respectively.  Figure 3-1 illustrates by a commutative diagram the mapping 

( )lUΦ

( )rUΦ

2: lf →M M2
r   and 1: ( ) ( )l r rf U U f lΦ Φ Φ Φ −→ = D D , which governs the descriptive elements 

once we transform from the left Riemann manifold to the right Riemann manifold, [E. Grafarend and 

Friedrich W. Krumm (2006)].  
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                                   Fig 3-1: The commutative diagram  ( , , , )l rf f Φ Φ  
 
3-2. Deformed surface geometry 
 
The different ways of describing deformation may be used in general: Lagrangian or Eulerian.  In the 

Lagrangian description, geometry of reference surface, or left Riemann manifold, is supposed to be 

known and all geometric quantities of current surface, or right Riemann manifold, are expressed in 

terms of geometric quantities of the reference surface and displacement vector between these two 

surfaces.  In the Eulerian, description geometry of the reference surface is expressed in terms of 

current surface geometry and displacements.  In this study we assumed geometry of reference surface 

is known and deformation of the surface are treated in Lagrangian portray.  A comparative analysis of 

the metric tensors of the two manifolds under comparison is the standard way from the description of 

deformation in continuum mechanics [A.C. Eringen (1962), G. Beda et al. (1995), p.18; D. B. 

Macvean (1968), p.158].  A comprehensive review of various local as well as global multiplicative 

and additive measures of surface deformation, based on the metric tensors of two parameterized 

surfaces, is given in [E. Grafarend and Friedrich W. Krumm (2006)].  In addition to the metric tensor, 

a comprehensive analysis of the second fundamental tensors of the reference and current surface is 
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considered as a way of describing surface deformation in shell theory.  In this study, we concentrate 

on the most common measures of surface deformation, which are derived from the first and second 

fundamental tensors of the two surfaces and some certain invariants of these derived measures. 

 
3-21. A first multiplication measure of deformation: The Cauchy –Green 
deformation tensor 
 
We recall the assumption that the reference and current surface are considered as 2-dimensional 

Riemann manifolds  and  embedded in 3-dimensional Euclidean spaces .  The motion of 

2-dimensional manifold carries various reference surface points through various current surface 

points.  On the reference surface, the place in the embedding space of a generic point is given by the 

placement vector .  After deformation, the place in space of the same point is given by a new 

placement vector . This is expressed by  

2
lM 2

r
�M 3E

X

x

                                         ( ) ( )versusλ λ Ω Ω Ω λθ θ Θ Θ Θ θ= =  (3.1)
 
which  { }1 2,Θ Θ  and { }1 2,θ θ are surface convected coordinates of reference surface and current 

surface .  Then each point in the current surface comes from a pointm M  in reference surface, which 

is illustrated in figure 3-2.  We assume the mapping are single valued and have continuous partial 

derivatives with respect to their arguments.  Moreover, each member of this mapping is the unique 

inverse of the other in a neighbourhood of the reference surface point M .A unique inverse of the first 

of  (3.1) exists, at least in a δ  neighbourhood of ,if and only if the determinant of Jacobian matrix 

is not identically zero,i.e.,

m

/ 0λ Ωθ Θ∂ ∂ ≠  and 0
λ λθ θ δ− <  . No region of positive, finite volume is 

deformed into one of zero or infinite volume. Referring to Figure 3-2, the displacement vector  is 

defined as

u

1 2 1 2( , ) ( , )Θ Θ θ θ= −u X x  . Infinitesimal vectors dΘ  in  and lM dθ  in may be 

expressed as  

rM
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                                    Fig 3-2: The reference and current surface  
 
 

 
d d versus d

versus

dΩ λ
Ω λ

Ω λΩ λ

Θ θ
Θ

Θ θ

∂ ∂
= =
∂
∂ ∂

= =
∂ ∂

X xX x

X xA a

θ∂  (3.2)

 
where  and ΩA λa  are base vectors at ΩΘ and Ωθ  ,respectively.  The base vectors are tangential to 

the coordinate curve { }1 2,Θ Θ and{ }1 2,θ θ .The tangential base vectors in current surface λa can 

be decomposed with respect to the tangential base vectors ΩA  and the unit normal vector  in 

reference surface [Ernst   1981] 

3A

                                                             (3.3)3
α

λ λ α λζ•= +a AA A
 
The components of the surface tensor α

λ•A  and the surface vector λζ can be given in terms of surface 

components of surface displacement vector  

 
3 3
, ,

3|

U B U U B U

U B U

α γ
λ λ λ α λ λγ

α α α α
λ λ λ λ

ζ

δ•

= + = +

= + −

� � �

� �A

�
 (3.4)
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where coordinates of the mixed tensor Bα
λ  can be obtained by the rule of raising indices applied to the 

tensor of second fundamental form Bλς as 

 ,B B A Bα α ς ας
λ λς λς=< > =A A  (3.5)

 
Then the unit normal vector to the current surface  can be expresses with respect to the tangential 

base vectors  and the unit normal vector in reference surface  

3a

ΩA 3A

                                       3
3

3 3

( ) ( ) (
) (

α β
λ τ λ Ω λ τ Ψ τ

α β
λ τ λ Ω λ τ Ψ τ

ζ ζ
ζ ζ

• •

• •

+ +
= =

+ +
a ×a A A × A Aa
a ×a A A × A A

A A
A A

3 )
 (3.6)

 

Assuming the two, Riemann manifolds { },l AΩΦM and { },r aλφM  as embedded submanifolds of 

two different 3-dimensional Euclidean spaces , the first fundamental forms 3E lI  of the  and the 

first fundamental forms 

lM

rI  of the in surface local coordinates of manifolds are specified by  rM

                    Box 3-1 : Left versus right Cauchy-Green deformation tensor  

, ( ) , ( )

( ) ( )

( ) ( )

                     

l r

l r

I d d A d d versus I d d a d d

Lagrangian first fundamental form Eulerian first fundamental form
I A d d I a d d

A d d a

Ψ Ω Φ ψ λ φ
ΩΦ λφ

Ψ Ω Φ ψ λ φ
ΩΦ λφ

Ω Φ
Ψ λ φ ψ

ΩΦ λφλ φ

Θ Θ Θ θ θ θ

Θ Θ Θ θ θ θ

Θ ΘΘ θ θ θ
θ θ

=< >= =< >=

= =

∂ ∂ ∂
= =

∂ ∂

X X x x

, , , ,

, ,

( ) ( )

- -

( ) ( )

( ) ( )

     

l r

d d

A d d a d d

Left Cauchy Green deformation tensor Right Cauchy Green deformation tensor

I c d d I C d d

where where

c A C

λ φ
Ω Φ

Ω Φ

Ψ Ω Φ λ φ ψ λ φ Ω Φ
ΩΦ λ φ λφ Ω Φ

ψ λ φ Ψ Ω Φ
λφ ΩΦ

ψ Ψ Ω Φ
λφ ΩΦ λ φ Ω

θ θ Θ Θ
Θ Θ

Θ Θ Θ θ θ θ θ θ Θ Θ

θ θ θ Θ Θ Θ

θ Θ Θ Θ

∂
∂ ∂

= =

= =

= , ,( ) ( )aΨ ψ λ φ
Φ λφ Ω ΦΘ θ θ θ=  (3.7) 

 
which cλφ  and C   are called left Cauchy-Green deformation tensor and right Cauchy-Green 

deformation tensor, respectively.  Both of these tensors are symmetrical and positive-definite. 

