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x Zusammenfassung

Zusammenfassung

Die Beschreibung von technischen Fragestellungen in Form von Optimalsteuer-
ungsproblemen wird zunehmend zu einem populären Werkzeug. Dabei zeigt sich,
dass die Aufbereitung und Auswertung der gefundenen optimalen Lösung eine Schlüs-
selkompetenz darstellt. Die vorgelegte Arbeit setzt hier an. Mittels post-optimaler
Analyse wird eine zuvor ermittelte optimale Lösung so weiterverarbeitet, dass der
Anwender auf effizientem Wege zusätzliche Daten über Optimalitätsverhalten, Ein-
flussfaktoren und, in weiteren Schritten, über benachbarte Lösungsräume erhält.

Der entwicklte Algorithmus nutzt Verfahren aus der Nichtlinearen Optimierung
zur Transkription des Optimalsteuerungsproblems. Dieser Vorgang ist insofern
generisch gehalten, als verschiedene Parametrisierungsschemata der Kollokation, wie
auch der Mehrzielverfahren implementiert sind. Eine darauf aufbauende parametri-
sierte Sensitivitätsanalyse dient als Grundlage für die eingehende post-optimale
Analyse. Für die Untersuchungen erster und zweiter Ordnung wird zur Effizienz-
steigerung und Erhöhung der Transparenz, soweit möglich, auf bereits vorhandene
Basisdaten zurückgegriffen. Nicht verfügbare Daten, wie etwa Hesse-Matrix, werden
neu berechnet.

Der entwickelte Algorithmus identifiziert Sensitivitäten der Kostenfunktion in-
nerhalb der bestehenden Problembeschreibung und erlaubt darüber hinaus Aussagen
zur Beeinflussung des Lösungsraumes durch die Variation nicht optimierbarer Pa-
rameter bzw. Gleichungs- oder auch Ungleichungsbeschränkungen.
Letztere Fähigkeit schließt die Prädiktion des Einflusses von finiten Variationen auf
die Zusammensetzung des Set der aktiven Beschränkungen ein. Daraus wird dann
unter Einschluß von Optimalitätsaspekten und Angabe über den Vertrauensbereich,
die Lösung benachbarter Entwurfsräume vorhergesagt.
Damit ist die post-optimale Analyse nicht nur zur besseren Bewertung bereits er-
mittelter Lösungen geeignet, sondern bietet auch eine effiziente Alternative zur kon-
sekutiven Optimierung, variierter Problemstellungen.

Um den Nutzen der post-optimalen Analyse für umfassende, moderne Anwen-
dungen zu demonstrieren, wird der neue Algorithmus auf zwei typische Probleme
aus der Raumfahrt angewendet. Es handelt sich um die optimale Wiedereintritts-
bahn des wiederverwendbaren Transportfahrzeuges HOPPER, sowie um optimale
Aufstiegsbahnen einer Ariane 5 bei unterschiedlichen Nutzlast-Konfigurationen.
Dabei werden Robustheit und Güte der bisherigen Entwürfe bewertet und das
Verbesserungspotential quantifiziert. Außerdem wird demonstriert, welchen zusätz-
lichen Nutzen der neu entwickelte Algorithmus zur post-optimalen Analyse im Bere-
ich von Optimalsteurungsproblemen hat.
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Summary

The description of technical problems in the form of optimal control problems is
becoming increasingly popular. And the assessment and evaluation of the obtained
optimal solutions is developing into a key competence. This dissertation departs
from such an optimal solution. By means of post-optimality analysis an earlier ob-
tained result is processed in order to allow a user to efficiently produce information
about optimality criteria, the main factors that influence the solution and, in con-
secutive steps also about neighboring solution spaces.

The developed algorithm exploits methods from the domain of nonlinear op-
timization for the transcription of the optimal control problem. This procedure
is made generic in the sense that different parameterization schemes are incorpo-
rated, ranging from collocation to multiple shooting. The basis of consecutive post-
optimality analysis is a parameterized sensitivity analysis. First and second order
evaluation takes efficiently advantage of data that has already been computed dur-
ing the process of the prior optimization. Data that is not readily available, like the
Hesse matrix, is newly computed.

The developed algorithm identifies sensitivities of the cost function within the
existing problem description, but also permits to investigate the influence of vari-
ations in non-optimizable parameters, equality or inequality constraints on the so-
lution space. The latter includes the prediction of changes in the active set of
constraints due to finite variations. Under full consideration of optimality condi-
tions and the trust radius, the solution of neighboring problems is predicted. Thus,
post-optimality analysis is not only suitable for evaluation of already computed op-
timal solutions. It also provides an efficient alternative to consecutive optimization
of varied problem descriptions.

In order to demonstrate the benefits of post-optimality analysis for modern com-
prehensive problems, the algorithm is applied to two typical aerospace problems.
These are an optimal entry of the reusable launch vehicle HOPPER, and ascent
trajectories of Ariane 5 with several payload configurations. Robustness and cost
quality of the current design is evaluated and potential for improvement quantified.
Further, the added value is demonstrated that the newly developed algorithm for
post-optimality analysis provides in the area of optimal control problems.



Chapter 1

Introduction

He who has knowledge does not predict. He who predicts
does not have knowledge.

Chinese teaching

This statement was supposedly made by ancient Chinese philosopher Lao-Tse
more than two thousand years ago. It is a popular phrase, variously quoted when-
ever people are encouraged to question the professionalism and qualification of self-
promoted leaders and specialists. It essentially distinguishes between knowledge and
prediction and, thus, suggests that there is an either-or. A proper understanding
of cause and effect guarantees knowledge while a lack of this understanding triggers
prediction. The connotation of prediction is undoubtedly negative, since knowledge
is generally considered to be a positive quality.

Today, in research and engineering it becomes more and more important to
combine knowledge and prediction in order to improve model understanding and
accelerate product development.

Post-optimality analysis (POA) is seen as such a hybrid. It is a technique to study
the behavior of an earlier obtained problem solution and helps to gather informa-
tion about its sensitivity. At the same time, it also suggests an interpretation of the
state space around the solution providing stability information. In other words, it
serves to predict the solution of perturbed problems without need for recomputation.

Following, a definition is given for optimal control problems to familiarize the
reader with this particular class of problems, which is in the focus of our efforts

1
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to develop an expertise in post-optimality analysis. The role and importance of
Sensitivity Analysis (SA) is briefly addressed in sec. 1.2 together with a synopsis
of common methods. Then, the basic aspects of post-optimality analysis and prior
contributions by other authors are given.
Considerations on the requirements for post-optimality analysis and applicable meth-
ods conclude the introduction and define the strategy.

1.1 The Optimal Control Problem

Problem formulations of dynamic systems with optimizable parameters and con-
trols have a long lasting tradition in aerospace engineering. This class of Optimal
Control Problems (OCP), has found its entry into flight maneuver optimization
[42], launcher and return vehicle trajectory optimization [35], [2], [16], [63], satellite
transfer [23], [18] and interplanetary travel [24]. The community of practitioners has
also spread into other branches, like the automotive sector [20] and medicine [26],
and has created a growing interest in solution and analysis methods.
Model complexity and the need for efficiency have raised the interest in methods
to compute optimal solutions. They are frequently the only chance to bring about
improvements towards enhanced performance.

To fully immerse into the topic, the proper mathematical formulation of optimal
control problems is given in the following section. Afterwards, the value of their
solution is assessed with regard to practical usefulness.

1.1.1 Mathematical Description

The optimal control problem is detailed in a large number of publications [15], [31],
[8]. In order to provide a concise nomenclature and to allow fundamental under-
standing of the later chapters, a basic description is given here.
The control problem for which an optimal solution shall be computed, is as follows:
minimize the cost functional

min J(x, u, p, t) = Φ(xf , p, tf ) +
∫ tf

t0
L(x, u, p, t)dt. (1.1.1)

The objective function is stated in Bolza format with Φ being the Mayer term
and a Lagrange term with the integrand L. The vector u = u(t) represents the time-
variant control vector and t represents the independent variable. The state vector
of the system is given as x = x(t) and has the dynamics

ẋ = f(x(t), u(t), p, t) (1.1.2)
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It is often convenient to assign time-invariant parameters p, which describe cer-
tain system properties. Commonly, they are design parameters or related qualities
of the model, and mission, respectively. Their value is optimizable, but does not
change over time.

Additional conditions for the system are stated as path constraints. These can
be defined as equality constraints

h(x(t), u(t), p, t) = 0 (1.1.3)

or as inequality constraints

g(x(t), u(t), p, t) ≥ 0. (1.1.4)

The same holds for boundary constraints which can be equality

Ψt = Ψt (x(t), u(t), p, t) = 0 (1.1.5)

or inequality constraints

Ψt = Ψt (x(t), u(t), p, t) ≥ 0 (1.1.6)

under the condition that either t = t0 or t = tf .

The classical way to solve such an optimal control problem are indirect methods.
They are based on the calculus of variations.

The first formulation of first order necessary conditions for optimal control prob-
lems was published by Euler and Lagrange in 1744. The Euler–Lagrange equations
compose the fundament for the solution of this kind of mathematical problem. In
the time since, scientists have refined the formulations and have extended their use.
The introduction of the Hamilton function in 1834/35, for instance, was a major
contribution to improve the analytic structure of the conditions.

The first order necessary conditions for a problem with no path constraints, with
terminal equality constraints and mixed initial constraints can be found in eqs. 1.1.7.
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Hamiltonian: H =L + λT f

Dynamics: ẋ =f(x, u, t) = ∂H
∂λ

Adjoint differential equations: λ̇ =− ∂L
∂x −

(
∂f
∂x

)T
λ = −∂H

∂x

Optimality condition: 0 =∂H
∂u = ∂L

∂u +
(

∂f
∂u

)T
λ

Initial conditions: x(to) given or λ(t0) = 0

Terminal constraints: Ψf=Ψf (x(tf ), tf ) = 0

Transversality conditions: λf =
[

∂Φ
∂x +

(
∂Ψf

∂x

)T
ν
]
t=tf

Transvers. for optimizable tf : Ω =
[

∂Φ
∂t

+ νT ∂Ψf

∂t
+ H

]
t=tf

= 0

(1.1.7)

The Euler–Lagrange equations are only of first order and do not formulate suffi-
cient conditions. Therefore extensive research has been undertaken to complete and
extend them. The Legendre–Clebsch condition, demanding

∂2H

∂u2
≥ 0 (1.1.8)

is an example for a necessary condition of second order.

It was the Russian mathematician Pontryagin in 1954, who extended the optimal
control theory to cases with constrained variables. This was in so far an important
contribution as it enabled the optimization of problems with path constraints, which
are a common element in engineering problems. A detailed discussion of additional
conditions can be found in [15].

Indirect methods have the potential to provide closed solutions for OCPs. They
work with exact analytical terms and solve the problem via an intermediate elimi-
nation of the control and later back-calculation of the optimal control history. This
technique has also been the name giver for the class of indirect methods.
The very attractive features of indirect methods are paid for by enormous mathe-
matical overhead. Application of indirect methods requires a deep understanding
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of the mathematical problem structure and extensive knowledge about its solution
space. The structure of the equations describing the optimality conditions is very
complex. And even small changes in the problem outline can trigger major modifi-
cations of, for instance, the Hamiltonian function.
The same holds for the adjoint, or costate, variables [11]. They do not have physical
meaning which makes their estimation not at all intuitive and overly time consum-
ing. However, an accurate estimate is essential, since the mathematical problem
description is very sensitive to changes in the costate values. And convergence to
an optimal solution requires a qualitatively good initial guess.

An alternative to indirect methods has appeared with the emergence of digital
computers in the mid of the 20th century -the so called direct methods [46], [39], [9].
As the name suggests, they are straightforward techniques to calculate the optimal
solution. The concept is to parameterize the solution space and to solve a con-
strained nonlinear programming problem. The algorithm ensures compliance with
all constraints while in an iterative process closing in on the optimal solution.
The direct methods are numerical and, thus, not as elegant and analytically exact
as indirect methods. But they exhibit a series of advantages, which make them
the first choice more and more often in practical applications. It is the flexibility,
adaptability and robustness that gives these methods a larger convergence radius
and makes them well appropriate for users, who do not have an in-depth knowledge
of optimization theory.

1.1.2 Understanding an Optimal Solution

It is one thing to describe an optimal control problem and obtain a solution. It is
another to fully understand and exploit the found solution. There are numerous
aspects that determine the usefulness of the results that an optimization algorithm
delivers.

First of all, there is the question about the optimality of the solution with re-
spect to a certain criterion. Is the solution strictly optimal, or is the cost function
gradient only gently inclined?
Essentially, optimization algorithms terminate providing an optimal design point
with a certain performance number, but lack a comprehensive survey of the design
point sensitivity.
Unfortunately, the exact solution is purely theoretical in the eyes of practition-
ers, since the problem formulation generally describes a simplified model of reality.
Hence, a transfer of the results is only reasonable when the behavior of the model is
known and understood. Otherwise, reduction of main features of the problem result
in erroneous solutions, from which faulty conclusions are drawn.



6 Sensitivity as a Means of Analysis

This motivates the assessment of perturbations in auxiliary design parameters,
which could compensate for model short-comings. These parameters typically de-
scribe model properties that are held constant during the optimization, even though
they are naturally not constrained to a particular value.
This leads to the identification of critical components, the evaluation of uncertainty
sources and the question, what effect certain parameters have on the optimal solu-
tion.

The matter can be summarized in the term Sensitivity. The key to enhanced
problem understanding is knowledge about the sensitivity of the optimum solution.

1.2 Sensitivity as a Means of Analysis

Sensitivity analysis has become a main competence for the modeling and analysis
of complex systems in general. Blackwell [12] has congregated its meaning in the
following definition:

Sensitivity analysis is defined as the study how variations in
input parameters of a computational model cause variations in
output. [...] A measure of this sensitivity is termed the sen-
sitivity coefficient and is (mathematically) defined as a partial
derivative of the output variable with respect to the parameter
of interest.

This gives us the mathematical expression

Sij =
∂yi

∂xj

. (1.2.9)

for the sensitivity coefficient Sij. The scalar variable yi represents an output of
the investigated system. It commonly characterizes the objective and contains key
performance properties of the dynamic system.
The scalar variable xj constitutes an input to the system. Most often it is a design
parameter, a model parameter, or a parameter defining a condition.

Another expression which is commonly used for Sij is sensitivity derivative. It
has been introduced by Sobieski [65], [58], [64].

The dependencies illustrated by the sensitivity coefficients provide useful infor-
mation about the behavior and character of the problem under investigation. Hence,
the coefficients are valuable for analysis and can be processed for various tasks. Bose
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et al. [13] performs sensitivity analysis to identify uncertainty risk and categorizes
as follows:

1. Structural Uncertainty
All mathematical models work with assumptions and simplifications to repre-
sent physical phenomena. These pose the risk of not being realistic.

2. Parametric Uncertainty
This type of uncertainty arises for uncertainties in the model parameter esti-
mates. This happens frequently for parameters of dynamic systems which can
not be measured explicitly, but have to be guessed.

3. Stochastic Uncertainty
Natural fluctuations can cause this kind of uncertainty. A common example
are atmospheric anomalies with stochastic behavior.

There is a multitude of scientific applications which go under the title of sensi-
tivity analysis and document the very heterogeneous perception of its usefulness.
Empirical methodologies can be found in environmental model analysis [50], labor
market evaluation [62], or in chemistry [69]. It can be used to compute safety or
probability margins [27] by widening the parameter range or provide gradient infor-
mation for an optimization algorithm [55].

The rising interest in sensitivity computation in recent years has led to the de-
velopment of a number of different methods. In general the selection of the most
suitable method is dominated by the structure of the model and its accessibility.
Therefore model properties and computational interests can be taken to broadly
classify the various analysis methods.

If the model is completely unknown and the model equations are not accessi-
ble or if dependencies shall be scanned for a wide variational range, then sampling
methods promise to show best performance. The relationship between input and
output parameters in the state space is established empirically via model runs at
sets of sampling points [51].
In this context, simulation campaigns are a widely used means for uncertainty and
sensitivity analysis [48]. Telaar [68] has worked with them to identify sensitivities of
a reentry vehicle. And Bose et al. [13] applied the concept to compute sensitivities
in the thermochemical model for a Titan atmospheric entry.
The selection scheme for the sampling sets distinguishes the various sampling meth-
ods from each other and defines the computational expenses. This ranges from
Monte Carlo-like approaches with almost random distribution, to Latin Hypercube
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Sampling [66] with equal probability segments. Also Response Surface methods are
in use. They process the obtained sampling information towards the definition of a
secondary model with reduced parameter number [72]. The surrogate model is con-
venient for trend analysis and allows rapid, but also inaccurate sensitivity derivation.

Other methods are directly focused on producing derivatives. There are the
analytic methods, which rely on the accessibility and differentiability of the model
equations. One such technique compiles the Forward Sensitivity Equations. An-
other is the Reverse Adjoint Equations method. As the name suggests, it analyzes
the origin of an anomaly by means of reverse signal flow [36] and, thus, allows an
identification of perturbation sources. In [55] it is shown, how this method can be
used to provide sensitivity data for aero-structural optimization.

All these analytic methods provide exact gradients, but require an enormous
mathematical overhead. Particularly in engineering applications it is frequently the
case that spreadsheets and switching functions are part of the model and make an-
alytical techniques a prohibitively expensive or even impossible task.
Then, numerical methods become a convenient alternative. Finite differences are
generally the prime choice for numerical differentiation. But Martins et al. [56] has
also successfully tested the method of Complex Steps for sensitivity analysis pur-
poses. The accuracy is superior. However, complex variation of the model requires
a comprehensive complex algebra environment.
In any case, the sensitivity coefficients are computed for a certain reference point
and therefore local.

Another method is Parameterized Sensitivity Analysis (PSA). The fundamental
idea behind this is to reduce the model size by parameterization, while retaining its
complexity. It is often possible to make reasonable assumptions for a model and
establish parametric relationships as a substitute to function dependencies, for in-
stance, through use of polynomial fitting. The infinite number of state propagators
is approximated with a limited number of parameters, which subsequently consti-
tute the parameter space of the new problem description.
The computation of sensitivities is turned into the computation of parameter de-
pendencies. And the chain of such dependencies determines the impact of an input
variation on a specific output. Each parameter which correlates to the input of in-
terest potentially stimulates the output. Fiacco [28] and Sobieski [65] have provided
valuable contributions for the advancement of PSA.
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1.3 The Question of Solution Analysis in Opti-

mization

Having surveyed a number of different methods, the question arises of how sensitiv-
ity analysis in practice can help to better understand solutions to optimal control
problems, fulfilling the demands postulated in sec. 1.1.2.

