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a Maximum convection speed

c Speed of sound

cp, cv Specific heats
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Kurzfassung

Kurzfassung

In dieser Arbeit wird ein Gebietszerlegungsverfahren entwickelt, welches die di-
rekte Simulation von aeroakustischen Problemen erheblich beschleunigt. Alle
relevanten Skalen müssen hier sehr genau aufgelöst werden, von den kleinen,
Schall produzierenden Strömungsphänomenen, die relativ viel Energie enthal-
ten (z.B. Wirbel), bis hin zum langwelligen Schall mit niedrigen Druckam-
plituden, der über eine große Distanz und ohne Dissipations- und Disper-
sionsfehler transportiert werden muss. Damit der Rechenaufwand nicht die
Möglichkeiten heutiger Computer übersteigt, bzw. um lange Rechenzeiten auf
ein wirtschaftlich vertretbares Maß zu verkürzen, wird das Rechengebiet gemäß
der auftretenden physikalischen Phänomene aufgeteilt. In diesen Untergebieten
wird dann ein möglichst optimales und auf das Teilproblem zugeschnittenes
Verfahren verwendet. Für das vorgestellte Verfahren wird die Gebietszer-
legungsidee von Schwartzkopff aufgegriffen und daraus ein neuer, verallge-
meinerter Ansatz entwickelt. Dabei unterscheidet sich die Methode von bisher
üblicherweise eingesetzten Techniken. So beschränkt sich die Gitterkopplung
z.B. nicht auf Chimera-Verfahren, sondern zeigt einen konsistenten Ansatz für
die Kopplung in Raum und Zeit von Verfahren hoher Ordnung auf.
Verschiedene Optionen der Gebietszerlegung werden untersucht und in einem
übergreifenden Programmgerüst vereint. In den Untergebieten werden die
Navier-Stokes-, Euler- und linearisierten Eulergleichungen gelöst, wofür Dis-
continuous Galerkin (DG), Finite Volumen (FV) und Finite Differenzen (FD)
Methoden jeweils mit ihren speziellen Eigenschaften zur Verfügung stehen. So
eignen sich z.B. DG Verfahren aufgrund ihrer Lokalität für sehr genaue Lösun-
gen auf unstrukturierten Gittern, während FD Verfahren lineare Schallaus-
breitung besonders effizient auf kartesischen Gittern simulieren. FV Verfah-
ren wiederum sind sehr robust in der Gegenwart von starken Gradienten, z.B.
Stößen. Allen implementierten Methoden ist gemein, dass sie als explizite Ein-
schrittverfahren in der Zeit besonders für instationäre Probleme geeignet sind
und sich ihre Genauigkeitsordnung in Raum und Zeit frei wählen lässt. Ein
im Rahmen dieser Arbeit neu entwickeltes Verfahren, die STE-FV Methode
auf kartesischen Gittern, schließt die Lücken in der Auswahl der vorhandenen
Löser und stellt ein schnelles Verfahren hoher Ordnung dar, welches durch einen
WENO Algorithmus auch bei Nichtlinearitäten robust bleibt. Zur Validierung
der STE-FV Methode werden Konvergenztests durchgeführt und Beispiele mit
bis zu sechster Ordnung in Raum und Zeit und darüber hinaus gerechnet, wie
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Kurzfassung

z.B. die bekannte ”double Mach reflection” in 2D und eine Explosion in 3D.
Die Gitterkopplung selbst beruht auf Interpolationen hoher Ordnung und dem
Datenaustausch über die Geisterelemente der Rechengebiete. Hier werden die
Stützstellen für die Gauß-Integration in den Zellen benutzt, um geeignete Quell-
gebiete für die Interpolation zu finden und danach die Kopplungsrandbedin-
gungen hoher Ordnung zu setzen. Die Gitter brauchen sich dabei nicht zu
überlappen und müssen nicht konform sein, außerdem sind beliebige Kon-
stellationen unstrukturierter und strukturierter Gitter möglich. In den Teil-
gebieten sind jeweils optimale und voneinander verschiedene Zeitschritte er-
laubt, was durch den Einsatz der Cauchy-Kovalevskaja Prozedur ermöglicht
wird. Diese stellt eine Taylorreihe in der Zeit zur Verfügung, welche Rand-
daten für die Zwischenzeitpunkte der Gebiete mit kleinerem Zeitschritt liefert.
Die Implementierung im Programmgerüst ist weitgehend modular aufgebaut,
so dass die einzelnen Strömungs- und Akustiklöser auch separat verwendet
und neue hinzugefügt werden können. Weiterhin besteht die Möglichkeit, ex-
terne Programme, die zudem auf einem getrennten Computersystem laufen
können, anzukoppeln. Die Verteilung auf verschiedene Rechnerarchitekturen
ist ebenso für die internen Rechengebiete möglich, so dass die jeweils unter-
schiedlichen Eigenschaften hinsichtlich Vektorisierung und Parallelisierung op-
timal ausgenutzt werden können.
Für das Gebietszerlegungsverfahren wird in Konvergenzstudien für ver-
schiedene Gitter-, Gleichungs- und Verfahrenskonstellationen bewiesen, dass
die hohe Ordnung der eingesetzten Methoden global erhalten bleibt. Unter-
suchungen bezüglich hochfrequenter Störungen zeigen, dass selbst ohne das
Anwenden eines räumlichen Filteroperators eine Art natürliche Filterung statt-
findet, wenn die Störungen auf einem groben Gitter nicht mehr aufgelöst werden
können. Eine weitere Studie zeigt, dass die Größe der auftretenden Reflektionen
an den Gebietsgrenzen gut mit theoretischen Abschätzungen übereinstimmt.
Außer dem Wechsel von nichtlinearen zu linearisierten Gleichungen spielt hier
auch der Sprung im Auflösungsvermögen eines Verfahrens eine Rolle. Generell
sind die Reflektionen so klein, dass sie vernachlässigt werden können.
Die Effizienz und Genauigkeit der vorgestellten Gebietszerlegungsmethode wird
anhand von Benchmark-Beispielen wie der akustischen Streuung an einer Kugel
und mehreren Zylindern, sowie der Von Karmanschen Wirbelstraße aufgezeigt.
Hier wird besonders das Potential des Verfahrens für effiziente Fernfeldrech-
nungen, aber auch die Einsetzbarkeit beim Vorhandensein komplexer Geome-
trien deutlich. Die Simulation einer Düse mit supersonischem Freistrahl und
des damit verbundenen Lärms unterstreicht schließlich die praktische Anwend-
barkeit des Gebietszerlegungsverfahrens.
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Abstract

Abstract

A novel domain decomposition approach is developed in this thesis, which
significantly accelerates the direct simulation of aeroacoustic problems. All
relevant scales must be resolved with high accuracy, from the small, noise gen-
erating flow features (e.g. vortices) to the sound with small pressure amplitudes
and large wavelengths. Furthermore, the acoustic waves must be propagated
over great distances and without dissipation and dispersion errors. In order
to keep the computational effort within reasonable and feasible limits, the cal-
culation domain is divided into subregions with respect to the local physical
requirements. In these domains, the numerical method which is most suit-
able and optimized for the considered subproblem is employed. Following the
decomposition philosophy by Schwartzkopff, a new and generalized method is
developed in this work. The scheme differs from established approaches, e.g.
the grid coupling is not limited to Chimera techniques but presents a consistent
way for the space-time coupling of high order methods. Various domain decom-
position options are examined and implemented in a common code framework.
In the subdomains, the Navier-Stokes, Euler and linearized Euler equations are
solved, for which methods from the discontinuous Galerkin (DG), finite volume
(FV) and finite difference (FD) class are available with their respective special
properties. For example, DG methods are very suitable for highly accurate
solutions on unstructured grids due to their locality, while FD methods are
very efficient on Cartesian grids for the simulation of linear wave propagation.
In turn, FV methods are very robust in the presence of strong gradients, e.g.
shocks. All implemented methods have in common, that they are explicit one-
step time integration schemes and thus are especially applicable for unsteady
calculations. Furthermore, their order of accuracy in space and time may be
chosen arbitrarily. A newly developed numerical solver, the STE-FV method
on Cartesian grids, closes the gaps in the repertoire of numerical schemes in
the coupling framework. It forms a fast high order method that features great
robustness also at nonlinearities by employing a WENO algorithm. For val-
idation purposes, convergence studies and benchmark tests, e.g. the popular
double Mach reflection in 2D and an explosion in 3D, are performed for the
STE-FV method with orders in space and time up to six and beyond.
The coupling of different grids is based on high order interpolations and the
data exchange over the ghost elements of the calculation domains. The Gauss
integration points in the cells are used here in order to find a source domain for
the interpolation and for providing high order boundary conditions afterwards.
The grids are not required to be matching or overlapping. Furthermore, ar-
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Abstract

bitrary constellations of structured and unstructured grids are possible. The
optimal time steps, which can be different of each other, are allowed in the
subregions. This is made possible by employing the Cauchy-Kovalevskaja pro-
cedure, which delivers a Taylor series that provides boundary information for
the intermediate points of time for domains with a smaller time step. The
implementation structure inside the code framework is largely modular. The
fluid and acoustics solvers can be used as stand-alone codes, and also new ones
can be easily added. Furthermore, external programs, which may run on sep-
arate computer systems, can be linked to the framework. The distribution to
different system architectures is also possible for the internal solvers. Hence,
the respective properties of the numerical methods regarding vectorization and
parallelization can be exploited in an optimal way.
It is shown on the basis of convergence studies for different constellations of
grids, equations and methods, that the domain decomposition approach is ca-
pable of maintaining high order of accuracy globally. An examination regarding
high-frequency perturbations reveals a natural filtering process if perturbations
cannot be resolved on a coarse mesh anymore. Hence, a spatial filtering oper-
ator is not a necessity. Another study shows, that the magnitude of reflections
occurring at the domain boundaries are in good accordance with theoretical
estimations. Besides the change from nonlinear to linear equations, also the
jump in resolution matters in this context. However, the reflections are negli-
gible in general.
The accuracy and efficiency of the proposed domain decomposition method is
illustrated for benchmark examples like the acoustic scattering at a sphere or at
multiple cylinders and for the Von Karman vortex street. Here, especially the
method’s potential for efficient far field calculations becomes clear, but also the
advantages in the presence of complex geometries are emphasized. Finally, the
simulation of a nozzle flow with a supersonic free jet and the associated noise
underlines the practical applicability of the domain decomposition approach.

xiv



1 Introduction

Noise in flows is usually produced by the generation or interaction of vortices.
Due to the so-called multi-scale problem of aeroacoustics, the numerical simu-
lation of both generation and propagation of acoustic waves in one calculation
is difficult: While the noise producing flow features are mainly very small but
have large amplitudes, sound waves contain significantly less energy and pos-
sess a comparatively large wavelength. In order to resolve all scales accurately
in an unsteady simulation, a vast number of grid elements would be necessary
with the standard second order schemes that are used nowadays. Even then
those methods are often too dissipative in terms of numerical damping and
are not capable of handling long-distance propagation of sound waves. Fur-
thermore, in flows with small Mach numbers, the difference between the flow
velocity and the speed of sound leads to a disparity of the local CFL numbers
of the calculation, as the largest eigenvalue is used for the time step calculation.
Consequently, the global time step of the computation becomes very small for
all elements in the domain. All of this results in a prohibitive computational
effort for direct simulations and has lead in the past to hybrid approaches in
order to overcome some of these difficulties. The most classical approach is
the volume coupling over source terms. Here, the flow simulation is performed
first, followed by the computation of acoustic source terms from this flow by
an acoustic analogy. These source terms are then used in a second calcula-
tion that solves acoustic equations, for example Lighthill’s equation [64,65] or
the Ffowcs Williams-Hawkins equation [30]. More recent developments are the
perturbed compressible equations (PCE) by Seo and Moon [94, 95] and the
acoustic perturbation equations (APE) by Ewert and Schröder [28]. Such ap-
proaches are often referred to as ”hybrid coupling” or ”hydrodynamic/acoustic
splitting” (the latter if the flow calculation is based on incompressible equa-
tions). Another traditional approach for the simulation of acoustic problems
is the Kirchhoff method (e.g., Farassat and Myers [29]). The coupling of flow
and sound is treated over an integration surface around the acoustically active
region, which must include every relevant source of noise. Note that the sound
waves need to be resolved here already in the flow simulation. Hence, the solver
must be accurate enough to transport these waves to the integration surface

1



1 Introduction

without significant numerical damping. Then the source terms are handed
over to the respective acoustic tool, for example a wave equation solver. All of
the mentioned methods have in common, that the acoustic field is calculated
independent of the flow field, the latter serves merely as a generator for the
acoustic sources. Thus, there is no feedback from the acoustics to the flow,
which can however be of great importance as some phenomena are directly
related to such a feedback (e.g., jet screech, Tam et al. [96, 107]). Many of the
acoustic models are restricted in a way, for example some of the models do not
permit solid walls in the flow, some are only suitable for flows with uniform
or no background velocity. Furthermore, the extraction of the acoustic sources
always involves some modeling in one way or the other. Hence, along with the
uncertainties in the original flow calculation, the final noise prediction under-
lies a lot of assumptions. This is not very satisfying. The direct computation
of both flow and noise in one calculation, also called direct noise computation
(DNC), is the remaining alternative. It includes the feedback of the sound to
the flow and requires the least modeling, but as mentioned in the beginning,
the computational effort can grow easily beyond the the capabilities of modern
computer systems due to the multi-scale problem. In order to circumvent this
problem and to facilitate simulations, the idea of heterogeneous domain decom-
position has been developed. The most important methods in this regard are
given a review in the following section.

1.1 Domain Decomposition Methods: State of the Art

In order to reduce the overall complexity of an aeroacoustic simulation, different
parts of the calculation domain are treated differently, depending on their local
physical requirements. By using the most suitable and efficient scheme in every
subregion, the calculation is accelerated or even made feasible in the first place.
This local adaptation will be referred to as domain decomposition or domain
coupling and is generally implemented by

1. decomposing the computational domain into several partitions with dif-
ferent properties;

2. connecting these domains by exchanging data amongst them or by cou-
pling the governing equations;

The example of a nozzle flow with a free jet (Fig. 1.1) illustrates the various
ways, how a computational domain can be decomposed.
First of all, a nozzle can be a rather complex geometry (much more compli-

2



1.1 Domain Decomposition Methods: State of the Art

Figure 1.1: Nozzle and supersonic free jet with acoustic waves in a simulation
with domain decomposition.

cated than in Fig. 1.1). The generation of a suitable structured mesh is often
a matter of days or weeks. It can consume as much or even more time as the
actual numerical simulation. A very convenient alternative are unstructured
meshes (e.g., based on triangles or tetrahedrons), which are considerably easier
to create with modern grid generators. Even the most complicated objects can
be meshed relatively fast. Farther away from the nozzle and in the absence of
other objects, there is no need for unstructured grids anymore. Structured or
even Cartesian grids can be used and the methods for those grids are usually
more efficient in terms of solution quality and computational time. This is the
first way to decompose the problem, dividing the domain into an unstructured
and a structured part. Back to the nozzle, the grid in its vicinity most likely
needs to be very fine in order to resolve boundary layers or other regions with
strong gradients, such as shocks. Delicate geometry details might require small
element sizes, too. Other small-scale flow features (e.g., vortices) ask for rel-
atively fine grids also in structured domains. When unsteady calculations are
performed with explicit solvers for aeroacoustics, very small cells are directly

3



1 Introduction

reflected in a very small global time step. On the other hand, in regions where
only acoustic propagation is significant, the grid can be quite coarse for the
considerably larger wavelengths. Hence, those cells suffer from an unnecessary
small time step. Thus, the coupling of different grid sizes offers two advan-
tages at the same time: It reduces the overall number of elements which must
be computed, and every subdomain can use its own ideal time step if there
is a suitable algorithm for this. Hence, two more ways of decomposing the
domain are the coupling of different grid sizes and local time stepping. Note
that in regions which require a very fine grid resolution, for example due to
the mesh geometry or a shock (and not necessarily for the resolution of other
flow phenomena), also a lower order solver could be used to reduce the nu-
merical effort. In subdomains with smooth, large-scale features, a high order
solver on a coarse grid can be applied on the other hand, which is usually
more efficient. Thus, also an adaptivity regarding the order of the scheme is
possible. Returning again to the nozzle, the numerical method of choice near
complicated (e.g., cambered) wall geometries would be a finite volume (FV)
or a discontinuous Galerkin (DG) method, for which a high order treatment
of curved boundaries is possible. Moreover, high order of accuracy, which is
needed in order to resolve both flow and acoustics, can be naturally obtained
with the very local DG methods (and recently also with FV methods) on un-
structured grids. Then again, FV methods have the great advantage of being
very robust in the presence of discontinuities. On the other hand, optimized
high order finite difference methods exist for large-scale wave propagation on
structured grids. Therefore, another way of domain decomposition opens up:
The coupling of different numerical methods. Section 2.1 provides a detailed
review of the strengths and drawbacks of the single numerical methods. Last
but not least, also the governing equations may vary locally. The Navier-Stokes
equations must be solved where viscous effects are crucial, for example in the
boundary layer. Saving the effort of handling the diffusion terms, the Euler
equations could be employed in regions where viscous effects have decayed. Fi-
nally, if only acoustic perturbations remain in the subdomain, the problem can
be described with linearized equations (e.g., the linearized Euler equations, the
wave equation), for which very efficient methods exist.
Several of these aspects of domain decomposition have been explored in the
past. Block-structured grids with matching grid points are the easiest way
to couple meshes, followed by grids with hanging nodes and linear interpola-
tion. Overset-grid (Chimera) methods (introduced by Steger et al. [103]) cou-
ple structured, body fitted grid components with Cartesian background grids.
They allow moving grid interfaces and are used in a wide range of applications.
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1.1 Domain Decomposition Methods: State of the Art

An overview is given by Meakin [71]. In order to maintain a high order of
accuracy globally, the interpolations between the grids need to be high order
as well (Delfs [17]) and have been subject to several studies regarding opti-
mizations (Tam et al. [105], Sherer et al. [99]). The idea of multi-size overset
grids with different time steps has been examined by Tam et al. [106] for dis-
persion relation preserving (DRP) schemes. For a particular jump in the grid
spacing (exactly by a factor of two), an equivalent jump in the time step could
be realized. The interpolation and data organization between overlapping grid
partitions is rather complex and differs from application to application. For this
purpose, so-called grid assembly tools are available. The Overture library [43]
by the Lawrence Livermore Laboratory connects structured, overlapping grids
in 2D and 3D with arbitrary order of interpolation. It also handles load balanc-
ing and adaptive mesh refinement. Another tool worth mentioning is MpCCI
(Mesh-based parallel Code Coupling Interface [32]) by the Fraunhofer-Institue
SCAI, which aims at the coupling of entirely different codes and has even stan-
dardized interfaces to the most common commercial simulation tools (like FLU-
ENT, ANSYS CFX, etc.). It organizes the interpolation and communication
of physical quantities between different grids and supports MPI parallelization.
Although the grid types involve both structured and unstructured meshes, the
interpolation is only low-order (linear) so far. However, it has been successfully
used for CAA in volume coupled hybrid calculations (Ali et al. [1], Escobar et
al. [27], Kaltenbacher et al. [52], Krey [59]).
For aeroacoustics, the coupling of equations has been examined by Freund, Lele
and Moin [33,34,63]. They solved the compressible Navier-Stokes equations in
the source region, while the isentropic linearized Euler equations were used for
the radiation of acoustic waves. Also different Cartesian grid sizes were em-
ployed in the subregions. Using energy estimates, Nordström [77] combined for
hyperbolic problems an unstructured finite volume method with a high order fi-
nite difference scheme. He also proved strict stability for this coupling method.
An entirely different branch of decomposition approaches remove the interface
coupling and introduce an iterative process between subdomains instead. Quar-
teroni [84] gives an overview of those ”monolithic” methods. Coclici [15, 16]
examined the coupling of the Navier-Stokes equations in the near field with the
linearized Euler equations in the far field for steady problems, using such an
iterative approach. It is emphasized, that the calculation of steady solutions is
not the aim of the presented decomposition method.
Last but not least, the class of mortar methods for domain decomposition
shall be mentioned. These surface coupling schemes are able to handle non-
matching unstructured grids and employ a so-called Lagrange multiplier space
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in order to create a finite element-like constraint at the interface. The Lagrange
multipliers can be interpreted as the normal flux at the coupling boundary. Al-
though the mortar method is categorized as an iterative scheme, it has been also
successfully applied to acoustic-acoustic and elasto-acoustic coupled problems
(Flemisch et al. [31]) with time-accurate solvers in 2D and 3D subdomains.
Many other approaches for a huge variety of scenarios and equations (fluid-
structure coupling, contact problems in elasticity, etc.) have been examined in
the past and it would go beyond the scope of this overview to elaborate on all
of them. Despite of that, a related domain coupling method which preceded
this work is given more regard in the following.

1.2 Heterogeneous Domain Decomposition by Schwartzkopff

A flexible heterogeneous domain coupling method was developed by Schwartz-
kopff [88, 89, 119]: Different domains are coupled at their common boundary
over the data in their ghost elements. These ghost cells provide boundary
conditions for the numerical methods. In the so-called restriction case, the
projection of the ghost cell on the partner domain covers more than one cell.
In this case, an integral average of all cells which lie partially in the projec-
tion is used. The weight of this averaging is the ratio of the respective area
of the cell which is in the projection, and the total area of the ghost cell. In
the interpolation case, the projection of the ghost cell lies completely within
one cell on the partner domain. Here, a conservative interpolation from the
coarse grid to the Gauss quadrature points of the target cell is used. Dumb-
ser [18] added techniques for the coupling of ADER-DG domains with other
ADER-DG or ADER-FV domains to the framework. Schwartzkopff’s method
worked well on both structured and unstructured grids in two dimensions and
included features such as the subcycling of time steps and the coupling of dif-
ferent equations. However, although the method had been successfully applied
to several benchmark examples, it possessed several disadvantages. First of
all, determining the cut-out polygons for the averaging case leads to complex
algorithms. Furthermore, the treatment of ”multi-domain ghost elements”,
cells which overlap different neighboring domains (Fig. 2.13), is very cumber-
some. Those already in 2D unattractive properties cause great difficulties for
an extension to 3D, yet the coupling method is still limited to some selected
decomposition scenarios. Moreover, it is not very convenient to make a differ-
ence between ”restriction” and ”interpolation” cells: Such a distinction is not
quite clear if meshes of similar grid size or different type (element shape) are
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coupled. The distinction between restrictions and interpolations is based on
the neighbor element’s volume, while the very important subcycling feature is
based on the time step ratio between domains. This prohibits configurations
like a high order DG method on a coarse grid with a small time step (restricted
by the DG scheme’s stability limit) coupling with a somewhat finer FD grid
with a larger time step: The DG ghost cells would be filed under ”restriction”
(thus averaging) and would not be provided with time derivatives for a CK
procedure. The latter is required for subcycling.

1.3 Aims of this Work

The final objective of this work is to create a simulation framework based on
domain decomposition, that offers as much flexibility as possible and that can
be applied to complex aeroacoustic problems. The optimal numerical method
in terms of efficiency and quality shall be used exactly there – and only there
– where it is needed in order to reduce the overall computational effort of a
simulation. The ”ideal” decomposition framework should possess the following
properties:

• The computational domain can be divided into arbitrary, non-overlapping
domains with different properties.

• The spatial decomposition and the choice of numerical methods depend
only on the problem one likes to solve.

• The single methods can be combined and coupled with others, so they
can be utilized in a common framework. This means in particular the
coupling of different

– equations (e.g., N.-S., EE, LEE)

– methods (e.g., FV, FD, DG)

– grids (e.g., structured hexahedrons, unstructured tetrahedrons)

– time steps (e.g., different time step ratios between domains)

• The data exchange routine between the domains is able to handle the
conversion between the different local topologies (e.g., FV-/FD-/DG-data
on structured/unstructured grids).

• The coupling procedure takes advantage of the particular solver proper-
ties and conserves them:
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– High order of accuracy during the data exchange.

– Conservation of globally high order of accuracy if all employed meth-
ods are high order. This ensures, that the method error remains
globally as small as possible.

– Time accurate coupling of explicit solvers for unsteady solutions.

• Subdomains are distributed to and calculated on different and optimal
system architectures, for example structured FD methods on vector com-
puters, unstructured DG schemes on PC clusters.

• The entire decomposition framework can be parallelized effectively for a
large number of processors.

• The coupling algorithm connects 2D domains as well as 3D domains.

• It creates a minimum of computational overhead, therefore keeps the
overall number of exchanged data and element updates low.

Of course, many other features are thinkable and could be added to this list.
The established decomposition methods or commercial packages listed in sec-
tion 1.1 are capable of handling only few of the above mentioned features at
once.
In order to add more flexibility, a new approach based on high order poly-
nomial interpolations is investigated. A straightforward way opens up if the
coupling and data exchange is organized over the boundary conditions of the
numerical methods in the subdomains, that have to be treated anyway for all
calculations. Many numerical methods employ so-called ghost elements for this
purpose, which have to be provided with information prior to every time step.
This is the strategy, with which Schwartzkopff (see section 1.2) successfully
introduced a method that implemented the above mentioned properties (e.g.,
global conservation of high order) to some extent.
The aim of the proposed coupling approach is now to use Schwartzkopff’s basic
principle, the coupling over the physical state in the ghost cells, but generalize
the procedure to a great extent. The simplification is achieved by creating a
coupling mechanism completely based on the exchange of data in the Gauss in-
tegration points of the ghost elements. Then the difference between restriction
and prolongation vanishes. Geometric considerations regarding the cell sizes
become mostly obsolete and are only used for optimizations of the scheme.
Because the interpolation points can be exactly targeted, arbitrarily complex
domain constellations with ”multi-domain ghost elements” are possible and
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the extension to 3D is straightforward. The different aspects of the domain
decomposition are implemented in a ”building block” manner. This modular-
ity supports the integration of new coupling features and numerical methods.
A variety of novel and established high accuracy solvers is integrated and a
thorough investigation of the single building blocks is performed to ensure a
coherent framework for the domain decomposition.

1.4 Outline

The single components of the domain decomposition framework are explained
in the following chapter. First of all, the implemented high order flow and
acoustics solvers are explained in their basic principle. Amongst these meth-
ods, the WENO STE-FV method for Cartesian grids is given special attention.
It will be described in more detail, as it is a special development for closing the
gaps in the repertoire of numerical methods in the framework. The STE-FV
method is examined and validated with a convergence study and several test
cases. An overview of the governing equations in the subdomains is given, be-
fore the grid coupling mechanism is illustrated extensively. After that, issues
such as the the subcycling method and implementation details are addressed.
Finally, the behavior towards convergence, reflections and high frequency per-
turbations is examined thoroughly in the validation section. In the last chapter,
the domain decomposition framework is applied to selected benchmark prob-
lems and ”real life” simulations. The first example is the so-called Multiple
Cylinder Scattering from the Fourth CAA Workshop on Benchmark Problems.
It illustrates, how domains with relatively complicated arrangements of geome-
tries can be easily split into subdomains. Afterwards, the flow around a cylinder
and the resulting Von Karman vortex street shows the efficiency of the domain
decomposition method especially for far field acoustics. In another benchmark
example, the Sphere Scattering from the Second CAA Workshop on Benchmark
Problems, the 3D capabilities of the coupling approach are demonstrated. Last
but not least, the challenging problem of sound generation and propagation in
a supersonic free jet is simulated.
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2 Domain Decomposition

2.1 Numerical Methods

Within the coupling framework, a variety of numerical methods are available
for use in the subdomains. They all have in common that they are explicit
time integration schemes of arbitrary high order in space and time.
Sound generation and propagation are inherently unsteady problems, hence
explicit methods seem to be the natural choice for a direct simulation. Steady
solutions are then included as a special case. Nevertheless, also semi-implicit
solvers with a physical ”outer” time step and ”inner” iterations (so-called ”dual

2D methods Grid Globally LEE Locally LEE EE N.-S.

ADER-DG unstr. • • •
Rec-FV unstr. • • • •

ADER-FV str. • • ◦
STE-FV str. • •

ADER-FD str. •
Taylor-FD str. • •

3D methods str. Globally LEE Locally LEE EE N.-S.

ADER-DG unstr. • •
ADER-FV unstr. • • • •
ADER-FV str. •

STE-FV str. • •
ADER-FD str. •
Taylor-FD str. • •

Table 2.1: Equations and methods that are implemented in the domain de-
composition framework. The viscous fluxes in the structured 2D
ADER-FV Navier-Stokes solver are only implemented up to O2.
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2 Domain Decomposition

time stepping”, used e.g., in the Tau solver by the DLR) could be integrated
into the coupling framework.
In order to give accurate sound level predictions for acoustic waves traveling
through nonlinear and linear domains over large distances and long periods of
time, a high resolution of the waves must be ensured. Numerical dissipation
and dispersion must be kept low. Also, the entire range of scales from sound
generation to sound propagation into the far field should be captured. Meth-
ods with a high order discretization in space and time have the potential to
fulfill these requirements. Provided that the numerical error of a calculation is
required to drop below a certain threshold, high order methods are more effi-
cient in terms of CPU time and memory and thus cheaper than than low-order
solvers (Dumbser [18]). This also implies, that low-order solvers may even fail
for especially challenging calculations for which only a very small error can
be accepted: Even if the mesh is greatly refined, the desired accuracy would
never be obtained in a reasonable time as the time step decreases and thus the
number or iterations increases dramatically.
Although the following methods originate from the so-called ADER class, it
shall be emphasized, that this is no requirement in order to fit into the pro-
posed coupling methodology. Any other explicit solver for hyperbolic problems
could be integrated without much effort. The order of accuracy in space and
time of the implemented methods can be chosen arbitrarily. This includes a
great flexibility: The scheme can also be switched to lower order in domains,
where the elements must be very fine due to the local geometry or due to a
boundary layer.
It is important for the coupling strategy, that the most suitable methods are
available where they are needed. Because of this, a whole zoo of numerical
schemes (DG, FV, FD) is implemented for nonlinear and linear equations on
structured and unstructured grids. While the implemented methods and equa-
tions are listed in Table 2.1, the advantages and drawbacks are given for each
method separately (Tables 2.2, 2.3 and 2.4). The tables include properties of
the particular methods but also the general characteristics of their class.
In the following, the ADER class methods are presented briefly. After that,
particular attention is devoted to the so-called STE-FV method, which will be
explained and validated in detail.
One remark regarding the use of the term ”order” and its symbol O: Through-
out this work, an nth order method or On method denotes a scheme, which
shows an experimental order of convergence of n for smooth problems. How-
ever, the same term will be used for the respective method applied to a problem
containing a discontinuity! Of course in this case, nth order of convergence
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2.1 Numerical Methods

would not be obtained in an experiment. Nevertheless, this expression is used
in order to characterize and distinguish calculations. This is also done for DG
methods, for which the polynomial degree of the elements is normally used (a
scheme with P3 elements for example denotes an O4 method here).