ΩΦ
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3-22. Strain tensor 
 
The difference of the first fundamental form of reference surface and current surface lead us to the 

definition of well-known additive measure of deformation called Euler-Lagrange deformation tensor 

of first kind or tensor of change of metric. The symmetric Euler-Lagrange deformation tensors are 

symmetric and play power tools in studying deformation. 

                       Box 3-2 : Left versus right Euler-Lagrange deformation tensors  
 

( ) ( )

( ) ( )

2 2

1 1( ) (
2 2

r l r lI I a d d A d d I I a d d A d d

d d d da A d d a A d
d d d d

C A d d a c d d

E d d e d d
where

d dE a A e a
d d

λ φ Ω Φ λ φ Ω Φ
λφ ΩΦ λφ ΩΦ

λ φ Ω Φ
Ω Φ λ

λφ ΩΦ λφ ΩΦΩ Φ λ φ

Ω Φ λ φ
ΩΦ ΩΦ λφ λφ

Ω Φ λ φ
ΩΦ λφ

λ φ

ΩΦ λφ ΩΦ λφΩ Φ

θ θ Θ Θ θ θ Θ Θ

θ θ Θ Θ d φΘ Θ θ
Θ Θ θ θ

Θ Θ θ θ

Θ Θ θ θ

θ θ
Θ Θ

− = − − = −

= − = −

= − = −

= =

= − =

θ

)

1 1( ) ( )
2 2

d dA
d d

C A a c

Ω Φ

λφ ΩΦ λ φ

ΩΦ ΩΦ λφ λφ

Θ Θ
θ θ

−

= − = −

 (3.8)

 
3-23. Changing of curvature tensor 
 
In surface deformation analysis, as another additive measure of surface deformation we can take into 

account the difference between the second fundamental forms of the surface at the reference- and 

current state.  The additive comparison of the second fundamental form leads us to the definition of 

the Euler-Lagrange deformation tensor of the second kind or the tensor of change of curvature.  

 
                 Box 3-3 : Left versus right Euler-Lagrange deformation tensors of second type 
 

( ) ( )

r l r lII II b d d B d d II II b d d B d d

d d d db B d d b B d
d d d d

K d d k d d
where

d d d dK b B k b B
d d d d

λ φ Ω Φ λ φ Ω Φ
λφ ΩΦ λφ ΩΦ

λ φ Ω Φ
Ω Φ λ φ

λφ ΩΦ λφ ΩΦΩ Φ λ φ

Ω Φ λ φ
ΩΦ λφ

λ φ Ω Φ

ΩΦ λφ ΩΦ λφ λφ ΩΦΩ Φ λ φ

θ θ Θ Θ θ θ Θ Θ

θ θ Θ Θ dΘ Θ θ
Θ Θ θ θ
Θ Θ θ θ

θ θ Θ Θ
Θ Θ θ θ

− = − − = −

= − = −

= =

= − = −

θ

 (3.9)
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3-3. Deformation measurement tools as a function of displacement vector 
 
For the practical application of the theory, it is more convenient that measures of deformation be 

expressed as a function of displacement vector .Thus we developed the measurement tools as a 

function of displacement vector and considered nonlinear terms of these relations.  By means of chain 

rule and equation (3.8)   

u

                 Box 3-4 : Left versus right Cauchy-Green deformation tensors as a    
                                                        function of displacement vector u  

, , , ,( ) ( ) ( ) ( )

, ,

( ) ( ) ( ) ( ), ,

, , , ,

, ,

C a c AΨ ψ λ φ ψ Ψ Ω Φ
ΩΦ λφ Ω Φ λφ ΩΦ λ φ

Ω Φ λ φ

Ω Φ λ φ

Ω Φ Ω Φ λ φ λ φ

Ω Φ Ω

Θ θ θ θ θ Θ Θ Θ

Θ Θ θ θ

Θ Θ θ θ

Θ Θ Θ Θ θ θ θ θ

Θ Θ Θ

= =

∂ ∂ ∂ ∂
=< > =< >

∂ ∂ ∂ ∂
∂ + ∂ + ∂ − ∂ −

=< > =< >
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

=< > + < > + =< > + < > −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

< > + <
∂ ∂ ∂ ∂

x x X X

u X u X x u x u

u u u X x x u u

X u X X

, , , , ,

, ,

, ,

, , , ,
, , , ,

Φ λ φ λ

Ω Φ Ω Φ λ φ λ φ

Ω Φ Ω Φ λ φ λ φ

Θ θ θ θ
∂ ∂ ∂ ∂

> =< > − <
∂ ∂ ∂ ∂

=< > + < > + =< > + < > −

< > + < > < > − < >

x u u x

u u u A a a u u
A u A A a u u a,

φθ
>

 (3.10)

 
Analogous to the left and right Cauchy-Green deformation tensor as a function of displacement vector, 

we can derive left and right Euler-Lagrange deformation tensor as a function of displacement vector 

by subtracting of metric tensor and Cauchy-Green deformation tensor 

                 Box 3-5 : Left versus Euler-Lagrange  deformation tensors of the first kind as a    
                                                        function of displacement vector u  

, , , , , ,

, ,

1 1( ) ( )
2 2
1 1( , , ( , ,
2 2

, ) , )

E C A e a cΩΦ ΩΦ ΩΦ λφ λφ λφ

Ω Φ Ω Φ λ φ λ φ

Ω Φ λ φ

= − = −

= < > + < > + = < > − < > −

< > < >

u u u A u u a u

A u u a

 (3.11)

 
In analogy to the Euler-Lagrange deformation tensor of the first kind, it is suitable to have the 

Lagrangian deformation tensors of the second kind or the tensor of change of curvature as functions 

of the displacement vector.  To overcome this problem we use the difference between the normal 

vectors in the reference surface  and the normal vectors in the current surface  which 

[Stein 1980].  Box (3.6) introduces the coordinates of the Euler-Lagrange deformation 

3A 3a

3= −w a A3
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tensor of the second kind.  As it can be seen in this box, we end up with expressions of the Euler-

Lagrange deformation tensor of second type as inner products of the partial derivatives of spatial 

vectors w and u, relative to curvilinear coordinates and tangent base vectors. 

