Application-specific UML Profiles for Multidisciplinary
Product Data Integration

A thesis accepted by the Faculty of Aerospace Engineeridgzsodesy of the
Universitat Stuttgart in partial fulfilment of the requirents for the degree of
Doctor of Engineering Sciences (Dr.-Ing.)

by
Dipl.-Ing. Axel Reichwein
born in Cologne, Germany

Main referee: Priv.Doz. Dr.-Ing. Stephan Rudolph
Co-referee: Prof. Dr.-Ing. habil. Bernd Kréplin
Co-referee: Prof. Dr.-Ing. Reinhard Reichel

Date of defence: December 6, 2011

Institute of Statics and Dynamics of Aerospace Structures
Universitat Stuttgart
2011

Contents

Acknowledgments 7
Abbreviations 9
Abstract 13
Kurzfassung 15
1 Introduction 17
1.1 Productdataconsistency 17
1.2 Centralproductmodels 18
1.3 UML-based product data integration 25
1.4 Outline e 28
2 Models for product data integration 31
2.1 STEP . . . 31
211 OVeIVIEW o o e 32
2.1.2 Integrationapproaches 35
2.2 Industry sector-specificstandards o 38
22.1 JAIIFC e 38
222 1SO15926 e 39
2.3 Ontologies 39
2.3.1 Ontology representationlanguages40
2.3.2 Integrationapproaches, 42
2.4 SUMMAIY e e e e e e e 43
3 UML-based central product model 45
3.1 Genericmodeling 45
3.2 Modeling modularcomponents 46

3.3 UML-based object-oriented modeling 49

Contents

3.3.1 Origins of object-oriented software development

3.3.2 UML for software engineering
3.3.3 UMLspecification
3.3.4 UMLmodelingconcepts
3.4 UML for product data integration.
3.5 UML-based integrationapproaches
3.6 Summary

UML profiles for geometric models

4.1 UML profile for CATIA-specificgeometry
411 Parts.
4.1.2 Part parameters and measures
4.1.3 Dependencies betweenparts
414 Products
4.1.5 Assemblyconstraints
4.1.6 Dependencies between partinstances
4.1.7 PowerCopies e
4.1.8 SCripts

4.2 UML profile for SolidWorks-specific geometry
421 Assemblies
4.2.2 Geometricentities
423 Mates

4.3 UML profile for VRML-specificgeometry
4.3.1 Filestructure
432 Scenegraph.
433 Assemblies
4.3.4 VRML assembly files based on CATIA

4.4 SUMMary e e e e

UML profiles for dynamic system models

5.1 UML profile for Simulink-specific dynamic systems
5.1.1 Simulinkmodel
512 Blocks
51.3 Signals
514 Subsystems,

5.1.5 Case study: slider position controller

5.2 UML profile for SimMechanics-specific multibody systems

Contents 5
5.2.1 SimMechanicsmodel 105
522 Blocks 107
5.2.3 Connections 110
5.2.4 SimMechanics model as a Simulink subsystem 110
5.2.5 Case study: slider-crank mechanism as multibodymsyste. . . 111
53 Summary e 113
6 UML profiles for data retrieval and constraint processing 15
6.1 UML profile for Excel-specific spreadsheetdata 115
6.2 UML profile for Matla®-specific functions 116
6.3 UML profile for constraint processing 118
6.4 SUMMAIY e e e e 121
7 UML model for centralized workflows 123
7.1 UML-based modeling of dependencies 123
7.2 UML-based model customization. 127
7.3 Automatedworkflows L L Lo 129
7.4 Software implementation 130
7.5 Summary ... e e e e 132
8 Testcases 133
8.1 Evaluation of cabin pressure control systems 133
8.2 Automated design of conveyor system configurations 140
8.3 Automated evaluation of satellite configurations 147
8.4 Generation of aircraftgeometries 154
85 Summary e 160
9 Conclusion 161
9.1 UML-based central productmodel 161
9.2 Results. 164
9.3 Outlook e 167
A Tables of correspondence between modeling concepts 171
Bibliography 175

Acknowledgments

First and foremost, | would like to thank my advisor Dr. StaphiRudolph for giving me
the opportunity to learn, grow, and explore. The achievaroéthis work was greatly
influenced by his vision and the work environment he set upuinresearch group. His
passionate interest in research and his constant eneeggtiosiasm were always very
motivating and allowed me to start this thesis with greafic@mce. Obviously, the initial
fun and excitement was quickly replaced by challenging tioies and headaches. But
Dr. Stephan Rudolph’s guidance and open-mindedness as svleanumerous interac-
tions with the group members were very helpful in overcommrany difficulties.

In addition, | would like to extend my thanks to my committeembers Prof. Bernd
Kroplin and Prof. Reinhard Reichel for their valuable suppord interest.

Among the group members, | would especially like to expreggratitude to Dr. Pe-
ter Hertkorn with whom | worked closely. His expertise in qmuter science and his
readiness to share it without presumption were extremehefigal. | also thank other
group members including Michael Bélling, Peter Arnold, Jum@s Gross, Marc Eheim
and Martin Motzer for contributing to a very friendly grouppreosphere in which we could
not only discuss serious academic topics but also enjoytaimig philosophical debates
over lunch.

Finally, | am grateful to my parents for their continuous ot and for believing in
me throughout the many challenges.

Abbreviations

AEC
AFDX
AOCS
AP

API
ASCII
BOM
CAD
CAE
CAN
CC
CCP
CIMsteel
CIS/2
COMBINE
CPIOM
DAML
DL

FM
HVAC
IDE
IFC

Architecture, Engineering and Construction
Avionics Full-Duplex Switched Ethernet
Attitude and Orbit Control System
Application Protocol

Application Programming Interface
American Standard Code for Information Interchange
Bill of Materials

Computer-Aided Design

Computer-Aided Engineering

Controller Area Network

Conformance Classes

Cut Copy and Paste

Computer Integrated Manufacturing of Constructi@taelwork

CIMsteel Integration Standard Version2

Computer Models for the Building Industry in Europe
Core Processing Input/Output Module

DARPA Agent Markup Language

Description Logics

Facility Management

Heating, Ventilating and Air Conditioning

Integrated Development Environment

Industry Foundation Classes

10

Abbreviations

IMA
ISO
IGES
KIF
MDA
MOF
OCL
OCSM
OIL
OMG
ORVD
OwL
PDM
PID
PIM
PLM
PPT
PSM
QVT
RDF
RDFS
SDAI
SPG
SysML
SWRL
STEP
UML
URL

Integrated Modular Avionics

International Organization for Standardization
Initial Graphics Exchange Specification
Knowledge Interchange Format

Model Driven Architecture

Meta Object Facility

Object Constraint Language

Outflow Valve Control and Sensor Module
Ontology Interchange Language

Object Management Group

Outflow Relief Valve Dumps

Web Ontology Language

Product Data Management
Proportional-Integral-Derivative

Platform Independent Model

Product Lifecycle Management

Pulsed Plasma Thruster

Platform Specific Model
Query/View/Transformation

Resource Description Framework

RDF Schema

Standard Data Access Interface

Solution Path Generator

Systems Modeling Language

Semantic Web Rule Language

Standard for the Exchange of Product Model Data
Unified Modeling Language

Unified Resource Locator

Abbreviations

11

VB
VBS
VBA
VRML
W3C
XMI
XML

Visual Basic

Visual Basic Script

Visual Basic Application

Virtual Reality Modeling Language
World Wide Web Consortium
XML Metadata Interchange

Extensible Markup Language

Abstract

This thesis examines the suitability of the Unified Modelirmsnguage (UML) to establish
a central product model for multidisciplinary product dateegration. Computer-aided
product design involves the use of specialized disciplipeeific software applications in
order to model and simulate various product aspects. Depeies between models are
thereby frequent as the same product information often apedundantly in various
engineering models. In addition, dependencies exist dueddationships between distinct
features of various models. As a result, model modificatioeguently require the up-
date of dependent models. Data consistency between madathieved automatically
through model-to-model data exchange software.

The use of a central product model enables to reduce thereegnumber of data
exchange connections. Central product models store prodoatation which is spread
across several models and achieve data consistency thdaiglexchange connections
between themselves and specific models as in a hub-and-sptkerk. Central product
models are especially useful for automatic data consigtendesign scenarios which
include a high number of inter-model dependencies and mmddlfications.

The integration of geometry and therefrom derived modety & structural analy-
sis or computational fluid dynamics models has already baecessfully addressed in
numerous central product models. However, the multidis@py integration of more di-
verse models, such as geometric, software, controller antibmdy system models, cur-
rently presents a challenge. Although several centralymomiodels have been developed
for multidisciplinary design, none has yet gained, in casitto geometry-focused central
product models, wide acceptance nor reached the statusimteanational standard. The
unmanageable high number of diverse discipline- and agic-specific modeling con-
cepts hinders the development of a standardized holisticadeproduct representation.

This thesis investigates the possibility of establishingnderdisciplinary central prod-
uct model based on the common modular structure of modets ¥iarious disciplines.
Most models which are edited with current state-of-thesaftware applications are com-
posed of modular components in order to support the excheamgjeeuse of model infor-
mation. Models from different disciplines therefore shaoenmon modeling concepts

14 Abstract

for the specification of modular model components. Howebere is yet no overarching
modeling standard to describe the common characteridtio®dular model components
from various disciplines.

Object-oriented modeling concepts currently mainly diéscsoftware modules called
objects. Object-oriented modeling concepts are generccam be used to represent
modular components in general. The Unified Modeling Langu&iML) has been since
its emergence in 1997 the de facto standard for objecttadgemodeling.

This thesis examines the use of the object-oriented maglelimcepts of the UML
to uniformly describe widely used application-specific getric, dynamic and multi-
body system models in a central product model. Applicasipeeific model information
was represented in UML through generic UML modeling cone@ptcombination with
lightweight UML extensions in the form of stereotypes. UMtofiles regrouped stereo-
types which corresponded to a specific modeling applicafidre automatic translation
of UML model information into the specific models and vicesgmwas implemented in
order to test and validate the application-specific UML pesfi

The UML-based central product model was used in severatéssts to automatically
generate consistent models for the simulation and evaluati various product config-
urations. The test cases included models for the simulati@hder-crank mechanisms,
the evaluation of cabin pressure control systems, the dedigonveyor system configu-
rations, the evaluation of satellite configurations andjiaeration of customized aircraft
geometry. The workflows within the test cases included thematic creation and mod-
ification of UML models as well as the invocation of data exuj@ connections. The
workflows were described in executable UML activity diagsaon Java programs.

The thesis demonstrates that the UML can be used beyond rdaynal software
modeling to establish a central holistic product represtigot. The modeling concepts
of geometric, dynamic and multibody system models werested@d mostly according
to one-to-one mappings into corresponding UML modelingcets with their respec-
tive stereotype. As a result, the specific model informaisoeasily recognizable in the
UML-based central product model. Furthermore, the use dfihbased central product
model is facilitated for the many modelers who are alreadyilfar with the widespread
and standardized UML modeling language.

Kurzfassung

Die Dissertation untersucht die Eignung der Unified Modgllranguage (UML) fur
den Aufbau eines zentralen Produktmodells zur multidisgpen Produktdatenintegra-
tion. Im rechnerunterstitzten Produktentwurf werden igfisierte disziplinspezifische
Software-Anwendungen zur Modellierung und Simulation venschiedenen Produki-
aspekten verwendet. Abhangigkeiten zwischen Modelleerireaufig auf infolge der
redundanten Verteilung von Produktdaten Uber mehrere Néodad der Beziehungen
zwischen verschiedenen Eigenschaften von unterschiediiModellen. Anderungen an
einem Modell erfordern eine Aktualisierung von abhéngiytdellen. Konsistenz zwis-
chen Daten aus unterschiedlichen Produktmodellen wirdnaatisch durch Datenaus-
tausch-Software sichergestellt.