Sensitivity analysis is often employed to examine natural system behavior. Es-
pecially, sampling methods are a popular tool to study open loop systems. But in
post-optimality analysis the task is to assess optimal behavior of constrained dy-
namic systems. Therefore it is a prerequisite that the analysis algorithm complies
with optimality conditions.
This specifically addresses the sensitivity of the optimal solution to infinitesimal per-
turbations in all kinds of design parameters. The type of output enables researchers
and engineers to qualify the nominal design with respect to its actual application.

The spreading use of optimization methods also substantiates other needs. In
design optimization and system development the focus shifts from infinitesimal per-
turbations to finite variations. This leads to an assessment of the design space in
the vicinity of the optimality point for properties, which are genuinely not part of
the optimizable parameters.
Such an analysis requires not only sensitivity information about the nominal solu-
tion. But it needs a measure for the reliability of the data in the broader neighbor-
hood.

1.4 Previous Works on Optimal Solution Analysis

As said before, the growing interest in optimization techniques and the raised aware-
ness for the benefits of solution analysis have led to a number of scientific contri-
butions and to the question of how and for what exactly to conduct post-optimaliy
analysis.
One of the foundations has been laid down by Fiacco in his “Introduction to Sen-
sitivity and Stability Analysis in Nonlinear Programming” [28], with which he tries
to foster the theoretical unification and practical implementation of such methods.
He is well aware of the importance of post-optimality analysis in general and con-
centrates on the analysis of NLP programs. In his view NLP can only then become
a widely used method, if practitioners get the necessary algorithms at hand to eval-
uate the computed optimality.
Bose et al. [13] follows a simple approach. He investigates the uncertainty sources
in a thermochemical model for a Titan atmospheric entry by running a plain simu-
lation campaign for the constrained trajectory with both local and global interests.
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From the results the input-output correlations are identified and uncertainties in
the model ranked with respect to their influence. Bose is aware of the deficiencies
of this method. He describes it as somehow subjective and limited to the nominal
trajectory. The found ranking and the “conclusions drawn here may not be valid
if mission specifications differ in terms of entry velocity, vehicle size, etc. Each
candidate mission must, therefore, be analyzed individually” [13]. However, Bose
gives a good reasoning for his efforts, which also helps us to understand the charm
of post-optimality analysis. He uses the sensitivities to evaluate uncertainty confi-
dence limits and to identify target areas, where further research effort would grant
maximum payoff.
The preparatory work by Fiacco, gathering the scattered contributions to sensitivity
analysis, has been taken up by practicioners and has led to various implementations.
Sobieski [64], for instance, calls it System Sensitivity Analysis. From the early 80’s
till the end of the 90’s he advances the technique. First focusing on structural opti-
mization, his interest successively moves towards aerodynamic applications and he
utilizes the method in MDO.
Olds picks this up and does a conceptual design of a dual-fuel SSTO rocket [58]
based on sensitivity coefficients. His algorithm requires extensive reoptimization
and falls short of exploiting the available optimality information. Therefore in his
remarks he promotes the idea of proper post-optimality analysis in the future, which
takes advantage of secondary output of the optimizer.

An extensive investigation of parameterized sensitivity analysis for launch ve-
hicle sizing and trajectory design has been conducted by Hallmann [44], [45] with
contributions by Beltracchi [6]. Hallman’s publications on the analysis of launcher
cases has provided fundamental insights into the mechanisms of NLP algorithm in-
terconnection with PSA. He presents first and second order sensitivity analysis for
design parameters of the nonlinear programming problem and identifies trends for
parameter deviations.
As an advanced practical example for the capability of the developed software Hall-
man presents a booster/upper stage optimum trajectory design. The case demon-
strates the good performance of the algorithm, but also witnesses the limitations of
the concept. With a total of 17 variables the problem is small and documents the
care with which the NLP problem needs to be set up in order to allow for sensitivity
analysis. Besides, the data interpretation is very conservative and does not provide
confidence margins.

In recent years the focus of the scientific community has been on the utilization of
simple methods, customized for specific needs [68] and the theoretical deepening of
the insight in sensitivity analysis [17]. The interpretation of the sensitivity data has
remained basic and stayed limited to neighboring designs with similar properties.
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1.5 Design of a Post-Optimality

Analysis Algorithm

The development of a post-optimality analysis algorithm is motivated by the aspi-
ration to give practitioners an additional means at hand to study, interpret and,
ultimately, to better exploit the before computed solution of an optimal control
problem.

The intention is to establish a highly efficient analysis procedure, which is generic
and, hence, suitable for a broad variety of applications. Under consideration of the
optimizer output, it shall first provide processable optimality information about the
computed solution.
Further, it is the ambition to use the algorithm to identify decisive or critical param-
eters. This represents a reverse variation assessment to determine the variation’s
cause.

Forward perturbation analysis constitutes a fundamental capability. It targets at
evaluating the influence of non-optimizable parameters on predefined model outputs
and extends optimality information to parameters, which have not been part of the
initial control problem description.

Optimal control problems in general engineering tend to be set up inefficiently
with inferior condition and restricted access to the dynamic equations. This needs to
be considered for the development of a heuristic post-optimality analysis algorithm
in order to permit an economic evaluation even of large problem descriptions.

An added value arises when the analysis information can also be used to interpret
the broader vicinity around the optimum design point. This means the assessment
of larger variations. Among a series of benefits does this feature permit to derive
optimal performance of neighboring problems.

The strategy to develop a post-optimality analysis algorithm that meets the pos-
tulated requirements has to conform with optimality conditions even for perturbed
problems. Therefore the link between optimal control theory and sensitivity gra-
dients of first and second order [28] under inclusion of optimality conditions and
constraints is established in chapter 2. The concept is to utilize parameterized sen-
sitivity analysis for the purpose of computing variational data. In chapter 3 the
algorithm is extended to update the constraint set and compute confidence radii for
the extrapolation with sensitivity gradients.
In chapter 4 the developed concept for post-optimality analysis is mated with the
optimizer CAMTOS [31]. The primary aspects of algorithm interconnection are de-
scribed.
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In order to demonstrate and validate performance and added value of the method,
two applications are included. The analysis of an optimal HOPPER reentry trajec-
tory resembles the first case in chapter 5. An assessment of the launcher and optimal
trajectory design of an Ariane 5 in the light of sensitivity analysis is described in
chapter 6.
Conclusions and an outlook on further potential use of the method ends the thesis
and gives a perspective for consecutive research activities.



Chapter 2

Sensitivity Analysis of Optimal
Control Applications

A brief introduction to sensitivity analysis was given in the first chapter and the
general usefulness illustrated. The various methods can serve a wide range of pur-
poses. In any way, they help to correlate input and output variations and provide
statistical information.
It has also been shown, how this data can help to better understand various math-
ematical problems. In this thesis, emphasis is put on the assessment of solutions
to optimal control problems and their design space, for instance, by evaluating the
stability and sensitivity of the variable set.
The necessary connection between sensitivity analysis and optimal control theory
comprises the content of this chapter. At first, a short discussion explains the se-
lection of PSA for sensitivity computations. The name of the method itself already
reveals one of its key properties. It only works for parameterized problems. Hence,
the continuous optimal control problem needs to be transcribed into a parameterized
problem, namely a Nonlinear Programming NLP problem as described in sec. 2.1.
Following, first and second order sensitivity equations are derived.
The method is more thoroughly studied and applied to a simplified satellite trans-
fer in sec. 2.2. Considerations on problem scaling in sec. 2.3 and on transcription
schemes (see sec. 2.4) conclude the chapter.

2.1 The Parameterized Sensitivity Equations

The urge for optimization expertise in today’s engineering environment is more and
more dominated by the benefits of ever growing computing power. On one hand,
it enables the practitioner to design more realistic models for use in simulation and
optimization. But on the other hand, it is seductive to compensate poor problem
assessment with brute force.

13
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The rapid development of NLP algorithms [8], [39], [29], [70] and computer hard-
ware allows the optimization of larger and more complex problems. The inclusion of
nonlinear constraints into the nonlinear programs is a routine exercise today. And
the successful handling of more than 100 000 degrees of freedom is a proven quality
[10] which underlines the capabilities of the modern algorithms. Their reliability
and adaptability motivates the spreading use in research and development.

Along with the growing complexity of the analyzed models, it becomes pro-
hibitively expensive to apply analytical methods to examine model behavior. This
is even truer for optimization problems in aerospace engineering, where encapsulated
modules do not even permit access to the governing equations.

It was Fiacco, who gave a boost to parameterized sensitivity analysis when he
published his book on sensitivity and stability analysis [28]. Gathering the scat-
tered knowledge and consolidating the contributions in a survey-like manner, he
made them accessible to a broad audience. And the growth of the NLP community
makes them even more attractive today. Thats why we further on concentrate on
PSA for sensitivity computation and why former authors [28], [44], [65] vigorously
promoted the method.

2.1.1 Nonlinear Programming Problem

The first step is to describe the NLP program. The subsequent definition for nonlin-
ear programming problems follows common nomenclature as presented in [8], [29],
[28]. The cost function

f = f(x, ε) (2.1.1)

shall be minimized with respect to the parameter vector x ∈ <n. This vector
basically comprises all parameters which are optimizable. We also include the vector
ε ∈ <p in the problem description. It contains a set of non-optimizable parameters
and will later be required for sensitivity computations.
The solution is subject to the equality constraints

h(x, ε) = 0, with h ∈ <me (2.1.2)

and the inequality constraints

g(x, ε) ≥ 0, with g ∈ <(m−me). (2.1.3)

It is desirable to develop necessary and sufficient optimality conditions. This is fre-
quently accomplished via a transformation of the constrained into an unconstrained
problem [30]. One such transformation works using the Lagrange function
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L(x, λ, µ, ε) = f(x, ε)− λT · g(x, ε) + µT · h(x, ε) (2.1.4)

with the Lagrange multipliers λ ∈ <(m−me) being associated to the inequality and
µ ∈ <me to the equality constraints.

The stationary point x∗ is a local minimum, if there exist λ∗ and µ∗ such that
the first order Karush-Kuhn-Tucker KKT conditions hold:

g(x∗, 0) ≥ 0 (2.1.5)

h(x∗, 0) = 0 (2.1.6)

λ∗
i gi(x

∗, 0) = 0, i ∈ Em−me (2.1.7)

λ∗
i ≥ 0, i ∈ Em−me (2.1.8)

Lx(x
∗, λ∗, µ∗, 0) = fx(x

∗, 0)− (gx(x
∗, 0))T λ∗ + (hx(x

∗, 0))T µ∗ (2.1.9)

= 0

In practice, the optimal solution does not always satisfy these conditions [29].
Hence, NLP algorithms usually either terminate when a KKT point

(y∗)T =
[
(x∗)T (λ∗)T (µ∗)T

]
(2.1.10)

is reached or no further progress appears to be possible.
This is important to remember. As soon as progress falls below a certain tolerance
level -a threshold- the optimization is stopped. The obtained solution is presumably
close to the true optimum. However, this depends on the tolerance level and the
convergence behavior of the problem.

Whereas the cost function usually shows good convergence and is close to the
actual optimum, this does not necessarily hold for all elements of the KKT point
vector. Particularly, the Lagrange multipliers tend to be very sensitive in the neigh-
borhood of the optimal solution and, hence, are often inaccurate [57]. The influence
of these deviations on the quality of our sensitivity analysis will be addressed in
sec. 4.4.
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2.1.2 Derivation of First Order Sensitivity Equations

The definition of the NLP problem is taken to derive sensitivity equations. The
aim is to find relationships between variations in the sensitivity parameters ε and
variations in the NLP parameters x. Two premises hold for these sensitivity equa-
tions. They shall not work with assumptions and reductions to avoid unnecessary
inaccuracies. And the equations shall provide straight forward relationships which
can easily be computed. Fiacco [28] describes a differentiation method to obtain
these equations. We follow his suggestion and differentiate eq. 2.1.9 with respect to
the parameter vector ε:

∂2f

∂x∂ε
+

∂2f

∂x2

∂x

∂ε
−

m∑
i=me+1

[
λi

[
∂2gi

∂x∂ε
+

∂2gi

∂x2

∂x

∂ε

]]
(2.1.11)

−
[
∂g

∂x

]T
∂λ

∂ε
+

me∑
j=1

[
µj

[
∂2hj

∂x∂ε
+

∂2hj

∂x2

∂x

∂ε

]]
+

[
∂h

∂x

]T
∂µ

∂ε
= 0.

We proceed in the same manner with eq. 2.1.7

λi

[
∂gi

∂ε
+

∂gi

∂x

∂x

∂ε

]
+ gi

∂λi

∂ε
= 0 (2.1.12)

with i ∈ Em−me and eq. 2.1.6

∂h

∂ε
+

∂h

∂x

∂x

∂ε
= 0. (2.1.13)

The vector ε comprises the non-optimizable sensitivity parameters. They are in
the center of attention of the sensitivity analysis, since it is their influence on the
optimal solution, which is supposed to be examined.
The first equation of the system can be reshaped as follows:

∂2f

∂x2

∂x

∂ε
−

m∑
i=me+1

[
λi

∂2gi

∂x2

∂x

∂ε

]
+

me∑
j=1

[
µj

∂2hj

∂x2

∂x

∂ε

]
+

∂2f

∂x∂ε
(2.1.14)

−
m∑

i=me+1

[
∂2gi

∂x∂ε

]
+

me∑
j=1

[
µj

∂2hj

∂x∂ε

]
−
[
∂g

∂x

]T
∂λ

∂ε
+

[
∂h

∂x

]T
∂µ

∂ε
= 0

which is equal to

∇xxL ·
∂x

∂ε
+∇xεL −

[
∂g

∂x

]T
∂λ

∂ε
+

[
∂h

∂x

]T
∂µ

∂ε
= 0 (2.1.15)
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It can be reformulated in matrix form



∇xxL −
[

∂g
∂x

]T [
∂h
∂x

]T
λ1

(
∂g1

∂x

)T . . . 0

... diag(g)
...

λq

(
∂gq

∂x

)T . . . 0

∂h
∂x

0 0





∂x
∂ε

(
∂λ1

∂ε

)T

...

(
∂λq

∂ε

)T

∂µ
∂ε



=



−∇xεL

−λ1

(
∂g1

∂ε

)T

...

−λq

(
∂gq

∂ε

)T

−∂h
∂ε



(2.1.16)

with q = m−me. Or in short form

M · ∇εy = N, with yT =
[
xT λT µT

]
(2.1.17)

If matrix M is invertible, then the linear system can be solved. A solution for
the partial derivative of x with respect to ε is then available for further analysis. For
instance, it can be used to perform a first order assessment of the parameter values
of a perturbed problem. This means, after having obtained an optimal solution for
an NLP program, this solution along with the sensitivity coefficients can be taken
to predict the NLP parameter values of a derived problem with perturbations in the
elements of vector ε.

This statement is not entirely correct and reliable in its generalization. Curtailing
conditions will be described in detail in chapter 3. Until then, sensitivity information
it taken as it is and used to compute first order propagations. Therefore, we perform
a Taylor expansion for the cost function and the NLP parameters. The first order
system

xp1(ε + ∆ε) = x∗(ε) +
∂x

∂ε
∆ε (2.1.18)

fp1(x(ε + ∆ε), ε + ∆ε) = f ∗(x∗, ε) +

(
∂f

∂ε

)T

∆ε +

(
∂f

∂x

)T
∂x

∂ε
∆ε (2.1.19)

delivers first order predictions for the optimal cost of the perturbed problem fp1.
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2.1.3 Second Order Sensitivity Coefficients

With sensitivity gradients at hand it is possible to approximate the optimal behav-
ior of the dynamics with linear terms. Even though linearization techniques are
common practice and popular in many fields, the shortcomings are obvious, since
variable dependencies are in general not linear. This limits the range for which the
linearization represents a reliable approximation.
Second order sensitivity coefficients promise to further improve expressiveness of a
post-optimality analysis by giving indications about the degree of non-linearity in a
parameter relationship and its extrapolatory trend.

Consider the Lagrange function eq. 2.1.4 and differentiate with respect to ε

∂L
∂ε

=
∂f

∂ε
+

[
∂x

∂ε

]T
∂f

∂x
−
[
∂g

∂ε
+

∂g

∂x

∂x

∂ε

]T

λ +

[
∂h

∂ε
+

∂h

∂x

∂x

∂ε

]T

µ (2.1.20)

It is derived a second time with respect to ε. The result is

d2L
dε2

=
∂2f

∂ε2
+

∂2f

∂ε∂x

∂x

∂ε
+

[
∂2f

∂x∂ε
+

∂2f

∂x2

∂x

∂ε

]T
∂x

∂ε
+

[
∂f

∂x

]T [
∂2x

∂ε2

]

−
m∑

j=me+1

λj

∂2gj

∂ε2
+

∂2gj

∂ε∂x

∂x

∂ε
+

[
∂2gj

∂x∂ε
+

∂2gj

∂x2

∂x

∂ε

]T
∂x

∂ε
(2.1.21)

+

[
∂gj

∂x

]T
∂2x

∂ε2

+
me∑
i=1

[
µi

[
∂2hi

∂ε2
+

∂2hi

∂ε∂x

∂x

∂ε

+

[
∂2hi

∂x∂ε
+

∂2hi

∂x2

∂x

∂ε

]T
∂x

∂ε
+

[
∂hi

∂x

]T
∂2x

∂ε2

 .

Which can be reformulated as

d2L
dε2

=
d2f

dε2
=

 (∂x
∂ε

)T
Ip




∂2L
∂x2

∂2L
∂x∂ε

∂2L
∂ε∂x

∂2L
∂ε2




∂x
∂ε

Ip



+

[
∂f

∂x

]T
∂2x

∂ε2
−

m∑
j=me+1

λj

[
∂gj

∂x

]T
∂2x

∂ε2

 (2.1.22)
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+
me∑
i=1

µi

[
∂hi

∂x

]T
∂2x

∂ε2


with Ip being the p-dimensional identity matrix, corresponding to the dimension of ε.