               Box 3-6 : Left versus right Euler-Lagrange deformation tensor of second 
                                           type as a function of displacement vector u  

3

3

, , , 3, ,

3,

3

,

( ) ( ),

, , ,

,

d d d dK b B B
d d d d

d d B
d d d

where
B

versus
d d d dk b B b
d d d d

b

λ φ λ φ

ΩΦ λφ ΩΦ φ ΩΦΩ Φ Ω Φ λ

λ φ

ΩΦΩ Φ λ φ

Ω Φ Ω Φ Ω Φ

Ψ
Ω ΩΨ

Ω Φ Ω Φ

λφ λφ ΩΦ λφ Φλ φ λ φ Ω

λφ

θ θ θ θ
Θ Θ Θ Θ θ
θ θ
Θ Θ θ θ

Θ Θ Θ Θ
θ θ θ θ Θ

∂
= − = − < > −

∂
∂ + ∂ +

= − < > −
∂

= − < > − < > − < >

= −

∂
= − = + < >

∂

=

a a

w A X u

w A w u A u

A A

A A

3

, 3, ,

3,

( ) ( ),

, , ,

d d
d d

where
b

Ω Φ

λ φ Ω Ω

λ φ λ φ λ φ

ψ
λ λψ

Θ Θ
θ θ Θ Θ

∂ − ∂ −
− < >

∂ ∂
= − < > + < > − < >

= −

w a x u

w a w u a u

a a  (3.12)
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Chapter 4  
 
The Earth Surface Deformation  
 
The typical problem we are confronted with it is of the following type.  We use surface 

coordinates{ },Λ Φ , called ellipsoidal longitude and latitude, by which we intend to describe a point 

on the Earth’s surface, which is given in a 3-dimensional Euclidean space or embedding 

space{

3E

}, ,X Y Z .  By means of the ambient space, which is represented in terms of given functions 

{ }( , , ( , )), ( , , ( , )), ( , , ( , ))X H Y H Z HΛ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ and known ’’height 

functions‘’ , in terms of geodetic coordinates we arrive with the Gauss surface coordinate 

representation [Grafarend et al., 1992].  

( , )H Λ Φ

[ ] [ ]

1 2 3
1 2 3

2 2

1 2 3 2 2

2

2 2

( , ) X ( , ) X ( , ) X ( , )

( , )
1 sin

( , ) ( , ) cos( ) cos( ) sin( ) cos( ) sin( )
1 sin

(1 ) ( , )
1 sin

A H
E

A H
E

A E H
E

Λ Φ = Λ Φ + Λ Φ + Λ Φ

⎡ ⎤
+ Λ Φ⎢ ⎥

− Φ⎢ ⎥
⎢ ⎥

Λ Φ = + Λ Φ Λ Φ Λ Φ Φ⎢ ⎥
⎢ ⎥− Φ
⎢ ⎥−⎢ ⎥+ Λ Φ
⎢ ⎥− Φ⎣ ⎦

X j j j

X j j j
 (4.1)

With respect to the International Reference Ellipsoid, we call: A as a semi-major axis, B as semi-

minor axis,  is the square of first relative eccentricity.  Placement vector 

 in the reference state, in equation(4.1), is expressed by orthonormal fixed 

frames{

2 2 2( ) /E A B A= − 2

( , )Λ ΦX

}1 2 3, ,j j j .In the intrinsic approach, we consider three base vectors to be associated to any 

point on the reference surface and current surface namely, the unit normal vector and two tangent base 

vectors along the surface components, which are illustrated in chapter 2.  It plays an essential role in 

deformation analysis of surfaces based on the intrinsic approach and called Gaussian surface moving 

frame.  The tangent bases vectors are derived by partial derivatives of Gaussian representation of the 

Earth’s surface relative to surface curvilinear coordinates and the unit normal vector at the point p on 

the reference surface with respect to the surface curvilinear coordinates ( , )Λ Φ will be obtained by 

equations (2.2) in chapter 2.  The base vectors of the two dimensional tangent vector space are 
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constructed by  and1
1 ( , ) /= ∂ Λ Φ ∂ΘA X 2

2 ( , ) /= ∂ Λ Φ ∂ΘA X .  The surface curvilinear coordinates 

of the displacement vector, covariant or contravariant, can be obtained as the inner product of space 

coordinates of the displacement vector u and surface base vectors by the following way: 

 .The  U, , ,U U Ω
Ω Ω=< > =< >u A u AΩ Ω  and UΩ  are contravariant and covariant surface 

components, also and  are contravariant and covariant base vector, respectively.  As it 

mentioned before in chapter 2, there is no difference between the contravariant and covariant 

coordinates of u with respect to  and , i.e. 

ΩA ΩA

3A 3a 3
3 ,U U= =< >u N .  In such a case, the 

displacement vector can be decomposed into the tangential base vectors and the unit normal vector of 

the reference state .  In order to compute the surface 

deformation tensor of first kind it is necessary to know the continuous field of displacement vectors.  

The problem that we confronted with is of the following type: Typically, geodetic observations are 

usually discrete and consequently, the displacement vectors, deduced from the geodetic data, are of 

discrete nature.  Assuming that a sufficient number of appropriately distributed discrete data is 

available, continuous information in space and time has to be estimate by computing best interpolation 

or approximation of the unknown functions over the given discretisation.  The finite element method 

has been introduced as a powerful and widely used numerical technique dealing with this kind of 

problem.  Accordingly, the modelling of surface component of displacement vector  is 

approximated by a set of triangles.  Figure 4-1 represents optimal Delaunay triangulation across the 

Southern California area, whose points of network 

3
3U U U UΩ Ω

Ω Ω= + = +u A A A 3
3A

( , )U Λ Φ

are solutions of the Scripps Orbit and Permanent 

Array Centre (SOPAC).  For illustration of figures, the Albers Conic map projection has been chosen.  

It is a conic, equal-area projection, in which parallels are unequally spaced arcs of concentric circles.  

