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Abstract

This thesis examines the suitability of the Unified ModelingLanguage (UML) to establish

a central product model for multidisciplinary product dataintegration. Computer-aided

product design involves the use of specialized discipline-specific software applications in

order to model and simulate various product aspects. Dependencies between models are

thereby frequent as the same product information often appears redundantly in various

engineering models. In addition, dependencies exist due torelationships between distinct

features of various models. As a result, model modificationsfrequently require the up-

date of dependent models. Data consistency between models is achieved automatically

through model-to-model data exchange software.

The use of a central product model enables to reduce the required number of data

exchange connections. Central product models store productinformation which is spread

across several models and achieve data consistency throughdata exchange connections

between themselves and specific models as in a hub-and-spokenetwork. Central product

models are especially useful for automatic data consistency in design scenarios which

include a high number of inter-model dependencies and modelmodifications.

The integration of geometry and therefrom derived models such as structural analy-

sis or computational fluid dynamics models has already been successfully addressed in

numerous central product models. However, the multidisciplinary integration of more di-

verse models, such as geometric, software, controller and multibody system models, cur-

rently presents a challenge. Although several central product models have been developed

for multidisciplinary design, none has yet gained, in contrast to geometry-focused central

product models, wide acceptance nor reached the status of aninternational standard. The

unmanageable high number of diverse discipline- and application-specific modeling con-

cepts hinders the development of a standardized holistic central product representation.

This thesis investigates the possibility of establishing an interdisciplinary central prod-

uct model based on the common modular structure of models from various disciplines.

Most models which are edited with current state-of-the-artsoftware applications are com-

posed of modular components in order to support the exchangeand reuse of model infor-

mation. Models from different disciplines therefore sharecommon modeling concepts
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for the specification of modular model components. However,there is yet no overarching

modeling standard to describe the common characteristics of modular model components

from various disciplines.

Object-oriented modeling concepts currently mainly describe software modules called

objects. Object-oriented modeling concepts are generic and can be used to represent

modular components in general. The Unified Modeling Language (UML) has been since

its emergence in 1997 the de facto standard for object-oriented modeling.

This thesis examines the use of the object-oriented modeling concepts of the UML

to uniformly describe widely used application-specific geometric, dynamic and multi-

body system models in a central product model. Application-specific model information

was represented in UML through generic UML modeling concepts in combination with

lightweight UML extensions in the form of stereotypes. UML profiles regrouped stereo-

types which corresponded to a specific modeling application. The automatic translation

of UML model information into the specific models and vice versa was implemented in

order to test and validate the application-specific UML profiles.

The UML-based central product model was used in several testcases to automatically

generate consistent models for the simulation and evaluation of various product config-

urations. The test cases included models for the simulationof slider-crank mechanisms,

the evaluation of cabin pressure control systems, the design of conveyor system configu-

rations, the evaluation of satellite configurations and thegeneration of customized aircraft

geometry. The workflows within the test cases included the automatic creation and mod-

ification of UML models as well as the invocation of data exchange connections. The

workflows were described in executable UML activity diagrams or Java programs.

The thesis demonstrates that the UML can be used beyond conventional software

modeling to establish a central holistic product representation. The modeling concepts

of geometric, dynamic and multibody system models were translated mostly according

to one-to-one mappings into corresponding UML modeling concepts with their respec-

tive stereotype. As a result, the specific model informationis easily recognizable in the

UML-based central product model. Furthermore, the use of a UML-based central product

model is facilitated for the many modelers who are already familiar with the widespread

and standardized UML modeling language.



Kurzfassung

Die Dissertation untersucht die Eignung der Unified Modeling Language (UML) für

den Aufbau eines zentralen Produktmodells zur multidisziplinären Produktdatenintegra-

tion. Im rechnerunterstützten Produktentwurf werden spezialisierte disziplinspezifische

Software-Anwendungen zur Modellierung und Simulation vonverschiedenen Produkt-

aspekten verwendet. Abhängigkeiten zwischen Modellen treten häufig auf infolge der

redundanten Verteilung von Produktdaten über mehrere Modelle und der Beziehungen

zwischen verschiedenen Eigenschaften von unterschiedlichen Modellen. Änderungen an

einem Modell erfordern eine Aktualisierung von abhängigenModellen. Konsistenz zwis-

chen Daten aus unterschiedlichen Produktmodellen wird automatisch durch Datenaus-

tausch-Software sichergestellt.

Die Verwendung eines zentralen Produktmodells ermöglichteine Reduzierung der

Anzahl an Datenaustauschschnittstellen. Zentrale Produktmodelle speichern über mehrere

Modelle verteilte Produktinformationen und gewährleisten Datenkonsistenz, indem sie

mit spezifischen Modellen sternförmig vernetzt sind. Zentrale Produktmodelle sind von

besonderem Nutzen in Entwurfsszenarien, welche eine hohe Anzahl an Abhängigkeiten

zwischen Modellen sowie Modellanpassungen aufweisen.

Die Integration von geometrischen und davon abgeleiteten Produktmodellen wurde in

mehreren zentralen Produktmodellen erfolgreich durchgeführt. Allerdings stellt die In-

tegration von diverseren Produktmodellen, wie zum BeispielGeometrie-, Software-, Re-

gelung- und Mehrkörpersystem-Modellen, eine Herausforderung dar. Obwohl mehrere

zentrale Produktmodelle zur multidisziplinären Produkdatenintegration entworfen wor-

den sind, hat keins bis jetzt, im Gegensatz zu geometriefokussierten zentralen Produkt-

modellen, entweder eine breite Akzeptanz gefunden oder denStatus eines internationalen

Standards erreicht. Die unübersichtlich hohe Anzahl an unterschiedlichen disziplin- und

anwendungsspezifischen Modellierungskonzepten erschwert das Erstellen einer standar-

disierten ganzheitlichen zentralen Produktbeschreibung.

Die Dissertation untersucht einen Ansatz zur Erstellung eines interdisziplinären zen-

tralen Produktmodells basierend auf der gemeinsamen modularen Struktur von Modellen

aus unterschiedlichen Disziplinen. Die meisten Modelle, die mit modernen Software-
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Anwendungen erstellt worden sind, bestehen aus modularen Komponenten, um die Wie-

derverwendung und den Austausch von Modell-Informationenzu vereinfachen. Modelle

aus verschiedenen Disziplinen weisen deshalb gemeinsame Modellierungskonzepte auf,

um die Kapselung, Klassifikation und Interaktionen von modularen Modellkomponenten

zu beschreiben. Allerdings gibt es noch keinen domänenübergreifenden Modellierungs-

standard, um die gemeinsamen Eigenschaften von modularen Modellkomponenten aus

unterschiedlichen Disziplinen zu beschreiben.

Objektorientierte Modellierungskonzepte werden bis jetzt hauptsächlich zur Beschrei-

bung von Software-Modulen, die als Objekte bezeichnet werden, verwendet. Sie sind

generisch und können modulare Modellkomponenten im allgemeinen repräsentieren. Die

UML is seit 1997 ein weitverbreiteter Standard zur objektorientierten Modellierung.

Die Dissertation untersucht die Verwendung der objektorientierten UML-Modellie-

rungskonzepte für eine einheitliche Repräsentation von weitverbreiteten anwendungs-

spezifischen Geometrie-, Dynamik- und Mehrkörpersystem-Modellen. Anwendungsspez-

ifische Modellinformationen wurden im UML-Modell durch generische UML-Modellie-

rungskonzepte sowie leichtgewichtige UML-Erweiterungenin der Form von Stereotypen

repräsentiert. Anwendungsspezifische UML-Stereotypen wurden in UML-Profile zusam-

men gruppiert. Die automatische bidirektionale Übersetzung zwischen dem zentralen

UML-Modell und den spezifischen Modellen wurde zur Überprüfung und Validierung

der anwendungsspezifischen UML-Profile implementiert.

Das auf UML basierende zentrale Produktmodell wurde in mehreren Testfällen zur au-

tomatischen Generierung von konsistenten Modellen eingesetzt, um die Simulation und

Bewertung von unterschiedlichen Produktkonfigurationen zuermöglichen. Die Arbeits-

flüsse innerhalb der Testfälle beinhalteten die automatische Erstellung und Anpassung des

zentralen UML-Modells sowie den Aufruf der Datenaustauschschnittstellen. Sie wurden

in ausführbaren UML-Aktivitätsdiagrammen oder Java-Programmen beschrieben.

Die Dissertation zeigt, dass die UML über die reine Software-Modellierung hinaus

zur zentralen ganzheitlichen Produktrepräsentation verwendet werden kann. Die Mod-

ellierungskonzepte von Geometrie-, Dynamik- und Mehrkörpersystem-Modellen liessen

sich in den meisten Fällen durch eins-zu-eins Abbildungen in entsprechende UML-Model-

lierungskonzepte mit Stereotyp übersetzen. Dadurch lassen sich domänenspezifische

Modellinformationen im zentralen UML-Produktmodell leicht wiedererkennen. Zusät-

zlich fällt der Einsatz eines zentralen UML-Produktmodells vielen Modellierern, die mit

der weitverbreiteten und standardisierten UML Modellierungssprache schon vertraut sind,

leichter.



Chapter 1

Introduction

1.1 Product data consistency

The computer-aided design of multidisciplinary products involves the use of specialized

discipline-specific software applications in order to model and simulate various product

aspects. Dependencies between models are thereby frequentas the same product informa-

tion often appears redundantly in various engineering models. In addition, dependencies

between models exist due to relationships between distinctfeatures of various models.

A change in one model then requires the update of dependent models. The simulation

of models based on inconsistent data is meaningless and can lead to subsequent wrong

design decisions. The synchronization of models is therefore necessary.

As an example, the dependent models of a slider-crank mechanism are presented in

Fig. 1.1. The represented mechanism consists of a slider which can be displaced along

its track by applying a torque to the crank. A controller is responsible for computing

the torque in order to position the slider according to a specific target. The mechanism

is described by a 3D geometric model to specify the decomposition of the mechanism

in parts, a multibody system model to simulate the dynamic behavior of the mechanism

when a torque is applied to the crank and a controller model torepresent the control logic

and compute the torque. The inertial properties of the partssuch as mass and moments of

inertia are present redundantly in both the mechanism’s geometric and multibody system

models. Furthermore, the multibody system model is embedded in the controller model

in order to simulate the controlled motion of the mechanism.Due to these dependencies,

a change in the mechanism’s geometric model thus requires the subsequent update of the

mechanism’s multibody system model and a new simulation of the controlled motion to

validate the mechanism’s controller.
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Figure 1.1: Various dependent models of a controllable slider-crank mechanism

The manual update of models by engineers is an unproductive task. Models need to

be updated frequently if product requirements often changeor if many iterative design

modifications are required in order to reach an optimal design configuration. Further-

more, the synchronization of models may require the update of large amounts of data. In

the example of the slider-crank mechanism, the update of themultibody system model

based on a new geometric model involves the update of the initial position, orientation,

center of gravity, mass and moments of inertia of every moving part. Although the slider-

crank mechanism only consists of a few parts, the update of the multibody system model

according to a new geometric model therefore requires the update of many parameters.

The manual update of models by engineers is as a consequence error-prone and time-

consuming. Instead, a framework for automatic model updates is needed in order to

efficiently guarantee data consistency across various product models.

1.2 Central product models

Data consistency between models is achieved automaticallythrough model-to-model data

exchange software. The development and maintenance of eachspecific data exchange

connection represents a large effort. The use of a central product model enables to reduce

the required number of data exchange connections. A centralproduct model stores the

redundant product information which is spread across several models and achieves data

consistency between the specific models through data exchange connections between it-

self and the specific models as in a hub-and-spoke network. Asshown in Figure 1.2, the

bidirectional linking ofn specific models via a central product model requires only2n

connections while the equivalent direct linking of models needsn(n-1)connections. The
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scenario with a central product model is therefore preferable to the direct data exchange

between specific models whenn is greater than 3 as it involves fewer data exchange con-

nections to achieve data synchronization.

Data exchange connection/translator

Point-to-point exchange

Number of translators: n(n-1)

Specific model Central product model

Central product model

Number of translators: 2n

Figure 1.2: Inter-model data exchange: point-to-point or via a central product model

In addition, a central product model can represent information from different spe-

cific models and as a consequence describe inter-model dependencies. A central product

model can thus provide through its integrative role a holistic product overview of various

multidisciplinary dependencies. This is especially useful in large design projects in which

it is hard to keep track of all product subsystems and dependencies.

Furthermore, a central product model can be used to facilitate product customization.

Product aspects which are described in the central product model can be automatically

translated into specific models. It is thus more efficient to change product aspects once in

the central product model and subsequently automatically generate conforming specific

models than to individually customize several specific models.

The central product model can for example serve as a common product parameter

repository for the automatic update of specific model parameters. Due to inter-model

dependencies, parameter modifications in one model have to be forwarded to other mod-

els. The propagation of parameter modifications between models is directed since the

mapping of parameters between models is most often not bijective. As an example, the

moment of inertia parameter of a multibody system model may be computed from siz-

ing parameters of a geometric model but not vice versa as an infinite number of possible

sizing configurations may satisfy a specific moment of inertia. In general, a mapping

between vector spacesRi andRj is only bijective if their dimensions are equal (i = j).

However, parameter sets of different product models usually form vector spaces with dif-

ferent dimensions (i 6= j). As a result, mapping functions between parameters of distinct

product models are most often not bijective and parameters modifications in one model

are thus forwarded to other models according to a directed information flow from a higher
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dimensional into a lower dimensional design representation (i ≥ j). The central product

model can contain all relevant product parameters and form the design representation

with the highest dimensionality from which parameters in design representations with

lower dimensionality can be updated by means of a projectionas in Rudolph [141].

Most central product models are used for the design of specific types of products. A

prominent example is the Standard for the Exchange of Product Model Data (STEP) [64]

part AP214 [66] for automobile design. Another important example is the Industry Foun-

dation Classes (IFC) standard [22] for the design of buildings. Within the aerospace

industry, a European-funded project for example developeda product model for the mul-

tidisciplinary design and optimization of blended wing-body configurations [100]. This

central product model contained the full parametric description of the aircraft and was

linked with software tools for aerodynamic, structural, dynamic and flight mechanics

analysis [94].

Product models devoted to a single product category can moreeasily include detailed

product information but cannot be used for the design of other product types. The invested

effort in the implementation and maintenance of the data exchange software between the

specific models and the central product model is hence limited to the design of specific

product types. However, some central product models are generic enough to be employed

for the design of various product types. This is more advantageous since the same central

product model and associated data exchange software can be reused for the design of

products across a wide range of industry sectors. The existing central product models

vary according to the type of product information they can represent and in their support

for data exchange connections with state-of-the-art modeling applications.

Among the commercial solutions, Product Lifecycle Management (PLM) and Product

Data Management (PDM) systems include features for productmodeling and the man-

agement of multidisciplinary dependencies. A standardized approach is the STEP PDM

schema [161] for a common formal representation of product information in PDM sys-

tems. But PDM data models such as the STEP PDM schema do not intend to incorporate

the fine granularity of detailed models of various disciplines but instead mainly concen-

trate on the management of geometric parts and documents [153]. As a consequence, the

poor support for the integration of mechanic, electronic and software components is the

main weakness of existing PDM/PLM solutions [1].

Many product models have been developed in academia and in the industry to integrate

product information from several domains and enable their interdisciplinary exchange.

NIST’s Core Product Model (CPM) [155] is for example focused onproduct lifecycle

management and captures at an abstract level product features, artifacts, behaviors, spec-
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ifications and design rationale. Boeing’s Integrated Product Design Environment (IPDE)

for example formed a central product model to support multidisciplinary product devel-

opment by integrating CAD, CFD, FEA and manufacturability features [98]. Another ex-

ample is the collaborative design system called Constraint Linking Bridge (Colibri) [86]

which is used to solve dependencies between the parameters of mechatronic models such

as geometric, controller and hydraulic models.

Although several central product models have been developed for the multidisci-

plinary design of diverse products, no central product model has yet gained wide ac-

ceptance nor reached the status of an international standard. The unmanageable high

number of diverse discipline- and application-specific modeling concepts hinders the de-

velopment of a holistic central product representation. The adoption of a central product

model and its modeling concepts depends on the simplicity with which modelers can de-

scribe detailed dependencies between various product models. An example of detailed

dependencies between models is the required synchronization of the inertial properties

of the slider-crank mechanism which are situated at a detailed level within the respective

geometric and multibody system models (Fig. 1.3).
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Figure 1.3: Dependencies between models at a deep nested level

The central product model cannot represent various productaspects with the same

modeling concepts as specialized discipline- and application-specific models due to the

rich diversity of modeling concepts in the various engineering disciplines. Technical prod-

uct information is described in models which highly differ in terminology and represen-
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tation. A product’s three-dimensional geometric model is for example different than a

product’s two-dimensional block diagram of a multibody system model. In addition,

product models within the same engineering discipline can be dissimilar due to distinct

modeling paradigms. The geometric model of a three dimensional product can for exam-

ple be defined either based on a boundary representation or a constructive solid geometry

representation or both. Furthermore, models can differ dueto distinct application-specific

modeling concepts. The precise mathematical definition of aspline can for example vary

from one geometric modeling application to another. As a result, product information,

which is related to the computer-aided design of a multidisciplinary product, is scattered

over a wide range of heterogeneous discipline- and application-specific models. Central

product models can therefore not include all the different modeling concepts of various

discipline- and application-specific models.

Instead, central product models are comprised of general modeling concepts which

correspond to commonly used specific modeling concepts. Central product models can

thus represent numerous specific modeling concepts througha manageable set of generic

modeling concepts. Figure 1.4 shows exemplarily the one-to-one mapping between re-

spective specific and generic modeling concepts. The central product model can for exam-

ple include a modeling concept calledmodulein order to represent modular components

from different disciplines such aspartsof geometric models orblocksof multibody sys-

tem models. Similarly, the central product model can include generic modeling concepts

namedmodelandproperty to refer respectively to specific models and properties. The

generic modeling concepts can further be detailed through standardized extension mech-

anisms in order to have the same semantics as specific modeling concepts. The extension

of generic modeling concepts is for example widely used in model-based software engi-

neering [112] and recently also in model-based systems engineering [80].

Geometric model

Part

Part parameter

Generic modeling concepts of a 
central product model

Model

Module

Property

Specific modeling concepts of a 
geometric model

Specific modeling concepts of a 
multibody system model

Multibody system model

Block

Block attribute

Figure 1.4: Mapping between specific and generic modeling concepts

Dependencies between specific models can be described in thecentral product model

as dependencies between equivalent model representations. For instance, the dependency

between the rod part measure of the geometric model and the rod block property of the

multibody system model (Fig. 1.3) can be represented as a dependency between the re-

spective generic properties within the central product model (Fig. 1.5).
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Dependencies can involve information which is situated deep within the hierarchi-

cal structure of models. Deep nested model information is easily identified based on its

location within the model hierarchy. The identification of the rod part mass within the

geometric model in Figure 1.3 for example requires the reference to its containing rod

part and geometric model and can be described through the following scheme: Geometric

model/Rod part/Mass measure. In order to easily identify theequivalent deep nested spe-

cific model information in the central product model, the model information needs to be

represented in the central product model along with its hierarchical structure. The same

identification scheme based on the model hierarchy can then be used to identify informa-

tion in specific models and in the central product model. Thisfacilitates the identification

of deep nested model information in the central product model. In the previous example,

the rod part mass of the geometric model is therefore represented in the central product

model along with its owning rod part and geometric model. In other words, the deep

nested model information involved in dependencies is represented in the central product

model along with its modeling context.

Model - Geometric model

Module - Rod part

Property - Mass measure

Model - Multibody system model

Module - Rod block

Property - Mass attribute

Figure 1.5: Representation of specific model information anddeep nested inter-model
dependency within the central product model

The choice of generic modeling concepts of the central product model is critical for

the capability of the central product model to represent product information from a wide

range of disciplines and modeling applications and thus to represent detailed inter-model

dependencies. Discipline-specific engineers can only easily describe their specific prod-

uct information within the central product model if the modeling concepts of the specific

models can be mapped one-to-one to the generic modeling concepts of the central prod-

uct model. As an example, the limited generic modeling concepts of the central product

model in Fig. 1.4 are related to static artifacts and cannot easily represent flows of data

such as in the Simulink-specific dynamic system model of Fig.1.1. The central product

model would for example need to include an additionalinformation flowmodeling con-

cept in order to represent specific flows of data. The central product model thus needs

to include modeling concepts which are commonly used in models throughout various

disciplines.
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The integration of geometry and therefrom derived models such as structural analy-

sis or computational fluid dynamics models has already been successfully addressed in

numerous central product models. However, the integrationof models for the design

of mechatronic products, such as geometric, controller andmultibody system models,

currently presents a challenge due to their diversity [91].No central product model is

for example known to solve the interoperability problems ofthe slider-crank mechanism

scenario as shown in Fig. 1.1 and Fig. 1.3 as it involves multidisciplinary models and

the exchange of deep nested application-specific information. However, the integration

of multidisciplinary models in a central product model is ofutmost importance for the

design of mechatronic products ranging from aerospace engineering to modern manufac-

turing facilities.

The modeling concepts of the current central product modelsare either too discipline-

specific or too abstract. As a result, current central product models are either limited in

their capacity to represent information from a wide range ofdisciplines or in their ca-

pacity to capture deep nested application-specific model information. Discipline-specific

modeling concepts can easily represent detailed information such as specific deep nested

model information. However, they are restricted to specificdisciplines and are therefore

not suitable within a central product model for multidisciplinary product data integration.

On the other hand, abstract modeling concepts can representspecific modeling concepts

of various disciplines. However, the current central product models do not include enough

abstract modeling concepts to enable a simple one-to-one correspondence with modeling

concepts of various state-of-the-art application-specific models. Without a simple one-

to-one mapping between generic and specific modeling concepts, modelers do not easily

recognize their specific model information within the central product model and inter-

model dependencies are as a consequence hard to describe. The resulting loss of time in

using an incomprehensible central product model counterbalances its benefits and reduces

its usefulness.

As research in multidisciplinary product data integrationhas only been undertaken

recently, there is yet no official widely used term to refer toa “central product model”.

The term “integrated product model” is also often used synonymously. The neutral term

“central product model” is used throughout this thesis because it does not emphasize

a proprietary nor a specific type of model such as the Multidisciplinary Collaborative

Design Product Model [97] or the Core Product Model [97].
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1.3 UML-based product data integration

Although models from different engineering disciplines are highly diverse, most models

which are edited with current state-of-the-art software applications share common mod-

eling concepts in order to support modular design. The capacity to easily exchange and

reuse model components across several models promotes flexibility and productivity in

modeling. This avoids the time-consuming creation of models from scratch. Most models

therefore share common modeling principles in order to describe modular model compo-

nents. Common characteristics of modules include their in- and outputs, their hidden and

visible outward-facing information, as well as templates and instances.

A central product model should include modeling concepts todescribe modules and

their interactions as they are common to many state-of-the-art models from various disci-

plines. Engineers can then easily recognize their modular-structured model information

within the larger central product model. Current central product models do not include,

or only partly include modular modeling concepts which are increasingly used across

various engineering disciplines.

There is currently no widely accepted standard to representwith general overarching

concepts modules from different disciplines. However, by comparing the various engi-

neering disciplines, it is noticeable that modularity is especially important in software

engineering. Software design is an engineering disciplinein which changes and updates

are more frequent than in other engineering disciplines as software code is simpler to

modify than mechanical engineering components which require manufacturing and re-

sources. As a result, concepts to promote modular design aremore frequently used in

software engineering than in other engineering disciplines. Sophisticated programming

concepts have been developed in software engineering to support modularity, whereby

the most prominent are the object-oriented programming concepts. They consist of en-

capsulating variables and functions into modular units called objects. Graphical models

of object-oriented software represent the classification,communication and internal struc-

ture of software objects.

Although object-oriented modeling is currently mainly used for software modeling,

object-oriented modeling concepts are generic and can be used to describe various mod-

ular structures. As the term object already suggests, an object can represent a software

object as well as a physical component or a model component. Object-oriented modeling

is thus not restricted to software modeling. As object-oriented modeling concepts in-

clude modeling concepts amongst others to describe the composition, encapsulation and

templates of objects, the existing object-oriented modeling concepts can be reused in the

context of a central product model to describe modules from different engineering dis-



26 1.3 UML-based product data integration

ciplines. Both the central product model and the discipline-specific models would thus

share a common modular structure. Engineers from various disciplines could then more

easily recognize their discipline-specific model information within the central product

model.

As a central product model is to be used across several disciplines, it addresses many

parties and therefore requires standardization. Each typeof central product model requires

special training and dedicated conversion tools. A standardized central product model

would thus be desirable as it would eliminate the confusion caused by different central

product models. A standardized central product model wouldalso reduce the development

costs of data exchange software and thus contribute to higher interoperability.

The Unified Modeling Language (UML) has been since its emergence in 1997 the de

facto standard for object-oriented modeling and is widely used in software engineering. A

standardized central product model could therefore be built upon the already standardized

object-oriented modeling concepts of the UML. The redefinition of semantically similar

object-oriented modeling concepts would instead most probably lead over time to confu-

sion among engineers. Furthermore, the standardization process involved in the definition

of new object-oriented modeling concepts specifically for acentral product model would

likely, as any standardization process, be a lengthy process which would not necessar-

ily end up in a consensus among experts. Furthermore, as UML is already a widely

adopted standard in software engineering, the existing large software and documenta-

tion support for UML modeling would facilitate the introduction of a central UML-based

product model in an industrial context.

Thimm et al. [158] introduced the potential of modeling a product’s lifecycle by us-

ing the UML and presented the UML as the most promising candidate to use as a unique

language for all product lifecycle management stages as it offers an information-rich rep-

resentation which can be translated into other representations. Johansson and Detter-

felt [79] identified the UML as an interesting approach for the modeling of multidomain

system products due to its easy understandability by engineers with significantly different

backgrounds. However, the UML has not yet been investigatedin view of establishing a

central product model which can represent state-of-the-art model information from typical

mechatronic disciplines.

This thesis investigates the capability of the UML to describe application-specific

model information from various disciplines. The integration of geometric, controller and

multibody system models is required in many mechatronic products which abound in

aerospace, automobile or manufacturing products. The approach of reusing the UML

to support the representation of various models in a centralproduct model is examined
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by representing state-of-the-art application-specific geometric, controller and multibody

system models in a common UML-based central product model.

CATIA1, Simulink2 and SimMechanics3 are state-of-the-art software applications for

the respective authoring of geometry, controller and multibody system models. These ap-

plications were chosen among others to prove the integration capabilities of a UML-based

central product model. Further application-specific modelinformation was also integrated

into UML, including SolidWorks4 and VRML5 models for geometry, Excel6 for spread-

sheets and Matlab7 for constraint processing. Figure 1.6 summarizes the domains and

the applications which have been integrated within the UML-based product model. The

necessary UML lightweight extensions, in other words UML profiles, for a mapping of

the respective application-specific engineering models into a common UML-based central

product model are presented in the thesis.

UMLCATIA

SolidWorks

VRML

Geometry 

Multibody system 

Controller

Excel

Spreadsheet

Symbolic equations

Matlab

Simulink

SimMechanics

Figure 1.6: Integrated applications within the UML-based central product model

The mappings between the application-specific models and the UML-based central

product model were to a large extent bijective and thus easy to understand. This shows that

the UML already consists of a wide range of generic modeling concepts which can cover

a variety of specific modeling concepts from various disciplines. The UML has thus the

capacity to model not only software but also product information from various disciplines

involved in mechatronics including geometry, dynamic systems and multibody systems.

The thesis thus demonstrates that the UML can be used beyond conventional software

modeling in order to establish a standard central product model due to its object-oriented

modeling principles, openness and extensibility.

1DASSAULT SYSTEMES,http://www.3ds.com/products/catia/
2The MathWorks, Simulink,

http://www.mathworks.com/products/simulink/
3The MathWorks, SimMechanics,

http://www.mathworks.com/products/simmechanics/
4SolidWorks 3D CAD Design Software,http://www.solidworks.com/
5VRML Virtual Reality Modeling Language,http://www.w3.org/MarkUp/VRML/
6Excel,http://office.microsoft.com/en-us/excel/
7The MathWorks, Matlab,http://www.mathworks.com/products/matlab/

http://www.3ds.com/products/catia/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simmechanics/
http://www.solidworks.com/
http://www.w3.org/MarkUp/VRML/
http://office.microsoft.com/en-us/excel/
http://www.mathworks.com/products/matlab/
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The UML-based central product model was used in several projects in partnership

with academia and industry. The test cases included the evaluation of cabin pressure

control systems, the automated design of conveyor system configurations, the automated

evaluation of satellite configurations and the generation of customized geometric aircraft

models. The test cases enabled to validate the capabilitiesof the UML-based central prod-

uct model to represent model information from various mechatronic disciplines (geom-

etry, multibody dynamics, control), specify inter-model dependencies and automatically

translate information within the central product model into the specific models and vice

versa. Consequently, the UML-based central product model was used in all test cases to

generate various consistent sets of specific models which corresponded to various product

configurations. The UML-based central product model can thus be used, in combination

with specialized discipline-specific models, for the consistent design of customized mul-

tidisciplinary products.

1.4 Outline

The most common models for product data integration are presented in Chapter 2. The

prominent STEP standard is presented as well as some STEP-based product data inte-

gration approaches. Relevant industry sector standards forthe building and process plant

industries are reviewed. Ontologies are also described as they have contributed to product

data integration in various disciplines.

Chapter 3 presents the motivation to establish a central product model based on UML.

The necessity to capture information from a wide range of disciplines through generic

modeling entities is shown. Furthermore, the common decomposition of application-

specific models into modular components is presented as wellas the generic object-

oriented modeling concepts which can describe modular components from different dis-

ciplines. The UML as de facto object-oriented modeling standard is introduced and is

compared to other standardized generic modeling languagesin view of establishing a

central product model. The main UML modeling entities and the lightweight extension

mechanism in the form of stereotypes are demonstrated as well as the UML-based product

data integration approaches.

Chapters 4 to 6 describe the mapping of different application-specific models into

UML. The approach is demonstrated in detail for the design ofa slider-crank mechanism,

which is simple to understand, but whose application-specific models cover a large scope

of application-specific modeling concepts. Chapter 4 presents the UML extensions to

describe geometric models. The approach is shown with CATIA and SolidWorks, which
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are two state-of-the-art 3D geometry authoring tools, as well as with VRML, which is

a widely used format capable of representing static and animated 3D objects in freely

available viewers.

Chapter 5 shows the translation of dynamic system models intoUML. Simulink is

a software application used to model and simulate dynamic systems in general while

SimMechanics is specialized in the modeling and simulationof multibody systems. Both

applications use block diagrams. However, the modeling concepts in the block diagrams

are not identical. As a result, their mapping into UML occursdifferently. Chapter 5

presents the mapping of Simulink models into UML activity diagrams and SimMechanics

models into UML composite structure diagrams.

Chapter 6 describes the UML-based representation of productdata originating from

Excel spreadsheets. In order to achieve data consistency between the values from different

applications, symbolic equations within the central UML-based product model need to be

solved. Chapter 6 presents the UML-based description of symbolic equations and their

resolution through mathematical toolboxes. Complex computations need to refer to built-

in or user defined mathematical functions. The UML representation of Matlab-specific

functions is presented as well as their processing.

Chapter 7 provides a review of the possibilities to establishlinks within the UML-

based central product model in order to guarantee data consistency between UML-based

representations of different application-specific models. Chapter 7 also exhibits the execu-

tion of Java programs and UML activity diagrams in order to use the UML-based product

model in an automated design workflow. The frameworks that have been used to imple-

ment the translators between the UML-based central productmodel and the application-

specific models are described.

Chapter 8 provides a review of test cases which highlight the consistent design of

customized application-specific models by means of a UML-based central product model.

The case studies include models for the evaluation of cabin pressure control systems, the

automated design of customized conveyor systems, the automated evaluation of different

satellite configurations and the customizable generation of aircraft geometry.

Chapter 9 summarizes the results and presents an outlook.





Chapter 2

Models for product data integration

The sharing of product data on a large scale, such as in an international context between

participants from different companies and disciplines, isachieved through standardiza-

tion of product models. Standards for specific disciplines or industry sectors have there-

fore emerged. Section 2.1 presents the integration capabilities of the STandard for the

Exchange of Product Data (STEP) which is the most prominent standard in mechani-

cal engineering. Integration approaches based on STEP are also reviewed. In addition,

standards outside the scope of STEP have been developed for specific industry sectors.

Section 2.2 describes the Industry Foundation Classes (IFC) and ISO 15926 which are

respectively international standards for the building andprocess plant industries. Fur-

thermore, ontologies have been used in engineering design to formally describe product-

related knowledge as they are composed of simple subject-predicate-object expressions

which can easily describe relations between different heterogeneous product data sources.

The domain-independent ontology modeling languages are therefore employed for the

integration of product information from different systemsor disciplines. Ontologies and

ontology-based integration approaches are shown in Section 2.3.

2.1 STEP

Around 1980 several national standards, such as the “Initial Graphics Exchange Spec-

ification (IGES)” [162] from the United States, “Standard d’Echange et de Transfert

(SET)” [6] from France and “Verband der Automobilindustrie- Flächenschnittstelle (VDA-

FS)” [163] from Germany were defined to enable the exchange ofproduct geometry be-

tween different Computer-Aided Design (CAD) systems. To avoid incompatibility be-

tween the national standards, a multinational initiative was started in 1984 to develop a

single international standard. In 1994, the multinationaleffort resulted in the ISO 10303
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standard with the official title “Industrial automation systems and integration - Product

data representation and exchange”, known as the STandard for the Exchange of Product

Model Data (STEP). Section 2.1.1 presents the family of STEPstandards and their un-

derlying data modeling language EXPRESS. Section 2.1.2 shows the different integration

approaches based on the family of STEP standards.

2.1.1 Overview

Originally, the standard was to offer an Integrated ProductInformation Model (IPIM)

capable of capturing product data from several disciplines[82]. However, this undertaking

was too time- and resource-consuming. Rather, the development of the STEP standard

was driven by participants who had received funding to work on some particular aspects

of product data. Eventually, STEP did not become a single standard covering several

disciplines, as the name suggests, but a collection of standards for single disciplines which

are called Application Protocols (APs).

The development of a STEP AP consists of four major stages [51, 4]. The first de-

scribes the usage scenario of a STEP AP through an Application Actitity Model (AAM).

In a second stage, the requirements for the STEP AP are derived from the AAM and

specified in an Application Reference Model (ARM). The standardized data structure to

capture information from a specific discipline is describedin a third stage in an Appli-

cation Interpreted Model (AIM) based on the requirements ofthe ARM. In other words,

the AIM of a STEP AP specifies a schema according to which STEP data is to be struc-

tured in files. In a fourth stage, code is implemented based onthis schema to enable the

standardized exchange of product data.

The initial release of STEP in 1994 included two STEP APs which were AP201 for

“Explicit Draughting” and AP203 for “Configuration controlled 3D design of mechanical

parts and assemblies”. Currently, 18 STEP APs, listed in Table 2.1, have reached the

status of international standard and are used typically in the aerospace, automotive and

shipbuilding industries. However, not all STEP standards are equally well adopted and

supported by software vendors. At present, only parts of STEP AP203 and AP214, re-

spectively for product geometry and automotive product data, are implemented by major

CAD systems [151].