We take a closer look at the last three terms of the above equation and see that
they can be rearranged as follows:∂f

∂x
−
(

∂g

∂x

)T

λ +

(
∂h

∂x

)T

µ

T
∂2x

∂ε2
=

[
∂L
∂x

]T

· ∂2x

∂ε2
(2.1.23)

Since the optimality condition requires ∂L
∂x

to be zero, the corresponding terms can
be eliminated from eq. 2.1.22. Which leads to

d2L
dε2

=
d2f

dε2
=

 (∂x
∂ε

)T
Ip




∂2L
∂x2

∂2L
∂∂xε

∂2L
∂∂εx

∂2L
∂ε2




∂x
∂ε

Ip

 (2.1.24)

Thus, second order information about the objective function sensitivity becomes
available at the expense of providing Hessian matrix information.
The differentiation of the Lagrange function as performed above takes advantage of

the fact that the terms
[

∂µ
∂ε

]T
· h are zero for all equality constraints h = 0 at the

KKT point. Further, the terms
[

∂λ
∂ε

]T
· g are zero either because of the constraint

being active, or, because λi = 0 does not depend on any εj and, thus, ∂λi

∂ε
= 0 at

the KKT point.
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2.2 Exemplary Analysis of an Optimal Solution

2.2.1 Simplified Earth Mars Transfer

After having deducted the fundamental sensitivity equations it is time to get some
hands-on experience by applying the knowledge to a small demonstration case. The
exemplary optimization problem that we take a look at is a satellite transfer from
earth to mars. It is a simplified mission in a heliocentric system where the satellite
departs from a circular orbit with a semimajor axis of exactly one astronomical unit
AU. The target orbit is circular as well with a semimajor axis of af = 1.523396 AU ,
identical to the semimajor axis of the mars orbit. Inclination changes will not be
considered.
Divided into three legs the mission consists of a first arc with continuous thrust,
a coast arc and then a third leg with continuous thrust again. The corresponding
equations of motion for the four states radius r, radial velocity vr, tangential velocity
vth and angular position Φ are

ṙ = vr (2.2.25)

v̇r =
v2

th

r
− µg

r2
+

T

m
sin Θ (2.2.26)

v̇th = −vr · vth

r
+

T

m
cos Θ (2.2.27)

Φ̇ =
vth

r
(2.2.28)

The symbol µg represents the gravitational constant and T is the thrust mag-
nitude, which is zero during the coast arc. The thrust is steered via the angular
control Θ. It defines the thrust direction and is discretized with 5 nodes each in
phase 1 and 3. Mass is a function of the thruster’s mass-flow

m = m0 − ṁt (2.2.29)

The objective is to minimize the duration of the first and third leg, thus, mini-
mizing propellant consumption.
A total of 26 parameters and 16 equality constraints are sufficient to describe the
parameterized problem. Their complete description can be found in app. A.
The NLP program is minimized with the sequential quadratic optimizer SLSQP
[53]. Figs. 2.2.1 and 2.2.2 show the spacecraft trajectory of the initial guess and
the solution in the inertial orbit plane along with the paths of mars and earth at
mission time. As can be seen, phasing conditions with the two planets apply for the
spacecraft. The optimum cost function value is f ∗ = 95.812 days.
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Fig. 2.2.1: Initial guess Fig. 2.2.2: Optimal solution

SLSQP provides the optimum set of parameters, the Jacobian matrix of the
constraints and the cost function gradient for a consecutive sensitivity analysis as
described in sec. 2.1.2 and 2.1.3. Complexity is reduced by the fact that all con-
straints are equalities.

2.2.2 Interpretation of the Solution

In order to assess the impact of certain perturbations and input changes, it is neces-
sary to first define the perturbation vector ε. The composition for the present demo
case can be found in tab. 2.2.1. The goal here is to identify the impact that these
non-optimizable parameters have on the overall performance, characterized by the
duration of the propelled mission legs.

The first order prediction fp1 of the cost function value for perturbations of
5.0 % and 10.0 %, respectively, in the elements of ε results in the numbers listed in
tab. 2.2.2.

Coherence of the predictions for changes in the initial spacecraft mass ε1 and the
thrust level ε2 is exceptionally good, compared to the corresponding true optima f ε.
The error is between 0.0 % and 5.8 % of the total variation. It does not come as a
surprise, because of the approximately linear relationship between mass and thrust
on one side and the total ∆v that the spacecraft needs for the orbit manipulation
on the other side.
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ε1: Initial spacecraft mass 4500 kg

ε2: Thrust 6.0 N

ε3: Initial radius 1.0 AU

ε4: Final radius 1.523396 AU

ε5: Final tangential velocity 0.81020 [ ]

Tab. 2.2.1: Composition of the perturbation vector

ε1 ε2 ε3 ε4 ε5

∆εi 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

f ∗ 95.812

fp1 100.61 105.40 92.73 89.65 79.67 63.53 108.9 121.9 109.1 122.4

f ε 100.61 105.40 92.82 89.99 78.45 58.60 107.4 116.5 108.0 118.1

Tab. 2.2.2: Prognosis of the optimal cost function values - first order

For ε3 through ε5 the quality of the predictions is acceptable, but shows a dispropor-
tionately increasing error for larger perturbations. Taking a look at the equations
of motion the reason becomes obvious. Perturbations in the parameters ε3 through
ε5 affect the radius and velocity, which both have a complex influence on the propa-
gation. This strongly motivates a second order analysis, which is exemplified for ε4

according to

fp2(x(ε4+∆ε), ε4+∆ε) = f ∗(x∗, ε4) + ∂f
∂ε4

∆ε +
(

∂f
∂x

)T
∂x
∂ε4

∆ε + 1
2

d2f
dε24

∆ε(2.2.30)

The lack of inequality constraints conveniently reduces the effort for the compu-
tations. The results for second order prediction can be found in fig. 2.2.3. They
support the earlier assumption.

The use of second order terms significantly improves the prediction of the per-
turbed costs. The error for a variation of 10 % in ε4 is reduced by about 75%.
Further numbers can be found in tab. 2.2.3.
However, the computations that led to the reported numbers were based on a sim-
plification. An explanation is required. The described demo case has a control in
the form of a time-variant thrust direction. This control is parameterized. Even
though the resulting parameters are optimizable, they are not unbounded. Which
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Fig. 2.2.3: First and second order approximation for
perturbations in ε4

means, a variation inside the model can cause control parameters to saturate which
ultimately changes the set of active constraints. However, the algorithm mentioned
in the previous section works with a certain predefined set of active constraints. A
method to cope with this obstacle is to take the control parameters and fix them
at their optimal values. The sensitivity analysis is performed as if the control pa-
rameters were non-optimizable. This kind of model reduction can certainly not be
generally applied. But for the purpose of this demo case, where the goal is to indi-
cate the usefulness of second order analysis, we accept it and refer to sec. 3 for an
extensive discussion of active set manipulations.

2.3 Scaling Considerations

The fact that the whole concept behind NLP programming is gradient-based makes
it mandatory to apply special care when computing gradients. This holds for the
elements of the Jacobian, the cost function gradient and others. Only with precise
knowledge about the derivatives is it possible to compute correct search directions
and, in the end, obtain converged solutions, which obey the imposed optimization
tolerances [8].

This is to the same extend true for post-optimality analysis. An accurate assess-
ment relies on exact gradients and optimality of the provided solution.
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ε3 ε4 ε5

∆εi 5% 10% 5% 10% 5% 10%

f ∗ 95.812

fp1 79.67 63.53 108.88 121.94 109.09 122.37

fp2 77.95 56.65 107.18 115.14 108.10 118.39

f ε 78.45 58.60 107.38 116.49 107.96 118.12

Tab. 2.2.3: Prognosis of the optimal cost function values - second order

The demanding task of computing accurate data is afflicted by numerous effects.
In sec. 4.2.1 emphasis will be put on the selection and implementation of numerical
finite difference algorithms.
Another source of inaccuracies emerges from round-off errors which are caused by
general matrix operations. In essence, the critical factor, constraining the exact-
ness of algebraic operations is the computer hardware, that works with a limited
number of significant figure. With a regular PC, for instance, it is a necessity to
avoid matrix calculations that require more than 15 significant figures to display
deviations. Because otherwise the outcome is dominated by round-off errors and
canceling effects [59].

The answer to this challenge is adequate conditioning of vectors and matrices.
In NLP-based optimization, scaling techniques for parameters and constraints are
commonly applied to enhance algorithm performance [8], [47], [31]. They can enor-
mously improve the quality of the computations. Or, the other way around, if the
quantities describing the optimization problem are poorly scaled and several orders
of magnitude lie between them, the problem might be so degenerate that it’s not
even possible to solve it.

The benefits of scaling have also been documented for parameterized sensitiv-
ity analysis, tackling comparable challenges [7], [44]. For obvious reasons, we also
incorporate a scaling strategy. It is a straightforward technique to scale the param-
eters, constraints and costs describing the transcribed optimization problem. The
intention is to bring all parameters and constraints down to the range between -1
and 1. This motivates the following scaling for the different quantities:

xs = Kx + θ, with K = diag(κ1, ...κn), θ = (θ1, ..., θn)T (2.3.31)
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cs = Tc, with T = diag(τ1, ..., τm) (2.3.32)

fs = νf (2.3.33)

The selection of the scale weight for the perturbation ε with

εs = ηε (2.3.34)

should take the structural properties of the perturbation parameter into considera-
tion. For instance, if it is associated to a certain state parameter, then it is preferable
to apply identical weights for scaling of the state and scaling of ε.

To better understand the internal processing of the scaled quantities inside the
algorithm it is useful to take a look at the most common transformations of the
various vectors and matrices required for PSA.

[∂x]s = K∂x (2.3.35)

[∂c]s = T∂c (2.3.36)

[
∂c

∂x

]
s

= T
∂c

∂x
K−1 (2.3.37)

[
∂f

∂x

]
s

= νK−1∂f

∂x
(2.3.38)

[
∂c

∂ε

]
s

= η−1T
∂c

∂ε
(2.3.39)

[
∂f

∂ε

]
s

= η−1ν
∂f

∂ε
(2.3.40)

The calculation of the Lagrange multipliers inside the algorithm happens with
respect to the scaled problem. Hence, the multipliers are automatically scaled. In
order to obtain unscaled values one needs to scale them back. To derive the rule,
we take a look at

min||GT
s λs −∇fs||, with Gs =

[
∂c

∂x

]
s

(2.3.41)
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The unscaled Lagrange multipliers for the linear least squares problem then are

λ = ν−1Tλs. (2.3.42)

In addition, we take the opportunity here to mention several other transforma-
tions of matrices and vectors for reference purposes. These are[

∂2L
∂x2

]
s

= νK−1∂2L
∂x2

K−1 (2.3.43)

[
∂2L
∂x∂ε

]
s

= νη−1K−1 ∂2L
∂x∂ε

(2.3.44)

[
∂2L
∂ε2

]
s

= νη−1∂2L
∂ε2

η−1 (2.3.45)

2.4 Direct Control Optimization

The parameterized sensitivity analysis concept presented earlier in this chapter de-
scribes, as the name suggests, a method which is tailored for parameterized problems.
And the definition of nonlinear programming problems composes the fundament for
this method.
However, the ambition is to perform sensitivity analysis for continuous optimal con-
trol problems. An important link is still missing in the analysis strategy.

In sec. 1.1 two ways are listed, how optimal control problems can be solved. One
is indirect optimization. The other is direct transcription. It is an NLP based solu-
tion method and, thus, establishes the missing link between optimal control theory
and parameterized sensitivity analysis.
The design of more and more capable NLP solvers is attracting an increasing num-

ber of practitioners (see sec. 2.1.1). This has fostered the development of direct
transcription methods to make the benefits of NLP programming available for the
solution of continuous optimization problems with dynamics.
Even though it was not explicitly discussed, the earth-mars transfer gave a practical
example for transcription. In a nutshell the term describes just the procedure that
was necessary to fit the problem into an NLP frame.
The literature mentions two different methods to reformulate the mathematical de-
scription of an OCP. These are the shooting method and the collocation method [5],
[31]. Both approximate the control history through a grid of nodes and an interpo-
lation scheme (see fig. 2.4.4). Based on the specific requirements, the interpolation
can be either piecewise constant, linear or even polynomial.
The whole concept ultimately relies on the conversion of the infinite number of
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Fig. 2.4.4: Linear control approximation and path constraint evaluation grid

parameters of the continuous problem into a finite number of parameters and con-
straints. This has implications on possible path constraints. To suit the NLP
program they are converted to point constraints which are evaluated at predefined
nodes along the time history as shown in fig. 2.4.4.

2.4.1 Shooting Methods

Besides all the features that the two transcription methods have in common, there
is also one, which distinguishes them. It’s how they ensure compliance of the NLP
program with the dynamics of the genuine OCP.
The shooting method exploits the exact equations of motion. Set up as an initial
value problem, the initial state is defined as an optimizable parameter and then
integrated along the independent variable (see fig 2.4.5). Adherence of the complete
set of parameters with the integrated result is then forced via inclusion of defect
constraints.

This method has the advantage of being very exact, since it uses the original
equations. Generally, the integration is numerical. On the other hand, practitioners
often wince at the time consuming integration and the stiffness of the technique.
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Fig. 2.4.5: Shooting scheme for state

2.4.2 Collocation Methods

In contrast to the first method, collocation does not only disretize the control history,
but also the state history (see fig. 2.4.6). The set of schemes for parameterization
ranges from trapezoidal and Euler approximations to Hermite-Simpson or Gaus-
Lobatto polynomials [4], [49]. They represent different levels of sophistication and
accuracy. It is the user’s responsibility to identify the appropriate level for a par-
ticular application. Defect equations for a selection of collocation schemes can be
found in app. B.

Independent variable

S
ta

te

Fig. 2.4.6: Collocation scheme for state

Choosing the number and position of collocation nodes is a second important
task of the user and requires careful assessment [75]. For a poor choice, the deviation
between differential equation and approximate polynomial gets overly large. Then,
the NLP program is not representative of the genuine OCP anymore. On the other
hand, a very large number of optimization parameters unnecessarily degrades the
performance of the solver. Here, automatic mesh refinement algorithms, as suggested
by Betts [8] can serve as remedy.



Chapter 3

Extension for Post-Optimality
Analysis

The concept of first and second order sensitivity calculation, which has been devel-
oped in the previous chapter, composes the core of our analysis method. However,
so far, it falls short of the capabilities expected from a proper post-optimality anal-
ysis algorithm.
The example of sec. 3.1 illustrates the impairment of the algorithm, lacking infor-
mation about the reliability of the computed gradient information in the broader
vicinity of the optimality point. In principle, an enhanced evaluation technique is
needed that examines the composition and steadiness of the employed active set of
constraints and that derives profound data, which can be used to tag confidence
properties to the sensitivity gradients.
This issue is tackled in sec. 3.2 to sec. 3.3, where a stepsize control-like technique
is developed in order to provide improved optimality information in a non-iterative
fashion.

3.1 Modified Zermelo Problem

The so called Zermelo Problem [15] is a popular example of an optimal control prob-
lem. It is about finding a minimum-time transfer trajectory for a boat in a flow field
between two fixed points. The analytic solution is easily obtained with the help of
the Euler-Lagrange equations for optimal control problems.
In the classical configuration the problem formulation does not contain any inequal-
ity constraints. For demonstration purposes we extend the description to contain
such inequalities.

29
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3.1.1 Problem Description

The mathematical description is plain and corresponds to the idea of having a simple
example. Given the two dimensional dynamics

ẋ = V cos Θ + u (3.1.1)

ẏ = V sin Θ + v (3.1.2)

with (x, y) being the rectangular coordinates of the boat and u(x, y) and v(x, y)
being the position dependent velocity components of the flow field in the direction
of the x and y axis. The independent variable is the mission time t.
An engine is propelling the boat with a constant relative velocity V . The heading
angle Θ can be controlled. Thus, it is continuously changeable.
Boundary constraints Ψ are imposed on the initial states as well as the final states:

Ψ1 : x(t0) = x0 (3.1.3)

Ψ2 : y(t0) = y0 (3.1.4)

Ψ3 : x(tf ) = xf (3.1.5)

Ψ4 : y(tf ) = yf (3.1.6)

A path constraint is added to the conventional problem:

g1 : (x(t) tan ρ + s)− y(t) ≥ 0 (3.1.7)

The linear function defines a barrier that the boat is not permitted to violate. The
parameter s is the shift and ρ the gradient of this barrier.

In the earth-mars transfer example in sec. 2.2 the whole problem was configured
in a way that only equality constraints were present. Because of very loose bounds
on the state parameters, saturation of the states was practically impossible. In the
Zermelo case, the bounds are chosen to be much tighter.

With a shooting scheme the problem is transcribed into an NLP program and
then solved with an SQP method. The optimal solution of a nominal configuration
is depicted in fig. 3.1.1. It shows the optimal trajectories of the unrestricted mission
and for inclusion of the path constraint and tight state bounds.
The meaning of the term nominal configuration will be explained in sec. 3.3.4. Until
then, the focus will entirely be on the general implications posed by the inclusion of
inequality constraints.
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Fig. 3.1.1: Optimal transfer trajectory with partly active path constraints; flow field

3.1.2 Impairment of the Conventional Analysis

Sequential quadratic programming, like other NLP solver techniques, is iterative.
The problem is solved in a series of steps. First, a search direction is computed and
then the size of the next step adapted to produce optimum progress [43], [8], [39].
This process is generally gradient-based. The Jacobian matrix is evaluated and de-
pending on the specific method also the Hessian matrix. Therefore, it is important
to precisely know the active set of constraints Ca, which, to some extend, defines the
matrix elements.

This assignment is trivial for problems with solely equality constraints. In the
earth-mars transfer case no inequalities were explicitly imposed. And the fact that
the lower and upper bounds on the parameters were loosely defined with

(xi)lb � xi � (xi)ub, i ∈ Em (3.1.8)

guaranteed an unchanged active set throughout the entire optimization.
But this does not hold for the modified Zermelo problem. The inclusion of the
inequality constraint described by g1 adds uncertainty to the composition of the
active set. It depends on the actual parameter set and the location of the evaluation
points, whether the corresponding point constraints are enforced or not. Implicitly,
this has also major influence on the feasibility of the mission.

NLP solvers have sophisticated, embedded strategies for updating the active set
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during the iterative solution of the problem [57], [52]. They ensure feasibility of
the final trajectory by evaluating all kinds of inequality constraints, be it path con-
straints, boundary constraints or parameter limits and including or excluding them
from the active set depending on the momentary status.