The parallels are more closely spaced toward north and south edges of the map.  Meridians are equally 

spaced radii about a common center, and cut the parallels at right angles.  The two standard parallels 

are free of angular and scale distortion.  The distortion will be constant along any parallel and small 

for the area between two standard parallels.  In each triangle, a characteristic form of the displacement 

field could be developing by a linear function of geodetic latitude and longitude approximates surface 

component of the displacement vector of type 
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  (4.2)0 0 0 0( , ) ( , ) ( ) ( )U U A B CΛ Φ − Λ Φ = + Λ −Λ + Φ −Φ

 120oW  118oW  116oW  114oW  112oW 

  32oN 

  33oN 

  34oN 

  35oN 

  36oN 

  37oN 

  38oN 

 

Fig.4-1: Triangulation across the Southern California.  Figure is illustrated in Albers Conic Equal-
Area Projection with center of projection at  with standard parallels 

and on reference ellipsoid . 

0 0116.5 / 35W N
033 N 037 N 80GRS

 
Here is the surface component of the displacement vector in specific nodal points in an 

associated triangles and are the surface components of the displacement vector at the 

geometrical central point  in the correspond element.  Then, by means of equation (4.2) in every 

triangle, partial derivatives of the surface components of the displacement are obtainable.  The next 

step is the computation of the height above the reference ellipsoid as a function of surface curvilinear 

coordinates,  and its partial derivatives.  It is done by using the height information through 

the National Elevation Dataset (NED) across the Southern California.  The information can be freely 

download from the internet: (http://seamless.usgs.gov/website/seamless/).  As a higher-resolution 

( , )U Λ Φ

0 0( , )U Λ Φ

0P

( , )H Λ Φ
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product, we made use of NED 1/3 Arc Second, which has a resolution of approximately 10 meters.  

Vertical datum of this kind of data is North American Vertical datum of 1988 (NAVD88), on the other 

hand, our geodetic coordinates computed with respect to the GRS80 reference ellipsoid.  Hence, we 

should convert NAVD 88 to the height above the GRS80 ellipsoid.  This is done by using of the latest 

geoid model GEOID03 that is also available on the internet under: 

(http://www.ngs.noaa.gov/GEOID/GEOID03/).  The GEOID03 model is known as a hybrid geoid 

model, combining gravimetric information with GPS ellipsoidal heights on leveled benchmarks.  The 

GEOID03 model is developed in order to support the direct conversion between ellipsoidal heights 

and NAVD 88 orthometric heights.  For interpolating the height and deriving its partial derivatives 

with respect to the surface curvilinear coordinates in any computation point, we consider the element 

trial solution to be a linear 2-dimensional polynomial in our straight-sided triangular-shaped elements 

based on three NED points in the nearest neighborhoods of the computation point 

 0 0 1 2 0 3 0( , ) ( , ) ( ) ( )H H A A AΛ Φ − Λ Φ = + Λ −Λ + Φ −Φ  (4.3)
 
Here  is the height function for the computation point and ( , )H Λ Φ 0 0( ,H )Λ Φ is the height function 

at the geometrical central point in the corresponding element.  The coefficients are 

determined for each unknown function, based on the nodal values of the function.  Here we compute 

the scalar functions of the elements of the surface deformation tensors, which are invariant referring to 

the change of surface coordinates.  In other words, associated invariants should have evident physical 

interpretations.  We should emphasize here that in contrast to the classical 2-dimensional planar 

deformation analyses, which components of the strain tensor have direct physical interpretations, we 

could not proceed in this way due to the curvilinear nature of the method of analysis.  It is well known 

fact in matrix algebra which eigenvalues are invariant quantities independent of selected coordinate.  

Thus by applying the general eigenvalue problem of surface strain tensor [Grafarend 1995] and 

extract, the eigenvalues of Euler-Lagrangian strain tensor in the following way (denoted with primes) 

1 2 3, ,A A A

 Box 4-1 : Eigenvalues of left versus right Euler-Lagrange deformation tensor of first   
                                                        type(principal stretches) 
 

Left Eigenvalue of Euler-Lagrange Deformation Tensor 

http://www.ngs.noaa.gov/GEOID/GEOID03/
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{ }1 1 2
1,2

1 ( ) ( ( )) 4 (
2

trace E A trace E A det E A− −
ΩΦ ΩΦ ΩΦ ΩΦ ΩΦ ΩΦ′Λ = ± − 1)−  (4.4) 

Right  Eigenvalue of Euler-Lagrange Deformation Tensor 

{ }1 1 2
1,2

1 ( ) ( ( )) 4 (
2

trace e a trace e a det e aωφ ωφ ωφ ωφ ωφ ωφλ − −′ = ± − 1)−  (4.5)

 
Contrary to the eigenvalues of the Cauchy-Green deformation tensors that are positive-definite 

property of deformation tensor, the eigenvalues of the Euler-Lagrange deformation tensor can be 

negative or positive.  Positive principal strain refers to extension and negative principal strain refers to 

compression.  Eigenvalues of Euler-Lagrange strain tensor represents the rates of extensional strain in 

principal directions; their sum defines the rate of surface dilatation as a surface invariant by 

  (4.6)1 1
1 2 1 2( ) (tr E A versus tr e aωφ ωφγ λ λ− −

ΩΦ ΩΦ′ ′ ′ ′ϒ = Λ +Λ = = + = )
 
The surface dilatation is the relative change of area.  The surface dilatation of zero corresponds to no 

change of area, surface dilatation of positive values relates to expansion of the area and negative 

dilatations correspond to a reduction of the area.  Second well-known invariant is the surface 

maximum shear strain 

1 2 1 2

1 2 1 1 2 1( ( )) 4det( ) ( ( )) 4det( )

versus

tr E A E A tr e a e aωφ ωφ ωφ ωφ

ξ λ λ
− − −

ΩΦ ΩΦ ΩΦ ΩΦ

′ ′ ′ ′Ξ = Λ −Λ = −

= − = − −
 (4.7)

 
where  and Ξ ξ  is the shear across the direction of its maximum value that has an always-positive 

sign.  Rotation around the normal to the surface could be interpreted as the third component of the 

rotation vector along the unit normal vector to the surface, /ψΨ  which is related to the rotation tensor 

by the following way [Pietraszkiewicz 1977]  

 1
2 2

1R versus rωφ
ωφε ψΩΦ

ΩΦΨ = = ε  (4.8)

where 

 

| | | |

| , | | , |

1 1( ) (
2 2

R U U r u u

U U U u u u

ωφ ω φ φ ω

θ

)