Each STEP AP specifies a schema in an Application InterpretedModel to define the

data structure of related STEP files. The schemas of STEP APs are defined using the

EXPRESS data modeling language [63] which is also a standard within ISO 10303. EX-

PRESS was developed in the 1980s because the existing data modeling languages of the

time such as the extended entity-relationship model (EER) had been conceived to repre-
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STEP APs Engineering Domain

AP201 Explicit draughting

AP202 Associative draughting

AP203 Configuration controlled 3D designs of mechanical parts and assemblies

AP204 Mechanical design using boundary representation

AP207 Sheet metal die planning and design

AP209 Composite and metallic structural analysis and related design

AP210 Electronic assembly, interconnect, and packaging design

AP212 Electrotechnical design and installation

AP214 Core data for automotive mechanical design processes

AP215 Ship arrangement

AP216 Ship moulded forms

AP218 Ship structures

AP224 Mechanical product definition for process planning using machining features

AP225 Building elements using explicit shape representation

AP227 Plant spatial configuration

AP232 Technical data packaging core information and exchange

AP239 Product life cycle support

AP240 Process plans for machined products

Table 2.1: STEP APs having reached the status of International Standard (as of Sep 2009)

sent business information and not product data. EXPRESS included new concepts such as

multiple inheritance and composition rules for the formal representation of product data

[39]. An EXPRESS model to define drawings composed of points and lines is represented

in Fig. 2.1 after an example in Peak et al. [131]. The point andline entities for example

have an inheritance relationship with the shape entity which is specified through the key-

word "SUBTYPE OF". As a result, the point and line entities inherit the label attribute of

the shape entity. An EXPRESS schema can also be described graphically according to the

EXPRESS-G notation. However, EXPRESS-G can only describe a subset of EXPRESS.

A STEP file is displayed in Fig. 2.1 left. The header of the file specifies the corre-

sponding file schema and can include additional metadata such as file name and author.

The file describes a drawing composed of two lines and three points. Each entity instance

has a number as identifier so that it can be referenced by otherentity instances. The at-

tribute values of an instance are listed next to the instancetype. The data is written in

STEP files in an ASCII-based syntax according to Part 21 of ISO 10303 [65]. Each STEP

file or EXPRESS model instance is therefore also called a Part 21 file.
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Instantiation 

Abstraction

FILE_SCHEMA (('simple_drawing'));

#10 = point ('PO1', 2.0, 2.0);

#20 = point ('PO2', 5.0, 2.0);

#30 = point ('PO3', 5.0, 4.0);

#110 = line ('LO1', #10, #20);

#150 = line ('LO2', #10, #30);

#200 = drawing('Design 2L3P', 

      (#10, #20, #30, #110, #150));

PO2PO1

PO3

LO1

LO2

x

y

STEP Part 21 File

SCHEMA simple_drawing;

ENTITY drawing;

 name : STRING;

 elements : SET [1:?] OF shape;

END_ENTITY;

ENTITY shape;

 label : STRING;

END_ENTITY;

ENTITY point SUBTYPE OF (shape);

 x : REAL;

 y : REAL;

END_ENTITY;

ENTITY line SUBTYPE OF (shape);

 end1 : point;

 end2 : point;

END_ENTITY;

END_SCHEMA;

STEP EXPRESS Schema

Figure 2.1: STEP Part 21 file and related EXPRESS schema (afterPeak et al. [131])

All STEP APs are defined based on common schemas from the Integrated Generic

Resources. These schemas for example describe the “fundamentals of product description

and support” (ISO10303 part 41 [71]) or the “geometric and topological representation”

(ISO10303 part 42 [72]).

Within the scope of STEP, an Application Programming Interface (API) to access

STEP P21 files was defined as part 22 of ISO10303 [68] and named Standard Data Ac-

cess Interface (SDAI). Several bindings exist to support the use of SDAI in programming

languages such as C++, C and Java. Each EXPRESS-defined STEP schema is associated

with a specific SDAI derived from the EXPRESS schema.

PDM

Schema

AP214 AP212
Core data for automotive

mechanical design processes

Electrotechnical design 

and installation

AP203 AP232

Configuration controlled 

3D design of mechanical 

parts and assemblies

Technical data packaging 

core information and exchange

Figure 2.2: STEP PDM schema common to four STEP APs (after Srinivasan [152])

The STEP PDM schema [161] is of particular importance as it iscommon to several

STEP domain-specific models. Independent of the domain, themanagement of docu-

ments is important in a design environment in which many engineers work on the same

files. Product Data Management (PDM) systems typically manage the traditional meta-
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data including document author, approver, version, history, and also geometric informa-

tion such as product assembly structures, part numbers and bills of material. The STEP

PDM schema is the result of ISO-based standardization efforts regarding PDM informa-

tion. As the management of documents is common to several domains, the STEP PDM

schema is a common subset of several STEP APs such as the AP203for “Configuration

controlled 3D design of mechanical parts and assemblies”, the AP212 for “Electrotechni-

cal design and installation”, the AP214 for “Core data for automotive mechanical design

processes” and the AP232 for “Technical data packaging coreinformation and exchange”

[152] (Fig. 2.2).

The effort required of a software vendor to support a complete STEP AP, in other

words to implement a translation between a software vendor format and a neutral STEP

AP format, might be too costly. STEP APs have therefore been decomposed in specific

subsets called Conformance Classes (CC) in order to facilitate the adoption by software

vendors of only certain parts of STEP APs. As a consequence, STEP currently enables

the exchange of subsets of domain-specific product data between applications.

The original vision of STEP aiming at replacing the direct translators between appli-

cations by a neutral format covering several disciplines has yet only partially materialized.

This goal can only be reached if a large group of end-users explicitly demand standard-

compliant applications and thus influence the standards adoption policy of software ven-

dors. However, the process of standardization and industryadoption is too slow for many

end-users who are forced to rely on the error-free exchange of data by “de facto” pro-

prietary standards set by software vendors covering many disciplines and having a large

market share [49]. Nevertheless, about 1000 person-years of effort have been required so

far to create the family of STEP standards [131] which together make STEP the biggest

standard within ISO. STEP is the most prominent standard forproduct data exchange and

companies realize important savings through its use. According to an estimation in 2002,

the reduction of interoperability costs through the discipline-specific STEP standards re-

sulted in savings amounting to $150 million per year [46].

2.1.2 Integration approaches

The STEP APs enable the neutral exchange of product data in specific domains as shown

in Table 2.1. There is no limitation about the scope of a STEP AP. The STEP AP214

for “Core data for automotive mechanical design processes” for example integrates ge-

ometric data, PDM data as shown in Fig. 2.2 and information specific to automobiles.

Theoretically, several STEP APs can be regrouped into a single STEP AP. Many use case

scenarios require a neutral exchange of product data acrossseveral domains. However,
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most STEP-based integration approaches covering several domains do not end up as an

official STEP standard as the standardization process is very slow.

As the ISO10303 STEP standard is composed of many single modular parts, STEP-

based integration initiatives can reuse single STEP parts.The STEP standard which is

most often used to define a schema and a related SDAI is the EXPRESS modeling lan-

guage. The European-funded project entitled “A computational design engine incorpo-

rating multidisciplinary design and optimization for blended wing-body configuration”

for example used the EXPRESS language in 2004 to define a data model [100] for the

exchange of product data. A database was implemented based on the EXPRESS-defined

data model and the new product data format enabled to share data between several disci-

plines including geometry, structural and aerodynamic analyses. Generic considerations

to extend the approach to other product types were avoided toenable a fast implementa-

tion of the integration software. The approach is thereforelimited to the design of blended

wing-body aircraft.

An EXPRESS schema can be defined by reusing elements of predefined EXPRESS

schemas as found in the Integrated Resources or in domain-specific APs. Gu and Chan

for example reused the generic STEP schemas in 1995, when fewSTEP APs had reached

a mature status, to create a schema for the integration of a variety of manufacturing do-

mains [57]. As a result, product information related to product geometry, representation,

tolerance and assembly was saved in the Generic Product Modeling (GPM) system based

on an EXPRESS schema. Interfaces were developed between the GPM system and ap-

plications such as AutoCAD and AutoSolid. The GPM approach toconnect systems in a

computer-integrated manufacturing environment was demonstrated with data related to an

engine block. Similarly, Boeing’s Integrated Product Design Environment (IPDE) merged

in 1999 the STEP APs 203, 209, 214 and 224 for the synthesis of an integrated data

schema [98]. The integration approach was based on STEP APs and included extensions

for more domains such as aerodynamic analysis, parametric geometry and constraints.

The merging of several STEP-based schemas in one schema to enable the integration

of data related to geometry, manufacturing, engineering analyses and document version-

ing in a product model was very often undertaken. Most approaches are either based on

STEP AP214, such as in Chin et al. [26], or on STEP AP203 such as in Song et al. [148].

The Generic Product Modeling Framework (GPMF) of Zhou et al.[172] for example

consists of eleven defined EXPRESS schemas based on STEP resources and the STEP

AP203. A similar product data representation based on STEP resources and the STEP

AP203 was used in the expert system of Zha and Hu [171] for an Integrated Knowledge-

based Assembly Planning System (IKAPS).
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The design of mechatronic products requires the exchange ofproduct data related to

several disciplines such as electronics, mechanics, hydraulics and control. A German

initiative chaired by the ProSTEP association1 developed in 2000 the MechaSTEP neutral

data format [128] for the exchange of mechatronics-relatedproduct data. MechaSTEP

was defined in EXPRESS and according to STEP standardization procedures. The neutral

format was validated by implementing interfaces to software applications for multibody

system modeling and to the VHDL-AMS2 standard.

The Architecture, Engineering and Construction (AEC) industry uses several advanced

3D applications for design, analysis and fabrication. Various building product models

facilitate the data exchange between diverse applications. The CIMsteel Integration Stan-

dard Version2 (CIS/2) [62] is an industry-developed productmodel widely adopted within

the steel construction industry [38]. It was first released in 1995. CIMsteel stands for the

Computer Integrated Manufacturing of Constructional Steelwork. The schema of CIS/2 is

defined in EXPRESS according to the ISO-STEP technology. Another important building

model whose data model was also defined in EXPRESS is the computer-based Integrated

Building Design System (IBDS). It was initiated in 1990 withinthe COmputer Models

for the Building INdustry in Europe (COMBINE) project. In contrast to CIS/2 and COM-

BINE, the ISO 10303 AP225 standard [69] for the description ofbuilding elements using

explicit shape representation completely relies on STEP technologies. AP225 was re-

leased in 1999. Parallel to the development of AP225, an industry consortium formed the

Industry Alliance for Interoperability in 1994 due to the slow standardization develop-

ment within ISO 10303. The alliance released an AEC product model called the Industry

Foundation Class (IFC) in 1997 [22] whereby its data models were defined in EXPRESS

and implementations took advantage of the EXPRESS tools.

Most STEP-based integration approaches use EXPRESS as data modeling language.

The definition of a new EXPRESS data model is thereby often based upon existing EX-

PRESS schemas. STEP is a very widespread standard for the exchange of product data in

the context of typical products relying heavily on geometric models. However, the prod-

ucts of the next generation will be smarter and incorporate more software and electronics.

An integration framework spanning more disciplines than geometry and therefrom de-

rived models is therefore necessary.

1ProSTEP iViP Association,http://www.prostep.org
2Very High Speed Integrated Circuit Hardware Description Language-Analog/Mixed-Signal (VHDL-

AMS)

http://www.prostep.org
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2.2 Industry sector-specific standards

The building and the process plant industries, including oil and gas production facilities,

display a high degree of multidisciplinarity. Standards have been developed specifically

for these domains. Section 2.2.1 presents the Industry Foundation Classes (IFC) as an

important standard in the building industry and Section 2.2.2 reviews the ISO 19562 for

process plants.

2.2.1 IAI/IFC

The building and facility management industry (AEC/FM) is a typically multidisciplinary

sector. Several neutral standards for the exchange of building data have been developed.

Next to the CIS/2 [62] and STEP AP225 [69] as described in Section 2.1.1, the Industry

Foundation Classes (IFC) [22] is also a prominent standard within the building industry.

The IFC specification was developed and maintained by buildingSMART International3,

formerly known as International Alliance for Interoperability (IAI). It was first released

in 1997. It has been available since 2006 as release IFC2x3 andas ISO Publicly Available

Specification ISO PAS 16739. The IFC data schema represents information entities con-

cerning among others building elements, spaces, properties and shapes which are shared

by several software applications in construction or facility management projects. The IFC

standard is thereby typically used to bridge different applications related to CAD, CFD,

Computer-Aided Facility Management (CAFM), structural and thermal analysis applica-

tions, Computer-Aided Architectural Design (CAAD), Heating, Ventilating and Air Con-

ditioning (HVAC) and Quantity Takeoff (QTO) for cost estimation [81, 110, 96, 13].

Although the IFC standard has been used in many projects, theconstruction sector

has difficulty in achieving a single agreed data model [61, 139]. The design of a build-

ing encompasses so many domains and aspects that the consensus for a universal building

standard seems unlikely. In view of all the imaginable manifestations of a design or build-

ing, the convergence towards a unified standard for all possible human interpretations of a

building seems impossible and not worth pursuing [37]. Furthermore, the development of

a standard requires a considerable degree of upfront work, including achieving consensus,

implementing the data model and adapting the applications to the standard. These tasks

are especially arduous for a standard attempting to reach aninternational status. As a re-

sult, the standard is not updated at the pace the rapidly evolving business needs. This can

turn an initially helpful standard into a hindrance [17]. Inaddition, the standardization

efforts are inefficiently repeated, creating a proliferation of standards. The volume of stan-

3IAI Tech International,http://www.iai-tech.org/

http://www.iai-tech.org/
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dards to choose from is often a source of confusion for users [135]. Instead of pursuing an

all-in-one approach through a unified international standard, ontologies, as described in

the next Section 2.3, are envisioned as a flexible method to integrate heterogeneous data

sources related to building design.

2.2.2 ISO 15926

ISO 15926 is a standard for the representation of information related to process plants,

including oil and gas production facilities [73]. The scopeof the data model covers the

entire lifecycle of a facility and its components such as pipes, pumps and their parts.

Similar standards for process plants are AP227 [70] and AP221 [67] within the STEP

family. AP227 is focused on the plant spatial configuration while AP221 and ISO 15926

also cover functional data. AP221 is better adapted to coverschematic drawings while

ISO 15926 can better describe the evolution of a process plant through time [95]. ISO

15926 is the result of several years of effort in developing astandard for process plants.

In 1991 a European project called ESPRIT was launched for thiscause. Based on this,

an industry consortium called the European Process Industries STEP Technical Liaison

Executive (EPISTLE) then issued the AP221 standard, which was then adapted to form

ISO 15926 in 2003. The construction of buildings, production facilities and equipment is,

however, outside the scope of ISO15926.

ISO 15928 is currently mainly used in the oil and gas industryfor integrating data

across disciplines and business domains. It is for example used for standardized produc-

tion4 and drilling reports5. As a facility may consist of a multitude of different entities,

the ISO 15926 standard also includes generic concepts such as classes, individuals and

properties. These non process plant-specific concepts enable to describe entities which

are not covered by the casual domain-specific concepts of thestandard such as a pipe or

a heat exchanger. The ISO 15928 standard can therefore be used theoretically beyond the

process plant domain. Although the scope of ISO 15926 is large, literature on projects

related to ISO 15926 is scarce. Projects on integrating application-specific data about a

process plant lifecycle have for example not been reported [35].

2.3 Ontologies

The word “ontology” is derived from the Greek words “ontos” for “being” and “logos”

which in fact has several meanings, among others “logic” or “science”. Ontology is orig-

4POSC CAESAR,http://production.posccaesar.org/
5POSC CAESAR,http://drilling.posccaesar.org/

http://production.posccaesar.org/
http://drilling.posccaesar.org/
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inally a philosophical discipline which studies the existence of entities and their possible

categorization within a hierarchy based on similarities and differences. The discipline

was inaugurated by Aristoteles in his philosophical work known as Metaphysics. In the

early 1990s the term ontology was reused within the artificial intelligence community to

define “the basic terms and relations comprising the vocabulary of a topic area” [108],

in other words “a formal specification of a conceptualization” [55]. Ontologies thereby

describe a domain through concepts, individuals and relations.

Ontologies are currently widely used within the Semantic Web [15]. They aim at

structuring the information on the Web in order to make it computer-interpretable. The

Web content consists until now for the most part of unstructured text which only humans

can read and understand. The syntactical presentation of information on the internet is

standardized but not its semantics. However, the search of information on the Web,

which is spread over millions of pages, is more successful ifit is structured according

to its meaning, in other words according to ontologies. Ontology matching algorithms

can then automatically find correspondences between semantically related entities of dif-

ferent ontologies for an improved search of the Web. Ontology matching can also find

correspondences between heterogeneous product models foran automatic translation of

information between these. However, ontology matching only works reliably in special

cases and represents an ongoing research effort [40].

2.3.1 Ontology representation languages

Several ontology representation languages with differentlevels of expressivity are avail-

able to formally specify an ontology. Among the many different ontology languages, the

Resource Description Framework (RDF), the RDF Schema (RDFS) andthe Web Ontol-

ogy Language (OWL) are very widespread, especially as they belong to the family of

specifications of the World Wide Web Consortium6 (W3C) which is the main interna-

tional standards organization for the Web. RDF enables to make statements in the form of

subject-predicate-object expressions, in other words concept-relation-concept structures,

which are known as triples. This corresponds to the AAA slogan stating that “Anyone can

say Anything about Any topic” which applies for Web information. As a consequence,

the open world assumption stating that information is true until it has been proven false,

applies to the Web content as new unpredicted content can be added any time. A collec-

tion of RDF statements can be represented as a labeled directed graph, which is called

a semantic network. RDFS extends RDF by introducing terms for the classification of

RDF data. It is thereby similar to other schema languages. Furthermore, RDFS has been

6W3C,www.w3.org/

www.w3.org/
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extended to form the OWL by adding new constructs which restrict property values or

the number of distinct values for a specific property. OWL is considered the successor of

the DAML+OIL7 ontology language which stands for DARPA8 Agent Markup Language

(DAML) + Ontology Interchange Language (OIL).

The definition of an ontology which includes the choice of ontological categories is

required in many disciplines such as designing a database, aknowledge base or an object-

oriented system [149]. Ontologies are in this sense similarto conceptual data models.

However, the main motivation for defining ontologies is to use them as knowledge bases

upon which reasoning procedures can be performed to infer new knowledge. The triples

of an ontology are thereby interpreted as first order logic statements, which a reasoner

can automatically process to derive new conclusions. The main tasks of reasoners include

consistency checking, inference procedures and queries [43]. Common reasoning engines

are for example Pellet9, RacerPro10 and FaCT++11.

Most ontologies sacrifice expressiveness in domain modeling in order to achieve in re-

turn computational reasoning advantages. The compromise is visible in the different vari-

ants of OWL. OWL Full is meant for users who want maximum expressiveness with no

computational reasoning guarantees, while OWL DL consists of the full OWL constructs

under the condition that the constructs are defined according to some constraints to guar-

antee computational completeness and the decidability of reasoning systems. Complete-

ness means that all conclusions are guaranteed to be computed and decidability means

that all computations will finish in finite time [164]. DL stands for Description Logics [9]

which is a family of knowledge representation languages that allow decidable first order

logic reasoning. OWL DL supports knowledge representation and reasoning capabilities

according to Description Logics. For this sake, OWL DL for example clearly requires a

strict separation of classes and individuals, which is not the case with OWL Full. The

Knowledge Interchange Format12 (KIF) and its later version called Common Logic13 are

for example languages which support more features for first-order logic reasoning than

Description Logics but at the expense of the decidability and computational efficiency.

In addition to being updated by new facts computed by a reasoner, ontologies can be

transformed through the execution of rules which can add newproperties or change prop-

erty values. The Semantic Web Rule Language (SWRL) is a proposalof the W3C to for-

7DARPA Agent Markup Language,http://www.daml.org/
8Defense Advanced Research Projects Agency,http://www.darpa.mil/
9Pellet: The Open Source OWL Reasoner,http://clarkparsia.com/pellet

10RacerPro,http://www.racer-systems.com/products/racerpro/
11FaCT++,http://owl.man.ac.uk/factplusplus/
12Knowledge Interchange Format (KIF), http://www.ksl.stanford.edu/

knowledge-sharing/kif/
13Common Logic Standard,http://common-logic.org/

http://www.daml.org/
http://www.darpa.mil/
http://clarkparsia.com/pellet
http://www.racer-systems.com/products/racerpro/
http://owl.man.ac.uk/factplusplus/
http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://common-logic.org/
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mally define rules which several reasoners already support.SWRL is also used within the

Semantic Query-Enhanced Web Rule Language (SQWRL) to perform queries on OWL

ontologies. The other well-known query language, SPARQL Protocol and RDF Query

Language (SPARQL), was on the other hand specifically developed for RDF ontologies.

Ontologies are separated into domain and upper ontologies.Domain ontologies, or

domain-specific ontologies, model a specific domain while upper ontologies, also called

foundation ontologies, are meant to be used across a wide range of domains. Upper

ontologies consist of many thousand concepts to represent astructured subset of natural

languages like English. In contrast, OWL, which is mainly used to define domain-specific

ontologies, consists of around 50 language constructs. Examples of upper ontologies are

the Cyc14 ontology and the Suggested Upper Merged Ontology15 (SUMO), which is an

IEEE candidate for a standard upper ontology (SUO). Although a common universal on-

tology would be ideal for knowledge sharing, it is not sure whether it will ever exist [109].

The lack of a consensus for a wide coverage ontology is very probably due to its large size

and to the different focus and cultural influences of its various contributors. Philosophers

ranging for example from Heraclitus to Pierce and Whitehead have developed different

categorizations of concepts [149] and it is highly probablethat debates on this topic will

continue. It is also questionable how concepts can be classified in a standard upper on-

tology as their meaning is not graved in stone but instead under constant philosophical

scrutiny. Even the meaning of meaning, or in other words the answer to the question

“What is meaning?”, is explained according to different theories by linguists, philoso-

phers [133] and computer scientists [59]. Confronted with apparent vagueness in the

definition of concepts, the legitimacy of a standard upper ontology seems fragile [150]

and is therefore not further investigated in this work.

2.3.2 Integration approaches

As the role of knowledge in product development increases [157], ontologies have been

used in engineering design to formally describe product-related knowledge. Furthermore,

ontologies are composed of simple subject-predicate-object expressions which can easily

describe relations between different heterogeneous product data sources. The domain-

independent ontology modeling languages are therefore employed for the integration of

product data from different systems or disciplines [27] .

The construction industry is turning to ontologies for incremental process-driven data

integration [139] as the international building information standards do not meet the ex-

14Cycorp, Inc.,http://www.cyc.com/
15The Suggested Upper Merged Ontology (SUMO),http://www.ontologyportal.org/

http://www.cyc.com/
http://www.ontologyportal.org/
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pectations of the building sector regarding scope and reaction time for updates, as de-

scribed in Section 2.2.1. Nevertheless, ontologies do not necessarily replace international

standards but may complement them. For this purpose, they are established based upon

existing international standards instead of being defined from scratch. The important IFC

standard for the building sector has for example been transformed into an OWL ontol-

ogy in view of supporting ontology-based data integration [14]. Similarly, the prominent

STEP, UML and ISO 15926 standards, respectively for mechanical engineering, software

engineering and process plants, have been transformed partly into ontologies [93, 48, 12].

Ontologies have been applied in several engineering domains, including CAD systems

interoperability [127, 93], assembly design [85], manufacturing processes [27, 99], build-

ing design [170], data resources integration [25], mechatronics [31], logistics [50] and

product optimization [168]. Most ontologies are describedin OWL DL and use SWRL

for procedural if-then rules.

Product configuration requires both data integration and knowledge management. On-

tologies have therefore often been deployed for product configuration systems [169, 105,

147]. As humans do not think exclusively in hierarchical terms but in associations, the

description of product knowledge through semantic networks is often more appropriate

than the typical hierarchical structures in PDM systems [29].

Most ontologies supporting product data integration are domain-specific ontologies.

However, the Gellish ontological language [138] is a combination of an upper and a do-

main ontology. It is both very general and domain-specific asit includes concepts related

to engineering design. It consists of more than 40000 concepts. Gellish includes concepts

such as products, facilities and processes. The name “Gellish” is derived from “Generic

Engineering Language”. A subset of Gellish contributed to the development of the ISO

15926 standard for the “Integration of lifecycle data for process plants including oil and

gas production facilities”, which is described in Section 2.2.2.

2.4 Summary

Chapter 2 has presented an overview of models which support product data integration.

Models for interdisciplinary integration differ in their scope, in their acceptance by peers

as an international standard and in their use of generic constructs. Three different ap-

proaches are currently pursued to enable multidisciplinary product data integration. The

first approach consists of creating new central product models. The second approach

supports the development and extension of international standards. The third approach

builds upon the expertise of existing standards and combines them with generic concepts
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from ontologies or object-oriented modeling to allow a flexible integration of new product

aspects.

The development of a new central product model for integration purposes within a

specific scenario is a common approach. However, the centralproduct model will even-

tually need to be adapted based on the evolution of the product itself and on new product

data integration requirements. Each modification of the central product model is associ-

ated with a lot of effort as interfaces between applicationsand the central product model

then need to be updated.

It is therefore worthwhile to use or develop standards for product data integration

which are based on a wide consensus. The large quantity of expertise which flows into

the development of an international standard represents tosome extent a guarantee for

long term stability. The STEP standards have reached a largeaudience and have greatly

contributed to the integration of product information. Standards which cover a single

engineering discipline have a predictable scope and have gained wide industry acceptance

and stability such as STEP AP203 for the representation of geometric information. In

contrast, standards which cover several engineering disciplines, such as in the building

and the process plant industries, encompass so many aspectsthat a standard which could

cover them all seems unachievable [37, 139].

In order to describe future unexpected product aspects, product data integration stan-

dards offer a backdoor solution by including generic modeling concepts such asClass,

PropertyandObject. These entities are domain-independent and can be used to represent

entities of any domain. The domain-specific STEP AP214 and ISO15926 standards have

for example included generic object-oriented modeling concepts [101].

Another generic approach consists of using ontologies as a complement to major stan-

dards. Ontologies can easily describe relations between different heterogeneous product

data resources through simple subject-predicate-object expressions. As a consequence,

ontologies are domain-independent and can connect productdata from different hetero-

geneous sources. Instead of redefining an ontology for product data integration from

scratch, the terms of an ontology can be imported from well-established international

standards. This way, an ontology can reuse a standard and extend it [17].
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UML-based central product model

Standardization efforts have undergone a natural evolution by first focusing on specific

domains and eventually on extensions for the integration ofmore disciplines. However,

standards for cross-domain interoperability have not yet gained wide acceptance. There

is for example currently no widely accepted standard for mechatronics. This is unfortu-

nate as such a standard would improve the communication and the exchange of product

information between different engineering disciplines aswell as reduce the costs of inter-

operability [46]. This chapter first presents in Section 3.1the need of generic modeling

concepts in order to represent in a common central product model the variety of domain-

specific modeling concepts. Section 3.2 showcases the common modular structure of

product models from different disciplines and thus the necessity for the central product

model to represent modular components. Section 3.3 presents the use of the UML to

establish a standard central product model as it provides standardized generic modeling

concepts which can represent modular components from different engineering disciplines.

Section 3.4 compares the generic modeling concepts of the UML with other standardized

modeling languages such as OWL and EXPRESS and Section 3.5 presents UML-based

product data integration approaches.

3.1 Generic modeling

Central product models need to represent specific model information from various dis-

ciplines in order to describe inter-model dependencies. Ideally, the representation in the

central product model should be based on commonly used modeling concepts which are

familiar to engineers. Discipline-specific engineers can then easily recognize their spe-

cific model information within the central product model. However, central product mod-

els cannot reuse the modeling concepts of specific models as they are too diverse and
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numerous. Even if it were possible to gather all past and present specific modeling con-

cepts, new models with new specific modeling concepts continually appear. Confronted

with the constant emergence of specific modeling concepts, the central product model

would need to be permanently updated. As a consequence, it would lose its legitimacy as

a standard.

Instead of supporting an unlimited number of specific modeling concepts, central

product models can consist of a manageable set of overarching generic modeling concepts

which correspond to various specific modeling concepts. Generic modeling concepts are

for example aModule, anInstanceor aProperty. Each domain can be represented on an

abstract level through a reduced set of generic modeling concepts, as depicted in Fig. 1.4.

This is for example common practice in data modeling as shownin Fig. 2.1. As a conse-

quence, the non-solvable problem of including an unlimitednumber of specific modeling

concepts in the central product model can be transformed into the solvable problem of

supporting a limited number of corresponding generic modeling concepts. As described

in Section 2.2, the developers of integration standards in the multidisciplinary building

and process plant industries had difficulty in specifying inadvance all required specific

modeling concepts. As a consequence, both sectors turned togeneric modeling concepts

to easily capture information, which was unforeseeable during the development of the

standards [139, 95].

In order to be used for interoperability across most disciplines, a central product model

must include generic modeling concepts which enable to clearly represent a maximum

number of specific modeling concepts. For example, a mass flowor a data flow cannot be

clearly described through anObjectentity as it represents a static artifact. In this case, a

genericInformation flowentity would for example be better suited. If the set of generic

modeling concepts of the product model is too small, the central product model cannot

easily and precisely represent deep nested specific model information. If on the other

hand, the set of generic modeling concepts is too large, the central product model may be

too difficult to understand and confusion is probable. No setof generic modeling concepts

for a standard central product model has yet been widely adopted.

3.2 Modeling modular components

In spite of the diversity of engineering models, models which are defined with state-

of-the-art modeling applications share common modeling concepts in order to support

a common modeling requirement which is modularity. Independent of the engineering

discipline, models can reach in complex projects large sizes which are hard to overview.
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In order to reduce the complexity and enable the reusabilityof model components, models

are decomposable into exchangeable, maintainable and reusable model components, in

other words modules. The reusability of model components facilitates model updates and

the design of a variety of model configurations. In contrast,a lack of modularity leads to

time-consuming and expensive single purpose models which need to be developed from

scratch. The benefits of modularity not only apply for modeling but naturally also for the

manufacturing of real products [160]. According to Baldwin and Clark, the manufacturing

industry has reached high levels of innovation and growth through the design of complex

products from smaller independent modular components [10].

Modules commonly have in- and outputs. As a result of the decomposition of a model

into distinct encapsulated model components, model components within a model are of-

ten interdependent. Modules therefore specify their required inputs and provided outputs,

based on which the compatibility of components, when replacing a model component

with another or placing a model component within a specific model context, can be auto-

matically checked. The automatic compatibility check of components is especially useful

in large models with many components and dependencies.

In addition to specifying in- and outputs, modules follow the principle of information

hiding by means of a clear distinction between their internal information, which is hidden

from other components, and their outward-facing information which is visible to other

components. The compatibility of model components only depends on their outward-

facing information, which includes their in-and outputs. The distinction between visible

and hidden module information is necessary in order to distinguish between the hidden in-

formation, which may change over time, and the visible information, which needs to stay

constant in order to support compatibility with other modules. If a CD were a module, the

content of the CD would represent the hidden module information, as it may change over

time, while the geometric form of the CD would represent the visible module information,

which may not vary over time in order to support compatibility with CD drives.

Other common modeling concepts to describe modules are the notions of a module

template and a module instance. The description of similar modules is simplified by

defining a module template which specifies the module features which are common to a

group of modules, or in other words a specific module type. Thedescription of a module

based on a template takes advantage of the once predefined template features instead of

redefining them from the ground up. The description of a module based on a module

template is most often called a module instance.

The multidisciplinary design of mechatronic products often involves software, geo-

metric and dynamic systems modeling. In software design, the notion of a software mod-
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ule has evolved from a function in procedural programming toan object in object-oriented

programming. A software object thereby encapsulates functions and related variables.

The main software module template is called a class while themodule instance is termed

an object. The provided and required information of a software component is specified

through interfaces. The concept of an interface is also usedto specify the outward-facing

visible information of a software object, in other words thefeatures of a software ob-

ject which are accessible to other software objects. The terminology to describe object-

oriented software is uniform and mostly independent of a specific programming language.

In geometric modeling, the most common modular unit within CAD models is a part

which represents a grouping of geometric information. A part also represents a geometric

template which can be instantiated and inserted into various geometric assembly models.

The terminology to describe the provided and required information of parts is not uniform

but specific to the CAD software. In CATIA1 for example, dependencies between parts are

described as import or cut-copy-and-paste links and the information which a part makes

available to other parts is referred to as published features.

Modular units in dynamic system models are often called blocks whereby block types

correspond to module templates and block instances to module instances. The terms used

to specify blocks and their provided/required informationare specific to the dynamic sys-

tem modeling software. In a dynamic system modeling application such as Simulink2,

the provided/required information of blocks is specified through block ports. Further-

more, the blocks can be used in models as black boxes whereby their internal information

is hidden and only their ports are visible.

A multitude of different generic modeling concepts have been developed to describe

modular architectures for product family design and platform-based product develop-

ment [78]. Graph-based representations of products, in which product modules are de-

scribed asNodesand interactions asEdges, have been used in combination with graph

grammars to automatically design specific product variantsbased on production rules.

Graph grammars were applied among others to the design of coffee-makers [146], power

supplies [36] and satellites [144]. Männistö and Sulonen [102] proposed an approach

based on generic data modeling concepts to describe configurable products. The approach

used modeling concepts such asClass, AttributeandInheritanceto represent the charac-

teristics of product families and alsoIndividuals to describe concrete products within a

product family. Paredis et al. [123] defined modeling concepts such asComponent ob-

jects, Ports andConnections, to describe the decomposition and interactions of mecha-

1DASSAULT SYSTEMES,http://www.3ds.com/products/catia/
2The MathWorks, Simulink,

http://www.mathworks.com/products/simulink/

http://www.3ds.com/products/catia/
http://www.mathworks.com/products/simulink/
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tronic systems.Component objectsrepresented both CAD and behavior models, whereby

Portsspecified the interaction between different domain-specific subsystems.

Although concepts to support modularity are frequent across several modeling disci-

plines in engineering design, no standardized vocabulary has been adopted to describe

their common modular structure. Due to the variety of discipline-specific terminologies

and the widespread marketing policy of software providers boasting with so-called exclu-

sive modeling features, the modeling concepts to describe modular model components do

not share the same terminology.

3.3 UML-based object-oriented modeling

In software design, object-oriented programming and modeling concepts have contributed

to higher modularity. Programming concepts have been developed in software engineer-

ing to support modularity, whereby the most prominent are object-oriented programming

concepts which consist in encapsulating variables and functions into modular units called

objects. Object-oriented software models describe the classification, communication and

internal structure of objects within a software architecture.

Although object-oriented modeling is currently mainly used for software modeling,

object-oriented modeling concepts are generic and can be used to describe various mod-

ular structures. As the term object already suggests, an object can represent a software

object as well as a physical or model component. Object-oriented modeling is thus not re-

stricted to software modeling. The Modelica modeling language for example uses the con-

cepts of object-orientation to describe dynamic system models which include for exam-

ple mechanical, electrical, hydraulic, thermal and control components [45]. The generic

object-oriented modeling concepts of software modeling can thus be reused in the con-

text of a central product model to represent the common modular structure of various

discipline- and application-specific models.

As a central product model is meant to be used across several disciplines, it addresses

many parties and therefore requires standardization. Any proposed generic modeling

concept will only have a universally accepted meaning through standardization effort.

Ideally, the generic modeling concepts of a central productmodel should therefore already

be standardized.

The Unified Modeling Language (UML) is the de facto standard for object-oriented

modeling and is a general purpose visual modeling language used to specify, visualize,

modify, construct and document software. UML concepts are based on the object-oriented

programming paradigm. Section 3.3.1 describes the evolution of programming paradigms
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which led to object-oriented programming and ultimately toobject-oriented modeling

techniques. Section 3.3.2 presents the UML and its role within software engineering

while Section 3.3.3 introduces the UML specification. Section 3.3.4 showcases the main

UML modeling concepts which are used in this thesis for the representation of geometric,

dynamic and multibody system model information.

3.3.1 Origins of object-oriented software development

Programming paradigms have evolved over time towards human-friendly higher levels of

abstraction and away from the machine-friendly low-level bits. In the 1940s, the focus

was on reducing hardware costs and the art of software programming was neglected.