2.1.1 ADER Discontinuous Galerkin Schemes

To give an overview of DG methods, the scalar conservation law

ut + ~∇ · ~f(u) = 0 (2.1)

is considered. A weak formulation is obtained locally for a control volume Ω
by multiplication with a test function Φk and integration over Ω:

Z

Ω

Φkut dV +

Z

Ω

Φk
~∇ · ~f(u) dV = 0. (2.2)

Furthermore, an integration by parts yields
Z

Ω

Φkut dV +

I

∂Ω

Φk

“
~f(u) · ~n

”

dS −
Z

Ω

~f(u) · ~∇Φk dV = 0. (2.3)

The data inside each cell are represented in form of piece-wise polynomials with

uh( ~X, t) =

NX

l=1

ûl(t)Φl( ~X), for ~X ∈ Ω (2.4)

being the approximated solution inside Ω. The space of polynomials is spanned
by the set of basis functions {Φl}l=1,...,N , where N is given by the polynomial
degree p and the spatial dimension d:

N := N(p, d) =

dY

j=1

p + j

j
. (2.5)

The DG solution may jump at the cell interfaces, therefore a numerical flux
function

g~n ≈ ~f(u) · ~n (2.6)

replaces the exact flux in the boundary integral of equation 2.3. Inserting uh

and g~n, equation 2.3 yields

Z

Ω

NX

l=1

ΦkΦl(ûl)t dV +

I

∂Ω

Φk g~n(u+
h , u−

h ) dS −
Z

Ω

~f(uh) · ~∇Φk dV = 0, (2.7)
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where u−

h denotes the state at the interior edge of the considered cell and u+
h

the state at the edge of the adjacent element. Hence, a set of N equations
result from (2.7), for {Φk}l=1,...,N .
An introduction to DG methods can be found in Hesthaven et al. [44] and
Becker [5]. The differences in the particular DG methods lie in the evaluation
of the single volume and boundary integrals. One of the inherent difficulties
of DG class methods is to find efficient integration procedures in order to keep
the computational costs down.
A very common approach for explicit time integration is the Runge-Kutta
scheme. For an overview of RK time integration in DG methods, see Cock-
burn and Shu [9–14] and Qiu et al. [82]. However, the efficiency of a RK
time discretization decreases strongly when the order of accuracy is greater
than four and the so-called Butcher barrier [8] kicks in. In order to circum-
vent this problem, Dumbser et al. [18, 21–23] applied the ADER approach of
Toro et al. [50, 90–93, 109, 110, 113, 116, 117] to the DG method for linear and
nonlinear hyperbolic systems. The ADER idea is explained in more detail in
section 2.1.2. Other time discretizations can be based for example on Lax-
Wendroff type methods (Qiu et al. [80,81]).
Generally, the space and time integrals can be approximated by numerical in-
tegration rules, such as Gauss quadrature and hence require integration points
in time and space. This becomes quite computationally expensive for high or-
der elements in 3D. Gauss integration yields (p + 1)d Gauss integration points
for each volume integral. For a sixth order scheme (p = 5), this means 216
integration points per element only for the volume integral!
Dumbser proposed a method which is quadrature-free in space and time for
linear equations (linear ADER-DG-QF). For nonlinear hyperbolic systems, he
constructed several versions: The ADER-DG-SX method (state expansion, nu-
merical quadrature in space and time), the ADER-DG-FX method (numerical
quadrature in space, f lux expansion and analytical integration in time) and
the ADER-DG-QF method (quadrature-free in space and time). All of those
ADER-DG methods and some more variants (e.g., the local time stepping ver-
sion LTS-DG and reconstructed DG schemes) are integrated in the coupling
framework. However, for the sake of simplicity, only the term ”ADER-DG”
will be used in the following and refers in case of the linearized Euler equations
always to the ADER-DG-QF method, while in the nonlinear case, ADER-DG
refers to the ADER-DG-SX scheme.
Table 2.2 gives a review of the more and the less favorable properties of the
ADER-DG methods. As DG schemes are strongly in the focus of the ongo-
ing research, this list cannot be considered as ultimate. Recent developments
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2.1 Numerical Methods

Advantages

+ Polynomial representation of the solution inside one cell.

+ Highly suitable for unstructured grids and thus for problems involving

complex geometries:

+ High order (≫ O3) without reconstruction.

+ High convergence rates maintained even on highly irregular grids.

+ A single high order cell can resolve substructures, hence the total

number of elements can be reduced in the computational domain.

+ A discontinuous solution is allowed over element interfaces: Therefore,

advection dominated problems and nonlinear effects such as shocks can

be treated robustly.

+ Very local, enabling the efficient implementation of

+ local time stepping,

+ hp-adaptivity,

+ parallelization.

+ Easy treatment of boundary conditions.

+ Reduces to first order FV scheme for Φl = 1.

+ One-step method: Order of accuracy not limited by Butcher barrier.

Drawbacks

- In principal more degrees of freedom than for example FD methods.

- Great practical and theoretical effort required regarding the

implementation and the techniques for numerical integration in order

to keep the computational costs down for high order of accuracy.

- Less robust regarding under-resolved flow features.

- High order shock capturing yet to be explored.

Table 2.2: Advantages and drawbacks of ADER-DG methods.

for high order DG class methods consider space-time elements in an explicit
(STE-DG methods with local time stepping and hp-adaptivity, see Gassner
et al. [36, 37]) or an implicit framework (dual time stepping with space-time
elements, van der Vegt et al. [54,121]). Furthermore, the construction of diffu-
sion fluxes for the DG schemes has been investigated (Gassner et al. [35], Van
Leer [123], Houston [47]).
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2.1.2 ADER Finite Volume Schemes

Finite volume (FV) methods are based on the weak solution of conservation
laws in integral form. To give an example, the scalar conservation equation (2.1)
is considered and integrated:

Z tn+1

tn

Z

Ω

ut dV dt +

Z tn+1

tn

Z

Ω

~∇ · ~f(u) dV dt = 0. (2.8)

By introducing the mean-value

ū =
1

|Ω|

Z

Ω

u dV (2.9)

of a control volume Ω (grid cell), equation (2.8) yields

ūn+1 = ūn − 1

|Ω|

Z tn+1

tn

Z

∂Ω

“
~f(u( ~X, t)) · ~n

”

dSdt, (2.10)

the so-called ”evolution equation for integral mean-values”, which is still the
exact weak solution of (2.1). In an analogy to (2.6), the unknown exact flux
in normal direction of the cell boundary can be replaced by a numerical flux
function g~n (the normal vector ~n must not be confused with the time level index
n) depending on the states to the left and to the right of the cell interface:

ūn+1 = ūn − 1

|Ω|

Z tn+1

tn

Z

∂Ω

g~n(u+
h , u−

h ) dSdt (2.11)

The most simple first order scheme in space and time is obtained if the mean-
values of the own (ū−

h ) and the neighbor cell (ū+
h ) are chosen as the values for the

flux calculation at the cell interfaces. To give an example in 1D, equation (2.11)
then yields

ūn+1
i = ūn

i − ∆t

∆x
(g~n(un,+

i+ 1
2

, un,−

i+ 1
2

) − g~n(un,+

i− 1
2

, un,−

i− 1
2

)), (2.12)

= ūn
i − ∆t

∆x
(g~n(ūn

i+1, ū
n
i ) − g~n(ūn

i , ūn
i−1)), (2.13)

for a cell i with the left and right interfaces at i − 1
2

and i + 1
2

and the length
∆x.
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In order to compute the fluxes g~n at the interfaces, local Riemann problems
are solved by using either exact (Godunov [39]) or approximate solvers (e.g.,
Roe [85], Harten, Lax and Van Leer [42]). Toro [112] gives a detailed overview
of these so-called Godunov type methods and their basic building block, the
Riemann solvers. An introduction to these and other significant issues (dis-
cretization, boundary conditions, etc.) of standard FV schemes is given also
by Blazek [7].
However, first order FV schemes suffer from high numerical damping, which
implies a large number of domain elements and a very small time step in order
to achieve a more or less acceptable time accurate solution. Second and higher
order schemes usually need slope limiters, for example from the TVD (total
variation diminishing) type in order to avoid oscillations at discontinuities. A
well-known representative of the TVD methods is the second order MUSCL
scheme by Van Leer [122], which employs a second order time discretization
and a (slope-limited) linear reconstruction at the cell interfaces. A higher order
polynomial reconstruction (ENO: Harten et al. [41], WENO: Liu [66], Shu et
al. [4, 48, 51]) can lead to very high order of spatial accuracy, but proved to
be cumbersome on unstructured grids. Furthermore, the Butcher barrier [8]
puts a limit on the order of the time integration (≤ 4) if it is done by TVD or
classical Runge-Kutta methods (Shu et al. [40]).
The ADER (Arbitrary high order using DERivatives) approach of Toro et
al. [50, 88, 90–93, 109, 110, 113, 116, 117] is able to circumvent this barrier: In
order to obtain a highly accurate approximation of the flux in equation (2.11),
the so-called Generalized Riemann Problem (GRP) is solved. Instead of feed-
ing constant data on both sides of the interface into a conventional Riemann
problem, the GRP considers the distribution of the solution in form of a poly-
nomial that has been obtained by a previous reconstruction for each element.
The local GRP

`
P+(x), P−(x)

´

ut + f(u)x = 0

u(x, 0) =

(

P−(x), x < 0

P+(x), x > 0.
(2.14)

is then split into a conventional nonlinear Riemann Problem for the recon-
structed states directly at the interface plus linearized Riemann Problems for
the spatial derivatives (Toro et al. [111, 114]). Knowing the state uGRP and
its derivatives, the Riemann solution on the interface can be expanded into a
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Taylor series in time:

uGRP (tn + τ ) = uGRP (tn) +

O−1X

k=1

τk

k!

„
∂uk(tn)

∂kt

«

GRP

, (2.15)

= uGRP (tn) +

O−1X

k=1

CKk

„„
∂pu

∂xp

«

GRP

«

, (2.16)

where the Cauchy-Kovalevskaja Procedure CKk creates the kth time derivative
by using the known spatial derivatives (see also section 2.4 for details) and O
denotes the desired order of the method in space and time.
Returning to equation (2.11), an arbitrary order single time step method is ob-
tained by using Gauss quadrature for both the space and the time integral and
evaluating the numerical flux at these discrete integration points. To continue
the 1D example of (2.12), the arbitrary high order version would therefore read

ūn+1
i = ūn

i − ∆t

∆x

nξX

ξ=1

ωξ

“

g~n(uGRP (tξ, xi+ 1
2
)) − g~n(uGRP (tξ, xi− 1

2
)
”

, (2.17)

with nξ and ωξ denoting the number and the weights of the Gauss integration
points ξ on the time interval ∆t = tn+1 + tn for a given order of accuracy O.
For 2D and 3D elements, also Gauss integration points in space need to be
considered.
For structured grids, Schwartzkopff [88] combined this so-called ADER-SX
(state expansion, numerical quadrature in space and time) method with a
dimension-by-dimension ENO reconstruction for the nonlinear Euler equations.
He also constructed a version where the time integration is done analytically by
performing the Taylor expansion with the flux itself (ADER-FX), instead with
the Riemann state. A very efficient fastADER formulation was implemented
by him for the linearized Euler equations, where the ADER-FV framework is
condensed to a mere matrix-vector multiplication form. The coefficient matrix
contains the reconstruction step, the GRP solution and the Jacobians. This
scheme requires constant Jacobians, grid spacings, time steps and a linear re-
construction in space. In the following, the term ”ADER-FV on structured
grids” refers to both the nonlinear ADER-SX and the fastADER implementa-
tion for linear equations.
On unstructured grids, Dumbser et al. [19,20] found a way to cope with both the
reconstruction problem for a high order spatial discretization and the Butcher
barrier for the time discretization. The one-step ADER-FV method of arbi-
trary order in space and time differs greatly from the structured version: The
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Advantages

+ High order schemes are easy to implement for structured grids.

+ High order reconstruction (≫ O3) on regular, structured grids

as well as on unstructured grids.

+ Fast algorithms and reconstructions for structured grids.

+ Very robust regarding discontinuities due to integral conservation and

fluxes based on the physics of nonlinear wave propagation.

+ Well understood limiting and shock treatment techniques.

+ No additional volume integrals as for DG, limited integration effort.

+ One-step method: Order of accuracy not limited by Butcher barrier.

Drawbacks

- Only piecewise constant data in one cell. High order requires

high order reconstruction.

- Reconstruction stencil reduces locality.

Table 2.3: Advantages and drawbacks of ADER-FV methods.

reconstruction operator, developed originally in a DG framework, uses hierar-
chical orthogonal basis functions and delivers entire high order polynomials for
a cell instead of point values. Furthermore, the reconstruction is performed in
a reference system and not in physical coordinates, which avoids ill-conditioned
scaling matrices. The WENO type reconstruction is done in characteristic vari-
ables for nonlinear problems. A space-time Taylor series for the evolution of
the state and the physical fluxes along with a special numerical flux treat-
ment at the cell interfaces results in a less costly quadrature-free formulation
in space and time. In the following, the term ”Rec-FV” (reconstructed FV)
is used for the nonlinear and the linear version of the ADER-FV method on
unstructured grids. Note that the implementation framework for this scheme
resembles very much the one of the ADER-DG method, hence all coupling
techniques for ADER-DG domains discussed in section 2.3 will also apply to
Rec-FV elements.
The properties of the ADER-FV methods on structured and unstructured grids
are shown in Table 2.3.
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2.1.3 ADER and Taylor Finite Difference Schemes

The arbitrary high order ADER-FD (or generalized Lax-Wendroff-type scheme,
LW-FD) method by Lörcher et al. [69] is based on a Taylor expansion in time:

~Un+1 = ~Un +

∞X

k=1

(∆t)k

k!

∂k ~Un

∂tk
. (2.18)

If it is truncated after the first three terms and the the time derivatives are
replaced by the spatial derivatives from central differences, the second order
Lax-Wendroff scheme [61] is obtained. However, if it is truncated at at a
higher order, the missing time derivatives can be replaced also with space
derivatives by the before mentioned CK procedure (see also section 2.4). To
give an example, the kth time derivative for the linearized Euler equations is

∂k ~U

∂tk
= (−1)k

„

A
∂

∂x
+ B

∂

∂y
+ C

∂

∂z

«k

~U, (2.19)

with ~U being the perturbation state vector and A, B and C being the lin-
earized Jacobians. The space derivatives themselves are obtained by arbitrary
high order polynomial interpolations, which is especially easy on structured
grids. If the order of the method is even (O = 2, 4, 6, ...), the interpolation is
symmetric and results in a central scheme, independent of the direction of wave
propagation. Having turned out to be the most efficient approach for linear
problems, only even order in space and time is actually implemented. However,
by using upwind-methodology and solving Riemann problems, the extension to
odd schemes is straight-forward.
Nonlinear regions with strong gradients are always problematic for FD meth-
ods and have to be treated specially with sophisticated ENO and WENO tech-
niques [4, 41, 51, 66, 83]. Because it is the intention of the coupling framework
to exploit the positive properties of each class of numerical methods, nonlinear
effects such as shocks shall be not considered here. Instead, the ADER-FD ap-
proach is implemented and used for the linearized Euler equations only, concen-
trating on an efficient scheme for linear wave propagation over long distances.
A detailed discussion of general FD schemes is given by Hirsch [45, 46]. In
contrast to methods like the DRP (Dispersion Relation Preserving) scheme by
Tam et al. [108], which uses fourth order Runge-Kutta time discretization and
a sixth order difference stencil in space, the one-step ADER-FD method does
not underlie the Butcher barrier. Furthermore and very similar to the linear
ADER-FV method, it can be formulated in a very compressed Matrix-Vector
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2.1 Numerical Methods

multiplication form. The 3D version of the ADER-FD method for linearized
Euler equations reads then

~Un+1
ijk = ~Un

ijk −
O

2X

ii=−O

2

O

2X

jj=−O

2

O

2X

kk=−O

2

C⋆

ii,jj,kk
~Un

i+ii,j+jj,k+kk, (2.20)

where the coefficient matrix C⋆ is constant and the same for every grid point
on a Cartesian grid. At the same time, equation (2.20) shows the drawback
of this method: For high orders and especially in 3D, the number of points
required for the interpolation stencil is quite high.
The Taylor-FD method by Lörcher [67] starts again from the Taylor expan-
sion (2.18), but replaces the time derivatives by applying a discrete space op-
erator Φ to the discrete solution. For the linearized Euler equations, the time

evolution of the state vector ~U is then given by the one-step scheme

~Un+1 = ~Un +
OX

k=1

∆tk

k!
Φk ~Un, (2.21)

where the differential operator can be defined by differentiating the original
PDE with respect to the time:

∂k

∂tk
~U = −A(

∂k−1

∂tk−1
~U)x − B(

∂k−1

∂tk−1
~U)y − C(

∂k−1

∂tk−1
~U)z

=: Φk ~U. (2.22)

Hence, by calculating the first order derivatives ∂~U
∂x

, ∂ ~U
∂y

and ∂ ~U
∂z

in a dimension-
by-dimension manner, the kth time derivative can be created recursively. The
computation of arbitrary high order space derivatives can be done in different
ways, for example with the DRP finite differences by Tam et al. [108], which
are optimized for wave propagation. Note that now only difference stars are
required, not the entire volume stencil which is needed for ADER-FD. In the
following, the term ”Taylor-FD” refers to the implementation of the method
with DRP differences in space.
Table 2.4 summarizes the properties of the ADER-FD and Taylor-FD methods.
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2 Domain Decomposition

Advantages

+ High order schemes (≫ O3) are easy to implement for structured grids.

+ Very fast algorithms and excellent vectorization.

+ Very efficient especially for linear problems (e.g., wave propagation).

+ Simple treatment of ADER-FD boundary conditions.

+ Treatment of high order source terms easy for Taylor-FD.

+ Optimized interpolation coefficients for Taylor-FD.

+ One-step methods: Order of accuracy not limited by Butcher barrier.

Drawbacks

- Highly structured, regular grids are required. Difficult mesh

treatment and cumbersome grid design near complex geometries.

- Severe problems in the presence of discontinuities (e.g., shocks).

- Large interpolation stencils required for ADER-FD methods.

- Decrease in efficiency for odd orders of accuracy.

- Taylor-FD unstable for schemes of time integration order 2, 6, 10 ...

(but stable for order 4, 8, 12, ...).

- Boundary conditions require time derivatives for Taylor-FD.

Table 2.4: Advantages and drawbacks of ADER- and Taylor-FD methods.
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2.1 Numerical Methods

2.1.4 The Space-Time Expansion Finite Volume Method

In order to obtain an efficient and robust high order scheme for nonlinear
equations, building blocks from the unstructured Rec-FV method by Dumbser,
from the STE-DG method by Gassner et al. [36, 37] and from the structured
ADER-FV method by Schwartzkopff have been combined to a new scheme, the
space-time expansion finite volume method (STE-FV) on Cartesian grids.
The methods so far cover a large spectrum of desired properties in the domain
decomposition framework. However, an efficient solver for nonlinear equations
on Cartesian grids had still been missing. Although the structured ADER-FV
method by Schwartzkopff in section 2.1.2 had been constructed for those kinds
of grids, it possesses some severe drawbacks:
First of all, the method depends on the solution of a GRP at the edge of
each cell. Only exact (e.g., Godunov) or approximative Riemann solvers (e.g.,
MUSTA, see Toro et al. [118]) can be used, which determine the Riemann
state itself. Hence, this excludes robust Riemann solvers such as HLLE, which
compute directly the flux and are especially favorable at strong shocks and
rarefaction waves. Furthermore, the reconstruction has to be performed for
every spatial Gauss integration point for the state expansion version, which
becomes computationally expensive for higher orders. Last but not least, the
implemented ENO reconstruction involves complicated if-statements and thus
decreases performance, especially on vector computers.
The proposed STE-FV method has been designed to overcome these problems
and aims at

• high order of accuracy for the Navier-Stokes and the Euler equations,

• an uncomplicated 2D and 3D implementation,

• robust and fast WENO reconstruction,

• efficient performance on Cartesian grids,

• good vectorization properties.

It is stressed, that the formulation of the STE-FV method on structured grids
differs in several aspects from the Rec-FV method by Dumbser: The dimension-
by-dimension WENO reconstruction in characteristic variables delivers point-
values at the barycenter of each cell rather than an entire polynomial. No
least-squares ansatz is necessary here, as the system of equations for the re-
construction is exactly determined on a Cartesian grid. Also, a transformation
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2 Domain Decomposition

into a non-dimensional reference space is not required on structured grids. Fur-
thermore, the scheme involves explicit numerical quadrature for space and time
integration instead of a quadrature-free approach: For simple finite volume rect-
angles and hexahedrons, an optimal low number of quadrature points can be
chosen, when Gauss integration is used. Also because an accurate and flexible
treatment of the fluxes (usage of well-known Riemann solvers, e.g., Godunov,
Roe, HLLE) and a most simple implementation are desirable, Gauss quadra-
ture is favored. A regular Riemann problem is solved at every space-time Gauss
integration point. The values at these points are obtained by a space-time Tay-
lor expansion in the barycenter of each cell. Harten et al. [41] was one of the
first to propose such a space-time Taylor expansion in the barycenter within
an ENO finite volume framework. The STE-FV method can be structured into
single, consecutive building blocks:

1. High order central or WENO reconstruction.

2. Cauchy-Kovalevskaja procedure.

3. Space-time Taylor expansion.

4. Solving the flux at the integration points.

5. Space-time integration of the fluxes.

6. Updating the mean-values.

In the following, the fully-discrete STE-FV scheme is presented and the most
important building blocks and algorithms are explained. In order to validate
the method and its shock-capturing features, numerical convergence studies are
performed and the method is applied to various test cases in 2D and 3D, e.g
the Double mach reflection problem.
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2.1 Numerical Methods

Evolution equation and time update Applying numerical Gauss integration
in space and time to a Cartesian hexahedron in 3D, equation (2.11) yields

ūn+1
ijk = ūn

ijk − 1

|Ωijk |

Z tn+1

tn

Z

∂Ω

“
~f(u( ~X, t)) · ~n

”

dSdt

= ūn
ijk − 1

|Ωijk |

nξX

ξ=1

ωξ

Z

∂Ω

“
~f(u( ~X, tξ)) · ~n

”

dS

= ūn
ijk − 1

|Ωijk |

nξX

ξ=1

ωξ (2.23)

· [

nλX

λ=1

ω1λ
f1(u( ~Xλ

i+ 1
2

,j,k
, tξ)) −

nλX

λ=1

ω1λ
f1(u( ~Xλ

i− 1
2

,j,k
, tξ))

+

nλX

λ=1

ω2λ
f2(u( ~Xλ

i,j+ 1
2

,k
, tξ)) −

nλX

λ=1

ω2λ
f2(u( ~Xλ

i,j− 1
2

,k
, tξ))

+

nλX

λ=1

ω3λ
f3(u( ~Xλ

i,j,k+ 1
2

, tξ)) −
nλX

λ=1

ω3λ
f3(u( ~Xλ

i,j,k−
1
2

, tξ))].

Here, |Ωijk | = ∆x · ∆y · ∆z denotes the volume of the cell, ω1λ
, ω2λ

, ω3λ

are the Gauss integration weights of the spatial integration point λ in x-, y-
and z-direction, ωξ is the integration weight of time integration point ξ. The
exact fluxes in x-, y- and z-direction (f1, f2, f3) are functions of the unknown
Riemann state u at the position of the space-time Gauss integration points on
the cell surface. ~Xλ

i+ 1
2

,j,k
denotes the spatial position on the interface between

cells (i, j, k) and (i+1, j, k) and tξ is literally the Gauss ”point in time”. Using a
conventional Riemann solver (e.g., Roe, HLLE), the exact fluxes are replaced by
numerical fluxes g~n (see equation (2.6)). They depend on the left (-) and right
(+) states at the interface, which must be given by a preceding reconstruction.
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2 Domain Decomposition

Inserted in (2.23), one gets

ūn+1
ijk = ūn

ijk − 1

|Ωijk|

nξX

ξ=1

ωξ (2.24)

· [

nλX

λ=1

ω1λ
gn1(u+( ~Xλ

i+1
2

,j,k
, tξ), u

−( ~Xλ
i+ 1

2
,j,k

, tξ))

−
nλX

λ=1

ω1λ
gn1(u

+( ~Xλ
i− 1

2
,j,k

, tξ), u
−( ~Xλ

i− 1
2

,j,k
, tξ))

+

nλX

λ=1

ω2λ
gn2(u

+( ~Xλ
i,j+ 1

2
,k

, tξ), u
−( ~Xλ

i,j+ 1
2

,k
, tξ))

−
nλX

λ=1

ω2λ
gn2(u

+( ~Xλ
i,j− 1

2
,k

, tξ), u
−( ~Xλ

i,j− 1
2

,k
, tξ))

+

nλX

λ=1

ω3λ
gn3(u

+( ~Xλ
i,j,k+ 1

2

, tξ), u
−( ~Xλ

i,j,k+ 1
2

, tξ))

−
nλX

λ=1

ω3λ
gn3(u

+( ~Xλ
i,j,k−

1
2

, tξ), u
−( ~Xλ

i,j,k−
1
2

, tξ))].

So far, due to simplicity reasons, only the scalar conservation law (2.1) has been
used for the derivation of the scheme. When a system of equations is considered,
the fluxes are vectors. In case of the Navier-Stokes equations, f1, f2 and f3 cor-
respond with ~F (~U)− ~F v(~U, ~∇~U), ~G(~U)− ~Gv(~U, ~∇~U) and ~H(~U)− ~Hv(~U, ~∇~U),

see section 2.2.3. Note that also the gradient of ~U is required for the viscous
fluxes ~F v, ~Gv and ~Hv, which are computed by the dGRP Riemann solver for
diffusion fluxes by Gassner et al. [35]. This implies, that – in addition to the
states – also left (-) and right (+) gradients needs to be reconstructed at the
integration points.

High order reconstruction at the space-time integration points The time
update (2.24) will be high order accurate, when on the one hand the Gauss
integrations are performed with the desired order and when on the other hand
the arguments of the numerical fluxes are provided with high accuracy. The

26



2.1 Numerical Methods

latter must be reconstructed from the mean-values of the cells inside the com-
putational domain. As the number of integration points at the cell interfaces
increases for rising order of accuracy, it is cumbersome to perform a reconstruc-
tion and a CK procedure for every single one of them. Therefore, a different
strategy is pursued: Point values for state and spatial derivatives are interpo-

lated from a stencil of mean-values ~̄Uijk only at the position ~XB of the cell
barycenters. To give a simple example, one can use the central interpolation
operator from section 2.3.3

∂p+q+r ~U( ~XB , tn)

∂xp∂yq∂zr
=

nSX

i=1

nSX

j=1

nSX

k=1

∂p+q+rLijk( ~XB)

∂xp∂yq∂zr
· ~̄Uijk (2.25)

for smooth problems. The actual implementation and general high order in-
terpolation with WENO reconstruction is described in detail in the subsequent
section.
The CK procedure (see section 2.4) is used afterwards to provide also time
derivatives for the barycenter:

∂p+q+r+k ~U( ~XB , tn)

∂xp∂yq∂zr∂tk
= CK

 

∂p+q+r ~U( ~XB , tn)

∂xp∂yq∂zr

!

, ∀ 0 ≤ p+ q + r +k ≤ O−1.

(2.26)
These derivatives are used in a general space-time Taylor expansion around the
barycenter:

~U( ~X, t) = ~U( ~XB , tn) +
O−1X

k=1

1

k!

„

(t − tn)
∂

∂t
+ ( ~X − ~XB) · ~∇

«k

~U( ~XB , tn).

(2.27)

The expansion is made also for the gradients ~∇~U = grad(~U),

~∇~U( ~X, t) = ~∇~U( ~XB , tn)+

O−2X

k=1

1

k!

„

(t − tn)
∂

∂t
+ ( ~X − ~XB) · ~∇

«k

~∇~U( ~XB , tn),

(2.28)
but with one order of accuracy less than the initial interpolation of the states,
as the gradient is already the first derivative of the reconstruction polynomial
(which can only be derived O − 1 times).

By evaluating these Taylor expansions at the space-time positions ( ~Xλ, tξ) of
the Gauss integration points, one finally obtains the reconstructed states and
gradients at the cell interfaces (Fig. 2.1). These can now be directly used as
input for the Riemann solvers in order to perform the flux computations.
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Figure 2.1: An O4 space-time element in 2D. Only the Gauss integration
points for the faces i − 1

2
and i + 1

2
are depicted.

High order central reconstruction Central reconstructions with symmetric in-
terpolation stencils are favorable for smooth solutions. Because mixed space
derivatives are needed for the CK procedure, cheap ”finite difference star”-
like reconstructions cannot be applied. The reconstruction must be based on
full two or three-dimensional volume stencils. They produce an exactly deter-
mined system of equations for the multi-dimensional interpolation polynomial.
Lörcher et al. [69] showed, that it is possible to reduce the stencil size by omit-
ting the monomials of higher order than the desired accuracy. However, this
option has not been considered here in favor of better stability and robustness.
Due to the Cartesian grid, the interpolation procedure can be performed in
a dimension-by-dimension manner. This means a greatly reduced number of
operations in 2D and 3D compared to a full volume stencil reconstruction for
each element:

n Ops,F ullStencil = nElem · nd
Ops,1D, (2.29)

n Ops,DimByDim = nElem · n Ops,1D · d, (2.30)

with nElem being the number of reconstructed elements, d being the spatial di-
mension and n Ops,1D being the number of computational operations necessary
for reconstructing one 1D element. To give an example, for a O5 reconstruc-
tion, usually five 1D stencil points are needed. In 3D, the effort for a full-
stencil reconstruction compared to a dimension-by-dimension reconstruction is

28
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n Ops,F ullStencil

n Ops,DimByDim
= 53

5·3
= 125

15
≈ 8.33!

The polynomial interpolation from mean-values onto point values at the barycen-
ter conserves the mean-values of the stencil cells and is explained in the interpo-
lation section 2.3.3. It is emphasized, that the full-stencil and the dimension-by-
dimension reconstructions are equivalent and deliver an identical polynomial.
In 1D, the central interpolation for the point value of the state and the spatial
derivatives can be written as:

∂p ~U(xB)

∂xp
=

nSX

i=1

∂pLi(xB)

∂xp
· ~̄Ui, (2.31)

where the ~̄Ui’s are the mean-values of the nS stencil cells necessary for the
desired interpolation order and i denotes the local index of a stencil element in
the computational domain. The cell-weight coefficients ∂pLi(xB)

∂xp are constant
and can be computed in advance. For odd spatial orders, the interpolation
stencil is always symmetrical towards the barycenter (ns = O). For even order
schemes however, the number of necessary stencil cells produces two possible
stencils with a slight up- or downwind bias:

∂p ~U(xB)

∂xp
leftsided

=

nSX

i=1

∂pLi(xB)

∂xp
leftsided

· ~̄Ui, (2.32)

∂p ~U(xB)

∂xp
rightsided

=

nS+1
X

i=2

∂pLi(xB)

∂xp
rightsided

· ~̄Ui. (2.33)

In order to avoid instabilities, those two stencils are superposed to a single
stencil with new cell-weights

∂pL⋆
i (xB)

∂xp
=

1

2
·
„

∂pLi(xB)

∂xp
leftsided

+
∂pLi(xB)

∂xp
rightsided

«

(2.34)

and an increased number of stencil cells n⋆
s = O + 1, so the final stencil has an

odd number of elements again:

∂p ~U(xB)

∂xp
=

n⋆
SX

i=1

∂pL⋆
i (xB)

∂xp
· ~̄Ui. (2.35)

In the following and for the purpose of uniformity, n⋆
s and L⋆ will be denoted

nS and L also for the even order schemes.
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2 Domain Decomposition

The reconstruction for the entire computational domain is given in the following
algorithm. The global indices of a domain element are denoted by (i, j, k), the
fields marked with ⋆ and ⋆⋆ are temporary fields that can be deleted after each
reconstruction and IS = ns−1

2
. Note that also the first row of ghost elements

is reconstructed in order to provide accurate boundary data.

Algorithm 2.1.1. Central dimension-by-dimension reconstruction

FOR ALL(i,j,k)
“

∂p ~U
∂xp

”⋆⋆

ijk
= 0.0,

“
∂p+q ~U
∂xp∂yq

”⋆

ijk
= 0.0,

“
∂p+q+r ~U( ~XB)

∂xp∂yq∂zr

”

ijk
= 0.0

END FOR ALL

DO r = 0,O-1 ! z-derivatives
DO q = 0,O-1-r ! y-derivatives
DO p = 0,O-1-r-q ! x-derivatives

! Reconstruction in x-direction
DO k=-nGhost+1,kmax+nGhost
DO j=-nGhost+1,jmax+nGhost
DO i=0,imax+1
DO II=1,ns“

∂p ~U
∂xp

”⋆⋆

ijk
=
“

∂p ~U
∂xp

”⋆⋆

ijk
+ ∂pLII (xB)

∂xp · ~̄Ui−IS+II−1,j,k

END DO
END DO
END DO
END DO

! Reconstruction in y-direction
DO k=-nGhost+1,kmax+nGhost
DO j=0,jmax+1
DO i=0,imax+1
DO II=1,ns“

∂p+q ~U
∂xp∂yq

”⋆

ijk
=
“

∂p+q ~U
∂xp∂yq

”⋆

ijk
+ ∂qLII (yB)

∂yq ·
“

∂p ~U
∂xp

”⋆⋆

i,j−IS+II−1,k

END DO
END DO
END DO
END DO
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! Reconstruction in z-direction
DO k=0,kmax+1
DO j=0,jmax+1
DO i=0,imax+1
DO II=1,ns“

∂p+q+r ~U( ~XB)
∂xp∂yq∂zr

”

ijk
=
“

∂p+q+r ~U( ~XB)
∂xp∂yq∂zr

”

ijk
+ ∂rLII (zB)

∂zr ·
“

∂p+q ~U
∂xp∂yq

”⋆

i,j,k−IS+II−1

END DO
END DO
END DO
END DO

END DO !p
END DO !q
END DO !r

In order to achieve a better computational performance, the loops and data
arrays may be re-arranged and optimized.