ω φ ω φ ω φ θ

ΩΦ ΩΦ ΦΩ

Θ
ΩΦ Ω Φ ΩΦ Θ

= − = −

= −Γ = −Γ

 (4.9)
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Then 

 , , , ,
1 1( ) (
2 2

R U U r u uωφ ω φ φ ωΩΦ Ω Φ Φ Ω= − = − )  (4.10)

 
where / ωφε εΩΦ  are the contravariant components of surface alternation tensor, which are introduced 

in chapter 2 and /R rωφΩΦ  are linearized surface rotation tensors.  In analogy to the surface curvilinear 

coordinates of the displacement vector u , it is possible to obtain surface curvilinear coordinates of the 

difference between the normal vectors in the reference surface and current surface .  In the other 

word:  .The  W

w

, , ,w AW W Ω Ω
Ω Ω=< > =< >w A Ω  and WΩ  are contravariant and covariant 

surface components.  As it mentioned before, there is no difference between the contravariant and 

covariant coordinates of  with respect to  and , i.e. w 3A 3a 3
3 ,W W 3= =< >w A .  The vector  

can be decomposed into the tangential base vectors and the unit normal vector of the reference state 

.  In order to compute the surface deformation tensor of 

second kind it is necessary also to know the continuous field of difference between the normal vectors 

in the reference surface and current surface.  Moreover, the partial derivatives of a vector w can be 

derive as partial derivatives of surface components of the vector , by finite element method  similar 

which illustrated in displacement vector u .  Comparing with the invariants of the Euler-Lagrange 

deformation tensor of the first kind, namely by considering the matrix representation of the curvature 

tensor to be symmetric, is more adequate to apply the general eigenvalue problem for obtaining the 

eigenvalues of Euler-Lagrange deformation tensor of second kind (denoted with double primes) 

w

3
3W W W WΩ Ω

Ω Ω= + = +w A A A 3
3A

w

    Box 4-2 : Eigenvalues of left versus right Euler-Lagrange deformation tensor of second  type 
 

Left Eigenvalue of Euler-Lagrange Deformation Tensor 

{ }1 1 2
1,2

1 ( ) ( ( )) 4 (
2

trace K A trace K A det K A− −
ΩΦ ΩΦ ΩΦ ΩΦ ΩΦ ΩΦ′′Λ = ± − 1)−  (4.11) 

Right  Eigenvalue of Euler-Lagrange Deformation Tensor 

{ }1 1 2
1,2

1 ( ) ( ( )) 4 (
2

trace k a trace k a det k aωφ ωφ ωφ ωφ ωφ ωφλ − −′′ = ± − 1)−  (4.12)
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where /K kωφΩΦ is the Euler-Lagrangian deformation tensor of second kind.  The correspondent 

eigenvalues are named principal curvatures.  Gaussian curvature and mean curvature are two well-

known invariants of deformation tensor of the second kind, which can be determined as two geometric 

invariants associated with the curvature tensors.  Gaussian curvature is unaffected by the change of 

sign of the unit normal vector while the mean curvature reflects this change.  This significant 

invariance property of the Gaussian curvature function, beside its invariant nature with respect to a 

change of surface coordinates, makes it the most appropriate tool to determine the geometry of the 

surface.  Therefore, the differences of the Gaussian or mean curvatures of the current- and reference 

surface are considered more appropriate surface deformation measures, which can be obtained by the 

following way  

 1 (
2

h H a b A Bωφ
ωφ

ΩΦ )ΩΦ− = −  (4.13)

 
In this study we assumed geometry of reference surface is known and deformation of the surface are 

treated in Lagrangian portray.  The change of the mean curvature between its value in reference 

surface and current surface is 

 1 ( )
2

k K b b B Bδ θψ δθ ψε ε ε εσ σ ∆Σ ΘΨ ∆Θ ΣΨ− = −  (4.14)

 
where k is the mean curvature in the current surface and K is the mean curvature in the reference 

surface.  
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Chapter 5  
 
Surface Deformation Patterns of Southern California  
 
The efficiency of proposed methods in last chapters in viewpoint of deterministic solutions in order to 

modelling of the surface deformation is demonstrated here by analysis of the real data set.  The test 

area, namely southern California is the very famous region at the point of seismicity events.  Another 

reason of choosing this region is that it include very dense networks of GPS stations with daily 

solutions in several years ,which is free available through the internet .Various surface deformation 

patterns are computed and compared with the results of seismicity map of this region . 

 
5-1.Tectonic setting 
 
Southern California, illustrated in figure 5-1, is a region of high seismicity and widely distributed 

active faulting.  The relative plate motion between the Pacific and North American cause a highly 

complex system of sub-parallel transform faults to accommodate the right lateral motion of 

50 .  Model of global plate motions range from 48  in terms of right lateral shear in 

Central California, namely parallel to the Central San Andreas Fault [DeMets et al., 1987] to only 38 

on or near San Andreas Fault.  Another result of about 8 (15% of the relative plate 

motion) is documented by the 50-100 km wide Eastern California Shear Zone (ECSZ) which extends 

N35W from the eastern end of the Big Bend to the Owens Valley along a small circle about the Pacific 

–North American pole of rotation [Savage 1990].  The Southern part of the ECSZ is the site of largest 

seismic events, which in recent years has hit Southern California strongest.  The large recent 

earthquakes occurred in the ECSZ of strength 

/mm yr /mm yr

/mm yr /mm yr

WM  7.3 (Landers 1992), and WM  7.1 (Hector Mine 

1999).  Both of them were right lateral strike-slip events in direction of NNW, trending subvertical 

faults, close in space and time, especially in a region where earthquakes recur every thousand years.  

The Landers and Hector Mine earthquakes have indeed provided important data on postearthquake 

deformation.  Viscoelastic models have been proposed to explain the post-seismic relaxations 

following the Landers [Pollitz et al., 2000] and Hector Mine [Pollitz et al., 2001] earthquakes.  

However, any extrapolation of the available post-seismic earthquake data does not suggest that the 

velocities in the Landers array will return to their pre-Landers values soon [Savage et al., 2003].   
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Fig.5-1: The Southern California Fault summarizes San Andreas Fault (SAF), the Garlock fault (GF), 
the San Jacinto fault, the San Gabriel fault (SGF), the Elsinore fault (EF).  The mountain range extend 
from San Bernardino Mtns. Regions referenced in the text are the Eastern California Shear Zone 
(ECSZ), the Owens Valley (OV), the Western Transverse Ranges (WTR), the Ventura Basin (VB), the 
Los Angeles Basin (LAB).  Figure is illustrated in Albers Conic Equal-Area Projection with center of 
projection at  with standard parallels 0 0116.5 / 35W N 033 N and 037 N on reference ellipsoid . 80GRS
 
  
On January 17th in 1994, Northridge WM  6.7 earthquake produced the largest ground motions in the 

Los Angeles region.  The E-W striking sedimentary basin lies just south of the Western Transverse 

Ranges, a region influenced by the Big Bend in the north and characterized by E-W striking thrust 

faults, N-S shortening, and substantial uplift [Namson et al., 1988].  Unlike the most strike-slip 

earthquakes along the Northwest trending faults in ECSZ, the Northridge earthquake was a deep 

thrust-type event with a strike of 122  and a substantial up-dip component of slip [Wald et al., 1996].  