Die Verwendung eines zentralen Produktmodells ermégkane Reduzierung der
Anzahl an Datenaustauschschnittstellen. Zentrale Ptothdelle speichern tiber mehrere
Modelle verteilte Produktinformationen und gewahrleisi2atenkonsistenz, indem sie
mit spezifischen Modellen sternformig vernetzt sind. ZaletiProduktmodelle sind von
besonderem Nutzen in Entwurfsszenarien, welche eine holzahh an Abhangigkeiten
zwischen Modellen sowie Modellanpassungen aufweisen.

Die Integration von geometrischen und davon abgeleiteteduktmodellen wurde in
mehreren zentralen Produktmodellen erfolgreich durditgef Allerdings stellt die In-
tegration von diverseren Produktmodellen, wie zum Beispabmetrie-, Software-, Re-
gelung- und Mehrkorpersystem-Modellen, eine Herausfoag dar. Obwohl mehrere
zentrale Produktmodelle zur multidisziplinaren Produkdantegration entworfen wor-
den sind, hat keins bis jetzt, im Gegensatz zu geometrisi&rten zentralen Produkt-
modellen, entweder eine breite Akzeptanz gefunden odeBtins eines internationalen
Standards erreicht. Die untbersichtlich hohe Anzahl aarsohiedlichen disziplin- und
anwendungsspezifischen Modellierungskonzepten ersthlagiErstellen einer standar-
disierten ganzheitlichen zentralen Produktbeschreibung

Die Dissertation untersucht einen Ansatz zur Erstellung®interdisziplinaren zen-
tralen Produktmodells basierend auf der gemeinsamen matuStruktur von Modellen
aus unterschiedlichen Disziplinen. Die meisten Modelie, dit modernen Software-

16 Kurzfassung

Anwendungen erstellt worden sind, bestehen aus modulaverpEnenten, um die Wie-
derverwendung und den Austausch von Modell-Informatianewereinfachen. Modelle
aus verschiedenen Disziplinen weisen deshalb gemeinsardelliérungskonzepte auf,
um die Kapselung, Klassifikation und Interaktionen von man Modellkomponenten
zu beschreiben. Allerdings gibt es noch keinen domanegidénden Modellierungs-
standard, um die gemeinsamen Eigenschaften von modulacelelMdomponenten aus
unterschiedlichen Disziplinen zu beschreiben.

Objektorientierte Modellierungskonzepte werden bigjetaiptsachlich zur Beschrei-
bung von Software-Modulen, die als Objekte bezeichnet rerderwendet. Sie sind
generisch und kénnen modulare Modellkomponenten im akgeem reprasentieren. Die
UML is seit 1997 ein weitverbreiteter Standard zur objeietatierten Modellierung.

Die Dissertation untersucht die Verwendung der objekitieeten UML-Modellie-
rungskonzepte fir eine einheitliche Reprasentation vorivesdireiteten anwendungs-
spezifischen Geometrie-, Dynamik- und Mehrkdrpersysteoaidlen. Anwendungsspez-
ifische Modellinformationen wurden im UML-Modell durch gamsche UML-Modellie-
rungskonzepte sowie leichtgewichtige UML-Erweiterungeder Form von Stereotypen
reprasentiert. Anwendungsspezifische UML-Stereotypeanl@mnin UML-Profile zusam-
men gruppiert. Die automatische bidirektionale Ubersagzamwischen dem zentralen
UML-Modell und den spezifischen Modellen wurde zur Uberprigf und Validierung
der anwendungsspezifischen UML-Profile implementiert.

Das auf UML basierende zentrale Produktmodell wurde in ereimr Testfallen zur au-
tomatischen Generierung von konsistenten Modellen egiggesum die Simulation und
Bewertung von unterschiedlichen Produktkonfigurationeermitglichen. Die Arbeits-
flisse innerhalb der Testfélle beinhalteten die autontai&estellung und Anpassung des
zentralen UML-Modells sowie den Aufruf der Datenaustagsbhittstellen. Sie wurden
in ausfuhrbaren UML-Aktivitatsdiagrammen oder Java-Paognen beschrieben.

Die Dissertation zeigt, dass die UML Uber die reine Softwdaellierung hinaus
zur zentralen ganzheitlichen Produktreprasentation eedet werden kann. Die Mod-
ellierungskonzepte von Geometrie-, Dynamik- und Mehrkéspstem-Modellen liessen
sich in den meisten Fallen durch eins-zu-eins Abbildungemisprechende UML-Model-
lierungskonzepte mit Stereotyp Ubersetzen. Dadurch dasgd doméanenspezifische
Modellinformationen im zentralen UML-Produktmodell letcwiedererkennen. Zuséat-
zlich fallt der Einsatz eines zentralen UML-Produktmosl®ikelen Modellierern, die mit
der weitverbreiteten und standardisierten UML Modelliegsisprache schon vertraut sind,
leichter.

Chapter 1

Introduction

1.1 Product data consistency

The computer-aided design of multidisciplinary produaigives the use of specialized
discipline-specific software applications in order to maated simulate various product
aspects. Dependencies between models are thereby fregubetsame product informa-
tion often appears redundantly in various engineering nsodie addition, dependencies
between models exist due to relationships between did@attires of various models.
A change in one model then requires the update of dependeaelmoThe simulation
of models based on inconsistent data is meaningless ancadrtd subsequent wrong
design decisions. The synchronization of models is thesafecessary.

As an example, the dependent models of a slider-crank meschare presented in
Fig. 1.1. The represented mechanism consists of a slidertmdan be displaced along
its track by applying a torque to the crank. A controller ispensible for computing
the torque in order to position the slider according to a ggearget. The mechanism
is described by a 3D geometric model to specify the decortipnsif the mechanism
in parts, a multibody system model to simulate the dynami@aber of the mechanism
when a torque is applied to the crank and a controller modaesent the control logic
and compute the torque. The inertial properties of the paith as mass and moments of
inertia are present redundantly in both the mechanism’mgéic and multibody system
models. Furthermore, the multibody system model is emlatddéne controller model
in order to simulate the controlled motion of the mechaniBme to these dependencies,
a change in the mechanism’s geometric model thus requieesutbsequent update of the
mechanism’s multibody system model and a new simulatiol@fcontrolled motion to
validate the mechanism’s controller.

18 1.2 Central product models

3D Geometry model Slider-crank mechanism Controller model

Inertial =
Properties Dleualsalas 3lans

Figure 1.1: Various dependent models of a controllableesl@ank mechanism

Influence
on control

The manual update of models by engineers is an unproduetske Models need to
be updated frequently if product requirements often chargé many iterative design
modifications are required in order to reach an optimal desmnfiguration. Further-
more, the synchronization of models may require the upddee@e amounts of data. In
the example of the slider-crank mechanism, the update oftlébody system model
based on a new geometric model involves the update of thalipisition, orientation,
center of gravity, mass and moments of inertia of every ngpiart. Although the slider-
crank mechanism only consists of a few parts, the updatesahthitibody system model
according to a new geometric model therefore requires tlgatepof many parameters.
The manual update of models by engineers is as a consequenc@rene and time-
consuming. Instead, a framework for automatic model updeteneeded in order to
efficiently guarantee data consistency across variousuptadodels.

1.2 Central product models

Data consistency between models is achieved automattbatiygh model-to-model data
exchange software. The development and maintenance ofspacific data exchange
connection represents a large effort. The use of a centdlyst model enables to reduce
the required number of data exchange connections. A cgmduct model stores the
redundant product information which is spread across aéweodels and achieves data
consistency between the specific models through data egel@nnections between it-
self and the specific models as in a hub-and-spoke networkhéwn in Figure 1.2, the
bidirectional linking ofn specific models via a central product model requires @mly
connections while the equivalent direct linking of modet®dsn(n-1) connections. The

1 Introduction 19

scenario with a central product model is therefore preferabthe direct data exchange
between specific models whens greater than 3 as it involves fewer data exchange con-
nections to achieve data synchronization.

Point-to-point exchange Central product model
Number of translators: n(n-1) Number of translators: 2n

D Specific model - Central product model

Data exchange connection/translator

Figure 1.2: Inter-model data exchange: point-to-pointiarascentral product model

In addition, a central product model can represent infoionatrom different spe-
cific models and as a consequence describe inter-model depars. A central product
model can thus provide through its integrative role a higligtoduct overview of various
multidisciplinary dependencies. This is especially useflarge design projects in which
it is hard to keep track of all product subsystems and depenele

Furthermore, a central product model can be used to faeilggoduct customization.
Product aspects which are described in the central prodadehtan be automatically
translated into specific models. It is thus more efficientitarge product aspects once in
the central product model and subsequently automaticalhete conforming specific
models than to individually customize several specific nmde

The central product model can for example serve as a comnuugtr parameter
repository for the automatic update of specific model patarse Due to inter-model
dependencies, parameter modifications in one model hawe flarlwarded to other mod-
els. The propagation of parameter modifications betweenetaad directed since the
mapping of parameters between models is most often notilggecAs an example, the
moment of inertia parameter of a multibody system model magdimputed from siz-
ing parameters of a geometric model but not vice versa asfiaiténnumber of possible
sizing configurations may satisfy a specific moment of imertin general, a mapping
between vector spac@ andR’ is only bijective if their dimensions are equal=€ ;).
However, parameter sets of different product models ugt@iin vector spaces with dif-
ferent dimensionsi(# j). As a result, mapping functions between parameters ahdist
product models are most often not bijective and parametedifibations in one model
are thus forwarded to other models according to a direcfednration flow from a higher

20 1.2 Central product models

dimensional into a lower dimensional design representdiio> j). The central product
model can contain all relevant product parameters and fbendesign representation
with the highest dimensionality from which parameters isige representations with
lower dimensionality can be updated by means of a projeetson Rudolph [141].

Most central product models are used for the design of speagfies of products. A
prominent example is the Standard for the Exchange of Ptddadel Data (STEP) [64]
part AP214 [66] for automobile design. Another importarample is the Industry Foun-
dation Classes (IFC) standard [22] for the design of buildingéthin the aerospace
industry, a European-funded project for example devel@pecbduct model for the mul-
tidisciplinary design and optimization of blended wingdyaconfigurations [100]. This
central product model contained the full parametric desiom of the aircraft and was
linked with software tools for aerodynamic, structuralndgnic and flight mechanics
analysis [94].

Product models devoted to a single product category can eawiy include detailed
product information but cannot be used for the design ofrqggheduct types. The invested
effort in the implementation and maintenance of the dataa&xge software between the
specific models and the central product model is hence lthigehe design of specific
product types. However, some central product models arergegnough to be employed
for the design of various product types. This is more adgeuas since the same central
product model and associated data exchange software cagubedrfor the design of
products across a wide range of industry sectors. The egisgntral product models
vary according to the type of product information they cgmresent and in their support
for data exchange connections with state-of-the-art miogl@lpplications.

Among the commercial solutions, Product Lifecycle ManagetiPLM) and Product
Data Management (PDM) systems include features for progiacteling and the man-
agement of multidisciplinary dependencies. A standaciegproach is the STEP PDM
schema [161] for a common formal representation of produformation in PDM sys-
tems. But PDM data models such as the STEP PDM schema do nuad itaténcorporate
the fine granularity of detailed models of various discigefirbut instead mainly concen-
trate on the management of geometric parts and documergp A% a consequence, the
poor support for the integration of mechanic, electronid software components is the
main weakness of existing PDM/PLM solutions [1].

Many product models have been developed in academia anelimdbistry to integrate
product information from several domains and enable thterdisciplinary exchange.
NIST’s Core Product Model (CPM) [155] is for example focusedpoaduct lifecycle
management and captures at an abstract level productdeatutifacts, behaviors, spec-

1 Introduction 21

ifications and design rationale. Boeing’s Integrated ProBeésign Environment (IPDE)
for example formed a central product model to support misitiglinary product devel-
opment by integrating CAD, CFD, FEA and manufacturabilitytfeas [98]. Another ex-
ample is the collaborative design system called Constrankihg Bridge (Colibri) [86]
which is used to solve dependencies between the paramétaesbatronic models such
as geometric, controller and hydraulic models.