Programming was at that time very low-level and consisted ofmachine code equivalent

to a sequence of bits. Assembly languages were developed in the 50s to replace machine

code by more human-readable symbolic labels composed of letters and decimal numbers.

The next major step towards higher productivity in softwareprogramming was real-

ized through procedural languages, also called high-levelprogramming languages, which

introduced more abstract language constructs such as arithmetic expressions, statements,

arrays and subroutines. FORmula TRANslation (FORTRAN) was in 1957 among the

first procedural languages. Many low-level memory operations were automatically man-

aged by compilers. An operation such as i+j was executable without specifying where to

store i and j in memory and what machine instructions were needed to retrieve and add

them. The productivity of programmers increased significantly as they could concentrate

on their design intent and ignore low-level repetitive memory management tasks.

Although it became easier to write code, programming was a creative art and the re-

sult was often hardly understandable code which was qualified as spaghetti code. Conse-

quently, software was too complex to be maintained and software development too costly.

In 1968 the term “software crisis” was used to highlight these problems. Solutions for

a systematic software development process were presented under the umbrella of a new

discipline named “software engineering” [107].

Improvements emerged through concepts related to structured programming. A major

source for unreadable spaghetti code was the goto statementwhich enabled to jump from

one line of code to any other. After it was proven that equivalent code could be written

without that statement, its use was considered in 1972 harmful and not recommended [33].

This had an effect on the graphical representation of programs. Traditional flowcharts

were replaced in 1973 by structured flowcharts [106], also called Nassi-Shneiderman di-

agrams or structograms, which did not include lines to represent goto statements as they

were to be avoided. In addition, new analysis methods appeared to capture program re-
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quirements in order to avoid future costly program updates.Data flow diagrams, data

dictionaries, structured English, decision tables and decision trees were used instead of

conventional narrative text to clearly define the program specification and facilitate the

transition from program analysis to program design [32].

The flexibility and comprehensibility of programs was largely dependent on the choice

and design of reusable software modules. The program decomposition into reusable soft-

ware modules was first based on flowcharts. This conventionaldecomposition technique

ensured a separation of concerns between different modulesto avoid any overlapping in

functionality. In 1972, a new decomposition technique based on information hiding was

introduced by Parnas [124]. It was better adapted for futuresoftware updates than the

conventional decomposition based on flowcharts. The new decomposition strategy cre-

ated software modules based on the functions which were likely to change and not on the

high-level program functions which were derived from the flowchart. Software modules

were conceived to be easily exchangeable by sharing the sameinterface. Changes in the

interfaces were to be avoided as they triggered time-consuming changes in the software

modules and in the programs which referred to the software modules. The concepts of in-

formation hiding helped in designing long-lasting interfaces by hiding the changeable or

highly detailed information in the software modules while their interfaces only contained

long-lasting information. In procedural programming, software modules were procedures

and software module interfaces were equivalent to the inputand output arguments of pro-

cedures.

Although the procedures were designed to be easily exchangeable and reusable, they

did not declare their side effects on global variables. The supposedly independent proce-

dures were indirectly linked if they shared the same global variables. Furthermore, the

reuse of a procedure within another context without the required global variables was a

source of error. The undeclared dependencies between procedures and global variables

often led to unexpected effects and hampered the reuse and exchange of procedures.

This was avoided by encapsulating procedures and their required variables into ob-

jects. This data encapsulation represented the next software modularization step [167].

Procedures and their affected variables were thereby regrouped into single units called

objects. Figure 3.1 presents the transformation from procedure-based to object-based

software modularization through data encapsulation. Procedures automatically had ac-

cess to their required variables and objects clearly declared the dependence between the

procedures and their required variables. As a result, the reuse of procedures in combina-

tion with their required variables had no unexpected side effects. Global variables were

then limited to object-independent variables such as constant values.
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Figure 3.1: Transformation from procedure-based to object-based modularization through
data encapsulation (after Wegner [167])

However, objects could still access freely and in an uncoordinated way each other’s

variables, which led to unexpected and wrong variable values. The concept of object in-

terfaces was introduced to control the encapsulation of data within objects. The interface

of an object described the information of an object which wasvisible and accessible to

other objects. The other information, which was inaccessible or invisible to other objects,

formed the object’s black box. The definition of invisible variables guaranteed that ob-

jects could not interfere freely in each other’s variables.The access of objects on each

other’s variables, which in an uncontrolled way was a sourceof error, was controlled by

object interfaces.

The general concepts of information hiding were also applied to the design of ob-

ject interfaces for an improved software modularization. An interface can theoretically

be composed of both variables and procedure signatures. Under the condition that the

interface does not change over time, objects can be easily exchanged if they share the

same interface. The principle of information hiding statedthat software module inter-

faces are long-lasting if they do not contain changeable or highly detailed information. In

regard to objects, this meant that object interfaces could not contain variables as they are

detailed and most likely to change. The implementation of a procedure could for exam-

ple change over time and require another set of variables while the procedure signature

stayed identical. Figure 3.1 shows the transformation of object interfaces into long-lasting

interfaces containing only procedures. As a result, objects could only retrieve or change

each other’s variables indirectly by passing through intended procedures. The execution

of object-oriented programs does not consist of a sequence of procedures as in procedural

programs, but of an interplay of modular software objects.
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Figure 3.2: Transformation of object interfaces into interfaces containing only procedures
in view of improving software modularization according to the principles of information
hiding

Many objects sharing the same variables and procedures neeeded to be created so

classes were introduced as templates for objects. Procedures inside classes are usually

called operations or methods. Figure 3.3 for example shows aCircle class as template

and derived circle objects acting as template instances. Classes describe the variables and

procedures which are common to a group of objects while objects store attribute values.

Shape

color : Color

Square

length : mm

Circle

radius : mm

Class Objects Inheritance

circle2 : Circle

radius : mm = 10
color : Color = Blue

circle1 : Circle

radius : mm = 5
color : Color = Green

Circle

radius : mm
color : Color

Figure 3.3: Left: Classes as templates for the creation of objects. Right: Inheritance
hierarchy between classes

Further, the concept of inheritance was introduced to create new classes by reusing

existing class definitions. Code duplication was thereby prevented. Figure 3.3 for ex-

ample shows the Circle and Square classes which inherit the properties of the Shape

class. This avoids the redundant declaration of the color attribute in the Circle and

Square classes. Programming languages which supported modularization in objects and

classes were called object-based and those which in addition included inheritance object-

oriented [140]. Simula was in 1967 the first object-orientedprogramming language.

These object-oriented principles were taken over by futureprogramming languages such

as Smalltalk, Ada, C++ or Java.
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3.3.2 UML for software engineering

Similar to the rise of structured programming concepts after the emergence of procedural

programming languages, many methodologies emerged following the rise in popularity

of object-oriented programming for a systematic design of object-oriented software [60].

Among the most prevalent were the Object Modeling Technique(OMT) of Rumbaugh

et al. [143] in 1991, the Object-Oriented Design (OOD) of Booch [20] in 1994 and the

Object-Oriented Software Engineering (OOSE) method of Jacobson et al. [77] in 1992.

Each methodology had its own set of terminology, notation and specific focus but there

was a pool of common core concepts. The first attempts to unifythese methods, such as

Fusion by Coleman et al. [28], did not succeed as they did not involve the developers of the

original methodologies. Ultimately, the three methodologists James Raumbaugh, Grady

Booch and Ivar Jacobson, later referred to as the three amigos, overcame their differences

and conceived in a joint effort in 1997 the Unified Modeling Language (UML) [21]. Al-

though the UML does not prescribe a specific software design process, it can be combined

with different software development frameworks such as theUnified Software Develop-

ment Process [76] or the Model Driven Architecture [112].

The UML offers a unified representation of an object-oriented software architecture

and plays an essential role in the communication between software engineers, similar to

the role of a blueprint between mechanical engineers or architects. The UML, as a formal

modeling language, enables to better bridge the gaps between software requirements,

analysis and coding than arbitrary diagrams and text. The classification, composition

and communication of objects are described graphically through modeling languages,

of which the UML is the most well-known. The UML consists of 13diagram types

for the description of structural and behavioral object aspects. Table 3.1 presents the

list of diagrams, their main modeling concepts and their classification in structural or

behavioral diagrams. Figure 3.3 for example presents the class, object and inheritance

concepts in class diagram notation. A detailed descriptionof the UML diagrams used

in this thesis are presented in Chapter 3. A UML model is usually defined by several

diagrams, whereby elements of different diagram types can be interlinked. The evolution

and standardization process of the UML is managed by the Object Management Group

(OMG) which regularly issues new UML versions. The UML version 1.4.2 was also

released as an ISO international standard [74] in 2005.

The UML is often used as a basis for code generation in model-driven software engi-

neering frameworks, such as the Executable UML approach of Mellor et al. [103] in 2002

or the Model Driven Architecture (MDA) [112] initiative from the Object Management
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Major Area Diagram Type Main Concepts

Structure

Class diagram class, association, generalization, interface

Composite structure diagram part, port, connector, role, collaboration

Component diagram component, port, dependency, realization

Deployment diagram artifact, node, deployment

Object diagram instance specification, link

Package diagram package, package import, package extension

Behavior

Activity diagram activity, action, node, flow

Sequence diagram interaction, lifeline, message, occurrence

State machine diagram state machine, state, transition, region

Use case diagram use case, actor, extend, include

Communication diagram interaction, lifeline, message, sequence number

Interaction overview diagram interaction, interaction use, activity node

Timing diagram interaction, lifeline, state, timeline, duration

Table 3.1: UML 2.1.1 diagrams

Group3 (OMG). Modeling languages such as the UML are used in this sense not only

for documentation but for code generation and ultimately for programming. Modeling

languages thereby potentially represent a new programmingparadigm [56] at a higher

abstraction level than textual programs as shown in Fig. 3.4. However, the transformation

of a graphical model such as a UML model into a lower level textual program is not yet

as mature as the similar compilation of a high-level programsuch as C into lower level

assembler code or machine language.

A UML model can represent a software architecture at different abstraction levels.

A software representation in UML can for example be independent of the programming

language in which the software is coded and independent of the operating system on

which the software runs. On the other hand, a UML model can also include programming

language- and operating system-dependent features. Within the MDA approach of the

OMG, the abstract UML model is called Platform Independent Model (PIM) while the

less abstract UML model is called Platform Specific Model (PSM). A PSM is derived

from a PIM within the MDA software development lifecycle as displayed in Fig. 3.5.

As the same software often needs to run on different operating systems, the separation

in PIM and PSM enables to reuse the PIM for several specific platforms. Several PSMs

can be generated based on one PIM through model transformations. The OMG issued in

3Object Management Group (OMG) in 2003,http://www.omg.org/

http://www.omg.org/
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Figure 3.4: Increasing levels of abstraction in programming paradigms (after Gruhn [56])

2008 the Query/View/Transformation (QVT) standard [119] to uniformly describe model

transformations.

3.3.3 UML specification

The syntax and semantics of the UML are specified in the UML Infrastructure and Super-

structure specifications [121, 122]. The UML syntax is divided into concrete and abstract

syntax similar to the syntax specification of programming languages [104]. The con-

crete keyword-dependent syntax of programming languages is specified by grammars in

Backus-Naur Form (BNF) while the concrete graphical UML syntax is specified through

style guidelines described in English and through graphical examples. The UML Class

construct for example is to be represented through a rectangle which should optionally

contain compartments for attributes and operations. On theother hand, the abstract UML

syntax describes the valid relationships between UML constructs and how the UML con-

structs are built up. Similarly, the abstract syntax of programming languages describes

the relationships between programming language constructs such as Program, Declara-

tion and Variable in a keyword-independent way.

The abstract UML syntax is described by the UML metamodel. Itis composed of

a subset of the UML which is called the Infrastructure Library [121]. It contains con-
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Figure 3.5: MDA software development lifecycle (after Kleppe et al. [87])

structs of UML class diagrams which are very general such as Class, Association and

Property. The Infrastructure Library is therefore reused at a higher abstraction level to

define the UML meta-metamodel which is specified by the Meta Object Facility (MOF)

Core Specification [113].

In theory, an unlimited number of modeling layers, or metalevels, can exist. No ad-

ditional layers above MOF are defined because it is reflexive due to its self-defining el-

ements. The same bootstrapping technique also applies to the Extended BNF (EBNF)

notation whose self-representation in EBNF only takes some lines [52]. MOF is the

metamodel for many metamodels other than the UML metamodel.MOF version 1.4.1

was released in addition to the OMG as an ISO standard [75] in 2005. MOF and MOF-

based models are serialized in XML according to the XML Metadata Interchange (XMI)

standard [117]. As a consequence, different modeling toolscan exchange UML models

as they are serialized in the common XMI interchange standard.

The semantics of the UML are described through formal constraints expressed in the

Object Constraint Language (OCL) [114] and in precise English. The detailed semantics

of each UML construct are described in English. A list of constraints applies to each UML

construct to define additional well-formedness rules. Constraints are formally defined in

OCL when possible. Overall, the UML specification is composedof a combination of

languages including a subset of the UML, the Object Constraint Language (OCL) [114]

and precise English. The definition of the UML is summarized in Table 3.2.

Modeling tools are not forced to support the complete UML specification. Compli-

ance levels and language units have been defined in order to enable modeling tools to
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Concept Purpose UML solution

abstract syntax the concepts from which models are created class diagram at level M2

concrete syntax concrete rendering of these concepts UML notation informally
specified

well-formedness rules for the application of these concepts constraints onthe abstract
syntax (e.g. using OCL)

semantics description of the meaning of a model natural language specifi-
cation

Table 3.2: UML Language Definition (after Atkinson and Kühne[8])

support and share the same UML subsets. Four compliance levels containing different

language units have been defined, whereby each upper level comprises and extends the

functionality of the lower level. The lowest compliance level is L0 and only includes lan-

guage units related to classes, types and packages. In orderto exchange UML diagrams

between tools, the Diagram Interchange specification [115]has been defined. The adher-

ence to a compliance level is further detailed by expressingthe adherence to the abstract

syntax, concrete syntax and the Diagram Interchange standard. The abstract syntax com-

pliance for example enables to output and read UML models in XMI. Concrete syntax

compliance enables to represent UML constructs in the standardized notation.

3.3.4 UML modeling concepts

This Section presents the most important UML diagrams whichwill be presented in Sec-

tions 4 to 6 to describe application-specific model information from different disciplines

in a UML-based product model. Each UML diagram only represents a specific aspect of a

UML model. As a consequence, a UML model usually consists of several UML diagrams

which complement each other. In this Section, UML class, composite structure and activ-

ity diagrams are introduced. The UML consists of over 200 modeling concepts of which

only a few dozen are used frequently. The complete UML reference is the UML speci-

fication which consists of the UML Infrastructure [121] and UML Superstructure [122]

documents.

The essential UML modeling concept is aclass. A class declares the features, con-

straints and semantics which are common to a group of objects. A class acts as a tem-

plate from which concrete objects can be instantiated. Objects are synonymous with

template instances or with the UML modeling constructinstance specificationand can

theoretically stand for anything, whether software or physical entities. Depending on the

domain-specific context, templates and template instancesappear under different terms.



3 UML-based central product model 59

Class

Property

Instance Specification

Slot

Class Diagram

DBS V12 : Car

topSpeed : km/h = 307
numberOfSeats : Integer = 2

James Bond : Person

age : Integer = 45

vehicle driver

Object Diagram

Generalization

Association

Vehicle

topSpeed : km/h

Person

age : Integer

Car

numberOfSeats : Integer

Truck

loadCapacity : kg

vehicle driver

Figure 3.6: UML class and object diagrams

The class and object diagrams in Fig. 3.6 for example includea “Car” class and a

corresponding “DBS V12” instance. The classifier of the instance is shown next to the

instance name. Attributes of a class which are common to all instances of a class are

described in UML asproperties. The “Car” class for example has the “numberOfSeats”

property oftype“Integer”. The instantiation of properties is described throughslots. The

“DBS V12” car instance for example has a slot referring to the “numberOfSeats” property

with a value equal to two.

An important concept in object-oriented modeling is the inheritance relationship be-

tween classes. A child class thereby automatically inherits the properties of a parent class.

Redefinition of identical properties in a similar class is thereby avoided. The concept of

inheritance enables to categorize classes in hierarchies based on their similarities. The

relationship between the child and the parent class is termed generalizationin UML. The

“Car” class in Fig. 3.6 for example has a generalization relationship with the “Vehicle”

class. The “topSpeed” property of the parent “Vehicle” class is thereby transmitted to the

child “Car” class. As a consequence, the “DBS V12” car instancehas a slot referring to

the “topSpeed” property with a value equal to 307km/h.

A class property can be represented graphically through a line going from the class

owning the property to the class being the property type. Theline is termedassociation

in UML and allows to visualize class dependencies. Propertynames and multiplicities

are then depicted next to the associations. The “Vehicle” class in Fig. 3.6 for example

has a “driver” property of type “Person” which is represented graphically through an as-

sociation between both classes. Similarly, the “Person” class has a “vehicle” property of

type “Vehicle”. This type of association is bidirectional and is equivalent to two sepa-

rate directed associations. The association can be instantiated in the object diagram to
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represent the instance slots which correspond to the class properties of the association.

The association instance is thereby described by a line called alink which connects the

related instances. The “James Bond” person instance for example has a slot referring to

the “vehicle” property with a value equal to the “DBS V12” car instance and vice versa

the “DBS V12” car instance has a slot referring to the “driver”property with a value equal

to the “James Bond” person instance.
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Figure 3.7: UML composite structure and class diagrams

The composition hierarchy within an object is represented through the composite

structure diagram of its classifier. The internal structureof a car is for example rep-

resented through the composite structure diagram of the “Car” class as in Fig. 3.7. A

composition structure diagram shows internal objects and their relationships. The com-

posite structure diagram does not directly specify internal instances within a composite

object but the roles that internal instances play. Properties of the composite class which

correspond to roles are calledparts. The “Car” class is for example composed among

others of the “V12” part of type “Engine” and of the “rearAxle” part of type “Axle”. The

destruction of the composite object leads to the destruction of its internal objects.
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Relationships between roles are described throughconnectorsand only apply within

the context of the composite object. Connectors describe links or the exchange of infor-

mation between parts. A link may be an instance of an association, or it may represent

the ability of the instances to communicate. The connector named “powers” between the

“V12” and “rearAxle” parts for example represents a link. A more detailed description of

the information exchange between parts requiresinterfacesand possiblyports.

Interfaces are protocols for the exchange of information. Parts can be connected with

each other if their interfaces are compatible. Ports describe the possible interaction points

of parts. A port can be linked through a connector with another port if the required

interfaces of one port are provided by the other and vice versa. The “rearAxle” and

“rearWheelLeft” parts are for example connected through their respective “sprocketLeft”

and “hub” ports which share the common “Power” interface, asdepicted in the class

diagram in Fig. 3.7. The “Sprocket” class implements, or in other words delivers, the

information which is specified in the “Power” interface while the “Hub” class requires it.

These dependencies are respectively described in UML through interface realizationand

usagerelationships, as shown in the class diagram in Fig. 3.7.

Activity

Initial Node

Parts

Manufacturing Process

Painting

Assembly

Deliver Car

Test

Activity Diagram

Activity Final Node

Activity Parameter Node

Object Flow

Action

Decision Node

Pin

Figure 3.8: UML activity diagram.

Flow graphs are generally used to depict a certain logic or process. Flow graphs are

described in UML throughactivitiescomposed ofnodesandedgesand are displayed as

activity diagrams. Activity nodes representactions, input and output objects of actions in

the form ofpinsor the coordination of flows through for examplefork nodes.
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A “Manufacturing Process” is for example described as UML activity diagram in

Fig. 3.8. The activity starts at theinitial nodeand finishes at theactivity final nodeand

is for example composed of the “Painting” and “Assembly” actions. Activity edges rep-

resent directed connections between activity nodes.Object flowsare edges which have

objects passing along them. Activities can have input and output parameters throughac-

tivity parameter nodes. The “Manufacturing Process” activity for example has a “parts”

input parameter which is sent to the “Painting” action through an object flow.

The UML concepts of classes, instances, relationships, composite structures and ac-

tivities are generic. The UML can therefore also be used to model non-technical aspects.

Parunak and Odell [126] have for example represented socialstructures such as terrorist

organizations through UML class and activity diagrams. Next to the use of the UML to

describe object-oriented software architectures, UML class diagrams are typically used to

describe data models.

The featherweight extension mechanism is the easiest and consists of adding keywords

onto the general purpose UML modeling constructs. The lightweight extension mecha-

nism stands for the attachment onto the UML elements ofstereotypeswhich for further

detailing can own properties. Stereotypes enable to add domain-specific information on

top of the generic UML modeling elements. Several stereotypes can be applied to the

same UML modeling element. Stereotypes are graphically represented within a pair of

guillemets. Stereotypes are for example applied to a class and its properties, as depicted

in Fig. 3.9, to represent a CATIA-based geometric part and itsattributes. They can also

have an icon to change the graphical appearance of the UML element it is applied on.

This increases the recognizability of the specific model information within the general

purpose UML model.

Application-specific CATIA Part

thickness
length

CATIA parameters

jointPointPositionCATIA point position

material: Steel

mass: 0,022kg

CATIA material

CATIA mass

«catiaPart»

Rod

«catiaPar» thickness : mm
«catiaPar» length : mm
«catiaPointPosition» jointPointPosition : mm
«catiaMaterial» material : String
«catiaMass» mass : kg

Generic UML Class with 

application-specific extensions

Stereotypes

Figure 3.9: Example of UML stereotypes

The stereotypes specific to a domain are regrouped in a special UML packagecalled

profile. All geometry-specific stereotypes of Fig. 3.9 would for example be defined in

a geometry-specific profile. Several profiles are for exampleavailable for the design of

real-time embedded systems [120], airworthiness-compliant safety-critical software [173]
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or System on a Chip (SoC) [116, 145]. However, no profiles have been developed to

represent geometric, controller and multibody system model information in UML.

Heavyweight extensions aim at modifying or creating UML modeling constructs. It is

generally recommended to favor the slimmest possible UML extension in order to share

the highest interoperability with other UML users and tools. The lightweight approach

was therefore chosen as UML extension mechanism in the context of this thesis.

3.4 UML for product data integration

Important modeling languages such as EXPRESS for the standardization of product data,

UML for the specification of software architectures and OWL for ontologies consist of

a wide range of generic modeling concepts which have gained wide acceptance. Among

the languages with standardized generic modeling conceptsthe UML is unique as it is:

• the most widely adopted

• the de facto standard to describe object-oriented systems

• the only one to describe both in detail static and behavioralaspects

The UML, as a de facto standard for object-oriented softwaremodeling [88], is already

well established and adopted by many software engineers. Software engineering is not

only a major discipline but is playing an increasingly prominent role in product design,

especially as more and more traditional mechanical controldevices are replaced with

electronic devices. The electronic fly-by-wire control mechanism for example, which

was first introduced for fighter jets, is now increasingly emerging for higher safety in

other types of vehicles such as small aircraft, automobilesand trucks [137].

As described in Section 3.3.2, the UML resulted from the unification of various object-

oriented modeling methods based upon the object-oriented programming paradigm. Al-

though it was developed for software modeling, it is considered a general purpose model-

ing language as it mostly consists of generic modeling concepts.

The UML consists of modeling entitites which can describe indetail both static and

behavioral aspects. EXPRESS, like most data modeling languages such as entity-rela-

tionship diagrams, can on the other hand only describe a static snapshot of an information

model [3]. Similarly, OWL has no language constructs to describe dynamic processes.

However, the ability to specify dynamic processes is important in many disciplines such

as controller or software design. As described in Table 3.1 in Section 3.3.2, the UML

consists of several diagram types, such as activity diagrams, sequence diagrams and state

machine diagrams in order to describe dynamic processes. Inaddition, the UML can
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describe the local behavior of entities through methods which only operate on local entity

attributes.

Further important UML language features include:

• the modeling of entity instances

• its extension mechanisms

• its non-proprietary freely accessible specification

The UML supports the description of entity instances, whichis not the case with

EXPRESS or most data modeling languages which strictly separate the concepts of an

entity and an entity instance. As opposed to conventional data modeling techniques, the

schema and the schema instances can be situated in the same UML model. This allows

to quickly change the schema and adapt the schema instances accordingly. The UML

does not require the schema instances to conform to the schema. This can be practical in

scenarios in which both the schema and the schema instances rapidly change, such as in

the modeling of product configurations [102]. This allows tofirst define instances and to

classify them at a later stage for example through reasoningprograms as with ontologies

or through formal concept analysis [5].

The UML would simply serve a documentation purpose if it onlydescribed object-

oriented models through general purpose UML modeling constructs. Through the addi-

tion of domain-specific information via UML extension mechanisms, the UML model can

be interpreted and reused for different purposes. The most frequent example in software

engineering is the interpretation of the same UML model for the automatic generation of

code in different programming languages. Similarly, the content within a UML model

can also be interpreted in order to generate or update specific product models.

The UML is defined through a non-proprietary specification which can be accessed

at no cost. This promotes its diffusion among users and software providers. Several

open-source projects, such as the Eclipse UML24 project, the Eclipse Graphical Modeling

Framework5 and TOPCASED6 offer free UML editors. In addition, the non-proprietary

UML specification enables a company to have the guarantee that it will be able to rep-

resent its product information across a complete product lifecycle, which may last for

example in the aerospace industry up to 50 years.

4Eclipse UML2,www.eclipse.org/uml2
5Eclipse Graphical Modeling Framework (GMF),www.eclipse.org/gmf
6TOPCASED,www.topcased.org/

www.eclipse.org/uml2
www.eclipse.org/gmf
www.topcased.org/
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According to Szykman et al. [156], a common product information representation for

cross-domain interoperability needs to fulfill the following requirements:

• not tied to a single vendor software solution

• open and non-proprietary

• simple and generic

• extensible by allowing additional concepts to create a broader engineering context

• not dependent on any one product development process

• capable of capturing that portion of the engineering context that is most commonly

shared in product development activities

The first five criteria are fulfilled by the UML. The UML is an open non-proprietary

modeling language which is not tied to any software vendor. It has gained wide accep-

tance due to its simplicity and generic capabilities and is therefore used for data modeling

or ontology modeling next to software modeling. The UML offers extension mechanisms

and was designed as an object-oriented modeling language independent of any software

or product development process. The presented UML characteristics seem to ensure a

long term viability for the UML standard.

According to Szykman’s last criteria, a common product information representation

should enable interoperability by representing the most commonly shared information.

As the UML includes standardized and well-known generic modeling concepts to de-

scribe object-oriented systems, this thesis investigatesthe reuse of the UML to establish a

central product model in order to integrate typical mechatronic application-specific model

information.

3.5 UML-based integration approaches

The UML offers extension mechanisms in order to reuse the general purpose modeling

language for the description of domain-specific information. The same UML class can

for example be used to describe a Java or a C++ class. The extension mechanisms are

separated into lightweight and first-class extensions. Thelightweight extensions, also

called stereotypes in the UML terminology, add supplementary semantics to UML ele-

ments. The lightweight extensions which are specific to a certain domain are regrouped

in packages called profiles. Several profiles are for exampleavailable for the design of

real-time embedded systems [120], airworthiness-compliant safety-critical software [173]

or System on a Chip (SoC) [116, 145]. A new modeling language based on lightweight

extensions of the UML is the Systems Modeling Language (SysML) [118] for systems
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engineering. On the other hand, the first-class extension mechanism consists of changing

the UML metamodel according to MOF. As a consequence, a new modeling language can

be created by changing the syntax and semantics of the UML.

The UML is both involved directly in product data integration approaches as an object-

oriented modeling language and indirectly as a data modeling language. The use of the

UML as a data modeling language, similar to the STEP-relatedEXPRESS modeling lan-

guage, is very frequent. Among many examples it was used to define an interchange

format for the exchange of STEP- and PDM system-related data[111] or to define a for-

mat for electro-mechanical assemblies [134]. Another indirect approach is the use of the

UML as a software modeling language to specify systems supporting product data inte-

gration. The UML is for example applied to the specification of PDM systems [41, 58].

The direct use of the UML for product data integration is lesscommon as it is still

mostly used for the design of software and real-time systems[34]. However, the same

adaptation mechanisms which are applied to add domain-specific semantics to the general

purpose UML in the context of model-based software engineering can also be used to

integrate product information.

The Methodology for Knowledge Based Engineering Applications (MOKA) [154]

has for example extended the UML through stereotypes to formthe Moka modeling lan-

guage for the description of products and design processes.The Moka modeling lan-

guage, however, contributes only little to product data integration as it does not represent

application-specific model information. UML classes and activities are thereby extended

by lightweight extensions which denote general product-related concepts such as assem-

blies, parts and attributes.

Similarly, the UML has also been extended for the conceptualmodeling of mass-

customizable products such as configurable personal computers [42]. Another example is

MECHATRONIC UML [24] for the design of self-optimizing mechatronic systems [23],

whereby UML component and statechart diagrams are extendedto describe feedback

controllers and the dynamics of physical systems.

A prominent example of a UML extension is the Systems Modeling Language (Sys-

ML) for the specification, analysis, design, verification and validation of a broad range of

systems. SysML includes additional constructs for modeling system requirements, behav-

ior, structure and parametrics [44]. SysML is suited for product modeling [11]. Peak et

al. show how SysML supports simulation-based engineering design and analysis through

SysML parametrics concepts which are applied to a mechanical example that integrates

computer-aided design and engineering analysis (CAD/CAE) [129, 130]. SysML ver-

sion 1.1 was released in 2008. Therefore, this modeling language cannot be considered
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as mature and stable as UML which has already undergone majorimprovements since

1997 [89]. So changes in the new SysML modeling language are highly probable. Al-

though SysML is already an extension of UML, it can itself also be extended for more

specific domains. SysML has been extended for the simulationof mechatronic systems

by integrating bond graphs [159] and the Modelica modeling language [132, 80].

SysML is a new modeling language which will probably undergochanges in the near

future. However, once SysML has reached a mature and stable status, it will probably be

better suited for multidisciplinary product data integration than the UML. Since SysML

is based on UML, UML extensions supporting the representation of product information

can eventually be reused to a large extent in SysML.

Current UML-based integration approaches are largely focused on software. So far,

UML extensions often enable a domain-specific representation which is too abstract to

be interpreted. No UML extensions for example currently exist to represent detailed

application-specific models from mechanical engineering.

3.6 Summary

Central product models use generic modeling concepts in order to represent specific mod-

eling concepts of various disciplines. Although models from different engineering dis-

ciplines are highly diverse, most models which are edited with current state-of-the-art

software applications share common modeling concepts in order to support modular de-

sign. The capacity to easily exchange model components and to reuse model components

across several models promotes flexibility and productivity in modeling. In order for

engineers to easily recognize their modular-structured model information within a larger

central product model, the central product model needs to becomprised of generic model-

ing concepts which can describe in detail modular components. Object-oriented modeling

concepts are used to describe modular software. As they are generic, they can also be used

beyond software modeling for the representation of specificmodular model components

of various engineering disciplines. The modeling conceptsof a central product model

require standardization as a central product model is intended to be used by many parties.

The Unified Modeling Language (UML) is the de facto standard for object-oriented mod-

eling and is widely used in software engineering. This thesis therefore investigates UML

extensions in order to establish a central product model.





Chapter 4

UML profiles for geometric models

The geometric model of a product plays an important role in engineering design as it has

an impact on many other product aspects. Apart from documentation and packaging stud-

ies, geometric models are for example used to drive the computer numerically controlled

(CNC) machining of complex surfaces or to generate meshed models for structural and

aerodynamic analyses. On the one hand, the UML-based product model needs to capture

geometric information which is commonly shared in a multidisciplinary context. This

includes for example important geometric characteristicssuch as volume, mass, center

of gravity and moment of inertia. On the other hand, the UML-based product model

needs to represent application-specific geometric modeling concepts in order to automat-

ically translate the UML-based representation of geometric information into application-

specific geometric models. Chapter 4 presents UML extensionsfor the UML-based rep-

resentation of geometric information. Sections 4.1, 4.2 and 4.3 respectively present the

mapping of CATIA-, SolidWorks- and VRML-specific geometric models into UML.

4.1 UML profile for CATIA-specific geometry

CATIA1 is a top end geometry authoring application widely used in the engineering in-

dustry and was therefore chosen for this research work. In this Section, the mapping of

parts, part parameters, part dependencies, assembly constraints, assembly models, user

defined features and scripts into a UML-based product model is presented.

4.1.1 Parts

Modern CAD tools offer a multitude of features and operationsto define geometry on the

2D level and to extrapolate it to 3D. According to the CATIA terminology, geometric data

1DASSAULT SYSTEMES,http://www.3ds.com/products/catia/

http://www.3ds.com/products/catia/
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is structured according to the following hierarchy: 2D geometry is contained in sketches,

3D geometry in bodies or geometrical sets which in turn are contained in parts. A part

represents the main modular model component which supportsthe reuse and exchange of

geometric information across several models. An assembly of parts is called in CATIA a

product.

If a part is to be updated, it would be a waste of time to update each single part in

every product one at a time. For this reason, a CATIA part is a template, just as a class

in object-oriented modeling. Each occurrence of a part in anassembly is an instance of a

part. If a part is updated, all part instances are updated automatically. This object-oriented

modeling paradigm plays a central role in CATIA and other CAD tools. It is thus intuitive

to map a CATIA part into a UML class tagged with a«catiaPart» stereotype. Fig. 4.1

shows an example of a class corresponding to a part representing a rod. Part instances

are translated into UML as class instances (Fig. 4.1 right).To enable the loading of an

existing part during the automatic translation from UML into CATIA, the «catiaPart»

stereotype has an optionalfilePathattribute of type String to indicate the file path to the

existing part document.

«catiaPart»

Rod

«catiaPar» thickness : mm
«catiaPar» length : mm
«catiaPointPosition» jointPointPosition : mm
«catiaMaterial» material : String
«catiaMass» mass : kg

«instanceOf»

«instanceOf»

CATIA Part UML Class

rodInstance1 : Rod

thickness = "5"
length = "40"
material = "Steel"
mass = "0.03"

rodInstance2 : Rod

thickness = "10"
length = "40"
jntPntPos = "[-74.93 12.04 36.42]"

CATIA Part Instance UML Instance Specification

Figure 4.1: CATIA part and part instances with correspondingUML class and instance
specifications

The elements owned by the rod part are displayed left in Fig. 4.1 in a typical CATIA

tree structure composed of geometric elements. These geometric entities can be described

as properties of the corresponding rod UML«catiaPart» class. Properties can for exam-

ple be of type Body to describe this type of geometry container, or of type Point, Line or

Plane for geometric elements. The mapping of geometric primitives such as points and

lines into UML is represented in Sections 4.2 and 4.3.
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4.1.2 Part parameters and measures

A comfortable method in CATIA to customize the geometry of a part without manipulat-

ing geometric primitives such as points and planes is through parameters. A part can be

tailored for different configurations through the use of different parameter values. This

approach is referred to as parametric design. The rod part has for example two parameters

to tune its thickness and length (Fig. 4.1 left). These parameters are common to all rod

part instances. Examples of part instances with different parameter values are shown in

Fig. 4.1 right. Parameter values set in the part definition are default values for all part

instances, but part instances can individually overwrite these values. Parameters of CA-

TIA parts are mapped as UML properties of the corresponding UML «catiaPart» class

and tagged with a«catiaPar» stereotype. The datatype of the property corresponds to

the parameter unit, such as mm in the example above. The referenced datatype can be

either predefined in a package containing all the SI value types or introduced as needed

into the UML model. A similar but unique part parameter is used to describe the material

applied on the part. The material value can, like normal parameters, vary between part

instances (Fig. 4.1). Because of its unique nature, the material Property is tagged with a

«catiaMaterial» stereotype (Fig. 4.1 left).