High order WENO reconstruction In order to be able to capture strong dis-
continuities in the computational domain, a high order WENO reconstruction
has been implemented. While its oscillation indicator and the nonlinear weight-
ing of the WENO polynomials are based on classical 1D WENO methods (e.g.,
Shu [101]), the linear weights are taken from Dumbser et al. [19, 20]. Unlike
other WENO reconstructions for cell interfaces, this WENO procedure delivers
values for state and spatial derivatives at the barycenter of the cell, so only one
reconstruction has to be performed per element. Known for being very robust
and for good quality results, a characteristic decomposition is made. In addi-
tion to the characteristic variables, the conservative variables are also tested for
oscillations. A reconstruction in primitive variables for higher orders has not
been considered because a transformation from primitive to conservative spa-
tial derivatives would be required then. This would add the effort of a CK-like
procedure! The multidimensional reconstructions can again be implemented
in an efficient dimension-by-dimension manner. Surprisingly, besides being far
more computationally effective, this produces also the least oscillations in the
diagonal direction of a structured grid. Tests with truly multi-dimensional
oscillation indicators which consider the full volume stencil produced signifi-
cantly larger oscillations. A possible explanation could be the greater number
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of ”weighting and smoothing” actions in the dimension-by-dimension case, as
every single 1D stencil is tested instead of only one large multi-dimensional
stencil.
The final reconstructed WENO polynomial wWENO in 1D is a weighted sum
of the polynomials wi(x) from the nW different possible interpolation stencils:

wWENO(x) =

nWX

i=1

ωiwi(x). (2.36)

Because all possible stencils are considered here, their number is equal to the
order of the interpolation, nW = O, which is also the number of required stencil
cells per single interpolation. Note that the stencil is not enlarged by one in
the even order case as it is done for central reconstruction. The polynomials
themselves are built from a monomial basis:

wi(x) =

O−1X

j=0

cjΦj(x) =

O−1X

j=0

cjx
j , (2.37)

The normalized nonlinear weights ωi are defined classically (Shu [101], Jiang
et al. [51]) as

ωi =
ω̃i

PnW
k=1 ω̃k

, (2.38)

with

ω̃i =
λi

(ǫ + σi)r
(2.39)

being dependent on the linear weights λi and the oscillation indicators σi.
For the parameters ǫ and r, different preferred values can be found in the
literature, e.g., ǫ = 10−5 − 10−7, r = 2 − 4 (Liu et al. [66], Shu [101], Jiang et
al. [51], Dumbser et al. [19]). By all authors, ǫ is regarded a safeguard against
division by zero only and is chosen very small. However, the choice of ǫ in
fact has an influence on the reconstruction: By definition (2.41), the oscillation
indicator σi ranges from zero (no oscillations at all) to an unknown arbitrary
large positive number (let’s say 5000 for example, indicating severe oscillations).
The denominator will be increased by the positive exponent r if (ǫ + σi) > 1.0
and will be decreased if (ǫ + σi) < 1.0. Hence, ǫ works as a threshold: The
weight of stencils with small oscillations below a certain level or none at all is
amplified, while all other weights are reduced. The ideal value for this threshold
is problem dependent, though. For a vanishing ǫ, it would be σi = 1.0, a value
that does not have any particular meaning regarding the oscillations. Hence,
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it is suggested to chose ǫ in the vicinity of 1.0 for general problems because all
occurring oscillations are amplified then and are put in relation in a problem
independent manner. As a matter of fact, demanding calculations such as the
double Mach reflection problem (DMR, see later in this section) proved to be
more stable with such an ǫ. Slight variations can increase the solution quality
for specific computations (e.g., ǫ = 10−2 for the DMR). Note that also the best
error norms in the convergence tests (see later in this section and the appendix)
could be achieved with this choice. It is emphasized, that both for the WENO
STE-FV convergence studies and in tests with the Shu vortex (a similar setup
can be found in 2.7.1.2), the very same or even better results are achieved in
comparison with the central reconstruction STE-FV method.
The linear weights λi are defined according to Dumbser et al. [19] by

λi =

(

λC , if i is the index of the central stencil,

1.0, else.
(2.40)

λC puts a large weight on the central stencil. For the proposed STE-FV
method, numerical tests indicated, that λC should be chosen between 102

(better for discontinuities) and 106 (for smooth solutions). While for lower
order calculations (O3 and O4), values of λC = 103 − 105 and r = 2 − 4 have
turned out to be robust while still resolving smooth solutions very well, values
of λC = 102 and r = 1 seem to be advisable for high order calculations (≥ O5)
with strong shocks. In the benchmark examples at the end of this section, a
great variety of different parameters (also for very high order) have been suc-
cessfully tried, which underlines the robustness of the method.
Note that there is exactly one central stencil only for odd interpolation orders!
This is actually vice versa to the traditional WENO reconstruction for interface
quadrature points, where the even order interpolations produce the symmetric
stencils. However, there are two central stencils now in the even order case for
the WENO STE-FV method, a slightly left- and right-sided one (shifted by
one cell relative to each other). These central stencils are both assigned λC .
The oscillation indicator σi is the classical 1D version by Shu [101]:

σi =

O−1X

r=1

Z x
i+ 1

2

x
i− 1

2

∆x2r−1

„
∂rwi(x)

∂xr

«2

dx. (2.41)

It can be expressed by a quadratic functional

σi = CT Σ C, (2.42)
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with the polynomial coefficients CT = (c0, ..., cO−1) of wi(x) and the oscillation
matrix

Σlm =
O−1X

r=1

Z x
i+ 1

2

x
i− 1

2

∆x2r−1 · ∂r

∂xr
Φl(x) · ∂r

∂xr
Φm(x) dx. (2.43)

C and Σ are grid dependent because they contain dimensioned quantities. In
order to get rid of this grid dependency, equation (2.42) is rewritten. With the
help of

Mij =
1

∆xi

Z

ΩiS

xjdx (2.44)

and
C = M−1 W̄ (2.45)

(see equations (2.108) and (2.109) in section 2.3.3), where W̄
T

= (w̄1, ..., w̄nS )
denotes the mean-values of the stencil cells for the interpolation, one obtains

σi =
“

M−1 W̄
”T

Σ M−1 W̄, (2.46)

= W̄
“

M−1
”T

Σ M−1 W̄, (2.47)

= W̄ Q W̄. (2.48)

The new n×n (with n = O) matrix Q =
“

M−1
”T

Σ M−1, which is dimension-

less and thus grid independent, can be calculated and stored for every desired
order of accuracy.
The interpolation of point values at the barycenter for state and spatial deriva-
tives for each tested WENO stencil is done exactly as for a central reconstruc-
tion, see equation (2.31). The only difference is, that the interpolation weights
of each stencil cell have to be also determined for all shifted stencils, which can
be done in the initialization. The dimension-by-dimension algorithm remains
largely the same too, although some features need to be added. Note that the
nonlinear WENO weights ωi are based on the values of the states and do not
need to be computed again for the derivatives, as they are in fact the deriva-
tives of the reconstructed polynomial!

The conservative mean-values ~̄Ui in each stencil cell are transformed into char-

acteristic variables ~̄Wi prior to the WENO reconstruction of a cell. Instead of
considering each face’s normal vector as in Dumbser et al. [20] for the charac-
teristic decomposition, it is sufficient to treat only the x-, y- and z-direction for
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2.1 Numerical Methods

the Cartesian elements as 2 faces are always parallel. Here, two possibilities
arise:
One way is to consider all characteristic directions in each single reconstruction
direction plus the conservative variables as an extra ”direction”. This is surely
the most expensive way but promises a maximum of robustness. This will be
referred to as FCC option (”full characteristic plus conservative”). Another
way is to perform the characteristic decomposition only in the respective re-
constructed directions. The conservative variables can be also included here as
an additional set of polynomials (referred to as CC option) or can be just omit-
ted (referred to as ”characteristic only”, CO option). Numerical tests showed
for the CO case, that this still robust approach is the most efficient method
regarding quality and effort. Note that this lean and preferred method had
been derived after the others. Therefore, some of the examples later in this
section were calculated with the more costly FCC option. In the following, the
method is formulated for a general implementation, including the possibility of
several characteristic decompositions.
Usually, if the reconstruction is performed for a cell interface (traditional
WENO), an arithmetic average of the mean-values of two neighboring cells
is used for the transformation. However, because the reconstruction is done

for the barycenter of the cell, only the state ~̄Uj inside the interpolated cell j is
considered for the transformation, which is defined as

~̄W
(~niD

)

i =
“

R( ~̄Uj , ~niD )
”−1 ~̄Ui, (2.49)

with iD = 0, ..., nD and ~nT
1 = (1, 0, 0), ~nT

2 = (0, 1, 0), ~nT
3 = (0, 0, 1) in 3D.

Like in Dumbser et al. [20], also the conservative variables themselves can be
tested for oscillations, therefore a ”fourth” direction ~n may be considered, with

R( ~̄Uj , ~n0) being the identity matrix.
After each 1D WENO reconstruction, the interpolated point value at the
barycenter ~XB of the cell j must be transformed back into conservative vari-
ables

~U
(~niD

)

j ( ~XB)WENO = R( ~̄Uj , ~niD ) ~W
(~niD

)

j ( ~XB)WENO , (2.50)

which must be based on the original transformation. It is emphasized, that this
is a critical step, as each 1D stencil of the reconstruction in the next dimension
requires again stencil cells which have been transformed on the basis of the
same mean-value. Hence, a back-transformation into conservative variables
prior to the next reconstruction direction is essential.
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2 Domain Decomposition

Equation (2.50) contains only the interpolated WENO states, but as the STE-
FV method requires also the spatial derivatives, the interpolation procedure is
done for them too, and one gets in fact

∂p

∂xp
~U

(~niD
)

j ( ~XB)WENO = R( ~̄Uj , ~niD )
∂p

∂xp
~W

(~niD
)

j ( ~XB)WENO . (2.51)

If only one characteristic decomposition per direction was made (CO option),
the final result for the reconstruction has been obtained with equation (2.51).
Otherwise, if several directions (FCC - and CC option) per reconstruction have
been considered for the characteristic decomposition, a decision for one of the
nD + 1 reconstruction polynomials must be made, before going on in the next
direction. This can be done for example on an ENO basis. For this purpose,
the oscillation matrix is exploited again in order to determine the oscillation
indicator for each conservative polynomial:

σ(~niD
) = CT (~niD

)Σ C(~niD
). (2.52)

The coefficients C are built from the known state and spatial derivatives at the
barycenter. For a conservative variable ui, the pth coefficient of its polynomial

ui(x) =
O−1X

j=0

cjx
j = c0 + c1x + c2x

2 + ... + cO−1x
O−1 (2.53)

can be determined by simply deriving the polynomial p times, for example for
p = 3:

∂3

∂x3
ui(x) = 3·2·1·c3+4·3·2·c4x+ ... +(O−1)·(O−2)·(O−3)·cO−1x

O−4, (2.54)

c3 =
1

6
· ∂3

∂x3
ui(x) − 4 · c4x − ... − (O − 1) · (O − 2) · (O − 3)

6
· cO−1x

O−4,

=
1

6
· ∂3

∂x3
ui(xB = 0.0). (2.55)

All space derivatives are known at the barycenter ~XB and the interpolation
weights for each element were determined in a relative coordinate system with
~XB = (0, 0, 0)T . Hence, every arbitrary coefficient can be obtained:

cj =
1

j!
· ∂j

∂xj
ui(xB). (2.56)
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In order to avoid problems with grid dependency, Σ is precalculated on a ref-

erence element of size ∆x = 1.0 and the coefficients CT = (c̃0, ..., c̃O−1) are
normalized by the cell size:

c̃j = (∆x)j · cj . (2.57)

Having determined the indicators σ(~niD
) from equation (2.52), the least oscil-

lating polynomial is chosen for each component ui of the conservative state
vector ~Uj = (u1, ..., ui, ..., unV ar ) in the interpolated cell j:

∂p

∂xp
ui( ~XB)WENO =

∂p

∂xp
u

(minloc(σ
(~niD

)
))

i ( ~XB)WENO. (2.58)

The 1D algorithm is repeated with the WENO values from the previous step
as input for the reconstruction in the next dimension, with one exception:
After the back-transformation into conservative variables, one ends up with a
two- and later with a three-dimensional polynomial, or rather their derivatives

∂p+q

∂xp∂yq
~U

(~niD
)

j ( ~XB)WENO and ∂p+q+r

∂xp∂yq∂zr
~U

(~niD
)

j ( ~XB)WENO . In order to make

an ENO decision as in equation (2.52) for one of the polynomials, truly multi-
dimensional oscillation matrices are used:

Σlm,2D =

O−1X

α=0

O−1X

β=0

Z x
i+ 1

2

x
i− 1

2

Z y
j+ 1

2

y
j− 1

2

(∆x2α−1 · ∆y2β−1

· ∂α+βΦl(x, y)

∂xα∂yβ
· ∂α+βΦl(x, y)

∂xα∂yβ
) dxdy, (2.59)

with 0 < α + β,

Σlm,3D =
O−1X

α=0

O−1X

β=0

O−1X

γ=0

Z x
i+ 1

2

x
i− 1

2

Z y
j+ 1

2

y
j− 1

2

Z z
k+ 1

2

z
k−

1
2

(∆x2α−1 · ∆y2β−1 · ∆z2γ−1

· ∂α+β+γΦl(x, y, z)

∂xα∂yβ∂zγ
· ∂α+β+γΦm(x, y, z)

∂xα∂yβ∂zγ
) dxdydz, (2.60)

with 0 < α + β + γ,

where Φ denotes the full tensor product monomial basis. Note that always at
least one derivative is considered. For α + β + γ = 0, no contribution is made
to the matrices.
The following algorithm summarizes the most important steps of the WENO
reconstruction.
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2 Domain Decomposition

Algorithm 2.1.2. WENO dimension-by-dimension reconstruction

Reconstruction in x-direction

For all elements (including the ghost cells in y- and z-direction):

1. Get the right Eigenvector matrix R( ~̄Uj , ~niD ) and its inverse for all desired
normal vector directions ~niD for the characteristic decomposition.

2. For all desired normal vector directions:
For all x-derivatives:

a) For all possible interpolation stencils:

i. Transformation into characteristic variables of all stencil cells,
based on the state in the interpolated cell.

ii. Interpolate onto the barycenter ~XB.

iii. Calculate the oscillation indicator σi for all characteristic vari-
ables.

b) For all components of the characteristic state vector:
For all possible interpolation stencils:

i. Calculate the nonlinear weight ωi and weight the interpolated
value of the considered stencil.

ii. Back-transformation into conservative variables.

3. If more than one characteristic decomposition (otherwise finished):
For all components of the conservative state vector:
For all normal vector directions:
Determine the oscillation indicator σ(~niD

) and choose the least oscillating
polynomial.

⇒
“

∂p ~U( ~XB)
∂xp

”⋆⋆

ijk,WENO

Reconstruction in y-direction

For all elements (including the ghost cells in z-direction):
Repeat the algorithm from the x-Reconstruction with the following modifications:

1. Take the WENO-reconstructed values from the previous reconstruction as
input.

2. Consider now also the y-derivatives.
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3. If more than one characteristic decomposition: Use the 2D oscillation
matrix in order to determine the least oscillating 2D polynomial.

⇒
“

∂p+q ~U( ~XB)
∂xp∂yq

”⋆

ijk,WENO

Reconstruction in z-direction

For all domain elements:
Repeat the algorithm from the x-Reconstruction with the following modifications:

1. Take the WENO-reconstructed values from the previous reconstruction as
input.

2. Consider now also the z-derivatives.

3. If more than one characteristic decomposition: Use the 3D oscillation
matrix in order to determine the least oscillating 3D polynomial.

⇒
“

∂p+q+r ~U( ~XB)
∂xp∂yq∂zr

”

ijk,WENO

Boundary conditions The treatment of the boundary conditions for the STE-
FV method is equivalent to the implementation for the structured ADER-FV
method. So-called ghost cells are set prior to every iteration. The most simple
case, periodic boundary conditions, is realized by copying the values from the
domain cells opposite to the boundary. This of course requires a domain with
sufficient domain cells in every direction, at least nElem,iDir = nGhost. In order
to facilitate the boundary treatment and the loops in the algorithms, also the
first row of ghost cells is reconstructed in the STE-FV method, which adds
one ghost cell row per direction in comparison with the ADER-FV method
with central reconstruction. Hence, nGhostST E−F V,Central

= int(O+2
2.

). For the
WENO reconstruction, enough ghost cells need to be provided for the outer-
most stencil, therefore nGhostST E−F V,WENO

= O. Table 2.8 in section 2.3.1
lists the number of ghost cell rows per direction for several orders of accuracy.
Note that the STE-FV method is never forced to rely on one-sided stencils at
the boundary. Even for wall boundary conditions (slip-walls and adiabatic no-
slip-walls), the ghost cells can be set by mirroring the domain values and giving
the normal velocities the respective other sign. Both for the central and the
WENO reconstruction, the Taylor expansion will yield symmetrical values at
the domain boundary and the Riemann solvers will automatically set the nor-
mal velocity to zero. Last but not least, inflow, outflow and coupling boundary
conditions are realized by prescribing mean-values in the ghost elements.
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Numerical convergence studies The experimental order of convergence is
tested for the 2D and 3D version of the STE-FV method. In order to examine
the implementation for the full Navier-Stokes equations (see section 2.2.3), the
following test case from Gassner et al. [38] is considered. The Navier-Stokes
equations with the source term

~S = α

0

B
B
B
B
B
@

cos(β) (d k − ω)

cos(β) A + sin(2β)α k (γ − 1)

cos(β) A + sin(2β)α k (γ − 1)

cos(β) A + sin(2β)α k (γ − 1)

cos(β) B + sin(2β)α (d kγ − ω) + sin(β)
“

d k2µγ
Pr

”

1

C
C
C
C
C
A

(2.61)

on the right hand side are solved, where β = k(x1 + x2 + x3) − ωt, A =
−ω + k

d−1

`
(−1)d−1 + γ (2 d − 1)

´
and B = 1

2

`
(d2 + γ(6 + 3 d)) k − 8ω

´
.

The problem has an analytical solution, which is given by

~U =

0

B
B
B
B
B
@

sin(β)α + 2

sin(β)α + 2

sin(β)α + 2

sin(β)α + 2

(sin(β)α + 2)2

1

C
C
C
C
C
A

. (2.62)

For the numerical experiments in the dimensions d = 2 and d = 3, the param-
eters are chosen as γ = 1.4, Pr = 0.72, µ = 0.0001, R = 287.14 and α = 0.1,
ω = 10 and k = π. The exact Godunov Riemann solver (Toro [112]) is used for
the numerical fluxes of the hyperbolic part, while the dGRP Riemann solver
(Gassner et al. [35], [37], Lörcher et al. [68]) is chosen for the viscous fluxes.
For all calculations, the CFL number is set to CFL = 0.45. The extents of
the computational domain are [0, 2] × [0, 2] and the number of elements per
direction are increased in several stages. Periodic boundary conditions are em-
ployed and the error norms are calculated with the help of the exact solution
when the simulation ends at tend = 1.
Tables A.1-A.6 show the number of grid elements per direction, the error norms
for the total energy ρE and the convergence rates for the 2D and 3D STE-FV
method. The respective orders of convergence are achieved for both the cen-
tral reconstruction and the WENO reconstruction (CO option with parameters
λC = 104, ǫ = 1.0, r = 3).
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Performance The 3D implementation of the STE-FV method is examined for
its computational performance. The setup is simple: After an empty domain
has been initialized with a constant flow, the Navier-Stokes equations are solved
and 100 time steps are performed. The CPU time is measured on two different
platforms, on a NEC-SX8 vector processor and on a scalar Intel Xeon 5150
2.66GHz core. Both the central and the WENO reconstruction (CO option)
are employed. Tables 2.5 and 2.6 show the remarkable performance on the
vector computer. The method is most efficient for the orders O4-O6, where up
to 46% of the machine’s peak performance (16 GFlop/s) are achieved. Note
that such a performance is considered excellent even for SX8 custom-built finite
difference codes! The STE-FV scheme is about one magnitude slower on the
scalar Xeon processor, as its vectorization properties cannot be exploited that
well anymore. Hence, all loops are executed in a ”normal”, scalar way.
A comparison of the CPU time per element and iteration with a calculation
solving the Euler equations instead of the Navier-Stokes equations shows, that
the additional effort for the treatment of the viscous terms is quite low (about
5% for O4, Table 2.5). Furthermore, depending on which processor and order
is used, employing WENO reconstruction instead of central reconstruction is
about 8-40% more expensive with regard to the total CPU time (Table 2.6).
The jump in the costs from even order to the next odd order is considerably
bigger (about a factor of four) than from odd order to the next even order
(about a factor of two). In the first case, the number of required integration
points increases, while it remains the same in the latter case. The other extra
costs result from the respective higher effort for reconstruction, space-time
Taylor expansion and CK procedure.
Finally, the time for an element update is compared to the unstructured Rec-
FV method on the Xeon machine. After being at first considerably faster for
lower orders, it seems that the advantage of the STE-FV scheme decreases with
higher orders. This can be largely attributed to the Rec-FV’s quadrature-free
formulation, resulting in less integration effort. However, it is stressed, that
the STE-FV method calculates the fluxes over the six sides of a hexahedron,
Rec-FV on the other hand over the four sides of a tetrahedron. Furthermore,
hexahedral elements usually allow much larger time steps and provide better
accuracy. Last but not least, the STE-FV code is clearly superior on the vector
platform, where the Rec-FV method shows only a performance of about 100
MFlop/s.
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O STE-FV, SX8 STE-FV, Xeon STE-FV, EE, Xeon

2 1.766E-06 (1269 MFlop/s) 8.257E-06 7.702E-06

3 7.416E-06 (3865 MFlop/s) 7.035E-05 6.149E-05

4 1.359E-05 (5065 MFlop/s) 1.511E-04 1.434E-04

5 6.646E-05 (7333 MFlop/s) 6.032E-04 6.114E-04

6 1.081E-04 (7407 MFlop/s) 1.209E-03 1.177E-03

7 7.781E-04 (4234 MFlop/s) 4.363E-03 4.079E-03

8 1.279E-03 (4274 MFlop/s) 8.084E-03 7.945E-03

Table 2.5: Efficiency factors tCP U [s]
Elem·Iter

, STE-FV, 3D, central reconstruction.

O STE-FV, SX8 STE-FV, Xeon Rec-FV, Xeon

2 2.456E-06 (2041 MFlop/s) 1.157E-05 4.057E-05

3 9.854E-06 (4089 MFlop/s) 7.648E-05 1.214E-04

4 1.987E-05 (5161 MFlop/s) 1.731E-04 3.209E-04

5 7.051E-05 (7036 MFlop/s) 6.517E-04 7.089E-04

6 1.358E-04 (7161 MFlop/s) 1.316E-03 1.410E-03

7 7.973E-04 (4595 MFlop/s) 4.081E-03 2.636E-03

8 1.398E-03 (4378 MFlop/s) 9.303E-03 -

Table 2.6: Efficiency factors tCP U [s]
Elem·Iter

, STE-FV, 3D, WENO reconstruction.

Double Mach reflection The famous and challenging double Mach reflection
(DMR) problem by Woodward and Colella [125] is chosen as a test case for the
2D implementation of the WENO STE-FV scheme. It is realized in its original
setup for the Euler equations on Cartesian grids and consists of a Mach 10
shock in air (γ = 1.4), which impinges on a reflecting wall in a 60◦ angle. This
is equivalent to a horizontally moving shock hitting a 30◦ ramp. The rectan-
gular domain has the extents [0, 4] × [0, 1], while only the area [0, 3] × [0, 1]
is depicted in the overall views of Figs. 2.2 and 2.3. At t = 0, the shock is
initialized such that it touches the slip-wall at x = 1

6
. The primitive state

in front of the shock is ~U1 = (1.4, 0.0, 0.0, 1.0)T while the Rankine-Hugoniot

conditions give ~U2 = (8.0, 8.25, 0.0, 116.5)T for the post-shock region. For the
boundary conditions, the ghost cells at the left and at the upper boundary
are set by prescribing the exact solution to the moving shock (which is simply
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~U2 for the left boundary). On the lower boundary, also the ghost cells from

x = 0.0 to x = 1
6

are set using the moving shock solution (respectively ~U2,
as the shock is initialized at this position), which forces the shock to be at-
tached to the wall. Otherwise, without the prescribed post-shock values at the
lower boundary, the reflection would travel upstream. Finally, the ghost cells
at the right boundary are set to the undisturbed state ~U1. The HLLE flux is
used and the CFL number is set to 0.5 for all calculations, which are run until
tend = 0.2. Two different meshes are considered, a coarse one with cell size
∆h = ∆x = ∆y = 1

120
and a fine one with ∆h = 1

480
. All calculations were

performed on one Intel Xeon 5150 2.66GHz core.
The results in Figs. 2.2- 2.4 depict the density (plotted for 30 equidistant con-
tour levels from 1.5 to 21.5) and are in good accordance with other publications
(e.g., Dumbser et al. [20], Woodward and Colella [125]). However, other than
in the previous calculations, methods up to O6 are used! The WENO STE-
FV method (CO option) remains stable even for very high orders. Note that
the WENO parameters for the orders O3 and O4 are chosen as λC = 104 and
r = 3, while for the orders O5 and O6 they are adapted to λC = 102 and r = 1.
For all coarse (∆h = 1

120
) calculations and the fine (∆h = 1

480
) O3 calculation,

ǫ = 10−2 was used, while for the fine higher order computations (O4 − O6),
ǫ = 1.0 turned out to deliver better and more stable results.
Both on the coarse and the fine grid (Figs. 2.2 and 2.3), the effect of the in-
creasing order becomes visible especially in the ”roll-up” region in front of
the contact discontinuity. This (as a matter of fact unphysical) feature with
its small-scale structures is considered ”a qualitative indicator of the amount
of numerical viscosity introduced by the scheme” (Dumbser et al. [20]). The
method’s capability to capture these structures grows with rising order of accu-
racy on the coarse grid until O5. For O6, no significant differences are visible:
The method has reached its maximum capabilities for this grid size. On the
fine grid however, even the contact discontinuity itself begins to roll-up. The
detail views for the calculations (Figs. 2.3) show, that the amount of rolling still
grows strongly, when the order is increased. Also the shape of the main vortex
begins to change and another feature, which could be an additional vortex,
begins to emerge for O5 and O6. It is clear that oscillations become more and
more difficult to handle with rising order and grid resolution, as the numerical
viscosity decreases and the number of potentially oscillating stencils increases.
Nevertheless, the calculations remain stable. Note the difference in the shock
width for the coarse and the fine grid, which is in both cases and for all orders
about three to four cell sizes!
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Figure 2.2: DMR, ∆h = 1
120

. From top to bottom: O3, O4, O5, O6.
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Figure 2.3: DMR, ∆h = 1
480

. From top to bottom: O3, O4, O5, O6.
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Figure 2.4: DMR, ∆h = 1
480

. Zooms into the roll-up region: Top left: O3,
top right: O4, bottom left: O5, bottom right: O6.
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3D explosion problem The 3D WENO algorithm for the STE-FV method is
tested on this example for the Euler equations. The problem is based on the
1D Sod test case (Toro [112]), for which a reference solution can be computed
by solving a one-dimensional PDE with source term. This was done on a very
fine mesh (10000 elements) with a second order TVD method and the data
have been kindly provided by Dumbser et al. [20]. In the cubicle calculation
domain with the extents [−1.0, +1.0]× [−1.0, +1.0], the cells inside a radius of

r = 0.4 are initialized with the primitive values ~Uin = (1.0, 0.0, 0.0, 0.0, 1.0)T

and the cells outside the radius with ~Uout = (0.125, 0.0, 0.0, 0.0, 0.1)T . The
initial conditions are projected by setting the Gauss integration points iGP of
respective order, with a subsequent integration to the mean-value. In order to
avoid unphysical initial states for cells that overlap the given radius r, which
especially occurs in the diagonal directions, the transition from ~Uin to ~Uout is
slightly smoothed with the help of the tanh function:

~U( ~XiGP ) = 0.5 · (~Uin − ~Uout)

− 0.5 · (~Uin − ~Uout) · tanh(SF · (
q

x2
iGP

+ y2
iGP

+ z2
iGP

− r))

+ ~Uout, (2.63)

where SF is a smoothing factor. It is set to SF = 100 for this example. Note
that the greater the smoothing factor, the sharper the edge of the discontinuity
turns out. In the boundary ghost cells, ~Uout is prescribed throughout the entire
calculation. The number of cells inside the domain is 1003, which is equivalent
to a cell size of ∆x = ∆y = ∆z = 0.02. A CFL number of CFL = 0.5 was
used for the calculation, which stops at tend = 0.25. As Riemann solver, the
HLLE flux is employed and the WENO parameters (FCC option) are set to
λC = 104, ǫ = 10−5, r = 4.
The results along the positive x-axis and the xyz-diagonal are shown in Fig. 2.5
for the orders O2, O3 and O4. The data have been extracted from the mean-
values (1D data extraction with 1000 points in Tecplot). Especially the close-
ups of the contact discontinuity and the shock illustrate, that the flow features
are well resolved and that the solution is essentially oscillation-free in both
directions. Furthermore, the higher order calculations are clearly superior to
the O2 solution at the rarefaction fan and the contact discontinuity. The
calculations were performed on a single Intel Xeon 5150 2.66GHz core.

47



2 Domain Decomposition

x

ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reference
O2, λ=104, ε=10-5, r=4, x-Dir
O3, λ=104, ε=10-5, r=4, x-Dir
O4, λ=104, ε=10-5, r=4, x-Dir
O2, λ=104, ε=10-5, r=4, xyz-Dir
O3, λ=104, ε=10-5, r=4, xyz-Dir
O4, λ=104, ε=10-5, r=4, xyz-Dir

x

ρ

0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

Reference
O2, λ=104, ε=10-5, r=4, x-Dir
O3, λ=104, ε=10-5, r=4, x-Dir
O4, λ=104, ε=10-5, r=4, x-Dir
O2, λ=104, ε=10-5, r=4, xyz-Dir
O3, λ=104, ε=10-5, r=4, xyz-Dir
O4, λ=104, ε=10-5, r=4, xyz-Dir

Figure 2.5: 3D explosion problem (top) with zoom into the region of the
contact discontinuity and the shock (bottom).
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Shock-density interaction This actually one-dimensional test case by Shu and
Osher [102] is calculated with the 2D and 3D version of the STE-FV method.
It was designed to underline the advantages of high order schemes. The Euler
equations are solved in a domain of size [−5.0, +5.0] × [−0.075, +0.075]2 , with
400 × 6 × 6 elements in the respective directions. Thus, the element size is
∆x = ∆y = ∆z = 0.025. For the O7 and O8 calculations, eight elements in y-
and z-direction are used because periodic boundary conditions are employed at
the long walls of the tube. At position x = −4.0, a discontinuity is initialized
with the primitive left ~Ul = (3.8570, 2.6294, 0.0, 0.0, 10.333)T and right ~Ur =
(1+0.2 ·sin(5x), 0.0, 0.0, 0.0, 1.0)T states. A second order TVD method is used
in order to compute the reference solution in 1D, using a very fine spacing
with 10000 elements. The 3D STE-FV method (FCC option) is chosen for the
orders O2-O5. After that, the 2D version is used for the orders O6-O8 in order
to save time and memory. Note that 2D and 3D results for the same order
turned out to be identical. For both the 2D and 3D simulations, the HLLE
flux is employed, the time step is determined with CFL = 0.5 and the end
time of the calculation is tend = 1.8. A single Intel Xeon 5150 2.66GHz core
was used for the computation. The results along with the WENO parameters
for the different calculations are given in Figs. 2.6 and 2.7. Only information
from the mean-values is plotted.
When the simulation starts, the initial condition produces a shock that moves
into a sinusoidal fluctuation, which causes high frequency entropy waves. These
waves are not at all resolved for O2, while the solution approaches the reference
with rising order and is almost perfect for O5 (see the close-up in Fig. 2.6). The
calculations O6-O8 begin to show minor oscillations at the bottom of the first
two sawtooth patterns at the left and at the shock. However, the calculations
are in very good agreement with the reference solution and remain stable (close-
up in Fig. 2.7). It is emphasized, that the latter is remarkable for orders up to
O8.
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Figure 2.6: Shock density interaction (top) with close-up (bottom) for orders
O2-O5.
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Figure 2.7: Shock density interaction (top) with close-up (bottom) for orders
O6-O8.
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Shock tube problems Last but not least, a variety of classical 1D shock tube
problems (STP) are solved with the 3D STE-FV method. The governing equa-
tions are the Euler equations, the computational domain consists of a tube
with rectangular cross-section and the dimensions [−0.5, +0.5]× [−0.1, +0.1]2.
The spacing is ∆x = ∆y = ∆z = 0.01, which equals 100 × 20 × 20 grid cells.
Table 2.7 lists the initial conditions for the four considered problems. The po-
sition of the Riemann interface lies always at x = 0.0. To each of the problems,
the reference solution can be determined by an exact Riemann solver (e.g., the
Godunov RP solver, Toro [112]). For all computations (single CPU core, Intel
Xeon 5150 2.66GHz) the HLLE flux and CFL = 0.5 are used. The WENO
parameters (FCC option) are given in Figs. 2.8-2.11. Note that only the mean-
values are taken for the 1D data extraction with 1000 points in Tecplot. It is
emphasized, that all of the shock tube problems are calculated for the orders
O2 to O5. This is quite exceptional, especially for STP 3 and 4, which are
considered difficult and are usually not solved with an order higher than O3
(Dumbser et al. [20]).
STP 1 is a variation of the standard Sod test case (Toro [112]) and contains
a sonic point which leads usually to the sonic glitch problem (Dumbser et
al. [20]). However, the results for any order of accuracy (Fig. 2.8) hold nothing
like that for the STE-FV method. The discontinuities are resolved sharply and
the close-up shows the superiority of the higher orders, in particular at the
contact discontinuity. The rarefaction fan (not depicted) is captured well by
all method.
STP 2 by Lax [60] is often used in the literature for testing high order WENO
schemes. Good results with the tendency to better performance for higher or-
der are obtained and depicted in Fig. 2.9. Note that the plateau on top of the
pressure jump is represented more and more precisely for higher orders. The
same is true for the edges of the jump.
STP 3 (Toro [112]) involves two close discontinuities and very high pressure
jumps (five orders of magnitude, see initial conditions in Table 2.7). Never-
theless, all calculations remain stable. A slight overshoot is visible for O5 in
Fig. 2.9. Again, the flanks of the pressure jump are resolved better for increas-
ing order.
STP 4 (Toro [112]) contains a very slowly moving shock, which can be prob-
lematic for numerical methods, leading to spurious oscillations. However, both
the slowly moving and the strong right-moving shock wave are represented
well by the STE-FV scheme. For O4, small oscillations appear on top of the
discontinuities, getting bigger for O5, especially at the strong shock. Yet the
calculations for all orders remain stable!
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Figure 2.8: STP 1: Close-up of the contact discontinuity and the shock.