Although several central product models have been develépethe multidisci-
plinary design of diverse products, no central product rhbdes yet gained wide ac-
ceptance nor reached the status of an international stnddre unmanageable high
number of diverse discipline- and application-specific Biod) concepts hinders the de-
velopment of a holistic central product representatiore &tloption of a central product
model and its modeling concepts depends on the simplicitly which modelers can de-
scribe detailed dependencies between various productimode example of detailed
dependencies between models is the required synchramzatithe inertial properties
of the slider-crank mechanism which are situated at a @etdgvel within the respective
geometric and multibody system models (Fig. 1.3).

Geometry model Multibody system model

S — Higher level
Rod part of detail

X=-68,263mm Rod block
y=12,04mm
z=-6693mm

—mcs2 #p | csiE—

x=114,704mm
y=10mm
z=25mm

rodInstance

Rod part measures v Rod block attributes
Current selection ; | Mass properties
e —
Product | Graphic | Mecharical |Draftlng | o < 2 h
e i I 't " Tnertia: |[7.406e-6 0.359e-6 10.220e-6; 0.359-6 22.645¢-6 -0.245¢-6; 10.2208-6 -0.245¢-6 15.443 kg*m"2 |v]
aracteristics nertia center caut
volume: [7,585e-006m3 x:[68,263mm Postion | Orientaton | Vi
Mass: [0,022] w12, 04mm show | Fort Translated from Components in =
- D m— T DX [l [= = |a
| 0, 005m: | -6,693mm . Ront[v]cs 40 -6.692] |mm [+l
Tnertia matrix Inertial B oo gt e G 5 ®

Toxi[7,406e-006kgxmz Dyt 3,597e-007kgxmz De2:[1,022e-005kgxm2 Pr rtl V| e lrles2 wom
Tyx:[3,507e-007kgxme Ivyi|2,265e-005kgxmz 1vz:]-2,45e-007kgxmz ope es
Tzzif1,022e-005kgxmz Izvi|-2,452-007kgxmz Iz2: | 1,545e-005kgxm2

Figure 1.3: Dependencies between models at a deep nesgtd lev

The central product model cannot represent various proalsects with the same
modeling concepts as specialized discipline- and appicagpecific models due to the
rich diversity of modeling concepts in the various engimagdisciplines. Technical prod-
uct information is described in models which highly diffarterminology and represen-

22 1.2 Central product models

tation. A product’s three-dimensional geometric modelois gxample different than a
product’s two-dimensional block diagram of a multibody teys model. In addition,
product models within the same engineering discipline caudibsimilar due to distinct
modeling paradigms. The geometric model of a three dimeasroduct can for exam-
ple be defined either based on a boundary representatiorooiséractive solid geometry
representation or both. Furthermore, models can diffetadéstinct application-specific
modeling concepts. The precise mathematical definitionspliime can for example vary
from one geometric modeling application to another. As alteproduct information,
which is related to the computer-aided design of a multigisary product, is scattered
over a wide range of heterogeneous discipline- and apgicapecific models. Central
product models can therefore not include all the differenteling concepts of various
discipline- and application-specific models.

Instead, central product models are comprised of generdklmgy concepts which
correspond to commonly used specific modeling concepts. r&grbduct models can
thus represent numerous specific modeling concepts thrauggmageable set of generic
modeling concepts. Figure 1.4 shows exemplarily the o mapping between re-
spective specific and generic modeling concepts. The d@ntduct model can for exam-
ple include a modeling concept calletbdulein order to represent modular components
from different disciplines such gmarts of geometric models dolocksof multibody sys-
tem models. Similarly, the central product model can inelgéneric modeling concepts
namedmodeland propertyto refer respectively to specific models and properties. The
generic modeling concepts can further be detailed throtagidardized extension mech-
anisms in order to have the same semantics as specific mgdelntepts. The extension
of generic modeling concepts is for example widely used inletdased software engi-
neering [112] and recently also in model-based systemsieagng [80].

Geometric model e-f-------- -e Model e-f-------- - Multibody system model
Parte--------}-------- L -e Module e-}--------}---——-_ e Block
Part parametere ---{-------- - Propertye-t--------1------ e Block attribute
Specific modeling concepts of a Generic modeling concepts ofa Specific modeling concepts of a
geometric mode/ central product mode/ [tiboaly system mode/

Figure 1.4: Mapping between specific and generic modelimgepts

Dependencies between specific models can be describeddenitral product model
as dependencies between equivalent model representdfmnisstance, the dependency
between the rod part measure of the geometric model and thielock property of the
multibody system model (Fig. 1.3) can be represented as endepcy between the re-
spective generic properties within the central product eh{iéig. 1.5).

1 Introduction 23

Dependencies can involve information which is situatedpde#hin the hierarchi-
cal structure of models. Deep nested model information sfyemlentified based on its
location within the model hierarchy. The identification bétrod part mass within the
geometric model in Figure 1.3 for example requires the egfee to its containing rod
part and geometric model and can be described through tloe/fofy scheme: Geometric
model/Rod part/Mass measure. In order to easily identifyeth@valent deep nested spe-
cific model information in the central product model, the mladformation needs to be
represented in the central product model along with itsanédrical structure. The same
identification scheme based on the model hierarchy can therséd to identify informa-
tion in specific models and in the central product model. Tduditates the identification
of deep nested model information in the central product hddehe previous example,
the rod part mass of the geometric model is therefore repteden the central product
model along with its owning rod part and geometric model. timeo words, the deep
nested model information involved in dependencies is sered in the central product
model along with its modeling context.

Model - Geometric model Model - Multibody system model
: . Module - Rod part :__. Module - Rod block
' . Property - Mass measure :__. Property - Mass attribute

Figure 1.5: Representation of specific model information deep nested inter-model
dependency within the central product model

The choice of generic modeling concepts of the central pzodhwodel is critical for
the capability of the central product model to representipecdinformation from a wide
range of disciplines and modeling applications and thugpoasent detailed inter-model
dependencies. Discipline-specific engineers can onlyyedsscribe their specific prod-
uct information within the central product model if the mbag concepts of the specific
models can be mapped one-to-one to the generic modelinggptmof the central prod-
uct model. As an example, the limited generic modeling cptscef the central product
model in Fig. 1.4 are related to static artifacts and canasilyrepresent flows of data
such as in the Simulink-specific dynamic system model of Eifj. The central product
model would for example need to include an additian&brmation flowmodeling con-
cept in order to represent specific flows of data. The centadyrt model thus needs
to include modeling concepts which are commonly used in isoiieoughout various
disciplines.

24 1.2 Central product models

The integration of geometry and therefrom derived modeth &8 structural analy-
sis or computational fluid dynamics models has already baecessfully addressed in
numerous central product models. However, the integratiomodels for the design
of mechatronic products, such as geometric, controller rmanttibody system models,
currently presents a challenge due to their diversity [94¢ central product model is
for example known to solve the interoperability problemshaf slider-crank mechanism
scenario as shown in Fig. 1.1 and Fig. 1.3 as it involves ufisttiplinary models and
the exchange of deep nested application-specific infoamatHowever, the integration
of multidisciplinary models in a central product model isutiost importance for the
design of mechatronic products ranging from aerospaceneagng to modern manufac-
turing facilities.

The modeling concepts of the current central product matelgither too discipline-
specific or too abstract. As a result, current central prochadels are either limited in
their capacity to represent information from a wide rangelistiplines or in their ca-
pacity to capture deep nested application-specific mod@inration. Discipline-specific
modeling concepts can easily represent detailed infoomatich as specific deep nested
model information. However, they are restricted to spedigciplines and are therefore
not suitable within a central product model for multididmpry product data integration.
On the other hand, abstract modeling concepts can reprgsecitic modeling concepts
of various disciplines. However, the current central piagnodels do not include enough
abstract modeling concepts to enable a simple one-to-anespmndence with modeling
concepts of various state-of-the-art application-speaifodels. Without a simple one-
to-one mapping between generic and specific modeling cas\amopdelers do not easily
recognize their specific model information within the cahproduct model and inter-
model dependencies are as a consequence hard to descrgoeestiiing loss of time in
using an incomprehensible central product model countembes its benefits and reduces
its usefulness.

As research in multidisciplinary product data integrati@as only been undertaken
recently, there is yet no official widely used term to refeattcentral product model”.
The term “integrated product model” is also often used synwusly. The neutral term
“central product model” is used throughout this thesis beeait does not emphasize
a proprietary nor a specific type of model such as the Muttigisary Collaborative
Design Product Model [97] or the Core Product Model [97].

1 Introduction 25

1.3 UML-based product data integration

Although models from different engineering disciplines arghly diverse, most models
which are edited with current state-of-the-art softwargligptions share common mod-
eling concepts in order to support modular design. The apptaceasily exchange and
reuse model components across several models promotdslifigxand productivity in
modeling. This avoids the time-consuming creation of meffeilm scratch. Most models
therefore share common modeling principles in order torm@seonodular model compo-
nents. Common characteristics of modules include theimd-autputs, their hidden and
visible outward-facing information, as well as templated astances.

A central product model should include modeling conceptdescribe modules and
their interactions as they are common to many state-oatharodels from various disci-
plines. Engineers can then easily recognize their modutactured model information
within the larger central product model. Current centraldoict models do not include,
or only partly include modular modeling concepts which areréasingly used across
various engineering disciplines.

There is currently no widely accepted standard to reprasghtgeneral overarching
concepts modules from different disciplines. However, bynparing the various engi-
neering disciplines, it is noticeable that modularity ipesally important in software
engineering. Software design is an engineering discipfinghich changes and updates
are more frequent than in other engineering disciplinesoftsvare code is simpler to
modify than mechanical engineering components which requianufacturing and re-
sources. As a result, concepts to promote modular desigmare frequently used in
software engineering than in other engineering disciglinBophisticated programming
concepts have been developed in software engineering fmdumodularity, whereby
the most prominent are the object-oriented programmingepts. They consist of en-
capsulating variables and functions into modular unittedabbjects. Graphical models
of object-oriented software represent the classificatommunication and internal struc-
ture of software objects.

Although object-oriented modeling is currently mainly dder software modeling,
object-oriented modeling concepts are generic and candzetosdescribe various mod-
ular structures. As the term object already suggests, atbban represent a software
object as well as a physical component or a model compondmec@Goriented modeling
Is thus not restricted to software modeling. As objectitted modeling concepts in-
clude modeling concepts amongst others to describe the asitigm, encapsulation and
templates of objects, the existing object-oriented mogetioncepts can be reused in the
context of a central product model to describe modules frdfardnt engineering dis-

26 1.3 UML-based product data integration

ciplines. Both the central product model and the discipipeeific models would thus
share a common modular structure. Engineers from variagpiines could then more
easily recognize their discipline-specific model inforroatwithin the central product
model.

As a central product model is to be used across several linspit addresses many
parties and therefore requires standardization. Eaclofygentral product model requires
special training and dedicated conversion tools. A statided central product model
would thus be desirable as it would eliminate the confusiansed by different central
product models. A standardized central product model walslolreduce the development
costs of data exchange software and thus contribute to higteeoperability.

The Unified Modeling Language (UML) has been since its emergeén 1997 the de
facto standard for object-oriented modeling and is widskydiin software engineering. A
standardized central product model could therefore bé¢ tppdn the already standardized
object-oriented modeling concepts of the UML. The redatiniof semantically similar
object-oriented modeling concepts would instead mostailyplead over time to confu-
sion among engineers. Furthermore, the standardizatameps involved in the definition
of new object-oriented modeling concepts specifically foeatral product model would
likely, as any standardization process, be a lengthy psoaésch would not necessar-
ily end up in a consensus among experts. Furthermore, as WMilréady a widely
adopted standard in software engineering, the existirgelaoftware and documenta-
tion support for UML modeling would facilitate the introdian of a central UML-based
product model in an industrial context.