CATIA offers the possibility to measure characteristics of geometric elements or of

complete parts. Measures such as the mass, the centre of gravity or the inertia matrix of

a part are valuable part properties which often have an impact on other engineering do-

mains. These values are also hard to determine manually whenthe geometry is complex.

Important part measures are translated as properties of therelated class with appropri-

ate stereotypes such as«catiaMass», «catiaCG» or «catiaInertia». The example in

Fig. 4.1 displays the mass measure in the tree structure of the rod part and the related

«catiaMass» property in the rod class. The names of the properties can be arbitrary as

the correlation with the CATIA measure is defined by the stereotype. Similarly the mea-

surement of point coordinates is a frequent operation. In UML, this measure is translated

as a UML property tagged with a«catiaPointPosition» stereotype. To enable the UML

property to have a different name from the measured point, the name of the point to be

measured is saved in an attribute of the respective«catiaPointPosition» stereotype.

Measure and parameter values of CATIA part instances are represented in UML as

literal string values in theslotsof the related UML instance specifications. The UML

part instance rodInstance1 in Fig. 4.1 for example has a slotwith a defining featurecor-

responding to the thickness property of the«catiaPart»rod class and with a literal string

value of “5”.
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4.1.3 Dependencies between parts

Dependencies between parts are frequent. The dependent part is often referred to as the

child part and the referenced part as the parent part. The child part is then updated when

the parent part changes. For instance, the lowermost form ofthe slider part (Fig. 4.2 left)

is dependent on the rail profile form of the base part represented by a sketch (Fig. 4.2

right). There are two methods for a child part to reference anelement of a parent part.

One is direct but does not enable a later replacement of the parent part with a similar

part. In the previous example, this would result in the slider part directly referencing the

Sketch.2 element of the base part. In software terms, this would be similar to hard coding,

which is considered an anti-pattern. The downside of this direct approach is that if the

base part is replaced with a similar part, the previously specified dependency needs to be

redefined.

UML Interface

«catiaPart»

Slider

«catiaPart»

Base

«catiaPublication»

IBaseToSlider

railProfile : Sketch
«catiaCCPLink»

UML Interface RealizationUML Usage

CATIA CCP Link

CATIA PublicationCATIA External Reference

Figure 4.2: Top: CCP link between the slider and the base part via a published sketch
element. Bottom: Dependency described in UML through related «catiaPart» classes
requiring and providing a«catiaPublication» interface

The other more flexible referencing method in CATIA consists of using an intermedi-

ary interface. The parent part explicitly declares the elements that are to be made easily

available to other parts. These are called the published elements and are owned by the

parent part. A published element is linked with the geometric entity it is representing.

The published element can also have a more descriptive name than the geometric element

it is standing for, such as railProfile instead of Sketch.2 (Fig. 4.2 right). The child part

then does not directly reference the geometric entity in theparent part but its represen-

tative, namely the corresponding published element of the part. This allows to decouple

the reference from the concrete referenced geometric entity, allowing the reference to stay

the same although the referenced geometric entity may change. The parent part can be

swapped for another one while the previously defined dependency will persist under the
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condition that the new parent part offers the same publishedelements. Published elements

are identical if they have the same name and are of the same type. The use of publications

makes the exchange of geometric entities more transparent and enables a more modular

part architecture. The base part for example publishes the sketch of the rail track under a

publication called railProfile and the slider references this publication (Fig. 4.2).

The concept of a publication is similar in object-oriented software design to an inter-

face describing a service required by one class and offered by another. It is often a recom-

mended practice in software design to define a dependency between two software classes

via an interface-typed reference that can stay the same while the implementing class can

easily be swapped. Due to the similarity between the conceptof a publication in CATIA

and of an interface in object-oriented software programming, the publications list of a CA-

TIA part is translated in UML into a UML interface tagged witha «catiaPublication»

stereotype. And the class corresponding to the CATIA part hasan interface realization re-

lationship with the«catiaPublication» interface. The published elements are translated

into attributes of the«catiaPublication» interface with corresponding names and types.

In the example of Fig. 4.2, the«catiaPart» base class realizes the«catiaPublication»

IBaseToSlider interface, owning the published element railProfile of type Sketch.

The dependency of a part on a geometric entity of another partindependent of any

assembly context is called in CATIA a Cut Copy and Paste (CCP) link.As the use of pub-

lications is recommended, the dependency of a child part is not directed at the parent part

but at the published geometric entities. The CCP link dependency is described in UML

as a UML usage dependency between the UML class representingthe child part and the

UML interface corresponding to the published elements list. The usage dependency is

tagged with a«catiaCCPLink» stereotype. The«catiaPart» Slider class of Fig. 4.2 for

example has a«catiaCCPLink» usage dependency on the«catiaPublication» IBase-

ToSlider interface. The railProfile sketch element will need to be provided by an imple-

menting class, in this case the«catiaPart» Base class.

4.1.4 Products

It is common to decompose the entire geometry of a product into several parts to facilitate

the reuse of single parts in other projects. An assembly of part instances is called in

CATIA a product. An example of a product composed of several assembled part instances

forming a slider-crank mechanism can be found in Fig. 4.3. The sliderMotion product is

composed of skeleton, base, crank, rod and slider part instances. All part instances are

visible except the skeleton instance which only consists ofa 2D sketch describing the

main kinematic features of the slider mechanism (Fig. 4.7).
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«catiaProduct»

SliderMotion

skeletonPart : Skeleton
basePart : Base
crankPart : Crank
rodPart : Rod
sliderPart : Slider

sliderMotion : SliderMotion

skeletonPart = skeletonInstance
basePart = baseInstance
crankPart = crankInstance
rodPart = rodInstance
sliderPart = sliderInstance

CATIA Product

UML Class

base

crank

rod
slider

Figure 4.3: CATIA product and related UML class and instance

As large assemblies can be composed of smaller assemblies, the decomposition of

the geometry into products can also occur. So a product is, just as a part, also a tem-

plate that can be instantiated. A product standing for a large assembly can hence contain

product instances representing smaller assemblies. Due tothe similarity of a product to

a part in respect to their common template nature, a CATIA product is translated like a

CATIA part in UML into a UML class, but tagged with a«catiaProduct» stereotype.

Products can, just like parts, have parameters to tune theirgeometry, have measures such

as their mass and also publish their geometric entities. So«catiaProduct» classes can

have properties tagged with the same stereotypes previously presented for properties of

«catiaPart» classes and also implement«catiaPublication»interfaces. To support an

executable translation of UML into CATIA, the«catiaProduct» stereotype also has the

optionalfilePathattribute to refer to an existing product. Furthermore, thetopmost prod-

uct in the product hierarchy to be considered for the UML to CATIA conversion is tagged

with a«catiaRootProduct» instead of a casual«catiaProduct» stereotype.

«catiaProduct»

SliderMotion

FixedPart MovingPart

«catiaPart»

Base

«catiaPart»

Crank

«catiaPart»

Rod

«catiaPart»

Slider

fixedParts movingParts

Figure 4.4: Possible introduction of non CATIA-specific classes for a better classification

The part or product instances owned by a product are described in UML as properties

of the«catiaProduct» class. The properties are typed with corresponding«catiaPart»

or «catiaProduct» classes. The sliderMotion class for example has propertieswhose
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types are respectively equal to the«catiaPart» skeleton, base, crank, rod and slider

classes (Fig. 4.3 bottom left). But the mapping between the instances owned by the CA-

TIA product and the properties owned by the«catiaProduct» class does not need to be

one to one. New classes can be introduced in UML that do not have their equivalent in

CATIA. This enables a better higher level classification of the «catiaPart» classes. The

parts of the sliderMotion product can for example be separated into fixed and moving

parts (Fig. 4.4). Generalization relationships would thenexist between the«catiaPart»

classes and the non CATIA-specific classes. The sliderMotion«catiaProduct» class in-

stance would then reference its owned part instances via itsfixedParts and movingParts

slots.

4.1.5 Assembly constraints

CATIA assembly constraints ensure the correct positioning and orientation of part or prod-

uct instances relative to each other within an assembly. An assembly constraint therefore

references the involved geometric entities and according to its type restricts the relative

movement of these entities. The revolute axes of the rod and slider part instances for

example need to coincide (Fig. 4.6), so that if one part is displaced, the other part will

be displaced accordingly. Assembly constraints are owned in CATIA by the product. As

constraints need to reference specific geometric entities within parts, it is recommended

that they reference the published representatives of concerned entities. Through the use of

published elements playing an intermediary role, the constraint can stay the same while

the concerned parts or features are replaced with similar ones.

The published elements of a CATIA part are contained in only one unnamed list called

the publications list whereas a UML class can implement several UML interfaces. In the

first case, the origin or type of a dependency cannot be recognized as all the published

elements are stored in the same publications list independent of their role. In the latter

case, each UML interface can depict for higher modularity and clarity a certain type of

service between a realizing and a client class. The limitation of mapping all published

elements into one UML interface does not apply. The published elements translated into

UML can be separated into several interfaces according to their roles, allowing a better

overview of the different publishing intentions. It is for example the case with the base

part in Fig. 4.5, which provides the railProfile sketch marked as a green dashed line for the

slider according to the IBaseToSlider interface and other geometric entities for assembly

colored green and corresponding to the IBaseForAssembly interface.

A CATIA assembly constraint is translated into a UML constraint. CATIA constraints

are owned by a product, so the UML constraints are owned by therelated«catiaProduct»
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CATIA Publications

«catiaPart»

Base

«catiaPublication»

IBaseToSlider

railProfile : Sketch

«catiaPublication»

IBaseForAssembly

jointAxisForCrank : Line
contactPlaneForCrank : Plane
xyPlaneForSlider : Plane
xzPlaneForSlider : Plane

UML Interface Realizations

Figure 4.5: Published elements of the base part mapped into different UML interfaces

class. According to the type of the assembly constraint, theUML constraint is tagged

with a specific stereotype such as«catiaF ix» or «catiaCoincidence». If necessary,

the specific stereotype owns attributes for a complete description of the constraint. A

«catiaAngle» stereotype for example owns attributes to specify an angle value and an

angle sector.

CATIA Assembly Constraint

UML Constraint

                <<catiaCoincidence>>

<Constraint> RodAndSliderAxisCoincidence
constrainedElements:

<Property> rodPart, <Property> jointAxisForSlider

<Property> sliderPart, <Property> jointAxisForRod

«catiaProduct»

SliderMotion

rodPart : Rod
sliderPart : Slider

Figure 4.6: CATIA coincidence assembly constraint and respective UML constraint

TheconstrainedElementattribute of the UML constraint needs to refer to the elements

corresponding to the geometric part entities confined by theCATIA constraint. The UML

constraint can therefore refer either to the instance slotsor to the«catiaProduct» class

properties representing the constrained geometric elements. In the first case, the con-

straint only applies to specific part instances. In the latter, the constraint applies to all

«catiaProduct» class instances but can only be successfully resolved if theproperties

representing the constrained parts have amultiplicity equal to one.

In the first case, the constraint refers to the product instance concerned and to the

instance slots whose defining features correspond to the published geometric elements

described as«catiaPublication» interface properties. In the second case, the constraint

references sets of two properties, one representing the involved part and one the involved

geometric entity. The UML coincidence constraint of Fig. 4.6 for example references the
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rodPart and sliderPart properties of the«catiaProduct» sliderMotion class as well as the

properties representing the axes owned by the respective«catiaPublication» interfaces.

4.1.6 Dependencies between part instances

CATIA supports the design of a part in relation to already existing parts in an assembly.

This design method is referred to as relational design or as design in context. The result-

ing part dependencies, called import links, are only activein a certain assembly context,

unlike CCP links which define part dependencies independent ofany assembly context.

CATIA import links are often used in combination with a so-called skeleton or adapter

model which significantly reduces the overall number of partdependencies. The skeleton

model describes the geometric entities upon which the rest of the assembly will be built

and enables to easily configure the entire assembly by only adapting the skeleton model.

The skeleton model usually only contains basic geometric entities such as points, lines,

planes and sketches to indicate the positioning or the dimensions of the concrete parts

making up the assembly. The use of a skeleton model for the authoring of geometry

is in its principle similar to the use of the template method design pattern in software

engineering [47] which describes a basic frame, also called“skeleton”, in which complex

software components can fit in.

In the case of the sliderMotion product, the skeleton model,represented by a skeleton

part, describes the dimensions that apply to the neighboring parts such as the base, the

crank, the rod and the slider (Fig. 4.7 left). The use of publications is again recommended

as in every case in which a part, product or constraint references a geometric entity. So

the skeleton part publishes the parameters such as crankLength or rodLength.

The published entities are partitioned into several UML interfaces according to the

interaction the skeleton«catiaPart» class has with each neighboring«catiaPart» class

(Fig. 4.7 right). The jointRadius parameter, which describes the radius of every revolute

joint cylinder between the bodies, is present in each interface, as every part depends on

this value. The neighboring parts declare their dependencyon the skeleton part by having

a UML usage dependency on the«catiaPublication» interfaces tagged with a«catiaIm-

portLink» stereotype, just as in the case of CCP links.

As an import link dependency is only present in the context ofan assembly, it is

described in UML as a UML assembly connector between parts ofthe composite structure

of a «catiaProduct» class (Fig. 4.8). The “ball-and-socket”notation used in Fig. 4.8

represents the parts offering and requiring interfaces andis available if the parts have as

classifier a UML component instead of a class. A UML componentis a subtype of a class

and as a consequence has the same properties as a UML class. Sothe mapping of a CATIA
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CATIA Import Links

50

100

R 5

257 16

UML Interfaces

«catiaPart»

Base

«catiaPart»

Crank

«catiaPart»

Skeleton

«catiaPart»

Slider

«catiaPart»

Rod

«catiaPublication»

ISkeletonToBase

jointRadius : mm
baseJointHeight : mm
baseBodyHeight : mm
sliderJointHeight : mm

«catiaPublication»

ISkeletonToCrank

jointRadius : mm
crankLength : mm

«catiaPublication»

ISkeletonToRod

jointRadius : mm
rodLength : mm

«catiaPublication»

ISkeletonToSlider

jointRadius : mm
sliderJointHeight : mm

«catiaImportLink»

«catiaImportLink» «catiaImportLink»

«catiaImportLink»

UML Usages

UML Interface

Realizations

Figure 4.7: Top: CATIA import links between the skeleton and its neighboring parts.
Bottom: Corresponding UML«catiaImportLink» interface usages between related
«catiaPart» classes
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product or part into a UML class can be replaced with a mappinginto a UML component.

The stereotypes previously applied on classes can also be applied on components. The

composite structure diagram of the sliderMotion component(Fig. 4.8) shows the wiring

of its owned parts. Through the “ball-and-socket”notationit is for example easily visible

that any crank part instance playing the role of a crankPart needs to refer to the geometric

entities of a skeleton part instance playing the role of a skeletonPart in the context of a

sliderMotion product instance.

SliderMotion

skeletonPart : Skeleton

crankPart : Crank

basePart : Base

rodPart : Rod

sliderPart : Slider

skeletonPart : Skeleton

crankPart : Crank

basePart : Base

rodPart : Rod

sliderPart : Slider

Figure 4.8: CATIA import links displayed as UML connectors inthe composite structure
diagram of the related«catiaProduct» class

4.1.7 PowerCopies

CATIA PowerCopies enable the reusability of a design intent and are very similar to user-

defined features. Common geometric operations are for example defined as PowerCopies.

PowerCopies are comparable to operations with input arguments and an outcoming result.

They represent knowledge templates which can be instantiated in different geometrical

contexts. However, a PowerCopy is not defined by specifying the single steps to reach

a target feature. Instead, it is defined according to an already existing target feature.

CATIA detects all geometric entities such as points, lines and faces, and all non-geometric

entities such as parameters and formulas which compose a desired target feature. The

user chooses from this set the entities which are to be variable. These then represent

the input arguments of the Powercopy which is either saved ina part or in a catalog. A

PowerCopy can be reused in another context, such as in anotherpart, to create a similar

target feature however based on different input arguments.The features inserted by the

application of PowerCopies are not necessarily of geometricnature. They can also include

non-geometric aspects such as checks and rules.

The example in Fig. 4.9 shows the definition of the CreateFillet PowerCopy. It creates

an EdgeFillet feature and a formula based on two faces and a radius value. The target

EdgeFillet feature, displayed in purple in the 3D model, is the result of applying a fillet
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CATIA PowerCopy UML Class

«catiaPowerCopy»

CreateFillet

«catiaPowerCopyInput» face1 : Face
«catiaPowerCopyInput» face2 : Face
«catiaPowerCopyPar» radius : mm

CreateFillet

EdgeFillet

Formula

Target feature: PowerCopy input entities:

face1

face2

radius

CreateFillet

Figure 4.9: CATIA PowerCopy and related UML class

with a radius of 10mm on both green box faces. The applicationof the CreateFillet

PowerCopy on another part is shown in Fig. 4.10. The PowerCopy is instantiated with

two crank part faces colored green and a radius value of 2mm asinput arguments. The

resulting crank fillets are colored purple. The result of thePowerCopy application, which

is synonymous with its instantiation, is displayed in the design tree of the crank part as

edgeFilletInstance feature.

PowerCopy instance 

inside part Instance
Composition of UML Instances

crankFace2

PowerCopy input entities:

radius

crankFace1

CreateFilletInstance : CreateFillet

face1 = crankFace1
face2 = crankFace2
radius = 2

crankInstance : Crank

Figure 4.10: CATIA PowerCopy instance and related UML instance

As PowerCopies represent knowledge templates, they are represented in UML as

classes. The PowerCopy-specific classes are tagged with a«catiaPowerCopy» stereo-

type. PowerCopy input parameters are described as UML properties of the«catiaPower-

Copy» class and are tagged with a«catiaPowerCopyPar» stereotype. Accordingly,

PowerCopy input entities are described as UML properties andare tagged with a«catia-

PowerCopyInput» stereotype. The application of PowerCopies are correspondingly de-

scribed as UML instances of«catiaPowerCopy» classes.

The CreateFillet PowerCopy of Fig. 4.9 is for example described in UML as a«catia-

PowerCopy» class with its face-related properties tagged with a«catiaPowerCopy-

Input» and its radius property tagged with a«catiaPowerCopyPar» stereotype. The

CreateFilletInstance PowerCopy instance for example references both crank faces as input

arguments and sets the radius value to 2mm (Fig. 4.10). The PowerCopy instance is

inserted into the crankInstance part. The composition relationship between the instances
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is mapped one-to-one into UML, so the related UML crank part instance is composed of

the UML PowerCopy instance.

CATIA user defined features are knowledge templates very similar to PowerCopies.

They are mapped into UML just as PowerCopies. The main difference lies in the black

box character of user defined features. The result of a PowerCopy instantiation is visible

in the CATIA design tree. It might for example show the entities which have been added

through the application of a PowerCopy. On the other hand, thefeatures added by the

user defined feature instantiation are not visible in the design tree. According to the pre-

vious example, a user defined feature instance corresponding to the PowerCopy instance

would not represent the fillet feature in the design tree. Theapplication of a user defined

feature is only represented in the design tree through a reference to a user defined feature

instance. As a consequence, a user defined feature enables toinsert design know-how

without disclosing the details of a geometric operation.

4.1.8 Scripts

CATIA supports several programming languages, such as Visual Basic Script (VBS), Vi-

sual Basic Application (VBA), Java and C++, for the automationof routine geometry

editing tasks. A CATIA-specific VBS/VBA program is also calleda script or macro.

Routine geometry steps are programmed in a script and can be executed and reused in

different contexts. The CATIA script in Fig. 4.11 for examplecreates a pocket feature

based on a sketch and a depth value. Its execution is shown exemplarily in Fig. 4.12.

CATIA Script UML Class
Sub createPocket(sketchName, pocketDepth) 

Set part = catiaDocument.Part 

Set mainBody = part.MainBody

part.InWorkObject = mainBody

set sketch = mainBody.Sketches.Item(sketchName)

Set shapeFactory = part.ShapeFactory  

Set pocket = shapeFactory.addNewPocket(sketch, pocketDepth)

End Sub

etch = mainBody.Sketches.Item(sketchName)

Set pocket = shapeFactory.addNewPocket(sketch, pocketDepth)

«catiaScript»

CreatePocket

«catiaScriptPar» sketchName : String
«catiaScriptPar» pocketDepth : mm
«create» createPocket ( sketchName, pocketDepth )

«catiaScriptPar» sketchName : String
«catiaScriptPar» pocketDepth : mm
«create» createPocket ( sketchName, pocketDepth )

Figure 4.11: CATIA script and corresponding UML class

As scripts represent a program, they can be translated into UML operations. The result

of a script activation is a feature which is represented in UML as an instance. To indicate

that a UML instance is the result of a UML operation, the classifier of the instance can

own the respective operation and declare it as a constructoroperation with a single return

result of the type of the owning class. A constructor operation is typically tagged with a

«create» stereotype (Fig. 4.11).

Although the mapping of a CATIA script into a UML operation is feasible, a less

modeling-intensive and simpler UML representation of a CATIA script is possible. A
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script represents a template which can be executed, in otherwords instantiated. A script

can thus be described in UML through a UML class and a script activation through a

UML instance. The application of the«catiaScript» and«catiaScriptPar» stereotypes

respectively on the UML class and UML properties is sufficient to unambiguously de-

scribe in UML a CATIA script and its parameters. The activation of a script is then

described through a corresponding UML instance.

The location of the CATIA script is described in thecatiaScriptPathattribute of the

«catiaScript» stereotype. The execution order of scripts may be importantsince some

may be based on the result of a previous script execution. In this case, the execution

priority of a script is set through theorder attribute of the«catiaScript» stereotype.

A script is executed within a part or a product instance. As a result, the part or product

instance owns the new features created by the script activation. The composition rela-

tionship between the part or product instance and the resultof the script activation are

translated into UML as a composition relationship between the related UML instances.

The execution of the createPocket script of Fig. 4.11 in a slider part instance is for

example displayed in Fig. 4.12. In this case, the script activation only adds a pocket

feature to the slider part instance. As a result of the scriptexecution, the design tree

shows the new pocket feature named pocketInstance and the geometric model displays a

hole in the slider part. Similar to the composition of CATIA features visible in the design

tree, the corresponding UML slider instance owns the pocketinstance which represents

the result of the script activation. The input values for theactivation of the createPocket

script are stored in the slots of the pocket instance whose classifier is the«catiaScript»

CreatePocket class.

Composition of UML InstancesScript activation in part Instance

pocketInstance : CreatePocket

sketchName = "sketchForPocket"
pocketDepth = 30

sliderInstance : Slider

Figure 4.12: Script activation inside a part instance and corresponding UML instances

4.2 UML profile for SolidWorks-specific geometry

SolidWorks2 is a popular 3D mechanical computer-aided design (CAD) application which

shares common modeling concepts with CATIA but also has some of its own. This Sec-

2DASSAULT SYSTEMES,http://www.solidworks.com/

http://www.solidworks.com/
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tion first presents the mapping of SolidWorks-specific assemblies into UML similar to the

mapping of CATIA-specific products into UML. The Section thenshows the mapping of

detailed geometric entities such as planes and axes into UML, which was not addressed in

the last Section. Finally, the Section shows the UML-based representation of SolidWorks-

specific assembly constraints which are defined differentlythan in CATIA.

4.2.1 Assemblies

The definition of geometry in SolidWorks is very similar to that in CATIA. 2D geometry

is defined in sketches, which are extrapolated to 3D geometry, which itself is saved in part

or assembly documents. Both parts and assemblies are templates which can be inserted

through instantiation into other assemblies. Figure 4.13 shows the Solidworks assembly

model of the slider-crank mechanism and its corresponding design tree. The assembly

contains part instances as well as geometric entities such as planes and axes.

Base Crank

Rod

Slider

SolidWorks Assembly

«sldWorksPart»

Base

«sldWorksPart»

Crank

«sldWorksPart»

Rod

«sldWorksPart»

Slider

«sldWorksRootAsm»

SliderMotion

Feature

rod
1

1

base

1crank

*

slider

1

features

UML Class

Figure 4.13: SolidWorks assembly model of the slider-crankmechanism

The mapping of SolidWorks parts and assemblies into UML is identical to the map-

ping of CATIA parts (Subsection 4.1.1) and products (Subsection 4.1.4) into UML with

the only difference being the stereotype names. The SolidWorks assembly of Fig. 4.13

named sliderMotion is for example translated into a UML class tagged with a«sldWorks-

RootAsm» stereotype. The owned parts, such as the base, the crank, therod and the

slider, are described as UML classes tagged with a«sldWorksPart» stereotype. Assem-

blies are normally depicted in UML with a«sldWorksAsm» stereotype but the highest

assembly in the model hierarchy is tagged with a«sldWorksRootAsm» stereotype to

reflect its unique role. The resulting class diagram showingthe composition between the

assembly and its owned parts is represented in Fig. 4.13 right.
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UML Instance SpecificationSolidWorks Assembly

Figure 4.14: UML instance of the slider-crank mechanism SolidWorks assembly model

The tree structure of the UML instance corresponding to the SolidWorks assembly is

shown in Fig. 4.14. The slots of the sliderMotion instance correspond to the properties

of its «sldWorksRootAsm» SliderMotion class. The slots of the sliderMotion instance

contain instance values which refer to instance specifications. The features slot for ex-

ample contains instance values referring to the instances of the geometric entities such as

planes and axes. Each other slot refers to an owned part instance. An ordering of geo-

metric entities and parts in another set of UML properties according to other criteria is

possible. The current example closely mirrors the SolidWorks composition structure in

UML.

Each assembly has three reference planes according to whichits owned geometric

entities are positioned. In the example of the slider-crankmechanism, the planes are

named Front, Ground and Center. To differentiate the reference planes from casual planes,

the corresponding UML instances are tagged with a«sldWorksRootP lane» stereotype.

4.2.2 Geometric entities

A SolidWorks assembly can directly contain on the same composition level detailed ge-

ometric entities in addition to part or assembly instances.The sliderMotion assembly in

Fig. 4.13 is for example composed of several planes such as RailLevel or CrankJointLevel.

CATIA assembly models are on the other hand only composed of part or product instances

and only indirectly contain geometric entities through their owned part instances. Geo-
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metric entities play a more important role in SolidWorks than in CATIA. The SolidWorks

geometry is therefore often changed through the modification of detailed geometric enti-

ties. It is hence necessary to represent detailed geometricentities in UML.

Geometric entities are often defined according to differentsets of argument types as

well as based on other geometric entities. An axis can for example be defined either by

being perpendicular to a plane and passing through a point orby going through two points.

The type of a geometric entity specifies the invariant set of possible defining arguments.

Geometric entity types represent a class of similar geometric entities and are therefore

described in UML as classes. Each geometric entity type is defined according to specific

arguments which are described as properties of their respective UML entity type-specific

class. To avoid a redundant definition of invariant geometric entity type-specific UML

classes in every UML model, they are predefined only once in the Solidworks profile.

Specific UML classes corresponding to geometric entity types, such as Plane and Axis,

have therefore been defined in the SolidWorks profile.

A geometric entity instance, such as the RailLevel plane of the sliderMotion assem-

bly in Fig. 4.13, is for example represented in UML by an instance whose classifier

is the predefined Plane class of the SolidWorks profile. The reference to predefined

domain-specific classes does not hinder a simultaneous multiple-domain interpretation

as instances can have several classifiers. As an example, a SolidWorks-specific UML

plane instance which additionally needs to represent a CATIA-specific plane can have as

second classifier the predefined Plane class of the CATIA profile.

UML Instance of Axis

SolidWorks Axis Definition Menu

CrankJointLevel

Front

CrankRotationAxis

Figure 4.15: Axis defined by two planes and corresponding UMLinstance

The SolidWorks assembly model of the slider-crank mechanism in Fig. 4.13 contains

geometric entities to establish a skeleton model upon whichthe owned parts can be posi-

tioned. The crank part must for example rotate around an axiscommon to the base part.

The axis is defined as CrankRotationAxis in the sliderMotion assembly model (Figure
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4.15). Both the base and crank parts are positioned accordingto it. The axis is defined

as the intersection of two planes. As a consequence, the arguments to define the axis re-

fer to two planes, namely the Front and CrankJointLevel planes. Figure 4.15 shows the

SolidWorks menu to define the axis based on different arguments. The different definition

types are described in the SolidWorks profile as enumerationliterals. The UML instance

describing the CrankRotationAxis is of type Axis and refers through slots to the same

information as in the SolidWorks menu. The first slot specifies the definition type by con-

taining an instance value whose instance attribute is equalto the “twoPlanes”enumeration

literal. The second slot specifies the input arguments through instance values referring to

the CrankJointLevel and Front plane instances.

SolidWorks Plane Definition Menu

UML Instance of Plane

CrankOrientation

CrankJointLevel

CrankRotationAxis

Figure 4.16: Plane defined by its angle to another plane and corresponding UML instance

Another example of a geometric entity belonging to the slider-crank mechanism as-

sembly is the CrankOrientation plane displayed in Fig. 4.16 which defines the orientation

of the crank. It is, just like the axis, also described according to a definition type, in

this case “at angle” with a value of 50.00deg and relative to two arguments, namely the

CrankRotation axis and the CrankJointLevel plane.

In contrast to part-related modeling concepts, geometric entities were represented in

UML without stereotypes. A geometric part is a modular modelcomponent. As a re-

sult, the semantics of part-related modeling concepts corresponded to the semantics of

generic UML modeling concepts with an applied stereotype. In this case, the combina-

tion of a stereotype with a UML modeling element formed a meaningful information unit.

On the other hand, geometric entities do not form encapsulated modular entities but are

often only meaningfully defined based on other geometric entities. As an example, the

definition of an axis may require two points. While geometric entities can be mapped
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one-to-one into corresponding UML elements, the application of stereotypes would not

add any useful semantics since a geometric entity is only meaningfully represented in

UML in combination with its dependent geometric entities.

4.2.3 Mates

Assembly constraints position the geometric elements relative to each other and are called

in SolidWorks mates. The type of a SolidWorks mate is not visible in the design tree but

only recognizable by opening its definition menu. CATIA on theother hand directly

displays the type of constraint in the design tree through anicon. Due to this difference,

SolidWorks mates are mapped slightly differently than CATIAassembly constraints into

UML. A SolidWorks mate is described in UML as a constraint tagged with a non type-

specific«sldWorksMate» stereotype. The arguments required to define a SolidWorks

mate in UML are specified through the attributes of the UML constraint and of its applied

«sldWorksMate» stereotype.

SolidWorks Constraint Definition Menu
AxisForRod

AxisForCrank

UML constraint

Figure 4.17: Coincidence constraint between two axes and corresponding UML constraint

A set of arguments and options depending on the mate type is required for the full

definition of a SolidWorks mate. The mate-specific options such as type, distance, an-

gle, flipDimension and alignment are described in UML through the properties of the

«sldWorksMate» stereotype (Fig. 4.17). The alignment option of the SolidWorks coin-

cidence mate is a supplementary argument to unambiguously define the orientation of the

constrained geometric entities before mating. The flipDimension option enables to swap

the direction in case of a distance mate. The geometric elements constrained by the mate
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are described in UML as instances. The UML constraint, corresponding to the Solid-

Works mate, references the constrained geometric elementsthrough its constrainedEle-

ment attribute.

In the case of the slider-crank mechanism, the joint axis of the crank and of the rod for

example need to coincide (Fig. 4.17 top right). A SolidWorksmate of type Coincidence

having both axes as arguments is therefore defined. The alignment option is set to An-

tiAligned. As shown in Fig. 4.17, the mate type is not recognizable in the design tree of

the assembly. The corresponding UML constraint is displayed in Fig. 4.17 bottom right.

In case of distance and angle mates, distance and angle values are required.

4.3 UML profile for VRML-specific geometry

The Virtual Reality Modeling Language (VRML) is a file format capable of representing

static and animated 3D and multimedia objects with hyperlinks to other media such as

text, sounds, movies and images. VRML browsers, as well as authoring tools for the

creation of VRML files, are widely available for many different platforms.

The second version of the specification, known as VRML97 or VRML2.0 [165], has

been accepted as a standard format by the International Organization for Standardization

(ISO) and the Web3D Consortium3 was formed to ensure its development. VRML has

been superseded by Extensible 3D (X3D) [166] which is a new ISO standard in an XML-

based format. However, VRML is still very widespread and many3D modeling programs

support an automatic translation into VRML.

Subsection 4.3.1 presents the basic VRML file structure. Subsection 4.3.2 presents the

mechanism used for the translation of detailed VRML-specificinformation into a UML

model. Subsection 4.3.3 shows VRML files displaying less detail and thus less granularity

as well as another mapping technique for the translation. Subsection 4.3.4 presents the

UML-based linking of CATIA and VRML data to enable an automatictranslation of

CATIA into VRML via the UML-based product model.

4.3.1 File structure

A VRML file is defined in a text file with the .wrl ending for World.An example of a

VRML plaintext file and corresponding geometry rendered by a VRML browser is dis-

played in Fig. 4.18. A VRML file essentially consists of a scenegraph and an event

routing. The scene graph hierarchically contains nodes which describe audio-visual ob-

3Web3D Consortium,http://www.web3d.org/

http://www.web3d.org/
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jects and their properties. The event routing is a mechanismto process events generated

by nodes so that the scene graph can change dynamically. Additionally, a VRML file can

contain prototypes which allow a set of VRML node types to be extended by the user.

Their implementation is then browser-dependent.

The slider VRML file in Fig. 4.18 only contains a scene graph andno event routing

nor prototypes. The file begins with a comment highlighted indark grey which acts

as a header to support an easier identification of the file type. Bindable nodes have an

enumeration of properties whereby only one is active at any time. In the slider example,

the bindable nodes Background and Viewpoint are highlightedin blue. If for example

several viewpoints were defined, only one viewpoint could beactive.

UML Instances
#VRML V2.0 utf8 Document

Background {skyColor 1 1 1}

Viewpoint {

 position       0.1 0.1 0.1

 orientation   0.200652 0.450352 0.870013 2.401999

 description   "Isometric Viewpoint"

}

DEF block Transform { 

 scale         0.001 0.001 0.001

 rotation 0.0 0.0 1.0 1.5707

 children [

  Shape {  

   appearance Appearance {

    material Material {

     diffuseColor  0.490 0.490 1

    }

   }

       geometry Extrusion {

            creaseAngle 2.5

            crossSection [

                9.00  0.00,   8.2 -3.42,

                6.39 -6.39,   3.42 -8.28,

                0.00 -9.00,  -3.42 -8.28,

                -6.39 -6.39,  -8.2 -3.42,

                -9.00 -0.00, -9.00 20.00,

     9.00 20.00, 9.00  0.00

            ]      

            spine [ 0.0 -10.0 0.0,  0.0 10.0 0.0 ]

       }

  }

 ] 

}

DEF cylinder Transform {...}

VRML Document

0,

Figure 4.18: VRML-rendered geometry of the slider with corresponding sample VRML
text file and UML instances

The scene graph consists in the slider example of two grouping nodes of type Trans-

form. Their names are declared after the keyword DEF and are respectively “block” and

“cylinder”. A grouping node defines a coordinate space for its child nodes. The Trans-

form grouping node enables to position and orientate the child nodes which describe the

visible geometry within the scene. Every node is detailed through fields. The orientation

of the block Transform node is for example specified through its rotation field (Fig. 4.18).

The visible geometry described in the block Transform node is defined by its children

field. The child node of the block Transform node is of type Shape. It contains an appear-
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ance field referring to an Appearance node that specifies the visual attributes, for example

material and texture, to be applied to the geometry. The geometry field contains an Extru-

sion node which is specified by fields such as creaseAngle, crossSection and spine. The

second cylinder Transform node is similar to the block Transform node and its content is

therefore not displayed.

4.3.2 Scene graph

The VRML scene graph forms a hierarchical tree structure of nodes. Nodes are speci-

fied either through fields or through further owned nodes. TheVRML document shown

in Fig. 4.18 is composed of nodes which display a high level ofdetail. The document

therefore displays high granularity. A one-to-one mappingof the VRML nodes into UML

enables to easily recognize the VRML-specific content in the UML model.