STP ρl ul pl ρr ur pr tend

1 1.0 0.75 1.0 0.125 0.0 0.1 0.20

2 0.445 0.698 3.528 0.5 0.0 0.571 0.14

3 1.0 0.0 1000.0 1.0 0.0 0.01 0.012

4 5.99924 19.5975 460.895 5.99242 -6.19633 46.095 0.035

Table 2.7: Initial conditions for the shock tube problems.
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Figure 2.9: STP 2 (top) with close-up (bottom).
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Figure 2.10: STP 3.
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Figure 2.11: STP 4.
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2.2 Equations

In the following, the equations which are solved in the coupling framework are
described and the issue of data conversion between the conservative and the
primitive variables is addressed.

2.2.1 Linearized Euler Equations

The linearized Euler equations (LEE) are used in their primitive form:

~U ′

t + A~U ′

x + B~U ′

y + C~U ′

z = 0. (2.64)

The state vector of the primitive perturbation variables and the Jacobians are

~U ′ =

0

B
B
B
B
B
@

ρ′

u′

v′

w′

p′

1

C
C
C
C
C
A

, A =

0

B
B
B
B
B
@

u0 ρ0 0 0 0

0 u0 0 0 1
ρ0

0 0 u0 0 0

0 0 0 u0 0

0 γ · p0 0 0 u0

1

C
C
C
C
C
A

, (2.65)

B =

0

B
B
B
B
B
@

v0 0 ρ0 0 0

0 v0 0 0 0

0 0 v0 0 1
ρ0

0 0 0 v0 0

0 0 γ · p0 0 v0

1

C
C
C
C
C
A

, C =

0

B
B
B
B
B
@

w0 0 0 ρ0 0

0 w0 0 0 0

0 0 w0 0 0

0 0 0 w0
1
ρ0

0 0 0 γ · p0 w0

1

C
C
C
C
C
A

,

where γ = 1.4 is the ratio of specific heats. ~U0 = (ρ0, u0, v0, w0, p0)
T are the

mean-values for the background flow and may be either constant for the whole
computational domain (global linearization) or dependent on the location of

the element (~U0 = ~U0( ~X), local linearization). Note that in case of local
linearization, the background value at the element’s barycenter is used for the
whole element in the implementation.

2.2.2 Euler Equations

The nonlinear Euler equations in their conservation form without source terms
read:

~Ut + ~F (~U)x + ~G(~U)y + ~H(~U)z = 0, (2.66)
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with the state vector of the conservative variables and the nonlinear fluxes

~U =

0

B
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@
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,
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. (2.67)

The equation of state of an ideal gas closes the system:

p = (γ − 1) ·
„

ρE − 1

2
ρ(u2 + v2 + w2)

«

. (2.68)

2.2.3 Navier-Stokes Equations

The Navier-Stokes equations in their conservation form without source terms
read:

~Ut + ~F (~U)x + ~G(~U)y + ~H(~U)z = ~F v(~U, ~∇~U)x + ~Gv(~U, ~∇~U)y + ~Hv(~U, ~∇~U)z,
(2.69)

with the conservative variables ~U , the nonlinear Euler fluxes from (2.67) and

the diffusion fluxes ~F v(~U, ~∇~U)x, ~Gv(~U, ~∇~U)y, ~Hv(~U, ~∇~U)z:

~F v(~U, ~∇~U)x =

0
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~Hv(~U, ~∇~U)z =

0
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(2.70)
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with k =
cp·µ

Pr
and ~v = (u, v, w)T .

The viscous stress tensor is given by

τ = µ

»“
~∇~v + (~∇~v)T

”

− 2

3
(~∇ · ~v)I

–

, (2.71)

where I is the unit tensor. The dynamic viscosity µ, the Prandtl number Pr,

the adiabatic exponent γ =
cp

cv
with the specific heats cp and cv depend on the

fluid. The system is closed with the equation of state of an ideal gas:

p = ρRT = (γ − 1) ·
„

ρE − 1

2
ρ(u2 + v2 + w2)

«

, (2.72)

with

E =
1

2
(u2 + v2 + w2) + cvT (2.73)

and the specific gas constant R = cp − cv.

2.2.4 State Vector Conversion

The continuity of the physical state variables is ensured by the data exchange
(section 2.3). Depending on the set of equations, the state vectors either con-
tain the primitive perturbation variables (linearized case) or conservative vari-
ables (nonlinear case). If the data exchange takes place amongst domains of
equal type (nonlinear ⇋ nonlinear or linear ⇋ linear), the state vectors can
be simply exchanged. However, if the equation type changes (nonlinear ⇋

linear), the state vectors must be converted:

Conversion: Nonlinear → linear

1. Transform the conservative state vector ~Ucon = (ρ, ρu, ρv, ρw, ρE)T into

its primitive version ~Uprim = (ρ, u, v, w, p)T :

ρ = ρ, (2.74)

u =
(ρu)

ρ
, (2.75)

v =
(ρv)

ρ
, (2.76)

w =
(ρw)

ρ
, (2.77)

p = (γ − 1) ·
»

(ρE) − 1

2ρ

`
(ρu)2 + (ρv)2 + (ρw)2

´
–

. (2.78)
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2. Obtain the perturbation vector by subtracting the background values
from the linearized domain:

~U ′

prim = ~Uprim − ~U0,prim =
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. (2.79)

Conversion: Linear → nonlinear

1. Obtain the full primitive state vector by adding the background values
from the linearized domain:

~Uprim = ~U ′

prim + ~U0,prim =
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. (2.80)

2. Transform the primitive state vector ~Uprim = (ρ, u, v, w, p)T into its con-

servative version ~Ucon = (ρ, ρu, ρv, ρw, ρE)T :

ρ = ρ, (2.81)

ρu = ρ · u, (2.82)

ρv = ρ · v, (2.83)

ρw = ρ · w, (2.84)

ρE =
1

2
ρ · (u2 + v2 + w2) +

1

γ − 1
· p . (2.85)
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2.3 The Coupling between Grids

The building blocks for the coupling mechanism between the grids are described
in the following. The interpolation procedures are depicted for two-dimensional
elements, while the actual implementation is also three-dimensional.

2.3.1 Grid Configurations

Two or more different domains Ωi are coupled at their common boundary
∂Ω = Γ over the data in the ghost elements. Depending on the discretization
method, such an element can be a cell (FV and DG methods) or a point (FD
methods). These ghosts are then used by the numerical methods to update
the inner elements in each domain. The data are exchanged by interpolating
the values from the neighbor grid onto the Gauss integration points (in the
following simply called Gauss points or GPs) of the ghost cells for FV and DG
methods. With a subsequent integration, the mean-values (FV) or the degrees
of freedom (DG) in the elements are obtained. For FD methods, the values
are interpolated onto the position of the ghost points themselves. The inte-
gration for the setting of the ghost element is independent of the way how the
interpolation onto the Gauss point is performed. The conservative variables
are used for interpolation in the nonlinear case and the primitive perturbation
variables in the linearized case. When the coupling procedure is applied to
domains with jumping grid sizes (fine → coarse), a form of filtering takes place
regarding small-scale structures that cannot be resolved on the coarse grid (see
section 2.7.2). The number of ghost elements that are required by the numer-
ical method strongly depends on the method itself. The high order FV and
FD schemes on structured grids use reconstruction operators and thus need a
larger number of ghost elements. Their number scales with the chosen order
of accuracy inside the domain and they are needed for all boundary condi-
tions (Table 2.8). On the other hand, DG methods are very local: Usually, no
ghost cells are needed for the setting of the boundary conditions, which can be
prescribed on the element’s boundary side. However, for a coupling boundary,
ghost cells can be easily constructed by mirroring the boundary element. Thus,
DG domains will have one row of ghost elements at their coupling interface.
Table 2.9 provides an overview of the method/grid combinations which are
examined in the domain decomposition framework. At the coupling interface
Γ, the grid configuration can be arbitrary and non-matching. Although the
ghost elements extend into the neighbor domain, the coupling method is non-
overlapping as the actual domain boundaries only need to be aligned relative
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to each other. Figure 2.12 depicts one of many possible setups: A structured
FD domain Ω1 is connected to an unstructured DG domain Ω2. The outer-
most domain points of Ω1 lie directly on the boundary (which is typical for FD
schemes). If a fourth order method is used, there are two rows of ghost points,
all located inside Ω2. Last but not least, the DG domain’s single row of ghost
cells extends into Ω1.
The domain decomposition approach also simplifies the treatment of more com-
plex configurations with so-called multi-domain cells (Fig. 2.13): The large
ghost cell from domain Ω1 overlaps two different domains Ω2 and Ω3. Each GP
of the cell, in this case 22 = 4 GPs for a fourth order method, can be assigned
a unique element of a neighboring grid that is the basis for the interpolation
stencil.

Method O2 O3 O4 O5 O6 O7 O8

ADER-DG & Rec-FV 1 1 1 1 1 1 1

ADER-FV & FD 1 2 2 3 3 4 4

STE-FV, Central 2 2 3 3 4 4 5

STE-FV, WENO 2 3 4 5 6 7 8

Table 2.8: Number of ghost element rows for the different methods.

Method Grid type 2D elements 3D elements

ADER-DG unstructured triangles tetrahedrons

Rec-FV unstructured triangles tetrahedrons

ADER-FV structured, Cartesian quadrangles hexahedrons

ADER-FD structured, Cartesian points points

Taylor-FD structured, Cartesian points points

Table 2.9: Implemented grid types and methods.
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Figure 2.12: A grid configuration example: A FD domain is connected to a
DG domain.
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Figure 2.13: A multi-domain ghost cell and its Gauss points.

62



2.3 The Coupling between Grids

2.3.2 Interpolation Points

If the coupling ghost element is a finite difference point, the target coordinates
~XT = (x, y, z)T for this interpolation are obviously the ghost point coordinates.
However, in case of a FV target element, the integral mean-value must be
obtained. For a DG element, a projection onto its degrees of freedom must
be performed. Both cases require an integration rule for the volume integral
of the cell. Gauss quadrature formulas are chosen for this purpose, as high
order can be achieved with a low number of integration points, which keeps the
additional computational effort for the coupling procedure low. Polynomials of
degree nPoly = 2 · M − 1 are integrated exactly, where M denotes the number
of Gauss integration points in 1D (M = nGP,1D). The DG elements demand a
greater number of integration points because the polynomial projection involves
a multiplication with the base function Φ, which is a polynomial itself (see
also Dumbser [18]). The number of Gauss integration points becomes M =
(nPoly + 1) in 1D. For 2D (d = 2) and 3D (d = 3), the total number of Gauss
integration points is nGP = Md.

Depending on the element type, its dimension and its location in the physical
xyz-space, the coordinates ~XiGP and the weight ωiGP of every Gauss integra-
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FV quadrangle, O8.
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η

0 1
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DG triangle, O4.

Figure 2.14: Number and location of the Gauss quadrature points in the
reference elements.
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tion point iGP must be determined for each cell. The target coordinates for
the interpolation between the grids are then ~XT = ~XiGP . In Fig. 2.14, the
number and position of the GPs are shown for a quadrangle and a triangle in
the ξη-reference system. Note that the total number of GPs is nGP = 16 in
both cases, although the order is different.

Quadrangles and hexahedrons: Gauss-Legendre quadrature is the natural
choice here, as the positions and weights can be determined out of 1D inte-
grations (Stroud [104]) in a dimension-by-dimension manner:

1Z

0

f (ξ) dξ ≈
MX

i=1

ωif (ξi) . (2.86)

On the given interval [0; 1], the weights Ai and the position ξi of the integration
points can be calculated up to any degree nPoly by using standard algorithms
from the literature [79]. The tensor product of (2.86) delivers the formula for
the three-dimensional integration on a reference cube:

1Z

ξ=0

1Z

η=0

1Z

ζ=0

f (ξ, η, ζ) dζdηdξ ≈
MX

i=1

MX

j=1

MX

k=1

ωiωjωkf (ξi, ηj , ζk) . (2.87)

For two-dimensional integration, the j- and k- indices can simply be skipped.

The physical interval sizes ∆x1, ∆x2 and ∆x3 can be fed as integration bound-
aries to the standard algorithms. In this case, the weights, which then contain
the interval sizes, have to be scaled with 1

∆x1·∆x2·∆x3
in order to ensure that

the sum of the integration weights equals 1. The position ~XiGP = (x, y, z)iGP

of integration point iGP in the physical element is determined by:

x =
x2 − x1

2
ξ +

x2 − x1

2
,

y =
y2 − y1

2
η +

y2 − y1

2
,

z =
z2 − z1

2
ζ +

z2 − z1

2
, (2.88)

with ~Xj = (x, y, z)j , j ∈ [1, 2], denoting the integration interval boundaries.
The total number of GPs in the element becomes nGP = nd

GP,1D. For the sake
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2.3 The Coupling between Grids

of simplicity, every integration point iGP of element Ω is given only one index
iGP ∈ [1, nGP ] in the following:

Z

Ω

f(x, y, z)dxdydz ≈
MX

i=1

MX

j=1

MX

k=1

ωiωjωkf (xi, yj , zk) =

nGPX

iGP =1

ωiGP f
“

~XiGP

”

,

(2.89)
with

nGPX

iGP =1

ωiGP = 1. (2.90)

Triangles and tetrahedrons: For triangular and tetrahedral elements, Gauss-
Jacobi quadrature is favorable in order to avoid transformations to quadran-
gles/hexahedrons prior to the integration (Stroud [104]). In one dimension, the
Gauss-Jacobi integration reads:

1Z

0

(1 − ξ)2−k f (ξk) dξk ≈
MX

i=1

ωk,i f (ξk,i) , k = 1, 2. (2.91)

Again, standard algorithms from the numerical recipes [79] can be used in
order to calculate the weights ωk,i and the position ξk,i on the interval [0; 1]
of the Gauss integration points for arbitrary order. Using a conical product of
(2.91), the formula for two-dimensional quadrature on a reference triangle can
be obtained:

1Z

ξ=0

1−ξZ

η=0

f (ξ, η) dηdξ ≈
MX

i=1

MX

j=1

ω1,iω2,jf (ξ1,i, η2,j · (1 − ξ1,i)) . (2.92)

In a similar way, the product formula for the three-dimensional integration on
a reference tetrahedron can be constructed:

1R

ξ=0

1−ξR

η=0

1−ξ−ηR

ζ=0

f(ξ, η, ζ)dζdηdξ (2.93)

≈
MP

i=1

MP

j=1

MP

k=1

ω1,iω2,jω3,kf(ξ1,i, η2,j · (1 − ξ1,i), ζ3,k · (1 − ξ1,i) · (1 − η2,j)).

If the position of integration point iGP has been determined in the ξηζ-reference
element, its position ~XiGP = (x, y, z)iGP

in the physical element is determined
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by a transformation, which is defined in 2D by (see also Dumbser [18]):

x = x1 + (x2 − x1) ξ + (x3 − x1) η,

y = y1 + (y2 − y1) ξ + (y3 − y1) η. (2.94)

In 3D, the transformation reads:

x = x1 + (x2 − x1) ξ + (x3 − x1) η, + (x4 − x1) ζ,

y = y1 + (y2 − y1) ξ + (y3 − y1) η, +(y4 − y1) ζ,

z = z1 + (z2 − z1) ξ + (z3 − z1) η, + (z4 − z1) ζ, (2.95)

with ~Xj = (xj , yj , zj), j ∈ [1, 2, 3, 4], being the physical coordinates of the
element’s vertices. In physical xyz-space, the integration weights finally need
to be scaled by a factor 2 (2D, triangles) or by a factor 6 (3D, tetrahedrons).
Again, the total number of GPs in the element becomes nGP = Md and every
integration point iGP of element Ω is given only one index iGP ∈ [1, nGP ]:

Z

Ω

f(x, y, z)dxdydz ≈
nGPX

iGP =1

ωiGP f
“

~XiGP

”

, (2.96)

with property (2.90).
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2.3.3 Structured Source Domains

Interpolation 

stencil

Gauss point 

of ghost cell

Γ Ghost 

points

set by

domain

      cell 

Figure 2.15: A DG domain is connected to a FD domain: Close-up of Gauss
integration points, interpolation stencils and ghost points.

The order of interpolation from a structured source domain (the ”donor”) may
be arbitrary. However, because the structured high order methods are already
based on reconstructions, it makes sense to use the source domain’s order of
accuracy also for the interpolation.

Uneven numbers of interpolation stencil elements in each direction provide more
symmetrical stencils. Furthermore, the number of ghost elements that can be
additionally used for the interpolation at the boundary is limited by the order
in the domain. Therefore, symmetrical interpolation stencils are preferred,
which are either of the same order O as the domain’s numerical method (if O
is uneven) or O+1 (if O is even). In this regard, ”symmetrical” means that the

nearest stencil element for a given interpolation coordinate ~XT is the central
point in the stencil. Figure 2.15 shows the [5 × 5]-stencil for the interpolation
from the O4 FD grid onto one of the GPs of a O3 DG ghost cell. The central
stencil point is found by a ”nearest neighbor to the GP position” search on the
structured grid.

If the same interpolation order is used also for very high order methods, the in-
terpolation stencils would become very large, for example 133 = 2197 elements
for O = 12 in 3D. This would result in a large computational overhead of the
coupling procedure. On the other hand, in the most cases, such a high order
interpolation is not necessary for the preservation of a high-quality solution.
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2 Domain Decomposition

Anyway, very high order inside the domains is primarily used for ensuring good
wave propagation properties (e.g., low dissipation). Moreover, interpolations of
a very high order tend to produce spurious oscillations (Munz [76]). Therefore
and if not mentioned otherwise, the order of interpolation is limited to a max-
imum of O5 in the presented numerical examples. Exceptions are convergence
studies where the interpolation order has to match the desired accuracy.
A distinction similar to restrictions and prolongations must be made for the
Cauchy-Kovalevskaja procedure (see section 2.4): If the target element’s do-
main has a smaller time step than the neighbor-domain, not only the state
vector but also its spatial derivatives have to be determined at the interpola-
tion target coordinate ~XT .
Polynomial interpolation is favorable here because the differentiation of the
polynomial directly delivers the state derivative. Furthermore, 2D and 3D
interpolations can be easily obtained by a product of 1D interpolations. Last
but not least, the interpolation coefficients can be precalculated and stored for
all target coordinates, so they only have to be multiplied with the states in
the stencil elements in order to obtain the value for the state and derivatives
at ~XT . This reduces the computational overhead of the coupling procedure
significantly.

Interpolation from an FD domain The state vector ~UT is interpolated from
the regular FD mesh onto the target position ~XT .
In 1D, the function

Li(x) =
(x − x0)(x − x1)...(x − xi−1)(x − xi+1)...(x − xn)

(xi − x0)(xi − x1)...(xi − xi−1)(xi − xi+1)...(xi − xnPoly
)

(2.97)

is a polynomial of degree nPoly with the properties

Li(xj) =

(

1 for i = j,

0 for i 6= j
(2.98)

and
nP olyX

i=0

Li(x) = 1. (2.99)

It defines a polynomial

pnPoly
(x) =

nP olyX

i=0

uiLi(x). (2.100)
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with the function values ui at the positions xi.
For a multi-dimensional interpolation, the Lagrangian polynomials Li(x), Lj(y)
and Lk(z) can be calculated independently. Their product delivers the coeffi-
cients for the 3D interpolation:

Lijk( ~X) = Li(x) · Lj(y) · Lk(z), (2.101)

with i, j, k ∈ [0, nPoly]. These coefficients can be stored for each interpolation

target coordinate ~XT for computational efficiency.
The state vector ~UT at position ~XT is then obtained by:

~UT =

nP olyX

i=0

nP olyX

j=0

nP olyX

k=0

Lijk( ~XT ) · ~Uijk, (2.102)

with ~Uijk = (ρ, u, v, w, p)T
ijk being the state vector at the stencil point with the

indices i,j,k.
For the sake of simplicity, these indices can be mapped onto one single param-
eter iS with nS = (nPoly + 1)d elements:

~UT =

nSX

iS=1

LiS ( ~XT ) · ~UiS . (2.103)

If spatial derivatives are needed, the Lagrangian polynomial from (2.101) can
be easily differentiated with respect to the pth, qth and rth derivatives in x- y-
and z-direction:

∂p+q+r ~UT

∂xp∂yq∂zr
=

nP olyX

i=0

nP olyX

j=0

nP olyX

k=0

∂p+q+rLijk( ~XT )

∂xp∂yq∂zr
· ~Uijk, (2.104)

or
∂p+q+r ~UT

∂xp∂yq∂zr
=

nSX

iS=1

∂p+q+rLiS ( ~XT )

∂xp∂yq∂zr
· ~UiS . (2.105)

Interpolation from a FV domain In case of a FV source domain, the poly-
nomial interpolation onto a specific coordinate ~XT is slightly different from
the previous approach because the available data in the stencil cells are mean-
values instead of point values. Hence, functions L̄i(x) must be found that build
a polynomial

u(x) = pnP oly
(x) =

nP olyX

i=0

ūiL̄i(x) =

nP olyX

j=0

cjx
j , (2.106)
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for which the integral mean-values ūi in the interpolation stencil cells Ωi are
conserved:

ūi =
1

∆xi

Z

Ωi

pnPoly
(x)dx, ∀i ∈ [0, nPoly ]. (2.107)

From (2.106) and (2.107) follows:

ūi =
1

∆xi

Z

Ωi

nP olyX

j=0

cjx
jdx, ∀i ∈ [0, nPoly],

ūi =

nP olyX

j=0

cj · 1

∆xi

Z

Ωi

xjdx, ∀i ∈ [0, nPoly],

ūi =

nP olyX

j=0

Mi,j · cj , ∀i ∈ [0, nPoly],

ūi = MT
i C, ∀i ∈ [0, nPoly ],

Ū = M C, (2.108)

with Mij = 1
∆xi

R

Ωi

xjdx, j ∈ [0, nPoly ], Ū = (ū0, ..., ūnP oly
)T , and

C = (c0, ..., cnP oly
)T .

The interpolation coefficients C are then

C = M−1 Ū. (2.109)

On the other hand, remembering (2.106), the solution u at a certain position
x can be written as:

u(x) =

nP olyX

j=0

cjx
j = XT C, (2.110)

with XT = (1, x, x2, ..., xj , ..., xnPoly ). Be careful not to confuse the transposed

vector XT of the monomials with the target coordinate ~XT = (x, y, z)T for the
interpolation!

Inserting (2.109) into (2.110) yields:

u(x) = XT M−1 Ū,

= L̄
T

Ū, (2.111)
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with L̄
T

= L̄
T
(x) = (L̄0(x), L̄1(x), ..., L̄nP oly

(x)) being the functions sought in

(2.106), which can be easily calculated by computing XT (e.g., for a specific
target position xT ) and M−1 first.
If spatial derivatives are needed for a CK procedure (see section 2.4), they can
be constructed by differentiating (2.110):

∂pu(x)

∂xp
=

∂p

∂xp
(XT ) C,

=
∂p

∂xp
(XT ) M−1 Ū,

=
∂p

∂xp
(L̄

T
) Ū. (2.112)

Again, 2D and 3D interpolations can be obtained by multiplying the corre-
sponding the entries of L̄

T
(x), L̄

T
(y) and L̄

T
(z):

L̄ijk( ~X) = L̄i(x) · L̄j(y) · L̄k(z), (2.113)

with i, j, k ∈ [0, nPoly ]. Note that by using this tensor product approach, the
integral conservation property from (2.107) is indeed preserved for each 2D and
3D element!
The state vector ~UT at position ~XT is finally computed by:

~UT =

nP olyX

i=0

nP olyX

j=0

nP olyX

k=0

L̄ijk( ~XT ) · ~̄Uijk, (2.114)

with ~̄Uijk = (ρ̄, ū, v̄, w̄, p̄)T
ijk being the mean-value state vector for the stencil

cell with the indices i,j,k.
Again for simplicity, the indices i,j,k can be mapped onto one single parameter
iS with nS = (nPoly + 1)d elements:

~UT =

nSX

iS=1

L̄iS ( ~XT ) · ~̄UiS . (2.115)

The 3D coefficients for the derivatives of the state vector are calculated the
same way and are stored for each interpolation target coordinate ~XT in order
to increase computational efficiency.
Note that the coefficients for the interpolation from a FD grid can also be easily
computed with this approach, only with the modification that ūi(xi) is now
the value at the position xi. This has to be considered in (2.107) and (2.108).
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2.3.4 Unstructured Source Domains

If an interpolation coordinate, for example a ghost point, is connected to an
unstructured domain, it can be assigned a unique neighbor cell. This source
element S is the cell, in which the target coordinate is located. Again, the
interpolation method depends on the numerical scheme that is used on the
unstructured grid. However, the interpolation procedure is in the following
described for DG and Rec-FV only, as these are mainly used in the coupling
framework. The interpolation for traditional FV methods on unstructured
grids (e.g., by reconstructing gradients) is rather straight forward and will not
be discussed here.
As a DG cell’s degrees of freedom (DOF) contain the complete polynomial in-
formation, there is no need for an interpolation stencil and the value of the state
vector ~UT at the target position ~XT can be obtained by using the definition
(Dumbser [18]) of the numerical solution inside a DG cell:

~UT = ~U( ~XT ) =

nDOFX

iDOF =1

φiDOF (ξ, η, ζ) · ~̂
UiDOF (S), (2.116)

with the degrees of freedom
~̂
UiDOF (S) = (ρ̂, û, v̂, ŵ, p̂)T

iDOF
(exemplarily for

primitive variables) of DG source cell S and the value of the basis function

φiDOF (ξ, η, ζ) at position ~XT of the point. The order of the interpolation
equals the order of the DG scheme that is used.
In order to fit the style of (2.103) and (2.115) and to make the implementation
in the framework more general, equation (2.116) can be interpreted and re-
written as

~UT = ~U( ~XT ) =

nSX

iS=1

LiS · ~UiS (S), (2.117)

regarding the degrees of freedom as the ”stencil cells” (nDOF = nS) and so on.
Spatial derivatives of the state vector are obtained in the same way by using
the derivatives of the basis function, which are available in the DG framework.
Note that the Rec-FV methods for unstructured grids are based on the DG
framework, so the interpolation procedure for those source elements is the same
as for DG elements. The only difference is that a reconstruction step has to
be performed prior to the interpolation in order to obtain the full polynomial
information inside the source cell. In this case, there is in fact a reconstruction
stencil, but it is hidden in the numerical method and is not ”seen” by the
coupling procedure. If the stencil becomes large, it may be asymmetrical at
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the boundaries.
The transformations from the xyz-coordinates into the ξηζ-reference system are
the inverse transformations of (2.94) and (2.95) (see also Dumbser et al. [18,
19]).
In 2D, the transformation is defined by:

ξ =
1
˛
˛
˛J
˛
˛
˛

((x3y1 − x1y3) + x (y3 − y1) + y (x1 − x3)) , (2.118)

η =
1
˛
˛
˛J
˛
˛
˛

((x1y2 − x2y1) + x (y1 − y2) + y (x2 − x1)) , (2.119)

where
˛
˛
˛J
˛
˛
˛ = (x2 − x1) (y3 − y1) − (x3 − x1) (y2 − y1) is the determinant of the

transformation’s Jacobian matrix

J =

 

xξ yξ

xη yη

!

. (2.120)

˛
˛
˛J
˛
˛
˛ is equal to the double of the triangle’s surface.

In 3D, the transformation reads:

ξ =
1
˛
˛
˛J
˛
˛
˛

(x(+z4y3 + z1y4 − z3y4 − z1y3 − z4y1 + z3y1)

+y(−x1z3 + z4x1 − z4x3 + z1x3 − z1x4 + x4z3)

+z(−y1x3 + y3x1 + y1x4 + y4x3 − y3x4 − y4x1)

+(x1z3y4 − z3y1x4 + z1x4y3 − x1z4y3 − z1x3y4 + z4y1x3)),

(2.121)

η =
1
˛
˛
˛J
˛
˛
˛

(−x(z4y2 − z1y2 + z1y4 + z2y1 − z2y4 − z4y1)

−y(z2x4 − z2x1 − z1x4 − z4x2 + z4x1 + z1x2)

−z(−y2x4 + y1x4 + y4x2 − y1x2 − y4x1 + y2x1)

−(−z2y1x4 + x1z2y4 − x1z4y2 − z1x2y4 + z1x4y2 + z4y1x2)),

(2.122)
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ζ =
1
˛
˛
˛J
˛
˛
˛

(x(z1y3 − z3y1 − z1y2 + z3y2 + z2y1 − z2y3)x

+y(x1z3 − z2x1 − z3x2 + z1x2 + z2x3 − z1x3)y

+z(y2x1 − y3x1 + x2y3 − y1x2 + y1x3 − x3y2)z

+(−x1z3y4 − z4x2y3 + z1x3y4 − z3x4y2

− z2y4x3 − z4y1x3 + z3y1x4 − z2y1x4

+ x1z2y4 − x1z4y2 − z1x2y4 + z1x4y2

+ z4y1x2 + x1z4y3 + z3y4x2 + z4x3y2

− z1x4y3 + z2x4y3 +
˛
˛
˛J
˛
˛
˛)),

(2.123)

where
˛
˛
˛J
˛
˛
˛ = − z1x2y3 + x1z3y4 + x1z2y3 + z4x2y3

+ z3x4y2 + z2y4x3 + z4y1x3 − z3y1x4

+ z3y1x2 − x1z2y4 + x1z4y2 + z1x2y4

+ z2y1x4 − z4y1x2 − x1z4y3 − z3y4x2

− z1x3y4 − z4x3y2 − z2x4y3 + z1x3y2

− z2y1x3 − z1x4y2 − x1z3y2 + z1x4y3

(2.124)

is the determinant of the transformation’s Jacobian matrix

J =

0

B
@

xξ yξ zξ

xη yη zη

xζ yζ zζ

1

C
A . (2.125)

˛
˛
˛J
˛
˛
˛ is six times the tetrahedron’s volume.
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2.3.5 Interpolation Stencil Symmetry

During the data exchange, the interpolation procedures between the domains
can demand a certain logical sequence because stencils may interfere with each
other.

No special treatment is necessary if two or more unstructured domains are
linked together. As it was illustrated in section 2.3.4, no stencil cells are needed
for the interpolation (although there is a reconstruction stencil for the Rec-FV
method, which is hidden in the method). Hence, every target Gauss point in
each coupling ghost cell can be set independently from the ghost elements of
the source domain.

For connections between an unstructured and a structured domain, the target
points of the structured ghost elements should be set first by the unstructured
source domain. Then those ghost elements already contain updated information
in case that one of them is required as a stencil element for the interpolation
of the unstructured ghost Gauss points. This might occur for symmetrical
stencils.