Thimm et al. [158] introduced the potential of modeling aduot’s lifecycle by us-
ing the UML and presented the UML as the most promising catditb use as a unique
language for all product lifecycle management stages dfeitscan information-rich rep-
resentation which can be translated into other represensat Johansson and Detter-
felt [79] identified the UML as an interesting approach fog thodeling of multidomain
system products due to its easy understandability by eaggiveith significantly different
backgrounds. However, the UML has not yet been investigatetw of establishing a
central product model which can represent state-of-thevadel information from typical
mechatronic disciplines.

This thesis investigates the capability of the UML to ddserapplication-specific
model information from various disciplines. The integoatof geometric, controller and
multibody system models is required in many mechatronicpects which abound in
aerospace, automobile or manufacturing products. Theoapprof reusing the UML
to support the representation of various models in a ceptmuct model is examined

1 Introduction 27

by representing state-of-the-art application-specifiengetric, controller and multibody
system models in a common UML-based central product model.

CATIA!, Simulink’ and SimMechanicsare state-of-the-art software applications for
the respective authoring of geometry, controller and roatty system models. These ap-
plications were chosen among others to prove the integratipabilities of a UML-based
central product model. Further application-specific maafelrmation was also integrated
into UML, including SolidWorké and VRML® models for geometry, Excefor spread-
sheets and Matldbfor constraint processing. Figure 1.6 summarizes the dusrand
the applications which have been integrated within the Ubdised product model. The
necessary UML lightweight extensions, in other words UMbfpes, for a mapping of
the respective application-specific engineering modétsarcommon UML-based central
product model are presented in the thesis.

Controller

Simulink

Symbolic equations

Matlab

Geometry

CATIA
SolidWorks
VRML

Spreadsheet

Multibody system Excel

SimMechanics

Figure 1.6: Integrated applications within the UML-basedtcal product model

The mappings between the application-specific models amdJML-based central
product model were to a large extent bijective and thus eaggderstand. This shows that
the UML already consists of a wide range of generic modelogcepts which can cover
a variety of specific modeling concepts from various disogd. The UML has thus the
capacity to model not only software but also product infaiorafrom various disciplines
involved in mechatronics including geometry, dynamic eyst and multibody systems.
The thesis thus demonstrates that the UML can be used beyowérdional software
modeling in order to establish a standard central producteindue to its object-oriented
modeling principles, openness and extensibility.

'DASSAULT SYSTEMEShHt t p: / / ww. 3ds. cont product s/ cati a/
2The MathWorks, Simulink,
htt p: // www. mat hwor ks. cont product s/ si nul i nk/
3The MathWorks, SimMechanics,
htt p: // www. mat hwor ks. cont pr oduct s/ si nmechani cs/
4SolidWorks 3D CAD Design Softwarét t p: / / ww. sol i dwor ks. coml
SVRML Virtual Reality Modeling Languageht t p: / / www. W3. or g/ Mar kUp/ VRML/
8Excel,htt p: // of fi ce. mi crosoft. con en- us/ excel /
"The MathWorks, Matlabit t p: / / www. mat hwor ks. cont pr oduct s/ mat | ab/

http://www.3ds.com/products/catia/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simmechanics/
http://www.solidworks.com/
http://www.w3.org/MarkUp/VRML/
http://office.microsoft.com/en-us/excel/
http://www.mathworks.com/products/matlab/

28 1.4 Outline

The UML-based central product model was used in severabpi®jin partnership
with academia and industry. The test cases included theiaiah of cabin pressure
control systems, the automated design of conveyor systafigooations, the automated
evaluation of satellite configurations and the generatfaustomized geometric aircraft
models. The test cases enabled to validate the capabdlftiee UML-based central prod-
uct model to represent model information from various méaoméc disciplines (geom-
etry, multibody dynamics, control), specify inter-modelp@ndencies and automatically
translate information within the central product modebittie specific models and vice
versa. Consequently, the UML-based central product modglusad in all test cases to
generate various consistent sets of specific models whitasmonded to various product
configurations. The UML-based central product model cas theiused, in combination
with specialized discipline-specific models, for the cetest design of customized mul-
tidisciplinary products.

1.4 Outline

The most common models for product data integration arespted in Chapter 2. The
prominent STEP standard is presented as well as some ST4eld-paoduct data inte-
gration approaches. Relevant industry sector standardsddiuilding and process plant
industries are reviewed. Ontologies are also describduegdtave contributed to product
data integration in various disciplines.

Chapter 3 presents the motivation to establish a centrabptadodel based on UML.
The necessity to capture information from a wide range ofigimes through generic
modeling entities is shown. Furthermore, the common decoaitipn of application-
specific models into modular components is presented asaselhe generic object-
oriented modeling concepts which can describe modular coents from different dis-
ciplines. The UML as de facto object-oriented modeling dtad is introduced and is
compared to other standardized generic modeling languageiew of establishing a
central product model. The main UML modeling entities ang lightweight extension
mechanism in the form of stereotypes are demonstrated dasntbe UML-based product
data integration approaches.

Chapters 4 to 6 describe the mapping of different applicagjpecific models into
UML. The approach is demonstrated in detail for the desigamslider-crank mechanism,
which is simple to understand, but whose application-djgatiodels cover a large scope
of application-specific modeling concepts. Chapter 4 prssére UML extensions to
describe geometric models. The approach is shown with CARlASolidWorks, which

1 Introduction 29

are two state-of-the-art 3D geometry authoring tools, a$ agewith VRML, which is
a widely used format capable of representing static and @eien3D objects in freely
available viewers.

Chapter 5 shows the translation of dynamic system modelsUuMa. Simulink is
a software application used to model and simulate dynanstesys in general while
SimMechanics is specialized in the modeling and simulatfamultibody systems. Both
applications use block diagrams. However, the modelingepts in the block diagrams
are not identical. As a result, their mapping into UML occdiferently. Chapter 5
presents the mapping of Simulink models into UML activitagliams and SimMechanics
models into UML composite structure diagrams.

Chapter 6 describes the UML-based representation of prathiatoriginating from
Excel spreadsheets. In order to achieve data consistetwgd@the values from different
applications, symbolic equations within the central UMdsbd product model need to be
solved. Chapter 6 presents the UML-based description of sjjmbequations and their
resolution through mathematical toolboxes. Complex coatpis need to refer to built-
in or user defined mathematical functions. The UML represént of Matlab-specific
functions is presented as well as their processing.

Chapter 7 provides a review of the possibilities to establligks within the UML-
based central product model in order to guarantee datastensy between UML-based
representations of different application-specific mod€lsapter 7 also exhibits the execu-
tion of Java programs and UML activity diagrams in order te thee UML-based product
model in an automated design workflow. The frameworks the¢ fi@en used to imple-
ment the translators between the UML-based central pradodel and the application-
specific models are described.

Chapter 8 provides a review of test cases which highlight thresistent design of
customized application-specific models by means of a UMseldacentral product model.
The case studies include models for the evaluation of calgisspre control systems, the
automated design of customized conveyor systems, the ateédmevaluation of different
satellite configurations and the customizable generafi@ircraft geometry.

Chapter 9 summarizes the results and presents an outlook.

Chapter 2
Models for product data integration

The sharing of product data on a large scale, such as in anati@nal context between
participants from different companies and disciplinesagkieved through standardiza-
tion of product models. Standards for specific disciplinesmadustry sectors have there-
fore emerged. Section 2.1 presents the integration catpedbibf the STandard for the
Exchange of Product Data (STEP) which is the most prominemdsrd in mechani-
cal engineering. Integration approaches based on STEHsareeziewed. In addition,
standards outside the scope of STEP have been developegefofic industry sectors.
Section 2.2 describes the Industry Foundation Classes (IR€C)S0 15926 which are
respectively international standards for the building anacess plant industries. Fur-
thermore, ontologies have been used in engineering designrally describe product-
related knowledge as they are composed of simple subjedigate-object expressions
which can easily describe relations between differentrbgeneous product data sources.
The domain-independent ontology modeling languages amfittre employed for the
integration of product information from different systeprsdisciplines. Ontologies and
ontology-based integration approaches are shown in $e2i

2.1 STEP

Around 1980 several national standards, such as the ‘lli@iaphics Exchange Spec-
ification (IGES)” [162] from the United States, “Standardedhange et de Transfert
(SET)” [6] from France and “Verband der Automobilindustrigldchenschnittstelle (VDA-
FS)” [163] from Germany were defined to enable the exchangearfuct geometry be-

tween different Computer-Aided Design (CAD) systems. To @wmncompatibility be-

tween the national standards, a multinational initiativees\gtarted in 1984 to develop a
single international standard. In 1994, the multinaticefédrt resulted in the 1ISO 10303

32 21 STEP

standard with the official title “Industrial automation sg1s and integration - Product
data representation and exchange”, known as the STandattief&xchange of Product
Model Data (STEP). Section 2.1.1 presents the family of S$taRdards and their un-
derlying data modeling language EXPRESS. Section 2.1.2shmwifferent integration

approaches based on the family of STEP standards.

2.1.1 Overview

Originally, the standard was to offer an Integrated Prodofdrmation Model (IPIM)
capable of capturing product data from several discipli2s However, this undertaking
was too time- and resource-consuming. Rather, the develupofi¢he STEP standard
was driven by participants who had received funding to warlsome particular aspects
of product data. Eventually, STEP did not become a singledstal covering several
disciplines, as the name suggests, but a collection of atdador single disciplines which
are called Application Protocols (APSs).

The development of a STEP AP consists of four major stages4b1The first de-
scribes the usage scenario of a STEP AP through an AppircAtititity Model (AAM).

In a second stage, the requirements for the STEP AP are ddrven the AAM and
specified in an Application Reference Model (ARM). The stadi#d data structure to
capture information from a specific discipline is descriloe@ third stage in an Appli-
cation Interpreted Model (AIM) based on the requirementtefARM. In other words,
the AIM of a STEP AP specifies a schema according to which ST&®& id to be struc-
tured in files. In a fourth stage, code is implemented basettiisrschema to enable the
standardized exchange of product data.

The initial release of STEP in 1994 included two STEP APs Wwinere AP201 for
“Explicit Draughting” and AP203 for “Configuration contrelll 3D design of mechanical
parts and assemblies”. Currently, 18 STEP APs, listed inerabl, have reached the
status of international standard and are used typicalljhénaerospace, automotive and
shipbuilding industries. However, not all STEP standamsesually well adopted and
supported by software vendors. At present, only parts of liSAP203 and AP214, re-
spectively for product geometry and automotive producadate implemented by major
CAD systems [151].

Each STEP AP specifies a schema in an Application Interpidtatk| to define the
data structure of related STEP files. The schemas of STEP APdefined using the
EXPRESS data modeling language [63] which is also a standigéindhiSO 10303. EX-
PRESS was developed in the 1980s because the existing datdimyddnguages of the
time such as the extended entity-relationship model (EER)de®n conceived to repre-

2 Models for product data integration 33

STEP APs Engineering Domain
AP201 Explicit draughting
AP202 Associative draughting

AP203 Configuration controlled 3D designs of mechanical parts anchatise
AP204 Mechanical design using boundary representation

AP207 Sheet metal die planning and design

AP209 Composite and metallic structural analysis and related design
AP210 Electronic assembly, interconnect, and packaging design

AP212 Electrotechnical design and installation

AP214 Core data for automotive mechanical design processes

AP215 Ship arrangement

AP216 Ship moulded forms

AP218 Ship structures

AP224 Mechanical product definition for process planning using mahfeatures
AP225 Building elements using explicit shape representation

AP227 Plant spatial configuration

AP232 Technical data packaging core information and exchange

AP239 Product life cycle support

AP240 Process plans for machined products

Table 2.1: STEP APs having reached the status of Interrat&tandard (as of Sep 2009)

sent business information and not product data. EXPRES&dadlnew concepts such as
multiple inheritance and composition rules for the formegnesentation of product data
[39]. An EXPRESS model to define drawings composed of poirddiaas is represented
in Fig. 2.1 after an example in Peak et al. [131]. The point lame entities for example
have an inheritance relationship with the shape entity whaspecified through the key-
word "SUBTYPE OF". As a result, the point and line entities inthikie label attribute of
the shape entity. An EXPRESS schema can also be describddagiypaccording to the
EXPRESS-G notation. However, EXPRESS-G can only describbsesof EXPRESS.