The VRML node types, such as Shape or Extrusion, can be instantiated and are as a

consequence described in UML as classes. Similar to the SolidWorks-specific geometric

entity types, the classes corresponding to the VRML node types are invariant. Instead of

being defined redundantly several times in different UML models, they are described only

once in the VRML profile. The VRML node type-specific classes defined in the VRML

profile form a VRML metamodel, which can be displayed in a classdiagram. A selection

of type-specific node classes is represented in the class diagram of Fig. 4.19. The VRML

node types are described as UML classes and their fields as UMLproperties. The class

diagram for example shows the different VRML geometric node types, such as Box or

Extrusion, which share a generalization relationship withthe GeometricNode class.

Background

skyColor : String

Viewpoint

position : String
orientation : String
description : String

Appearance

Material

diffuseColor : String

VRMLFile Transform

scale : String
rotation : String

Shape

GeometryNode

Box

PointSet

Cone

ElevationGrid

Cylinder

IndexedLineSet IndexedFaceSet

Sphere Extrusion

creaseAngle : String
crossSection : String
spine : String

Figure 4.19: Selection of VRML type-specific node classes of the VRML profile

The VRMLFile class does not represent an existing VRML node. The VRMLFile

class represents the container for all VRML nodes inside a VRMLdocument. It can for

example be composed of Transform nodes which themselves canbe composed of Shape
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nodes and so on. The possible composition of sample VRML nodesis displayed in the

UML class diagram of the VRML metamodel (Fig. 4.19). It is common to all VRML

files and as a consequence also to all VRML-specific UML models.Only a sample of

the VRML node types is currently predefined in the profile. However, it is possible to

dynamically create missing types in the UML model without needing to update the profile.

These VRML-specific UML types need to be tagged with a«vrml» stereotype.

Every VRML node can be defined in UML through an instance. The composition of

VRML nodes is therefore easily mappable into a composition ofUML instances. Every

UML instance in Fig. 4.18 for example belongs to at least one VRML-specific UML

classifier predefined in the VRML profile. The block instance for example belongs to

a class named Transform. Figure 4.18 exemplarily displays the composition of UML

instances corresponding to the composition of nodes in the VRML file. The composition

hierarchy composed of four levels is recognizable in the VRMLfile through the tabs and

in UML through the linking of the instances (Fig. 4.18). In the example, the composition

hierarchy from top to bottom includes the VRML file, the Transform node named block,

the shape node and the extrusion node.

VRML nodes are described through fields such as spine in the case of the Extrusion

node. VRML fields refer either to string values or to other nodes. Similar to VRML fields,

UML instances can own values through UML slots which can refer to string values or to

other instances. An instance slot thereby stores values according to the properties of the

instance classifiers. The extrusion instance is for exampledefined through slots according

to the creaseAngle, crossSection and spine properties of the Extrusion class. A UML slot

refers to a string value through a UML literal string and to a UML instance through a

UML instance value. In the slider example, the extrusion node refers to the creaseAngle

through a literal string and the sliderMotion instance refers to the block node through an

instance value (Fig. 4.18).

The sliderMotion instance has a special role as it represents the complete VRML

model. Its classifier is therefore tagged with a«vrmlF ile» stereotype. It owns proper-

ties namedurl andheader. During an automatic translation from a UML model into a

VRML file, the generated VRML file is saved according to the location specified in the

url attribute. The optional header attribute defines the first line of the generated VRML

file which is usually a comment detailing the VRML document type.

To avoid defining the same node several times, VRML nodes can beattributed a name

acting as a node identifier. The required node can then be referenced through its name.

This can for example be useful for an appearance node which needs to be reused. The

node identifier is defined by the DEF keyword followed by the name. Contrary to UML
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instances, not every VRML node has a name. The UML into VRML translation only

exports UML instance names to VRML node names if the instancesare tagged with a

«vrmlDEF» stereotype. This is for example the case with the block instance (Fig. 4.18).

4.3.3 Assemblies

The VRML file content can be split into smaller separate VRML files. The smaller VRML

files can then be reused in other VRML assembly files which only reference their embed-

ded VRML files. The content of VRML assembly files is thus less detailed. The VRML

assembly model of the slider mechanism can for example be composed of the separate

base, crank, rod and slider VRML files, as shown in Fig. 4.20.

#VRML V2.0 utf8

DEF baseInstance Transform {

 children  Inline {

  url "file:///C:/base.wrl"

 }

 rotation 1.0 0.0 0.0 -0.0

 translation 0.0 0.0 0.0

}

DEF crankInstance Transform {

 children  Inline {

  url "file:///C:/crank.wrl"

 }

 rotation 0.0 1.0 0.0 -2.71798778432

 translation -0.02249 0.0050 0.033

}

DEF rodInstance Transform {

 children  Inline {

  url "file:///C:/rod.wrl"

 }

 rotation 0.0 1.0 0.0 -0.538828151930

 translation -0.02249 0.01 0.03381

}

DEF sliderInstance Transform {

 children  Inline {

  url "file:///C:/slider.wrl"

 }

 rotation 1.0 0.0 0.0 -0.0

 translation -0.1371 0.0 0.0

}

base.wrl

crank.wrl

rod.wrl

slider.wrl

VRML Assembly

Figure 4.20: VRML assembly model composed of smaller VRML files

A VRML assembly file contains inline nodes which specify through Unified Resource

Locator (URL) attributes the referenced embedded VRML files. An Inline node can be

embedded inside a Transform node so that the referenced VRML content is placed within

a VRML assembly file with a specific orientation and position. The corresponding values

are described respectively through the rotation and translation fields of the Transform

node. Consequently, the insertion of an embedded VRML file intoa VRML assembly is

fully defined by only three properties, namely the URL, the position and the orientation

of the embedded VRML file. This allows to describe VRML assemblyfiles composed

of embedded VRML files in a corresponding UML model through VRMLfile-specific
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instances instead of equivalent detailed VRML node-specificinstances. As a result, the

less detailed VRML assembly file can be mapped into UML with fewer instances.

The embedded VRML file is described in the VRML assembly file through a Trans-

form node. It is thus described in UML, similarly to a CATIA or SolidWorks part, as

a UML class with a«vrmlTransformNode» stereotype. UML constraints referring to

property values can be more easily described and resolved than UML constraints referring

to stereotype values. As the URL, position and orientation values of embedded VRML

files often depend on other CAD models, they are described through properties of the

«vrmlTransformNode» class and are tagged respectively with«vrmlInlineURL»,

«vrmlTranslation» and«vrmlRotation» stereotypes.

Composition of UML classes

Composition of UML instances

«catiaRootProduct, vrmlFile»

SliderMotion

base : Base
crank : Crank
rod : Rod
slider : Slider

«catiaPart, vrmlTransformNode»

Crank

«catiaVRML_URL, vrmlInlineURL» vrmlURL : String
«catiaAxisAngleRotation, vrmlRotation» orientation : (1x4) [- - - rad]
«catiaOriginShift, vrmlTranslation» position : (1x3) [mm]

Figure 4.21: Selection of classes and instances corresponding to the VRML assembly

In the example of the slider-crank mechanism, the required stereotypes are displayed

in the class diagram of Fig. 4.21 which only shows the SliderMotion and Crank classes.

The SliderMotion class represents the VRML assembly file and is correspondingly tagged

with a «vrmlF ile» stereotype. The stereotype hasURL and headerproperties for an

automatic translation of a UML model into a VRML assembly file.The Crank class

represents an embedded VRML file and is thus tagged with a«vrmlTransformNode»

stereotype. The URL, the orientation and position of the crank-specific embedded VRML

file are defined through UML properties which are respectively tagged with«vrmlInline-

URL», «vrmlRotation» and«vrmlTranslation» stereotypes.

Figure 4.21 exemplarily shows the slider mechanism instance named sliderMotion

which owns the crank instance. The crank-specific content isfor example loaded from a

file situated at “C:/crankwrl” and positioned within the slider mechanism assembly at the

position [-22.495 5 33.811] with an orientation described as quaternion equal to [-0.0 1.0

0.0 -2.717].
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The description of VRML content in UML through predefined classes, as in the pre-

vious Section, or through a few stereotypes, as in this Section, is possible simultaneously.

A hybrid approach is appropriate if a VRML file is composed of embedded VRML files

as well as detailed VRML nodes. A UML model can then at the same time be composed

of instances of stereotyped classes as well as of predefined VRML-specific classifiers.

4.3.4 VRML assembly files based on CATIA

A 3D geometry authoring tool offers professional editing functions, such as features and

boolean operations, which are non existent in VRML. It is advantageous to use a 3D

geometry authoring tool to edit a desired geometry and then to export it into the VRML

format. Most CAD software applications support an export of geometric parts into the

VRML format. In the example of the slider mechanism, the single base, crank, rod and

slider VRML parts would ideally be defined in a 3D geometry authoring tool such as

CATIA and then be exported into VRML.

In contrast to the export of single geometric parts, the export of complete CAD assem-

bly models into VRML is not always possible. A VRML assembly filewhich is intended

to correspond to a CAD assembly model can reference the exported single VRML parts

and place them according to the position and orientation values of the parts within the

CAD assembly model. However, a change in the geometry would require another se-

quence of time-consuming manual export, measure and copy & paste procedures.

CATIA
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Figure 4.22: CATIA-based generation of a VRML assembly file viaUML

The central UML-based product model can enable a quick automatic update of VRML

assembly models based on CATIA assembly models. The CATIA and VRML represen-

tations of the slider mechanism parts are semantically equivalent in an abstract UML

representation. Each mechanism part is therefore described in the UML model through
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a class which is common to both the CATIA- and the VRML-specific geometry. The

previously presented VRML- and CATIA-specific stereotypes can be applied in superpo-

sition onto the same UML classes and properties. Since the same UML element repre-

sents both CATIA- and VRML-specific geometry, data consistency between the different

geometric formats is guaranteed. Both CATIA parts and VRML Transform nodes are de-

scribed in UML through classes. Similarly, CATIA- and VRML-specific orientation and

position values are described through UML properties. The UML classes and properties

which refer to the same slider mechanism parts can thereforebe tagged with CATIA- as

well as with VRML-specific stereotypes as in Fig. 4.21. The SliderMotion class repre-

senting the complete assembly is for example tagged with a«catiaRootProduct» and

a «vrmlF ile» stereotype. The Crank class and all its properties are taggedwith both

CATIA- and VRML-specific stereotypes.

The process of automatically generating a VRML assembly file based on a CATIA

assembly model via a common UML-based product model is described in Fig. 4.22. The

first step consists of exporting the CATIA-specific geometry described in UML into a

CATIA assembly model. Within the UML into CATIA translation process, CATIA then

exports the newly generated CATIA parts into VRML files, as depicted in the second step.

Step three returns the position and orientation measures ofthe newly generated CATIA

part instances inside the CATIA assembly model back to the UMLmodel. The UML

model contains, after its interaction with CATIA, the required information to generate a

VRML assembly file based on the single CATIA- generated VRML filesand the CATIA-

specific part orientation and position measures, as displayed in step four of Fig. 4.22.

4.4 Summary

Chapter 4 described the UML extensions required to representin a UML-based product

model the commonly shared geometric product information, such as volume, mass, cen-

ter of gravity and moment of inertia, as well as geometric application-specific modeling

concepts, such as parts, assemblies, assembly constraints, part dependencies, features and

geometric primitives, in order to enable an automatic translation of UML-based geometric

information into application-specific geometric models. The approach was investigated

with modern and widespread 3D geometry modelers such as CATIA, SolidWorks and

VRML.

The semantics of geometric modeling concepts conformed to the semantics of gener-

alized object-oriented UML modeling concepts. Part and assembly models correspond to

geometric templates which can be instantiated and insertedinto other geometric models.
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Features are recurrent geometric operations which equallyrepresent templates that can be

instantiated for the editing of detailed geometry. Geometric templates and template in-

stances were therefore described in UML respectively through classes and class instances.

As a result, part and assembly model attributes such as mass or volume were represented

in UML through class properties, part interfaces through UML class interfaces, and as-

sembly constraints through UML class constraints. The use of stereotypes on the generic

UML modeling elements then sufficed to describe their application-specific geometric

denotation.

However, the combination of a UML modeling element with an applied stereotype

is not meaningful to describe a low-level geometric entity which is defined according to

further geometric entities. A sketch element can for example be defined as being on a

specific plane, which itself is positioned according to specific lines. The properties of

a UML stereotype are not suited to describe the varied and detailed decomposition of a

low-level geometric entity. Instead, a data model of the various geometric entity types

was described in UML through a UML class for each geometric entity type such as Point,

Line and Sketch. As the geometric data types do not change, they were predefined in their

respective application-specific UML profile. Instances of geometric entity types, such as

specific points, lines and sketches, were then represented accordingly as UML instances.

In summary, high-level object-oriented geometric modeling concepts were described

in UML through corresponding generic UML modeling conceptswith their respective

stereotype and detailed low-level geometric entities wererepresented as instances of pre-

defined geometric UML types. In both cases, the mapping between geometry-specific and

generic UML modeling concepts occurred according to an easily understandable one-to-

one correspondence.



Chapter 5

UML profiles for dynamic system

models

Many real world problems in product design involve time-dependent processes. Their

description often results in an accumulation of differential equations. A dynamic sys-

tem is composed of mathematical equations to compute the time-dependent variance of

system states. An example of a safety-critical dynamic system is an aircraft autopilot

which automatically stabilizes an aircraft by adjusting aircraft control surfaces in case of

disturbances. The algorithm of a controller is often adapted according to several criteria

including stability, minimal energy consumption and quickreactivity. Algorithms are of-

ten first tested through the simulation of their corresponding dynamic system model and

later implemented in code to be runnable on an embedded system. Section 5.1 presents

the mapping of a Simulink-specific dynamic system model intoUML.

A special kind of dynamic system is the multibody system composed of bodies which

by mutual interaction follow translational or rotational displacements. The possible rela-

tive movement of each body to another is described by physical connections whose num-

ber and type influence the motion of the entire multibody system. An example of a multi-

body system is an industrial robot whose capacity to follow new movements for new tasks

depends on the number of its arms and types of joints. Besides flexibility, its speed and

energy consumption depend on its selected movement and its inertial properties. The

simulation of a multibody system can for example be useful tocompute the forces needed

to set it in a desired motion, which in turn will determine therequired power supply for

the system. Following the standard Newtonian dynamics, a set of differential equations

and constraint conditions can mathematically describe themotion of a multibody system.

Section 5.2 describes the mapping of a SimMechanics-specific multibody system model

into UML.



98 5.1 UML profile for Simulink-specific dynamic systems

5.1 UML profile for Simulink-specific dynamic systems

Simulink1 is used in many disciplines, from aerospace engineering to systems biology, to

graphically model and simulate dynamic systems. It was therefore chosen in this research

work as dynamic system modeling application to investigatethe mapping of dynamic

system modeling concepts into UML.

5.1.1 Simulink model

Simulink models represent relationships between system states in a block diagram. A dy-

namic system is described in Simulink by a block diagram consisting of blocks connected

by lines. A wide range of blocks for signal sources, signal sinks, linear and non-linear

components is available and the definition of custom blocks is also possible. The lines

between blocks represent the flow of signal values. A simple dynamic system for exam-

ple is represented in Fig. 5.1 top. The source block outputs asinusoidal signal which is

separated into two signals, one of which is integrated over time by the operation block.

Both signals are regrouped as a single signal before ending inthe sink block which saves

and displays the incoming values over time during simulation. The incoming sinusoidal

signal is displayed in blue and its integrated version in purple (Fig. 5.1 top).
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Figure 5.1: Simulink model and corresponding UML activity diagram

1The MathWorks, SimulinkR©,
http://www.mathworks.com/products/simulink/

http://www.mathworks.com/products/simulink/
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A Simulink model is composed of data flows between ports of Simulink blocks. These

flows could be defined by UML connectors between ports of partsowned by a UML

composite class describing the Simulink model. But the continuous streaming nature of

Simulink data flows is better represented by UML object flows than UML connectors.

This is underlined by the fact that the UML specification [122] proposes astreamtext

annotation to be applied on pins of object flows. Furthermore, the graphical similarity of

Simulink signals is higher with UML object flows than with connectors. Simulink models

containing blocks and signals are therefore mapped into UMLactivities consisting of

actions and object flows. An example of a Simulink model and its corresponding UML

activity is displayed in Fig. 5.1. The UML activity describing a Simulink model is tagged

with a«simulinkModel» stereotype.

5.1.2 Blocks

Due to the frequent use of similar blocks responsible for similar computations, Simulink

offers a library of standard block types which can be extended by user defined block

types. Blocks inside a Simulink model are, strictly speaking, instances of predefined block

types. The operation and sink blocks of the Simulink model (Fig. 5.1 top) for example

are respectively instances of the block types Integrator and Scope. Each Simulink block

represents a computation depending on its type and its tunable parameters. The source

block instance for example outputs a sinusoidal signal according to its frequency and

amplitude parameter values.

The relationship between block types and block instances isidentical to the relation-

ship between UML classes and UML instance specifications. Asa Simulink block type

represents a behavior, Simulink block types are mapped intoUML activities instead of

casual classes and Simulink block instances are interpreted as instance specifications hav-

ing as classifier the corresponding activity. The most common standard block types of

the Simulink library are translated as predefined activities of the UML Simulink profile.

Simulink block type parameters are depicted as properties of their equivalent UML ac-

tivities. Some parameters are common to all block types suchas the position of a block

inside a Simulink model. Common parameters are translated into properties of a higher

level activity which is inherited by all other block type-specific activities of the Simulink

profile.

The UML callBehaviorActions graphically represent the Simulink block instances

and are tagged with a Simulink block type-specific stereotype. The Simulink block in-

stance operation of the Simulink model in Fig. 5.1 for example is translated into a UML

action tagged with an«integrator» stereotype standing for the Integrator block type.
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The stereotype icon facilitates the recognition of the Simulink block type-specific actions

in the UML activity diagram. As the Simulink block instance details are described in

a related UML instance specification, each UML action references the related UML in-

stance specification through anactivityInstanceproperty of the applied block type-specific

stereotype. As theactivityInstanceproperty is common to all Simulink block type-specific

stereotypes, the property is declared with a general stereotype from which all block type-

specific stereotypes inherit.

The Simulink library offers a multitude of different block types, so not each one is

mirrored as a predefined activity in the Simulink profile. In case a predefined activity to

denote a Simulink block type is missing, a corresponding activity can be defined in the

UML model. It is then tagged with a neutral«simulinkBlockType» stereotype while

its owned block-specific properties are tagged with a«simulinkBlockProperty» stereo-

type. The related action is tagged with a«simulinkBlock» stereotype.

5.1.3 Signals

Simulink signals forward streams of values between Simulink blocks. The Simulink

source block of Fig. 5.1 for example outputs values of type Double. UML object flows

are edges between nodes that can have objects passing along them. Due to their similarity,

Simulink signals are translated into UML object flows with anapplied«simulinkSignal»

stereotype. The Simulink signal label, if existent, is set equivalent to the name of the UML

object flow. The Simulink input or output signals are attached to the ports of the Simulink

blocks. The ports of the Simulink blocks are converted into UML pins as they specify the

inputs and outputs of the UML actions. The«simulinkSignal» object flows then con-

nect the pins. The source and target attributes of the objectflows are therefore set to their

corresponding connected pins and the incoming and outgoingattributes of pins are set

respectively to their incoming and outgoing object flows. Each Simulink signal transmits

one value per simulation time step. Theweightattribute of the UML object flows, which

determines the number of tokens consumed from the source node on each traversal, is

therefore always set to 1. Theguardattribute of the object flows, which determines if the

object flow can be traversed, is always set to true.

The Simulink signal data type is equal to the block output data type which is double by

default. Simulink blocks can output one-, two-, or multidimensional signals. The easiest

is a scalar signal which consists of a stream of scalar valuesat a frequency of one scalar

value per simulation time step. This is the case with the source and integrator blocks

of Fig. 5.1. But signals can also consist of a stream of multidimensional vectors. The

mux block in the same Simulink model for example receives twostreams of scalar values
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and combines them into a single vector output stream of dimension (1x2). The Simulink

signal data type is translated as UML type of the source and target pins of the respective

«simulinkSignal» object flow.

Simulink signals can have branches which split a signal intomultiple signals. The

output signal of the Simulink source block of Fig. 5.1 is for example separated into two

signals directed at the operation and mux blocks. As a UML fork node splits a flow into

multiple concurrent flows, a Simulink branch is depicted in UML as a fork node with a

«simulinkBranch» stereotype. The incoming and outgoing attributes of the fork node

are set to the incoming and outgoing«simulinkSignal» object flows. The Simulink

mux block of Fig. 5.1 could be interpreted as a UMLjoin node. The Simulink mux

block combines its multiple inputs into one composite output signal. Simulink composite

signals have no functional effect but can simplify the appearance of a Simulink model

when many parallel signals exist. Similarly, a UML join nodesynchronizes multiple

input flows into one output flow. In order to keep the resemblance between the UML

and the Simulink model as high as possible, the Simulink mux block is translated like the

other blocks into a UML action.

5.1.4 Subsystems

Large Simulink models can be decomposed into smaller modelscalled subsystems which

improve the overall overview of the modeled system. A subsystem is an encapsulated

model which can be reused in the context of another Simulink model. A Simulink model

can refer to an embedded subsystem via a block of type Subsytem. This can lead to a

hierarchy of embedded models of any depth. The Simulink model of Fig. 5.1 can for

example be decomposed as in Fig. 5.2 into a main and an embedded model. The main

Simulink model contains a block of type Subsystem which refers to the embedded sub-

system containing the previous integrator and mux blocks.

A Simulink subsystem is mapped like a Simulink model into a UML activity but

tagged with a«simulinkSystem» stereotype. The«simulinkModel» stereotype is in

fact a specialization of the«simulinkSystem» stereotype, as it represents the upper-

most Simulink system in the hierarchy of a Simulink model. Asa consequence, the

«simulinkModel» stereotype is defined in the Simulink profile as having a generaliza-

tion relationship with the«simulinkSystem» stereotype.

The Simulink subSystem block instance is mapped like the other block instances into

a UML callBehaviorAction with an applied block type-specific«subsystem» stereotype.

The Subsystem block type is mapped like other block types of the Simulink library as a

predefined activity with subsystem-specific properties in the Simulink profile. The UML
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Figure 5.2: Simulink subsystem and related UML subactivity

action representing the Simulink subSystem block instancerefers to an instance specifica-

tion describing in detail exclusively the parameter valuesof the subSystem block instance

while its behaviorattribute refers to the embedded«simulinkSystem» activity.

Inputs and outputs of a Simulink subsystem are described by Simulink blocks of type

Inport and Outport. Inputs and outputs of a UML activity are depicted by input and output

activity parameter nodes. So the in- and outports of a Simulink subsystem are translated

as UML activity parameter nodes of the«simulinkSystem»activity and are tagged ac-

cordingly either with an«inport» or an «outport» stereotype (Fig. 5.2 bottom right).

The Simulink subsystem of Fig. 5.2 has for example an Inport block named “in1” and

an Outport block named “out1”. The incoming or outgoing values of a Simulink sub-

system are translated as UML parameters of the«inport» and«outport» UML activity

parameter nodes. Thedirectionattribute of UML parameters is set to In or Out according

to their incoming or outgoing nature. The Simulink signal data type of the incoming or

outgoing values of Simulink In- and Outport blocks is translated as the UML type of the

corresponding UML activity parameter nodes and parameters.

5.1.5 Case study: slider position controller

An example of a dynamic system model applied to the slider-crank mechanism of Fig. 4.3

is a slider position controller. By applying a torque on the crank, the slider can be dis-

placed along its track (Fig. 5.3). The controller is responsible for computing the torque to

be applied on the crank so that the slider follows a target position. The Simulink dynamic

system to simulate the slider position controller and the simulation results are shown in

Fig. 5.4 left. The simulation results are displayed throughthe result Scope block (Fig. 5.4
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top left) showing the target slider position as a green stepwise dashed line and the actual

slider position as a purple continuous line. The simulationresults show that the slider

follows the target position with a slight overshooting at each position adjustment.

τ δx

x

Figure 5.3: Displacement of the slider according to a torqueapplied on the crank

The target slider position is determined by a Simulink blockof type RepeatedSe-

quenceStair which switches the target position from 0 to 0.05 meters at every sample time

of 1 second. The differenceδx between the actual and the target slider position is for-

warded to blocks of type Gain, Integrator and Derivative andsummed up to determine the

torqueτ to be applied on the crank to minimize the slider positioningerrorδx. This most

common type of controller is known as a proportional-integral-derivative (PID) controller.

A saturator block limits the highest possible torque to be applied to 0.02 Nm to respect the

limits of a simulated motor. The sliderMechanism block computes the new slider position

as a consequence of the torque applied on the crank. It is described in this example as

a black box but its internal structure representing a multibody system is described in the

next chapter. The resulting actual slider position is forwarded back to complete the con-

trol loop and is also sent to the result block for visualization. The parameters of the Gain,

Integrator and Derivative blocks can further be adjusted according to the requirements

concerning controller stability, speed and energy consumption.

The UML activity corresponding to the Simulink model of the slider position con-

troller is displayed in Fig. 5.4 right. As the Simulink Sum blocks show the operators act-

ing on their signal inputs, the pins of the UML actions representing the Simulink blocks

of type Sum have an attached UML keyword to display the corresponding sign.
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5.2 UML profile for SimMechanics-specific multibody sys-

tems

SimMechanics2 is an extension of the Simulink software and is specialized in the motion

simulation of multibody systems. SimMechanics allows to represent a multibody system

in a graphical model from which the mathematical equations to describe the multibody

system motion are automatically derived and solved. SimMechanics thus greatly facili-

tates the error-prone process of establishing and solving equations of motion, especially

in the case of mechanical systems composed of many bodies andjoints.

5.2.1 SimMechanics model

A simple multibody system is for example the double pendulumof Fig. 5.5 formed of

two cylinders connected by a revolute joint. The dashed lines show the trajectory of

both cylinder ends when the cylinders are left to oscillate through the force of gravity

for 0.5 seconds after being initially placed in the left starting position without velocity.

The corresponding SimMechanics model is shown at the top of Fig. 5.7. A multibody

system is described in SimMechanics as a block diagram similar to a dynamic system

in Simulink. SimMechanics blocks represent in particular bodies, joints, force elements,

sensors and actuators.

pendulum1

pendulum2

joint1

joint2

support

gravity

t = 0s

t = 0.5s

t = 0s t = 0.5s

Figure 5.5: Trajectory of a double pendulum

A body is represented in SimMechanics by a block of type Body. Both pendulum

bodies of Fig. 5.5 are for example described in SimMechanicsrespectively through the

pendulum1 and pendulum2 blocks of type Body shown in Fig. 5.7.A body is specified in

SimMechanics by its mass, its moment of inertia tensor and bycoordinate systems which

2The MathWorks, SimMechanicsTM ,
http://www.mathworks.com/products/simmechanics/

http://www.mathworks.com/products/simmechanics/
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are fixed to the body and move with it (Fig. 5.8). These attached coordinate systems

are used to define the initial position of the bodies as well asthe kinematical constraints

between them. The body block corresponding to the pendulum1of Fig. 5.5 for example

needs three coordinate systems to be completely defined (Fig. 5.6). The CG coordinate

system describes its initial center of gravity position andorientation and the CS1 and CS2

coordinate systems are needed for the definition of revolutejoint constraints with their

neighboring blocks, namely the support and the second pendulum block.

support

pendulum1

Base

Follower

CS1

CS2

CG

Revolute Joint between
Base and Follower
Coordinate Systems

support

pendulum1

C
S
1

C
S
2

joint1

B
F

Figure 5.6: Coordinate systems for the representation of a double pendulum in SimMe-
chanics

The kinematical constraints which restrict the motion of the bodies are specified in

SimMechanics as blocks. For example, the revolute joints ofFig. 5.5 which restrict the

motion of the pendulums are specified in SimMechanics as blocks of type Revolute Joint

(Fig. 5.7). A joint block is connected with the constrained body coordinate systems. The

SimMechanics joint2 block for example (Fig. 5.7) is connected with the coordinate system

CS2 of the pendulum1 block and with the coordinate system CS1 ofthe pendulum2 block

to define a revolute joint between the respective coordinatesystems of both pendulum

bodies. Furthermore, a SimMechanics model is always composed of a ground block to

define a gravity force acting on the multibody system and an environment block to specify

a fixed coordinate system (Fig. 5.7).

A SimMechanics model describes a multibody system by specifying its internal struc-

ture composed of bodies and connections. The SimMechanics modeling elements are

therefore close to the concepts of internal structures in UML. A SimMechanics model is

hence mapped into a UML class describing its internal structure through UML parts,

ports and connectors. The class describing a SimMechanics model is tagged with a

«simMechModel» stereotype. An example of the UML composite structure correspond-

ing to the SimMechanics model depicting the double pendulumis shown at the bottom of

Fig. 5.7 .
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support pendulum2

CS1

pendulum1

CS1 CS2

joint2

B F

joint1

B F

gravity

Env

DoublePendulum

pendulum1 
: Body2CS

CS1

CS2

pendulum2 
: Body1CS

CS1
gravity : 
Environment

support : 
GroundWithEnv

joint1 : 
Revolute

B F
joint2 : 
Revolute

B F

SimMechanics Model

UML Class

Block Connection Port

ConnectorPart Port

Figure 5.7: SimMechanics model of a double pendulum and corresponding UML com-
posite structure diagram

5.2.2 Blocks

Similar to Simulink, SimMechanics has a predefined library of block types. SimMe-

chanics blocks inside a SimMechanics model are instances ofpredefined SimMechanics

blocktypes. The pendulum1 block (Fig. 5.7) for example is aninstance of the blocktype

Body. The relationship between a SimMechanics block type anda block instance in a

SimMechanics model is identical to the relationship between a UML class and a UML

instance specification. Therefore, a SimMechanics block type is translated into a UML

class and a block instance into a UML instance specification.The frequently used block

types of the SimMechanics block type library are mapped intopredefined UML classes

in the SimMechanics profile.

The containment relationship between a SimMechanics modeland a SimMechanics

block instance is described in UML on the class and on the instance level. On the class

level, it is represented as a composite aggregation relationship between the UML class

related to the SimMechanics model and the UML class related to the SimMechanics

block type. The resulting property of the«simMechModel» class is called a part and

is tagged for easier recognition with a SimMechanics block type-specific stereotype. The

SimMechanics support block of type Ground is for example mapped into UML as a part

tagged with a«ground» stereotype (Fig. 5.7 bottom). The application of the SimMe-

chanics block type-specific stereotype is only visible through the block type-specific icon

applied to the part. The containment relationship between aSimMechanics model and

a SimMechanics block instance also applies on the instance level. The instance of the

«simMechModel» class references the instance representing the SimMechanics block.
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So in the example of the double pendulum of Fig. 5.7, the instance of the DoublePendu-

lum «simMechModel» class references an instance of the Ground class playing therole

of a support.

SimMechanics block instances inside a SimMechanics model are connected to each

other via SimMechanics ports. Similarly, UML parts inside aUML class interact with

each other through UML ports. The SimMechanics ports of a block type are therefore

mapped into UML ports of the related UML block type-specific class. But the ports of

SimMechanics block instances are not always determined through their block type but

sometimes also by the block instances themselves. The definition of UML ports on the

instance level is however not possible in UML, as UML ports can only be defined as class

attributes and are automatically valid for all instances without exception. To overcome

this problem, the UML classes in the SimMechanics profile depicting the SimMechanics

block types do not own ports and new UML classes are introduced in the UML model

to represent specialized versions of the UML block type-specific classes with additional

ports if needed.

The pendulum1 and pendulum2 blocks are for example both of the same block type

Body but do not have the same number of ports, as pendulum2 has one port less. The

UML parts corresponding to the pendulum blocks are respectively of type Body2CS and

Body1CS. Both new classes inherit from the Body class of the SimMechanics profile

but have a different number of ports. The class Body2CS owns three ports (Fig. 5.8

top right) as the pendulum1 part owns two ports representinguser defined coordinate

systems and one port representing the center of gravity coordinate system. The UML ports

are either tagged with a port-specific stereotype such as«simMechCS», standing for

SimMechanics coordinate system, or«simMechCG», standing for SimMechanics center

of gravity, or with a general«simMechPort» stereotype. The type of the SimMechanics

port is reflected as type of the UML port. The possible port types are defined in the

SimMechanics profile.

A body coordinate system is defined in SimMechanics by its origin and orientation

relative to another existing coordinate system. These SimMechanics attributes are dis-

played in the pendulum1 block parameters window in Fig. 5.8 left. The UML attributes

describing such a coordinate system are also grouped together and belong to the UML

class SimMechCS which is the type of the ports representing the body coordinate systems.

The SimMechCS class is saved in the SimMechanics profile and isdisplayed in Fig. 5.8,

listing for space reasons only the attributes concerning the initial coordinate system posi-

tion. The type of some attributes is an enumeration also belonging to the SimMechanics

profile. The componentsInAxesOf property is for example of type CSEnum. This is an
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enumeration consisting of literals such as “Adjoining” which specifies an equivalence

with a neighboring coordinate system.

SimMechanics Body Block Properties

UML Class

SimMechCS

showPort : Boolean
portSide : PortSideEnum
originPosition : String
positionUnits : PositionUnitsEnum
translatedFromOriginOf : CSEnum
componentsInAxesOf : CSEnum

UML Class

«simMechBody»

Body2CS

«simMechMass» mass : kg
«simMechInertia» inertia : kg*m^2

«simMechCG» CG : SimMechCS

«simMechCS» CS1 : SimMechCS

«simMechCS» CS2 : SimMechCS

Figure 5.8: Top: Properties of the pendulum1 Body Block. Bottom: UML Classes corre-
sponding respectively to the Body blocktype and the coordinate system port type

Important SimMechanics block properties such as the mass and inertia of a body block

are directly editable in their block parameter windows (Fig. 5.8). The distinction between

the UML properties corresponding to the essential block attributes and the others which

are not visible in a SimMechanics block parameters window ishelpful. This distinction

is possible by introducing into the UML model new UML classeswhich inherit from

the UML SimMechanics blocktype-specific classes of the SimMechanics profile. This

specialization is in fact already necessary due to the ports. The new classes redefine, if

considered helpful, the important properties so that theseand only these are then visible in

the UML model. The redefined properties are tagged with an attribute-specific stereotype

such as the mass property of the Body2CS class which is tagged with a«simMechMass»

stereotype (Fig. 5.8 top right). The multidisciplinary role of some redefined properties can

then subsequently be captured by superpositioning other application-specific stereotypes

on these properties. This will be demonstrated in the slider-crank mechanism case study

in Section 5.2.5.
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5.2.3 Connections

Interactions between SimMechanics blocks inside a SimMechanics model are described

through connections displayed as undirected lines betweenports of blocks. Interactions

between corresponding UML parts are specified through UML connectors between UML

ports of UML parts. So the SimMechanics connections are mapped as UML assembly

connectors tagged with a«simMechConnection» stereotype. The connectors between

ports are valid according to the UML specification if both ports concerned have a common

interface. One of the ports concerned must provide this interface and the other must

require it. UML interfaces have therefore been defined in theSimMechanics profile.

The coordinate system ports belonging to the body blocks forexample provide coor-

dinate system data which is required by the coordinate system ports belonging to the joint

blocks. A common CoordinateSystem UML interface has for thiscase been defined in

the SimMechanics profile. The CoordinateSystem interface isprovided by the body block

SimMechCS ports and is required by the joint block ports (Fig.5.6). The CoordinateSys-

tem interface is the most common but similar interfaces, together with the application of

interface realizations and usage dependencies, have also been defined for other cases.