However, [Stein et al., 1994] investigated possible stress triggering of the Northridge event by 

previous earthquakes.  Imperial Valley extends from the southern end of the San Andreas Fault (SAF) 

0
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to the United States – Mexico border.  It is one of the most seismically active portions of the Pacific –

North American plate boundary.  On October 15th in1979, a WM  6.9 earthquake occurred in this 

region.  A relatively fast moving fault of estimated average slip rate along the Imperial Fault ranges 

from 15-20 based on shoreline deposits [Thomas et al., 1996] to 35-43 based on 

conventional geodetic surveys [Bennett et al., 1996; Wdowinski et al., 2001] was documented.  

Geodetic investigations indicate that a rate of imperial Fault accommodates nearly 80% of the total 

plate motion between the North American and Pacific Plates.  InSAR has also been used to land 

subsidence associated with geothermal fields in Imperial Valley [Massonnet et al., 1997].  Figure 5-2 

illustrates the seismicity map of the Southern California during the range of four years between 

January 2001 and January 2005, which can be getting through the Southern California Earthquake 

Center (SCEC) (http://www.scec.org).  This figure shows earthquakes with magnitude bigger than 

three.  
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Fig. 5-2: Southern California seismic events with  from the Southern California Earthquake 
Center (January 2001 and January 2005) which are scaled by magnitude.  Figure is illustrated in 
Albers Conic Equal-Area Projection with center of projection at  with standard 
parallels 

3M ≥

0 0116.5 / 35W N
033 N and 037 N  on reference ellipsoid . 80GRS
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5-2. Data sets 
 
Our GPS field observations are taken from Scripps Orbit and Permanent Array Center (SOPAC), 

which include archive high-precision GPS data particularly for the monitoring of earthquake hazards 

tectonic plate motion, crustal deformation (http://sopac.ucsd.edu/).Given positions by SOPAC are 

provided in ITRF2000 and NAD83, and include both horizontal and vertical velocities and their 

accuracies.  All the chosen stations have individual and continuous solutions up to 4 years, between 

January 2001 and January 2005 and take into account the linear velocity between those epochs 

[Nikolaidis 2002].  Figure 5-3 illustrates the sites of SOPAC across the Southern California.  We have 

chosen dense network of stations to get various surface deformation patterns of the Southern 

California.  
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Fig.5-3: Sites of SOPAC network by individual solutions between 2001 and 2005.  Figure is illustrated 
in Albers Conic Equal-Area Projection with center of projection at  with standard 
parallels 

0 0116.5 / 35W N
033 N and 037 N on reference ellipsoid . 80GRS
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Figure 5-4 illustrates horizontal velocity rates of the area assuming a stable North America plate.  The 

velocity field reaches a value of approximately 48 in terms of right lateral shear in the 

central and western part of California, roughly parallel to the central San Andreas Fault [DeMets et 

al., 1987].Well documented are the velocity fields in the Coast Ranges, namely larger than in the 

central parts.  We have made an alternative, interpreting the Earth’s discrete surface by adopting 

Figure 5-5, which illustrates the rates of vertical motion in Southern California.  We have documented 

a maximum magnitude of the subsidence of the order ~ -10 for the Los Angeles Basin area.  

Another land subsidence has been observed in Western Transverse Ranges, rather across the Coso 

Range and the North West of Salton Sea, (namely) due to the geothermal activity in those regions.  

Notable upward motions can be seen in the Landers and Hector Mine, probably due to postseismic 

effects. 
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Fig.5-4: Horizontal rates of Southern California with respect to stable North American plate .  
Figure is illustrated in Albers Conic Equal-Area Projection with center of projection at 

 with standard parallels 

/mm yr

0 0116.5 / 35W N 033 N and 037 N  on reference ellipsoid . 80GRS
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Obviously, vertical components of motion cannot give us much information as other motion pictures. 
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Fig.5-5: Rate of vertical motions in Southern California in .  Figure is illustrated in Albers 
Conic Equal-Area Projection with center of projection at  with standard parallels 
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5-3. Analytical results  
 
The numerical results are collected in the Matlab software package. We most emphasize that we think 

it of advantage to precisely contouring the key patterns in suitable map projections. Our results are 

represented in figures 5-6 to 5-15. In monitoring these patterns, we observe outliers, which are due to 

the weak geometry of underlying triangular elements. Figure 5-6 represents the maximum geodetic 

surface strain rate in the unit , in detail across the Southern California. It represents the 

absolute magnitude of the largest eigenvalue in terms of Euler-Lagrangian surface strain rate tensor, 

given by (4.4): 

710 / yr−
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 max 1 2( , ) max[ ( ( , )), ( ( , ))]abs absε ′ ′Φ Λ = Λ Φ Λ Λ Φ Λ  (5.1)
 
Namely, following [Ward 1998a, 1998b], it represents the total deformation measure, also in cases 

where only horizontal motions are available.  In the following figures, traces of the major quaternary 

faults are shown.  The strongest maximum of geodetic strain rates is related to Landers area with the 

rate , the Southern part of SGF with rate , Salton Sea and Imperial Valley 

with rate .  For most of the peaks are appearing near the SAF, however, it is revealing 

that the entire Los Angeles and east-central Ventura Basin also exhibits a high maximum geodetic 

strain rate of the order . 
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Fig.5-6: Maximum geodetic surface strain rate in the Southern California in unit .Faults are 
represented by white dashed lines and coastlines are represented by bold solid lines. Figure is 
illustrated in Albers Conic Equal-Area Projection with center of projection at  with 
standard parallels 

710 / yr−

0 0116.75 / 35W N
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The pattern of surface maximum shear strain rate in units of  is illustrated in figure 5-7.  The 

surface maximum shear strain represents the anisotropic part of deformation tensor, which is clear 

from equation (4.7), and is considered a key deformation measure in understanding physical processes 

of the Earth’s surface.  The rate of surface maximum shear strain depicts a general similarity to 

correspondent maximum geodetic strain rates.  The surface maximum shear strain rates have greater 

values than the maximum geodetic strain rates, which can be expected due to their mathematical 

formulations.  The highest surface maximum shear strain rate lies in the area containing the creeping 

segments of SAF, the area containing Salton Sea with rate .  High surface maximum shear 

strain rates are also observed at the Southern San Gabriel fault, Hectore Mine, Landers, Los Angeles 