The correctness of the active set of constraints is just as important for parame-
terized sensitivity analysis and post-optimality assessment as it is for optimization
algorithms. This need arises from the ambition to predict the behavior of the opti-
mal solution not only in the direct neighborhood around the nominal solution, but
also in the broader vicinity for finite variations of non-negligible magnitude.
In order to enable a qualified statement about the reliability of the POA results,
it is mandatory to know about the steadiness of the active set composition. This
information shall be computed with minimum effort. A routine is required, which
either updates the active set in a very time efficient way - an optimizer-like iterative
procedure is not aspired. Or it shall make a statement about the parameter space
for which the provided sensitivities are applicable with a certain level of confidence.

3.2 Identification of Active Inequality Constraints

We understand how important it is to work with the correct and complete active
set of constraints C∗a. But how exactly is it composed? Fig. 3.2.2 shows a generic
overview of constraint types commonly used in transcriptions. These are the kind
of constraints, which are explicitly defined and handed over to an NLP solver. So
they are readily available, including the corresponding parameter derivatives in the
Jacobian matrix. The symbol C is assigned to the entirety of these constraints.

The standard set C∗ of the optimal solution contains equality constraints H∗ and
inequality constraints G∗ respectively. In order to obtain the concise active subset,
the active components of G∗ are extracted

G∗w = {c(x∗, 0) ∈ G∗ | c(x∗, 0) = 0} (3.2.9)

and merged with H∗ to form the working set:

C∗w = {c(x∗, 0) ∈ C∗ | (c(x∗, 0) ∈ H∗) ∨ (c(x∗, 0) ∈ G∗w)} (3.2.10)

The active set is not complete yet. Besides the explicitly formulated constraints there
are also implicit conditions. They emerge from the boundedness of the optimizable
parameters and are linear in their representation:

clb : xi − (xi)lb ≥ 0, i ∈ Em (3.2.11)

cub : (xi)ub − xi ≥ 0, i ∈ Em (3.2.12)
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Fig. 3.2.2: Survey of constraint types commonly considered in transcriptions

Linearity implies that the first derivative is constant and that higher derivatives
are zero. NLP solvers, therefore, often treat linear constraints separately [38]. A
more thorough study of related implications for the Jacobian and Hessian matrix
computations will be given in sec. 4.3. For the time being we will concentrate on
completing the active set.
Unlike the parameter bounds in the earth-mars transfer, tight limits can force inclu-
sion of bound constraints B∗ in the active set of constraints for the optimal solution
to the nonlinear program. This completes C∗a with

C∗a = {C∗w ∪ B∗} (3.2.13)

The prior explanations on the composition of the active set sound trivial. Nonethe-
less, they are necessary to understand the updating and consecutive handling of the
active set in the context of post-optimality analysis.
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3.3 Prediction of Active Set Changes

In general, the optimal solution of a problem is reached at the end of an iterative
process. Step by step the solution is refined until the optimality conditions are fi-
nally met. An inherent part of this process is the routinely update of the active set
of constraints. It is necessary to ensure feasibility and optimality of the terminal
solution while permitting maximum flexibility. In the end, also the composition of
the active set converges towards a steady state.
Conventional sensitivity analysis follows a different concept. It is a single step cal-
culation which exploits the information available about the active set. Hence, the
sensitivity data is only valid as a linear approximation in the neighborhood around
the KKT point, where the active set remains unchanged.
This is sufficient to identify tendencies of, for instance, the costs for infinitesimal
perturbations in the design parameters and to analyze problems with a very small
number of considered constraints [44], [60]. But the performance quickly degrades
when predicting the optimal behavior for finite variations in a more complex prob-
lem.
It is advised to estimate the changes in C∗a that can be expected for a defined pertur-
bation. The fundamental thought behind this is to provide an enhanced prediction
for the perturbed solution based on the information that is readily available. Since
the Lagrange multipliers establish the status of inequality constraints, they are the
key to the prediction of changes in the active set and will further on be investigated
more closely.

Before submerging into the subspaces of active and inactive constraints, it is
useful to look at fig. 3.2.2 once more. Because there is one distinct implication con-
nected to the discretization which has not been mentioned yet: the post-optimality
analysis can’t consider any conditions which are not part of the transcribed problem
description. This means for path constraints, for instance, that activation of a path
constraint is out of the question if no evaluation node is defined in the region of
interest. Practitioners should bear this in mind, when evaluating PSA performance.

3.3.1 Estimation of Perturbed Lagrange Multipliers

In order to assess the adequacy of the information about the active set for consec-
utive use in post-optimality analysis we start with the optimality condition for the
Lagrangian function as formulated in eq. 2.1.9

Lx(x
∗, λ∗, µ∗, 0) = fx(x

∗, 0)− (gx(x
∗, 0))T λ∗ + (hx(x

∗, 0))T µ∗ = 0

It holds that

λi

(∂gi

∂ε

)T

+

(
∂gi

∂x

)T
∂x

∂ε

∆ε = 0, i ∈ Em−me (3.3.14)
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and (∂hj

∂ε

)T

+

(
∂hj

∂x

)T
∂x

∂ε

∆ε = 0, j ∈ Eme (3.3.15)

Hence, it follows from

df

dε
=

∂f

∂ε
+

(
∂x

∂ε

)T
∂f

∂x
(3.3.16)

that
df∗

dε
=

∂f

∂ε
−
(

∂g

∂ε

)T

λ∗ +

(
∂h

∂ε

)T

µ∗ (3.3.17)

The gradient of the objective function at the KKT point y∗ is a linear combination
of the derivatives of the problem constraints. The Lagrange multipliers are the co-
efficients to these derivatives. For inactive constraints these coefficients are zero.

Local convergence of SQP methods is applicable under the assumption that the
active set does not change. This assumption is valid in the vicinity of the KKT
point where the Hessian matrix is positive definite [22]. In this neighborhood, the

KKT point can also be formulated as ỹ∗ =
[
(x∗)T (µ̃∗)T

]
with µ̃∗ representing all

Lagrange multipliers of C∗a.
An SQP step assuming optimal variation can then be formulated as

ỹp = ỹ∗ + ∆ỹ. (3.3.18)

The vector ∆ỹ is computed from the first order Taylor expansions

∆ỹ =

 ∂x
∂ε

∂µ̃
∂ε

∆ε. (3.3.19)

As shown in sec. 2.1.2, the sensitivity of the Lagrange multipliers of the active
constraints with respect to variations in ε can be calculated from

∇xxL
∂x

∂ε
+

[
∂ca

∂x

]T
∂µ̃

∂ε
= −∇xεL (3.3.20)

This is the basis for the prediction of the Lagrange multipliers as part of the post-
optimality analysis for variations in ε.

The calculation of the Lagrange multiplier gradients requires the Hessian ma-
trix. It is, hence, a task for second order analysis. Nonetheless, the additional effort
seems justified and will variously be addressed in following chapters.
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3.3.2 Confidence Region

The Lagrange multipliers of inactive constraints are zero. Hence, in a coarse ap-
proximation, the subset

µ̃p = µ̃∗ +
∂µ̃

∂ε
∆ε (3.3.21)

of eq. 3.3.18 can serve as an indicator for the tendency of the inequality constraints
to remain active or to turn inactive.

In an SQP iteration, the length ∆ε would set the size of the step. We will use the
formula in reciprocal fashion to identify a so called confidence region. For a single
element perturbation, the perturbed Lagrange multipliers are set to zero

µ̃p !
= 0 (3.3.22)

and the equation is reformulated as

0 = µ̃∗ +

[
∂µ̃

∂ε

]
·∆εc (3.3.23)

It is solved for the column vector ∆εc. The elements with the smallest magnitude
then define the confidence radius for constraint deactivation for as long as they
belong to inequality constraints:

(∆ε)lb = max{∆εc | ((∆εi)c ≤ 0) ∩ (ci ∈ G∗)} (3.3.24)

(∆ε)ub = min{∆εc | ((∆εi)c ≥ 0) ∩ (ci ∈ G∗)} (3.3.25)

The remaining elements of the KKT point vector, namely the optimizable pa-
rameters, are extrapolated in the same fashion. This provides an insight into the
potential saturation of parameter bounds and, thus, additional references in the
form of confidence radii for the update of the active set of constraints.
Usage of the confidence radii requires cautious handling. The linear extrapolation is
far from being exact. Especially the Lagrange Multipliers of active constraints are
very sensitive and might hold superordinate nonlinear properties.

3.3.3 Completion of Active Set Data

Once the composition of the active set of constraints is determined, the regarding
vectors, matrices and derived quantities need to be computed or updated.
The elementary approach is to search the pre-computed data from the optimization
for information linked to the components of C∗a. This includes columns of the Jaco-
bian matrix and constraint values.
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Since completeness and coherence is a prerequisite for expedient post-optimality
analysis, all information that is not provided by the optimization algorithm needs
to be computed separately. The extend of this task depends on the capabilities and
accessibility of the particular solver for the optimization problem. Routinely, these
solvers return information for the generalized set of explicit constraints G and H,
including Lagrange multipliers and scale weights. Several algorithms also provide
cost gradients and constraint derivatives. However, it is not common that an accu-
rate Hessian matrix is returned.
In chapter 4 data completion is demonstrate for a specific algorithm, namely the
optimizer CAMTOS.

The idea of using first order results of the Lagrange multiplier prediction to up-
date the active set composition for enhanced second order analysis sounds appealing.
However, a closer look reveals that this poses more problems than benefits.
A comprehensive update of Jacobian and Hessian matrix requires techniques that
are usually used in iterative optimization algorithms. They are either efficient and
coarse, or extensive and accurate. Both concepts do not satisfy the demands of
post-optimality analysis. Further contributions to this discussion can be found in
chapter 4.
Overall, it can be said that the concept is not worth serious consideration.

3.3.4 Practical Example

The likeliness of impairments of the method, developed in chapter 2, when applied to
the modified Zermelo problem has motivated the prediction of perturbed Lagrange
multipliers. It is reasonable to use the Zermelo example now for an assessment of the
capabilities of the newly established features. Hence, the post-optimality analysis
is extended. The confidence radii for different problem configurations are computed
and exploited towards an identification of the perturbed active set composition.
It provides predictive information along with a reliability judgement based on the
confidence radii. The results are cross-checked with reoptimized solutions of the
perturbed cases.

Some preparatory work needs to be conducted to qualify the model of the mod-
ified Zermelo problem from sec. 3.1 for use in a post-optimality analysis. Since the
POA concentrates on the influence of non-optimizable parameters, it is necessary
to declare the quantities of interest as elements of such a parameter set. The list of
parameters together with their nominal values is given in tab. 3.3.1.

At first, a possible variation in the shift s of the barrier is assumed. A sensitivity
analysis is run for εs = 0.6. The results can be found in fig. 3.3.3.
The confidence radius is computed to be (∆εs)c = 0.204. This value turns out to
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Name Reference Description value

εv V Velocity base value 1.00

ερ ρ Gradient of the barrier [rad] 0.30

εs s Shift of the barrier [UL] 0.60

εx0 x0 Initial value of state x [UL] 4.20

εyf y0 Initial value of state y [UL] -2.10

εxf xf Final value of state x [UL] -1.00

εyf yf Final value of state y [UL] -0.50

Tab. 3.3.1: Non-optimizable parameters available for the POA

specifically limit the trust in the status of the inequality constraint that is related
to the point evaluation of the path constraint. Interpretation suggests, that for a
variation in s in the range of 0.2, the trajectory detaches from the barrier, thus,
changing the set of active constraints. First and second order SA use the active
set from the optimization. Accordingly, this effect should become tangible in the
accuracy of the sensitivity data.
Results can be seen in the given references for ∆s = 0.2 and ∆s = 0.4, respectively.
Whereas the predicted cost function fp2(∆εs = 0.2) is within 1.5% accurate com-
pared to the optimal cost, the error increases enormously when going beyond the
confidence radius. For ∆εs = 0.4 the deviation in the cost prediction increases to
more than 20%, even though the variation in the input only doubles.
Since the cost function prediction is directly affected by dx

dε
we can implicitly expect

enhanced predictions for state variations. For one representative point is this visual-
ized in the trajectory plots of fig. 3.3.3. An extrapolation (x, y)p for ∆ε2 beyond the
confidence radius keeps constraints enforced which otherwise would not be active.
Even for this simple example, the data then quickly becomes overly erroneous.

The first demo configuration neglected saturated state bounds. This is corrected
in the next configuration by setting the upper bound of y to yub = 1.1. Once more,
the confidence radius proves to be of good use. The new boundary constraint is
identified to turn inactive for about ∆εx0 = −0.98. This is verified empirically (see
table in fig. 3.3.4). The first order cost prediction delivers good results. For second
order analysis, the quality degrades slightly to an accuracy of about 5 %. The rea-
son has to be attributed to the overall large variations, based on a small number of
parameters and the evaluation point placement.

The proper placement of evaluation points can become an enormously important
task in parameterized sensitivity analysis. This is addressed in another example,
where variations in the initial state y0 are investigated.
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s yub f ∗

0.6 ∞ 7.1655

Case ¬ Case 

∆εs 0.2 0.4

(∆εs)c 0.2040 0.2040
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∣∣∣ 0.5253 1.7092

fp2(∆εs) 7.1167 7.1213∣∣∣fp2−fε

fε−f∗

∣∣∣ 0.0141 0.2065

f ε(∆εs) 7.116 7.1098
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Fig. 3.3.3: Cases ¬/: The table shows predicted cost function values (p1 is order
one, p2 is order two) for two different finite variations of ε, including reoptimized
value (index ε) and error. The graphs show the nominal, predicted and reoptimized
boat trajectory including discretization nodes.

Shooting methods for transcription are popular and attractive. They do not re-
quire a large number of grid nodes to stabilize the approximation. This reduces the
NLP problem size but also poses the following risks in connection with PSA. Take
the analysis results for a variation of ∆εy0 = −0.7, for instance. The upper graph
in fig. 3.3.5 shows the trajectories that were optimized with a grid of four state
nodes. The third node saturates at the state’s upper limit. The confidence radius
of (∆εy0)c = −0.8136 of this particular inequality suggests, that it comes close to
a change of status for ∆εy0 = −0.7. This prediction is correct but falls short. The
enlargement of the trajectory via ∆εy0 moves the grid node to the right, away from
the center of interest. The lack of evaluation nodes, then, tolerates the violation
of the upper state bound, causing an infeasible trajectory. This can be overcome
by inclusion of an additional grid point during the NLP optimization, as can be
seen in the lower graph of fig. 3.3.5. The results of the post-processing of the op-
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x0 yub f ∗

4.2 1.1 7.1825

∆εx0 -1.05

(∆εx0)c -0.9802

fp1(∆εx0) 6.6796∣∣∣fp1−fε

fε−f∗

∣∣∣ 0.0030

fp2(∆εx0) 6.7036∣∣∣fp2−fε

fε−f∗

∣∣∣ 0.05056

f ε(∆εx0) 6.6781
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Fig. 3.3.4: Case ®: Parameters, processed results and trajectory. For reference see
fig. 3.3.3

timal solution delivers the following results now. The confidence radius is reduced
to (∆εy0)c = −0.2595, because of the upper bound yub at the fourth state node.
Ultimately, this node secures feasibility of the perturbed solution. Looking at the
predicted cost function value, one might not consider the improvement from 1.27%
to 0.58% to be noteworthy. Nonetheless, the enhanced feasibility information is.

The calculation of confidence radii, based on the extrapolation of the Lagrange
multipliers and parameters has shown to be of good use for the post-optimality
prediction of variational influences. Their interpretation increases reliability and
therefore also accuracy of the prognoses.
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y0 yub f ∗

-2.1 1.1 7.1789

Case ¯ Case °

∆εy0 -0.7 -0.7

(∆εy0)c -0.8136 -0.2595

fp1(∆εy0) 8.5391 8.5409∣∣∣fp1−fε

fε−f∗

∣∣∣ 0.0749 0.0807

fp2(∆εy0) 8.6678 8.6691∣∣∣fp2−fε

fε−f∗

∣∣∣ 0.0127 0.0058

f ε(∆εy0) 8.6492 8.6605
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Fig. 3.3.5: Case ¯/°: Parameters, processed results and trajectory. Better dis-
cretization in case ° allows more exact prediction of active set, leading to more
accurate post-optimality analysis results.
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Chapter 4

Integration with an Existing
Optimization Software

The intention behind this thesis is, to develop an efficient, POA-based tool for post-
processing of optimal control problems. Therefore, the POA algorithm needs to be
integrated with an optimizer that provides respective optimal solutions in a con-
venient structure. A practitioner, who wants to analyze an OCP shall be enabled
to optimize it and run a POA immediately afterwards, taking full advantage of the
optimizer output.
It has been decided to integrate the POA algorithm with the software CAMTOS [31].
The acronym stands for Collocation And Multiple Shooting Trajectory Optimization
Software. It is a hybrid method allowing the user to select from a set of collocation
and shooting schemes to transcribe the optimal control problem. The software has
been developed at the Institute of Flight Mechanics and Control IFR, University
of Stuttgart, Germany [33], [34], [35]. CAMTOS is embedded in the GESOP pack-
age, a so called Graphical Environment for Simulation and OPtimization [4], which
manages the interfacing with the NLP solver, integrators and does the data handling.

The underlying concept behind CAMTOS is motivated by the same interests
as the POA efforts, namely to offer simple-to-use optimization expertise to prac-
titioners, who are no optimal control experts, but specialists in a certain field of
application. This makes CAMTOS most suitable for the aimed purpose.

In a number of steps the POA algorithm needs to be integrated and adapted
to the parameter and constraint structure of the optimizer. Further data retrieval
from the NLP solver via the optimizer (see fig. 4.0.1) is considered to be a key
competence to ensure efficient computing and increase practical usefulness of the
integrated tool. Therefore, the next section deals with the elementary details of the
transcription procedure and how POA fits in. Then, in sec. 4.2.1 the computation
of the Hessian matrix is discussed and evaluated with respect to accuracy matters.
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Practical aspects of the boundary constraint update and their inclusion in the Ja-
cobian matrix and other relevant vectors are contained in sec. 4.3.
An assessment of the accuracy of the Lagrange multipliers and implications for the
quality of the parameterized sensitivity analysis in sec. 4.4 completes the chapter
on practicality and implementation of the POA algorithm.