A more complex logic is needed where solely structured grids share a common
interface. In this case, the interpolation stencils may extend into the ghost ele-
ment regions of both domains. The previous strategy would run in circles here
because a piece of stencil information would always be missing. In order to be
able to perform a completely independent procedure (like for the unstructured
- unstructured coupling), asymmetrical stencils which do not contain their own
ghost elements would be required. However, this idea is discarded: It seems
non-physical to use two opposing one-sided stencils at the same time, when it is
not clear in which direction the information travels at the interface. The more
favorable approach is to ensure a symmetrical interpolation from the coarse
grid onto the target elements of the fine grid, first of all (Fig. 2.18). On the one
hand, a coarse one-sided interpolation stencil would introduce much greater in-
terpolation errors than a fine one-sided stencil. On the other hand, the target
points of the coarse ghost elements are then the first to be set by a possibly
very much finer stencil, which might not even require information from its own
ghost elements. If they do, the stencil is simply shifted with regard to the
interface (Stencil 1. in Fig. 2.17).

There is, however, another way of making symmetrical stencils possible on
both the fine mesh (Stencil 2. and 3. in Fig. 2.17) and the coarse mesh
(Fig. 2.18). The routine is illustrated in Fig. 2.16 for the example of a fine FV
domain coupling with a coarser FD grid: First of all, the ghost points of the
FD domains are interpolated. If the stencil contains a ghost cell (the hatched
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element in the left drawing of Fig. 2.16) of its own domain, this cell will not be
on the current time level yet. Now a Taylor series in time (known from section
2.3.6 and 2.4) is used to provide an interim value. Note that this preliminary
time update is in fact the ”last” possible Taylor step inside the stability region.
The Taylor series is based on the data of the previous data exchange and will be
immediately replaced by an updated version after the on-going data exchange.
The stencil may also extend into the ghost cell region of a boundary which is
not a coupling interface (Stencil 3. in Fig. 2.17). In this case, these elements
can be set by prescribing the usual boundary conditions (e.g., inflow, outflow,
wall) first and are then available for the interpolation.
After the ghost points of the FD domain in the example have been treated,
they can be used for the actual symmetrical interpolation onto the FV mesh’s
ghost Gauss points (right drawing in Fig. 2.16). The target points in the ghost
cells (of which some of them had been given preliminary values before) receive
now their real values for the current time level!
This procedure proved to be very stable in the conducted numerical exper-
iments. Moreover, it is favorable for more complex grid configurations. If
domains with different time steps are linked with several others at the same
time, it is possible that ghost element information is required by a source do-
main which is connected to another domain that is not even taking part in the
current subcycle and thus in the data exchange!

Domain Ω1

Domain Ω2

ΓGhost point is set

by interpolation.

Ghost element is set

by Taylor series.

1.

Domain Ω1

Domain Ω2

Γ

Ghost element is set

by interpolation.

2.

Figure 2.16: Symmetrical interpolation stencil by employing the CK proce-
dure: 1.: Ghost points of the coarser domain are interpolated.
Stencil cells are set before by the CK procedure where necessary.
2.: Ghost cells of the finer grid are interpolated.
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Domain ΓΩ1 Domain Ω2

Gauss points 

of the coarse

ghost cell.

Interpolation stencil of the 

fine grid for the setting 

of the Gauss point.

1.

2.

3.

Figure 2.17: Interpolation from a fine grid onto the Gauss points of a coarse
grid. Fourth order FV methods are used in both domains. The
grey shaded areas contain the necessary stencil for a fifth order
interpolation onto the bold Gauss point. 1.: Asymmetrical. 2.:
Symmetrical. 3.: Symmetrical at the boundaries.
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Domain ΓΩ1 Domain Ω2

Gauss points 

of the fine

ghost cell.

Interpolation stencil of the 

coarse grid for the setting 

of the Gauss points.

Figure 2.18: Interpolation from a coarse grid onto the Gauss points of a fine
grid. The fifth order interpolation stencil (grey shaded area) is
symmetrical.
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2.3.6 Setting the Ghost Elements

In the following, the algorithms for the setting of the coupling boundary condi-
tions are described for the different element types. After the data exchange be-
tween connecting domains is complete, all necessary information for the actual
setting of the ghost elements is available. The latter is done in the framework
of the usual boundary condition treatment that has to be performed in each
domain for every iteration step. If the domain takes part in a subcycle and
its current time level tc lies in-between the data exchanges, there is no current
data available for the ghost elements. In this case, a CK procedure must be
performed, using the spatial derivatives of the state vector. After this, both
the state vector ~U and its Taylor series in time

~U( ~X, tn + τ ) = ~U( ~X, tn) +

nP olyX

k=1

τk

k!

∂ ~Uk( ~X, tn)

∂kt
, (2.126)

which is based on the time level tn of the last data exchange are available for
every ghost- or Gauss point (see section 2.4 for details) at position ~X . The
Taylor series can be developed up to the degree nPoly , which is bounded by
the order of accuracy of the source domain and the interpolation from it.

Algorithm 2.3.1. FD Coupling Ghost Points For all target ghost points
T :

1. Lift the state vector from the time level of the data exchange tn up to the
current time level tc at the ghost point position ~XT :

~UT ( ~XT , tc) = ~UT ( ~XT , tn) +

nP olyX

k=1

∆tk

k!

∂ ~Uk
T ( ~XT , tn)

∂kt
, (2.127)

with ∆t = tc − tn.

2. If the Taylor-FD method is used, also provide current data for the time
derivatives of ~U , which can be obtained like the state itself.

Algorithm 2.3.2. FV Coupling Ghost Cells For all target ghost cells T :

1. Lift the state vector at every Gauss point position ~XT,iGP from the time
level of the data exchange tn up to the current time level tc. The Gauss
points may have different source time levels tn if the cell is a multi-domain
cell.
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2. Perform the Gauss integration in order to obtain the mean-value in the
cell:

~̄UT =

nGPX

iGP =1

ωiGP · ~UT,iGP , (2.128)

with the integration weights ωiGP from (2.89).

Algorithm 2.3.3. DG Coupling Ghost Cells For all target ghost cells T :

1. Lift the state vector at every Gauss point position ~XT,iGP from the time
level of the data exchange tn up to the current time level tc. The Gauss
points may have different source time levels tn if the cell is a multi-domain
cell.

2. Perform the projection onto the cell’s degrees of freedom:

~̂
UT,iDOF =

nGPX

iGP =1

ωiGP · φiGP ,iDOF · ~UT,iGP

MiDOF ,iDOF

, (2.129)

with
~̂
UiDOF = (ρ̂, û, v̂, ŵ, p̂)T

iDOF
(exemplarily for primitive variables),

the integration weights ωiGP from (2.96), the DG method’s mass ma-
trix MiDOF ,iDOF (Dumbser [18]) and the value of the basis function

φiGP ,iDOF at the Gauss point position ~XT,iGP for the degree of freedom
iDOF .
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2.3.7 Pre-Integration

It is obvious from the described interpolation procedures that the computa-
tional effort increases proportionally with the number of target points that
have to be set. For high order DG and FV cells, this number can become
very high. Under certain circumstances it makes sense to sum up the inter-
polation coefficients and integration weights in the initialization part prior to
the calculation loop, which is referred to as ”pre-integration”. This means ef-
fectively that during the data exchange, only one interpolation per cell has to
be performed, instead of one interpolation per Gauss point. This resembles a
”condensation” of all Gauss points per element onto one single point, but in
fact all Gauss points are actually considered in the pre-multiplied factors!
The conditions, under which a pre-integration can be performed, are:

1. An FV element must originate from a linearized domain.

2. A DG element may originate from a nonlinear or a linearized domain.

3. The interpolation stencil must be the same for every target point in the
considered target cell (Fig. 2.18 gives an example). For instance, the
target cell must not be a multi-domain cell! Often the same stencil can
be used if the target cell is much smaller than the grid size on the source
domain. Also ”unstructured stencils” are allowed, for example one single,
large DG cell which completely covers a small target element.

This way, instead of getting the values at the single Gauss point positions after
the data exchange, one obtains immediately the mean-value (FV cell) or the
degrees of freedom (DG cell) in the element.
However, if a CK procedure becomes necessary in order to lift the considered
cell up to the current time level (see sections 2.3.6 and 2.4), the values at the
Gauss point positions are required nevertheless in some cases.
For DG schemes, the volume quadrature points are needed for the projection
onto the degrees of freedom (see (2.129)). Hence, the polynomial inside the DG
cell has to be evaluated for state and spatial derivatives at the Gauss points
first. Then the coefficients for the Taylor series in time can be determined and
the Gauss point values are lifted to the current time level.
The state and its spatial derivatives at all Gauss points are also required in
case of nonlinear FV elements, for which no pre-integration can be made: The
nonlinear CK procedure depends on the Jacobians A(~U), B(~U) and C(~U),

which themselves depend on the state ~U( ~X) at the Gauss point positions ~XiGP .
Different to a DG element, no evaluation at those positions can be made later,
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only the mean-value is available. Therefore, just linearized elements will be
allowed for pre-integration, as their Jacobians and thus the CK procedure are
independent of the state.
A demonstration shall be given for a FV cell. The procedure works similar
for DG elements, for which additionally the basis functions and mass matrices
have to be considered ((2.129)) for the projection.
Following (2.128) and (2.103), the mean-value in a FV coupling cell T is ob-
tained at the time level tn of the data exchange by:

~̄UT (tn) =

nGPX

iGP =1

ωiGP · ~UT,iGP (tn)

=

nGPX

iGP =1

ωiGP ·

0

@

nSX

iS=1

LiS · ~UiS (tn)

1

A

T,iGP

, (2.130)

or generally, if spatial derivatives are also sought (with (2.105)):

∂p+q+r ~̄UT (tn)

∂xp∂yq∂zr
=

nGPX

iGP =1

ωiGP · ∂p+q+r ~UT,iGP (tn)

∂xp∂yq∂zr

=

nGPX

iGP =1

ωiGP ·

0

@

nSX

iS=1

∂p+q+rLiS

∂xp∂yq∂zr
· ~UiS (tn)

1

A

T,iGP

(2.131)

where ∂p+q+r ~̄UT (tn)
∂xp∂yq∂zr = ~̄UT (tn) for p, q, r = 0.

If every Gauss point iGP of the target cell has the same interpolation stencil
with values ~UiS (tn), (2.131) yields:

∂p+q+r ~̄UT (tn)

∂xp∂yq∂zr
=

nSX

iS=1

0

B
B
B
B
B
@

nGPX

iGP =1

ωiGP · ∂p+q+rLiS

∂xp∂yq∂zr

| {z }

Pre−integration

·~UiS (tn)

1

C
C
C
C
C
A

T,iS

=

nSX

iS=1

∂p+q+rΨiS

∂xp∂yq∂zr
· ~UiS (tn). (2.132)

The coefficients
∂p+q+rΨiS
∂xp∂yq∂zr can be conveniently computed and saved prior to

the actual calculation.
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For mean-values at the current time level tc, time derivatives are required,
which can be again obtained by the CK procedure:

~̄UT (tc) = ~̄UT (tn) +

nP olyX

k=1

∆tk

k!

∂ ~̄Uk
T (tn)

∂kt
, (2.133)

with

∂k ~̄UT (tn)

∂tk
= CKk

 

∂p+q+r ~̄UT (tn)

∂xp∂yq∂zr

!

, ∀ 0 ≤ p + q + r ≤ k. (2.134)

This is only valid for linearized FV elements, where the CK procedure becomes
linear itself, as the Jacobians do not depend on the states in the Gauss points:

∂k ~̄UT (tn)

∂tk
≡

nGPX

iGP =1

ωiGP · ∂k ~UT,iGP (tn)

∂tk
, (2.135)

CKk

 

∂p+q+r ~̄UT (tn)

∂xp∂yq∂zr

!

≡
nGPX

iGP =1

ωiGP · CKk

 

∂p+q+r ~UT,iGP (tn)

∂xp∂yq∂zr

!

,(2.136)

with CKk = CKk(A, B, C, ∂p+q+r ~U
∂xp∂yq∂zr ) for the linearized Euler equations.

The improvement in efficiency is demonstrated on a 2D example that is very
similar to the planar wave test cases in the convergence study section 2.7.1.1.
Here, two linearized eighth order domains – a FV domain Ω1 with [80×80] cells
and a FD domain Ω2 with [37 × 37] domain points – are connected. The time

step ratio for subcycling is
∆tΩ1
∆tΩ2

= 2. A planar, right-moving characteristic

wave is initialized. All domain boundaries are coupling boundaries or periodic
coupling boundaries. This means that not only Ω1 has a common boundary
with Ω2 but also every outer boundary is connected periodically with the op-
posite side by coupling. Thus, both Ω1 and Ω2 are also linked to themselves,
which results in a quite large number of coupling ghost cells. By doing so,
the coupling overhead becomes large compared to the time which is spent in
the actual solvers. Note that in later practical examples, the overhead is small
against the solver CPU time. The simulation is run with the same parame-
ters as in section 2.7.1.1. Table 2.10 shows the statistics for the calculation
with and without pre-integration prior to the actual iteration loop. Without
pre-integration, each ghost cell of the O8 FV domain contains 16 Gauss points.
With pre-integration on the other hand, the number of interpolations per ghost
cell is reduced to a single one. Hence, the interpolation effort for the FV cells
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reduces to 1
16

th, resulting in an reduced computational effort of 1
14

th compared
to the calculation without pre-integration. Note that a base overhead is always
present, for example for the CK procedure and for the exchange of the FD
ghost points.

Without pre-int. # Coupling elem. # Interpol. targets tCPU [s]

Ω1 1344 21504 57.5

Ω2 656 656 3.5

Total 2000 22160 7866.8

Coupling 7805.9

With pre-int. # Coupling elem. # Interpol. targets tCPU [s]

Ω1 1344 1344 18.9

Ω2 656 656 3.6

Total 2000 2000 566.0

Coupling 543.5

Table 2.10: Pre-integration statistics for the FV-FD planar wave case.
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2.4 The Coupling of Different Time Steps

The explicit time integration methods which are used in the calculation domains
must follow the CFL stability condition

∆t ∼ CFL · ∆x

a
(2.137)

for dominating convective terms. If the diffusive character prevails for the
Navier-Stokes equations, the maximum time step of an iteration is limited by

∆t ∼ DFL · ∆x2

ν
, (2.138)

where ∆x is the characteristic element size, a is the maximum convection speed
in the cell and ν is the kinematic viscosity.
It is obvious from (2.137) and (2.138), that domains with very different grid
spacing will also have very different maximum time steps. Usually, the do-
mains with larger time steps would have to adopt the smallest ∆t for each
iteration. However, according the domain decomposition philosophy, it would
be very convenient to allow the largest possible time steps on each domain. In
order to implement this form of ”local time stepping”, a subcycling method is
introduced.
The idea of multi-size meshes with different time steps has been examined by
Tam et al. [106] for DRP schemes on particularly designed grids. This basic
idea has been extended to arbitrary time step ratios by Schwartzkopff [88] for
his coupling approach and has now been implemented for arbitrary meshes in
the generalized domain decomposition framework for FV, FD and DG schemes.
The data between the domains are exchanged at common time levels, as de-
scribed in section 2.3. After the exchange, the largest possible time steps are
estimated in each domain. Then the ∆t’s are sorted with respect to their size
and adjusted such that they are always equal or a multiple of the previous
smaller one. The ∆t’s of the domains are also adjusted if a data output is
imminent in order to match the desired output time. Note that time steps
may be only decreased, as the stability condition must not be violated. The
idea of subcycling is illustrated in Fig. 2.19: Four domains Ω0, Ω1, Ω2 and
Ω3 are coupled in a calculation. All four domains possess different time steps
(∆tΩ0 < ∆tΩ1 < ∆tΩ2 < ∆tΩ3) which have already been adjusted for common
time levels. Depending on how many of the domains have reached the same
absolute time level, subcycle 1, 2 or 3 is complete. For example after subcycle
1, domain Ω0 has made five time steps, shares now a common time level with
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Ω1 and the domains can exchange data at their boundary ΓΩ0,Ω1 . When sub-
cycle 3 is complete, all of the domains have arrived at the same level.
The updating procedure itself is illustrated in Fig. 2.20 for the exchange be-
tween two domains Ω1 and Ω2. The Cauchy-Kovalevskaja procedure is used to
provide time-accurate values for the ghost elements which take part in itera-
tions between data exchanges. The starting point is a Taylor series in time

~U( ~X, tn + τ ) = ~U( ~X, tn) +

nP olyX

k=1

τk

k!

∂ ~Uk( ~X, tn)

∂kt
, (2.139)

with which, once the time derivatives at the target point ~X are known, the
state at an arbitrary time tc = tn + τ can be calculated easily. The unknown
time derivatives can be replaced by spatial derivatives with the CK procedure
(Kowalevsky [120]). This procedure is used in Lax-Wendroff type time integra-
tion methods (Lax and Wendroff [62], Hirsch [45]) and is also a main ingredient
of the ADER schemes. The CK procedure makes use the original PDE and
can be written as a function of the spatial derivatives:

∂k ~U( ~X, tn)

∂tk
= CKk

 

∂p+q+r ~UT ( ~X, tn)

∂xp∂yq∂zr

!

, ∀ 0 ≤ p + q + r ≤ k. (2.140)

To give a very simple example, the CK procedure for the kth derivative for
linear systems of equations in 3D reads

∂k ~U( ~X, tn)

∂tk
= (−1)k

„

A
1

∂x
+ B

1

∂y
+ C

1

∂z

«k

∂k ~U( ~X, tn), (2.141)

where the differential operators act on ~U( ~X, tn). Efficient algorithms for a
variety of linear and nonlinear systems of equations (e.g., LEE, Euler, Navier-
Stokes) have been developed [18–20,23,24,26,88,109,115,116] and are available
in the domain decomposition framework.
As soon as the time derivatives have been determined, they can be stored as
coefficients for the Taylor series (2.139) for efficiency purposes: Especially in
the nonlinear case, the CK procedure becomes computationally expensive if it
is repeated for every iteration. The coefficients are valid until the next data
exchange, where another CK procedure determines a new set of time derivatives
at the respected target point. It shall be emphasized, that the provided Taylor
data for the ghost elements result from the interpolation from the domain
with the larger time step. As a consequence, these ghost elements inherit the
stability condition from the neighbor grid and every evaluation of the Taylor
series between two data exchanges is in the stable range.

86



2.4 The Coupling of Different Time Steps

SUBCYCLE 1

SUBCYCLE 2

SUBCYCLE 3
t

Ω
0

Ω
1

Ω
2 Ω

3

Figure 2.19: Subcycles for a calculation with four differently sized domains.
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2.5 The Implementation of the KOP3D Framework

The tool KOP3D has been developed as a coupling framework for stand-alone
research codes. The framework and the solvers are written in Fortran 95 pro-
gramming language. Figure 2.21 depicts the structure of the programs: The
stand-alone CFD and acoustics solvers for either unstructured or structured
meshes consist of single modules, which can be fully embedded in the decom-
position framework. There are no separate codes anymore in the compiled
version of KOP3D, only one executable exists. Note that the latter is not the
case for the coupling with external codes that do not have the same modular
structure (see section 2.6.1), where two programs need to be executed. The

Initialize (un)structured domain:
 - Read domain parameters

 - Read & partition mesh

 - Set the initial condition

Calculate (un)structured domain:
 - Enter iteration loop for solvers

 - Time stepping from t       to t    

 - Data output

Analyze (un)structured domain:
 - Calculation of error norms

 - Comparison with reference solution

 

Close (un)structured domain:
 - Deallocation of all arrays

 - End program

start stop

(Un)Structured Stand-Alone

   CFD-/Acoustics-Solver Initialize coupling framework:
 - Read decomposition parameters

 - For all domains:

   Initialize (un)structured domain

- Create connectivity information for the 

   coupling between all domains

Calculate all domains:
Subcycling: Iteration loop until t      is reached:

 - (Re-)Generate the subcycle information

 - Exchange data for all domains taking part 

   at the current subcycle

 - For every domain taking part in the subcycle: 

       - Generate t       / t      -info for the domain

       -  Calculate (un)structured domain

KOP3D Coupling Framework

end

Analyze all domains:
 - For all domains:

   Analyze (un)structured domain

Close all domains:
 - For all domains:

   Close (un)structured domain

start stop

Figure 2.21: Program structures: The building blocks of the stand-alone
CFD & CAA solvers are part of the domain decomposition
framework KOP3D.
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decomposition of the total domain into subdomains is handled manually and
not by a grid assembly software. Every subdomain is operated by exactly one
solver, for which a separate parameter file and a mesh file must be provided. A
main parameter file contains the paths to the subdomain definitions and specific
information regarding the coupling procedure. The MPI parallelization inside
the subdomains is organized completely code-internal. The simplified structure
of the framework and the algorithms are shown for clarity in the serial version
of the code. The MPI-parallel implementation uses optimized loops and a more
efficient data structure (target point oriented arrays for better vectorization,
etc.). More details about the MPI communication in KOP3D can be found in
Klimach et al. [56].
The following algorithms are elemental features of the coupling framework:

Algorithm 2.5.1. Create connectivity

1. Estimate the time steps for each domain: Coupling ghost elements which
require derivatives for the CK procedure (section 2.3.3) are marked.

2. Generate the boundary polygon information for all domains.

3. Create the coupling information for all domains:

a) Construct ghost elements, if necessary (e.g., DG methods), and al-
locate the data structure.

b) Calculate the number and position of the target points for the inter-
polation for all coupling ghost elements (section 2.3.2).

c) For all target points in each ghost element:

i. Search for the source domain for the interpolation by checking
the boundary polygons.

ii. Get the interpolation stencil information from the source do-
main (stencil element indices, number of elements, interpola-
tion weights, etc.) for state and derivatives at the target point
position (section 2.3.3, 2.3.4, 2.3.5).

4. Pre-integrate coupling ghost elements if possible, in order to reduce the
amount of data (section 2.3.7).
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Algorithm 2.5.2. Exchange data

1. Set all non-coupling boundary conditions (e.g., inflow, outflow, wall) for
all structured domains. These data may be needed for the interpolation.

2. For all structured domains: Get values from the source domains for all
target points marked for ”asymmetric”, ”CK-supported symmetric” or
”symmetric without ghost elements” interpolation (section 2.3.5).

3. For all structured domains: Set the boundary conditions for all coupling
ghost elements which already possess the complete set of information (sec-
tion 2.3.6). These cells may be required for the further data exchange.

4. For all structured domains: Get values from the source domains for all
target points marked for ”symmetric with ghost elements” interpolation
(section 2.3.5).

5. For all unstructured domains: Get values from the source domains for all
target points.

Algorithm 2.5.3. Get values from source domains

Loop over the target point’s stencil elements in the source domain:

1. If the stencil element is a structured ghost element and is not set yet:
Provide temporary data with a Taylor series in time (section 2.3.5).

2. If the source element is a DG cell: Evaluate the DG polynomial at the
target position.

3. Perform a state vector conversion from the source system into the target
system, if necessary (section 2.2.4).

4. Multiply the stencil element’s value with its weight and add it to the result
calculated previously in the loop. After the loop over the stencil elements
is complete, the target point is set (equations (2.105), (2.115) and (2.117)
in sections 2.3.3 and 2.3.4).

Besides those core elements of the coupling framework, a large variety of mod-
ifications and features associated with the domain decomposition has been
implemented in the different solvers. For example the setting of the coupling
ghost elements (see section 2.3.6) is directly integrated into the solver’s bound-
ary condition treatments. Another example is the ability to cut holes into
structured domains. With this feature, it is not necessary to arrange several
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subdomains around a center domain (see section 3 for examples), which can
be cumbersome. The hole cutting is realized by either ignoring the cells inside
the hole in the solver algorithms or by simply overriding the ghost cells at the
hole boundary.

2.6 The Coupling of Different System Architectures

This section explores an entirely different domain decomposition approach. Af-
ter having adapted the numerical instruments locally for acceleration purposes,
the computational domain is now distributed to different computer systems.
The numerics in solver routines can differ considerably, depending on the dis-
cretization and the data structure. As a result, different solvers show a different
behavior with respect to vectorization. Usually, codes for Cartesian grids can
be optimized in order to achieve a high computational performance on vec-
tor machines. On the other hand, very local solvers, such as the FV or DG
schemes on unstructured grids, show their best parallel performance on scalar
machines. Due to that, a machine independent coupling mechanism has been
implemented which enables the distribution of different solvers to separate com-
puter systems.
Two possible ways are examined in the following: At first, an external stand-
alone code for Direct Numerical Simulations (DNS) is linked to the KOP3D
framework by using the TCP protocol. Both programs remain stand-alone and
can be run on different computer systems at the same time. This method has
the advantage that a specialized code with completely different data structure
and programming philosophy can be included in the existing solver framework.
The second approach distributes the internal solvers of the KOP3D framework
to different machines. Here, the code framework is most coherent and the
validated coupling algorithms can be employed without modifications.

2.6.1 Connection to External Codes

An unstructured DG code for acoustics from the KOP3D framework is coupled
with a structured FD code for DNS. All features from the previous sections (the
change of equations, grid types, methods, time steps, etc.) are exploited for
this purpose. The required domain information of course needs to be commu-
nicated between the separate solvers.
On the FD side, the NS3D code (Babucke et al. [3]), based on the three-
dimensional unsteady compressible Navier-Stokes equations is used. Spatial
discretization in streamwise x- and normal y-direction is done by O6 compact
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finite differences. The flow is assumed to be periodic in spanwise direction,
therefore a spectral ansatz is applied for the z-direction. High wave numbers,
which are generated by the non-linear terms in the Navier-Stokes equations,
are damped by applying alternating up- and downwind-biased finite differences
for the convective terms (Kloker [58]). The second derivatives are evaluated di-
rectly, resolving the viscous terms more precisely (Babucke et al. [2]). Time in-
tegration is done using the standard O4 Runge-Kutta scheme. Using MPI [74],
the code is parallelized in a block structured manner in the xy-plane, while a
shared memory parallelization is performed in spanwise direction. Good vec-
torization properties provide a fast and efficient usage of vector computers.
More details on the NS3D code can be found in Babucke et al. [2,3].
The three-dimensional acoustic code uses the ADER-DG method for the lin-
earized Euler equations on unstructured tetrahedrons. The solver is a good
testbed for the coupling procedure: It is most efficient on scalar parallel com-
puters due to its locality and it is already embedded in the KOP3D framework.
On the other side, the unstructured ADER-DG method is computationally
more expensive than for example a structured FD method. Hence, it would
not be the method of choice in a domain which is far away from complex geome-
tries. However, this constraint will be accepted in this proof of concept, as the
aim is to couple two codes with very distinct behavior. In the following setup,
the DNS code runs on the NEC-SX8 vector machine of the High Performance
Computing Center Stuttgart (HLRS), while the acoustic code is executed on
its scalar front end machine TX7 with Itanium II (IA64) processors. Note that
the coupling mechanism is not limited to these specific machines: Other com-
puter configurations are possible and were successfully tested.
The communication between the platforms is based on the Transmission Con-
trol Protocol (TCP [78]), consisting of a server and a client. The server opens
a port and waits for the client to connect. To preclude the server from being
started before the client, the server is not run inside a queuing system. Here,
the DG code acts as the server, running interactively before the FD code is
submitted to the queue of the SX8 vector machine. The IP address and the
port of the server must be specified for the client. The communication itself is
done by simply writing on or reading from the socket.
The initial communication defines the array sizes, the DNS code sends the base
flow to the acoustic code and the time step ratio is determined. For the inter-
polation, the positions of the ghost points and a sufficiently large strip from
the actual domain must be communicated to the acoustic code. The latter or-
ganizes the entire coupling procedure, including the interpolation from FD to
DG and the determination of the subcycles. It is assumed, that the time step
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Figure 2.22: Detailed view of the FD (bottom) and the DG grid (top). Left:
Fine DG grid. Right: Coarse DG grid.

of the acoustic domain is equal or greater than the one of the DNS domain.
Consequently, the DG domain also calculates and provides boundary data with
the CK procedure for the Runge-Kutta stages of the structured code. It seems
reasonable to let the acoustic code handle the coupling overhead because in
a real life scenario, the DNS is considered to be the most expensive part. At
every common time step, the set of primitive variables (ρ, u, v, w, p) near the
boundary is exchanged. The communication is finished by closing the socket.
A big advantage of using the network connection instead of standard MPI lies
in the fact, that two separate executables remain. Thus, the two codes do not
need to be merged. Each code is independent of the internal parallelization
concept of the other code, since only the first MPI process communicates with
the connected program. The data distribution to the other internal processes
is handled by each program separately.
The external coupling method is validated with the example of a wave pack-
age that is transported from an interior DNS domain to an outer unstructured
acoustic domain. A uniform mean flow is chosen with Ma∞ = 0.5 in streamwise
direction, resulting in an ambient pressure of p∞ = 1/(γ·Ma2

∞) = 2.85714. The
temperature is T∞ = 280K, containing a temperature disturbance of 0.001 ·T∞

with a radius of 1.0 located at x = 39 and y = 0 in the DNS domain. This
leads to a circular pressure pulse (which is emitted in all directions) and to
a temperature spot (which is convected with the streamwise mean flow). The
Reynolds number Re = 500 and the Prandtl number Pr = 0.71, which describe
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the viscous terms, are of course only meaningful for the DNS domain.
The DNS grid extents are −15 ≤ y ≤ 15 in normal and 0 ≤ x ≤ 115 in
streamwise direction. In order to prevent disturbances that are convected with
the mean flow from reaching the outflow boundary, the grid is stretched in
x-direction from x = 60 onwards. The spanwise extent is z = [0, 0.5] for the
fine and z = [0, 1] for the coarse grid, respectively. The DG domains are lo-
cated above and below the FD grid with the same dimensions in streamwise
and spanwise directions and a range of y = ±25. The wave propagation is
examined by comparing discretization orders on different grids, the latter are
depicted in Fig. 2.22.
Table 2.11 shows the different test configurations. The time step ratio is set to
one for the considered cases. However, the Runge-Kutta method requires val-
ues at intermediate time levels, which makes the CK procedure still necessary
despite the common time step. The time step limitations for the ADER-DG
scheme is a minor problem for ”real world” computations where the spatial
resolution of the DNS is much higher than in the DG domain, where only long
wave acoustics need to be resolved.
Case D is a large DNS which is performed for comparison purposes. The do-
main has three times the size of the original DNS, with y = ±45. Hence, the
wave does not reach the boundary in the considered time. As we can exclude
errors due to boundary conditions, this DNS solution may serve as reference
data. The resulting pressure distribution in the xy-plane at time t = 9.4248 is
shown for the single domain case in Fig. 2.23. The wave crossing the coupling
interface is shown for case C in Fig. 2.24, using the polynomial information
inside the DG elements in order to plot the solution. Only the integral mean-
values are considered for visualization in Figure 2.25, depicting also the grid
configuration. Despite the different equations and discretization used in both
codes, the wave crosses the coupling plane with almost no reflections. The

Case DNS grid (x y z) #Elem,DG O,DG

A 401 x 201 x 5 368800 2

B 401 x 201 x 5 368800 3

C 401 x 201 x 5 92400 4

D 401 x 603 x 5

Table 2.11: Domain configurations for the external coupling.
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Figure 2.23: Instantaneous pressure field at time t = 9.4248, obtained by the
DNS without coupling.

pressure distribution along a constant x-position at two different points of time
is shown in Figs. 2.26 and 2.28. The detail views in Fig. 2.27 and 2.29 illus-
trate the differences between various DG orders and the single domain DNS
solution. At time t = 7.8539, when the pulse passes the coupling interface, a
small amplitude error can be observed. This error may correspond to minor
reflections at the interface. Later in time, the amplitudes are about equal for
both the coupled and the single domain calculation (Fig. 2.29). The phase
error decreases with higher DG order. It must be taken into account that the
Navier-Stokes equations contain viscous terms, while in the outer domain the
linear Euler equations are solved. This might explain the better accordance of
the amplitudes at the later time step (Fig. 2.29).
As mentioned above, the machines used for this test are a NEC-SX8 for the FD
code and an Itanium II machine for the DG code. The computational perfor-
mance for the considered cases is summarized in Table 2.12. The total network
communication per time step between the SX8 and the Itanium II machine
takes less than one second and transfers about five megabyte. The CPU time
of the FD code varies slightly between approximately 500 to 600 seconds. The
CPU time of the DG method grows with the order of the scheme and ranges
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from 6.5 to 53 hours for 800 time steps. This underlines especially the superior
performance of the structured code on the vector computer. The DG code
performs slower on the scalar cluster, but this is an expected behavior: First of
all, the large number of degrees of freedom in the DG domain indicates, that
the acoustic grid has been chosen quite over-resolved. Furthermore, the front
end computer is not equipped with especially fast CPUs and was heavily used
by other applications. It has been observed, that the DG code runs much more
efficient on other parallel clusters and does not reach its optimal performance
on this specific machine. Nevertheless, the machine was chosen for testing in
order to circumvent other technical restrictions, such as firewall and network
speed issues. Last but not least, while the unstructured method is highly suit-
able in the vicinity of complex geometries, a much cheaper structured scheme
(e.g., ADER-FD) can be used for far field computations. This code could be
also run on a vector computer with a better efficiency than the DNS code (due
to a coarser grid, LEE), the same degree of optimization provided.