If the UML connectors belong to a UML component instead of a UML class, the com-

posite structure diagram can display through the “ball-and-socket” notation the requiring

or providing role of parts such as in Fig. 4.8. But to keep the visual similarity between

the SimMechanics model and the UML composite structure diagram as high as possible,

the context classifier is a UML class showing the connectors without “ball-and-socket”

notation.

5.2.4 SimMechanics model as a Simulink subsystem

Multibody systems are often set in motion through controlled actuators. It is therefore

useful to combine a multibody system model with a controllermodel to test and simu-

late a complete system. A SimMechanics multibody system model can be combined with

a Simulink controller model in one common Simulink model. SimMechanics blocks of

type Actuator can receive Simulink signals describing a force or a torque and forward

them to SimMechanics blocks describing a body or a joint. Reciprocally, SimMechan-

ics blocks of type Sensor can measure the motion of a body or a joint and output it as a

Simulink signal. Due to the decision of mapping Simulink blocks and signals into UML

activity diagram elements and SimMechanics blocks and connections into UML compos-

ite structure diagram elements, a Simulink model containing on the same modeling level

both Simulink and SimMechanics information cannot be mapped into one common UML
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diagram. Elements of an activity diagram cannot contain parts and connections and a

composite structure diagram cannot contain actions and object flows.

It is therefore necessary to separate the SimMechanics blocks from the Simulink

blocks before converting them to UML by introducing a Simulink subsystem containing

exclusively SimMechanics-related information. Only thencan the combined Simulink/

SimMechanics model be translated into UML. As described in Section 5.1.4, a UML

callBehaviorAction representing a Simulink subsystem block refers to a UML activity

representing the related Simulink subsystem. The Simulinksubsystem which contains a

SimMechanics model is mapped into a UML subsystem activity which is set asclassifier

behaviorof the UML class representing the SimMechanics model. The UML subsystem

activity is empty and is used to link the UML action representing a Simulink subsystem

with the composite structure of a UML class representing theSimMechanics model. In

the example of the slider position controller of Fig. 5.4, the sliderMechanism block is a

Simulink subsystem block referring to an embedded SimMechanics Model.

The SimMechanics in- and outport blocks are translated as UML delegation ports

of the related«simMechModel»class and are tagged with corresponding«inport» or

«outport» stereotypes. A UML interface named SimMechData has been created in the

SimMechanics profile to describe the flow of data through the UML delegation ports. The

types of the delegation in- and outports respectively require and provide the SimMechData

interface. The directed signals originating or ending in the in- and outport blocks of the

SimMechanics model are translated as directed UML delegation connectors.

CS2

CS1

CS1

CS2

CG

CG

CS2

baseLeft

baseRight

Figure 5.9: Schematic 2D view of coordinate systems for the abstraction of the slider-
crank mechanism in SimMechanics

5.2.5 Case study: slider-crank mechanism as multibody system

The slider-crank mechanism of Fig. 4.3 is an example of a multibody system. The

schematic 2D representation of the decomposition of the slider-crank mechanism into

bodies and coordinate systems for the representation of themultibody system in Sim-
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Figure 5.10: SimMechanics model of the slider-crank mechanism as Simulink subsystem
and corresponding UML composite structure diagram

Mechanics is shown in Fig. 5.9. The corresponding SimMechanics model is represented

in Fig. 5.10. The crank, rod and slider parts are representedin SimMechanics as body

blocks. The base part is fixed and is represented by two groundblocks. Joint blocks

define the possible movement of each body relative to another. Coordinate systems are

introduced as in Fig. 5.9 to define the interaction points andpositions of the bodies. The

crank body is for example described by three coordinate systems. The CG coordinate

system stands for the position of its center of gravity and the CS1 and CS2 coordinate

systems represent the interaction points with the neighboring bodies such as the rod and

the base. The kinematical constraint to limit the movement of the crank relative to the rod

to a rotation around a common axis is defined by a constraint oftype Revolute between

the CS1 coordinate system of the crank and the CS2 coordinate system of the rod. This

constraint is represented in the SimMechanics model by a revolute joint block named

revolute2 connecting both constrained coordinate systems.

The SimMechanics multibody system model of the slider-crank mechanism is com-

bined with a Simulink controller model to simulate a controlled behavior of the mecha-

nism. The Simulink controller model presented in Section 5.1.5 adjusts the position of
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the slider by rotating the crank. The slider-crank mechanism is described in Simulink

by a subsystem block named sliderMechanism (Fig. 5.4) having as input signal a torque

value and as output signal a position value. The underlying subsystem consists of the

SimMechanics model of Fig. 5.10. The SimMechanics in- and outports are visible as

UML delegation ports in the underlying SimMechanics model.The incoming signal is

forwarded to a joint actuator block connected to the revolute1 joint which applies a torque

on the CS2 coordinate system of the crank to make it rotate. Similarly, the position of the

CS1 coordinate system of the slider is measured by a joint sensor block connected to a

prismatic block. The corresponding UML class composite structure is displayed at the

bottom of Fig. 5.10.

5.3 Summary

Chapter 5 has described the UML extensions required to represent in a UML-based prod-

uct model Simulink-specific dynamic models as well as SimMechanics-specific multi-

body system models. Simulink-specific dynamic system models and SimMechanics-

specific multibody system models are respectively similar to UML activity diagrams and

UML composite structure diagrams. As shown in Fig. 5.4 and Fig. 5.10, the graphical

resemblance between Simulink models and UML activity diagrams as well as between

SimMechanics models and UML composite structure diagrams is high.

The Simulink-specific dynamic system model is a block diagram composed of blocks,

signals and subsystems. As the Simulink dynamic system model as well as the subsystems

represented specific behaviors, they were mapped into UML activities. The Simulink

signals represented information flows and were accordinglymapped into UML object

flows. Simulink block types represented templates and were described as predefined UML

activities within the Simulink profile. Simulink block instances were mapped into both

UML actions and UML instances to respectively graphically depict the block instances

within UML activity diagrams and capture the values of the block instances. The UML

actions thereby referenced the UML instances through a stereotype property. Ideally,

block instances should be mapped into a single UML modeling element which would

unite the characteristics of both UML actions and instances.

The SimMechanics-specific multibody system model is also a block diagram, however

composed of blocks, ports and connections. The connectionsrepresent static dependen-

cies instead of dynamic information flows such as in Simulink. The multibody system

model was represented as a UML composite structure diagram.SimMechanics block

types were thereby translated into UML predefined classes and connections into UML
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connectors. As with Simulink block instances, the direct one-to-one mapping of a Sim-

Mechanics block instance into a corresponding UML modelingelement is not possible.

The block instances were mapped into UML parts and UML instances to respectively

graphically depict block instances within the UML composite structure diagram and cap-

ture the values of block instances. The direct mapping of a SimMechanics block instance

into a corresponding UML modeling element is not possible because UML composite

structure diagrams describe the internal structure of a class of objects and do not directly

refer to concrete instances.

In contrast to Simulink and SimMechanics models which describe interactions be-

tween block instances, UML object diagrams do not support the modeling of complex

interactions between objects as they are intended to describe static snapshots of software

runtime objects and their links. UML object diagrams with improved capabilities to de-

scribe interactions between objects would facilitate a one-to-one mapping of dynamic and

multibody system models into UML. Future UML releases may therefore introduce new

modeling concepts for a better representation of object interactions.

The mapping of Simulink, SimMechanics and combined Simulink/SimMechanics

models into UML was applied to the slider-crank mechanism example. As the blocks

within the Simulink and SimMechanics models contain detailed information, importing

the existing models into UML was preferable to describing inUML the Simulink- and

SimMechanics-specific information from scratch. The translation of UML models into

Simulink and SimMechanics models was validated by generating models identical to the

imported ones. Despite the inability of the UML to representdetailed interactions be-

tween instances, the dynamic and multibody system models shared great resemblance

with their corresponding UML diagrams and therefore allowed a mostly intuitive one-to-

one mapping.



Chapter 6

UML profiles for data retrieval and

constraint processing

Products are often composed of parts which are ready-made and available off-the-shelf.

The characteristics of these components, such as their dimensions, are often stored in

spreadsheets. Section 6.1 presents the mapping of Excel-specific spreadsheet data into

UML. A central product model also needs to reference data resulting from external program-

specific computations. In this case, it must represent functions with their input and output

arguments. Section 6.2 describes the mapping of Matlab-specific functions into UML.

Furthermore, relationships between features of distinct models can be represented in a

central product model through algebraic equations. Section 6.3 presents UML constraints

to describe algebraic equations and their resolution.

6.1 UML profile for Excel-specific spreadsheet data

Excel1 is a widely used spreadsheet application. It displays cellsorganized in rows and

columns, each cell containing data or a formula with relative or absolute references to

other cells. Excel furthermore has a multitude of graphing possibilities, which allows nu-

merical data to be interpreted as graphs or charts. Product data is often stored in Excel

documents which contain several spreadsheets. In the example of Fig. 6.1, the width and

length values of crank parts are stored in an Excel spreadsheet. Each cell is identified

through its location in the spreadsheet. The spreadsheet columns are numbered alphabet-

ically while the rows are sorted numerically. The crank length which applies to all crank

instances is for example saved in cell C2 while the crank instance-specific width values

are respectively stored in cells B3 and B4.

1Microsoft Office Excel,www.microsoft.com/excel/

www.microsoft.com/excel/
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UML properties and slotsExcel cell values

Crank

width : mm
«excelCellValue» length : mm
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«excelCellValue» length : mm

crankInstance1 : Crank
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«excelCellValue» width = 10

crankInstance2 : Crank

length = 50
«excelCellValue» width = 20«excelCellValue» width = 10 «excelCellValue» width = 20

«instanceOf»
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4

All cranks

crankInstance1

crankInstance2

A

width length

B C

10

20

50

Stereotype properties:

excelCellRef = C2

excelSheet = spreadsheet1

excelWbPath = C:/crank.xls

Figure 6.1: Excel cell values and corresponding UML properties and slots

A UML class represents the properties which are common to a set of instances. A

value which is common to all instances is therefore set as default value of the correspond-

ing property. The Crank class of Fig. 6.1 for example has a width and a length property.

According to the Excel spreadsheet, the length value, colored yellow in the spreadsheet,

applies to all crank instances. The default value of the length property of the Crank class

therefore needs to be linked with the respective Excel cell.The property is then tagged

with an«excelCellV alue» stereotype which has three attributes to specify the cell loca-

tion, the specific spreadsheet and the location of the Excel document which is also called

workbook. Through the tagged property, the Excel length value has been transferred to

each instance, as displayed in the length slots of the crank instances. On the other hand,

the Excel width values which are colored purple only apply for specific instances. In

UML the crank instance-specific values are stored in their respective UML slots. In this

case, the same«excelCellV alue» stereotype is applied to the slot to link the slot value

with the Excel cell value. Both UML crank instances thereforehave a width slot tagged

with an«excelCellV alue» stereotype which refers to an Excel cell value.

The presented Excel-specific stereotype is responsible fortransferring the Excel cell

values to the UML model. Other stereotypes can handle the reverse transfer of UML

values to an Excel document. The method of applying a stereotype on properties or slots

can also be used to link UML values with values stored in otherdata sources such as

databases.

6.2 UML profile for Matlab R©-specific functions

The MATLAB application offers an integrated environment supporting computation, vi-

sualization and programming. MATLAB allows to solve many technical computing prob-

lems, especially those with matrix and vector formulations, as it includes libraries which

offer state-of-the-art software for matrix computation. The name MATLAB stands for

matrix laboratory. The MATLAB programming language is a high-level language and in-
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cludes matrix-based data structures, control flow statements, functions and object-oriented

programming features. Collections of MATLAB functions (M-files) are grouped in tool-

boxes, as for signal processing, control systems, neural networks, fuzzy logic, wavelets,

simulation and many other domains.

The results of Matlab-specific computations can have an impact on other product

data. By representing the Matlab-specific computations in a UML-based product model,

the Matlab-specific data can be linked with other application-specific data. This Sec-

tion shows the representation of a Matlab function in a UML model. An example of a

Matlab function is displayed in Fig. 6.2. The header declares the function name getSli-

derMaxSpeed, its input argument simTime and output argument maxSpeed. The Matlab

function will launch a simulation of the sliderControl Simulink model for 10 seconds. The

Simulink model simulates the control of the slider-crank mechanism as in Section 5.1.5

and records the speed of the slider along the rail. Figure 6.2shows the Simulink model

which has a few additional blocks for the speed measurement.The maximum speed of

the slider is recorded at specific time intervals in an array named maxSpeedRecord. The

maximum speed which occurred during the simulation is equalto the last recorded value

in the array and is set equal to maxSpeed which is the output argument of the function.

Matlab function

function [maxSpeed] = getSliderMaxSpeed(simTime)

sim('sliderControl', simTime);

maxSpeed = maxSpeedRecord(length(maxSpeedRecord), 2);

UML operation

Matlab Command Window

>> maxSpeed = getSliderMaxSpeed(simTime)

maxSpeed =

    0.5788

Simulink simulation

Figure 6.2: Processing of a UML operation referring to a Matlab function

Functions or methods are represented in UML through operations. The input and out-

put arguments of an operation are specified through parameters. The getSliderMaxSpeed

operation for example has a simTime input argument which is represented in UML through

a parameter with a direction attribute set to “in”. The output argument maxSpeed is

mapped into a parameter with a direction attribute set to “return”. The parameter values

are described through literal strings. The input argument simTime is for example set to 10s
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and the output argument maxSpeed, resulting from the computation by the Matlab func-

tion, is set to 0.5788m/s. The Matlab-specific function is recognizable in the UML model

as an operation tagged with a«matlabFunction» stereotype. The name of the UML op-

eration is then identical to the name of the function. The directory in which the Matlab

function is saved is specified in the workspacePath attribute of the«matlabFunction»

stereotype. It can also specify through an order attribute the sequence in which several

Matlab functions need to be evaluated.

Figure 6.2 shows a tree view of the UML operation modeling elements including the

input and return parameters and their values. According to the UML specification, UML

operations can only have one parameter with the direction kind “return”. This is the case

in many programming languages such as Java or C++. However, Matlab functions can

have several output arguments. In this case, the output arguments are mapped into UML

parameters with the direction kind “out”. UML operations are generic modeling elements

which can represent functions of different programming languages.

6.3 UML profile for constraint processing

Dependencies between design variables can be described through mathematical state-

ments to ensure data consistency. The mathematical statements can describe a multi-

tude of different relationships between design variables such as inequations or differential

equations. The most common type of mathematical statementsduring product design

are equations which describe an equality between two expressions composed of design

variables.

Equations can be described either in an explicit or an implicit form. Explicit equations

describe the evaluation of a parameter based on a known function and a set of known

variables in the formxn = f(x1, x2, ..., xn−1). If the explicit representation allows to

compute one specific unknown variable, the engineer is forced to decide which variables

are input and which are output. According to the example, only thexn variable would

be computed based on the other known variables. This is not practical in conceptual

design as it requires the analysis of different what-if scenarios to explore the possible

design space [136]. Trade-off studies can only be conductedby permutating the known

and unknown variables.

The implicit or declarative representation is of the formf(x1, x2, ..., xn) = 0 and

does not visually impose a specific unknown variable. The implicit representation can be

reused in different scenarios as the definitions of the knownand unknown variables can

be swapped. However, the explicit representation does not necessarily imply an explicit
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resolution of the equation according to only one specific unknown variable. Many math-

ematical toolboxes can automatically transform one explicit representation into another

in order to solve an equation according to another set of known and unknown variables.

The sequence steps to solve an equation, or an equation system, are as a consequence

not predetermined and do not stand for explicit computations. The resolution order of

the equations is then not fixed but computed according to the known and unknown de-

sign variables. The simple equations presented in Fig. 6.3 are represented in an explicit

form but are handled and manipulated by mathematical toolboxes as if they were in a

declarative form.

Design variables are described as UML properties. UML constraints can set condi-

tions or restrictions on UML properties. They are for example displayed in light red next

to the classes in Fig. 6.3. The UML constraints describe equations which affect the length

and thickness parameters of the crank and rod parts of the slider-crank mechanism. The

UML constraints are composed of UML opaque expressions to describe the algebraic

equations.

1
Set of equations:

{crank.length = 10 * crank.thickness

crank.length = rod.length / 2

rod.length = 20 * rod.thickness

rod.thickness = 5}             

Set of variables:

{crank.length, crank.thickness, 

rod.length, rod.thickness}

Solution

Path

Generator

4

2

Math.

Solver

Software

3

Crank

«spgvar» length : mm
«spgvar» thickness : mm
rodP : Rod

Rod

«spgvar» length : mm
«spgvar» thickness : mm

crank : Crank

length = 50
thickness = 5
rodP = rod

rod : Rod

length = 100
thickness = 5

{length = rod.length / 2}

{length = 20 * thickness}

{thickness = 5}

{length = 10 * thickness}

Constraint processingEquations as UML constraints 

Figure 6.3: Resolution of equations described as UML constraints

By referring to the properties of a class, the constraints arein force for all instances

of that class. So a constraint definition based on class properties can lead to a multitude

of instance-specific constraints. These are then composed of unique instance-specific

variables which are not to be mistaken for class-specific properties. The transformation of

class-specific into instance-specific constraints is visible in the first step of Fig. 6.3 which

displays the resolution process of the UML-based equations. The constrained variables

have in addition to the property name a prefix depending on theinstance name in order

to create a unique variable. As an example, the Crank class-specific constraintlength =

10 ∗ thickness is transformed into the crank instance-specific constraintcrank.length =

10 ∗ crank.thickness.
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Constraints can refer to properties of a class and also to properties of referenced

classes. As displayed in Fig. 6.3, the length of the crank depends on the length of the ref-

erenced rod. The constraint refers to the length property ofthe rod via the rodP property

of the Crank class. The length property of the rod is transformed into a unique instance-

specific variable when replacing the class-specific constraints with instance-specific con-

straints. For example, the class-specific constraintlength = rodP.length/2 is replaced

with the crank and rod instance-specific constraintcrank.length = rod.length/2.

The automated resolution of UML-based equations consists of several steps as de-

scribed in Fig. 6.3. The first step consists of generating instance-specific equations based

on property-specific equations. The set of instance-specific equations can be directly sent

to a mathematical solver. However, the solution path generator (SPG) [142], which is

based on a bipartite matching algorithm acting on a graph representation of dependencies

between equations and constrained variables, is able to compute the resolution order of

the equations. The solution sequence of the equations is therefore determined in a second

step before solving the equations by a computer algebra system such as Matlab2, Mathe-

matica3 or Maple4 in a third step. The computed results are sent back to the UML model

in the slots of the corresponding instances, as displayed instep four in Fig. 6.3.

The unresolved properties which are involved in equations are tagged with a«spgvar»

stereotype while the constant properties are tagged with a«spgconst» stereotype. The

abbreviation “spg” stands for solution path generator and refers to the algorithm used to

compute the equation solving sequence for a set of declarative equations. Although UML

constraints can refer directly to the constrained properties through their constrainedEle-

ment attribute, tagged properties allow a better visualization of the equation variables.

Each UML opaque expression specifies the language of the expression. One prede-

fined language for writing constraints is the Object Constraint Language (OCL) [114].

It is a query language predominantly used to specify values and to define pre- and post-

conditions regarding the execution of operations. However, the OCL does not support

and interpret mathematical operands and is therefore not suitable to solve mathematical

equations. As the resolution of algebraic equations is based on the common preprocess-

ing SPG algorithm which is independent of the postprocessing mathematical solver, the

equations are stored in UML expressions with the language “spg”.

Other languages can be defined for the resolution of other types of equations. An

example of an equation consisting of matrices is described in Fig. 6.4. Position or iner-

tia values are often represented through matrices. The transformation of a position vector

2The MathWorks, Matlab,http://www.mathworks.com/products/matlab/
3Wolfram Research, Mathematica,http://www.wolfram.com/products/mathematica/
4Maplesoft, Maple,http://www.maplesoft.com/products/Maple/

http://www.mathworks.com/products/matlab/
http://www.wolfram.com/products/mathematica/
http://www.maplesoft.com/products/Maple/
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Crank

pointPosition1 : 1x3 [mm]
pointPosition2 : 1x3 [mm]
rotationMatrix : 3x3 [-]

crank : Crank

pointPosition1 = [100 50 20]
pointPosition2 = [111 20 93]
rotationMatrix = [0.86 0 0.5;  

0.5 0 0.86;  
0 1 0]

pointPosition2 = pointPosition1 * rotationMatrix

Equation with matrices as UML constraint

1

3

Matlab Command Window

2

>> pointPosition2 = [100 50 20] * [0.86 0 0.5; 0.5 0 0.86; 0 1 0]

pointPosition2 =

   111    20    93

Figure 6.4: Resolution of equations involving matrices described as UML constraints

into another reference frame can occur by multiplying it with a transformation matrix. The

equation in Fig. 6.4 describes the relation between the position vectors pointPosition1 and

pointPosition2 respectively in the reference frames indexed 1 and 2. The equation is de-

scribed in UML by an opaque expression owned by a constraint.In this case, the equation

is represented in an explicit form and the resolution of the equation is explicit. The left

side of the equation represents the unknown variable pointPosition2 while the right side

contains the known variables pointPosition1 and rotationMatrix. The known variables are

replaced with their values and the equation is directly sentto a mathematical solver such

as Matlab (step 1). The result of the Matlab computation (step 2) is sent back to the UML

model and placed in the corresponding UML slot (step 3). As the UML expression de-

scribing the equation is directly solved by Matlab, its language is correspondingly set to

Matlab. In the case of several Matlab-specific equations, a supplementary stereotype can

be applied on the UML expression to specify the order in whichthe explicit equations are

to be solved.

6.4 Summary

Chapter 6 has shown the retrieval of data from data sources such as Excel spreadsheets.

The UML-based reference to spreadsheet data occurs with stereotypes that are applied

either on UML properties or on UML slots. Similar stereotypes can reference values in

other data sources such as databases.

Furthermore, the UML-based product model can also refer to external computations.

This was shown with the representation of a Matlab-specific function as a UML operation.

The settings which are required to automatically call an external Matlab function and to

return the result were described as properties of a Matlab function-specific stereotype for

UML operations. The input and return parameters were mappedaccordingly into UML
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operation parameters. Similarly, references to other external functions can be represented

in UML through UML operations with appropriate stereotypes.

Mathematical dependencies between UML properties were described as algebraic

equations. Chapter 6 presented the description of algebraicequations through UML

opaque expressions which were owned by UML constraints. Theset of equations was

resolved through a solution path generator algorithm and a mathematical toolbox. The

interpretation of UML opaque expressions depends on their language. Further types of

equations can thus be described. As an example, the resolution of equations involving

matrices was demonstrated.



Chapter 7

UML model for centralized workflows

As presented in the previous Chapters 4 to 6, application-specific geometric and dynamic

system models as well as spreadsheet data can be mapped into acommon UML-based

product model. In order to guarantee data consistency, dependencies between application-

specific models can be defined within the common UML model. Section 7.1 presents the

different methods to define these interdisciplinary dependencies. As a result, the auto-

matic update or generation of new application-specific models, based on changes within

the central UML model, allows an efficient and consistent evaluation of different product

configurations. Section 7.2 shows the process allowing to customize the central UML-

based product model and to propagate automatically, as in UML-based software engi-

neering, changes from the central UML model to application-specific models. Moreover,

each transaction with the central model can be automated through a programming in-

terface in Java and design processes can be graphically described through UML activity

diagrams. Section 7.3 introduces the Java application programming interface and the ex-

ecutability of UML activity diagrams. Section 7.4 describes the frameworks that have

been used to implement the translators between the UML-based central product model

and each application-specific model.

7.1 UML-based modeling of dependencies

The process steps allowing to achieve a consistent UML-based product model are sum-

marized graphically in Fig. 7.1. The first step consists of importing application-specific

models into a UML model. In a second step, dependencies within the UML-based prod-

uct model are established. In a third step, the dependenciesare resolved. In a fourth

step, the consistent UML-based product information is exported back to the application-

specific models either by generating new models or by updating existing ones. This
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Section presents the various possibilities of linking multidisciplinary product data in a

common UML model. They include the constraints, generalization relationships and the

superposition of stereotypes.

Controller

Simulink

Multibody system 

SimMechanics

Geometry 

CATIA

Symbolic equations

Matlab

UML model 

with constraints 
UML model

import

1

add constraints

2 3

solve constraints

export

4

Figure 7.1: Typical process to achieve data consistency within a UML model

Dependencies between UML properties can be defined through UML constraints as

presented in Section 6.3. In the case of the slider-crank mechanism, several CATIA mea-

sures must match SimMechanics attributes. As presented in Section 4.1.2, the center of

gravity position of the rod is for example measured by CATIA under the term inertia cen-

ter (Fig. 7.4 left) and is saved in the corresponding«catiaCG» centerOfGravity property

of the«catiaPart» Rod class (Fig. 7.3). As shown in Section 5.2.2, the SimMechanics-

specific center of gravity position is specified by the originposition vector attribute of the

CG coordinate system belonging to the rod body block (Fig. 7.4right). It is described

in UML as originPosition attribute of the related«simMechCG» CG port of the«sim-

MechBody» Body2CS class (Fig. 7.3).

Data consistency

through constraints

Figure 7.2: UML constraints to describe dependencies

Both CATIA and SimMechanics center of gravity positions are relative to an identical

inertial coordinate system and thus need to be equal. A UML constraint describes this re-

lation in an opaque expression with the bodyCG.originPosition == centerOfGravity

as displayed in Fig. 7.2. As presented in Section 5.2.4, the SimMechanics rodInstance is

composed of the CS1 and CS2 coordinate systems. A similar constraint is needed to set
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the position of the CS1 coordinate system of the SimMechanicsrodInstance body block

(Section 5.2.4) equal to a point position measured by CATIA. The definition of CS2 co-

ordinate system of the SimMechanics rodInstance body blockdoes not require a UML

constraint as it is already defined in relation to the CS1 coordinate system in the SimMe-

chanics model.

«instanceOf»

«simMechBody»

Body2CS

«simMechMass, catiaMass» mass : kg
«simMechInertia, catiaInertia» inertia : kg*m^2
«simMechCG» CG : SimMechCS
«simMechCS» CS1 : SimMechCS
«simMechCS» CS2 : SimMechCS

rodInstance : Rod

«catiaPart»

Rod

«catiaPar» thickness : mm
«catiaMaterial» Material : kg
«catiaCG» centerOfGravity : mm
«catiaPointPosition» jointPosition : mm

rodInstance

CS1CS2

SimMechanics Block InstanceCATIA Part Instance

Regrouping

by inheritance

Regrouping

by superposition

Distinct rod

representations

in specific models

Common rod 

representation

in UML

Figure 7.3: Regrouping application-specific properties by inheritance and superposition
of stereotypes. Example: CATIA and SimMechanics features common to a rod instance

UML generalization relationships can describe dependencies between application-

specific model properties. A UML instance can regroup different properties by having

multiple inherited classifiers. The crank, rod and slider parts from the slider mecha-

nism example of Chapters 4 and 5 are represented in UML by the crankInstance, rodIn-

stance and sliderInstance instances. All instances share the same SimMechanics-specific

Body2CS class as in Fig. 5.10 but belong to different CATIA-specific classes as each

part has a different geometry. A UML generalization relationship is therefore appro-

priate between the specialized CATIA-specific classes and the common SimMechanics

class. The«catiaPart» Rod class has for example a generalization relationship with

the «simMechBody» Body2CS class as displayed in Fig. 7.3. The UML crank, rod,

and slider instances are instances of their CATIA-specific class and through the gener-

alization relationship also instances of the common SimMechanics specific class. The

instances thus unite the separated CATIA- and SimMechanics-specific properties and can
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be translated either into a CATIA product model resulting in part instances or into a Sim-

Mechanics multibody system model resulting in block instances (Fig. 7.3).

The same UML property can be relevant for several domains andthus be tagged

with several domain-specific stereotypes. In the slider-crank mechanism example, the

SimMechanics-specific multibody model requires the inertial part properties of the CATIA-

specific geometric model as displayed in Fig. 7.4. The SimMechanics body blocks are

specified by their mass attribute, so the corresponding«simMechBody» Body2CS class

owns a mass property tagged with a«simMechMass» stereotype (Fig. 7.3). The correct

mass values are imported by CATIA, so each of the CATIA-specificUML classes repre-

senting the CATIA parts of the slider-crank mechanism has a mass property tagged with

a «catiaMass» stereotype (Fig. 7.3). As the mass property is common to all CATIA-

specific classes, it can be placed in the generalized Body2CS class which already owns

a semantically equivalent mass property. The Body2CS class can either own two mass

properties with respectively different names and stereotypes or bind the semantically

equivalent properties in one common property tagged with both stereotypes (Fig. 7.3).

The latter approach automatically guarantees data consistency as the CATIA and SimMe-

chanics mass values are identical in the UML model and as a consequence also concur in

the corresponding CATIA and SimMechanics models (Fig. 7.4).

x = -68,263mm

y = 12,04mm

z = -6,693mm

x = 114,704mm

y = 10mm

z = 25mm

CS1

CG

CATIA Measures SimMechanics Attributes

rodInstance : Rod

UML Instance Specification

Figure 7.4: Dependencies between the CATIA and SimMechanicsrod instances
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7.2 UML-based model customization

The central UML-based product model includes the product information which is shared

by different disciplines and applications. It also represents application-specific model-

ing elements in order to automatically translate its application-specific information into

application-specific models. Through the translation principles presented in Chapters 4

to 6, centrally defined changes to the UML-based product model can be propagated auto-

matically to application-specific models. This allows an efficient generation or update of

application-specific models in order to achieve consistentsimulations.

The customizability of a UML-based product model is shown with the example of the

slider-crank mechanism. The showcased central UML model iscomposed of representa-

tions of the application-specific CATIA, Simulink and SimMechanics models as depicted

in step one of Fig. 7.1. The inter-model dependencies are specified in the UML model as

described in Section 7.1. The automatic translation steps in order to achieve a consistent

simulation of the controllable slider-crank mechanism areshown in Fig. 7.5. In this sce-

nario, the length of the crank part is shortened from 50mm to 30mm and the derivative

gain of the PID controller is increased from1.5 to 3.

Controller

Simulink

Multibody system 

SimMechanics

Geometry 

CATIA

Symbolic equations

Matlab

crank length = 50mm -> 30mm

2 4

UML-based central product model with changes

in geometric dimensioning and in controller behavior

derivative gain = 1.5 -> 3

3

t δx

target

sliderMechanism

τ x

saturator

result

integrator

1

s

derivator

du/dt

Kp

50

Ki

0.1

Kd

1.5

Kd

3
target

1

Figure 7.5: Translation steps for a consistent simulation of the controllable slider-crank
mechanism based on a central and customizable UML-based product model
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The changes are first described centrally in the UML-based product model (Step one

in Fig. 7.5). The change of the crank length has an impact on the corresponding geometric

and multibody system models as well as on the simulation of the controlled mechanism

motion. In the case of the slider-crank mechanism, the geometry of the mechanism can be

adapted according to the parameter values of the UML skeleton part instance as presented

in Section 4.1.6. So the crank length is a property of the skeleton part instance (Fig. 7.5).

The geometric information within the UML-based product model is first translated into

the application-specific geometric model. As a result, a newgeometric assembly model

is generated and the new position and inertial properties ofthe parts are measured by

the geometric application and sent back to the UML model (Step two in Fig. 7.5). CA-

TIA was used as geometric application. The updated UML properties representing the

geometric part measures are then set equal to the corresponding UML properties repre-

senting the multibody system part attributes through the resolution of symbolic equations

by Matlab (Step three in Fig. 7.5). The UML properties specific to the multibody system

are then consistent with the UML properties specific to the new geometric model. The

change of the derivative gain only has an impact on the controller model. Simulink and

SimMechanics are respectively used as applications for dynamic system and multibody

system models. Lastly, the UML model generates Simulink andSimMechanics models

for a consistent simulation of the controlled slider-crank-mechanism motion (Step four in

Fig. 7.5).
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Figure 7.6: Simulation of two controllable slider-crank mechanism configurations

The simulation of the controllable slider-crank-mechanism was presented in Sec-

tion 5.1.5. The results of the simulation are presented in Fig. 7.6 for the original scenario

without change, whereby the crank length and the derivativegain are respectively equal

to 50mm and1.5, and for the new scenario, whereby the crank length is reduced to 30mm

and the derivative gain increased to3. The simulation result presents the position of the

slider in meters over time in seconds. The target slider position is colored black and the

actual slider position blue. The target position follows a staircase pattern. In the first

case, the slider reaches the target position with a slight overshooting at each target posi-

tion adjustment. In the second case, the slider approaches the target position more slowly
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as the derivation gain has been increased. However, the slider misses the target position

by little. It is physically impossible for the slider to reach the target position due to the

reduced crank length. Consequently, the slider is pushed back and forth on the base rail

and cannot reach the target position in the second scenario.

7.3 Automated workflows

The UML-based product model, as presented in this thesis, isbased on an application-

specific integration approach and is independent of any product design process. As a

result, the UML-based product model can be used in differentproduct design processes

which may include frameworks for model-based or knowledge-based engineering.

UML models can be created or customized through Java programs. A Java application

programming interface (API) for UML models is provided by the Eclipse UML2 Project1.

The Java API was designed, and mostly generated, based on a UML metamodel definition

within the Eclipse Modeling Framework2. UML models which are created by the API of

the Eclipse UML2 Project are saved in XMI and thus importableby professional UML

editors for further use, such as for graphical display.

UML models can include large quantities of product information. Repetitive manual

manipulations of UML models in tree editors or in graphical diagrams are therefore often

error-prone and time-consuming. These tasks can be programmed through the Java API of

the UML model. Moreover, the translators between the UML model and the application-

specific models can also be invoked through a Java API. As a result, a multidisciplinary

design process consisting of several design evaluations and iterations can be automated.

In the case of the slider-crank mechanism, the minimum required power supply for a spe-

cific slider configuration can for example be automatically determined iteratively through

the generation and subsequent evaluation of different consistent slider-crank mechanism

configurations.

Furthermore, the UML supports the graphical description ofdesign processes through

activity diagrams. As described in Section 3.3.2, UML activity diagrams are composed

of nodes and edges to represent various process steps. Activity diagrams represent a more

intuitive representation of design processes than Java programs. As a consequence, a

design process described as an activity diagram can be shared and understood by more

parties. In this thesis, the executability of activity diagrams was implemented by linking

actions within an activity diagram with Java methods. Figure 7.7 for example presents

1Model Development Tools - UML2,http://www.eclipse.org/modeling/mdt/uml2/
2Eclipse Modeling Framework Project (EMF),http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/mdt/uml2/
http://www.eclipse.org/modeling/emf/
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the reference of a UML setCrankLength action to a corresponding Java method whose

invocation changes the crank length in the UML model. The activity diagram is executed

by invoking Java methods corresponding to UML actions. Thiswas implemented using

the Java reflection package3 which is for example also used by debuggers.

setCranklength

umlModel

umlModel

30

crankLength

setCrankLength(...)

Java Method

UML Activity Diagram

UML Model

Figure 7.7: Executable UML activity diagrams by linking UMLactions with Java meth-
ods

Typical design criteria, steps, decisions or rules can be described in Java methods

and represented graphically through UML activity nodes. A UML-based product model

can thus be automatically customized by an executable UML representation of a product

design process (Fig. 7.7 ). Chapter 8 presents case studies including both Java programs

and UML activity diagrams for an automatic generation and customization of UML-based

product models.

7.4 Software implementation

The Application Programming Interface (API) of applications was used to create or parse

application-specific models. The Visual Basic Script (VBS) API of CATIA and the Visual

Basic (VB) API of SolidWorks were used. The translation of a UMLmodel into a CATIA-

or SolidWorks-specific geometric model was implemented by generating and executing

a corresponding VBS or VB script. The translation of a geometric model into UML

was implemented by using temporary XML files. The Eclipse Modeling Framework was

used to specify the XML schema of temporary XML files and to automatically generate

corresponding Java APIs for an easy reading of the XML files. Based on the geometric

information within the temporary XML files, corresponding UML models were created.