GESOP Engine

CAMTOS

OCP

POA

NLP Solver

Fig. 4.0.1: Structure of and data flow between the different modules of GESOP

4.1 Transcription of the Optimal Control Prob-

lem

The transcription of the optimal control problem into an NLP program is a critical
task. It entails consequences for the optimization process as well as for consecu-
tive processing of the results. A first categorization of transcription methods into
collocation and shooting schemes has been given in sec. 2.4, where direct solution
approaches are described. To be able to effectively interface the post-optimality
analysis with the optimizer, it is essential to understand the parameterization of the
original problem.
CAMTOS offers various schemes, which have a series of features in common. For
instance, the handling of discontinuities, which commonly appear in practical use.
They are treated as connect conditions of multi-phase setups. In order to allow
enhanced flexibility and avoid the risk of overlapping ranges of the independent
variable of the genuine problem, the runtime variable is phasewise normalized. This
constitutes a scaling of the independent variable and is beneficial for the optimizer
accuracy.
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4.1.1 Multiple Shooting Scheme

The direct shooting method in CAMTOS works with Runge-Kutta integrators of
order 2/3 and 4/5, respectively. The parameter set is developed according to model
specifics and continuity conditions for one shooting interval after the other. In tab.
4.1.1 the sparsity pattern of the Jacobian matrix is given for one interval block,
also illustrating the applicable parameter and constraint types. The block-diagonal
structure does not come naturally, but is achieved by duplicating the optimizable
real parameters and phase times at each shooting point. Despite its advantageous
structure for efficient optimization, there are also drawbacks caused by the multi-
tude of similar parameters. Sensitivity analysis will compute multiple independent
derivatives with respect to just one real parameter. The matter is addressed when
dealing with practical examples in chapters 5 and 6.
A more detailed discussion of the shooting scheme in CAMTOS can be found in [31].

Parameter x0 p0 u0 t00 tf0 x1 p1 u1 t01 tf1

Constraint

Initial Boundary x x x x x

Parameter Constraint x x x

Path Constraint x x x x x

State Connect x x x x x x

Parameter Connect x x

Control Connect x x

t0 Connect x x

tf Connect x x

Path Constraint x x x x x

Final Boundary x x x x x

Tab. 4.1.1: Sparsity pattern of the Jacobian Matrix in a multiple shooting phase
with one node according to [31]

4.1.2 Collocation Scheme

Collocation schemes are popular since they do not require time-consuming variable
integration and show appreciable robustness of the nonlinear program. On the other
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hand, they are, in fact, approximations. Which means, they are not per se accu-
rate. Therefore, CAMTOS offers several schemes that the user can choose from
to refine the accuracy of an optimized trajectory. Whereas the controls are always
modeled as piecewise constant or piecewise linear, the states can be approximated
as Hermite-Simpson polynomials, Runge-Kutta polynomials or with a trapezoidal
rule (see app. B). The defect conditions are added to the set of constraints.

The sparsity pattern of the collocation is coarser organized than the one of the
shooting scheme (see tab. 4.1.2). The enormous increase in parameters and con-
straints due to duplication is judged to be more critical than the possible savings
traded by the slimmer block structure of the Jacobian matrix. Therefore, the collo-
cation scheme abandons the idea of parameter duplication.

Parameter x1 u1 x2 u2 x3 u3 x4 u4 p1 t0 tf

Constraint

Initial Boundary x x x x x

Parameter Constraint x x x

Path Constraint x x x x x x x

Defect 12 x x x x x x x

Control Continuity x x

Path Constraint x x x x x x x

Defect 23 x x x x x x x

Control Continuity x x

Path Constraint x x x x x x x

Defect 34 x x x x x x x

Control Continuity x x

Final Boundary x x x x x

Tab. 4.1.2: Sparsity pattern of the Jacobian Matrix in a collocation phase which
consists of three intervals (Ref. [31])

There is another peculiarity. The implementation works with a dual set of con-
trol parameters at each grid point. Defining a left-hand and a right-hand control
enlarges the convergence radius of the optimizer. During the optimization the NLP
solver permits defects which eventually have to be reduced to zero.
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This poses an obstacle for sensitivity analysis, since again multiple parameters de-
scribe just the same. This will be addressed in later chapters.

4.2 The Hessian Matrix

We have learned that the calculation of higher order sensitivity information requires
the Hessian matrix of the Lagrangian function. In the following section we will
discuss the computation of the Hessian using finite differences. First the Hessian
matrix itself is introduced. Then, the finite difference approximation is derived and
accuracy limitations are discussed.

The Hessian of the Lagrangian is the second derivative of the Lagrangian function
with respect to the system parameters. Thus, after dual differentiation of eq. 2.1.4
we obtain the Hessian

∂2L
∂x2

=
∂2f

∂x2
−

m∑
k=me+1

λk
∂2gk

∂x2
+

me∑
l=1

µl
∂2hl

∂x2
. (4.2.1)

It is helpful to take a look at certain characteristics of the Hessian matrix. First
of all, and most obviously, the Hessian is symmetric. For a more thorough discussion,
see [40], p.320.
Another practical property is the sparsity structure of the Hessian alluded in eq.
4.2.1. Every element ∂2L

∂xi∂xj
is composed of the sum of the partial derivatives of

all constraints with respect to xi and xj. For certain combinations of parameters
the Hessian element can’t be non-zero when following the sparsity pattern of the
transcription methods. The correlation defines a particular super-block diagonal
structure of the Hessian matrix for every individual NLP program.
For single-phase problems in connection with a collocation scheme, the block is so
large, that the matrix has to be understood as dense. But for multi-phase setups
the sparsity can becomes truly beneficial for efficient calculation.

4.2.1 Finite Difference Approximations

The expenses when differentiating the cost function and all constraints with respect
to all parameters are enormous. Most often an analytical differentiation is not even
possible. Therefore, it is common practice to approximate the derivatives with fi-
nite differences. We distinguish between forward/backward differences which only
require one additional function value computation and central differences, where two
additional function value computations are necessary. The benefit of the central dif-
ference method is the higher order accuracy.
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Following, we develop the equations for the finite difference approximation of
second order derivatives and apply them to the Hessian matrix.
Given the function

f = f(x).

The forward difference approximation for the first derivative with respect to xi is

∂f(x)

∂xi

=
f(xi + ∆x)− f(xi)

(xi + ∆x)− xi

+O(∆x) (4.2.2)

for a ∆x of appropriately small size.
The central difference approximation for the first derivative with respect to xi is

∂f(x)

∂xi

=
f(xi + ∆x)− f(xi −∆x)

(xi + ∆x)− (xi −∆x)
+O(∆x2) (4.2.3)

We use the method of forward differences a second time to obtain the second deriva-
tive approximation

∂2f

∂xi∂xj

≈

[
f(xi+∆x,xj+∆x)

∆x
− f(xi+∆x,xj)

∆x

]
−
[

f(xi,xj+∆x)

∆x
− f(xi,xj)

∆x

]
∆x

(4.2.4)

In the same fashion we obtain with central differences

∂2f

∂xi∂xj

≈

[
f(xi+∆x,xj+∆x)

2∆x
− f(xi−∆x,xj+∆x)

2∆x

]
−
[

f(xi+∆x,xj−∆x)

2∆x
− f(xi−∆x,xj−∆x)

2∆x

]
2∆x

≈ f(xi+∆x,xj+∆x)−f(xi−∆x,xj+∆x)−f(xi+∆x,xj−∆x)+f(xi−∆x,xj−∆x)

4∆x2
. (4.2.5)

For i=j this simplifies to

∂2f

∂x2
i

≈=
f(xi + 2∆x)− 2f(xi) + f(xi − 2∆x)

4∆x2
(4.2.6)

For the elements of the Hessian matrix in eq. 4.2.1 it follows

∂2L
∂xi∂xj

≈ f(xi+∆x,xj+∆x)−f(xi−∆x,xj+∆x)−f(xi+∆x,xj−∆x)+f(xi−∆x,xj−∆x)

4∆x2
(4.2.7)

−
m∑

k=me+1

[
λk

gk(xi+∆x,xj+∆x)−gk(xi−∆x,xj+∆x)−gk(xi+∆x,xj−∆x)+gk(xi−∆x,xj−∆x)

4∆x2

]

+
me∑
l=1

[
µl

hl(xi+∆x,xj+∆x)−hl(xi−∆x,xj+∆x)−hl(xi+∆x,xj−∆x)+hl(xi−∆x,xj−∆x)

4∆x2

]
+O(∆x)
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The expression in eq. 4.2.7 is the fundament for the computation of the Hes-
sian matrix. However, the indicated order of accuracy is not of practical use. It
establishes only a theoretically best possible value. Because, when implemented in
a computer code, numerical effects dominate the accuracy of the result and further
degrade it. It is, then, time to take a look at efficient and effective computing.

4.2.2 Efficient Computing

Two considerations drive the effort to be invested in the implementation of the Hes-
sian matrix calculation. First of all, there is the need to compute most exact and
reliable information. Since the Hessian matrix information is foreseen for consecu-
tive second order sensitivity analysis, it is essential to obtain a Hessian matrix which
is not degenerate, but provides second order gradient information of certain accu-
racy. This is even more crucial for finite difference methods with decaying exactness.

The second aspect is efficiency in the computation of the elements of the Hes-
sian matrix. With an increasing dimension of the nonlinear program, meaning an
increasing number of parameters as well as constraints, the number of operations
required for a straightforward computation of the finite differences grows exponen-
tially.
Various methods appear to be suitable to support efficient computation of the Hes-
sian elements. First of all, it is advised to exploit the super-block sparsity of the
Hessian by evaluating the correlations between xi, xj and the constraints. If these
a-priori prove certain elements to be zero, then costly computation can be avoided.
The same hold for components, where the Lagrange multiplier is zero.
Other economization strategies suggest to take advantage of system parameter de-
coupling and to calculate multiple elements at the same time. One such strategy is
described by Curtis, Powell and Reid [19]. This can significantly reduce the number
of required function calls, but always depends on the structure of the particular
application.

The numerical calculation of the Hessian matrix elements is prone to several
error sources. The use of finite differences triggers truncation and roundoff errors.
The magnitude of the applied variation ∆x is crucial to the numerical accuracy of
the approximation. For overly large values the approximation will suffer from enor-
mous truncation errors. On the other hand, if the magnitude of the variation is very
small, then this will cause the round-off errors to dominate the accuracy [40].

A recommendation for appropriate variations in a second order system that best
balances the contrary interests, is

∆x ∼ ε
1/3
f ∆xc (4.2.8)



50 Inclusion of Boundary Conditions

given in [59].
In this context εf is the machine precision of the computer processor. The variation
∆xc is either the parameter value if larger than one, or one itself.

4.3 Inclusion of Boundary Conditions

The constraint output that is made available by the optimization algorithm after
successful termination, is incomplete in so far, as the data is limited to the constraint
subset C∗w. For parameterized sensitivity analysis the subset and derived quantities,
like the Jacobian matrix, need to be expanded to cover the full set of active con-
straints C∗a. The consecutive instructions detail the required measures.

Not included are the state bound constraints, which limit the allowed range of
system parameters. They are inequalities and always defined in pairs of two con-
straints for each parameter x, one for the lower bound xlb and one for the upper
bound xub. If not applicable, a bound can be set to an infinite value.

According to 3.2.11 and 3.2.12 their formulation is

clb : xi − (xi)lb ≥ 0, i ∈ En

cub : (xi)ub − xi ≥ 0, i ∈ En

General constraint as well as parameter values of the NLP program are scaled al-
ready. Because of this and the linearity of the boundary conditions, it is sufficient
to utilize the related factors for scaling of the new boundary constraints. The idea
of separate scaling can therefore be abandoned.
This results in

[(c)lb]s : [xi]s − [(xi)lb]s ≥ 0, i ∈ En (4.3.9)

[(c)ub]s : [(xi)ub]s − [xi]s ≥ 0, i ∈ En. (4.3.10)

All state bound constraints, which are zero at the optimal solution are extracted
to form B∗ and are added to the set of active working constraints C∗w, which is
then called C∗a. We derive this set with respect to the system states and obtain the
Jacobian matrix. Due to practical considerations we differentiate the equations of
the state bound constraints analytically. The gradient for lower bound constraints
is

∂cj lb

∂xi

= +1 for i = j; i, j ∈ En (4.3.11)
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and for upper bound constraints

∂cj ub

∂xi

= −1 for i = j; i, j ∈ En. (4.3.12)

In case of i 6= j there is no correlation and the gradients are zero:

∂cj ub

∂xi

=
∂cj lb

∂xi

= 0 for i 6= j. (4.3.13)

Column-by-column the correct gradients can be appended to the Jacobian ma-
trix now.

In the same manner the state bound constraints are included in the calculation
of the Hessian matrix. Therefore, we analytically differentiate the constraints and
get

∂2ci b

∂x2
=

∂2ci b

∂x∂ε
=

∂2ci b

∂ε2
= 0; ci b ∈ B∗. (4.3.14)

Hence, the state bound constraints can be neglected in the calculation of the Hessian
matrix.

Next comes the gradient ∂cb

∂ε
with respect to the perturbation parameter. The

assertion
∂cb

∂ε
= 0. (4.3.15)

is true for practical applications, since state bound sensitivity would generally not
be examined for singular evaluation nodes, but by use of a path constraint.

With these measures the optimizer output is qualified for use in post-optimality
analysis.

The same procedure can theoretically be employed to update vectors and ma-
trices for second order sensitivity analysis, based on first order analysis predictions
about the active set composition of the perturbed solution. However, one should
bear in mind that this also requires the update of the parameter vector. The param-
eters of the updated nominal vector x̄∗ have to fulfill the newly included boundary
conditions

cb : = [x̄∗i ]s − [(xi)b]s = 0, i ∈ En. (4.3.16)

Therefore, the procedure should not be utilized for complex problems, since the up-
date is incomplete and, thus, increases the risk of erroneous sensitivity coefficients.
The full update of Jacobian and Hessian matrix as well as the perturbation related
gradients for nonlinear constraints requires substantial computation and would ulti-
mately lead to an optimizer-like iterative method, but not to a slim POA algorithm.
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4.4 Lagrange Multiplier Accuracy

We recollect the description of the NLP program in sec. 2.1.1. The fundamental
equations explain the importance of Lagrange multipliers, which are part of the
KKT vector and, thus, define the optimization problem. Securing their accuracy is
both a critical and also sometimes tedious task, in the sense that only for a truly
converged optimum the Lagrange multipliers are unique [22].

Fortunately, the relevance of Lagrange multiplier accuracy is somewhat different
when the quality of PSA results is concerned. Hallman [44] relies on them for each
and every analysis. But the derivation in sec. 2.1.2, specifically, eq. 2.1.13, shows
that the sensitivity gradients ∂x

∂ε
of the NLP parameters can be computed without

using the Lagrange multipliers. The same holds for first order cost function sensi-
tivity ∂f

∂ε
.

Lagrange multipliers become relevant when computing the complete KKT point
sensitivity and when performing second order analyses. They form the core of the
confidence radius estimation and are a key element in the computation of the Hes-
sian matrix.

In any case, it is advisable to consult the first order optimality conditions to
clarify the status of an obtained solution, for instance, by computing (µ̃∗)T · c∗a as a
low level optimality criterion. For a converged solution its product is supposed to
equal zero. Deviation from zero indicates suboptimality and relativizes POA results.

It is difficult to exactly solve the NLP program and accurately invert the required
matrices in order to calculate the Lagrange multipliers:(

∂ca

∂x

)T

µ̃∗ = −∂f

∂x
. (4.4.17)

Among other methods suggested in [37], [7], singular value decomposition is the
prime choice in this context.
For a decomposition of the active set Jacobian matrix

∂ca

∂x
= UΣV T (4.4.18)

with U, V being orthonormal matrices, the pseudo-inverse can be used to compute
the Lagrange multipliers as

µ̃ = −V Σ̄−1UT ∂f

∂x
(4.4.19)

where Σ̄ is a diagonal matrix, which contains the singular values of the Jacobian
s = diag(Σ) down to a certain threshold.
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Equation 4.4.17 represents an over-determined linear system. Generally, Σ is not
singular and the system can immediately be solved. Occasional degeneracy in the
Jacobian, however, can make it necessary to zero small singular values [59]. This is
related to possible linear dependency of constraints, which can not be ruled out for
optimal control problems in engineering. Parameter duplication by the transcription
method is also one possible source for such dependencies.

Proper scaling is just about as important for the Lagrange multipliers as it is
for any other variable or constraint. Degradation of the accuracy has been reported
in detail in [6], [44]. Practical use shows that the methodology addressed in sec.
2.3 provides sufficient relieve in order to make the effects secondary with respect to
multiplier accuracy.



54 Lagrange Multiplier Accuracy



Chapter 5

Example 1: Hopper Optimal
Re-Entry Analysis

It is a continuing effort in the spacecraft community to develop concepts for more
efficient, more economic and more reliable launcher vehicles. One of them is known
under the name HOPPER [21]. It is a reusable launcher concept with a suborbital
vehicle that deploys an upper stage at an altitude of about 130 km to 140 km
into an intermediate orbit. Thanks to its winged configuration, it afterwards lands
horizontally on a runway, while the upper stage delivers the payload into the target
orbit. With Kourou, French-Guiana being the launch site, the foreseen landing site
for missions with payload bound for equatorial orbits is on Ascension Island in the
Atlantic Ocean.

The optimization of HOPPER trajectory segments [67], of end-to-end trajecto-
ries [73], possibly with multiple branches [31], [74], has been and still is a topic of

Fig. 5.0.1: The HOPPER reusable launch vehicle
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active research. Nominal conditions are assumed when computing such reference
trajectories. The outcome is then processed in order to develop suitable controllers.
Still today, it is common practice to establish the controller performance by running
a series of Monte Carlo simulations, introducing uncertainties in the model that had
not been considered during the optimization [68].

The assessment of controller stability is necessary because of inaccuracies in the
model equations and uncertainty of model parameters. For instance, in real life
the position of a vehicle can only be determined within certain tolerances. The
gravitational model might as well be inaccurate. And most important of all, the
atmosphere information and the actual aerodynamic properties of the lifting body
might vary from results of computational fluid dynamics analysis.

Following, we will take a look at the re-entry leg of the HOPPER mission and
execute a parameterized sensitivity analysis to come up with a first estimate on the
impact of uncertainties in the model.