Basin and Ventura Basin, Owens Valley.  The regions of highest surface maximum shear strain rate 

are not on the major faults as would be expected, but rather in the regions surrounding previous 

earthquakes.  Earthquakes in 1999 (Hectore Mine, M 7.1), 1994(Northridge, M 6.7), 1992 (Landers, 

710 / yr−

-76 10 / yr×

M 

7.3), 1992(Big Bear, M 6.4), 1979 (Imperial Valley, M 6.4), 1971(San Fernando, M 6.6), 1952 (Kern 

County, M 7.7), 1942 (Salton Sea aftershock, M 6.4), 1933(Los Angeles Basin, M 6.4) and 1872 

(Owens Valley, M 7.6) have apparently caused the largest strain reactions.  The monitoring of this 

pattern at regions with high seismic activity, or regions that had experience of big earthquakes 

confirms the key role of the surface maximum shear strain rate in earthquake studies as well as the 

validity of the surface maximum shear strain rate pattern which is obtained based on the intrinsic 

Earth’s surface deformation analysis. Figure 5-8 illustrates the pattern of surface dilation rate, in 

unit .  The sign of signals change depend on the elements of the surface area are in a state of 

compression (negative values) or expansion (positive values).  Surface dilation represents the isotropic 

part of deformation tensor.  In the surface dilatation field, notable areas of compression are 

documented for Los Angeles about and for Ventura Basin about .  

This contraction extends into the Santa Barbara channel, where its rate is .  Another 

pattern of compression appears in the Southern Owens Valley with rate .  Negligible 

compression can be seen in the southern part of SAF Indio with rate , possibly 

associated with after effects of the 1940 Imperial Valley earthquake.  Two strongest positive 

710 / yr−

73.2 10 / yr−− × 74.2 10 / yr−− ×

72 10 / yr−− ×

72 10 / yr−− ×

71 10 / yr−− ×
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dilatational signals appear to be associated the Landers with rate ; another is 

distributed between the Southern Elsinore, San Jacinto faults and northern Imperial Valley fault with 

rate .    
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Fig.5-7:Surface maximum shear strain rate in the Southern California in unit .  Faults are 
represented by white dashed lines and coastlines are represented by bold solid lines. Figure is 
illustrated in Albers Conic Equal-Area Projection with center of projection at  with 
standard parallels 

710 / yr−

0 0116.75 / 35W N
033 N and 037 N  on reference ellipsoid . 80GRS

 
 
Another surface extension is documented across the Southern San Gabriel Fault with the 

rate .  The pattern of surface dilatation rates in the Southern California is generally 

consisting with previous studies that used geodetic data [e.g., Johnson et al., 1994; Snay et al., 1996; 

Shen et al., 1997; Shen- tu et al., 1999].  Many local peaks (or valleys) in the dilatation rate field 

occur in vicinities of recent earthquakes, which implies that much of the rapid spatial variation in 

72 10 / yr−×
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strain rate field is probably caused by transient deformation associated with recent earthquakes [Shen 

et al., 1996].  The pattern of the rates of the rotation around the normal in unit  is 

illustrated in figure 5-9.The positive values of rates are referred to clockwise rotation around the 

normal to the surface and the negative values are referred to counter clockwise rotation.   

710 / rad yr−

 120oW  119oW  118oW  117oW  116oW  115oW  114oW  113oW 
  32oN 

  33oN 

  34oN 

  35oN 

  36oN 

  37oN 

  38oN 

 

 

−5

−3

−1

1

3

5

 

Fig.5-8: Surface dilation rate in the Southern California in unit . Faults are represented by 
white dashed lines and coastlines are represented by bold solid lines. Figure is illustrated in Albers 
Conic Equal-Area Projection with center of projection at  with standard parallels 
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The pattern can detect signals of current kinematics of the area.  Large rotation rates are found along 

the SAF and the SJF, as expected from active wrenching dislocations along the two faults.  The 

highest positive rotation signals are detected over the Landers with the rate  and 

Imperial Valley with the rate .  The highest rotation rates in the Landers and 
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72.3 10 / rad yr−×
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Imperial Valley rupture areas are consistent with postseismic motions with the same sense as the main 

rupture.  In the Ventura Basin region, it is monitored that the clockwise rotation are in the range 

between .  Other studies support this idea e.g., [Donnellan et al, 1993].  The 

eastern segment of Garlock fault rotates clockwise at a rate of nearly .  A very 

limited area in Sierra-Nevada shows a negligible counter clockwise rotation with the 

rate .  Rather in the remote eastern part of Mojave Desert and the Southern Mojave 

region, counter clockwise rotation is documented with the rate .   
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Fig.5-9: Rotation around the normal over the Southern California in unit .  Faults are 
represented by white dashed lines and coastlines are represented by bold solid lines. Figure is 
illustrated in Albers Conic Equal-Area Projection with center of projection at  with 
standard parallels 
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Figure 5-10 illustrates rates of absolute rotation around the normal.  Comparison between figure 5-10 

and the seismicity map of the area proves that the rotation around the normal as a deformation tool can 
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play a desirable role in earthquake investigations.  The pattern of difference of eigenvalues for 

Lagrangian tensor of second kind over the Southern California is illustrated by figure 5-

11.  Referring to its definition, the difference is almost positive like the surface maximum shear strain 

rates.  In general, this pattern is similar to the pattern of surface maximum shear strain rates and can 

detect areas with high surface deformations.  The highest rates are monitored along ECSZ in Landers 

and Hector Mine with rates of nearly 0.011 .   
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Fig.5-10: Absolute rotation around the normal in the Southern California in unit .  Faults 
are represented by white dashed lines and coastlines are represented by bold solid lines. Figure is 
illustrated in Albers Conic Equal-Area Projection with center of projection at  with 
standard parallels 
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The Salton Sea area and Imperial Valley areas are covered by peaks with the rate .  