Case A B C D

O,DG 2 3 4 -

treal [s] 24079 60503 73869 782

tCPU,DG [s] 23560 59230 72869 -

tCPU,F D [s] 576 571 507 2031

#CPU,DG 1 1 1 -

#CPU,F D 1 1 1 3

∆t 3.93E-03 3.93E-03 3.93E-03 1.57E-02

#Iter 800 800 800 800

#Elem,F D 403005 403005 403005 1209015

#Elem,DG 368800 368800 92400 -

#DOF,DG 1475200 3688000 1848000 -

Com.Data [MB] 3.99 3.99 4.82 -

Table 2.12: Domain statistics for the external coupling.
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Figure 2.24: Acoustic wave crossing the coupling plane at t = 9.4248 for the
O4 DG method on the coarse grid.
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Figure 2.25: FD and DG grids with integral mean-values of the DG elements
at t = 9.4248 for the O4 DG method on the coarse grid.

97



2 Domain Decomposition

y

p

-20 -10 0 10 20
2.85705

2.85710

2.85715

2.85720

2.85725

2.85730

DNS

y

p

-20 -10 0 10 20
2.85705

2.85710

2.85715

2.85720

2.85725

2.85730

O2
O3
O4

Figure 2.26: Pressure distribution at x = 52.03 and t = 7.8539.
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Figure 2.27: Close-up of the pressure distribution at x = 52.03 and t =
7.8539.
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Figure 2.28: Pressure distribution at x = 52.03 and t = 9.4248.
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Figure 2.29: Close-up of the pressure distribution at x = 52.03 and t =
9.4248.
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2.6.2 Code-Internal Distribution onto Different Systems

The distribution of internal KOP3D solvers to different computer architectures
is organized with the PACX-MPI library (Beisel et al. [6], Keller et al. [53]). The
handling of this environment resembles very much using standard MPI with
the additional capability of inter-cluster communication. Solver internally, the
regular native MPI libraries are used. It is emphasized, that with this kind
of coupling only one KOP3D executable exists, which has access to different
types of processors, regardless of their physical position. More details about
the integration of PACX-MPI and the communication layout inside the KOP3D
framework can be found in Klimach et al. [55, 56], where also the following
example is taken from.
The setup of the test case is largely identical to the sphere scattering in the
example section 3.3. Some modifications are made, though: In the unstructured
center domain around the sphere (9874 tetrahedrons), the order of the ADER-
DG method is increased to O8. The structured O8 ADER-FD far field domain
is enlarged to the extents 102.2 × 57 × 57 and contains now about 42 million
grid points. The main solver routine of the ADER-FD method shows a good
vectorization ratio on the NEC-SX8 machine, where it operates at ca. 14
GFlop/s (87.5% of the peak performance). Compared to that, the unstructured
ADER-DG scheme performs poorly with less than 100 MFlop/s on the vector
machine. In order to examine the distributed simulation, three calculations
are performed: At first, the total domain is computed on one single Itanium
II (IA64) processor on the scalar front end cluster. In the second calculation,
the simulation is run on a single NEC-SX8 processor. Last but not least, the
unstructured domain is distributed to one single Itanium II processor while
the structured domain is run on a single NEC-SX8 CPU. Table 2.13 shows
the simulation times. It is obvious, that the unstructured code becomes very
slow on the vector processor and performs much better on the scalar machine.
For the structured part, the situation is vice versa. It is so efficient, that the
acceleration in the structured part outweighs the slower unstructured part in
the SX8 single processor calculation and reduces the elapsed time to 39% of
the IA64 single processor run. Finally, the distributed simulation manages to
combine the best performances from the single processors and requires the least
computational effort. The PACX-MPI run takes only about 58% of the wall-
clock time of a single SX8 calculation with two CPUs, linear scaling provided.
Now the distributed simulation can be further accelerated by parallelization in
each subdomain.
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1×IA64 1×NEC-SX8 1×IA64 + 1×NEC-SX8

Unstr. Domain [s] 2994 7746 3019

Str. Domain [s] 23887 2871 2869

Coupling [s] 1012 321 554

Waiting in MPI [s] 0 0 164

Elapsed time [s] 27925 10966 3207

Table 2.13: Domain statistics for the internal coupling.

2.7 Validation

2.7.1 Global Convergence

In the following, the behavior towards convergence for coupling procedure is
tested in 2D and 3D. The convergence studies demonstrate, that high order
of accuracy can be maintained globally for the coupling procedure. Schwartz-
kopff [88] achieved global convergence for his coupling procedure. The lin-
earized Euler equations were solved with the ADER-FV method on structured
grids for the advection of a Gaussian pulse in density. Dumbser [18] observed
the same behavior for the coupling of ADER-DG domains with other ADER-
DG or -FV domains, again in 2D. Both Schwartzkopff and Dumbser underlined
the importance of the CK procedure for the coupling elements: If the CK pro-
cedure was turned off, only first order of accuracy could be obtained.
Now the convergence properties of the Gauss point coupling approach is exam-
ined in several test cases: For the connection of linearized domains, a planar
wave in the characteristic variables is chosen in order to test the complete set
of equations. For nonlinear domains, the so-called Shu vortex is used. Fi-
nally, a Gaussian pulse in density is used for testing the coupling of nonlinear
domains with linear ones. Mixed grids (unstructured/structured), methods
(DG/FV/FD) and equations (linearized, nonlinear) are preferred for the tests,
as they are considered more challenging. These test cases are regarded as a
representative selection of all possible configurations.
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2.7.1.1 Planar Wave

For linearized domains, a planar wave is initialized such that it contains only
fluctuations in the right-moving characteristic wave with the eigenvalue u + c:

~w′ = ~̂w · sin(~k · ~X), (2.142)

with ~w′ = (w′
1, w

′
2, w

′
3, w

′
4, w

′
5) being the perturbation of the characteristic vari-

able vector, ~̂w = (0, 0, 0, 0.001, 0) containing the amplitude of the perturbation

and ~k = (2π, 0, 0) being the wave number vector. The primitive fluctuations
are obtained by a transformation with the Eigenvector matrix R, which belongs
to the set of Eigenvectors ~λ = (u, u, u, u + c, u − c):

~u′ = R~w′, (2.143)
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(2.144)

with ~n = (n1, n2, n2) = (1, 0, 0) being the normal vector of the wave. The back-
ground flow is ρ0 = 1.0, u0 = 0.0, v0 = 0.0, w0 = 0.0 and p0 = 0.714285714.
The result is a wave in the primitive variables ~u′ = (ρ′, u′, v′, w′, p′), which
travels with the speed of sound c0 = 1.0 in the direction of the positive x-Axis
and has a wavelength of λ = 1.
In the first convergence study, an unstructured ADER-DG domain Ω1 is cou-
pled with a structured ADER-FV domain Ω2, which is again connected to a
Cartesian ADER-FD domain Ω3. Each domain uses a fourth order method.
All meshes are of length l = 1, thus one wavelength fits exactly in each domain
(Fig 2.30). At the left and right boundaries, periodic boundary conditions are
imposed by a virtual displacement of the ghost cells. Hence, there is also a
coupling between Ω1 and Ω3. Note that the meshes are non-matching at their
coupling interfaces. Because the methods and the grid spacing change between
the domains, there are also considerable jumps in the time steps, for exam-
ple a jump by a factor of 24 between Ω1 and Ω3. In order to determine the
global order of convergence, the meshes are refined while keeping the ratios
between the coupled domains constant. Table A.7 provides details regarding
the mesh spacings N∆h in each domain and the subcycles. The calculation is
run for 30 oscillation periods, so the initialized wave travels ten times across
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the complete domain. At the end of the calculation, the error norms based on
the perturbation pressure p′ are calculated by comparing the solution to the
initial condition. Table A.7 shows fourth order convergence rates on each single
domain, hence the global order of accuracy is maintained despite the domain
decomposition. The other relevant perturbation variables (ρ′, u′) yield similar
results. The calculation is repeated without applying the CK procedure to the
coupling ghost cells. As a result, the global order of accuracy breaks down to
first order (Table A.8).
The coupling method is also capable of maintaining very high order between
mixed grids. This is demonstrated in the next example, which is very similar
to the previous one: Two domains (ADER-DG and ADER-FD) are connected,
both employ eighth order methods. The methods are so highly accurate that
the previous grids cannot be used for a convergence study: The error norms
quickly decrease below the practical machine accuracy of the processor (<
10−11). Therefore, the grids are made very coarse (Table A.9) and the wave
number is doubled (k = 4π). Nevertheless, the zeroth refinement stage, which
is depicted in Fig. 2.31, resolves the wave completely in both domains. Note
that only a visualization which considers the degrees of freedom in the DG
elements is able to show the actual solution. If only mean-values are plotted in
the DG domain, the visualization delivers a false impression. On the coarsest
structured grid, the initial resolution is 5 points per wavelength. The error
norms in Table A.9 show eighth order convergence for both domains.
Last but not least, the global convergence for linearized domains is shown for
a 3D example. The planar wave has again a wave number of k = 2π, fourth
order methods are used (ADER-DG, ADER-FD, Table A.10). The regular
unstructured tetrahedral meshes were created by subdividing hexahedra into
five equal tetrahedra. The meshes do not conform at their connecting interface
(Fig. 2.32). Nevertheless, fourth order convergence is achieved globally.
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Figure 2.30: Contour plot of p′ for the planar wave case, O4, 2D, refinement
stage #1.

Figure 2.31: Contour plot of p′ for the planar wave case, O8, 2D, refinement
stage #0. Left: mean-values are plotted in the DG domain.
Right: Actual resolution.

Figure 2.32: Contour plot of p′ for the planar wave case, O4, 3D, refinement
stage #1.
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2.7.1.2 Shu Vortex

The coupling of nonlinear domains is tested on the Shu vortex example (Hu and
Shu [48]). The convection of a smooth, isentropic vortex in 2D is considered,
the governing equations are the Euler equations. The initial condition is a
linear superposition of a homogeneous background field ρ0 = 1.0, u0 = 1.0,
v0 = 0.0, p0 = 1.0 and perturbations ρ′, u′, v′, p′. The velocity perturbations
u′ and v′ and the perturbations of entropy S = p

ργ and temperature T of the
vortex are given by

 

u′

v′

!

=
ǫ

2π
e

1−r2

2

 

− (y − y0)

(x − x0)

!

, (2.145)

S′ = 0, (2.146)

T ′ = − (γ − 1) ǫ2

8γπ2
e1−r2

, (2.147)

with r2 = (x − 5)2 + (y − 5)2, the vortex strength ǫ = 5 and γ = 1.4. A
relationship between density, pressure and static temperature can be defined
in a non-dimensional way, so that the gas constant becomes equal to unity:

p

ρ
= T. (2.148)

The density and pressure perturbations then become

ρ′ =
`
1 + T ′

´ 1
γ−1 − 1, (2.149)

p′ =
`
1 + T ′

´ γ
γ−1 − 1. (2.150)

The vortex is initialized at t = 0 in an unstructured ADER-DG domain with
its center at (x0, y0) = (5, 0). It travels with speed u0 = 1.0 in the direction
of the positive x-axis and crosses the domain interface at x = 10, entering the
Cartesian ADER-FV domain (Fig. 2.33). All boundaries are coupled period-
ically, therefore the vortex takes its initial position on the triangular mesh at
t = 20, when the calculation stops and the error norms for the total energy
ρE are calculated. Table A.11 shows the setup for the refinement stages for
all grids and fourth order convergence rates for Ω1, where the comparison with
the initial condition is performed. Note that the initial ratio between the DG
domain’s time step and the time step on the FV domain is 1

14
, then reduces to

1
8

when the vortex is located on the structured grid and finally increases again
to 1

14
when the vortex is back on the DG mesh. This is due to the fact that

the maximum velocities in the calculation, which are attributed to the vortex,
lead to a smaller ∆t in the dynamic time step calculation.
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Figure 2.33: Contour plot of p for the Shu vortex case, refinement stage #4,
at t = 5.0: The vortex is crossing the interface between the DG
and the FV domain.

2.7.1.3 Gaussian Pulse

In case of decompositions with mixed equations (nonlinear-linear), the previous
test cases are not suitable for a convergence study. Therefore, the advection of
a Gaussian pulse in density is considered. In the nonlinear domain, a Gaussian
fluctuation in the density variable is initialized and added to the otherwise
constant flow:

ρ′(t = 0.0) = e
− 1

2
(x−xc)2+(y−yc)2+(z−zc)2

σ2 , (2.151)

with the center coordinates (xc, yc, zc)Ω1 = (0.5, 0, 0), the pulse halfwidth σ =
0.1 and the amplitude ρ̂′ = 0.01. The mean flow is ρ0 = 1.0, u0 = 1.0, v0 = 0.0,
w0 = 0.0 and p0 = 0.714285714. In the linearized domain, these are also the
values for the background flow. The other perturbation variables are set to
zero. Very similar to the Shu vortex case, the Gaussian pulse is transported
from the nonlinear unstructured grid onto the linearized structured domain and
then back onto the unstructured one, where the simulation stops (Fig. 2.34 and
2.35). This time, the error norms are based on the density ρ. Using fourth order
solvers, the convergence rates for the domain decomposition deliver the same
order of accuracy in 2D and 3D (Tables A.12 and A.13). In the 3D case, the
nonlinear Rec-FV scheme is used on the unstructured grid.

106



2.7 Validation

x

0

0.5

1

1.5

2

y

-0.5

0

0.5

ρ

1

1.01

Figure 2.34: Contour plot of ρ for the Gaussian pulse case, O4, 2D, refine-
ment stage #4, at t = 0.5: The pulse is crossing the interface
between the DG and the FV domain.

Figure 2.35: Isosurface plot of ρ for the Gaussian pulse case, O4, 3D, refine-
ment stage #1, at t = 0.0.
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2.7.2 High-Frequency Perturbations

When grids with different mesh spacings are connected, it might occur that a
flow feature or an acoustic wave is well resolved on one grid, while it cannot
be maintained anymore on the other. An interesting question is now how the
solution behaves in a case like this. Schwartzkopff [88] set up a quasi one-
dimensional test for his coupling method: He let a single long wave pulse with
superimposed high-frequency perturbations cross the interface from a fine grid
to a coarse one. While the long wave pulse could be resolved on the coarse
grid, the high-frequency perturbations were simply ”filtered out” at the cou-
pling boundary. A similar, but more detailed examination is performed for the
proposed coupling approach.
The setup for this two-dimensional numerical experiment is as follows: An un-
structured ADER-DG domain is surrounded by a structured ADER-FD grid.
The unstructured grid will remain fixed in all computations, while the struc-
tured mesh is either very fine (resolving all occurring waves) or very coarse
(only partially resolving the waves). Figure 2.36 shows the grid layout, Ta-
ble 2.14 lists the domain properties. The governing equations are the linearized
Euler equations with the background values ρ0 = 1.0, u0 = 0.0, v0 = 0.0,

p0 = 0.714285714 and the speed of sound c =
q

γ · p0
ρ0

= 1.0 with γ = 1.4.

An oscillating source S (for a similar implementation, see section 3.1) is lo-
cated in the center of the unstructured domain:

S = A1 · sin(ω1t) + A2 · sin(ω2t) + A3 · sin(ω3t), (2.152)

where A1 = 0.05, A2 = 0.04, A3 = 0.03, ω1 = 2π, ω2 = 5π and ω3 = 13π. Note
that the source term is only evaluated in the single triangle which contains the
center coordinate (x, y)Source = (0, 0). The resulting frequencies fi = ωi

2π
and

wave lengths λi = c
fi

for the emitted acoustic waves are f1 = 1.0, f2 = 2.5,
f3 = 6.5, λ1 = 1.0, λ2 = 0.4 and λ3 = 0.153846.
The spacing and order of accuracy on the unstructured grid are chosen such

Domain Method O Outer Dimensions ∆h

Unstr. 1 ADER-DG 4 [−2.00,+2.00] × [−2.00, +2.00]
1
20

Str. 1 ADER-FD 8 [−10.00,+10.00] × [−10.00, +10.00]
1
8

/ 1
65

Table 2.14: Domain properties for the high-frequency perturbation test case.
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Figure 2.36: Close-up of the grids for the high-frequency perturbation test
case. The unstructured mesh in the center remains the same,
while the structured grid is either fine (left) or coarse (right).

that all frequencies are well resolved. For the smallest wavelength λ3, the points
per wavelengths are about PPWDG,3 ≈ λ3·O

∆h
= 12.3. Note that the order of

accuracy is included in this rule of thumb for the resolution (a specialty of DG
schemes).
For the first calculation, the spacing of the structured mesh is chosen so fine
that – in combination with the high order scheme – all waves are fully resolved
on the structured grid: PPWF D,3 = λ3

∆h
= 10. The result is shown in Fig. 2.37:

The acoustic waves propagate in concentric circles. No reflections at the do-
main coupling interface are visible. At the outer boundary, a sponge layer (see
section 3.3 for details) is employed, which slowly absorbs the waves in order
to avoid reflections. A second calculation is performed with a much coarser
structured grid that has a resolution of PPWF D,1 = 8, PPWF D,2 = 3.2 and
PPWF D,3 = 1.23 for the wavelengths λ1,λ2 and λ3. It is clear that the low
frequency perturbations with λ1 can be well resolved with 8 PPW. However,
for medium wavelength λ2, the 3.2 PPW are near the threshold of the theoret-
ical limit of 2 PPW (wiggle mode) and is too low, even for a very high order
method. Last but not least, the very short wavelength λ3 cannot – even in
theory – be resolved with 1.23 PPW. It shall be emphasized that those badly-
and under-resolved frequencies are usually filtered out of the solution by an
appropriate algorithm for today’s state-of-the-art solvers (Kloker [57,58]).
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Figure 2.38, 1. shows the result of the calculation: Like in the previous case, all
waves are fully resolved on the unstructured grid, but only the low-frequency
waves make it onto the coarse grid and get propagated there. Exceptions seem
to be the diagonals in the domains, where also the medium frequency f2 is
maintained quite well.
Last but not least, three independent calculations with only one frequency at
a time are performed for comparison purposes. The structured mesh is again
the coarse one. As expected, the low frequency f1 is fully resolved and no
reflections occur (Fig. 2.38, 2.). In the medium frequency case f2, the waves
vanish in direction of the x- and y-axis, but are still resolved in the diagonal
direction (Fig. 2.38, 3.). This seems to be a unique property of the structured
ADER-FV and ADER-FD methods, which employ volume stencils for the re-
construction. It is interesting in this context, that Schwartzkopff et al. [25,88]
observed enhanced CFL stability limits along the diagonals. It shall be pointed
out that this is not the case for general FV and FD methods, for which the
solution quality is usually worse in diagonal direction. The highest frequency
f3 vanishes almost completely on the structured grid(Fig. 2.38, 4.). Only a few
perturbations remain, but turn out to be very small.
For a further examination, a DFT (Discrete Fourier Transform) is conducted
for all test cases. The perturbation pressure signal p′(t) is recorded and evalu-
ated at several positions: P1 = (1.75, 0) and P2 = (1.2374, 1.2374) are located
in the unstructured domain on a circle with radius r = 1.75, P3 = (5, 0) and
P4 = (3.5355, 3.5355) are located in the structured domain on a circle with
radius r = 5 (at an angle of Θ = 0◦ and Θ = 45◦).
Figure 2.39 shows the spectra of the pressure amplitudes p̂: For the fully re-
solved calculation, only amplitudes at the three source frequencies are captured
on both grids. For the partially unresolved case with the coarse structured grid,
a few small additional peaks at some side frequencies are visible in the unstruc-
tured domain. On the structured grid, the low frequency peak at f1 = 1.0
remains while the others vanish, as the higher frequencies are not resolved on
the grid. An exception is the peak at f2 = 2.5 at 45◦, where the waves are
partially resolved. Small additional peaks can be also observed here.
In order to find a relation between the source frequencies and the small side
peaks, the Fourier spectra are compared to the spectra of the computations with
the isolated source frequencies (Fig. 2.40 and 2.41). While the main peaks are
identical in the unstructured center domain, the side peaks appear solely for
the high angular frequency ω3, which falls probably below the so-called aliasing
limit for FD methods. Then the dispersion relation k ∝ ω is not valid anymore,
with k being the wave number and ω being the angular frequency of the wave.
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In this case, the group velocity vG = dω
dk

differs from the phase velocity c = ω
k

and can even reverse its direction (Vogel [124], Kloker [57, 58]).
The side amplitudes in the structured domain appear almost exclusively (a tiny
peak is visible also for the second harmonic frequency) for the calculations with
the badly resolved wavelengths. They are very small in comparison to the main
amplitudes, an exception is the f2-peak on the diagonal. A further numerical
experiment showed, that this peak soon vanishes, when the mesh is coarsened
a bit more (at PPW ≈ 2.25), due to under-resolution.
In conclusion, satisfying results are obtained, even without an artificial filtering
of underresolved frequencies.

Figure 2.37: Contour plot of the fully resolved high-frequency perturbation
test case at t = 20.
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1. All frequencies, f1, f2 and f3. 2. The low frequency f1.

3. The medium frequency f2. 4. The high frequency f3.

Figure 2.38: Contour plots for the test case with the coarse structured grid
at t = 20.
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Figure 2.39: Fourier spectra of the pressure amplitude p̂ at different posi-
tions in the computational domain. Left column: Using the fine
structured grid. Right column: Using the coarse structured grid.
Top row: r = 1.75 is located in the unstructured center domain,
thus all frequencies are resolved. Bottom row: r = 5 is located
in the structured domain, thus the frequencies are either fully
(fine grid) or partially (coarse grid) resolved.
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Figure 2.40: Fourier spectra of p̂ at r = 1.75 in the unstructured domain for
the partially resolved case.
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Figure 2.41: Fourier spectra of p̂ at r = 5 in the structured domain for the
partially resolved case.
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2.7.3 Reflections

The behavior towards reflections at the coupling boundaries shall be examined.
Schwartzkopff [88] gave an estimate for the magnitude of possible reflections,
when nonlinear Euler equations are coupled with linearized Euler equations.
He pointed out that the reflected waves are due to the jump in the wave propa-
gation speed, which changes from a nonlinear u+c = u+

p
γp/ρ to a linearized

u0 + c0 = u0 +
p

γp0/ρ0. This change in propagation speed acts as an artificial
material interface. When a wave traveling in one medium impinges perpendicu-
larly on the boundary of a second, different medium, one part will be reflected,
one part will go through (general physics of wave propagation, Gerthsen [124]).
Its overall intensity will be conserved:

II = IR + IT , (2.153)

where the indices denote the impinging, reflected and transmitted waves. The
intensities for the waves are

IR = II · R = II ·
„

n2 − n1

n2 + n1

«2

, (2.154)

IT = II · T = II · 4 · n2 · n1

(n2 + n1)
2 , (2.155)

with n1 and n2 being the refraction indices of the two media. If the wave travels
from a nonlinear domain 1 onto a linear domain 2, these refraction indices will
be n1 = 1

u+c
and n2 = 1

u0+c0
. Assuming that linearization is allowed and

therefore the velocity u normal to the interface can be split into u = u0 + u′,
the reflection index R = IR

II
can be written as

R =

„
n2 − n1

n2 + n1

«2

=

 
1

u0+c0
− 1

u+c

1
u0+c0

+ 1
u+c

!2

=

„
u′ + c − c0

u′ + 2u0 + c + c0

«2

. (2.156)

One would expect reflections with an amplitude of p̂′
R = R·p̂′

I , for an impinging
pressure pulse with a perturbation amplitude p̂′

I .
R (and therefore the reflections) will be small (≪ 1.0) if it can be assumed that
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the speeds of sound c and c0 are significantly larger than the perturbation ve-
locity u′ and that the difference between c and c0 is not very big. Furthermore,
the background velocity u0 should be smaller than c0. If the coupling boundary
is placed in an area, where a linearized treatment is valid, these assumptions
are reasonable.
The estimation for the reflections is checked for several constellations of meth-
ods, grids and time steps. The underlying test case is a Gaussian-shaped pres-
sure pulse, that is initialized in the center (xc, yc) = (0, 0) of the calculation
domain:

p′ = A · exp

„

− 1

2b2

`
(x − xc)

2 + (y − yc)
2´
«

, (2.157)

with the amplitude A = 0.05, the halfwidth b = 0.2 and the perturbation pres-
sure p′. The other perturbation variables, ρ′, u′ and v′, are set to zero. The
governing equations are the nonlinear and the linearized Euler equations. For
linearized calculations, the background values are ρ0 = 1.0, u0 = 0.0, v0 = 0.0
and p0 = 1

γ
with γ = 1.4. For nonlinear calculations, those background values

are added to the initial condition.
The calculation domain consists of two subdomains, an inner one with the di-
mensions [−3, 3] × [−3, 3] and an outer one with the dimensions
[−10, 10] × [−10, 10]. At t = 0, the pressure pulse begins to collapse and
propagates into the computational domain. The calculation stops at t = 8, be-
fore the pulse arrives at the outer domain boundaries and possible reflections
from there can occur (Fig. 2.42).
The pressure signal is picked up at a radius of r = 2 at two points P1 = (2, 0)
and P2 = (

√
2,
√

2) in the inner domain. In order to determine the reflections,
the difference between the pressure signal and the signal from a reference so-
lution on an undivided domain is calculated:

∆p = p − pref . (2.158)

First of all, two Cartesian O4 ADER-FV domains with cell size ∆h0 = 0.0625
are coupled, hence the interfaces match perfectly. The time step is set to
∆t = 0.4 in both domains. If both domains are either nonlinear or linear, no
reflections occur: The difference between the partitioned solution and the ref-
erence calculation is not measurable (≪ 10−12, see Fig. 2.43, 1.). This changes,
when linearized Euler equations are employed in the outer domain, while the
inner domain remains nonlinear: P1 picks up reflections of a magnitude of
∆p ≤ 0.88 · 10−5 (Fig. 2.43, 2.).
The following maximum amplitudes for the primitive states were picked up at
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P1: ρ̂I = 1.00583, ûI = u′ = 6.13467 · 10−3, v̂I = v′ = 0.0 and p̂I = 0.72012.
With c =

p
γp̂I/ρ̂I = 1.00116, c0 = 1.0, u0 = 0.0 and an amplitude of the

perturbation pressure of p̂′
I = p̂I − p0 = 5.83429 · 10−3, equation (2.156) yields

an expected maximum reflection of p̂′
R = 1.2 · 10−5. In fact, the first observed

reflection has only about 1
2
, the second one about 3

4
of this amplitude. As

it will be shown later, the second pulse is larger due to superposition of two
reflections. The shape and magnitude of the reflections are not affected when
the numerical methods, the time steps and even the grids are changed: Fig-
ure 2.43, 3. shows the results for a nonlinear O4 ADER-DG domain on an
unstructured grid (∆h0 = 0.0625 for regular triangles), coupling with a linear
O8 ADER-FD domain (Cartesian, ∆h0 = 0.0625 for the point spacing). Note
that the DG domain has a time step ratio of 1

10
in comparison with the FD

domain! Finally, the method on the inner domain is replaced by the Rec-FV
scheme on the same unstructured grid (Fig. 2.43, 4.). All diagrams share a
great resemblance to the original case!
The influence of the pressure amplitude on the reflections is studied next.
The original case is considered again, two structured O4 ADER-FV domains,
the inner one solving the nonlinear Euler equations, the outer solving the lin-
earized ones. Now the amplitudes of the initial pulse are varied from A = 2A0

to A = 1
2
A0 and finally A = 1

4
A0. The resulting reflections are exactly

∆p = 4∆p0, ∆p = 1
4
∆p0 and ∆p = 1

16
∆p0 (Fig. 2.44). Thus, the reflec-

tions decay proportionally with A2, which confirms the assumptions made for
the reflection index!
For the next test, the mesh spacings are refined (∆h = 1

2
∆h0) and coarsened

(∆h = 2∆h0) equally on both grids. Figure 2.45, 1.-2. shows, that the in-
fluence on the reflections is minimal. Also increasing the order of accuracy in
both domains from O4 to O8 leaves the shape and magnitude of ∆p unchanged
(Fig. 2.45, 3.).
Several ∆p peaks are picked up at the points P1 and P2 (Fig. 2.45, 4.). Their
temporal distribution and magnitude explain their origin, when the speed of
sound (c = 1.0) and the angles of incidence and reflection are considered. At
P1 = (2, 0), three peaks occur: The first one happens at about t = 4 and is
obviously the direct reflection from the right coupling boundary at x = 3. The
second signal is captured at t = 6.3 and considerably larger than the first one.
It is the sum of the two reflections at the upper (y = 3) and the lower (y = −3)
boundary. Last but not least, there is a weak third pulse at about t = 8, which
is the reflection from the left coupling boundary at x = −3. For P2 = (

√
2,
√

2),
which lies on the 45◦ diagonal, only two main peaks can be observed: The first
one at t = 4.8 originates from the reflections at the right and upper coupling
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boundary and is the strongest one. The other one occurs at t = 7.5 and turns
out to be the reflection from the left and lower boundary.
At the very end, a jump in the grid size is allowed: Again, two structured FV
domains are coupled, but this time, the outer domain employs twice the spacing
of the inner one (∆h = 2∆h0). Small reflections (∆p ≤ 2.8 ·10−6) are observed
now, even if both domains solve the same set of equations (linear or nonlinear,
Fig. 2.46, 1.-2.). If mixed equations are used, the single reflections superpose
(Fig. 2.46, 3.). The origin of the reflections can be related to the sudden jump
in resolution: Another calculation with equal grid sizes, linearized equations,
but a jump in the order (from O4 to O8) between the domains produces very
similar looking reflections (Fig. 2.46, 4.). However, they are about two magni-
tudes weaker: The effect due to the jump is is not very strong, as the solution
is already well resolved with the fourth order scheme on the given grid. The
temporal distribution of the pulses resembles the previous cases.
In conclusion, it has been observed that the reflections caused by changing the
equations from nonlinear to linear are generally small compared to the wave
amplitudes. This follows directly from equation (2.156). The reflections caused
by a jump in resolution depend on the magnitude of the jump. However, they
were observed to be even smaller than the ones caused by switching the equa-
tions. A prediction for the error regarding the transmitted waves would be of
interest, too. Yet a comparison to a reference solution, for example at radius
r = 5.0 in the outer domain, is difficult. The linearized solution could be either
compared to the unpartitioned nonlinear calculation (minus the background
state) or to an unpartitioned linear calculation. In fact, a test delivered dia-
metrical results. Slight shifts in phase due to different propagation speeds in
the domains produce differences for the location of the pulse. However, follow-
ing from equation 2.153, the error for the transmitted waves must possess the
same magnitude as the reflections, as R + T = 1.0.
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Figure 2.42: Contour plot of the expanding pressure pulse at t = 8. The rect-
angle in the middle marks the boundaries of the inner domain.
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Figure 2.43: Reflections for several domain constellations, involving different
methods and grids.
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Figure 2.44: FV-nonlin ⇋ FV-lin: The reflections scale with A2.
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Figure 2.45: FV-nonlin ⇋ FV-lin: 1.-3.: The reflections are not affected by
the mesh size or the order of accuracy. 4.: The temporal devel-
opment of the reflections indicate their origin.
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Figure 2.46: Reflections occur due to a jump in grid size (1.-3.) as well as
due to a jump in the order (4.).