5.1 Description of Model and Mission

The trajectory segment under consideration covers the re-entry leg of the mission.
For the optimization it is modeled as a 3-DOF system with the state vector

x = [r, λ, δ, v, γ, χ]T

representing the radius, geocentric longitude and declination, relative velocity and
flight-path angle and azimuth. The re-renty is unpropelled. Therefore, the mass of
the vehicle is considered constant throughout the flight. The equations of motion
are given as subsets of kinematic equations

ṙ = v · sin γ (5.1.1)

λ̇ =
v · cos γ · sin χ

r · cos δ
(5.1.2)

δ̇ =
v · cos γ · cos χ

r
(5.1.3)

and of force equations

v̇ = ah,x cos γ cos χ + ah,y cos γ sin χ− ah,z sin γ (5.1.4)

γ̇ = −(ah,x cos χ + ah,y sin χ) sin γ − ah,z cos γ

v
(5.1.5)
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χ̇ =
−ah,x sin χ + ah,y cos χ

v cos γ
(5.1.6)

which are coupled.

The modeling of gravitational acceleration is limited to J2. This measure has
been taken for the sake of the intended exemplary use of the re-entry case. The
atmosphere model is US Standard 62.

The vehicle is controlled via the angle of attack α and the bank angle µ. Both are
not explicitly mentioned in the equations of motion, but are part of the formulation
of the acceleration vector ah = [ah,x, ah,y, ah,z]

T. It sums up the gravitational and
aerodynamic forces and is given in the horizontal frame [61].

In general, optimization of re-entry trajectories concentrates on maximizing the
cross- or downrange. However, since the end conditions are given by the location of
Ascension Island and the specifications of the terminal entry interface [67], the final
state is firmly constrained.
In return, there need to be other degrees of freedom. Therefore, the starting con-
ditions are not fixed to the culmination point of the suborbital trajectory. But the
initial longitude λ0 becomes the objective to be minimized during the optimization,
thus, maximizing the flight arc. Further initial state conditions can be found in
tab. 5.1.1. They conform with typical HOPPER culmination conditions for a geo-
stationary orbit transport.
The total mass of HOPPER at re-entry is m0 = 63, 335 kg.

Altitude h0 : 140 km

Longitude λ0 : optimizable

Declination δ0 : 3.2◦

Flight-path velocity v0 : 4960.2 m/s

Flight-path angle γ0 : 0.0◦

Flight-path azimuth χ0: 100.0◦

Tab. 5.1.1: Initial conditions

The phase structure applied to this trajectory optimization problem is depicted
in tab. 5.1.2. The division into five phases mates constraint necessities and aero-
dynamic coefficient-steadiness precaution for the sake of an efficient gridding. More
details on the aerodynamic database can be found in [74] and [25]. Reference on the
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Time [sec] Control Limits Path constraints Boundary constraints

1 0-190 α = 40◦ q ≤ 40 kPa [r0, δ0, v0, γ0, χ0]

−80◦ ≤ µ ≤ 80◦ Q̇ ≤ 450 kW/m2 n = 4.5 g

2 190-544 0◦ ≤ α ≤ 40◦ q ≤ 40 kPa Ma = 8.00

−80◦ ≤ µ ≤ 80◦ Q̇ ≤ 450 kW/m2

n ≤ 4.5 g

3 544-825 0◦ ≤ α ≤ 40◦ Ma = 3.92

−80◦ ≤ µ ≤ 80◦

4 825-939 0◦ ≤ α ≤ 40◦ Ma = 2.31

−80◦ ≤ µ ≤ 80◦

5 939-1049 0◦ ≤ α ≤ 40◦ q ≤ 40 kPa hf = 15 km

−80◦ ≤ µ ≤ 80◦ λf = −14◦23′

δf = −7◦58′

Ma = 1.50

Tab. 5.1.2: Phase structure of HOPPER re-entry optimization

phase separation can also be found in [67].

There are a number of structural, thermal and thermo-dynamic restrictions which
commonly need to be preserved. In the given case these are limits on the allowed
load factor n, the heatflux Q̇ and the dynamic pressure q. The actual restrictions
are assigned in tab. 5.1.2.

5.2 Parameter Perturbations in the Model

The given mathematical equations do not accurately describe the true vehicle dy-
namics, but represent an approximate model. From a controllability perspective,
the degree of inaccuracy along with safety margins determines, whether the opti-
mized solution is only theoretically feasible or can be flown in practice. Therefore,
it is crucial to assess the effects of inaccuracies and parameter uncertainties on the
nominal trajectory.
The design parameters and model properties that are prone to perturbations can
be separated into three groups according to their character. There are uncertainties
related to the vehicle itself. Respective design parameters are among others, system
masses and aerodynamic coefficients. Since the re-entry flight is unpowered, the
propulsion specifications are not an issue.
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Then, there are navigational perturbations. In our case they are considered in the
determination of the initial state vector elements. Perturbations can arise as con-
ventional inaccuracies, which, according to [41], are usually no larger than 3 m/s
for the velocity, and 800 m for the position. Or they can be included to study
trade-off potential for system staging. For the latter, larger variations of the design
parameters can be expected.
Environmental inaccuracies compose a third group of uncertainties. These can, for
instance, be atmospheric or gravitational anomalies. In general, the earth model is
well established and therefore highly accurate. Nonetheless, because of simplifica-
tions in the optimization model, the assessment of environmental inaccuracies seems
reasonable given the controllability of the vehicle.
A set of design parameters for post-optimality analysis can be found in tab. 5.2.3.

Symbol Description Reference value

εr Initial altitude [km] 140

εδ Initial declination [◦] 3.2

εv Initial velocity [m
s
] 4960.2

εχ Initial flight-path azimuth [◦] 100.0

εcd Aerodynamic drag deviation factor [ ] 1.0

εcl Aerodynamic lift deviation factor [ ] 1.0

εJ2 Zonal harmonics J2 [ ] 0.0010826

εm Vehicle mass [kg] 63335.0

εhfl Heatflux limit [kW
m2 ] 450.0

Tab. 5.2.3: Parameter selection for POA

5.3 The Optimized Nominal Trajectory

Using the CAMTOS algorithm, the optimization of the HOPPER re-entry trajec-
tory can not be carried out in a straightforward fashion, but needs to be developed
iteratively. The problem is first solved neglecting path constraints. They are incor-
porated in a consecutive step.
The final nonlinear program consists of a total of 315 parameters and 225 constraints
of which 195 are equalities. The applied scheme represents a shooting method.

The optimal trajectory is shown in fig. 5.3.2. The cost function is minimized to
a value of f ∗ ≡ λ∗

0 = −36.139◦, which falls short of the value computed for the cul-
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Fig. 5.3.2: The HOPPER optimal re-entry trajectory
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Fig. 5.3.3: Control history for the optimal re-entry
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Fig. 5.3.4: Heatflux, dynamic pressure and load factor graphs

mination point of the branched trajectory in [31]. Minor deviations are attributed
to updates in the model and mission requirements, including tighter restrictions.
It shows that the current HOPPER configuration requires basically almost maximum
downrange from the stage separation point in order to reach the TAEM (Terminal
Area Energy Management) interface, Ascension Island respectively.

The altitude profile in fig. 5.3.2 shows a number of receding skips. They are
not unusual for HOPPER re-entry trajectories. Damping of these skips is coupled
with tighter limits on γub and the heatflux limit. It results in more agile profiles of
the controls. As has been described in [67], the magnitude of the control variations
versus the definition of the skips can be influenced by a Lagrange term in the cost
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function. In an intermediate optimization step the term

L =
∫ kα(t) ·

(
dα

dt

)2

+ kµ(t) ·
(

dµ

dt

)2
 dt (5.3.7)

is included in order to serve just this purpose. Appropriate values for the coefficients
kα and kµ depend on the degree of damping and usually range between 10−4 and
10−1. For the presented trajectory they had a magnitude of about 10−3.
The optimal control profiles are depicted in fig. 5.3.3.

The load factor n is the first path constraint to saturate (see fig. 5.3.4). The
peak is steep and limited to the phase bound 1-2. Immediately afterwards, the
heatflux reaches 450 kW/m2 which activates the constraint. It remains active for
about 20 seconds. Then follows the peak of the dynamic pressure. But due to the
heatflux restriction, the dynamic pressure stays well below critical levels.
The tight limit on the heatflux turns out to be a major hurdle during the optimiza-
tion process. It appears to dampen the skipping, but also to significantly shorten
the mission arc.

5.4 Results of the Post-Optimality Analysis

As a first step a post-optimality analysis of the nominal solution is conducted with
respect to variations in the design parameter εδ, which defines the initial geocentric
declination. For reference, an increment of ∆εδ = +0.24◦ is assumed (see tab. 5.4.4),
which correspondents to a deviation of approximately +25 km. According to sec-
ond order PSA, this shortens the starting longitude by about one degree to a value of

λp2
0 = fp2(∆εδ = 0.24) = −35.219◦. (5.4.8)

The confidence radius (εδ)c+ = +0.74◦ is considerably larger than the foreseen
variation. In the other direction, for negative perturbations in εδ, the analysis de-
livers results with a confidence radius of (εδ)c− = −0.75◦.
In both cases, a foreseen perturbation of ∆εδ = ∓0.24 is much smaller than the con-

fidence radius. This suggests that the active set of constraints remains unchanged
for the perturbed trajectories.
Keeping in mind the coarseness of the method, the predictions should produce rea-
sonable, but by no means exact results. Comparison of the predicted fp2 with the
reoptimized f ε supports this assumption. The normalized errors σ are 20.1% and
-17.5%, respectively.
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Par. εc ∆ε ∆ε [%] f ∗ [◦] fp1 [◦] fp2 [◦] f ε [◦] σ [%]

εδ -0.74883 -0.24 -7.5 -36.139 -37.048 -37.039 -36.905 -17.5

εδ 0.74161 +0.24 +7.5 -36.139 -35.229 -35.219 -34.988 20.1

σ = fε−fp2

fε−f∗

Tab. 5.4.4: Convergence radii and cost function prediction for design parameter
perturbations
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In order to further analyze the PSA results, we take a closer look at the individ-
ual state sensitivities for ∆εδ. Figure 5.4.5 gives the sensitivities S∗ for the nominal
case. They are plotted against the true mission time.
The graph of dχ

dε
indicates no influence of the perturbation on to early flight-path

angle. This had to be expected, since the initial flight-path angle χ0 is constrained.
Conversely, the graph for the longitude shows high sensitivity for the early parame-
ters. It shrinks down to zero towards the end of the mission in compliance with the
terminal constraint. This coincides with the expected behavior.
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Fig. 5.4.6: Ground track for ∆εδ = +0.24

The sensitivities dλ
dε

, dδ
dε

and dχ
dε

exhibit strictly monotonic development, suggest-
ing a very smooth bending of the trajectory with increasing perturbation.
For further assessment, it is helpful to take a look at the ground track of the re-entry
for ∆εδ = 0.24◦ in fig. 5.4.6. The predicted trajectory as such almost accurately
matches the reoptimized trajectory. The locations of the grid points differ slightly
more. In the light of the good overall performance the displayed mild inconsistency
seems secondary. The underlying effect, however, is attributed to a cause that the
user needs to bear in mind, when interpreting the sensitivity results for the contin-
uous control problem.
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The explanation is as follows. The mission has been set up with a normalized
time grid. The actual time in seconds for each grid point is a function of the fixed
normalized mission time tn and the parameters that contain the true phase duration
(see tab. 5.4.5). Hence, the complete time grid can shift, when perturbation triggers
a variation in the time related optimizable NLP parameters.
This does not yet explain, why the trajectory prediction delivers satisfactory re-

∆t∗ ∆tε ∆tp ∆tε −∆tp

Phase 1 190.1 190.2 190.2 0.0

Phase 2 358.7 372.7 265.7 7.0

Phase 3 277.0 276.6 285.6 -9.0

Phase 4 114.7 114.9 115.5 -0.6

Phase 5 109.7 109.9 110.0 -0.1

Sum 1050.3 1064.3 1067.0 -2.7

Tab. 5.4.5: Phase durations in seconds with reference ∆εδ = +0.24◦

sults, even though the time grid develops differently. The reason is to be found in
the ultimately deviating search directions of the PSA algorithm and the NLP solver.
Parameterized sensitivity analysis is programmed to produce a feasible solution and
move best possible towards an optimal result. But it is not an iterative NLP al-
gorithm. Only for trivial problems could a single step algorithm converge to the
optimal solution.
The different deformation of the time grid in phases two and three is also the reason
for the dual dip of dv

dε
in fig. 5.4.5, which at first glance gives the false impression

that the variations in the velocity would be larger than they actually are.

Conclusively, it can be said that a comprehensive comparison of predicted and re-
optimized histories for the verification of the algorithm performance is only possible
in the framework of the optimal control problem description under full consideration
of time grid shifts and deformation. The plots of state and control profiles against
mission time can be found in fig. 5.4.7 and fig. 5.4.8.
A representation with normalized time might only be sufficient for the assessment
of pure parameter sensitivity.
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Fig. 5.4.7: State history with reference ∆εδ = +0.24◦

The question arises, how accurate the post-optimality analysis is. The deviations
between reoptimized control and state histories and the nominal, as well as the pre-
dicted histories are computed (see fig. 5.4.9 and fig. 5.4.10). It shows that the
sensitivity analysis performs fairly well for states λ, δ and χ. Also for the velocity
v the error stays in satisfactory margins.
This does, however, not hold for the remaining two states. Overall, the errors in
the predicted radius and flight-path angle profiles are in the order of the variations.
Temporally, the region can be narrowed down to the range from about 200 to 700
seconds. This is the mission segment in which the skips occur.
The inferior prediction of the two states in the vertical plane goes back to the control
that governs their propagation -the angle of attack. As can be seen in fig. 5.4.10,
the estimated angle of attack αp is inaccurate. In fact, it appears not to be useful
at all. The errors τα,1 have the same magnitude like the variations τα,2. In contrast,
the bank angle profile shows variations τµ,2 of up to 4.5◦ that are reasonably well
predicted.

Several of the prior insights have been based on knowledge about the exact so-
lution. It has been made available for reference purposes. But the practical idea
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Fig. 5.4.9: State history deviations for ∆εδ = +0.24◦
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behind post-optimality analysis is to perform a rapid, approximate assessment of an
optimal solution. So the question is, what information can be extracted from the
sensitivity data itself. Thereto we turn to the sensitivities of the control parameters
in fig. 5.4.11.
The values S∗

µ are all positive. The effect of a variation in εδ on the bank angle
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Fig. 5.4.11: Control sensitivities with reference ∆εδ = +0.24
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profile is a uniform increase or decrease, causing the trajectory to bend more or less,
which is consistent with plausibility considerations.
The highest values are found in phase 2, where they are evenly distributed and
form a plateau with increased sensitivity. It has to be expected that, particularly
during this phase, the bank angle changes for variations in the initial declination
δ0. Hence, from an optimization standpoint it is advisable to discretize the optimal
control problem with a tighter grid in this region.

It also holds for the α-control that the largest sensitivities are computed in
phase 2. However, the profile does not feature an even plateau, but shows sharp
and narrow peaks with quickly changing signs. The graph visualizes the tendency
to give the later skips of the trajectory a more defined shape. Unfortunately, this
tendency is not beneficial. The increased drag even thwarts the cost function value.
The conflict arises from the linear character of the PSA method, which is not able
to accurately trade lift versus drag in a nonlinear system.
The sharp peaks denote the flight regime, in which the trajectory is most sensitive
to α-variations.

So far, the analysis has concentrated on a single design parameter, namely εδ. In
a next step we take a look at sets of parameters to rank their influence. The plots
in fig. 5.4.12 describe the sensitivity of the optimum cost function to changes in the
initial state vector of the optimal control problem. The interpretation is straightfor-
ward. A higher initial altitude of the vehicle, for instance, results in a slightly higher
initial longitude, moving the starting point of the re-entry trajectory eastward. This
is negative for the mission. But in total the influence of perturbations in εr is small.
Changing the orientation of HOPPER by decreasing εχ has a negative effect on
the downrange. It shows, however, that this can easily be compensated by slightly
increasing the velocity or decreasing the declination, which both have a more sig-
nificant influence. Overall, this should be viewed in the context of upper stage
performance benefits.
The total sensitivities with respect to initial state vector elements are

dλ0

dεr

= 0.0413 [◦/km]

dλ0

dεδ

= 3.79 [ ]

dλ0

dεv

= −0.0289 [◦s/m]

dλ0

dεχ

= −1.28 [ ]
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Fig. 5.4.12: Cost function value versus initial state variation

They also provide answers to the question of navigational uncertainties. For an
error of 0.05◦ in the initial declination the landing site Ascension Island, or better
the terminal entry interface, can only be reached if a loss of 0.19◦ can otherwise be
compensated.

The plot in fig. 5.4.13 shows the cost function versus variations of the aerody-
namic drag and lift coefficient. The lift/drag ratio of the HOPPER vehicle is in the
order of 2 during supersonic and hypersonic flight for an angle of attack above 10◦

[68], as is the case with the presented nominal trajectory. The sensitivity gradients
can be utilized to approximate the vehicle’s performance for deviating ratios. Thus,
an increase of L/D by one percent trades a gain of about 0.9 degrees in the longitude.

With variations of about 0.027◦ the cost function is very insensitive to common
uncertainties of no more than 180 kg in the vehicle mass, which can be taken from
fig. 5.4.14. The graph also shows the sensitivity to variations in the heatflux limit.
It predicts a gain of about one degree in longitude when raising the limit of Q̇ by
five percent to 472.5 kW/m2. This reveals significant potential for improvement in
mission performance. Other than changes of the culmination point state vector, as
caused by ∆εδ or ∆εv does this not have an impact on the upper stage performance.
Hence, it is worthwhile to take a closer look at the reliability of the prediction for
∆εhfl. The computed confidence radius is (εhfl)c+ = +58.7 kW/m2. The cost ex-
trapolation with ∆εhfl = +22.5 kW/m2 therefore appears to be well within the
reliability limits.
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Fig. 5.4.14: Sensitivity with respect to vehicle mass and heatflux limit

A later performed reoptimization of the perturbed trajectory serves as reference.
The minimum longitude is λε

0 = −36.869◦. The normalized error in the sensitivity-
based extrapolation of the optimum cost function is 25.1%.
This error behavior is verified with a collocation based transcription of the optimal
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control problem with a significantly larger number of parameters and constraints.
The result is essentially the same. Which on one hand means, the collocation based
method produces the same quality of result, even though the NLP description is
much different, with a completely different set of Lagrange multipliers. On the
other hand it underlines the limitations of post-optimality analysis. The degree of
nonlinear dependencies and the finiteness of the number of grid nodes limits the
performance.