Other patterns of high peaks detected referring to Los Angeles areas, eastern of San Gabriel fault and 
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Owens Valley.  The very interesting feature of the pattern is a peak of values around southeastern part 

of Basin and Range, which it is not so detectable by the surface maximum shear strain rates while it is 

uncovered by the pattern of difference of eigenvalues for Lagrangian tensor of the second kind. 
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Fig.5-11: Difference of eigenvalues for Lagrangian tensor of second kind in the Southern California 
in unit . Faults are represented by white dashed lines and coastlines are represented by bold 
solid lines. Figure is illustrated in Albers Conic Equal-Area Projection with center of projection at 

 with standard parallels 
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In a different manner from difference of eigenvalues for Lagrangian tensor of second kind, the sum of 

eigenvalues for Lagrangian tensor can be positive or negative, which shown in figure 5-

12.  As mentioned in equation (4-13) and (4-14), we attached to our study, Gaussian curvature 

differences and mean curvature differences as scalar invariants of second fundamental form of 

Lagrangian tensor.  Positive and negative values of these invariants are related to upward and 

downward motion of surface of the Earth.  Figure 5-13 monitors the pattern of difference of mean 

max min′′ ′′Λ + Λ
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curvature rates before the deformation of the surface of the Earth and after the deformation in the 

unit .  In this figure, positive values are connected to rising regions whereas negative 

values are related to sinking regions. 
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Fig.5-12: Sum of eigenvalues for Lagrangian tensor of second kind in the Southern California in 
unit .  Faults are represented by white dashed lines and coastlines are represented by bold 
solid lines. Figure is illustrated in Albers Conic Equal-Area Projection with center of projection at 

 with standard parallels 
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Regions undergoing to subsidence include the southern part of Owens Valley, the southwestern part of 

Sierra-Nevada and the southeastern part of the Great Valley and the Los Angeles area.  Notable rising 

areas include ECSZ and the northeastern part of Mojave Desert.  Figure 5-14 represents the pattern of 

Gaussian curvature differences rates in the unit .  A comparison of figure 5-13 and figure 

5-14 shows that the patterns of both maps are similar. 

9 210 / m yr−
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Fig.5-13: Difference of mean curvature in the Southern California in the unit .  Faults are 
represented by white dashed lines and coastlines are represented by bold solid lines. Figure is 
illustrated in Albers Conic Equal-Area Projection with center of projection at  with 
standard parallels 
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Figure 5-15 illustrates the pattern of vertical components of the displacement rates across the Southern 

California in the units of mm/yr obtained from differences of geodetic heights of centers of triangle 

elements in the finite element approach.  Positive values are connected to upward motion of the 

surface of the Earth whereas negative values are related to downward motion of the surface of the 

Earth. The significant signals of sinking areas are apparent in the north - western part of the Salton Sea 

and the Los Angeles Basin with a rate of nearly 2.4 /mm yr− and the southern part of Owens Valley 

with rate .   1.5 /mm yr−
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Fig.5-14: Difference of Gaussian curvature in the Southern California in the unit . Faults 
are represented by white dashed lines and coastlines are represented by bold solid lines. Figure is 
illustrated in Albers Conic Equal-Area Projection with center of projection at  with 
standard parallels 
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The strongest rising peaks appear in the ECSZ and north part of Mojave Desert with nearly1 .  

Comparison of the patterns of vertical components of the displacement rates in figure 5-13, figure 5-14 

and figure 5-15 indicates the ability of the pattern of Gaussian curvature differences and mean 

curvature differences to describe the motion of the surface of the Earth in vertical direction.  In other 

words, spatial patterns of Gaussian curvature differences and mean curvature differences present a 

more reliable and accurate portray of the existing sinking and rising regions of the study area.  It is can 

be considered as a powerful tool of the Lagrange deformation tensor of the second kind and its 

associated invariants in comparison to what can be extracted in this context from the vertical 

components alone. 
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Fig.5-15: Pattern of vertical components of the displacement in the Southern California in units of 
mm/yr. Faults are represented by white dashed lines and coastlines are represented by bold solid lines. 
Figure is illustrated in Albers Conic Equal-Area Projection with center of projection at 

 with standard parallels 0 0116.75 / 35W N 033 N and 037 N  on reference ellipsoid . 80GRS
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Chapter 6  
 
Summary and Conclusions 
 
This chapter summarized the main contributions and results of this research. The advantage and the 

characteristics of the proposed method of deformation analysis of the Earth surface are critically 

reviewed. This study has presented the development and implementation of the intrinsic deformation 

analysis together with eigenspace components of symmetric random deformation tensors (of first and 

second type) on the Riemann manifold . The developed models of the analysis were established 

upon the observed displacement vectors on the Earth’s surface without referring or projecting the 

vectors on any reference surfaces. The elements of differential geometry of the surfaces are developed 

in chapter 2.Lagrangian and Eulerian description of various deformation tensors were introduced in 

chapter 3 .The description of the tensors obtained as a functions of surface curvilinear components of 

the displacement vector u and difference vector of unit normal vectors is obtained.. Gaussian 

representation of the Earth surface in terms of the geodetic coordinates with respect to the reference 

ellipsoid is assumed and invariants of changing of metric tensor and changing of curvature tensor and 

their specific physical meaning are expressed and extracted in chapter 4.The considerable role of these 

invariants was obvious in chapter 5 through the graphical representations of spatial variations of the 

deformation tensors field. Moreover the results of intrinsic deformation analysis approach on surface 

deformation across the Southern California based on 

2M

w

Scripps Orbit and Permanent Array Center 

(SOPAC) solutions were graphically represented as various spatial patterns.  Comparison of the 

patterns with seismic map of the area suggested how well patterns were able to uncover geodynamical 

features across this region.  The pattern of the surface maximum shear strain rate indicated that it is a 

powerful tool to reveal the high seismicity across the regions surrounding previous earthquakes.  The 

pattern of rotation around the normal disclosed that the rotation tensor includes desirable information.  

Comparison of this pattern with the surface maximum shear strain rate shows the ability of the 

rotation tensor to uncover geodynamic features.  The ability of eigenvalues of Lagrange deformation 

tensor of second kind in representing the high seismicity area was another most important part of this 

study.  The comparison of the patterns between difference of eigenvalues and the patterns with the 

surface maximum shear strain rate indicated that using tensor of second kind is a powerful tool in 
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earthquake investigations.  One of the most interesting results of this study is the spatial pattern of 

Gaussian curvature differences and mean curvature differences as invariants of Lagrange deformation 

tensor of second kind.  The ability of the patterns to uncover the upward and downward motions of the 

Earth’s surface represented by the curvature tensor is able to provide significant information about the 

vertical motions.  

 
Further studies could be carried out to improve the treat of intrinsic analysis from the viewpoint of 

statistics. Considering the random behaviour of observations of deformation tensor, dealing about the 

eigenspace components of both surface tensors, first and second kind, will be valuable. Therefore this 

research can be concern about the statistical behaviour of invariants, namely eigenspace components 

of changing of metric tensor (surface strain tensor) and changing of curvature tensor.  
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