A STEP file is displayed in Fig. 2.1 left. The header of the fpedfies the corre-
sponding file schema and can include additional metadataasiéile name and author.
The file describes a drawing composed of two lines and threggpdeach entity instance
has a number as identifier so that it can be referenced by efttity instances. The at-
tribute values of an instance are listed next to the instayype. The data is written in
STEP files in an ASCII-based syntax according to Part 21 of IS&3 [65]. Each STEP
file or EXPRESS model instance is therefore also called a R&rte2

34

21 STEP

STEP Part 21 File

FILE_SCHEMA (('simple_drawing));

#10 = point ('PO1',2.0,2.0);
#20 = point ('PO2',5.0,2.0);
#30 = point ('PO3',5.0,4.0);
#110 =line ('LO1',#10, #20);
#150 =line ('LO2',#10, #30);
#200 = drawing('Design 2L3P',
(#10,#20,#30,#110,#150));

Yy A

PO3
LO2

PO1 LO1 PO2

Y

—>

Abstraction

Instantiation

<_

STEP EXPRESS Schema

SCHEMA simple_drawing;
ENTITY drawing;
name :STRING;
elements : SET [1:?] OF shape;
END_ENTITY;
ENTITY shape;
label : STRING;
END_ENTITY;
ENTITY point SUBTYPE OF (shape);
x :REAL;
y :REAL;
END_ENTITY;
ENTITY line SUBTYPE OF (shape);
end1 :point;
end2 :point;
END_ENTITY;
END_SCHEMA;

Figure 2.1: STEP Part 21 file and related EXPRESS schema Ratde et al. [131])

All STEP APs are defined based on common schemas from therdteelgGeneric
Resources. These schemas for example describe the “funtdsneiproduct description
and support” (1ISO10303 part 41 [71]) or the “geometric armbtogical representation”

(1ISO10303 part 42 [72]).

Within the scope of STEP, an Application Programming Irateef (API) to access
STEP P21 files was defined as part 22 of ISO10303 [68] and nataed&d Data Ac-
cess Interface (SDAI). Several bindings exist to suppa@iube of SDAI in programming
languages such as C++, C and Java. Each EXPRESS-defined SHaRasshassociated
with a specific SDAI derived from the EXPRESS schema.

Core data for automotive
mechanical design processes

Configuration controlled
3D design of mechanical
parts and assemblies

Electrotechnical design
and installation

Technical data packaging
core information and exchange

Figure 2.2: STEP PDM schema common to four STEP APs (aftan@san [152])

The STEP PDM schema [161] is of particular importance asdbreamon to several
STEP domain-specific models. Independent of the domainmiés@agement of docu-
ments is important in a design environment in which many reegyis work on the same
files. Product Data Management (PDM) systems typically rgarthe traditional meta-

2 Models for product data integration 35

data including document author, approver, version, hystomd also geometric informa-
tion such as product assembly structures, part numbersibimofomaterial. The STEP
PDM schema is the result of ISO-based standardizationteffegarding PDM informa-
tion. As the management of documents is common to severahitgnthe STEP PDM
schema is a common subset of several STEP APs such as the ARZ2Q®nfiguration
controlled 3D design of mechanical parts and assemblies”’AP212 for “Electrotechni-
cal design and installation”, the AP214 for “Core data foroaubtive mechanical design
processes” and the AP232 for “Technical data packaginginwanation and exchange”
[152] (Fig. 2.2).

The effort required of a software vendor to support a conp®TEP AP, in other
words to implement a translation between a software vermtondt and a neutral STEP
AP format, might be too costly. STEP APs have therefore besomposed in specific
subsets called Conformance Classes (CC) in order to facilhatadoption by software
vendors of only certain parts of STEP APs. As a consequendeP Surrently enables
the exchange of subsets of domain-specific product dateeketapplications.

The original vision of STEP aiming at replacing the direentlators between appli-
cations by a neutral format covering several disciplinesye only partially materialized.
This goal can only be reached if a large group of end-userscéipdemand standard-
compliant applications and thus influence the standardgtemiopolicy of software ven-
dors. However, the process of standardization and indastoption is too slow for many
end-users who are forced to rely on the error-free exchahgata by “de facto” pro-
prietary standards set by software vendors covering masgyplines and having a large
market share [49]. Nevertheless, about 1000 person-yéaffod have been required so
far to create the family of STEP standards [131] which togethake STEP the biggest
standard within ISO. STEP is the most prominent standardrfmifuct data exchange and
companies realize important savings through its use. Altegito an estimation in 2002,
the reduction of interoperability costs through the diBegspecific STEP standards re-
sulted in savings amounting to $150 million per year [46].

2.1.2 Integration approaches

The STEP APs enable the neutral exchange of product dataaifisgdomains as shown
in Table 2.1. There is no limitation about the scope of a STEP Phe STEP AP214
for “Core data for automotive mechanical design processasétample integrates ge-
ometric data, PDM data as shown in Fig. 2.2 and informatietsic to automobiles.
Theoretically, several STEP APs can be regrouped into des8IDEP AP. Many use case
scenarios require a neutral exchange of product data asevssal domains. However,

36 21 STEP

most STEP-based integration approaches covering sevaraids do not end up as an
official STEP standard as the standardization processyssi@w.

As the 1ISO10303 STEP standard is composed of many single largolarts, STEP-
based integration initiatives can reuse single STEP pditte STEP standard which is
most often used to define a schema and a related SDAI is the EZBRibHdeling lan-
guage. The European-funded project entitled “A computalialesign engine incorpo-
rating multidisciplinary design and optimization for btesd wing-body configuration”
for example used the EXPRESS language in 2004 to define a datel fi®0] for the
exchange of product data. A database was implemented bagbd @XPRESS-defined
data model and the new product data format enabled to sheadetveen several disci-
plines including geometry, structural and aerodynamidyeses. Generic considerations
to extend the approach to other product types were avoideddble a fast implementa-
tion of the integration software. The approach is thereliorged to the design of blended
wing-body aircraft.

An EXPRESS schema can be defined by reusing elements of predi&fXPRESS
schemas as found in the Integrated Resources or in domaiifisgePs. Gu and Chan
for example reused the generic STEP schemas in 1995, whe® &R APs had reached
a mature status, to create a schema for the integration afietyaf manufacturing do-
mains [57]. As a result, product information related to prcidyeometry, representation,
tolerance and assembly was saved in the Generic ProductiiMg@&PM) system based
on an EXPRESS schema. Interfaces were developed betweerPtlesBtem and ap-
plications such as AutoCAD and AutoSolid. The GPM approaatotmect systems in a
computer-integrated manufacturing environment was detnaied with data related to an
engine block. Similarly, Boeing’s Integrated Product Dadtgvironment (IPDE) merged
in 1999 the STEP APs 203, 209, 214 and 224 for the synthesis aftagrated data
schema [98]. The integration approach was based on STEPmFs@uded extensions
for more domains such as aerodynamic analysis, paramewingtry and constraints.

The merging of several STEP-based schemas in one schemaltie ¢éime integration
of data related to geometry, manufacturing, engineerirayaes and document version-
ing in a product model was very often undertaken. Most apyres are either based on
STEP AP214, such as in Chin et al. [26], or on STEP AP203 suah &eng et al. [148].
The Generic Product Modeling Framework (GPMF) of Zhou ef®I2] for example
consists of eleven defined EXPRESS schemas based on STERcessand the STEP
AP203. A similar product data representation based on SE&Burces and the STEP
AP203 was used in the expert system of Zha and Hu [171] for tegitated Knowledge-
based Assembly Planning System (IKAPS).

2 Models for product data integration 37

The design of mechatronic products requires the exchangeodiict data related to
several disciplines such as electronics, mechanics, biidsaand control. A German
initiative chaired by the ProSTEP associatideveloped in 2000 the MechaSTEP neutral
data format [128] for the exchange of mechatronics-relgtediuct data. MechaSTEP
was defined in EXPRESS and according to STEP standardizatoequres. The neutral
format was validated by implementing interfaces to sofenapplications for multibody
system modeling and to the VHDL-AMStandard.

The Architecture, Engineering and Construction (AEC) indusses several advanced
3D applications for design, analysis and fabrication. &asibuilding product models
facilitate the data exchange between diverse applicatiims CIMsteel Integration Stan-
dard Version2 (CIS/2) [62] is an industry-developed proanetiel widely adopted within
the steel construction industry [38]. It was first releaseii995. CIMsteel stands for the
Computer Integrated Manufacturing of Constructional StegtwThe schema of CIS/2 is
defined in EXPRESS according to the ISO-STEP technology. Aeramportant building
model whose data model was also defined in EXPRESS is the cerimsged Integrated
Building Design System (IBDS). It was initiated in 1990 withttre COmputer Models
for the Building INdustry in Europe (COMBINE) project. In coast to CIS/2 and COM-
BINE, the ISO 10303 AP225 standard [69] for the descriptiohwlding elements using
explicit shape representation completely relies on STERn@logies. AP225 was re-
leased in 1999. Parallel to the development of AP225, arsinggonsortium formed the
Industry Alliance for Interoperability in 1994 due to thewl standardization develop-
ment within ISO 10303. The alliance released an AEC produxtehcalled the Industry
Foundation Class (IFC) in 1997 [22] whereby its data model®wlefined in EXPRESS
and implementations took advantage of the EXPRESS tools.

Most STEP-based integration approaches use EXPRESS as oaé&img language.
The definition of a new EXPRESS data model is thereby oftendoagen existing EX-
PRESS schemas. STEP is a very widespread standard for theengpecbf product data in
the context of typical products relying heavily on geonwetnodels. However, the prod-
ucts of the next generation will be smarter and incorporaieersoftware and electronics.
An integration framework spanning more disciplines thaonrgetry and therefrom de-
rived models is therefore necessary.

1ProSTEP iViP Associatiomt t p: / / www. pr ost ep. or g
2Very High Speed Integrated Circuit Hardware Descriptiomdizage-Analog/Mixed-Signal (VHDL-
AMS)

http://www.prostep.org

38 2.2 Industry sector-specific standards

2.2 Industry sector-specific standards

The building and the process plant industries, includingod gas production facilities,
display a high degree of multidisciplinarity. Standardsenbeen developed specifically
for these domains. Section 2.2.1 presents the Industrydadiam Classes (IFC) as an
important standard in the building industry and Section2r2views the ISO 19562 for
process plants.