Taking mission planning and engineering perspectives into account, it is not only
interesting to perform sensitivity gradient mining, where trade-offs are computed for
deviating designs in the vicinity of the nominal configuration, like done earlier. But
it is also of value to assess the development of, for instance, the heatflux in a broader
range by applying POA, since it has been shown already that it is a key limiting
factor for mission performance.

The heatflux constraint at four active evaluation nodes in phase 2 -depicted in
fig. 5.4.15 together with the Lagrange multipliers and constraint values- along with
a number of bound constraints for saturated α and µ parameters in mission phase 5
compose the set of active inequality constraints of the nominal solution. The set
plays a major role in post-optimality analysis when estimating the confidence radius
of the computed sensitivity gradients.

For the various investigated design parameters ε the smallest radius in the con-
fidence region (see tab. C.0.2) is always caused by one out of three reasons:

• Potential deactivation of heatflux point constraint

• Potential saturation of flight-path angle in phase 2

• Potential punctual saturation of α

An analysis of perturbations in the aerodynamic drag coefficient via εcd produces
results with (εcd)c+ = 0.044. Here, heatflux constraints are identified as the most
critical inequalities. We perform two predictions, one for a variation of ∆εcd =
0.02, equal to a two percent growth of the drag coefficient, which is well below the
confidence bound. The other for a variation of ∆εcd = 0.04. Based on the post-
optimality analysis, the first prediction should be trustworthy, the latter one not.

Since POA is based on linear extrapolation of the state parameters without in-
termediate update of the active set, the predicted heatflux histories of the two cases
(see fig. 5.4.16) do not differ significantly. The reoptimized graphs, however, doc-
ument a dramatic change, as was indicated by the confidence radius. The larger
of the two variations causes the heatflux at the evaluation nodes to detach from
the limit. The peak moves up the normalized time and by-passes the discretization
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Fig. 5.4.16: Heatflux constraint, ∆εcd = 0.02 and ∆εcd = 0.04
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nodes of the constraint. The result is an infeasible trajectory.
Parameterized analysis is not able to accurately forecast such effects, when the gen-
uine evaluation grid placement does not cover respective areas. But the confidence
radii give overall good indication on the operational range of the PSA and con-
straint/parameter bounds that are eminent.
For the smaller variation ∆εcd = 0.02 the prediction error in the cost function is 32 %.

There is more to be said about heatflux prediction and confidence radius inter-
pretation. We turn to the impact of variations in the actual heatflux limit and take
a look at the graph of heatflux versus mission time in fig. 5.4.17.
The maximum allowed Q̇ is raised by 10 %, ∆εhfl = 45 kW

m2 respectively. The POA
algorithm takes full advantage of the new margin and adapts the parameters of the
NLP problem in such way that a later simulation of the heatflux shows good align-
ment of the peak with the imposed limit at 495 kW

m2 . Once again, heatflux is not a
discretized state, but a function of the states. Hence, the good alignment does not
come naturally, but is attributed to the POA performance.

The later segment of the graph shows what has already been discussion earlier
in this section about the sensitivity of α. The model tends to further define the
unconstrained skipping maneuvers because of inexact data about α-sensitivity. Once
more it documents the sensitiveness and reduced stability of the angle of attack.



Chapter 6

Example 2: Ariane 5
Post-Optimality Analysis

Demand for ever better optimized launcher trajectories has been driving the devel-
opment of optimal control algorithms for decades. Therefore it is only consequent
to take a closer look at the benefits of post-optimality analysis concerning launch
vehicles. Interest is put on optimality assessment and the provision of sensitivity
data for planning and evaluation of derived missions and launcher concepts.

The reference launcher vehicle to be used is the Ariane 5 rocket, currently Eu-
rope’s prime satellite transporter. Since its first successful flight in 1997 [1] it has
undergone several modifications and enhancements. The Ariane 5 Versatile, in par-
ticular, is the configuration of choice for this study. It consists of the main engine
H 173, two boosters P 241 and a new Aestus engine in the upper stage, which is
restartable.

More details on model and missions are given in sec. 6.1. Then, an optimal
direct launch into GTO is analyzed in sec. 6.2 followed by a dual payload mission
in sec. 6.3, when a first payload is delivered into a LEO and a second payload into
GTO.

6.1 Description of Model and Mission

Other than in the case of the HOPPER re-entry there is a mass-flow due to pro-
pellant consumption. It is considered in the modeling of the dynamics. Besides the
mass, the model states represent 3-DOF dynamics.
The optimizable controls are defined as aerodynamic angles, being the angle of at-
tack α and the sideslip-angle β.
The employed gravity model includes harmonics up to J2.

75
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1. Cryogenic main stage,
Solid boosters

2. EPS L 10 upper stage

3. EPS L 9 upper stage

4. ESC-A upper stage

Fig. 6.0.1: Ariane 5 version overview, c©Arianespace

The shape of the ascent trajectory is mainly defined by the stage engines and
their corresponding tanks and structural masses. The H 173 engine with a burntime
of 650 seconds propels the lower stage. For the first 130 seconds of the mission it is
supported by two P 241 boosters.
The upper stage L 10 with a new Aestus engine can contain up to 10,000 kg of
propellant with a maximum burntime of 1100 seconds. Further data on propulsion
and components can be found in tab. 6.1.1.

Particularly mass-flow and ISP of the boosters and, hence, their thrust output,
is not linear or even constant, but follows a certain profile. Therefore the value of
274 seconds for the ISP only represents an average vacuum value. In the optimization
a profile is considered which is an adaptation of the P 230 profile presented in [2].

Starting from the Kourou launch pad the rocket does a vertical take-off. An
explicit pitch over maneuver is not required, since γ0 establishes a well defined
flight-path angle right from the beginning. A gravity turn follows, where α is fixed



Example 2: Ariane 5 Post-Optimality Analysis 77

Structural mass [kg] 12,700

H 173 Propellant mass [kg] 173,300

Isp [s] 434.0

Structural mass [kg] 38,200

P 241 Propellant mass [kg] 248,130

Isp [s], (reference) 274.0

Structural mass [kg] 2,750

L 10 Propellant mass [kg] 10,000

Isp [s] 324.0

Tab. 6.1.1: Component specifications according to [71]

to zero till the boosters reach shut-off and are jettisoned. From then on, the controls
are freely optimizable.
In order to compile an acceptable initial guess to start the optimization a set of
control laws has been used. Further reference on the background and the exact
equations are available in [3].

Two path constraints are imposed. The one related to the maximum tolerable
dynamic pressure is especially important during the early ascent, while the heatflux
limit rather becomes critical in the later part of the trajectory, depending on the
mission outline (see fig. 6.1.4). They are set to Q̇ ≤ 60 kW

m2 and qdyn ≤ 40 kPa.
Table 6.1.2 exemplifies the phase structure for an ascent mission to a GTO. The
boundary and path constraints along with the rocket components assigned to the
various phases, are given therein.

Overall, two different scenarios are investigated. The first scenario is a direct
launch into GTO with permanent thrust. The intention is to deliver a maximum
payload into a 200km x 35,800km orbit with 7◦ inclination.
The L 10 upper stage has been designed for dual payload missions. Hence, in a
second scenario it is taken full advantage of its restart capabilities. A first payload
of 3,500 kg is delivered into a 500km x 550km near circular orbit. It follows a coast
arc which is beneficial for this kind of dual payload mission, as has been demon-
strated in [32]. Then, the engine is restarted in order to bring the second payload
into a 200km x 35,800km orbit with 7◦ inclination. Once again the objective is to
maximize the mass of the payload to be deployed into GTO.
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Time [sec] Active Propulsion Path constraints Boundary constraints

1 0-18 2 · P 241 χ = 90◦ h0 = 5 m

1 · H 173 λ0 = −52.7686◦

δ0 = 5.2434◦

v0 = 5 m
s

γ0 = 89.6◦

χ0 = 90◦

2 18-tpf 2 · P 241 Q̇ ≤ 60 kW/m2

1 · H 173 q ≤ 40 kPa

α = 0◦

3 tpf -thf 1 · H 173 Q̇ ≤ 60 kW/m2

4 thf -1561 1 · L 10 Q̇ ≤ 60 kW/m2 hperi = 200 km

hapo = 35, 800 km

i = 7.0◦

Tab. 6.1.2: Phase structure of Ariane 5 launch optimization to GTO
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Fig. 6.1.2: Groundtrack and altitude profile of optimal GTO transfer
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Fig. 6.1.3: Direct GTO transfer: Perigee, apogee and total mass

6.2 Post-Optimal GTO-Launch Analysis

The ground track and altitude profile of the optimal direct GTO launch are shown
in fig. 6.1.2. After leaving the earth atmosphere, the launcher sags with a decreasing
flight-path angle in order to reach orbital speed, also raising the perigee altitude (see
fig. 6.1.3). At shut-down of the Aestus engine the upper stage reaches the final orbit
with a mass of 12,038 kg of which 2,750 kg are structural and 9,288 kg represent
the maximized payload.
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Fig. 6.1.4: Direct GTO transfer: Heatflux and dynamic pressure

6.2.1 Sensitivity with Respect to Component Properties

During the optimization the characteristics of the launcher stages and the mission
parameters (see tab. 6.3.3) are fixed to their nominal value and therefore not op-
timizable. Since Ariane 5 Versatile has a configuration which has been customized
for payload transport into GTO, it should be expected that the found design con-
stitutes optimal staging configuration. Evaluation of the sensitivities of the optimal
cost with respect to fuel masses of the three propellant components partly confirms
the assumption. Both a lower and a higher propellant mass εP173 (subscript P stands
for propellant) of the main engine do not increase the payload, but instead results
in a significant and strongly nonlinear decrease of the optimal payload, according to
post-optimality analysis (see fig. 6.2.5).

The assumption of optimal staging design is not entirely correct for the booster
dimensions. According to sensitivity analysis, an 8 % higher propellant mass per
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booster should raise the payload by roughly 300 kg. This statement, however, is
afflicted with major uncertainties. Thus, it can not be expected that the utilized
profile of the specific impulse is precise. Further, the model does not accommodate
for design correlations. In real life a higher tank volume for an already optimized
booster would most likely require a larger cross section with negative effects upon
the aerodynamic drag.
Post-optimality analysis displays also another reason why the statement about bet-
ter effectiveness is conditional. Because the design location at ∆εP241 = 8% is well
outside the confidence radius.

When examining how sensitive the payload is to variations in the upper stage
propellant mass, it turns out εP10 does not have any impact at all. This is surprising
at first glance, because one would expect that changing the fuel mass should at least
have some sort of effect on the maximum payload.
The way the optimal control problem is modeled, it is not required that the max-
imum allowed propellant mass of the L 10 stage is entirely used. And, in fact,
revision of the trajectory data shows that the tank is only filled to 83 %. We will
get back to this issue later on when discussing the imposed mission constraints. In
any way, it can be noted that an upper stage filling ratio of one is not optimal for
the aspired mission.

The findings of PSA give profound quantitative insight into the payload gains/losses
related to the structural masses of the three key launcher components. Logically, a
higher structural mass εS10 of L 10 maps one-to-one to losses in the payload, as can
be seen in fig. 6.2.6 and tab. 6.3.3. Per additional kilogram structure of H 173 the
payload is reduced by -537 grams; for the boosters it is -84 grams.

The effects of the ISP on the optimum cost function value can be ranked as
follows. The highest sensitivity of 86.2kg

s
is computed for the main engine ISP εI173,

while it is 62.9kg
s

for the reference booster ISP εI241 and 22.3kg
s

for the Aestus εI10

(see fig. 6.2.7).

6.2.2 Effects of Path Constraint Variations

The graphs in fig. 6.2.8 show second order analysis results for percentage variations
of the heatflux limit, the dynamic pressure limit and the reference area F, which is
required for the computation of the aerodynamic forces.
We learn that variations in εhfl can have a positive but very limited impact. It

turns out, for an allowed Q̇ ≤ 80kW
m2 , being a third larger than the nominal value,



Example 2: Ariane 5 Post-Optimality Analysis 83

-20 -10 0 10 20
7500

8000

8500

9000

9500

10000

10500

11000

∆ ε
I173

, ∆ ε
I241

, ∆ ε
I10

 [s]

G
TO

 P
ay

lo
ad

 M
as

s [
kg

]

m
pl

=f(ε
I173

=434 s,∆ ε
I173

)
m

pl
=f(ε

I241
=274 s,∆ ε

I241
)

m
pl

=f(ε
I10

=324 s,∆ ε
I10

)

Fig. 6.2.7: Direct GTO transfer: ISP sensitivity
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Fig. 6.2.9: Direct GTO transfer: Target orbit sensitivity

the PSA predicts a gain in payload of only 32 kg while staying within the confidence
radius. Implicitly, it also means that the heatflux constraint will remain active even
for much higher limits.
It is different for the dynamic pressure. The cost function at the Karush-Kuhn-
Tucker point exhibits a sensitivity of 40.2 kg

kPa
. The confidence radius with an order

of 10−4 is very small, suggesting that an extrapolation of the costs will not be ac-
curate, because of an erroneous active set of constraints. Since the parameters,
defining the radius is related to α in phase 1, we do not bother for the moment and
instead take a closer look at the dynamic pressure path constraint. Extrapolation of
the Lagrange multipliers delivers a confidence radius of (∆εqdyn)c = 0.28 predicting
that the dynamic pressure will detach from its allowed limit if the limit is raised to
a value of 40.28 kPa.
In order to validate the capabilities of the post-optimality algorithm the mission is
reoptmized without restrictions for the dynamic pressure. The maximum observed
is [qdyn]max = 40.22 kPa. POA has indeed produced quite accurate information
about the deactivation of the path constraint.

The third graph in fig. 6.2.8 depicts how the cost function value is affected by
a variation of the reference area F. This is of particular interest in the context of
design optimization [54]. We have seen earlier that additional propellant in the
boosters could increase payload. A larger reference area in turn reduces payload.
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Neglecting structural implications cost-benefit assessment looks as follows: a five
percent increase in the volume ([UL]3) booster propellant superposed with the plane
([UL]2)enlargement of F results in

mp
pl = m∗

pl +

[
dmpl

dεF

dmpl

dεP241

]
· ξ +

1

2
ξT ·

 d2mpl

dε2F
0

0
d2mpl

dε2P241

 · ξ (6.2.1)

= 9701.8 kg

with

ξ =

 ∆εF

∆εP241

 =

 εF · (1.052/3 − 1)

εP241 · (1.05− 1)

 . (6.2.2)

In words, sensitivity analysis identifies potential for design improvements assuming
the simplified modeling of launcher and mission.

6.2.3 Sensitivity with Respect to the Deployment Orbit

The answer is still pending to the question, why the optimal solution does not take
full advantage of the allowed upper stage propellant mass. Therefore we turn to
inclination, apogee altitude and perigee altitude of the final orbit. These are stated
as equality constraints of the optimal control problem. Post-optimality analysis is
used to determine what effect the three orbit elements have on the optimum payload.

As can be seen in fig. 6.2.9, the payload does increase when the perigee altitude
is raised. A ∆εhp2 = 10 km results in a gain of ∆mpl = 19.8 kg. Since GTOs are
only used as transfer orbits to a geostationary orbit, the consequence can be drawn
to raise the transfer orbit perigee, providing the satellite with a higher orbital energy
while at the same time enabling higher payload. It is paid for by consumption of
additional propellant in the upper stage. From the sensitivity data related to the
final mission time it can be extrapolated that the maximum allowed burntime will
be reached for a perigee altitude of 380 km.
Since this is outside the confidence radius the finding has to be handled with caution.
Comparison with reoptimized data shows that the burntime maximum is actually
reached for εhp2 = 342 km.
A short note on the optimality. As reoptimization also shows, the true maximum
payload is reached for εhp2 = 386 km.
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The payload mass is very insensitive with respect to the apogee altitude and also
with respect to final inclination. This facilitates the utilization of super geostation-
ary transfer orbits following the concept of bielliptic transfers [14].

As a last remark on the overall analysis of the direct GTO transfer it is worth
noting that most sensitivities are primarily linear. Hence, for studies of the design
sensitivity and perturbed design performance in the close vicinity of the KKT point,
it appears sufficient to limit the efforts to first order analysis.

6.3 Dual-Payload Performance Sensitivity

In a second ascent scenario the Ariane 5 Versatile is sent to deliver two payloads.
The first payload with a mass of 3, 500 kg is deployed into a 500 km x 550 km orbit
with 7◦ inclination. Following a coast arc the upper stage engine is restarted and
transports the second payload into GTO. Its mass is the objective to be maximized.

The new mission outline changes the character of the launcher trajectory in
various ways. First of all it becomes much longer. With a coast arc duration
of 1137 seconds and maximum burntime of the L 10, the mission is extended to
2886 seconds, or about 48 minutes.
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Fig. 6.3.10: Groundtrack and altitude profile of optimal dual payload transfer

The first stage ascends to higher altitude than in the direct GTO case. It is an
effect of the 500 km perigee constraint. The following first burn of the upper stage
is short. During the coast the vehicle sags slightly (see fig. 6.3.10). The reason is to
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Fig. 6.3.11: Dual payload transfer: Perigee, apogee and total mass

be found in earth oblateness effects.
The final orbit is reached with an optimized payload mass of 3, 695.5 kg (see
fig. 6.3.11).
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Fig. 6.3.12: Dual payload transfer: Path constraint sensitivity
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6.3.1 Sensitivity with Respect to the Component Properties

A quick look at the path constraint sensitivity (see fig. 6.3.12) reveals that the new
trajectory with the steeper altitude profile is not affected by variations of εhfl or
εqdyn. Because both constraints are at no time active.

In order to allow a rapid assessment of the deviations between the sensitivities of
the direct GTO transfer and of the dual payload transfer, the first order sensitivity
coefficients are listed in tab. 6.3.3. For εF it shows that the effect on the payload
shrinks from −18.69 kg

m2 to −14.38 kg
m2 as a consequence of the shorter time spent in

the atmosphere. Besides, the effect of εF is only secondary.

The same shrinking can be observed for the ISP related sensitivity coefficients.
The new trajectory is much more robust. So, for instance, a loss of one second in the
ISP of the boosters is expected to result in a loss of no more than 52 kg of payload
to GTO.