Next to the application-specific APIs of geometric models, Java APIs for Matlab and

Excel were provided by the respective JMatlink4 and Apache POI5 projects.

Simulink and SimMechanics models were directly accessed through their text files

in ASCII format. Using regular expressions, the Simulink/SimMechanics information

3Package java.lang.reflect,http://java.sun.com/javase/6/docs/api/java/lang/
reflect/package-summary.html

4JMatLink,http://jmatlink.sourceforge.net/
5Apache POI,http://poi.apache.org/

http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html
http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html
http://jmatlink.sourceforge.net/
http://poi.apache.org/
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was extracted from the model text files and corresponding UMLmodels were program-

matically generated based on the Java API of the Eclipse UML2project. Simulink/Sim-

Mechanics model text files were directly generated from the UML-based representation

of Simulink/SimMechanics-specific information. Similarly, VRML text files were also

directly generated based on the VRML-specific information within the UML models.

The Design Compiler 43v26 software was developed to support among other features

UML-based product design. It is built upon the open-source Eclipse Platform7 which

supports the design of integrated development environments (IDE). The Eclipse Platform

provides the core functionality of integrated developmentenvironments and is designed to

be extended by software modules which are called plugins. Professional plugins have for

example been developed which offer IDEs for Java8 or C/C++9 programming. Other plu-

gins offer UML editors such as Topcased10 or the Eclipse Graphical Modeling11 (GMF)

framework.

Project Explorer

Properties Window

Java Editor

UML Interfaces Menubar

UML Editor

Figure 7.8: Design Compiler 43v2 based on the Eclipse Platform

Figure 7.8 presents the Design Compiler 43v2 software based on the Eclipse plat-

form. The software allowing to translate application-specific models into UML and vice

versa was equally bundled into Eclipse plugins. Similarly,the software needed to exe-

cute UML activity diagrams was also bundled into a plugin. The UML translator plugins

6Design Compiler 43v2,http://www.iils.de/
7Eclipse Platform,http://www.eclipse.org/platform/
8Eclipse Java development tools (JDT),http://www.eclipse.org/jdt/
9Eclipse C/C++ Development Tooling (CDT),http://www.eclipse.org/cdt/

10Topcased,http://www.topcased.org/]
11Eclipse Graphical Modeling Framework (GMF),www.eclipse.org/gmf/

http://www.iils.de/
http://www.eclipse.org/platform/
http://www.eclipse.org/jdt/
http://www.eclipse.org/cdt/
http://www.topcased.org/]
www.eclipse.org/gmf/
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for UML-based product design have not changed the graphicaluser interface of Eclipse

apart from adding menubar, toolbar and popup menu actions. Software modules required

for UML-based product design are regrouped in one software environment through the

Eclipse Platform. The Design Compiler 43v2 for example includes, next to the UML

translator plugins, a Java IDE and UML editors. The modular architecture of the Eclipse

Platform facilitates the integration of further features.

7.5 Summary

Chapter 7 has presented centralized workflows between heterogeneous application-specific

models through the use of a UML-based central product model.The definition and eval-

uation of dependencies within the UML-based central product model is required in order

to achieve data consistency between various application-specific models. Inter-model de-

pendencies were represented in UML by the definition of constraints, the regrouping of

properties by inheritance and superposition of stereotypes.

Furthermore, the UML-based central product model supported model customization.

Changes were defined centrally in the UML model and propagatedautomatically to the

dependent application-specific models. The automated customization of application-spe-

cific models is more efficient than the manual update of separate application-specific

models. The approach was shown for the evaluation of a new slider-crank mechanism

configuration.

The UML-based product model is based on an application-centric integration ap-

proach and is independent of any product design process. As aresult, the UML-based

product model may be used within different product design processes. The Java API of

the UML model allows other frameworks, such as for model-based or knowledge-based

engineering, to access the UML-based product model. Furthermore, UML activity dia-

grams can graphically represent product design processes.Their executability was made

possible by linking activity nodes with Java methods. Product design processes can thus

be represented in UML activity diagrams and be executed to generate or modify UML-

based product models and translate them into application-specific models.

The software for the translation of UML models into application-specific models and

vice versa, as well as the software for the executability of UML activity diagrams, were

bundled into Eclipse plugins. The Design Compiler 43v2 software includes among others

these plugins as well as freely available plugins for Java programming and UML model

editing. As the Design Compiler 43v2 software is based on the Eclipse platform, it can

easily integrate further features.



Chapter 8

Test cases

This chapter reviews projects which were undertaken in partnership with academia and

industry to highlight the use of a UML-based central productmodel for the automated

generation of consistent model configurations. The test cases include models for the eval-

uation of different cabin pressure control systems (Section 8.1), the generation of cus-

tomizable conveyor systems (Section 8.2), the automatic evaluation of different satellite

configurations (Section 8.3) and the generation of aircraftgeometry (Section 8.4).

8.1 Evaluation of cabin pressure control systems

This Section presents the evaluation of cabin pressure control systems based on an inte-

grated modular avionics (IMA) architecture. The project was undertaken in partnership

with the Institut für Luftfahrtsysteme1 of the University of Stuttgart. IMA includes many

engineering aspects ranging from hardware to software. It is therefore hard to integrate

the numerous IMA aspects into a single model in order to achieve an evaluation of an

IMA architecture.

A cabin pressure control system is responsible for ensuringhuman-friendly pressure

conditions within an aircraft cabin. In this test case, the cabin pressure control system

was designed according to an IMA architecture [125]. Avionic systems were traditionally

designed as a federated architecture of computing resources dedicated to specific func-

tions. In IMA, several functions share the same computing resource so the number of

required on-board computers is reduced. As a result, the IMAparadigm is intended to

reduce the mass, volume and power consumption of avionic architectures. IMA is a mul-

tidisciplinary task as it consists of ensuring the reliablefunctionality of many systems

while at the same time minimizing the mass, volume and cost ofthe complete avionic ar-

1Institut für Luftfahrtsysteme (ILS),http://www.ils.uni-stuttgart.de/

http://www.ils.uni-stuttgart.de/
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chitecture. Due to the high diversity of computing and communication resources as well

as the many topological configuration possibilities, the evaluation of many different IMA

architectures is required in order to reach an optimal configuration.

Components within an IMA architecture are intended to be easily replaceable and con-

figurable. IMA architectures are therefore composed of commercial off-the-shelf (COTS)

components in order to be scalable and adaptable for severaldifferent aircraft types. An

IMA architecture is composed of processing units and different types of links for inter-

module communication. An example of a module is the Core Processing Input/Output

Module (CPIOM) to execute specific avionic functions. They provide computing capa-

bilities for various applications and replace the traditional black box concept.

Figure 8.1 presents two different cabin pressure control system architectures which

are not aircraft type-specific. They consist for example of CPIOMs, outflow valve control

and sensor modules (OCSM), outflow valves, pressure sensors and outflow relief valve

dumps (ORVD). These processing modules are interconnectedthrough different types of

buses such as ARINC 429, CAN, RS422 and AFDX.

Selected aircraft sections are reserved for the safe positioning of processing mod-

ules within the fuselage. The selected sections provide access to power and enable the

diffusion of heat. Furthermore, they are easily accessibleto maintenance personnel. Nev-

ertheless, a cabin pressure control system can vary in the choice of processing modules

and in the type of communication buses, as depicted in Fig. 8.1. Architecture character-

istics such as mass, volume and cost need to be evaluated in order to objectively compare

different architecture configurations.

The components of the cabin pressure system were represented as UML classes and

instances. Properties which were common to several classeswere represented in a com-

mon abstract class. The classification hierarchy of the cabin pressure system is repre-

sented in the class diagram of Fig. 8.2. The directed lines within the class diagram show

inheritance relationships.

All components have a mass and a price. These properties weretherefore placed in

the highest class within the class inheritance hierarchy, namely in the Component class.

As a consequence, the mass and price properties were inherited automatically by all lower

classes. The properties common to all computing resources,such as position and volume,

were described in the Unit class and similarly the properties common to all connections,

such as length and mass per length, in the Connection class. The volume computation

of the units assumed that the units were either of rectangular or cylindrical shape. The

specific unit and connection types which appeared in the cabin pressure system were

situated at the lowest level within the class hierarchy.
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Figure 8.1: Examples of different cabin pressure control system architectures
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Figure 8.2: UML class diagram showing the generalization relationships within the cabin
pressure system components

Each computing resource has input/output connection possibilities. A CPIOM can

for example have up to 4 connections of type AFDX and up to 10 connections of type

ARINC 429. Each connection possibility of a certain type was described in UML as a

property. The CPIOM class for example had properties named AFDXConnections and

ARINC429Connections. These properties were represented as UML associations in the

class diagram of Fig. 8.3. The maximum number of connection possibilities of a certain

type was represented by the multiplicity of their respective properties and was displayed

graphically next to the name of the associations.

CPIOM

AFDX

AR429

CAN

Discrete

0..4

- AFDXConnections

0..10

- ARINC429Connections

0..10

- CANConnections
0..100

- DiscreteConnections

Figure 8.3: UML class diagram showing the associations of the CPIOM class

The UML instances describing a concrete cabin pressure system layout could be rep-

resented graphically in a UML object diagram. However, as the UML instances were
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Figure 8.4: Example of CPIOM and ARINC429 instances

very numerous, a resulting object diagram would not have been easily comprehensible.

Therefore, the values of instance slots which were most often of interest were represented

in tree views. Figure 8.4 for example shows the attribute values of a CPIOM and an AR-

INC429 instance. The CPIOM instance has an instance value referring to the ARINC429

instance under its ARINC429Connections slot.

Many values related to the cabin pressure system are available in Excel spreadsheets.

The Excel values which applied to all UML class instances were attached to the corre-

sponding class properties through Excel-specific stereotypes. Similarly, the values which

only applied to specific class instances were added onto their respective instance slots.

Figure 8.5 examplarily shows the application of an Excel-specific stereotype to the xPo-

Figure 8.5: UML-based representation of Excel cell values
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Figure 8.6: UML constraints to compute component volumes and connection lengths

sition slot of a CPIOM instance. The stereotype properties refer to a cell value within

a specific spreadsheet inside an Excel document. Similarly,other attributes such as the

mass and the price of components were imported from Excel.

The volume of every component needs to be computed in order toevaluate the over-

all volume of a cabin pressure system configuration. The volume of a component only

depends on its own dimensions. The symbolic equations to compute the volume of rect-

angular and cylindrical units were described in UML throughUML constraints of the

UML RectangularUnit and CylindricalUnit classes (Fig. 8.6) respectively. Furthermore,

the length of each connection was computed as it had an impacton the mass and price

of a cabin pressure system configuration. The length of each connection depended on

the position of the connected components and was assumed to follow a rectilinear layout.

The corresponding symbolic equation was described in UML through a UML constraint

of the UML Connection class (Fig. 8.6). It was assumed that themass and the price of

a connection were proportional to the connection length. Asa consequence, the UML

Connection class had two UML constraints to compute respectively the connection mass

and the price based on its length.

The UML model of the cabin pressure system consisted of too many elements to be

built from scratch manually. The UML model was therefore generated by the execu-

tion of a Java program. Recurrent design steps to establish the UML model of a cabin

pressure system were described in Java methods. The Java program referred to the prede-

fined methods to generate a UML model composed of classes, instances and constraints.
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The Java program also applied stereotypes onto the UML elements to allow an import of

Excel-specific spreadsheet data into UML as well as an exportof the UML-based geo-

metric information to a CATIA-specific geometric model.

Geometry 

CATIA

Symbolic equations

Matlab

2 43

1

Spreadsheet

Excel

Java Program UML Model

Layout2Layout1

Figure 8.7: Process to efficiently generate and evaluate different cabin pressure system
configurations

Figure 8.7 presents the steps leading to the evaluation of a UML-based representa-

tion of a cabin pressure control system. The easily adaptable Java program was used to

create UML representations of different cabin pressure system configurations (Step 1 in

Fig. 8.7). The generated UML models then imported the Excel-specific spreadsheet data

of the system components (Step 2 in Fig. 8.7). The spreadsheet data also included the

position of the components within the aircraft. The UML model was then exported to a

CATIA-specific geometric model to visualize the correct placement of the cabin pressure

system components (Step 3 in Fig. 8.7). Figure 8.8 for example presents the placement of

cabin pressure system components within an A380 aircraft model. Next, the UML con-

straints describing the computation of mass, volume and price properties were automat-

ically resolved based upon the solution path generator and the Matlab-specific symbolic

toolbox (Step 4 in Fig. 8.7) as described in Section 6.3.

Figure 8.8: Geometric model of cabin pressure system units within an A380

This process was applied to the evaluation of the two different cabin pressure control

system architectures of Fig. 8.1. Figure 8.7 presents theirevaluation according to their
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mass, volume and price. The second layout (Fig. 8.1 bottom) seems more appropriate

than the first one (Fig. 8.1 top) as it has a lower mass, volume and price. This is not

surprising as the second layout is composed of fewer units. Aholistic evaluation of a

cabin pressure system would however require the evaluationof many more aspects such

as the system reliability.

In general, IMA architectures entail a high degree of multidisciplinarity and multiple

potential configuration possibilities. They therefore seem to be the ideal test case for a

UML-based central product model. Two versions of a simplified cabin pressure system

were used to show the capabilities of a UML-based product model to generate consistent

system configurations. The UML-based product model therebyintegrated Excel-specific

spreadsheet data and CATIA-specific geometric information as well as symbolic equa-

tions to compute component values. The approach could be further extended to investi-

gate the integration of other aspects related to IMA architectures.

8.2 Automated design of conveyor system configurations

Conveyor systems are used to transport materials from one place to another. Many kinds

of conveying systems are available for various needs in different industries including the

automotive, aerospace and packaging sectors. Conveyor systems need to be highly cus-

tomized for the specific needs of each customer. This Sectiondescribes the use of a

UML-based product model to customize the design of motor-driven chain conveyors for

the painting of automobiles. The geometric models have beenprovided by one of the

leading conveyor suppliers for automobile manufacturing.The UML-based generation of

identical geometric models was performed in order to prove the capabilities of a UML-

based product model in an industrial context. Furthermore,the customizability of the

UML representation of conveyor systems was proven through the generation of several

conveyor system versions.

SolidWorks was used as CAD application. The geometric assembly model of the

conveyor system was composed of several smaller assembliescalled modules. The posi-

tioning of the modules occurred through assembly constraints. The top assembly model

functioned like a skeleton model by providing planes according to which the embedded

modules were placed. Figure 8.9 for example shows the planesof the top assembly model

of the conveyor system and the placement of modules based on the coincidence of planes.

The geometric models of modules represented geometric templates which were in-

stantiated and inserted into other assembly models. A geometric module model was

therefore represented in UML as a class and a corresponding geometric assembly model
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PLANE_END_OE

PLANE_MOD_3500_1

PLANE_MOD_5500_1

PLANE_MOD_4500_1

Figure 8.9: Example of a geometric model of the conveyor system. Placement of modules
based on the coincidence of planes

instance as a class instance. Furthermore, the modules werecategorized in the UML

classes InletModule, ChainModule, IntermediateModule, OutletModule and DriverMod-

ule according to their common features as in Fig. 8.10. Apartfrom their diverse functions,

the modules differed by having different planes within their geometric models. All mod-

ules of type InletModule for example had planes named START_MODULE, Right and

FLOOR.

The different inlet modules of varying length were described in separate geometric

models. The module length is derivable from their name. Figure 8.11 for example shows

the inlet modules of varying length such as 4500mm, 5500mm and 6500mm. As the

modules shared the same planes, the corresponding OE_4500,OE_5500 and OE_6500

UML classes all inherited the properties from the common abstract InletModule class.

The UML class diagram in Fig. 8.11 displays the common geometric module features

which are not explicitly described in the geometry-specificSolidWorks application.

InletModule

attributes

START_MODULE : Plane
Right : Plane
FLOOR : Plane

operations

classes

IntermediateModule

attributes

START_CONVEYOR : Plane
Right : Plane
FLOOR : Plane

operations
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ChainModule
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Right : Plane
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classes

DriverModule
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Front : Plane
Right : Plane
FLOOR : Plane

operations

classes

Figure 8.10: Abstract UML classes to classify different module types
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Assembly constraints were represented through UML constraints as described in Sec-

tion 4.2.3 and referred to detailed geometric elements suchas planes, sketches, lines and

points. A one-to-one mapping of SolidWorks-specific geometric entities into UML al-

lowed to easily recognize SolidWorks-specific informationin UML. The low-level geo-

metric entities of modules were represented as UML instances with predefined classifiers

as described in Section 4.2.2.

The decomposition of the conveyor system is outlined in the class diagram of Fig. 8.12.

The conveyor was represented in UML by the TKFAssembly class, whereby TKF stands

for “Trocknerförderer”. The geometric model of the complete conveyor system was repre-

sented by a SolidWorks-specific assembly model. The TKFAssembly class was therefore

tagged with a«sldWorksRootAsm» stereotype.

The associations of the TKFAssembly class with other moduleclasses showed the

required number of module types. The multiplicity of the inletModule property was for

example equal to one while the multiplicity of the shaft, driver and chain modules ranged

from one to two. As a consequence, the root assembly model of the conveyor system

could only have one inlet module and it required either one ortwo shaft, driver and chain

modules. The geometric elements of the root assembly model were described as UML

type-specific properties such as the “planes” and “sketches” properties. Furthermore,

the TKFAssembly class had associations with classes which represented non geometry-

related conveyor information such as CountryOfmanufacture, MotorModule, MotorType,

conveyorSpeed and payloadMass.

The geometric assembly instance and its corresponding UML instance are represented

in Fig. 8.13. The assembly instance named “TKF Assembly Instance” is composed of

planes, assembly instances and a sketch. The correspondingUML instance is similarly

«sldWorksAsm, sapMaterial»

OE_4500

InletModule

attributes

START_MODULE : Plane
Right : Plane
FLOOR : Plane

operations

classes

«sldWorksAsm, sapMaterial»

OE_6500

«sldWorksAsm, sapMaterial»

OE_5500

Figure 8.11: Generalization relationships between the module classes and the common
abstract InletModule class
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«sldWorksRootAsm, sapMaterial»

TKF Assembly
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countryOfManufacture : CountryOfManufacture
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Figure 8.12: UML class diagram showing the main conveyor system classes

composed of slots referring to their respective geometric features, according to the UML

TKFAssembly class properties as shown in Fig. 8.12. All references to plane instances

were for example stored in the “planes” slot and all references to intermediate modules

were similarly stored in the “intermediateModules” slot.

The conveyor could be configured according to several criteria in order to satisfy dif-

ferent requirements. The choice of modules depended on the total conveyor length and on

the country-specific module supplier. The conveyor motor depended on the payload mass,

conveyor length, conveyor speed and module tact distance. Each new conveyor configu-

ration influenced the geometric model of the conveyor system. The UML-based product

model therefore represented the conveyor information which was likely to change. As

the UML-based product model also represented SolidWorks-specific modeling elements,

changes in the UML model could be automatically translated into a corresponding Solid-

Works model. However, the UML-based product model did not include all the detailed

geometric information and was thus easier to adapt to changing requirements than the

fully detailed SolidWorks-specific geometric model.

Design automation made it possible to ensure consistency between original design

requirements and new detailed geometric models. Although the UML model of the con-

veyor system was not as detailed as the corresponding geometric SolidWorks model, the

UML model still included a multitude of modeling elements. Recurrent changes were de-

fined in Java methods whose invocation automatically adapted the UML model. Changes
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Figure 8.13: Tree view of the SolidWorks assembly model and corresponding UML in-
stance

were consequently implemented faster and with higher reliability than through manual

modifications. Figure 8.14 presents an outline of the Java methods which were used to

describe typical design steps within the conveyor design process as well as typical de-

sign decisions based on variable requirements. The execution of the Java methods within

a Java program enabled the generation of new updated UML product models based on

which corresponding SolidWorks conveyor models were automatically generated.

As described in Section 7.3, the design steps encoded in Javawere depicted graphi-

cally in a UML activity diagram (Fig. 8.15). An activity diagram enabled a more trans-

parent view of a design process than a Java program. Variablerequirements, design steps

and information flows could thus be better illustrated. The activity diagram in Fig. 8.15

presents the design process of the conveyor system. The sequence of design steps and de-

sign decisions based on the requirements are visible in the activity diagram. The “choose-

Motor” and “addIntermediateModule” actions for example depended on variable design

requirements. They were represented through activity input parameters such as “conveyor

length” and “conveyor speed”. The “addInletModule” and “addOutletModule” for exam-

ple represented typical design steps. Activities could also be decomposed into several

subactivities. The “addintermediateModule” action was for example described in more

detail through a subactivity. The UML model required SolidWorks-specific as well as
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Figure 8.14: Java methods describing recurrent conveyor design decisions and steps

SAP-specific information to respectively describe the geometry and the bill of materials

(BOM) of the conveyor system. The SolidWorks-specific and SAP-specific information

was represented like the conveyor requirements through activity input parameter nodes

respectively colored yellow and blue.

The requirements as well as the SolidWorks- and SAP-specificinformation could be

directly edited within the UML activity parameter nodes. The actions of the activity dia-

gram referred to the Java methods of Fig. 8.14. As described in Section 7.3, the activity

diagram could thus be executed similarly to a Java program. The UML activity diagram

of the conveyor design process was used to generate different UML models of conveyor

systems, based upon which consistent SolidWorks-specific geometric models were auto-

matically produced.

This Section presented the UML-based representation of SolidWorks-specific geomet-

ric models related to conveyor systems. The translation of UML into SolidWorks resulted

in geometric models identical to the manually edited modelscommonly used in an in-

dustrial context. Furthermore, the customizability of theUML-based conveyor system

model was made possible by describing typical design requirements and design steps in a

UML activity diagram. The executability of the activity diagram based on underlying Java

methods allowed the efficient generation of new conveyor system model configurations.
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activity TKFCreationProcess
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Figure 8.15: Activity diagram of the conveyor design process
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8.3 Automated evaluation of satellite configurations

Due to the multidisciplinary nature of satellite design andthe mostly proprietary for-

mats of engineering software tools, a multitude of heterogeneous computer models are

employed during satellite design. A unified central productmodel can manage the in-

terdependencies between different isolated models and guarantee data consistency. This

Section highlights the UML as central product model to support satellite design [53, 54].

The approach has been applied to the design phase of the Perseus satellite [16] which is

part of the Stuttgart Small Satellite Program2 of the Institute of Space Systems3 at the

University of Stuttgart. This Section presents the UML lightweight extensions necessary

to represent geometric features authored in CATIA and control system features authored

in Matlab/Simulink in a common UML-based product model. Furthermore, the represen-

tation of a design process as an executable UML activity diagram is shown for an iterative

design sequence consisting of several CATIA- and Matlab/Simulink-specific evaluations.

The Perseus satellite is equipped with two different electrical propulsion systems.

The Perseus mission is intended to accomplish the in-orbit test and validation of new

low-cost electric thruster systems during its flight to the moon. Afterwards, the satellite

is anticipated to accomplish UV astronomy in the spectral band of 120 nm to 180 nm

with an on-board telescope. It is designed with different engineering software tools. The

two application-specific models of the satellite considered in this Section are a geometric

model authored in CATIA and a dynamic model authored in Simulink. The integration of

the application-specific data in the UML-based product model was realized by lightweight

extensions in the form of stereotypes.

In Fig. 8.16, the CATIA product model of the pulsed plasma thruster (PPT) and its in-

stance within the larger satellite product model are depicted. The corresponding UML el-

ements are represented below. CATIA parts and products were mapped into UML classes

respectively with«catiaPart» and «catiaProduct» stereotypes. CATIA product and

part instances were represented by UML instances. The PPT instance for example has

PulsedPlasmaThruster as classifier.

CATIA-specific geometric properties need to be represented in the UML-based prod-

uct model as they have an influence on the dynamic behavior of the complete satellite.

CATIA-specific measures belong to a part or a product and were therefore described

in UML through corresponding UML class properties. For the integration of CATIA-

specific measures into the UML-based product model, stereotypes were applied to the

properties of a related«catiaPart» or «catiaProduct» class. As an example, the posi-

2Stuttgart Small Satellite Program,www.kleinsatelliten.de
3Institut für Raumfahrtsysteme (IRS),http://www.irs.uni-stuttgart.de/

www.kleinsatelliten.de
http://www.irs.uni-stuttgart.de/
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«catiaProduct»

PulsedPlasmaThruster

«catiaEulerRotation» orientation : 3x3 [-]
«catiaOriginShift» position : 1x3 [mm]

«catiaProduct»

PPT : PulsedPlasmaThruster

orientation = [0.6427 -0.739 -0.198;  
0.7660 0.6208 0.1663;  
0.0000 -0.258 0.9659]

position = [240 -56.61 -202.2]

instance of

PulsedPlasmaThruster

instance of

CATIA Product

UML Class UML Class Instance

PulsedPlasmaThruster(PPT)

CATIA Product Instance

Figure 8.16: Left: CATIA product and corresponding UML class. Right: CATIA product
instance and corresponding UML class instance (after Grosset al. [54])

tion and orientation of the thruster were described throughproperties tagged respectively

with «catiaEulerRotation» and«catiaOriginShift» stereotypes (Fig. 8.16). The val-

ues for these properties were retrieved from the CATIA instance and were stored as literal

string values in the slots of the UML class instance.

According to the CATIA geometry hierarchy, a product can contain further products

or parts. The CATIA-specific composition hierarchy was translated one-to-one into a

corresponding UML class composition hierarchy. In Fig. 8.17, the composition of CATIA

products and of the related UML classes belonging to the Perseus satellite is depicted. The

class representing the top-level product in the composition hierarchy was labeled with a

«catiaRootProduct» stereotype. The containment relations of the CATIA productswere

modeled with UML composite aggregations.

CATIA part instances are positioned in an assembly accordingto assembly constraints.

They were translated into UML constraints. CATIA constraints are owned by a product,

so the UML constraints were owned by the related«catiaProduct» class. According to

the type of the assembly constraint, the UML constraint was tagged with a specific stereo-

type such as«catiaAngle» or «catiaCoincidence». Whenever necessary, the specific

stereotype owned attributes for a complete description of the constraint. A«catiaAngle»

stereotype for example owned attributes to specify an anglevalue and an angle sector.

Changes in the UML model, concerning for example the choice ofparts or the pack-

aging strategy, were automatically translated into a corresponding CATIA model and vice

versa. For large CATIA models, the complete translation of a UML model to generate a

new CATIA model or vice versa might have taken too much time. The «catiaUpdate»

stereotype was therefore applied to UML properties and constraints. Only the CATIA

features which corresponded to«catiaUpdate» UML elements were then updated. This
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CATIA Product Hierarchy UML Class Hierarchy

«catiaRootProduct»

PerseusSatellite

«catiaProduct»

PropulsionDeck

«catiaProduct»

OpticalDeck

«catiaPart»

OnboardComputer

«catiaProduct»

StarTracker

«catiaPart»

Telescope

«catiaProduct»

PulsedPlasmaThruster

PropulsionDeck 

OpticalDeck 

PerseusSatellite

PulsedPlasmaThruster

OnboardComputer 

StarTracker 

Telescope

Figure 8.17: Selection of the CATIA model composition hierarchy and corresponding
UML class hierarchy (after Gross et al. [54]

allowed a quick update of specific parts within a larger assembly without having to regen-

erate the complete assembly.

Mathematical equations between properties were describedin the UML-based prod-

uct model through UML constraints between UML properties. Each constraint con-

tained a UML expression representing a symbolic mathematical equation. The orien-

tation and position properties for example of the PulsedPlasmaThruster class in Fig. 8.18

represented CATIA-specific measures which needed to be converted to corresponding

Simulink-specific A_PPT_Thr and O_PPT_Thr properties according to another reference

frame. The computation of the O_PPT_Thr property for example depended on the ori-

entation and position properties as displayed in the equation colored blue. The equations

were computed using the values of the UML instances stored inthe UML model. To au-

tomatically resolve the equations, Matlab was used as algebra system since most property

values were matrices or vectors. The language attribute of the UML expression was set to

“Matlab” so that only the Matlab-specific expressions were collected and evaluated. The

results of the calculations were transferred back to the UMLmodel. In the PPT instance

of Fig. 8.18, the O_PPT_Thr vector was computed by Matlab.

A Simulink model was used for the simulation of the attitude and orbit control system

(AOCS) of the satellite. The model simulated the behavior of environmental conditions,

actuators, sensors and on-board computers. Different in-orbit satellite operations could

thus be simulated. The impact of the thruster orientation onthe AOCS of the satellite

needed to be simulated accurately in advance. Since the access to the complete Simulink

model of the Perseus satellite was limited due to proprietary toolboxes, the Simulink

model was launched and accessed through a Matlab function.
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Matlab

SimulinkMatlab

Figure 8.18: Interfaces between UML and Matlab/Simulink (after Gross et al. [54])

The Matlab function was represented in UML by an operation with the «matlab-

Function» stereotype. In Fig. 8.18, the startSimulation operation can be seen in the

PulsedPlasmaThruster class. The input and output arguments of the Matlab function were

described as UML parameters. The Simulink simulation basedon the O_PPT_Thr and

A_PPT_Thr properties, describing respectively the thrustorigin position and orientation,

was launched through the Matlab startSimulation function.The related UML operation

and properties are colored orange in Fig. 8.18. The time until the satellite reaction wheels,

under the application of a specific thrust origin and direction, had saturated was the sim-

ulation result simTime which was written back into the UML model.

Changes in the CATIA-defined geometry of the satellite have an effect on its dynamic

behavior described in Simulink. To automatically keep the Simulink model consistent

with the CATIA model, a data exchange from CATIA to Simulink viathe UML-based

central product model had been implemented. After a change in the CATIA geome-

try, the new CATIA measures were imported back into the UML-based product model

and the Simulink values were updated accordingly through the evaluation of UML con-

straints which linked CATIA-specific and Simulink-specific UML properties. The result-

ing Simulink simulation was then consistent with the CATIA-specific geometry of the

satellite.

As displayed in Fig. 8.19, the Simulink-specific O_PPT_Thr property for example de-

pended on the CATIA-specific orientation and position properties. The CATIA model of

the pulsed plasma thruster (PPT) is shown in Fig. 8.19 left. The UML representation of

the PPT is depicted (Fig. 8.19 middle) and the PPT-dependentSimulink blocks contribut-

ing to the dynamic behavior of the complete satellite are shown (Fig. 8.19 right). The

UML PPT class contains two attributes tagged with CATIA-specific stereotypes which

mark the import of the orientation and position measures of the CATIA PPT product.
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instance of

PPT : PulsedPlasmaThruster

orientation = [0.6427 -0.739 -0.198;  
           0.7660 0.6208 0.1663;  

0.0000 -0.258 0.9659]
position = [240 -56.61 -202.2]
A_PPT_Thr = [0.766 0.1663 -0.6208]
O_PPT_Thr = [71.480 -178.9002 209.1820]

UML Class Instance A_PPT_Thr

PPT Thrust

Direction [-]

O_PPT_Thr

PPT Coordinates 

[m]

Simulink Block Instances

PulsedPlasmaThruster(PPT)

CATIA Product Instance

PulsedPlasmaThruster

«catiaEulerRotation» orientation : 3x3 [-]
«catiaOriginShift» position : 1x3 [mm]
A_PPT_Thr : 1x3 [-]
O_PPT_Thr : 1x3 [mm]
«matlabFunction» startSimulation ( A_PPT_Thr, O_PPT_Thr ) : sec

«catiaEulerRotation» orientation : 3x3 [-]
«catiaOriginShift» position : 1x3 [mm]
A_PPT_Thr : 1x3 [-]
O_PPT_Thr : 1x3 [mm]
«matlabFunction» startSimulation ( A_PPT_Thr, O_PPT_Thr ) : sec

UML Class

O_PPT_Thr = func(orientation, position, propulsionDeck.orientation)

orientation = [0.6427 -0.739 -0.198; 
           0.7660 0.6208 0.1663;  

0.0000 -0.258 0.9659]
position = [240 -56.61 -202.2]p
A_PPT_Thr = [0.766 0.1663 -0.6208]
O_PPT_Thr = [71.480 -178.9002 209.1820]

Figure 8.19: Consistency between CATIA- and Simulink-specific data through a common
UML product model (after Gross et al. [54])

The UML instance contains the values imported from CATIA as indicated in blue. The

values required for the initialization of the Simulink model are indicated in orange. The

UML constraint, marked partially in orange and partially inblue, sets the link between

the CATIA- and Simulink-specific properties.

The impact of different thruster orientations on the saturation time of the satellite re-

action wheels was determined. This represented a test scenario including a dependency

between a geometric configuration and a related dynamic system behavior. The orien-

tation of the satellite is disturbed by the torque the thruster applies on the satellite. The

reaction wheels of the attitude and orbit control system (AOCS) countervail the distur-

bance torque by increasing their rotation speed in order to keep the satellite aligned. Over

time, the reaction wheels build up stored momentum that needs to be canceled. If the

wheels have reached their maximum rotation speed, saturation is attained and the thruster

has to be cut off. The aim is to maximize the saturation time ofthe reaction wheels by

finding the optimal thruster orientation.

The process of sequentially simulating different satellite configurations was described

through an executable activity diagram. The process consisted of evaluating different

geometric satellite configurations according to their effect on the saturation time of the

reaction wheels. Figure 8.20 shows the activity diagram forthe automated evaluation

of satellite configurations with different thruster orientations. The process steps were

described in UML as call operation actions which were connected with UML object flows

to determine their order of execution. Process input arguments corresponded to UML

activity parameter nodes. In Fig. 8.20, process parametersare shown on the left hand side

of the activity diagram. The upper input parameter containsthe path to the UML model

which is to be loaded. The two lower ones are used to describe the parameter name and

value which have to be changed during the simulation of various satellite configurations.
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Figure 8.20: Activity diagram for the automated evaluationof different Perseus thruster
configurations (after Gross et al. [54])

Thus every parameter of the UML-based central product modelcould be accessed and

changed easily. In this example, the angle of the thruster was changed around the x-axis

of the satellite in 1.5deg steps (Fig. 8.21).

The activity diagram was executable by linking activity actions with Java methods

which either modified the UML model or launched import/export interfaces. The execu-

tion of the UML activity diagram in Fig. 8.20 started at the black-filled UML initial node

at the top of the diagram. The first action loaded the UML product model and the next

one exported the first satellite configuration to CATIA. The thruster orientation had an

impact on the thrust direction, the thrust origin, the center of gravity and the inertia of the

satellite. These properties were therefore measured in CATIA and sent back into the UML

model. UML constraints which linked CATIA-specific and Simulink-specific properties

were then evaluated by Matlab. The Simulink simulation which determined the satura-

tion time was then launched based on updated CATIA-specific measures. The simulation

results were stored back in the UML model. The decision node,depicted as a rhombus
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in the lower left corner, either ended the evaluation loop orstarted a new evaluation of a

new satellite configuration with a new parameter value. The CATIA- and Simulink-based

evaluation of a satellite configuration via the UML-based central product model was then

repeated.

x

y

z

Figure 8.21: Results of the evaluation of different geometric configurations (after Gross
et al. [54])

Figure 8.21 shows the results of the automated evaluation ofdifferent configurations.

Each point in the graph represents a different geometric thruster configuration. On the

horizontal axis, the orientation angle of the thruster around the y-axis is drawn. On the

vertical axis, the resulting saturation time of the reaction wheels is depicted. The different

colors stand for a change of the thruster angle around the x-axis of the satellite. The

saturation time depends on the lever arm of the disturbance torque created by the thrust

and on the satellite position within the earth magnetic field.