2.2.1 1AIFC

The building and facility management industry (AEC/FM) iggitally multidisciplinary
sector. Several neutral standards for the exchange ofibgitthta have been developed.
Next to the CIS/2 [62] and STEP AP225 [69] as described in 8e@il.1, the Industry
Foundation Classes (IFC) [22] is also a prominent standataimibe building industry.
The IFC specification was developed and maintained by mgBIMART International
formerly known as International Alliance for Interoperéli(l1Al). It was first released
in 1997. It has been available since 2006 as release IFC2x8aisD Publicly Available
Specification ISO PAS 16739. The IFC data schema represgatsiation entities con-
cerning among others building elements, spaces, propemieé shapes which are shared
by several software applications in construction or facithanagement projects. The IFC
standard is thereby typically used to bridge different egapions related to CAD, CFD,
Computer-Aided Facility Management (CAFM), structural anertmal analysis applica-
tions, Computer-Aided Architectural Design (CAAD), HeatiMgntilating and Air Con-
ditioning (HVAC) and Quantity Takeoff (QTO) for cost estinat [81, 110, 96, 13].
Although the IFC standard has been used in many projects;ahstruction sector
has difficulty in achieving a single agreed data model [6B]13 he design of a build-
ing encompasses so many domains and aspects that the asg®rasuniversal building
standard seems unlikely. In view of all the imaginable messtdtions of a design or build-
ing, the convergence towards a unified standard for all plessuman interpretations of a
building seems impossible and not worth pursuing [37]. kenore, the development of
a standard requires a considerable degree of upfront warkiding achieving consensus,
implementing the data model and adapting the applicationise standard. These tasks
are especially arduous for a standard attempting to reacftenmational status. As a re-
sult, the standard is not updated at the pace the rapidlyiegobusiness needs. This can
turn an initially helpful standard into a hindrance [17]. dddition, the standardization
efforts are inefficiently repeated, creating a prolifevatof standards. The volume of stan-

3]Al Tech Internationalht t p: / / www. i ai - t ech. or g/

http://www.iai-tech.org/

2 Models for product data integration 39

dards to choose from is often a source of confusion for ud@&5][Instead of pursuing an

all-in-one approach through a unified international stamdantologies, as described in

the next Section 2.3, are envisioned as a flexible methodegiate heterogeneous data
sources related to building design.

2.2.2 1S0 15926

ISO 15926 is a standard for the representation of informatabated to process plants,
including oil and gas production facilities [73]. The scapfehe data model covers the
entire lifecycle of a facility and its components such asepippumps and their parts.
Similar standards for process plants are AP227 [70] and AR&2] within the STEP
family. AP227 is focused on the plant spatial configuratidnle/AP221 and 1SO 15926
also cover functional data. AP221 is better adapted to cesleematic drawings while
ISO 15926 can better describe the evolution of a process filesugh time [95]. ISO
15926 is the result of several years of effort in developirseadard for process plants.
In 1991 a European project called ESPRIT was launched forctuse. Based on this,
an industry consortium called the European Process IndasiTEP Technical Liaison
Executive (EPISTLE) then issued the AP221 standard, whia$ tiven adapted to form
ISO 15926 in 2003. The construction of buildings, productacilities and equipment is,
however, outside the scope of ISO15926.

ISO 15928 is currently mainly used in the oil and gas induftryintegrating data
across disciplines and business domains. It is for exangad for standardized produc-
tion* and drilling reports. As a facility may consist of a multitude of different erdi,
the 1ISO 15926 standard also includes generic concepts suclasses, individuals and
properties. These non process plant-specific conceptdesttatiescribe entities which
are not covered by the casual domain-specific concepts atéimelard such as a pipe or
a heat exchanger. The ISO 15928 standard can therefore théheseetically beyond the
process plant domain. Although the scope of ISO 15926 i®]diggrature on projects
related to ISO 15926 is scarce. Projects on integrating@mn-specific data about a
process plant lifecycle have for example not been repoB8H [

2.3 Ontologies

The word “ontology” is derived from the Greek words “ontost f'being” and “logos”
which in fact has several meanings, among others “logic’soiénce”. Ontology is orig-

4POSC CAESARNt t p: // product i on. posccaesar . or g/
SPOSC CAESARNWttp://drilling. posccaesar. org/

http://production.posccaesar.org/
http://drilling.posccaesar.org/

40 2.3 Ontologies

inally a philosophical discipline which studies the existe of entities and their possible
categorization within a hierarchy based on similaritied differences. The discipline
was inaugurated by Aristoteles in his philosophical workwn as Metaphysics. In the
early 1990s the term ontology was reused within the artlfinizlligence community to
define “the basic terms and relations comprising the voeapwf a topic area” [108],
in other words “a formal specification of a conceptualizatifs5]. Ontologies thereby
describe a domain through concepts, individuals and oglati

Ontologies are currently widely used within the SemantidoWes]. They aim at
structuring the information on the Web in order to make it poer-interpretable. The
Web content consists until now for the most part of unstneztuext which only humans
can read and understand. The syntactical presentatiorfayfriation on the internet is
standardized but not its semantics. However, the searchfofmation on the Web,
which is spread over millions of pages, is more successflli$f structured according
to its meaning, in other words according to ontologies. @ay matching algorithms
can then automatically find correspondences between seaigntelated entities of dif-
ferent ontologies for an improved search of the Web. Ontologtching can also find
correspondences between heterogeneous product models &mtomatic translation of
information between these. However, ontology matchiny evdrks reliably in special
cases and represents an ongoing research effort [40].

2.3.1 Ontology representation languages

Several ontology representation languages with diffelemrls of expressivity are avail-
able to formally specify an ontology. Among the many diffgrentology languages, the
Resource Description Framework (RDF), the RDF Schema (RDFShhand/eb Ontol-
ogy Language (OWL) are very widespread, especially as theynbdo the family of
specifications of the World Wide Web Consortitifww3C) which is the main interna-
tional standards organization for the Web. RDF enables terattements in the form of
subject-predicate-object expressions, in other wordsetarelation-concept structures,
which are known as triples. This corresponds to the AAA stogfating that “Anyone can
say Anything about Any topic” which applies for Web infornoat. As a consequence,
the open world assumption stating that information is tro#! it has been proven false,
applies to the Web content as new unpredicted content caddeslany time. A collec-
tion of RDF statements can be represented as a labeled dirgi@ph, which is called
a semantic network. RDFS extends RDF by introducing termshi@rctassification of
RDF data. It is thereby similar to other schema languagegh&umore, RDFS has been

S\W3C, www. wW3. or g/

www.w3.org/

2 Models for product data integration 41

extended to form the OWL by adding new constructs which m&strioperty values or
the number of distinct values for a specific property. OWL isstdered the successor of
the DAML+OIL’ ontology language which stands for DARPAgent Markup Language
(DAML) + Ontology Interchange Language (OIL).

The definition of an ontology which includes the choice ofadogical categories is
required in many disciplines such as designing a datab&s®yvaedge base or an object-
oriented system [149]. Ontologies are in this sense sinwlaronceptual data models.
However, the main motivation for defining ontologies is te tisem as knowledge bases
upon which reasoning procedures can be performed to infeknewledge. The triples
of an ontology are thereby interpreted as first order logaeshents, which a reasoner
can automatically process to derive new conclusions. The tasks of reasoners include
consistency checking, inference procedures and queds@dmmon reasoning engines
are for example PellgtRacerPré and FaCT++.

Most ontologies sacrifice expressiveness in domain magleliorder to achieve in re-
turn computational reasoning advantages. The comprosiigsible in the different vari-
ants of OWL. OWL Full is meant for users who want maximum expvesgss with no
computational reasoning guarantees, while OWL DL considiiseofull OWL constructs
under the condition that the constructs are defined acaptdisome constraints to guar-
antee computational completeness and the decidabilitgasfaning systems. Complete-
ness means that all conclusions are guaranteed to be caimudedecidability means
that all computations will finish in finite time [164]. DL stda for Description Logics [9]
which is a family of knowledge representation languagesdhaw decidable first order
logic reasoning. OWL DL supports knowledge representatiahraasoning capabilities
according to Description Logics. For this sake, OWL DL for exde clearly requires a
strict separation of classes and individuals, which is hetdase with OWL Full. The
Knowledge Interchange Fornta(KIF) and its later version called Common Logiare
for example languages which support more features fordinder logic reasoning than
Description Logics but at the expense of the decidability emmputational efficiency.

In addition to being updated by new facts computed by a reasontologies can be
transformed through the execution of rules which can addpreywerties or change prop-
erty values. The Semantic Web Rule Language (SWRL) is a propbta W3C to for-

'DARPA Agent Markup Languagét t p: / / www. dani . or g/

8Defense Advanced Research Projects Agenty,p: / / www. dar pa. mi | /

9Pellet: The Open Source OWL Reasorsrt p: / / cl ar kpar si a. coni pel | et

ORacerProht t p: / / www. r acer - syst ems. coml product s/ r acer pr o/

LFaCT++,htt p: // ow . man. ac. uk/ f act pl uspl us/

2Knowledge Interchange Format (KIF), http://ww. ksl . stanford. edu/
know edge- shari ng/ ki f/

3Common Logic Standardht t p: / / conmon- | ogi c. or g/

http://www.daml.org/
http://www.darpa.mil/
http://clarkparsia.com/pellet
http://www.racer-systems.com/products/racerpro/
http://owl.man.ac.uk/factplusplus/
http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://common-logic.org/

42 2.3 Ontologies

mally define rules which several reasoners already supp@WRL is also used within the
Semantic Query-Enhanced Web Rule Language (SQWRL) to perfaanes on OWL
ontologies. The other well-known query language, SPARQLidea and RDF Query
Language (SPARQL), was on the other hand specifically deeelégr RDF ontologies.

Ontologies are separated into domain and upper ontololesnain ontologies, or
domain-specific ontologies, model a specific domain whileengntologies, also called
foundation ontologies, are meant to be used across a widge rahdomains. Upper
ontologies consist of many thousand concepts to represgniictured subset of natural
languages like English. In contrast, OWL, which is mainlydusedefine domain-specific
ontologies, consists of around 50 language constructsmpbes of upper ontologies are
the Cycd* ontology and the Suggested Upper Merged Ontolo¢@UMO), which is an
IEEE candidate for a standard upper ontology (SUO). Alttoagommon universal on-
tology would be ideal for knowledge sharing, it is not suresthier it will ever exist [109].
The lack of a consensus for a wide coverage ontology is veryginly due to its large size
and to the different focus and cultural influences of itsmasicontributors. Philosophers
ranging for example from Heraclitus to Pierce and Whiteheadk developed different
categorizations of concepts [149] and it is highly probabkd debates on this topic will
continue. It is also questionable how concepts can be Gkdsn a standard upper on-
tology as their meaning is not graved in stone but insteacuodnstant philosophical
scrutiny. Even the meaning of meaning, or in other words t@var to the question
“What is meaning?”, is explained according to different the® by linguists, philoso-
phers [133] and computer scientists [59]. Confronted witpaapnt vagueness in the
definition of concepts, the legitimacy of a standard uppéology seems fragile [150]
and is therefore not further investigated in this work.

2.3.2 Integration approaches

As the role of knowledge in product development increasBg]jlontologies have been
used in engineering design to formally describe produetted knowledge. Furthermore,
ontologies are composed of simple subject-predicatecbbjgressions which can easily
describe relations between different heterogeneous ptathta sources. The domain-
independent ontology modeling languages are therefordogexb for the integration of
product data from different systems or disciplines [27] .

The construction industry is turning to ontologies for Emmental process-driven data
integration [139] as the international building infornmatistandards do not meet the ex-

YCycorp, Inc.ht t p: / / waww. cyc. com
15The Suggested Upper Merged Ontology (SUMIR)t p: / / www. ont ol ogyportal . or g/

http://www.cyc.com/
http://www.ontologyportal.org/

2 Models for product data integration 43

pectations of the building sector regarding scope and icratime for updates, as de-
scribed in Section 2.2.1. Nevertheless, ontologies do @ao¢ssarily replace international
standards but may complement them. For this purpose, tleegstablished based upon
existing international standards instead of being definea scratch. The important IFC
standard for the building sector has for example been tvamsfd into an OWL ontol-
ogy in view of supporting ontology-based data integratibf][Similarly, the prominent
STEP, UML and ISO 15926 standards, respectively for mechhangineering, software
engineering and process plants, have been transformeylipégtontologies [93, 48, 12].