Other than in the first scenario, this time the optimizer fully exploits the fuel

allowance of the upper stage. This is shown by the non-zero number for
dmpl

dεP10
=

0.134 kg
kg

. The respective plot for propellant sensitivities can be found in app. D.0.2.
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Fig. 6.3.14: Dual payload transfer: Target orbit sensitivity
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6.3.2 Sensitivity with Respect to the Deployment Orbits

A series of mission constraints define the two deployment orbits. In fig. 6.3.13 sec-
ond order sensitivity information is given for εm, εha1 and εhp1. The graphs show
that it is indeed costly to deploy payload into the predefined LEO. The ratio of the
LEO versus the GTO payload is

dmpl

dεm

= −0.335 (6.3.3)

In words, for every additional kilogram of LEO-bound payload the GTO payload is
reduced by 0.335 kg. The analysis also shows a confidence radius of (∆εm)c = 934 kg.
Hence, the prediction is assumed to be reliable for GTO payload losses of up to 313
kg.
Both enforced apogee and enforced perigee altitude further lower the optimal objec-
tive value. The perigee altitude εhp1 in particular demonstrates a major impact on
the GTO payload, reducing it by 9.67 kg for every additional kilometer. Lowering
the perigee to 300 km is predicted to produce a gain in payload of 1934 kg.
Even though the variation is very large, post-optimality analysis approves the re-
sult to be trustworthy. Comparison with the true optimum indicates a mismatch of
22.5 %, which, under the given circumstances can be taken as qualitatively good.

The sensitivity of the cost function with respect to GTO orbit constraints ex-
hibits the same tendencies like in the direct GTO transfer, as can be seen in fig.
6.3.14. Variations in the perigee altitude εhp2 appear to have more critical conse-
quences now. The sensitivity coefficient is more than 50 % larger. But even with

a value of
dmpl

dεhp2
= 3.032 it still has only a third of the effect that a variation in the

perigee altitude of the LEO orbit has.

After review, it can be stated that the cost gradient information given for the
various perturbation parameters is qualitatively and quantitatively reliable within
the computed confidence radii.

The provided sensitivities are of good use to verify optimality of the costs with
respect to certain design parameters, like the main stage propellant mass. They
can also serve to identify potential for performance enhancement and may suggest
changes in the rocket design or mission outline.
So far, this study has solely concentrated on the optimal cost function value. Its
analysis is certainly of major interest. But there are also other aspects of the optimal
trajectory that can be investigated through post-optimality analysis. For instance,
the relevance of the coast-arc.
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Phase t∗f [s]
dtf

dεhp1
[ s
km

]
dtf

dεha1
[ s
km

]
dtf

dεhp2
[ s
km

]
dtf

dεha2
[ s
km

]

1: Lift-off 21.1 -1.7e-4 -4.6e-5 4.4e-5 -2.5e-7

2: With Boosters 130.0 0.0 0.0 0.0 0.0

3: Main engine 650.0 0.0 0.0 0.0 0.0

4: First burn L 10 746.1 7.2e-3 2.6e-3 -3.2e-3 -6.7e-5

5: Coast-arc 1882.7 7.4e-1 4.2e-2 7.3e-2 -9.7e-4

6: Second burn L 10 2886.6 7.4e-1 4.0e-2 7.6e-2 -9.0e-4

Tab. 6.3.4: Dual payload transfer: Sensitivity coefficients for phase end times

6.3.3 Coast-Arc Sensitivity Matters

The optimal coast-arc is 1137 seconds long. It has been introduced in order to further
increase payload. The questions arise, to what extend the coast-arc is beneficial and
how its shape changes when design parameters variate.

The sensitivities of the phase times with respect to the orbit parameters are
listed in tab. 6.3.4. According to these numbers, the length of the coast-arc

dca = tf5 +
dtf5

dε
·∆ε− tf4 −

dtf4

dε
·∆ε (6.3.4)

does not change considerably even for significant variations in the perigee or apogee
constraints and it is almost exclusively dependent on the final time parameter. Fur-
ther, raising the LEO apogee by 10 km would shorten the coast-arc by about 0.4 sec-
onds. This value is very small and motivates a closer examination of the coast-arc
final time.
A sensitivity analysis is conducted for perturbations in tf5. The computed sensitivity
is

dmpl

dtf5

= 0.0078
kg

s
. (6.3.5)

Compared to other factors, the impact of the coast-arc duration turns out to be
practically negligible. This is advantageous for predicting optimal payload. But it
also means that the shape of the coast-arc is very insensitive. Hence, the predic-
tion of the trajectory shape might suffer. Figures 6.3.15 and 6.3.16 exemplify this
dilemma for a variation of 10 % in εha1. The predicted trajectory is feasible and
complies with the imposed orbital constraints. And the error in the first order cost
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function approximation mp1
pl (∆εha1 = 55 km) = 3599.4 kg is only 19.3 % compared

to the absolute variation. The shape of the trajectory, however, looks much differ-
ent. This duality is related to the poorly predicted coast-arc duration with its low
sensitivity.
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Fig. 6.3.15: Dual payload transfer: State prediction

The shown illustration is only one example. But it depicts a general matter.
Analysis results are best when sensitivities are reasonable. A linearization of the
optimum payload sensitivity about the broader vicinity around the KKT point pro-
duces valuable results. But the practitioner should once more bear in mind that the
search direction of the post-optimality algorithm is in general not identical with the
heading towards the truly optimal solution of the perturbed optimal control problem.
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Chapter 7

Conclusions

In the framework of this thesis a post-processing algorithm for the analysis of opti-
mal solutions has been developed and implemented. The work has been motivated
by the ambition to overall enhance optimization procedures in practice. Because
the research invested in the development of ever better optimization algorithms, has
not made it any easier for practitioners to comprehend the informative content of
an obtained optimal solution.

This thesis focuses on post-processing solutions of optimal control problems, since
these constitute a class of optimization problems, which is of particular interest in
aeronautics and astronautics. Nonetheless, as it turned out, the achievements are
generic and can also be used for other classes of problems and fields of application.

The taken approach is to format the solution of the optimal control problem in
a fashion that makes it easily and efficiently accessible to sensitivity analysis. This
is accomplished by direct transcription of the OCP into an NLP program. Several
methods are available to perform this task. The selection is adapted from the opti-
mizer CAMTOS and makes different collocation schemes as well as multiple shooting
schemes available. This measure is taken to make not only the solution itself, but
also the solution structure available for analysis.

The core activities of the post-optimality analysis of the transcribed solution
commence with a parameterized sensitivity analysis of first order. Securing an ef-
ficient analysis on this level, the computational input is, as far as possible, limited
to data that is already available from prior optimization. In case of incompleteness
of the active set information, the developed algorithm automatically completes the
matrix data related to the active set of constraints including the Lagrange multipli-
ers.

The result are the sensitivities S of individual program parameters with respect
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to pre-identified design or mission parameters ε and the sensitivity gradient of the
cost function with respect to ε. The method is numerical, which means, it does not
depend on the analytical accessibility of the dynamic equations. This proves to be
useful in practical use. However, it also means that the output is local in so far as
it gives gradients at the KKT point. These gradients are very accurate, since the
sensitivity analysis is set up in a fashion so that it does not rely on the exactness of
the Lagrange multipliers.
These multipliers are needed for second order analysis, where the sensitivities of the
costate variables of the KKT vector are computed, as are second order terms of the
cost function gradients with respect to ε.
The second order analysis requires the Hessian matrix of the Lagrange function.
Numerical methods have been implemented to perform its calculation.

The second order sensitivity analysis, as introduced in this thesis, represents a
capacious module for the assessment of neighboring designs in the vicinity around
the optimal solution of the nominal case.
Firstly, it allows an estimate of higher order effects on the cost function develop-
ment for finite perturbations. Secondly, and even more critical, by extrapolating the
sensitivity gradients of the Lagrange multipliers the post-processing does a single
step prediction of the active set composition. This provides confidence radii for the
applicability of the sensitivity gradients, when the optimal behavior of deviating
designs is estimated.

The post-optimality analysis algorithm has been applied to two comprehensive
problems in the field of trajectory optimization, namely a re-entry flight of the
winged HOPPER vehicle and Ariane 5 single- and dual-payload launch missions.

With the HOPPER re-entry flight various purposes have been demonstrated
which sensitivity analysis can be used for. The set of studied perturbation parame-
ters contained initial states, and vehicle as well as model properties.
The sensitivity gradients help to rank the parameters according to their impact and
depict the individual responsibility for the overall performance of the system. This
has been shown in particular for uncertainties in the trajectory’s initial states.
Superposition of sensitivity gradients related to the aerodynamic coefficients gives
a quantitative measure for possible controller design margins: an increase of one
percent in the ratio of lift versus drag trades with a gain of about 0.9 degrees in
longitude.
Another result of the sensitivity gradient mining is the potential gain of one degree
in longitude, when raising the heatflux limit by 5 percent to 472.5 kW

m2 .
The results are directly derived from a single optimal solution without reoptimiza-
tion.
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The consequent utilization of sensitivity coefficients for prediction of derived
missions or designs has been cross-checked with reoptimized solutions. Comparison
shows good compliance and justifies the confidence put in POA results. This holds
particularly for states of the lateral motion and to a lesser extend also for the states
of the longitudinal motion. The results have been verified with different transcrip-
tion methods, which underlines the generic capacity.

The quality of the control sensitivities permits trend interpretation and an as-
sessment of perturbation induced control excitation levels. However, for the angle of
attack more tangible results can not be obtained. The reason is to be found in the
unstable behavior of the linearized sensitivity model, which tends to further define
the unconstrained skipping maneuvers along the trajectory. The effect disqualifies
the individual α-sensitivities for prediction purposes, but depicts, where the trajec-
tory is most sensitive to variations in α.

Especially, the cost function trade-offs can quickly be computed by the post-
optimality analysis algorithm and immediately show the user, how the design space
is shaped in the vicinity around the optimal solution. The results can be used to
identify design potential or stability margins.
The computed confidence radii give overall good indication of the operational range
of the PSA and constraint/parameter bounds that are eminent.

For the post-optimality analysis of Ariane 5 optimal trajectories two different
launch missions have been studied -a direct launch of payload into GTO and a dual-
payload mission to LEO and onwards to GTO.
The results confirm the optimal configuration of the launcher’s main stage and
boosters, and give profound qualitative and quantitative insight into the payload
gains/losses related to structural or propellant masses and ISP of the three stages.

The perigee constraint for direct GTO insertion degrades the performance. As
PSA shows, raising the perigee by 10 km increases the optimum payload by 19.8 kg.
It also identifies the heatflux and the dynamic pressure constraint to have only
secondary influence on the payload, even though heatflux will remain an active con-
straint even for much higher limits.

The same type of information is also computed for the dual-payload mission.
One of the findings is that all cost sensitivities are lower than in the direct GTO

case, except the sensitivity with respect to perigee. With a value of
dmpl

dεhp2
= 3.032 kg

km

the perigee of GTO still has only a third of the influence of the perigee of the LEO
orbit. Based on the POA data, about the same ratio is also found for payload trade-
off between the two orbits. Every additional kilogram into LEO is paid with a loss
of 335 grams into GTO.
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After review, it can be stated that the PSA cost gradients are of good quality
within the computed confidence radii and provide reliable material for design eval-
uation and mission planning. Most sensitivities are primarily linear. Therefore it
appears sufficient to limit the analysis efforts for general purposes to first order.

From the data it can also be concluded that the coast-arc is very insensitive.
With about 8 grams per additional second in duration, it has a positive, but very
limited influence on the payload. The prediction of its duration is, hence, very in-
accurate. This depicts a general matter. Analysis results are best when sensitivities
are reasonable.

A lesson learned from both, HOPPER and Ariane 5 solution analysis is, not to
confuse post-optimality analysis with an iterative optimization. The user needs to
bear in mind that the sensitivity gradient produced by the POA algorithm does not
necessarily match the search direction of an optimizer, but targets the computation
of a feasible and perturbed near-optimum in a most efficient way.
The need for proper grid point placement has a slightly different focus in POA than
it has in optimization. Even with a reduced number of grid points the results can
be accurate, for as long as the grid covers the critical sectors of the optimal and the
predicted solution.

Even though the benefits of post-optimality analysis have been demonstrated for
two spacecraft trajectory optimization problems, the developed algorithm is generic
and can be applied on a multitude of different problems.
Only by evaluation and validation of post-optimality analysis in practise can the
concept prove its capabilities. Hence, its perspective is defined by its employment.
This does not necessarily require more sophisticated test cases. But it calls for
rapid assessment of neighboring design spaces and the improvement of problem
understanding under realistic statements of work.

Further development efforts should focus on visual processing of the computed
sensitivities to enhance the data absorption by the user. It will lead to more efficient
interpretation of optimal solutions and will streamline the post-processing.
The information could be made available in a graphical environment or be organized
in other forms that relieve the user from personal data mining.

Second order sensitivity analysis offers potential for further enhancement. The
computation of the Hessian matrix is time consuming and losses in accuracy can mo-
tivate critical discussion of the results. Following the concepts in NLP optimization
a more coarse approximation of the Hessian should be considered. Interpretation
would then be limited to tendency prediction, but could possibly support quick
assessment.
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Appendix A

The Earth Mars Transfer
Parameterization

A.1 List of Optimization Parameters

The following table lists the parameters that constitute the Earth Mars transfer
optimization problem along with their optimized values:

Parameter description Phase Optimal value

p1 State r, initial value 1 1.0000

p2 State vr, initial value 1 0.0000

p3 State vth, initial value 1 1.0000

p4 State Φ, initial value 1 -2.1713

p5 Starting time t0 1 -0.78677

p6 Control, grid point 1 2 -0.0078065

p7 Control, grid point 2 2 -0.0021179

p8 Control, grid point 3 2 0.010309

p9 Control, grid point 4 2 0.028005

p10 Control, grid point 5 2 0.050469

107



108 List of Optimization Parameters

p11 State r, initial value 2 1.0318

p12 State vr, initial value 2 0.091326

p13 State vth, initial value 2 1.0676

p14 State Φ, initial value 2 -1.0906

p15 initial phase time t1 2 60.192

p16 State r, initial value 3 1.5176

p17 State vr, initial value 3 0.027834

p18 State vth, initial value 3 0.72585

p19 State Φ, initial value 3 1.3801

p20 Initial phase time t2 3 273.34

p21 Control, grid point 1 3 0.015417

p22 Control, grid point 1 3 0.0090788

p23 Control, grid point 1 3 0.0045383

p24 Control, grid point 1 3 0.0021798

p25 Control, grid point 1 3 0.0020955

p26 Mission end time t3 3 308.18
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A.2 List of Optimization Constraints

The list of constraints of the Earth Mars transfer optimization problem is given
below:

c1 = p1 − 1.0

c2 = p2 − 0.0

c3 = p3 − 1.0

c4 = p4 − Φe

c5 = p11 −
∫ t1

t0
ṙ dt

c6 = p12 −
∫ t1

t0
v̇r dt

c7 = p13 −
∫ t1

t0
˙vth dt

c8 = p14 −
∫ t1

t0
Φ̇ dt

c9 = p16 −
∫ t2

t1
ṙ dt

c10 = p17 −
∫ t2

t1
v̇r dt

c11 = p18 −
∫ t2

t1
˙vth dt

c12 = p19 −
∫ t2

t1
Φ̇ dt

c13 =
∫ t3

t2
ṙ dt− 1.523396

c14 =
∫ t3

t2
v̇r dt− 0.0

c15 =
∫ t3

t2
˙vth dt− (vth)f

c16 =
∫ t3

t2
Φ̇ dt− Φm
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Appendix B

Collocation Methods

As can be found in [8].

B.1 Trapezoidal Rule

Variables:

xT = (y1, u1, ..., ym, um) (B.1.1)

Defects:

ζk = yk+1 − yk −
hk

2
(fk + fk+1) (B.1.2)

B.2 Classical Runge-Kutta Method

Variables:

xT = (y1, u1, ū2, ..., ūm, ym, um) (B.2.3)

Defects:

ζk = yk+1 − yk −
1

6
(k1 + 2k2 + 2k3 + k4) (B.2.4)
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112 Hermite-Simpson Method

with

k1 = hk fk, (B.2.5)

k2 = hk f(yk +
1

2
k1, ūk+1, tk +

hk

2
), (B.2.6)

k3 = hk f(yk +
1

2
k2, ūk+1, tk +

hk

2
), (B.2.7)

k4 = hk f(yk + k3, uk+1, tk+1), (B.2.8)

and

ū =
uk+1 − uk

2
(B.2.9)

B.3 Hermite-Simpson Method

Variables:

xT = (y1, u1, ū2, ..., ūm, ym, um). (B.3.10)

Defects:

ζk = yk+1 − yk −
hk

6
(fk + 4f̄k+1 + fk+1), (B.3.11)

with

ȳk+1 =
1

2
(yk + yk+1) +

hk

8
(fk − fk+1), (B.3.12)

f̄k+1 = f(ȳk+1, ūk+1, tk +
hk

2
). (B.3.13)
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HOPPER Results
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(ε)c− Cause for (ε)c− (ε)c+ Cause for (ε)c+

εr [km] -27.157 p: 48, α in phase 2 7.635 p: 48, α in phase 2

εδ [◦] -0755 p: 141, γ in phase 3 0.742 c: 40, heatflux limit

εv [m
s
] -147.47 c: 40, heatflux limit 94.2 p: 141, γ in phase 3

εχ [◦] -1.96 c: 40, heatflux limit 1.91 p: 141, γ in phase 3

εcd [ ] -0.036 p: 141, γ in phase 3 0.044 c: 40, heatflux limit

εcl [ ] -0.00195 cp: 306, α in phase 5 0.032 p: 141, γ in phase 3

εJ2 [ ] -0.020 p: 141, γ in phase 3 0.00028 cp: 306, α in phase 5

εm [kg] -27.0 cp: 318, α in phase 5 5827 p: 48, α in phase 2

εhfl [kW
m2 ] -22.3 p: 48, α in phase 2 57.5 c: 43, heatflux limit

p: New parameter bound constraint

c: Deactivation of inequality constraint

cp: Deactivation of bound constraint

Tab. C.0.2: Confidence radii and triggering incidents
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Appendix D

Ariane 5 - Dual-Payload Launch
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Fig. D.0.1: Dual payload transfer: Structural mass sensitivity
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Fig. D.0.2: Dual payload transfer: Propellant sensitivity
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Fig. D.0.3: Dual payload transfer: ISP sensitivity
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