124



2.7 Validation

2.7.4 Efficiency Estimates

To provide a general efficiency estimate for the domain decomposition approach
is a very difficult task. It is clear that one could examine all single coupling
aspects independently. However, only the interaction of all coupling options
can reveal the true potential regarding a computational speed-up. Then it de-
pends on of the actual problem which decomposition features can be exploited
and contribute most to an acceleration.
This problem is similar to the difficulty, how to compare different numerical
methods. This is by the way one of the sub-categories in the efficiency estimate
of the domain decomposition, as a variety of completely different solvers can be
used in the same calculation. Each of them must be carefully analyzed regard-
ing its accuracy and efficiency first (which has been done by the developers).
Afterwards, they have to be compared against each other. This puts already
a severe limitation on the grids and the equations that can be used in such
a test case. Some of the more complex applications could not be calculated
with just one of the solvers that is maybe otherwise used in a subdomain of
the decomposed same problem. For example a FD code for linearized wave
propagation on regular structured grids is surely not able to compute nonlin-
ear fluid dynamics around complex geometries. Hence, a comparison can only
take place for simple, standardized benchmark problems which can be solved
by all of the methods. The accuracy with regard to a reference solution can be
determined along with the required computational effort then.
This means in the domain decomposition context, that an analysis similar to
Nordström et al. [77] could be performed. He examined the coupling efficiency
between two domains (one unstructured FV domain, one structured FD do-
main) by contrasting a decomposed simulation with a single unstructured FV
calculation and comparing the L2 errors. Then the relative speed-up can be de-
termined for the coupling parameters that deliver the same errors as the single
domain run. However, the significance of such an estimate for more complex
examples or even real world calculations is probably not very high. First of
all, it is not possible to consider every single feature of the domain coupling
approach (subcycling, methods, grids, order of accuracy, equations, etc.), ei-
ther because it does not make sense for the test case or the number of different
constellations would be too large to test them all. Furthermore, in order to be
able to compare the results with a reliable reference solution, one is confined
to specific examples (e.g., problems with an analytical solution).
On this account, the efficiency analysis is performed only for the concrete exam-
ples in section 3. If possible or available, a comparison to a single domain calcu-
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2 Domain Decomposition

lation or a reference solution regarding quality and effort is drawn. Also, signif-
icant problem independent efficiency factors (such as tCP U

Elem·Iter
and tCPU

DOF ·Iter
)

and problem dependent factors ( tCPU

DOF ·tSim
, the subcycling ratio ∆t

∆tmin
, tCPU

per domain volume, etc.) are provided together with the calculation parameters
(e.g., numbers of elements, iterations, time steps).
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3 Numerical Examples

3.1 Multiple Cylinder Scattering

The following problem was posed by Scott E. Sherer [98] in order to test the
ability of high order CAA codes to handle complex geometries. Furthermore,
this example for the Fourth CAA Workshop on Benchmark Problems (Cate-
gory 2, Case 2) is suitable to demonstrate the numerical robustness, longtime
stability and the treatment of non-reflecting boundary conditions of a scheme.
Case 2, the scattering of sound from three rigid circular cylinders of different
sizes is chosen for the validation of the domain decomposition, as it can be
considered the more challenging problem. Sherer et al. [97, 100] provide also
analytical and numerical reference data for this case.
The example is governed by the two-dimensional linearized Euler equations
with the background values ρ0 = 1.0, u0 = 0.0, v0 = 0.0 and p0 = 0.714285714

and the speed of sound c =
q

γ · p0
ρ0

= 1.0 with γ = 1.4:

~U ′

t + A~U ′

x + B~U ′

y = ~S, (3.1)

with ~U ′ = (ρ′, u′, v′, p′)T , ~S = (0, 0, 0, S)T and the Jacobians

A =

0

B
B
B
@

u0 ρ0 0 0

0 u0 0 1
ρ0

0 0 u0 0

0 γ · p0 0 u0

1

C
C
C
A

, B =

0

B
B
B
@

v0 0 ρ0 0

0 v0 0 0

0 0 v0
1

ρ0

0 0 γ · p0 v0

1

C
C
C
A

. (3.2)

The spatially distributed and axisymmetric acoustic source term is located at
(x, y)Source = (0, 0) and oscillates in time:

S = exp

»

− ln 2 · (x − xSource)
2 + (y − ySource)

2

b2

–

· sin(ωt), (3.3)

where ω = 8π and b = 0.2. Manoha et al. [70] stated, that their results differed
from the provided analytical solution by a factor 1

γ−1
, which has been also

observed in the following calculation. Hence, the presented numerical results
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3 Numerical Examples

are scaled by a factor (γ − 1) = 0.4 for comparison purposes.
The computational setup is as follows: Inside the computational domain, three
solid cylinders with radii r1 = 0.5, r2 = 0.375 and r3 = 0.375 are located
at L1 = (−3, 0), L2 = (3, 4) and L3 = (3,−4). Although the problem is
axisymmetric with respect to the x-axis, the full problem in a total area of
[−10, 10] × [−8, 8] is calculated. This area is discretized with three different
domains: A structured ADER-FD domain for the far field, a structured Taylor-
FD domain containing the source term and an unstructured ADER-DG domain
in the vicinity of the cylinders (Fig. 3.2). Note that although the unstructured
grids are physically apart, the single unstructured domain contains all three
cylinders! A wavelength of λ = c

f
= 0.25 with f = ω

2π
= 4.0 results from

(3.3). In all computations, the structured grid sizes are fixed: On the Cartesian
ADER-FD grid, a spacing of ∆h = 0.05 results in a resolution of 5 points per
wavelength (PPW). In order to resolve the source very well, 10 PPW (∆h =
0.025) are used for the Taylor-FD domain in the source region. Two different
unstructured grids are used for the calculations: The rather fine and uniform
mesh has a spacing of ∆h = 0.05 on the cylinder surfaces and at the coupling
boundaries. The coarser grid has also a spacing of ∆h = 0.05 on the cylinder
surfaces, but coarsens to ∆h = 0.1 at the coupling boundaries. Note that the
finer cylinder spacing is due to the fact, that the problem demands a recording
of the pressures exactly on the surface. For DG methods, it is quite difficult
to provide a value for the resolution in PPW, but the rule of thumb for the
employed ADER-DG scheme is, that the element’s order of accuracy equals
about the PPW per edge. As a fourth order ADER-DG method is used in
every case, the resolution is therefore about 20 PPW for ∆h = 0.05 and 10
PPW for a ∆h = 0.1 spacing.
In order to avoid reflections at the boundary, a sponge layer, which is described
in more detail in section 3.3, is employed with the sponge parameters L = 2
and s = 4. Three different calculations are performed on a single Intel Xeon
5150 2.66GHz core. After a simulation time of about t = 30− 40, the solution
becomes periodical. Hence, all simulations are run until t = 50 (Fig. 3.1). The
root mean square pressure

prms =

v
u
u
u
t(

t0+TZ

t0

(p′)2dt)/(

t0+TZ

t0

dt) =

q

< (p′)2 > (3.4)

is determined along the cylinder surfaces and along the centerline xCL =
[−8, 8], y = 0 (Fig. 3.3 and 3.4), where T denotes an oscillation period.
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3.1 Multiple Cylinder Scattering

First off all, the fine unstructured O4 ADER-DG domain is coupled with the
structured O8 Taylor-FD source domain and a structured O8 ADER-FD do-
main. Note that the order for the interpolation from the ADER-FD grid onto
the Taylor-FD ghost points is actually set to O9 for the time derivatives. While
the results along the left cylinder surface are in good agreement with the an-
alytical solution, the results for the smaller cylinders clearly show a shift in
phase and amplitude. Because the acoustic waves must cross the relatively
coarse far field grid on their way from the source to the outer cylinders, it is
suspected that maybe the waves are still insufficiently resolved. Note that the
waves are well resolved on their way to the left cylinder, as they travel directly
from the Taylor-FD grid into the ADER-DG domain.
Therefore, the order of accuracy in the ADER-FD domain is raised to O12 in
a second computation. All grids and other parameters remain the same. This
time, the numerical solution matches the analytical one very well on all cylin-
ders and along the centerline, which confirms the previous assumption! The
O12 method preserves the wave properties even on a coarse grid.
The fine unstructured grid is replaced by the coarser one in the third calcula-
tion. Its elements at the coupling boundaries are now a lot coarser than the
spacing on the neighboring grid. Again, all other parameters remain the same,
including the structured O12 far field domain. The results along the cylinders
(Fig. 3.3, right) and along the centerline are almost identical to the ones on the
fine grid, although the jump in grid sizes is now significant at the boundaries
and less elements are computed.
The parameters and the performance of the calculations are summarized in
Tables 3.1 and 3.2, the dimensions of the calculation domain are given in Ta-
ble 3.3. It can be seen, that the O12 method in the far field domain is about
twice as expensive as the O8 scheme. However, the increase is only about 10%
of the total CPU time. This is because the DG method on the unstructured
grid consumes most of the computational resources, being approximately one
magnitude more expensive than the structured methods in terms of CPU time
per DOF and simulation time. Note that this factor is largely dependent on the
calculation scenario! In terms of CPU time per DOF and iterations, the DG
scheme is actually more efficient, but each iteration has a relatively small time
step. It is emphasized, that DOF denotes here the entire state vector for a de-
gree of freedom, not each component (e.g., pressure or inner energy) separately.
If one is interested the latter case, the total number of DOFs must be scaled up
with the number of variables nV ar (e.g., nV ar = 4 for 2D Euler equations) and
the CPU times per DOF must be scaled down with 1

nV ar
. Last but not least,

the use of the coarser grid decreases the overall wall-clock time by one third,
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3 Numerical Examples

although the time step remains about the same due to the fine spacing at the
cylinder surfaces. Less elements need to be calculated for every iteration, while
the coarse cells still ensure a very good solution. The most expensive compu-
tation (fine unstructured grid, structured O12 far field domain) with 196633
degrees of freedom took 1.5h on a single CPU in a [−10, 10]×[−8, 8] calculation
domain until simulation time t = 50. Sherer et al. [100] performed a total of
20000 iterations with a time step ∆t = 0.002, hence calculated until a final
simulation time of t = 40. With a resolution of 8 PPW (277000 grid points),
they spent 2.87h on 26 processors, thus required a total of 74.62CPUh. The
processor type was not stated. Their actual calculation area in the domain
(axisymmetric half-model, including the sponge zone: [−20, 20] × [0, 20]) was
[−10, 10] × [0, 10].

Domain O tCP U [s]
Elem·Iter

tCPU [s]
DOF ·Iter

tCP U [s]
DOF ·tSim

∆t ∆t
∆tmin

Unstr. 1 4 1.964E-05 1.964E-06 1.117E-03 1.758E-03 1

Str. 1 8 3.159E-06 3.159E-06 9.982E-05 3.164E-02 18

Str. 2 8 5.518E-06 5.518E-06 4.489E-04 1.582E-02 9

Fine unstructured grid, O8 in the ADER-FD domain.

Domain O tCPU [s]
Elem·Iter

tCPU [s]
DOF ·Iter

tCPU [s]
DOF ·tSim

∆t ∆t
∆tmin

Unstr. 1 4 1.950E-05 1.950E-06 1.109E-03 1.758E-03 1

Str. 1 12 6.261E-06 6.261E-06 1.978E-04 3.164E-02 18

Str. 2 8 5.573E-06 5.573E-06 3.523E-04 1.582E-02 9

Fine unstructured grid, O12 in the ADER-FD domain.

Domain O tCPU [s]
Elem·Iter

tCPU [s]
DOF ·Iter

tCPU [s]
DOF ·tSim

∆t ∆t
∆tmin

Unstr. 1 4 2.018E-05 2.018E-06 1.171E-03 1.723E-03 1

Str. 1 12 6.634E-06 6.634E-06 1.925E-04 3.445E-02 20

Str. 2 8 5.728E-06 5.728E-06 3.325E-04 1.723E-02 10

Coarse unstructured grid, O12 in the ADER-FD domain.

Table 3.1: Efficiency factors for the multiple cylinder scattering calculations.
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3.1 Multiple Cylinder Scattering

Domain PPW tCPU [s] tCPU [%] #Elem #DOF #Iter

Unstr. 1 ≈ 20 3402.5 70.26 6090 60900 28449

Str. 1 5 608.3 12.56 121882 121882 1580

Str. 2 10 241.6 4.99 13851 13851 3161

Coupling - 590.1 12.19 - - -

Total - 4842.5 100.00 141823 196633 -

Fine unstructured grid, O8 in the ADER-FD domain.

Domain PPW tCPU [s] tCPU [%] #Elem #DOF #Iter

Unstr. 1 ≈ 20 3377.6 62.08 6090 60900 28449

Str. 1 5 1205.7 22.16 121882 121882 1580

Str. 2 10 244.0 4.48 13851 13851 3161

Coupling - 613.8 11.28 - - -

Total - 5441.0 100.00 141823 196633 -

Fine unstructured grid, O12 in the ADER-FD domain.

Domain PPW tCPU [s] tCPU [%] #Elem #DOF #Iter

Unstr. 1 ≈ 10 1659.3 45.15 2833 28330 29030

Str. 1 5 1173.2 31.93 121882 121882 1451

Str. 2 10 230.3 6.27 13851 13851 2903

Coupling - 612.0 16.65 - - -

Total - 3674.8 100.00 138566 164063 -

Coarse unstructured grid, O12 in the ADER-FD domain.

Table 3.2: Domain statistics for the multiple cylinder scattering calculations.
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Domain Outer Dimensions Area Area[%]

Unstr. 1, Cyl. 1 [−4.00,−2.00] × [−1.00,+1.00] 3.2 1.00

Unstr. 1, Cyl. 2 [+2.25, +3.75] × [+3.25, +4.75] 1.8 0.57

Unstr. 1, Cyl. 3 [+2.25,+3.25] × [−4.75,−3.25] 1.8 0.57

Unstr. 1 6.8 2.1

Str. 1 [−10.00, +10.00] × [−8.00, +8.00] 303.0 95.2

Str. 2 [−2.00,+2.25] × [−1.00, +1.00] 8.5 2.7

Total [−10.00, +10.00] × [−8.00, +8.00] 318.3 100.0

Table 3.3: Dimensions of the different domains.

Figure 3.1: Contour plot of p′ at t = 50.
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Str.2

Str.1

Unstr.1 Str.2

Str.1

Unstr.1

Figure 3.2: Grid configurations for the multiple cylinder scattering example:
Left: Fine unstructured grid. Right: Coarse unstructured grid.
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Figure 3.3: prms along the cylinder surfaces. Left: Fine unstructured grid.
Right: Coarse unstructured grid.
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Figure 3.4: prms along the centerline (xCL = [−8, 8], y = 0) for the fine
unstructured grid and the O12 ADER-FD domain. 1.: Across
the computational domain. 2.-4.: Close-ups of different regions.
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3.2 Von Karman Vortex Street

This validation example describes a classical laminar vortex shedding behind
a two-dimensional circular cylinder (Fig. 3.5). The diameter of the cylinder is
D = 1, the ambient density, velocity and pressure are ρ∞ = 1.0, u∞ = 0.2,
v∞ = 0.0 and p∞ = 0.71428571428. The resulting Mach number is Ma = 0.2.
The dynamic viscosity is chosen as µ = 0.00133333, hence the Reynolds num-
ber based on the diameter is Re = 150. At this Reynolds number, vortex pairs
are shed periodically from the downstream side of the cylinder and the laminar
flow is basically two-dimensional. This case has been studied extensively in the
past, so the results can be compared with both numerical (Inoue et al. [49],
Müller [75]) and experimental data (Roshko [86]).
The contour plot of the pressure in Fig. 3.5 shows a close-up of the calcu-
lation domain and its composition of different domains, methods, grid types
and orders of accuracy. A zoom into the actual grids is plotted in Figs. 3.6
and 3.8. The unstructured domains employ triangular elements, the struc-
tured ones contain Cartesian quadrilaterals. The extents of the overall area are
[1200 × 1200], while the total unstructured inner region around the cylinder is
only [35 × 14]. See Tables 3.4 and 3.5 for area fractions, CPU times and other
domain parameters. Also the time step ratios are given: In the outer regions,
∆t is 3, 9, 63 and even 315 times larger than in the unstructured innermost
domain. There, the time step is mainly restricted by the small cell sizes which
are required for a sufficiently resolved boundary layer (Fig. 3.9). At the outer
boundary of the acoustic far field domain, a sponge layer (see section 3.3) is
employed to avoid reflections (Fig. 3.7). Note that the eighth order calculation
in the far field is very inexpensive (2.27% of the CPU time for 96.4% of the
total area, Table 3.5)!
The computation was performed on a single Intel Xeon 5150 2.66GHz core, the
overall wall-clock time was 62.19h. The final simulation time is t = 2500, which
is far beyond reaching periodicity of the emitted sound in the whole domain (at
t = 600, the first acoustic waves reach the upper and lower domain boundary;
CPU time at t = 600: 14.92h).
As the cylinder enters the Ma = 0.2 flow abruptly at t = 0, an initial non-
physical perturbation is produced and convected in the downstream direction.
It can still be seen at t = 2500 in the right part of Fig. 3.7. However, this
perturbation does not emit spurious noise. The wavelength of the acous-
tic perturbations in y-direction (v = 0.0) is λ = 27.27. A Fourier analy-
sis at various points in the calculation domain (P1 = (20, 0), P2 = (0, 20),
P3 = (0, 100), P4 = (0, 300), P5 = (100, 100), P6 = (300, 300)) returns a fre-
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quency of f = 0.03667 and thus a Strouhal number of Str = D·f
u∞

= 0.18335.
The frequency is observed both in the wake and in the acoustic region in the
far field and corresponds to the periodical laminar separation at the cylin-
der. This is in good agreement with the experimental and numerical refer-
ences (Roshko [86]: Values range from Str = 0.179 − 0.182, Inoue et al. [49]:
Str = 0.183, Müller [75]: Str = 0.1831. The values for the lift and drag coef-
ficients were sampled during the simulation time t = [1500, 2500] (Fig. 3.12):
The mean drag coefficient is C̄D = 1.3309, its amplitude is ĈD = 0.0257
and the lift coefficient amplitude is ĈL = 0.5192 (Inoue et al.: C̄D = 1.32
at Ma = 0.1, ĈD = 0.026, ĈL = 0.52, Müller: C̄D = 1.34, ĈD = 0.02614,
ĈL = 0.5203). In Fig. 3.10, the amplitude of the instantaneous fluctuation

pressure p̃′ = p(x, y, t)− p̄(x, y) with the mean flow p̄(x, y) = 1
T

t0+TR

t0

p(x, y, t)dt

is scaled with 1.
Ma2.5

∞

. The data are compared to the results by Inoue et al. [49]

and Müller [75]. They are in good accordance especially with the results by In-
oue et al. and close to the results of Müller. Finally, the dipole-like directivity
of the sound field is depicted by Fig. 3.11.
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3.2 Von Karman Vortex Street

Domain Method O tCPU [s]
Elem·Iter

tCP U [s]
Elem·tSim

∆t ∆t
∆tmin

Unstr. 1 FV, N.S. 4 4.681E-05 1.151E-02 4.064E-03 1

Unstr. 2 FV, N.S. 4 4.854E-05 3.978E-03 1.219E-02 3

Unstr. 3 FV, N.S. 4 4.483E-05 1.224E-03 3.657E-02 9

Unstr. 4 FV, N.S. 4 4.631E-05 1.265E-03 3.657E-02 9

Str. 1 FD, LEE 8 7.502E-06 5.855E-06 1.280E+00 315

Str. 2 FV, EE 4 3.758E-05 1.466E-04 2.560E-01 63

Str. 3 FV, N.S. 2 1.245E-05 4.856E-05 2.560E-01 63

Str. 4 FV, N.S. 4 5.821E-05 2.271E-04 2.560E-01 63

Table 3.4: Efficiency factors for the different Von Karman domains.

Domain Outer Dimensions tCPU [%] Area[%] #Elem #Iter

Unstr. 1 r1 = 0.5 → r2 = 0.9 58.16 0.0001 4526 614565

Unstr. 2 r1 = 0.9 → r2 = 1.5 6.83 0.0003 1538 204855

Unstr. 3 r1 = 1.5 → r2 = 3.5 2.97 0.0022 2169 68285

Unstr. 4 [−5, 30] × [−7, 7] 7.72 0.0314 5463 68285

Str. 1 [−600, 600] × [−600, 600] 2.27 96.4445 347885 1951

Str. 2 [−40, 100] × [−40, 40] 6.23 0.6757 38032 9755

Str. 3 [100, 600] × [−40, 40] 8.68 2.7778 160000 9755

Str. 4 [30, 100] × [−7, 7] 0.99 0.0681 3920 9755

Coupling - 6.15 - - -

Total - 100.0 100.0 563533 -

Table 3.5: Domain parameters and properties.
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Figure 3.5: Von Karman vortex street at t = 2500; Unstructured domains 1-4,
cylinder: Navier-Stokes equations, triangular meshes, nonlinear
FV scheme, O4. Structured domain 1, acoustic far field: Lin-
earized Euler equations, Cartesian mesh, FD scheme, O8. Struc-
tured domain 2, near field: nonlinear Euler equations, Carte-
sian mesh, FV scheme, O4. Structured domain 3, damping zone:
Navier-Stokes, Cartesian mesh, FV scheme, O2. Structured do-
main 4, wake: Navier-Stokes, Cartesian mesh, FV scheme, O4.
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Str.2

Unstr.1-4 Str.4

Str.1

Figure 3.6: Grid topology: Depicted are the fine unstructured triangular
grids around the cylinder, the coarser structured mesh in the
near field/wake region and the coarse acoustic grid for the far
field.
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Figure 3.7: The total simulation area at t = 2500. A sponge layer absorbs
the sound waves at the boundaries. The non-physical initial per-
turbation is still visible downstream at the right side.
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Figure 3.8: Close-up of the inner-
most unstructured grids
in the direct vicinity of
the cylinder.
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Figure 3.9: Grid cells for a well re-
solved boundary layer.
The contours depict the
absolute value of the ve-
locity uabs =

√
u2 + v2.

r

A
m

pl
itu

de
/M

a
∞2.

5

20 40 60 80 100
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Domain Decomposition
Inoue et al.
Müller

r

A
m

pl
itu

de
/M

a
∞2

.5

100 101 102 103
10-3

10-2

10-1

100

Domain Decomposition
Inoue et al.
Müller

Figure 3.10: Amplitude of the scaled instantaneous fluctuation pressure
p̃′

Ma2.5
∞

on the positive y-axis at x = 0. Left: Close-up. Right:

Across the whole domain.

141



3 Numerical Examples

θ

prms

0

30

60

90

120

150

180

210

240

270

300

330

0 2E-05 4E-05 6E-05 8E-05

r = 300
r = 75

Figure 3.11: Polar plots of the root mean square of the fluctuation pressure
at r = 75 and r = 300.
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3.3 Sphere Scattering

The scattering of sound by a solid sphere was proposed by Morris [73] for
the Second CAA Workshop on Benchmark Problems (Category 1, Problems
3 and 4). He also provided details about the analytical solution, including
the numerical evaluation of spherical Hankel functions [72]. The governing
equations in this three-dimensional example are the linearized Euler equations
with the mean flow variables ρ0 = 1.0, u0 = 0.0, v0 = 0.0, w0 = 0.0 and

p0 = 0.714285714. The speed of sound is c =
q

γ · p0
ρ0

= 1.0 with γ = 1.4.

A solid sphere with the radius r = 1 is located at ~XSphere = [0, 0, 0]. In its

vicinity at ~XSource = [2, 0, 0], a spatially distributed source S on the right hand
side of the pressure term oscillates:

S = −A · exp[−B · ln 2 · ((x − xSource)
2 + y2 + z2)] · cos ωt, (3.5)

with A = 0.01, B = 16, xSource = 2. In the following, ω = 2π (Problem 3) is
chosen as frequency, thus the expected wavelength of the generated sound is
λ = c

f
= 1 with f = ω

2π
= 1.

In order to keep the additional computational effort for the source term low,
it is evaluated only until a given radius from the source center. For r = (x −
xSource)

2 + y2 + z2 = 0, Eq. 3.5 yields S0 = S(r = 0) = −0.01. Due to the

exponential decay, the source term’s cut-off radius is set to r = 1.5: S(r=1.5)
S0

=

1.46 · 10−11.
The overall computational domain is divided into one unstructured and one
structured volume (Fig. 3.13).
A sponge layer of the following form is employed on the structured finite dif-
ference grid in order to avoid reflections:

ũn+1
ijk = (1 − σ) un+1

ijk + σuin

`
xi, yj , zk, tn+1´ , (3.6)

where un+1
ijk is the time update of the numerical solution as computed by the

numerical scheme, ũn+1
ijk is the modified numerical solution after applying the

sponge layer and uin is the prescribed solution, which must be given as a
function of ~X and t at the boundary. The sponge parameter 0 ≤ σ ≤ 1 is
defined as

σ =

( `
L−δ

L

´s
if δ ≤ L

0 if δ > L
. (3.7)

In (3.7), L denotes the thickness of the sponge layer, δ is the distance of grid
point Pijk to the nearest boundary of the computational domain, and s is the
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power of the sponge layer. In the following computations, the sponge parame-
ters are chosen as L = 1 and s = 4.
The domain [−1.75,−1.75,−1.75]× [3.75, 1.75, 1.75] in the direct vicinity of the
sphere consists of an unstructured tetrahedral mesh and includes the source re-
gion. The O4 ADER-DG method is employed and the time step in this domain
is ∆t = 1.664 · 10−3 (CFL=0.3). The elements directly at the sphere surface
are slightly refined with an interval size of ∆h = 0.2, compared to an interval
size of ∆h = 0.4 at the outer boundaries. The interval size denotes the average
edge length of a surface triangle. The minimum inner sphere radius of a tetra-
hedron is lmin = 0.0194. As it is not trivial to quantify the resolution of the
ADER-DG method on tetrahedral grids, the following approximation is made:
The number of degrees of freedom per element in the unstructured domain is
nDOF = O·(O+1)·(O+2)

6
= 20. By averaging the total number of DOFs for the

considered volume and for each spatial direction, one obtains approximately
14.62 DOFs per wavelength for the unstructured grid. A total of 1520 ghost
tetrahedrons couple with the structured grid at the domain interface, which re-
sults in 97280 connecting Gauss points. The unstructured mesh remains fixed
in the following computations.
In the first calculation, the outer far field domain [−6,−6,−6]× [8, 6, 6] consists
of a Cartesian mesh with an interval size of ∆h = 0.1 and thus a resolution of
10 PPW. The finite difference scheme has an order of accuracy of O8. A total
of 31328 ghost points are required for the coupling with the unstructured grid.
In a second calculation, the interval size of the structured grid is doubled
(∆h = 0.2), hence the resolution is 5 PPW. For this configuration, the to-
tal number of structured ghost points coupling with the unstructured domain
is only 6264. Again, the O8 FD scheme is employed.
Last but not least, the domain decomposition results are compared to a cal-
culation that has been performed on a single tetrahedral grid, using the O4
ADER-DG method. The calculation domain is spherical with its center at
[1, 0, 0] and a radius of r = 7. In order to keep the grid similar to the one in the
decomposition approach, the grid has the same size ∆h = 0.2 on the sphere
surface. At the boundary, a spacing of ∆h = 0.4 is imposed, resulting in a grid
for a well resolved solution.
All computations were performed on a single Intel Xeon 5150 2.66GHz core.
Although the solution reaches periodicity in every point of the domain very
quickly (in a simulation time of less than t = 5), the calculation was run until
t = 20, in order to ensure a sufficiently large sample for the analysis.
Figure 3.15 shows the directivity plot of the root mean square fluctuation pres-
sure. It was picked up at several radii in the xy-plane around the sphere center
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3.3 Sphere Scattering

(Fig. 3.14), r = 1 (surface of the sphere), r = 3 and r = 5. The results of the
three calculations are all in good agreement with the reference solution.
Tables 3.6 and 3.7 show the statistics for the three computations: Both de-
composition calculations are considerably faster than the single ADER-DG
calculation in terms of wall-clock time. The tables also provide a reason why:
If the DOFs per DG element are considered as the points that are necessary
for the resolution of the waves, the efficiency of the DG and the FD method
can be compared for this specific example. DOF denotes here the entire state
vector for a degree of freedom, not each component (e.g., pressure) separately.
Otherwise, the total number of DOFs must be scaled up with the number of
variables nV ar and the CPU times per DOF must be scaled down with 1

nV ar

(here: nV ar = 5). The CPU time per DOF and per simulation time unit
tCPU

DOF ·tSim
shows an advantage of about one magnitude for the structured O8

FD method (Table 3.6). This advantage is strongly example dependent because
it arises from the much bigger time step that can be made on the structured
grid per iteration. The time step on the unstructured grid is limited by the
DG method itself and by the finer grid that is required in order to resolve the
sphere. On the other hand, the CPU time per element and iteration tCPU

Elem·Iter

permits an example independent (and only processor specific) statement about
the methods’ cost per iteration. Here, the O4 ADER-DG method is again more
expensive but becomes actually cheaper than the FD scheme if the CPU time
per DOF and iteration is considered. However, the time step ∆t per iteration
is much greater for the structured grid because of a less restrictive stability
condition and a more regular grid. Note that the edge spacing ∆h = 0.2 of
the coarsest FD grid is the same as the interval size ∆h = 0.2 for the surface
triangles on the sphere. Last but not least, a comparison between the two do-
main decomposition calculations (Table 3.7) demonstrates the benefit of using
high order methods: The structured far field grid covers almost 97% of the
total domain volume. By decreasing the resolution from 10 PPW to 5 PPW,
the calculation effort is reduced by a factor of almost 1

16
th! This is due to

the two times bigger time step on the coarser grid, furthermore only 1
23 of the

grid points are needed. At the same time, the sound waves are still resolved
well by the high order method, while a lower order method, for example O4,
begins to show dissipation errors for 5 PPW at the outer regions of the domain
(Fig. 3.15).
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Domain O PPW tCP U [s]
Elem·Iter

tCP U [s]
DOF ·Iter

tCP U [s]
DOF ·tSim

Unstr. 1 4 ≈ 15 8.37E-05 4.19E-06 2.52E-03

Str. 1 8 10 1.39E-05 1.39E-05 4.64E-04

Domain decomposition, 10 PPW in the structured domain.

Domain O PPW tCP U [s]
Elem·Iter

tCP U [s]
DOF ·Iter

tCP U [s]
DOF ·tSim

Unstr. 1 4 ≈ 15 8.37E-05 4.19E-06 2.36E-03

Str. 1 8 5 1.53E-05 1.53E-05 2.55E-04

Domain decomposition, 5 PPW in the structured domain.

Domain O PPW tCP U [s]
Elem·Iter

tCP U [s]
DOF ·Iter

tCP U [s]
DOF ·tSim

Unstr. 1 4 ≈ 15 6.94E-05 3.47E-06 2.06E-3

Single ADER-DG domain.

Table 3.6: Efficiency factors for the domain decomposition and the single un-
structured domain calculation.
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Domain tCPU [s] tCPU [%] Vol. Vol.[%] #Elem #DOF #Iter ∆t ∆t
∆tmin

Unstr. 1 9941 25.5 63.2 3.1 9874 197480 12024 1.664E-03 1

Str. 1 18068 46.4 1948.6 96.9 1948625 1948625 668 2.995E-02 18

Coupling 10958 28.1 - - - - - -

Total 38968 100.0 2011.8 100.0 1958499 2146105 - - -

Domain decomposition, 10 PPW in the structured domain.

Domain tCPU [s] tCPU [%] Vol. Vol.[%] #Elem #DOF #Iter ∆t ∆t
∆tmin

Unstr. 1 9316 72.1 63.2 3.1 9874 197480 12024 1.664E-03 1

Str. 1 1301 10.1 1948.6 96.9 255362 255362 334 5.989E-02 36

Coupling 2305 17.8 - - - - - -

Total 12922 100.0 2011.8 100.0 265236 462716 - - -

Domain decomposition, 5 PPW in the structured domain.

Domain tCPU [s] tCPU [%] Vol. Vol.[%] #Elem #DOF #Iter ∆t ∆t
∆tmin

Unstr. 1 141394 100.0 1432.6 100.0 171687 3433740 11863 1.686E-03 1

Single ADER-DG domain.

Table 3.7: Statistics for the domain decomposition and the single unstructured domain calculation.
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3 Numerical Examples

Figure 3.13: A cut-out of the simulation domain including the structured and
unstructured mesh as well as a slice of the fluctuation pressure
contour plot. The structured mesh is shown in the 5 PPW
configuration.
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3.3 Sphere Scattering

Figure 3.14: Contour plot of the fluctuation pressure in the xy-plane.
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Figure 3.15: Directivity plots of the RMS fluctuation pressure.
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3.4 Supersonic Free Jet

The applicability of the coupling framework to real life problems shall be
demonstrated in this last example. The chosen scenario, a gas ejector with
a supersonic free jet at Ma = 1.4, simulates a common pneumatics component
in industrial applications. Both experimental and numerical reference data are
available (Schönrock [87]).
The setup consists of a round duct with an inner diameter of 4.6mm. Four
kidney-shaped orifices, the actual outlets, are located on its bottom at z =
0mm (Figs. 3.17- 3.18). For the simulation, each orifice extends to a depth
of z = −0.5mm, where the following inflow conditions are prescribed: Air
(γ = 1.4, R = 287.058 J

kg·K
) enters the domain with a velocity in z-direction

(nozzle axis) of w = 406.712m
s

, a pressure of 160000Pa and a temperature
of 210K. This results in a local Mach number of Ma = 1.4 and a density of
ρ = 2.654 kg

m3 . As the ambient conditions are ρ∞ = 1.188 kg
m3 , u∞ = v∞ = w∞ =

0.0m
s

and p∞ = 100000Pa, the inflow immediately forms under-expanded jets.
The Reynolds number based on the width of the four orifices is Re = 30000
(µ = 1.831 · 10−5 kg

m·s
, Pr = 0.72).