Ontologies have been applied in several engineering danaiciuding CAD systems
interoperability [127, 93], assembly design [85], mantdaag processes [27, 99], build-
ing design [170], data resources integration [25], medmats [31], logistics [50] and
product optimization [168]. Most ontologies are describe®WL DL and use SWRL
for procedural if-then rules.

Product configuration requires both data integration amsvk@dge management. On-
tologies have therefore often been deployed for produdigmation systems [169, 105,
147]. As humans do not think exclusively in hierarchicahterbut in associations, the
description of product knowledge through semantic netwaskoften more appropriate
than the typical hierarchical structures in PDM system$.[29

Most ontologies supporting product data integration anaaia-specific ontologies.
However, the Gellish ontological language [138] is a corabon of an upper and a do-
main ontology. It is both very general and domain-specifit eludes concepts related
to engineering design. It consists of more than 40000 cdaac&ellish includes concepts
such as products, facilities and processes. The name $Gkit derived from “Generic
Engineering Language”. A subset of Gellish contributedh® development of the ISO
15926 standard for the “Integration of lifecycle data foogass plants including oil and
gas production facilities”, which is described in Sectio®.2.

2.4 Summary

Chapter 2 has presented an overview of models which suppmattipt data integration.
Models for interdisciplinary integration differ in theicgpe, in their acceptance by peers
as an international standard and in their use of generictearts. Three different ap-
proaches are currently pursued to enable multidiscipfipaoduct data integration. The
first approach consists of creating new central product fssod&he second approach
supports the development and extension of internatioaaldsirds. The third approach
builds upon the expertise of existing standards and corslilrean with generic concepts

44 2.4 Summary

from ontologies or object-oriented modeling to allow a fld&iintegration of new product
aspects.

The development of a new central product model for integnagiurposes within a
specific scenario is a common approach. However, the cemtvdlict model will even-
tually need to be adapted based on the evolution of the ptaed and on new product
data integration requirements. Each modification of théraéproduct model is associ-
ated with a lot of effort as interfaces between applicatiamd the central product model
then need to be updated.

It is therefore worthwhile to use or develop standards fadpct data integration
which are based on a wide consensus. The large quantity eftessgowhich flows into
the development of an international standard represergertee extent a guarantee for
long term stability. The STEP standards have reached a tardience and have greatly
contributed to the integration of product information. r&tards which cover a single
engineering discipline have a predictable scope and hamedjvide industry acceptance
and stability such as STEP AP203 for the representation ofmgéric information. In
contrast, standards which cover several engineeringpdiises, such as in the building
and the process plant industries, encompass so many atpgcdsstandard which could
cover them all seems unachievable [37, 139].

In order to describe future unexpected product aspectduptalata integration stan-
dards offer a backdoor solution by including generic madgkoncepts such aslass
PropertyandObject These entities are domain-independent and can be useu éseat
entities of any domain. The domain-specific STEP AP214 a@ilBE®26 standards have
for example included generic object-oriented modelingeegts [101].

Another generic approach consists of using ontologies asglement to major stan-
dards. Ontologies can easily describe relations betwdtsreathit heterogeneous product
data resources through simple subject-predicate-objgressions. As a consequence,
ontologies are domain-independent and can connect prodt&tfrom different hetero-
geneous sources. Instead of redefining an ontology for ptodiata integration from
scratch, the terms of an ontology can be imported from wathdgished international
standards. This way, an ontology can reuse a standard agnbex{17].

Chapter 3
UML-based central product model

Standardization efforts have undergone a natural eveluiiofirst focusing on specific
domains and eventually on extensions for the integratiomarfe disciplines. However,
standards for cross-domain interoperability have not wétef wide acceptance. There
Is for example currently no widely accepted standard forma&onics. This is unfortu-
nate as such a standard would improve the communicationheneixchange of product
information between different engineering disciplinesvadl as reduce the costs of inter-
operability [46]. This chapter first presents in SectiontBd need of generic modeling
concepts in order to represent in a common central produdehibe variety of domain-
specific modeling concepts. Section 3.2 showcases the canmoalular structure of
product models from different disciplines and thus the ssitg for the central product
model to represent modular components. Section 3.3 psetientuse of the UML to
establish a standard central product model as it providgeslatdized generic modeling
concepts which can represent modular components fromrelffengineering disciplines.
Section 3.4 compares the generic modeling concepts of thie With other standardized
modeling languages such as OWL and EXPRESS and Section 3éngé$ML-based
product data integration approaches.

3.1 Generic modeling

Central product models need to represent specific modelnvaton from various dis-

ciplines in order to describe inter-model dependenciesallg the representation in the
central product model should be based on commonly used mgdmncepts which are
familiar to engineers. Discipline-specific engineers danteasily recognize their spe-
cific model information within the central product model. wsver, central product mod-
els cannot reuse the modeling concepts of specific modelsegsare too diverse and

46 3.2 Modeling modular components

numerous. Even if it were possible to gather all past andgmtespecific modeling con-
cepts, new models with new specific modeling concepts coaliynappear. Confronted
with the constant emergence of specific modeling concelpéscéntral product model
would need to be permanently updated. As a consequenceylid\ase its legitimacy as
a standard.

Instead of supporting an unlimited number of specific maodgkoncepts, central
product models can consist of a manageable set of overgrgkimeric modeling concepts
which correspond to various specific modeling concepts.eBemodeling concepts are
for example aModule aninstanceor aProperty Each domain can be represented on an
abstract level through a reduced set of generic modelingequin, as depicted in Fig. 1.4.
This is for example common practice in data modeling as shovang. 2.1. As a conse-
guence, the non-solvable problem of including an unlimitechber of specific modeling
concepts in the central product model can be transformedti solvable problem of
supporting a limited number of corresponding generic madetoncepts. As described
in Section 2.2, the developers of integration standardeennultidisciplinary building
and process plant industries had difficulty in specifyingudvance all required specific
modeling concepts. As a consequence, both sectors turrgaah@wic modeling concepts
to easily capture information, which was unforeseeablenduthe development of the
standards [139, 95].

In order to be used for interoperability across most digogd, a central product model
must include generic modeling concepts which enable talgleapresent a maximum
number of specific modeling concepts. For example, a masofiendata flow cannot be
clearly described through @dbjectentity as it represents a static artifact. In this case, a
genericinformation flowentity would for example be better suited. If the set of gener
modeling concepts of the product model is too small, theraéptoduct model cannot
easily and precisely represent deep nested specific modeination. If on the other
hand, the set of generic modeling concepts is too large ghta product model may be
too difficult to understand and confusion is probable. Na$generic modeling concepts
for a standard central product model has yet been widelytadop

3.2 Modeling modular components

In spite of the diversity of engineering models, models \Wwhece defined with state-
of-the-art modeling applications share common modelingcepts in order to support
a common modeling requirement which is modularity. Indejeen of the engineering
discipline, models can reach in complex projects largessidgich are hard to overview.

3 UML-based central product model 47

In order to reduce the complexity and enable the reusabilitgodel components, models
are decomposable into exchangeable, maintainable andbleunodel components, in
other words modules. The reusability of model componemnitittes model updates and
the design of a variety of model configurations. In contrasack of modularity leads to
time-consuming and expensive single purpose models wlael to be developed from
scratch. The benefits of modularity not only apply for maadiglbut naturally also for the
manufacturing of real products [160]. According to Baldwmi&Clark, the manufacturing
industry has reached high levels of innovation and growtbugh the design of complex
products from smaller independent modular components [10]

Modules commonly have in- and outputs. As a result of the ohgpasition of a model
into distinct encapsulated model components, model coemsrwithin a model are of-
ten interdependent. Modules therefore specify their reglunputs and provided outputs,
based on which the compatibility of components, when repépa model component
with another or placing a model component within a specificlehaontext, can be auto-
matically checked. The automatic compatibility check ahpmnents is especially useful
in large models with many components and dependencies.

In addition to specifying in- and outputs, modules followe fbrinciple of information
hiding by means of a clear distinction between their inteimfarmation, which is hidden
from other components, and their outward-facing inforovativhich is visible to other
components. The compatibility of model components onlyethels on their outward-
facing information, which includes their in-and outputde€ldistinction between visible
and hidden module information is necessary in order tordjsish between the hidden in-
formation, which may change over time, and the visible infation, which needs to stay
constant in order to support compatibility with other matullf a CD were a module, the
content of the CD would represent the hidden module informnatas it may change over
time, while the geometric form of the CD would represent thsghleé module information,
which may not vary over time in order to support compatipnitith CD drives.

Other common modeling concepts to describe modules areatiens of a module
template and a module instance. The description of similadutes is simplified by
defining a module template which specifies the module festwhech are common to a
group of modules, or in other words a specific module type. ddseription of a module
based on a template takes advantage of the once predefingltierfeatures instead of
redefining them from the ground up. The description of a medssed on a module
template is most often called a module instance.

The multidisciplinary design of mechatronic products oftevolves software, geo-
metric and dynamic systems modeling. In software designndtion of a software mod-

48 3.2 Modeling modular components

ule has evolved from a function in procedural programmingrtobject in object-oriented
programming. A software object thereby encapsulates iometand related variables.
The main software module template is called a class whilertbeule instance is termed
an object. The provided and required information of a saféw@mponent is specified
through interfaces. The concept of an interface is also tsegecify the outward-facing
visible information of a software object, in other words fleatures of a software ob-
ject which are accessible to other software objects. Thritelogy to describe object-
oriented software is uniform and mostly independent of @ifiggorogramming language.

In geometric modeling, the most common modular unit withinBCAvodels is a part
which represents a grouping of geometric information. A pko represents a geometric
template which can be instantiated and inserted into varg@ometric assembly models.
The terminology to describe the provided and required médron of parts is not uniform
but specific to the CAD software. In CAT{&or example, dependencies between parts are
described as import or cut-copy-and-paste links and thenmédtion which a part makes
available to other parts is referred to as published feature

Modular units in dynamic system models are often calledddachereby block types
correspond to module templates and block instances to raaatences. The terms used
to specify blocks and their provided/required informatéwa specific to the dynamic sys-
tem modeling software. In a dynamic system modeling apitinasuch as Simulirk
the provided/required information of blocks is specifietbtigh block ports. Further-
more, the blocks can be used in models as black boxes whédreipyrternal information
is hidden and only their ports are visible.

A multitude of different generic modeling concepts haverbdeveloped to describe
modular architectures for product family design and platfdbased product develop-
ment [78]. Graph-based representations of products, iclwproduct modules are de-
scribed adNodesand interactions aBdges have been used in combination with graph
grammars to automatically design specific product varidatsed on production rules.
Graph grammars were applied among others to the designfekcofakers [146], power
supplies [36] and satellites [144]. Mannisté and SulonédR][Iproposed an approach
based on generic data modeling concepts to describe caatfigysroducts. The approach
used modeling concepts such@sss Attribute andinheritanceto represent the charac-
teristics of product families and aldndividualsto describe concrete products within a
product family. Paredis et al. [123] defined modeling coteejpich asComponent ob-
jects Ports and Connectionsto describe the decomposition and interactions of mecha-

'DASSAULT SYSTEMEShHt t p: / / ww. 3ds. cont product s/ cati a/
°The MathWorks, Simulink,
http://ww. mat hwor ks. com pr oduct s/ si mul i nk/

http://www.3ds.com/products/catia/
http://www.mathworks.com/products/simulink/

3 UML-based central product model 49

tronic systemsComponent objectepresented both CAD and behavior models, whereby
Portsspecified the interaction between different domain-spesifbsystems.

Although concepts to support modularity are frequent acseveral modeling disci-
plines in engineering design, no standardized vocabulasylleen adopted to describe
their common modular structure. Due to the variety of disogspecific terminologies
and the widespread marketing policy of software provideasting with so-called exclu-
sive modeling features, the modeling concepts to descrdmufar model components do
not share the same terminology.