This Section presented the UML lightweight extensions necessary to describe geomet-

ric features authored in CATIA and control system features authored in Matlab/Simulink

in a common UML model. Update mechanisms were implemented tosupport a quick re-

configuration of models and avoid a time-consuming generation of complete models from

scratch. Furthermore, the UML-based product model was alsoused in the context of auto-

mated design. The evaluation of a series of different thruster orientations according to the

saturation time of the reaction wheels was described as an executable UML activity dia-

gram. The sequential import/export procedures between theapplication-specific models

and the central UML-based product model were thereby executed automatically.
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8.4 Generation of aircraft geometries

The generation of consistent geometric models of differentaircraft configurations is typ-

ically a time-demanding effort. This Section presents the UML-based generation of cus-

tomizable aircraft geometries [18, 19]. The project was undertaken in partnership with the

Institute of Aerodynamics and Gasdynamics4 of the University of Stuttgart. The geomet-

ric models can be used subsequently for an aerodynamic analysis of different geometric

aircraft configurations.

The definition of an aircraft geometry was based upon points and a limited set of ge-

ometric operations. Points were chosen as they represent the smallest possible geometric

entity and thus allow to define a large variety of different aircraft geometries. A limited

set of geometric operations was used to create volumes basedupon points. The operations

are shown in Figure 8.22. Sections were defined based on a series of points. Similarly,

guiding lines were defined based on points and gradient conditions. Consequently, vol-

umes were defined based on a selection of sections and guidinglines. This sequence

of geometric operations was used to generate volumes corresponding to various aircraft

parts. Figure 8.22 presents the definition of fuselage and wing parts based on points.

Points Sections Selection of Sections Volume

Figure 8.22: Definition of volumes based on points and sections (after Boehnke et al. [19])

The aircraft geometry was defined in CATIA. The points represented the main build-

ing blocks of the aircraft geometry and were positioned according to cartesian coordinates

in CATIA parts through CATIA user defined features. The geometric operations to create

volumes were invoked by the execution of CATIA scripts. Only the engine nacelle was

predefined as a CATIA user defined feature. All other aircraft parts were dynamically

generated based on points and scripts. The CATIA-specific geometric model of the air-

4Institut für Aerodynamik und Gasdynamik (IAG),http://www.iag.uni-stuttgart.de/

http://www.iag.uni-stuttgart.de/
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craft was generated from scratch based upon a customizable UML product model. The

next paragraphs present the main geometric elements of the aircraft geometry and their

counterparts in UML.

The points were categorized according to the type of sectionthey represented. Fig-

ure 8.23 for example represents the PointOnCircle and PointOnEllipse point classes. Both

inherited from the common Point class with the Xccord, Ycoord and Zcoord properties

as all points were defined by cartesian coordinates. The sections could include a variable

number of points. The section type-specific classes therefore included symbolic equations

in the form of UML constraints in order to compute the point coordinates as a function

of the variable number of section points. Figure 8.23 examplarily shows the computation

of the y and z coordinates respectively for a point on a circleand a point on an ellipti-

cal section. Besides being computed by symbolic equations, the point coordinates could

also be imported from Excel spreadsheets. Figure 8.24 presents all the different section

type-specific point classes which allow to compute the pointcoordinates for a specific

section type according to specific symbolic equations. Points on wing-specific sections

thereby belonged to the abstract PointOnProfile class and more specifically to a concrete

point location-specific class such as PointOnProfilefromNACAbacklow or PointOnPro-

filefromNACAfrontup.

Point

Xcoord : mm
Ycoord : mm
Zcoord : mm

PointOnCircle

CRibRadius : mm
CNumOfPoints : Integer
CNumOfPoint : Integer
Cxcoordcenter : mm
Cycoordcenter : mm
Czcoordcenter : mm

PointOnEllipse

Ea : mm
Eb : mm
ENumOfPoints : Integer
ENumOfPoint : Integer
Excoordcenter : mm
Eycoordcenter : mm
Ezcoordcenter : mm

{Xcoord == Cxcoordcenter}

{Ycoord == CRibRadius * 
sin ( 360 / CNumOfPoints * 
CNumOfPoint * pi / 180 ) + 
Cycoordcenter}

{Zcoord == CRibRadius * 
cos ( 360 / CNumOfPoints * 
CNumOfPoint * pi / 180 ) + 
Czcoordcenter}

Figure 8.23: Symbolic equations represented as UML constraints (after Boehnke et
al. [19])

The sections were categorized in profiles and ribs which wererepresented respectively

in UML through a Profile and a Rib class. The Profile class was further specialized

according to wing type-specific profiles, such as WingProfileor FlapProfile. The types

of volumes, which were created based on the sections, were classified according to the

aircraft parts they described, such as wings, fuselages, flaps and intersection elements.

Their geometric representation is depicted in Fig. 8.25 andtheir corresponding abstract

UML representation as UML classes is shown in Fig. 8.24.
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«catiaUDFInput» xy plane
«catiaUDFInput» zx plane
«catiaUDFPar» pyllength : mm

«catiaPart»

Flap

FfirstProfile : Profile
FsecondProfile : Profile
«spgvar» Freldepth
«catiaScriptPar» NumOfFlap
«catiaScriptPar» NumOfProfiles

«catiaPart»

FlapGap

«catiaPar, spgvar» Firstx : mm
«catiaPar, spgvar» Firsty : mm
«catiaPar, spgvar» Firstz : mm
«catiaPar, spgvar» Secondx : mm
«catiaPar, spgvar» Secondy : mm
«catiaPar, spgvar» Secondz : mm
«catiaPar, spgvar» Radius1 : mm
«catiaPar, spgvar» Radius2 : mm
myfirstProfile : WingProfile
mysecondProfile : WingProfile
myFlap : Flap

«catiaScript»

FlapProfile

myWingProfile : WingProfile
myFlap : Flap
«catiaScriptPar» NumOfFlap

«catiaPart»

Fuselage

«catiaScriptPar» NumOfPoints
«catiaScriptPar» NumOfFuselage
«catiaScriptPar» NumOfRibs

«catiaPart»

Intersection

«catiaScriptPar» NumOfPoints
«catiaScriptPar» NumOfIntersection
«catiaScriptPar» NumOfProfiles
«catiaScriptPar» NumOfFirstProfileWing
«catiaScriptPar» NumOfFirstProfile

«catiaScript»

IntersectionProfile

«spgvar» f
«spgvar» l : mm
«spgvar» n
«spgvar» i
«catiaScriptPar» NumOfIntersection
myfP : Profile
mysP : Profile

«catiaUDF»

Point

«catiaUDFPar» Xcoord : mm
«catiaUDFPar» Ycoord : mm
«catiaUDFPar» Zcoord : mm

PointOnCircle

«spgvar» CRibRadius : mm
«spgvar» CNumOfPoints
«spgvar» CNumOfPoint
«spgvar» Cxcoordcenter : mm
«spgvar» Cycoordcenter : mm
«spgvar» Czcoordcenter : mm

PointOnEllipse

«spgvar» Ea : mm
«spgvar» Eb : mm
«spgvar» ENumOfPoints
«spgvar» ENumOfPoint
«spgvar» Excoordcenter : mm
«spgvar» Eycoordcenter : mm
«spgvar» Ezcoordcenter : mm

PointOnFlapProfile

myFlapProfile : FlapProfile

PointOnIntersectionProfile

myIP : IntersectionProfile
myP : PointOnProfile

PointOnProfile

«spgvar» alpha
«spgvar» beta
«spgvar» gamma
«spgvar» Profiledepth : mm
«spgvar» xcoord
«spgvar» ycoord
«spgvar» zcoord
«spgvar» xcoordTranslation : mm
«spgvar» ycoordTranslation : mm
«spgvar» zcoordTranslation : mm
«spgvar» xcoordRotation : mm
«spgvar» ycoordRotation : mm
«spgvar» zcoordRotation : mm
«spgvar» xcoordRoot : mm
«spgvar» ycoordRoot : mm
«spgvar» zcoordRoot : mm
«spgvar» xcoordcenter : mm
«spgvar» ycoordcenter : mm
«spgvar» zcoordcenter : mm

PointOnProfilefromNACAbacklow

«spgvar» xl : mm
«spgvar» yl : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar» m
«spgvar» t
«spgvar» x : mm

PointOnProfilefromNACAbackup

«spgvar» xu : mm
«spgvar» yu : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar» m
«spgvar» t
«spgvar» x : mm

PointOnProfilefromNACAfrontlow

«spgvar» xl : mm
«spgvar» yl : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar» m
«spgvar» t
«spgvar» x : mm

PointOnProfilefromNACAfrontup

«spgvar» xu : mm
«spgvar» yu : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar» m
«spgvar» t
«spgvar» x : mm

«catiaPart»

Profile

«spgvar» alpha
«spgvar» beta
«spgvar» gamma
«spgvar» Profiledepth : mm
«spgvar» xcoordRoot : mm
«spgvar» ycoordRoot : mm
«spgvar» zcoordRoot : mm
«catiaScriptPar, spgvar» NumOfPoints
«catiaScriptPar» NumOfProfile
«catiaScriptPar, catiaPar, spgvar» NumOfaftPoint
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IntersectionFlap

Wing Fuselage Nacelle

Figure 8.25: Main geometric parts of the aircraft geometry (after Boehnke et al. [19])

The fuselage part consisted of rib sections as well as front and aft points. The rib

sections were aligned along the longitudinal axis of the fuselage and were of circular or

elliptical shape. The front and aft points allowed to define guiding lines with gradient

constraints in order to design tapered or smooth fuselage ends. The guiding lines were

splines which followed the longitudinal axis of the fuselage from the front point to the

aft point by passing through all rib points having the same index. CATIA scripts then

formed the volume corresponding to the fuselage part based on the rib sections and the

longitudinal guiding lines.

The wing part consisted of profile sections which were parameterized in order to de-

scribe different airfoils. The profiles were customized according to their depth, thickness,

maximum camber and camber position. Furthermore, their orientation was specified by

Euler angles. The profiles were defined by splines which connected all profile points.

CATIA scripts generated volumes based on profiles and on polylines connecting the pro-

files. The resulting volumes represented wing parts. The engine nacelle part was the only

part which was predefined as a parameterized user defined feature. The nacelle could be

adapted according to its radius and length as well as its position relative to the wing. The

nacelle could thus be placed under or over a wing.

Intersection parts were defined identically to wing parts. They were placed for exam-

ple between the wings and the fuselage in order to define a realistic geometry. Boolean

operations were then used to remove the volume of the intersection element which coin-

cided with the neighboring parts. Flap parts were very similar to wing parts. However,

their geometric representation was more constrained as they only consisted of two pro-

files. The flaps were usually embedded in the wing parts. A flap-gap element in the form

of a cylinder was introduced in the geometric model of the aircraft. The volume of the
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wing part which coincided with the flag-gap element was then removed through a boolean

operation to leave space for the placement of the flap.

The geometry of the aircraft was described as a CATIA product which included CA-

TIA part instances representing the various aircraft parts. The CATIA part instances

were generated dynamically through CATIA user defined features and CATIA scripts.

As described in Chapter 4, CATIA products, parts, user defined features and scripts were

represented in UML through UML classes with appropriate stereotypes. The instances

of CATIA features were represented accordingly in UML through UML instances. The

UML-based product model could thus represent CATIA-specificfeatures which could

be automatically translated into a CATIA-specific model of the aircraft geometry. The

UML-based product model was easier to customize than the detailed application-specific

CATIA model as it only represented geometric information which was subject to change.

Excel cell values were imported into the UML model. The symbolic equations within

the UML-based product model were evaluated by a computer algebra system in order to

compute the property values of UML instances, such as point coordinates. The UML-

based product model could then be exported to CATIA.

The geometry of an aircraft requires the definition of many geometric elements such as

a multitude of sections and points. Manual modifications within a UML or corresponding

CATIA model were thus too time-consuming. A Java program was therefore used to

generate a UML model of an aircraft geometry which could be easily modified in order

to insert, remove, or displace points and sections. The Javaprogram referred to Java

methods for common tasks such as the insertion of UML instances representing points,

ribs, profiles and larger volumes like wings. Lines of code tocreate the geometry of an

Airbus A321 are for example shown in Fig. 8.26 left. The Java program for example

referred to the createRibInstanceFromCircle Java method whose Javadoc description is

represented in Fig. 8.26 right.

Main Java Program

Create Rib Instance with PointOnCircle Instances 

Parameters:

airplaneModel AirplaneModel to be returned

NumOfRib Number of the Rib

NumOfFuselage Number of the Fuselage the Rib is in

radius Radius of the Circle

xcenter X Center Position of the Circle

ycenter Y Center Position of the Circle

zcenter Z Center Position of the Circle

PointIndex Number of Points to be created

Returns:

airplaneModel

Javadoc of createRibInstancefromCircle(...) 

...  

//Main Fuselage

AirplaneRules.createRibInstancefromCircle(airplaneModel,1 ,1, 10 ,0 ,0 ,-200 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,2 ,1, 900 ,900 ,0 ,-200 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,3 ,1, 1100 ,1270 ,0 ,-200 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,4 ,1, 1975 ,4699 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,5 ,1, 1975 ,4700 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,6 ,1, 1975 ,4701 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,7 ,1, 1975 ,10000 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,8 ,1, 1975 ,15000 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,9 ,1, 1975 ,20000 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,10 ,1, 1975 ,25399 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,11 ,1, 1975 ,25400 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,12 ,1, 1975 ,25401 ,0 ,0 ,12);

AirplaneRules.createRibInstancefromCircle(airplaneModel,13 ,1, 200 ,37000 ,0 ,1775 ,12); 

...

Figure 8.26: Java code for the creation of UML instances referring to fuselage ribs
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Figure 8.27 presents a sample of various aircraft geometries that were generated based

upon a highly customizable UML model of an aircraft geometry. The aircraft models rep-

resent to a large extent, starting clockwise from the bottomleft, Boeing’s X-48B Blended

Wing Body demonstrator, the Bell X-1, a conventional aircraft, the family of Airbus

A318/319/320/321 and a fictional artistic scramjet model. The latter example was for

example conceived and implemented, in collaboration with amember of the Scramjet

Research Group at the University of Stuttgart5, only within a few hours. The variety of

generated examples showed the customizability of the UML-based central product model.

Figure 8.27: Various aircraft geometries based on a UML product model (after Boehnke
et al. [19])

This Section has shown the representation of low-level geometric points and opera-

tions in a UML-based product model. The UML model included more than geometric

information by capturing Excel-specific point coordinatesas well as by computing the

point coordinates of predefined section types based on symbolic equations. The UML-

based product model was programmatically edited by a Java program as the UML model

of an aircraft geometry is too large to be created manually ina reliable and efficient

manner. Changes within the Java program led to modifications in the UML model and

consequently to the resulting CATIA-specific geometric aircraft model. The variety of

generated examples showed the customizability of the UML-based central product model.

5Graduiertenkolleg-SCRamjet,http://www.uni-stuttgart.de/itlr/graduierten/

http://www.uni-stuttgart.de/itlr/graduierten/
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8.5 Summary

This Chapter presented the use of a UML-based product model indesign scenarios which

included multiple inter-model dependencies and model modifications. The test cases

showed the representation of diverse geometric information within the UML-based prod-

uct model. The geometric information within the use case scenarios consisted of coarse-

grained geometric data, such as the simple rectangular and cylindrical boxes for the rep-

resentation of cabin pressure system units, as well as fined-grained geometric data, such

as the highly detailed geometric primitives and operationsto describe aircraft parts. Fur-

thermore, the design of conveyor systems and of the Perseus satellite included geometric

data from a professional industrial context. Besides geometry, the use cases presented

the integration of Excel-specific spreadsheet data, as wellas Matlab/Simulink-specific

dynamic system models and symbolic equations to achieve data consistency within the

UML-based product model. The UML-based product model supported the integration of

diverse product information and proved its adaptability todescribe various product con-

figurations. Furthermore, the test cases demonstrated the capability of translating UML

model information into application-specific models.

In all test cases, modifications to the UML-based product model were defined formally

in an executable format. The non-proprietary Java API of UMLmodels was used to

describe recurrent design steps or design decisions in Javamethods. Furthermore, the test

cases related to the design of conveyor systems and the Perseus satelite represented design

processes through UML activity diagrams. The diagrams enabled a better overview of the

design requirements and design steps as well as of the various information flows within

a design process. The executability of UML activity diagrams was supported by linking

activity actions with predefined Java methods. The execution of UML activity diagrams

resulted in the generation of UML-based product models and subsequent application-

specific models which were conform to the original product requirements.



Chapter 9

Conclusion

Section 9.1 reviews the motivation to investigate a UML-based central product model for

the management of multidisciplinary dependencies during product design. Section 9.2

summarizes the results regarding the mapping of discipline- and application-specific mod-

els into a UML-based central product model and the use of the UML-based central prod-

uct model for the design of customized multidisciplinary products. Finally, Section 9.3

presents an outlook on the future harmonization of modelinglanguages as well as the

potential extensions of the UML-based central product model.

9.1 UML-based central product model

Computer-aided design of multidisciplinary products involves the use of specialized dis-

cipline-specific software applications in order to model and simulate various product as-

pects. Dependencies between models are thereby frequent asthe same product informa-

tion often appears redundantly in various engineering models. A change in one model

then requires the update of dependent models. Otherwise, the simulation of models

based on inconsistent data will lead to meaningless or misleading results and subsequent

wrong design decisions. Synchronization of models may involve large quantities of data.

The manual update of models by engineers therefore represents an error-prone and time-

consuming task. Hence, a framework for automatic model updates is needed to guarantee

data consistency across all product models.

Data consistency between models is achieved automaticallythrough model-to-model

data exchange software. However, the development and maintenance of each specific data

exchange connection represents a large effort. The use of a central product model enables

a reduction in the required number of data exchange connections by acting as the hub in

a hub-and-spoke network. The central product model stores redundant product informa-
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tion which is spread across several models and maintains data consistency through data

exchange connections between itself and each specific model. For example, in a scenario

with n specific models, the bidirectional linking of models via a central product model

requires only2n connections whilen(n-1) connections are necessary for the equivalent

direct linking of models .

Most current central product models are dedicated to the design of specific products.

However, some central product models are generic enough to be employed for the design

of different product types. This is advantageous since the same central product model and

associated application-specific translation software canbe reused for the design of vari-

ous products across a wide range of industry sectors. Among the generic central product

models none has yet gained wide acceptance nor reached the status of an international

standard. Thus no standard for example currently exists forthe integration of mechanical,

electronic and software information in a central product model that could support the de-

sign of mechatronic products. As software and electronics are more and more embedded

in conventional mechanical products, the development of a standard central product model

is of utmost importance for the design of mechatronic products ranging from aerospace

engineering to modern manufacturing facilities.

In general, the acceptance of a model and its modeling concepts depends on the sim-

plicity with which specific aspects of a system can be described. In the case of the cen-

tral product model, modelers need to easily describe discipline-specific information and

inter-model dependencies. Most engineers are specializedin specific disciplines and are

only familiar with specific models and related modeling concepts. However, the cen-

tral product model cannot represent diverse product aspects identically as in specialized

discipline- and application-specific models because it cannot support the multitude of var-

ious discipline- and application-specific modeling concepts. Central product models are

therefore comprised of a limited manageable set of modelingconcepts that correspond

to generalizations of specific modeling concepts. The choice of generalized discipline-

and application-independent modeling concepts is critical for the capability of the central

product model to represent product models from a wide range of disciplines and modeling

applications.

Although models of different engineering disciplines are highly diverse, most models

which are edited with current state-of-the-art software applications share common mod-

eling concepts in order to support modular design. The capacity to easily exchange and

reuse model components across several models promotes flexibility and productivity in

modeling. This avoids the time-consuming creation of models from scratch. Most models

therefore share common modeling principles in order to describe modular model compo-
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nents. Common characteristics of modules include in- and outputs, hidden and visible

outward-facing information, as well as templates and instances.

There is currently no widely accepted standard to representwith general overarching

concepts modules from different disciplines. However, modularity is especially important

in software engineering. Software design is an engineeringdiscipline in which changes

and updates are more frequent than in other engineering disciplines as software code is

simpler to modify than tangible mechanical engineering components which require man-

ufacturing and resources. As a result, concepts that promote modular design are more

commonly found in software engineering than in other engineering disciplines. Sophis-

ticated programming concepts have been developed in software engineering to support

modularity. The most prominent are the object-oriented programming concepts which

consist of encapsulating variables and functions into modular units called objects. Graph-

ical models of object-oriented software represent the classification, communication and

internal structure of software objects.

Although object-oriented modeling concepts are currentlymainly used for software

modeling, they are generic and can be used in the context of a central product model to

describe the common modular structure of models from different engineering disciplines.

Engineers can then recognize their discipline-specific information within the larger central

product model due to the common modular structure of the specific model and the central

product model.

As a central product model is to be used across several disciplines, it addresses many

parties and requires standardization because special training and dedicated conversion

tools are needed. Besides, a standardized central product model would be desirable as

it would not only eliminate the confusion caused by different central product models but

also reduce the development costs of translation software.

Since its emergence in 1997, the Unified Modeling Language (UML) has been the

de facto standard for object-oriented modeling and is widely used in software engineer-

ing. This thesis investigated the capability of the UML to describe the common mod-

ular structure of various discipline-specific product models within a central UML-based

product model. The integration of geometric, controller and multibody system models is

required in many mechatronic products which abound in aerospace, automobile or man-

ufacturing products. The approach of reusing the UML to support the representation of

various models in a central product model was examined by representing state-of-the-

art application-specific geometric, controller and multibody system models in a common

UML-based product model.
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9.2 Results

Geometric, controller and multibody system models are edited according to specialized

software applications. In order to recognize and interpretthe application-specific models

within the central UML-based product model, lightweight UML extensions in the form

of stereotypes were applied on top of the generic UML modeling entities in order to

denote application-specific information. Stereotypes which corresponded to a specific

application were regrouped in a UML profile. This thesis defined application-specific

UML profiles to represent in a common UML-based product modelapplication-specific

geometric, controller and multibody system models. The approach was demonstrated

for widely used state-of-the-art modeling applications. The mapping rules between the

application-specific models and the central UML model were implemented and tested in

various design projects in order to support consistency across various product models as

well as to contribute to the efficient design of customizableproducts.

The UML profiles for geometric models captured commonly shared geometric prod-

uct information, such as volume, mass, center of gravity andmoment of inertia. This type

of information is typically stored redundantly in various models such as in geometric and

multibody system models or spreadsheets. The representation of the redundant geometric

information centrally in the UML model makes it possible to keep it consistent across

various specialized product models. A change in a specific model can for example be for-

warded to the central model which can then update other specific models which require

synchronization. In addition, application-specific modeling concepts were represented in

the UML model in order to support the automatic translation of the UML-based geometric

information into application-specific geometric models. Application-specific modeling

features such as parts, assemblies, assembly constraints,part dependencies, features and

geometric primitives were therefore mapped into the UML-based product model.

High-level object-oriented geometric modeling concepts were described in UML by

their homologous generalized UML modeling concepts with a corresponding applied

stereotype while detailed low-level geometric entities were represented in UML as in-

stances of predefined geometric types. This mapping logic allowed to represent geomet-

ric modeling concepts in UML and vice versa according to a one-to-one correspondence.

Models from widespread 3D geometry modelers such as CATIA andSolidWorks as well

as the open VRML format were mapped into UML. As most CAD modeling applications

share a large common set of modeling concepts, the presentedmapping rules could also

be extended to other 3D geometric modeling applications.

The test cases in Chapter 8 included a variety of geometric models: models with

highly detailed geometric entities, such as for the design of a variety of aircraft, as well as
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models originating from existing industrial design projects, such as the geometric mod-

els related to the design of the PERSEUS satellite and conveyor system configurations.

Furthermore, the slider-crank mechanism test case of Chapter 4 included various types of

dependencies between geometric parts. All test cases showed the representation of geo-

metric model information in UML and the subsequent automatic UML-based generation

of application-specific geometric models. In addition, thetest cases related to the design

of the slider-crank mechanism and the Perseus satellite showed the automatic import of

geometric model information into the UML model.

Next to geometric models, dynamic system and multibody system models were map-

ped into UML. Both Simulink-specific dynamic system models and SimMechanics-spe-

cific multibody system models are block diagrams composed of block types, block in-

stances and edges between block instances. However, the edges which connect the blocks

represent in the Simulink dynamic system model signals, in other words information

flows, while they represent static connections in the SimMechanics multibody system

model. Simulink-specific dynamic system models were therefore mapped into UML

activity diagrams and SimMechanics-specific multibody system models into composite

structure diagrams.

The block types of both Simulink and SimMechanics models represent templates.

They were therefore both mapped into UML classes. However, Simulink blocks represent

a behavior in contrast to SimMechanics blocks which describe static bodies and joints.

Simulink block types were therefore mapped into UML activities which are specialized

UML classes. Simulink-specific block instances were mappedinto UML actions and

SimMechanics-specific block instances into UML parts. In addition, block instances were

also mapped into UML instances. Furthermore, the Simulink-specific edges between

block instances were represented as UML object flows betweenaction pins while the

SimMechanics-specific edges were depicted as UML connectors between parts. Apart

from block instances, the mapping of Simulink and SimMechanics modeling concepts

into corresponding UML modeling concepts was bijective, inother words according to

a one-to-one correspondence. The dynamic and multibody system models shared great

resemblance with their corresponding UML diagrams and therefore allowed a mostly

intuitive mapping.

The mapping of Simulink, SimMechanics and combined Simulink/SimMechanics

models into UML was applied to the slider-crank mechanism example of Chapter 5. As

the blocks within the Simulink and SimMechanics models contain by default numerous

detailed information, the import of existing models into UML was more efficient than

describing in UML the Simulink- and SimMechanics-specific information from scratch.
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The translation of UML models into Simulink- and SimMechanics-specific models was

validated by generating models identical to the imported ones, in other words by perform-

ing a round-trip transformation.

UML stereotypes were defined in order to refer to external data in Excel spreadsheets.

The test cases related to the evaluation of cabin pressure systems in Section 8.1 and the

generation of aircraft geometries in Section 8.4 for example required the import of Ex-

cel data. Similar UML stereotypes could be specified in orderto refer to values from

other data sources such as databases. Furthermore, a UML stereotype was defined to re-

fer to external Matlab-specific functions. This allowed to perform complex computations

and return the results back to the UML-based product model. The automated evaluation

of satellite configurations in Section 8.3 for example required the invocation of Matlab

functions for matrix manipulations. Similarly, references to external functions other than

Matlab could be represented in UML through UML operations with appropriate stereo-

types.

This thesis demonstrated that the UML can be used beyond conventional software

modeling to establish a standard central product model. Theobject-oriented UML mod-

eling concepts corresponded semantically to the modeling concepts of various disciplines

including geometric, dynamic and multibody system models.This facilitated the rep-

resentation of discipline- and application-specific modelinformation in a central UML-

based product model.

Inter-model dependencies were described in the common UML-based product model.

Inter-model dependencies between features of various discipline- and application-specific

product models were represented as dependencies between related UML properties. De-

pendencies between UML properties were described through UML constraints which re-

ferred to algebraic equations. Their resolution was achieved through a solution path gen-

erator algorithm and a computer algebra system. The resolution of the UML constraints

established data consistency within the central UML-basedproduct model and was used

in all test cases.

The automated creation or modification of the UML-based central product model was

enabled by an Application Programming Interface (API) in Java and was used in all pre-

sented test cases. Furthermore, UML activity diagrams wereused to graphically describe

design processes. The graphical representation of a designprocess through a UML ac-

tivity diagram is easier to understand than an equivalent textual representation through a

Java program. A design process described as a UML activity diagram can thus be under-

stood by more parties. In order to achieve the same level of executability as with Java

programs, nodes within UML activity diagrams referred to Java methods. An executable
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UML activity diagram was used for the automated design of conveyor system configura-

tions (Sec. 8.2) and the automated evaluation of satellite configurations (Sec. 8.3).

The easily extensible open-source Eclipse platform was used to integrate UML trans-

lators and editors in a single software environment. The implementation of the various

translators between the UML model and the application-specific models as well as the

software for the executability of UML activity diagrams were packaged as Eclipse plug-

ins which extended the Eclipse platform. Furthermore, various open-source UML editors,

which were available as Eclipse plugins, were also used to extend the Eclipse platform.

As a result, a single software environment based on the Eclipse platform regrouped the

features to perform UML-based product design.

The UML-based central product model represented application-specific modeling con-

cepts in order to enable an automatic translation of the UML representation of application-

specific model information into detailed discipline- and application-specific models for

simulation. As a result, changes in the UML-based product model were automatically

propagated to detailed application-specific models. Consistency between the central UML-

based product model and the application-specific models wasguaranteed. This enabled to

efficiently generate a multitude of different consistent model configurations which were

used to evaluate various product configurations. The customizable UML-based central

product model was used in all presented test cases. As an example, the customization

of the UML-based central product model of the slider-crank mechanism in Section 7.2

allowed to automatically generate various consistent geometric and multibody system

models which involved the update of many values. The benefitsof the centrally defined

UML model customization were especially visible in the project related to the generation

of various aircraft geometric models in Section 8.4. A variety of aircraft geometric mod-

els, which differed in size and topology, were generated from a customizable UML-based

product model. They represented a wide range of aircraft including a fictional artistic

scramjet, Boeing’s X-48B Blended Wing Body demonstrator, the Bell X-1 and the family

of Airbus A318/319/320/321.

9.3 Outlook

By integrating product information, the central product model represents a central data

repository which facilitates the use of knowledge-based engineering or multidisciplinary

optimization frameworks since they only need to address thecentral product model in-

stead of many separate engineering models. Through a tight linkage between the UML-

based product model and state-of-the-art engineering software applications, multidisci-
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plinary design processes requiring several iterations to reach an optimal product config-

uration could be fully automated. The UML-based product model could therefore be

easily combined with a rule-based automated design compiler approach as in Alber and

Rudolph [2, 141].

The choice of the UML as a product modeling language enables to use the Model

Driven Architecture (MDA) concepts [112] - originally intended for software design -

for a formal engineering design process. The MDA is a framework for using modeling

standards such as the UML in software development. It provides an approach to reuse

abstract software models for the automatic generation of various platform-specific soft-

ware models or code through model transformations. Engineering decisions or design

rules could similarly be described as model transformations and be executed by current

tools supporting MDA. Kerzhner and Paredis [83] for exampleapplied graph-based model

transformations on MDA-compliant models to generate different alternatives of hydraulic

circuits.

The development of further domain-specific or application-specific UML extensions

covering different product lifecycle aspects such as requirements, manufacturing and

costs would increase the integrative role and value of the UML-based product model. In

addition, the presented application-specific UML extensions could be further improved to

include more modeling concepts.

A future standardization of application-specific UML profiles and their respective

mappings is required in order to share these on a large scale with many parties. Applica-

tion-specific UML extensions should ideally be defined in cooperation with application

developers and the Object Management Group (OMG) which is a consortium aiming

at setting standards such as the UML. Furthermore, the mapping of application-specific

models into UML could be described through the Query/View/Transformation (QVT)

standard [119] of the OMG.

Similarities between UML, OWL and other modeling languages such as EXPRESS

exist. It is therefore probable that the different modelinglanguages which were developed

over the years in distinct disciplines, such as UML in software design, EXPRESS in data

modeling and OWL in artificial intelligence, will probably undergo a harmonization pro-

cess in the near future. Approaches are undertaken to facilitate interoperability between

UML, EXPRESS and OWL. Very widespread state-of-the-art UML modeling tools could

then be used for EXPRESS as well as for OWL modeling. Approachesfor a narrower

coexistence and integration of EXPRESS and UML are thereforeinvestigated [92]. The

Mexico1 project for example is developing a new EXPRESS metamodel which would,

1MOF 2 Based EXPRESS Integration and Coexistence, http://www.modelalchemy.com/
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just as the UML metamodel, be an instance of the MOF metamodel. Similarly, Kiko

and Atkinson [84] have compared in detail UML and OWL to facilitate their harmoniza-

tion. Atkinson [7] is in favor of developing a core level unification of UML and OWL as

there is no fundamental difference between modeling and ontology representation. On-

tologies have been defined in UML in order to use common UML tools for ontology

design [30, 90, 48]. UML models have thereby been transformed into executable logic

representations [42].

As described in Section 3.5, an important new extension of UML is SysML [118] for

systems engineering. SysML includes additional modeling constructs to describe system

requirements, behavior, structure and parametrics. But SysML is a new modeling lan-

guage which has not yet reached a mature status similar to UML. Changes in the new

SysML modeling language are therefore highly probable in the near future. Eventually,

SysML will most probably be better suited than UML to establish a standard central prod-

uct model. As SysML is based on UML, both languages share manycommon modeling

concepts. Current UML profiles could therefore be reused to a large extent in SysML

models.





Appendix A

Tables of correspondence between

modeling concepts

CATIA-specific UML modeling Stereotype Section

modeling concept concept

Part Class «catiaPart» 4.1.1

Part instance Instance - 4.1.1

Part Parameter Property «catiaPar» 4.1.2

Part Measure Property e.g.«catiaMass» 4.1.2

Publication Interface «catiaPublication» 4.1.3

CCP Link Usage «catiaCCPLink» 4.1.3

Import Link Usage «catiaImportLink» 4.1.3

Product Class «catiaProduct» 4.1.4

Product instance Instance - 4.1.3

Assembly Constraint Constraint e.g.«catiaCoincidence» 4.1.5

PowerCopy Class «catiaPowerCopy» 4.1.6

User Defined Feature Class «catiaUDF» 4.1.6

Script Class «catiaScript» 4.1.7

Table A.1: Table of correspondence between CATIA and UML modeling concepts
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SolidWorks-specific UML modeling Stereotype Section

modeling concept concept

Part Class «sldWorksPart» 4.2.1

Assembly Class «sldWorksAsm» 4.2.1

Geometric entity type Class (predefined in profile) - 4.2.2

Geometric entity instance Instance - 4.2.2

Mate Constraint «sldWorksMate» 4.2.3

Table A.2: Table of correspondence between SolidWorks and UML modeling concepts

VRML-specific UML modeling Stereotype Section

modeling concept concept

Node type Class - 4.3.2

Node instance Instance - 4.3.2

VRML Transform Node Class «vrmlTransformNode» 4.3.3

VRML Transform Node Prop-
erty

Property e.g.«vrmlRotation» 4.3.3

Table A.3: Table of correspondence between VRML and UML modeling concepts

Simulink-specific UML modeling Stereotype Section

modeling concept concept

Model Activity «simulinkModel» 5.1.1

Block type Activity (predefined in profile) - 5.1.2

Block instance Action + Instance e.g.«integrator» 5.1.2

Block port Pin «simulinkPort» 5.1.2

Signal ObjectFlow «simulinkSignal» 5.1.3

Table A.4: Table of correspondence between Simulink and UMLmodeling concepts
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SimMechanics-specific UML modeling Stereotype Section

modeling concept concept

Model Class «simMechModel» 5.2.1

Block type Class (predefined in profile) - 5.2.2

Block instance Part + Instance e.g.«ground» 5.2.2

Block port Port e.g.«simMechCS» 5.2.2

Connection Connector «simMechConnection» 5.2.3

Table A.5: Table of correspondence between SimMechanics and UML modeling concepts

Excel-specific UML modeling Stereotype Section

modeling concept concept

Cell value Property or Slot «excelCellV alue» 6.1

Table A.6: Table of correspondence between Excel and UML modeling concepts

Matlab-specific UML modeling Stereotype Section

modeling concept concept

Function Operation «matlabFunction» 6.2

Function argument Parameter - 6.2

Table A.7: Table of correspondence between Matlab and UML modeling concepts

Equation-specific UML modeling Stereotype Section

concept concept

Equation OpaqueExpression«matlabFunction» 6.3

Equation variable Property «spgvar» 6.3

Equation fixed variable Property «spgconst» 6.3

Table A.8: Table of correspondence between equation and UMLmodeling concepts
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