The consequence is a flow field that is dominated by a system of shock cells
inside the duct, breaking up outside into a heavily fluctuating flow with strong
acoustic efficiency. Here, the simulation of the emitted noise must capture non-
linear wave propagation and the acoustic feedback from the walls. The problem
demands a great deal of the simulation: Due to the delicate geometry and the
small-scale shock cells, the grid spacing needs to be very fine in the vicinity of
the nozzle. Along with high jet velocities, this is reflected in very small time
steps. The overall number of elements becomes very large, although a cal-
culation with DNS resolution is not considered (Kolmogorov scale ∼ 10−7m,
Schönrock [87]). It shall be emphasized at this point, that no subgrid-scale
model was employed but the numerical viscosity of the solvers and a coarser
grid. Figures 3.16- 3.18 illustrate the decomposition of the domain into three
different volumes: An unstructured tetrahedral mesh (∆h ≈ 0.8 · 10−4m, 2.06
million cells) is employed in the nozzle area. The structured core region of the
outside flow requires also fine elements for the resolution of shear layers and
vortices (∆h = 1.0 · 10−4m, 9 million elements), while the extended size of the
surrounding acoustic domain results in 25 million hexahedrons despite a coarser
mesh (∆h = 2.0 · 10−4m). Table 3.8 provides details about the domain param-
eters and the employed methods. In all domains, the Navier-Stokes equations
are solved with second order FV methods (WENO reconstruction with param-
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3.4 Supersonic Free Jet

eters λC = 104, ǫ = 1.0, r = 3). The HLLE flux is employed and the CFL
number is set to 0.25 for the structured domains and to 0.5 for the unstruc-
tured one. As the grid resolution is quite high, only first order interpolation is
used between the connected volumes. At the outer boundaries of the domain, a
sponge layer (section 3.3) is applied with power s = 2 and different thicknesses
at the lower (L = 0.003m), lateral (L = 0.006m) and upper side (L = 0.010m).
The calculation was performed for a simulation time of 0.8ms in 24h on the BW-
GRID cluster of the High Performance Computing Center Stuttgart (HLRS).
A total of 1024 cores (two Intel Xeon 5440 2.83GHz quad-core CPUs on 128
nodes) were distributed to the unstructured domain (512 cores) and to the
structured ones (256 cores each). The accumulated CPU time was therefore
tCPU,acc = 24576CPUh. The different MPI partitions in each subdomain can
be seen in the cut through the overall volume in Fig. 3.16.
The contour plot in Fig. 3.19 clearly shows the propagation of the emitted
sound waves into the far field. At two different points inside the domain
(P1 = (0.01697m, 0.0m, 0.004m), P2 = (0.01697m, 0.0m, 0.06m)), the pressure
signal was picked up and converted to SPL spectra by a non-averaging FFT
(Fast Fourier Transformation). The domain decomposition results for the audi-
ble range are in good agreement with the experimental and numerical reference
data by Schönrock (Figs. 3.20- 3.21). Note that the experimental recordings
were frequency averaged by the measurement system over a longer time. The
low frequencies require a larger sample interval ∆TSample, as the total sim-
ulation time of 0.8ms corresponds to a frequency of 1.25kHz. As only the
periodical part of the data set can be properly evaluated (beginning at about
t = 0.35ms for P1 and t = 0.59ms for P2, where TSample starts), the threshold
for reliable FFT results lies considerably above this value. Moreover, a careful
parameter study for the upper sponge region is expected to improve the results
for P2, which is close to the base flow and thus directly affected by a non-ideal
outflow condition. Nevertheless, the simulation predicts the OASPL (Overall
Sound Pressure Level) in both points very well.
For this calculation, which has not been especially optimized with regard to
accuracy or efficiency, the results are considered quite respectable. Here, a
thorough examination of the domain parameters and coupling options (grid
size, order of the methods, interpolation order, grid size ratio) has the poten-
tial to increase the quality of the solution, while reducing the computational
effort at the same time. Furthermore, compromises had to be made for the
distribution of computational resources to the subdomains: While the expen-
sive unstructured part should have gotten as many processors as possible, the
cheaper but bigger structured part underlied memory limitations (2GB per
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core on the considered system) and was forced to use more CPUs than for a
well-balanced computation. Hence, some processors carried a higher computa-
tional load, others managed to complete their time stepping earlier and had to
wait for the data exchange or for MPI information. Note that the percentage of
tCPU,acc in Table 3.8 refers in case of the subdomains to the CPU time actually
spent in the solver routines, while the fraction of the data exchange contains
the overall coupling effort of all domains plus the idling times spent waiting for
other partitions to synchronize. Thus, an unbalanced CPU distribution always
results in a higher coupling overhead.
Regardless of these restrictions, the performance is convincing: Schönrock esti-
mates 1400 CPU days per millisecond simulation time for his LES calculations
(ANSYS CFX ), which is close to the 1024 CPU days per 0.8ms for the do-
main decomposition. It is stressed however, that a much larger number of
finite volume cells (totalling 36 million) were calculated with a robust WENO
scheme and no simplifications exploiting the symmetrical geometry were made
(Schönrock: Half-model with 3.38 million elements). Last but not least, the
problem is a good candidate for a distributed computing approach as examined
in section 2.6.2: While the unstructured part around the nozzle would still be
run on a parallel cluster with scalar CPUs, the Cartesian far field domains
perform much better on vector architectures (about a magnitude for the NEC-
SX8, see Table 2.6 in section 2.1.4). A direct noise computation of the audible
spectrum could then be realized for a far bigger volume, for example in a 1m3

cube.

Domain Method O ∆t ∆t
∆tmin

#Elem #Iter

Unstr. 1 Rec-FV 2 4.548E-09 1 2057518 173768

Str. 1 STE-FV 2 3.184E-08 7 9 · 106 24821

Str. 2 STE-FV 2 6.368E-08 14 25 · 106 12410

Domain Outer Dimensions [m] Vol.[%] tCPU,acc [%]

Unstr. 1 [−0.0050, +0.0050]2 × [−0.0050,−0.0110] 0.55 43.82

Str. 1 [−0.0075, +0.0075]2 × [−0.0050,−0.0350] 3.95 15.06

Str. 2 [−0.0250, +0.0250]2 × [−0.0050,−0.0750] 95.50 4.38

Coupling - - 36.74

Table 3.8: Domain parameters and statistics.
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3.4 Supersonic Free Jet

Figure 3.16: Contour plot of ρ in the total simulation area at t = 0.8ms. A
slice in the xz-plane at y = 0.0m is shown. The lines depict the
edges of the MPI partitions in the subdomains.
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Figure 3.17: Close-up of the nozzle flow and the different grids.

Figure 3.18: A cut-out of the nozzle geometry. On top, MPI partitions of
the fine structured core region are shown.

154
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Figure 3.19: Contour plot of the emitted sound waves (ρ depicted).
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Figure 3.20: SPL spectra at P1 = (0.01697m, 0.0m, 0.004m).
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Figure 3.21: SPL spectra at P2 = (0.01697m, 0.0m, 0.06m).
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4 Conclusions

A domain decomposition approach for the direct simulation of aeroacoustic
problems has been developed and implemented in a coherent code framework.
The basic concept is to combine different numerical methods, equations, grids
and time steps for a greater efficiency. It is of secondary importance for the
domain decomposition philosophy how evolved and thus complex the single
solvers in the subdomains are, i.e. if they feature local time stepping algo-
rithms, dynamic grid adaptation and so on. In fact, an increase in computa-
tional performance can already be realized by exploiting the basic properties
of different schemes.
The coupling approach connects different classes of methods (DG, FV, FD) on
structured and unstructured grids for the solution of the Navier-Stokes, Euler
and linearized Euler equations. The optimal time step can be chosen in each
subdomain by employing a subcycling technique. The numerical flux at the
interfaces may be discontinuous, while reflections at the coupling boundaries
remain very small if the grids are connected in a reasonable fashion. High
order convergence rates are maintained globally if the order of the interpola-
tion procedure is at least equal to the order of accuracy in the subdomains.
No significant spurious effects arise from high frequency waves traveling onto
coarse grids which cannot resolve their wavelength. Conveniently, these waves
are filtered out automatically. Various numerical examples demonstrated, that
the coupling approach is especially suitable for far field computations with em-
bedded complex geometries.
A certain basic knowledge of the occurring flow and the acoustic phenomena is
the premise for the decomposition method. This means, that a preselection of
appropriate parameters (solvers, equations, grid spacing, time step ratios, inter-
polation and domain order, etc.) is required for every problem that ought to be
solved. It must be kept in mind that the chosen parameters should harmonize
and match the desired accuracy and resolution of the phenomena. Otherwise,
reflections will occur. Some thoughts need to be put into the manual arrange-
ment of the subdomains. Because the approach is basically non-overlapping,
the amount of exchanged coupling data scales mainly with the surface of the
domain boundaries, which should therefore be as compact as possible. This re-
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sembles the requirements for grid partitioning for parallel computations. Note
that due to the non-overlapping nature of the decomposition and in contrast to
traditional overset grid methods, the order of interpolation is not an important
factor during the generation of the subdomains. This facilitates the subsequent
adaptation of the domain order. The only limitation here is, that ghost ele-
ments must not reach into a solid geometry. In order to ease the pre-processing,
an auto-adaptive decomposition algorithm based on an error-estimator that
dynamically locates and distributes coupling boundaries is imaginable, yet in-
tricate. Because the calculation domain is composed of domains with very
different properties, the implementation of an effective load balancing becomes
more complex for parallel computations than for a stand-alone code. On the
other hand, one is rewarded with the option to distribute the different domains
to separate and for each method optimal computer architectures.
Changing from nonlinear to linearized equations is permitted only, when all
nonlinear effects have vanished. This implies, that no discontinuities are per-
mitted to cross such boundaries. Strictly speaking, this is also the case for
an interface between nonlinear domains, as the current implementation uses
central stencils whenever possible for the interpolation. Nevertheless, the su-
personic free jet example proved, that the coupling method remains robust even
in scenarios where strongly nonlinear flow features pass the domain interfaces.
It is emphasized, that no special grid-to-grid filtering to remove oscillations was
applied in this case. However, in order to adapt the interpolation procedure
better to highly nonlinear effects, either a filtering operator or a WENO-like
method could be added. The latter may be directly extracted from the STE-
FV and Rec-FV schemes.
The available Navier-Stokes solvers in the KOP3D framework are only de-
signed for DNS computations, as no turbulence modeling is included so far.
The coupling with RANS (Reynolds-averaged Navier-Stokes) solvers or, given
the unsteady nature of aeroacoustic problems, LES (Large Eddy Simulation)
methods raises new questions and makes higher demands on a decomposition
algorithm, as additional turbulence parameters must be exchanged where re-
quired. Finally, the coupling framework is by nature not restricted to CFD
and CAA. It would be interesting to explore, how to fit in other equations and
schemes, such as the magnetohydrodynamic (MHD) and Maxwell equations,
the particle in cell (PIC) method, etc., enabling simulations in a wide range of
disciplines.
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A Convergence Tables

O2 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.04737E-02 2.29786E-02 3.49250E-02 – – –

#20 3.19661E-03 3.56202E-03 5.82578E-03 2.68 2.69 2.58

#30 1.10493E-03 1.23906E-03 2.03622E-03 2.62 2.60 2.59

#40 5.40552E-04 6.08576E-04 1.00027E-03 2.49 2.47 2.47

#50 3.14933E-04 3.54696E-04 5.84191E-04 2.42 2.42 2.41

O3 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 1.61282E-02 1.80764E-02 2.77849E-02 – – –

#20 2.11114E-03 2.33846E-03 3.85006E-03 2.93 2.95 2.85

#30 6.23669E-04 6.94327E-04 1.15041E-03 3.01 2.99 2.98

#40 2.63210E-04 2.92626E-04 4.84141E-04 3.00 3.00 3.01

#50 1.34543E-04 1.49524E-04 2.47503E-04 3.01 3.01 3.01

O4 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 1.91198E-03 2.25226E-03 4.19146E-03 – – –

#20 8.69657E-05 1.04884E-04 1.82361E-04 4.46 4.42 4.52

#30 1.48744E-05 1.80055E-05 3.04336E-05 4.36 4.35 4.42

#40 4.38057E-06 5.32006E-06 8.83494E-06 4.25 4.24 4.30

#50 1.73429E-06 2.09807E-06 3.48888E-06 4.15 4.17 4.16

Table A.1: STE-FV, 2D, central reconstruction: Convergence rates and error
norms.
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O5 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.05273E-03 2.30478E-03 4.14604E-03 – – –

#20 7.34918E-05 8.76462E-05 1.73181E-04 4.80 4.72 4.58

#30 9.95859E-06 1.19068E-05 2.36087E-05 4.93 4.92 4.91

#40 2.38565E-06 2.85105E-06 5.61898E-06 4.97 4.97 4.99

#50 7.83453E-07 9.37029E-07 1.85745E-06 4.99 4.99 4.96

O6 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 3.61850E-04 4.14211E-04 7.37854E-04 – – –

#20 4.38007E-06 4.98573E-06 8.51183E-06 6.37 6.38 6.44

#30 2.99752E-07 3.43619E-07 5.88158E-07 6.61 6.60 6.59

#40 4.55975E-08 5.25603E-08 9.18576E-08 6.55 6.53 6.45

#50 1.08539E-08 1.25344E-08 2.21599E-08 6.43 6.42 6.37

O7 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 3.69265E-04 4.34302E-04 7.25702E-04 – – –

#20 4.37934E-06 4.95399E-06 8.41545E-06 6.40 6.45 6.43

#30 2.73041E-07 3.08513E-07 5.25292E-07 6.84 6.85 6.84

#40 3.74378E-08 4.20525E-08 7.10669E-08 6.91 6.93 6.95

#50 7.90692E-09 8.89710E-09 1.50083E-08 6.97 6.96 6.97

O8 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 1.14048E-04 1.29070E-04 1.86552E-04 – – –

#20 3.69120E-07 4.07561E-07 6.37447E-07 8.27 8.31 8.19

#30 1.08041E-08 1.20405E-08 1.89161E-08 8.71 8.69 8.68

#40 8.82524E-10 9.84998E-10 1.56025E-09 8.71 8.70 8.67

#50 1.28076E-10 1.43008E-10 2.28300E-10 8.65 8.65 8.61

Table A.2: STE-FV, 2D, central reconstruction: Convergence rates and error
norms (continuation).
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O2 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.05430E-02 2.30661E-02 3.50576E-02 – – –

#20 3.19998E-03 3.56533E-03 5.83050E-03 2.68 2.69 2.59

#30 1.10554E-03 1.23948E-03 2.03586E-03 2.62 2.61 2.60

#40 5.40721E-04 6.08669E-04 1.00006E-03 2.49 2.47 2.47

#50 3.14988E-04 3.54724E-04 5.84136E-04 2.42 2.42 2.41

O3 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 1.61190E-02 1.80658E-02 2.77692E-02 – – –

#20 2.10978E-03 2.33695E-03 3.84759E-03 2.93 2.95 2.85

#30 6.23261E-04 6.93872E-04 1.14966E-03 3.01 2.99 2.98

#40 2.63036E-04 2.92433E-04 4.83819E-04 3.00 3.00 3.01

#50 1.34454E-04 1.49426E-04 2.47339E-04 3.01 3.01 3.01

O4 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 1.91476E-03 2.25526E-03 4.20008E-03 – – –

#20 8.69411E-05 1.04836E-04 1.82354E-04 4.46 4.43 4.53

#30 1.48641E-05 1.79904E-05 3.04074E-05 4.36 4.35 4.42

#40 4.37658E-06 5.31481E-06 8.82594E-06 4.25 4.24 4.30

#50 1.73255E-06 2.09585E-06 3.48511E-06 4.15 4.17 4.16

O5 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.05219E-03 2.30406E-03 4.14394E-03 – – –

#20 7.34859E-05 8.76322E-05 1.73162E-04 4.80 4.72 4.58

#30 9.95720E-06 1.19055E-05 2.36058E-05 4.93 4.92 4.91

#40 2.38541E-06 2.85077E-06 5.61826E-06 4.97 4.97 4.99

#50 7.83374E-07 9.36941E-07 1.85729E-06 4.99 4.99 4.96

O6 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 3.61942E-04 4.14331E-04 7.38920E-04 – – –

#20 4.38282E-06 4.99002E-06 8.52943E-06 6.37 6.38 6.44

#30 3.00164E-07 3.44128E-07 5.89108E-07 6.61 6.60 6.59

#40 4.56838E-08 5.26697E-08 9.20674E-08 6.54 6.52 6.45

#50 1.08815E-08 1.25669E-08 2.22203E-08 6.43 6.42 6.37

Table A.3: STE-FV, 2D, WENO reconstruction (λC = 104, ǫ = 1.0, r = 3):
Convergence rates and error norms.
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O7 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 3.69553E-04 4.34513E-04 7.25768E-04 – – –

#20 4.37444E-06 4.94907E-06 8.40296E-06 6.40 6.46 6.43

#30 2.72718E-07 3.08083E-07 5.24510E-07 6.84 6.85 6.84

#40 3.73824E-08 4.19886E-08 7.09645E-08 6.91 6.93 6.95

#50 7.89423E-09 8.88315E-09 1.49822E-08 6.97 6.96 6.97

O8 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 1.14103E-04 1.29104E-04 1.86699E-04 – – –

#20 3.68132E-07 4.06514E-07 6.35193E-07 8.28 8.31 8.20

#30 1.07602E-08 1.19906E-08 1.88228E-08 8.71 8.69 8.68

#40 8.76811E-10 9.78821E-10 1.54896E-09 8.72 8.71 8.68

#50 1.26978E-10 1.41777E-10 2.26118E-10 8.66 8.66 8.62

Table A.4: STE-FV, 2D, WENO reconstruction (λC = 104, ǫ = 1.0, r = 3):
Convergence rates and error norms (continuation).
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O2 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.89796E-02 3.19857E-02 4.67351E-02 – – –

#20 5.48121E-03 6.13170E-03 8.83717E-03 2.40 2.38 2.40

#30 2.14337E-03 2.38771E-03 3.49701E-03 2.32 2.33 2.29

#40 1.10116E-03 1.23130E-03 1.85071E-03 2.32 2.30 2.21

#50 6.62561E-04 7.41668E-04 1.13465E-03 2.28 2.27 2.19

O3 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.06429E-02 2.29550E-02 3.65170E-02 – – –

#20 2.15897E-03 2.38665E-03 3.79602E-03 3.26 3.27 3.27

#30 5.80660E-04 6.41770E-04 1.02058E-03 3.24 3.24 3.24

#40 2.30140E-04 2.54239E-04 4.03856E-04 3.22 3.22 3.22

#50 1.13416E-04 1.25452E-04 1.99073E-04 3.17 3.17 3.17

O4 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.61263E-03 3.29318E-03 6.05422E-03 – – –

#20 1.36035E-04 1.59683E-04 2.99382E-04 4.26 4.37 4.34

#30 2.09447E-05 2.48848E-05 4.70280E-05 4.61 4.58 4.57

#40 5.71588E-06 6.82022E-06 1.29727E-05 4.51 4.50 4.48

#50 2.12462E-06 2.54718E-06 4.84394E-06 4.44 4.41 4.41

O5 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.65564E-03 3.36121E-03 5.46644E-03 – – –

#20 1.30879E-04 1.53088E-04 2.69909E-04 4.34 4.46 4.34

#30 1.84553E-05 2.12637E-05 3.75036E-05 4.83 4.87 4.87

#40 4.45264E-06 5.11490E-06 8.97910E-06 4.94 4.95 4.97

#50 1.46827E-06 1.68495E-06 2.94278E-06 4.97 4.98 5.00

O6 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 7.24230E-04 8.08338E-04 1.34210E-03 – – –

#20 1.10397E-05 1.24318E-05 2.02696E-05 6.04 6.02 6.05

#30 9.14009E-07 1.02881E-06 1.70329E-06 6.14 6.15 6.11

#40 1.59141E-07 1.78505E-07 2.94312E-07 6.08 6.09 6.10

#50 4.12626E-08 4.62842E-08 7.58737E-08 6.05 6.05 6.07

Table A.5: STE-FV, 3D, central reconstruction: Convergence rates and error
norms.
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O2 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.99052E-02 3.29686E-02 4.74475E-02

#20 5.50447E-03 6.17313E-03 8.91725E-03 2.44 2.42 2.41

#30 2.14467E-03 2.39373E-03 3.52853E-03 2.32 2.34 2.29

#40 1.10151E-03 1.23282E-03 1.85982E-03 2.32 2.31 2.23

#50 6.62655E-04 7.42180E-04 1.13789E-03 2.28 2.27 2.20

O3 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.06316E-02 2.29416E-02 3.64970E-02

#20 2.15750E-03 2.38506E-03 3.79328E-03 3.26 3.27 3.27

#30 5.80265E-04 6.41326E-04 1.01986E-03 3.24 3.24 3.24

#40 2.29975E-04 2.54060E-04 4.03555E-04 3.22 3.22 3.22

#50 1.13336E-04 1.25363E-04 1.98919E-04 3.17 3.17 3.17

O4 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.59387E-03 3.28205E-03 5.99269E-03

#20 1.35057E-04 1.58734E-04 2.96892E-04 4.26 4.37 4.34

#30 2.08589E-05 2.47982E-05 4.68616E-05 4.61 4.58 4.55

#40 5.69960E-06 6.80208E-06 1.29518E-05 4.51 4.50 4.47

#50 2.11902E-06 2.54103E-06 4.83567E-06 4.43 4.41 4.42

O5 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 2.65496E-03 3.36050E-03 5.46564E-03

#20 1.30867E-04 1.53072E-04 2.69843E-04 4.34 4.46 4.34

#30 1.84544E-05 2.12621E-05 3.74995E-05 4.83 4.87 4.87

#40 4.45230E-06 5.11454E-06 8.97842E-06 4.94 4.95 4.97

#50 1.46821E-06 1.68483E-06 2.94257E-06 4.97 4.98 5.00

O6 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

#10 7.19342E-04 8.02557E-04 1.33187E-03

#20 1.10285E-05 1.24217E-05 2.02945E-05 6.03 6.01 6.04

#30 9.15070E-07 1.03004E-06 1.70547E-06 6.14 6.14 6.11

#40 1.59479E-07 1.78878E-07 2.94855E-07 6.07 6.09 6.10

#50 4.13685E-08 4.64023E-08 7.60501E-08 6.05 6.05 6.07

Table A.6: STE-FV, 3D, WENO reconstruction (λC = 104, ǫ = 1.0, r = 3):
Convergence rates and error norms.
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# N∆h(Ω1/Ω2/Ω3)
∆t

∆tΩ1
Methods Grids

0 06/20/08 1/12/24 lin.DG/lin.FV/lin.FD unstr./str./str.

1 09/30/12 1/12/24 lin.DG/lin.FV/lin.FD unstr./str./str.

2 12/40/16 1/12/24 lin.DG/lin.FV/lin.FD unstr./str./str.

3 15/50/20 1/12/24 lin.DG/lin.FV/lin.FD unstr./str./str.

4 18/60/24 1/12/24 lin.DG/lin.FV/lin.FD unstr./str./str.

Ω1 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 1.18213E-04 1.30709E-04 1.83961E-04 – – –

1 2.51319E-05 2.78609E-05 3.94997E-05 3.82 3.81 3.79

2 7.90773E-06 8.79779E-06 1.24388E-05 4.02 4.01 4.02

3 3.22375E-06 3.57748E-06 5.05048E-06 4.02 4.03 4.04

4 1.54138E-06 1.71291E-06 2.41950E-06 4.05 4.04 4.04

Ω2 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 1.18213E-04 1.30709E-04 1.83961E-04 – – –

1 2.51319E-05 2.78609E-05 3.94997E-05 3.82 3.81 3.79

2 7.90773E-06 8.79779E-06 1.24388E-05 4.02 4.01 4.02

3 3.22375E-06 3.57748E-06 5.05048E-06 4.02 4.03 4.04

4 1.54138E-06 1.71291E-06 2.41950E-06 4.05 4.04 4.04

Ω3 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 1.21881E-04 1.33810E-04 1.85046E-04 – – –

1 2.62056E-05 2.86817E-05 3.88380E-05 3.79 3.80 3.85

2 8.20807E-06 9.02662E-06 1.23395E-05 4.04 4.02 3.99

3 3.31588E-06 3.65675E-06 5.03636E-06 4.06 4.05 4.02

4 1.58032E-06 1.74552E-06 2.41555E-06 4.06 4.06 4.03

Table A.7: Domain Decomposition, 2D, O4: Convergence rates, error norms,
grid properties, subcycles and methods for the planar wave case.
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Ω1 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 7.07886E-04 7.83087E-04 1.13128E-03 – – –

1 4.82407E-04 5.35710E-04 7.62069E-04 0.95 0.94 0.97

2 3.51389E-04 3.90166E-04 5.56204E-04 1.10 1.10 1.09

3 2.77576E-04 3.08359E-04 4.37229E-04 1.06 1.05 1.08

4 2.30420E-04 2.56031E-04 3.78102E-04 1.02 1.02 0.80

Ω2 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 6.92664E-04 7.69368E-04 1.08723E-03 – – –

1 4.82993E-04 5.35854E-04 7.61952E-04 0.89 0.89 0.88

2 3.51458E-04 3.89742E-04 5.52335E-04 1.11 1.11 1.12

3 2.77682E-04 3.08516E-04 4.37168E-04 1.06 1.05 1.05

4 2.30467E-04 2.55946E-04 3.61976E-04 1.02 1.02 1.04

Ω3 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 6.60394E-04 7.27190E-04 1.04540E-03 – – –

1 4.75237E-04 5.18690E-04 7.23677E-04 0.81 0.83 0.91

2 3.49740E-04 3.85889E-04 5.56581E-04 1.07 1.03 0.91

3 2.77393E-04 3.06725E-04 4.43620E-04 1.04 1.03 1.02

4 2.31267E-04 2.55185E-04 3.62127E-04 1.00 1.01 1.11

Table A.8: Domain Decomposition, 2D, O4: Convergence rates and error
norms for the planar wave case, without applying the Cauchy-
Kovalevskaja procedure to the coupling cells.
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# N∆h(Ω1/Ω2)
∆t

∆tΩ1
Methods Grids

0 1/10 1/6 lin.DG/lin.FD unstr./str.

1 2/20 1/6 lin.DG/lin.FD unstr./str.

2 3/30 1/6 lin.DG/lin.FD unstr./str.

3 4/40 1/6 lin.DG/lin.FD unstr./str.

4 5/50 1/6 lin.DG/lin.FD unstr./str.

Ω1 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 1.00371E-04 1.11256E-04 1.84834E-04 – – –

1 1.11161E-06 1.25587E-06 2.31053E-06 6.50 6.47 6.32

2 4.34141E-08 4.83441E-08 9.69821E-08 8.00 8.03 7.82

3 4.35598E-09 4.85757E-09 9.91102E-09 7.99 7.99 7.93

4 7.47196E-10 8.32115E-10 1.62499E-09 7.90 7.91 8.10

Ω2 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 8.94465E-05 1.02979E-04 1.59922E-04 – – –

1 1.16003E-06 1.31963E-06 2.54569E-06 6.27 6.29 5.97

2 4.41855E-08 4.90505E-08 8.21517E-08 8.06 8.12 8.47

3 4.40212E-09 4.88321E-09 7.56169E-09 8.02 8.02 8.29

4 7.50843E-10 8.36011E-10 1.32063E-09 7.93 7.91 7.82

Table A.9: Domain Decomposition, 2D, O8: Convergence rates, error norms,
grid properties, subcycles and methods for the planar wave case.
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# N∆h(Ω1/Ω2)
∆t

∆tΩ1
Methods Grids

0 05/11 1/25 lin.DG/lin.FD unstr./str.

1 10/22 1/25 lin.DG/lin.FD unstr./str.

2 15/33 1/25 lin.DG/lin.FD unstr./str.

3 20/44 1/25 lin.DG/lin.FD unstr./str.

4 25/55 1/25 lin.DG/lin.FD unstr./str.

Ω1 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 3.77289E-06 4.17450E-06 6.10200E-06 – – –

1 2.25286E-07 2.50413E-07 3.59185E-07 4.07 4.06 4.09

2 4.37562E-08 4.85673E-08 7.07303E-08 4.04 4.05 4.01

3 1.36943E-08 1.52169E-08 2.19622E-08 4.04 4.03 4.07

4 5.57810E-09 6.19432E-09 8.94730E-09 4.02 4.03 4.02

Ω2 L1(p
′) L2(p

′) L∞(p′) OL1 OL2 OL∞

0 3.95460E-06 4.35040E-06 5.97122E-06 – – –

1 2.32878E-07 2.57918E-07 3.56685E-07 4.09 4.08 4.07

2 4.43935E-08 4.92285E-08 6.87019E-08 4.09 4.08 4.06

3 1.39280E-08 1.54456E-08 2.16409E-08 4.03 4.03 4.02

4 5.65727E-09 6.27489E-09 8.84977E-09 4.04 4.04 4.01

Table A.10: Domain Decomposition, 3D, O4: Convergence rates, error
norms, grid properties, subcycles and methods for the planar
wave case.
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# N∆h(Ω1/Ω2)
∆t

∆tΩ1
Methods Grids

0 06/18 [1/14, 1/8] nonlin.DG/nonlin.FV unstr./str.

1 09/27 [1/14, 1/8] nonlin.DG/nonlin.FV unstr./str.

2 12/36 [1/14, 1/8] nonlin.DG/nonlin.FV unstr./str.

3 15/45 [1/14, 1/8] nonlin.DG/nonlin.FV unstr./str.

4 18/54 [1/14, 1/8] nonlin.DG/nonlin.FV unstr./str.

Ω1 L1(ρE) L2(ρE) L∞(ρE) OL1 OL2 OL∞

0 1.01685E+00 1.96658E-01 1.50482E-01 – – –

1 3.42911E-01 6.87289E-02 4.84860E-02 2.68 2.59 2.79

2 1.29988E-01 2.72806E-02 1.90748E-02 3.37 3.21 3.24

3 5.61519E-02 1.18841E-02 8.06800E-03 3.76 3.72 3.86

4 2.75682E-02 5.82477E-03 3.85123E-03 3.90 3.91 4.06

Table A.11: Domain Decomposition, 2D, O4: Convergence rates, error
norms, grid properties, subcycles and methods for the Shu vortex
case.
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# N∆h(Ω1/Ω2)
∆t

∆tΩ1
Methods Grids

0 09/15 1/25 nonlin.DG/lin.FD unstr./str.

1 12/20 1/25 nonlin.DG/lin.FD unstr./str.

2 15/25 1/25 nonlin.DG/lin.FD unstr./str.

3 18/30 1/25 nonlin.DG/lin.FD unstr./str.

4 27/45 1/25 nonlin.DG/lin.FD unstr./str.

Ω1 L1(ρ) L2(ρ) L∞(ρ) OL1 OL2 OL∞

0 1.10750E-04 2.44962E-04 1.27112E-03 – – –

1 5.04587E-05 1.16428E-04 6.55195E-04 2.73 2.59 2.30

2 2.32009E-05 5.61826E-05 3.31358E-04 3.48 3.27 3.06

3 1.14153E-05 2.88341E-05 1.73547E-04 3.89 3.66 3.55

4 2.29637E-06 5.93430E-06 3.60376E-05 3.96 3.90 3.88

Table A.12: Domain Decomposition, 2D, O4: Convergence rates, error
norms, grid properties, subcycles and methods for the Gaussian
pulse case.
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# N∆h(Ω1/Ω2)
∆t

∆tΩ1
Methods Grids

0 05/11 1/25 nonlin.Rec-FV/lin.FD unstr./str.

1 10/22 1/25 nonlin.Rec-FV/lin.FD unstr./str.

2 15/33 1/25 nonlin.Rec-FV/lin.FD unstr./str.

3 20/44 1/25 nonlin.Rec-FV/lin.FD unstr./str.

4 25/55 1/25 nonlin.Rec-FV/lin.FD unstr./str.

Ω1 L1(ρ) L2(ρ) L∞(ρ) OL1 OL2 OL∞

0 1.35786E-04 2.86086E-04 3.07690E-03 – – –

1 2.19331E-05 7.43748E-05 1.38471E-03 2.63 1.94 1.15

2 4.35259E-06 1.72701E-05 3.26638E-04 3.99 3.60 3.56

3 1.39404E-06 5.54302E-06 1.19470E-04 3.96 3.95 3.50

4 5.83062E-07 2.30490E-06 4.26862E-05 3.91 3.93 4.61

Table A.13: Domain Decomposition, 3D, O4: Convergence rates, error
norms, grid properties, subcycles and methods for the Gaussian
pulse case.
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