3.3 UML-based object-oriented modeling

In software design, object-oriented programming and moge&loncepts have contributed
to higher modularity. Programming concepts have been dpedlin software engineer-
ing to support modularity, whereby the most prominent ajeaikoriented programming
concepts which consist in encapsulating variables andifurginto modular units called
objects. Object-oriented software models describe thesifleation, communication and
internal structure of objects within a software architeetu

Although object-oriented modeling is currently mainly dder software modeling,
object-oriented modeling concepts are generic and candxetosiescribe various mod-
ular structures. As the term object already suggests, atbban represent a software
object as well as a physical or model component. Objecatetemodeling is thus not re-
stricted to software modeling. The Modelica modeling laaggifor example uses the con-
cepts of object-orientation to describe dynamic systemetsoghich include for exam-
ple mechanical, electrical, hydraulic, thermal and cdrdoonponents [45]. The generic
object-oriented modeling concepts of software modeling tbais be reused in the con-
text of a central product model to represent the common naodifucture of various
discipline- and application-specific models.

As a central product model is meant to be used across sevecgllohes, it addresses
many parties and therefore requires standardization. Aopgsed generic modeling
concept will only have a universally accepted meaning thhostandardization effort.
Ideally, the generic modeling concepts of a central prothadel should therefore already
be standardized.

The Unified Modeling Language (UML) is the de facto standanddbject-oriented
modeling and is a general purpose visual modeling languagé to specify, visualize,
modify, construct and document software. UML concepts aset on the object-oriented
programming paradigm. Section 3.3.1 describes the ewolafi programming paradigms

50 3.3 UML-based object-oriented modeling

which led to object-oriented programming and ultimatelyotgect-oriented modeling
techniques. Section 3.3.2 presents the UML and its roleinvgbftware engineering
while Section 3.3.3 introduces the UML specification. Set8.3.4 showcases the main
UML modeling concepts which are used in this thesis for tipeesentation of geometric,
dynamic and multibody system model information.

3.3.1 Oirigins of object-oriented software development

Programming paradigms have evolved over time towards htfrrerdly higher levels of
abstraction and away from the machine-friendly low-levigd.bin the 1940s, the focus
was on reducing hardware costs and the art of software proginag was neglected.
Programming was at that time very low-level and consisteshathine code equivalent
to a sequence of bits. Assembly languages were developbd BOs to replace machine
code by more human-readable symbolic labels composedefdetnd decimal numbers.

The next major step towards higher productivity in softwaregramming was real-
ized through procedural languages, also called high-fewgramming languages, which
introduced more abstract language constructs such amatithexpressions, statements,
arrays and subroutines. FORmula TRANslation (FORTRAN) was9B7lamong the
first procedural languages. Many low-level memory operativere automatically man-
aged by compilers. An operation such as i+j was executaltfeowi specifying where to
store i and j in memory and what machine instructions werelee¢o retrieve and add
them. The productivity of programmers increased signifiyaas they could concentrate
on their design intent and ignore low-level repetitive meynoanagement tasks.

Although it became easier to write code, programming wa®atsee art and the re-
sult was often hardly understandable code which was quabifiespaghetti code. Conse-
quently, software was too complex to be maintained and soé&wevelopment too costly.
In 1968 the term “software crisis” was used to highlight he@soblems. Solutions for
a systematic software development process were presented the umbrella of a new
discipline named “software engineering” [107].

Improvements emerged through concepts related to steccprogramming. A major
source for unreadable spaghetti code was the goto statevhasit enabled to jump from
one line of code to any other. After it was proven that eqerticode could be written
without that statement, its use was considered in 1972 hiemtl not recommended [33].
This had an effect on the graphical representation of prograTraditional flowcharts
were replaced in 1973 by structured flowcharts [106], alsledNassi-Shneiderman di-
agrams or structograms, which did not include lines to regmegoto statements as they
were to be avoided. In addition, new analysis methods apddarcapture program re-

3 UML-based central product model 51

quirements in order to avoid future costly program updatata flow diagrams, data

dictionaries, structured English, decision tables andsttat trees were used instead of
conventional narrative text to clearly define the programcgation and facilitate the

transition from program analysis to program design [32].

The flexibility and comprehensibility of programs was ldyggependent on the choice
and design of reusable software modules. The program dexsitigm into reusable soft-
ware modules was first based on flowcharts. This conventag@mposition technique
ensured a separation of concerns between different motiubagid any overlapping in
functionality. In 1972, a new decomposition technique daseinformation hiding was
introduced by Parnas [124]. It was better adapted for fusafévare updates than the
conventional decomposition based on flowcharts. The newrdposition strategy cre-
ated software modules based on the functions which werly ligehange and not on the
high-level program functions which were derived from thevitbart. Software modules
were conceived to be easily exchangeable by sharing the iséeniace. Changes in the
interfaces were to be avoided as they triggered time-coimguaohanges in the software
modules and in the programs which referred to the softwarmtutes. The concepts of in-
formation hiding helped in designing long-lasting inteda by hiding the changeable or
highly detailed information in the software modules whheit interfaces only contained
long-lasting information. In procedural programming,ta@fre modules were procedures
and software module interfaces were equivalent to the iapdtoutput arguments of pro-
cedures.

Although the procedures were designed to be easily exchalfgand reusable, they
did not declare their side effects on global variables. Tuppssedly independent proce-
dures were indirectly linked if they shared the same glolaaiables. Furthermore, the
reuse of a procedure within another context without the iredwlobal variables was a
source of error. The undeclared dependencies betweendumaseand global variables
often led to unexpected effects and hampered the reuse ahdrege of procedures.

This was avoided by encapsulating procedures and theirregjuariables into ob-
jects. This data encapsulation represented the next sefmvadularization step [167].
Procedures and their affected variables were thereby upgrbinto single units called
objects. Figure 3.1 presents the transformation from pheeebased to object-based
software modularization through data encapsulation. é&toes automatically had ac-
cess to their required variables and objects clearly dedldre dependence between the
procedures and their required variables. As a result, tiigeref procedures in combina-
tion with their required variables had no unexpected sifieces. Global variables were
then limited to object-independent variables such as eohstlues.

52 3.3 UML-based object-oriented modeling

ProcedureA | .. Unprotected global variables I ProcedureB
A) e
=« VariableX VariableY "
..y VariableZ ¢__

ProcedureC [----°~ T ProcedureD
l Data Encapsulation l
Object1 Shared resource Object2

'(,-) VariableX <=y VariableZ <---- 'i,-) VariableY

i*----ProcedureA 1*----ProcedureB

“--- ProcedureC “--- ProcedureD

Figure 3.1: Transformation from procedure-based to okjased modularization through
data encapsulation (after Wegner [167])

However, objects could still access freely and in an undoatdd way each other’s
variables, which led to unexpected and wrong variable wlié&e concept of object in-
terfaces was introduced to control the encapsulation @ @éhin objects. The interface
of an object described the information of an object which wiagle and accessible to
other objects. The other information, which was inaccédssibinvisible to other objects,
formed the object’s black box. The definition of invisibleriales guaranteed that ob-
jects could not interfere freely in each other’s variabl&he access of objects on each
other’s variables, which in an uncontrolled way was a soofaaror, was controlled by
object interfaces.

The general concepts of information hiding were also appitethe design of ob-
ject interfaces for an improved software modularizatiom iAterface can theoretically
be composed of both variables and procedure signatureserUhe condition that the
interface does not change over time, objects can be easilyaeged if they share the
same interface. The principle of information hiding statieat software module inter-
faces are long-lasting if they do not contain changeablegiiydetailed information. In
regard to objects, this meant that object interfaces cool@ontain variables as they are
detailed and most likely to change. The implementation ofcegdure could for exam-
ple change over time and require another set of variablekeite procedure signature
stayed identical. Figure 3.1 shows the transformation dailinterfaces into long-lasting
interfaces containing only procedures. As a result, objectld only retrieve or change
each other’s variables indirectly by passing through idézhprocedures. The execution
of object-oriented programs does not consist of a sequdmecedures as in procedural
programs, but of an interplay of modular software objects.

3 UML-based central product model 53

Interface .. _
Direct access VariableY |- Object?
Object] F-=-==-=-==="-- »|ProcedureB
to variable
ProcedureDf-._
Information Hidingl
Interface | Object2
) Indirect access ProcedureB [
Objectl =5 variable ™ |ProcedureD|,

Figure 3.2: Transformation of object interfaces into ifaees containing only procedures
in view of improving software modularization according ke tprinciples of information
hiding

Many objects sharing the same variables and proceduresierée be created so
classes were introduced as templates for objects. Praeedhside classes are usually
called operations or methods. Figure 3.3 for example sho@sde class as template
and derived circle objects acting as template instancess€sadescribe the variables and
procedures which are common to a group of objects while tbpore attribute values.

Class

Objects

circlel : Circle

radius : mm = 5
color : Color = Green

Inheritance

Shape
color : Color

Circle

radius : mm
color : Color

circle2 : Circle

radius : mm = 10
color : Color = Blue

Circle
radius : mm

Square
length : mm

Figure 3.3: Left: Classes as templates for the creation adatj Right: Inheritance
hierarchy between classes

Further, the concept of inheritance was introduced to eraatv classes by reusing
existing class definitions. Code duplication was therebyegmweed. Figure 3.3 for ex-
ample shows the Circle and Square classes which inherit thygepres of the Shape
class. This avoids the redundant declaration of the colimibate in the Circle and
Square classes. Programming languages which supportealamiadtion in objects and
classes were called object-based and those which in adldietuded inheritance object-
oriented [140]. Simula was in 1967 the first object-orienpgdgramming language.
These object-oriented principles were taken over by futwogramming languages such
as Smalltalk, Ada, C++ or Java.

54 3.3 UML-based object-oriented modeling

3.3.2 UML for software engineering

Similar to the rise of structured programming concepts dffte emergence of procedural
programming languages, many methodologies emerged fiolipthe rise in popularity
of object-oriented programming for a systematic designbpéct-oriented software [60].
Among the most prevalent were the Object Modeling Techni{@eT) of Rumbaugh
et al. [143] in 1991, the Object-Oriented Design (OOD) of Bo¢20] in 1994 and the
Object-Oriented Software Engineering (OOSE) method obbsan et al. [77] in 1992.
Each methodology had its own set of terminology, notatioth sppecific focus but there
was a pool of common core concepts. The first attempts to timfye methods, such as
Fusion by Coleman et al. [28], did not succeed as they did notve the developers of the
original methodologies. Ultimately, the three method@tggJames Raumbaugh, Grady
Booch and Ivar Jacobson, later referred to as the three apugescame their differences
and conceived in a joint effort in 1997 the Unified Modelingigaage (UML) [21]. Al-
though the UML does not prescribe a specific software desigeess, it can be combined
with different software development frameworks such adthdied Software Develop-
ment Process [76] or the Model Driven Architecture [112].

The UML offers a unified representation of an object-oridrgeftware architecture
and plays an essential role in the communication betwedwaid engineers, similar to
the role of a blueprint between mechanical engineers oitaath. The UML, as a formal
modeling language, enables to better bridge the gaps bete@®vare requirements,
analysis and coding than arbitrary diagrams and text. Tassiflcation, composition
and communication of objects are described graphicallgudpn modeling languages,
of which the UML is the most well-known. The UML consists of fitagram types
for the description of structural and behavioral objectea$®. Table 3.1 presents the
list of diagrams, their main modeling concepts and theissifecation in structural or
behavioral diagrams. Figure 3.3 for example presents @scbbject and inheritance
concepts in class diagram notation. A detailed descriptiothe UML diagrams used
in this thesis are presented in Chapter 3. A UML model is uguddfined by several
diagrams, whereby elements of different diagram types edntbrlinked. The evolution
and standardization process of the UML is managed by thecDblanagement Group
(OMG) which regularly issues new UML versions. The UML versil.4.2 was also
released as an ISO international standard [74] in 2005.

The UML is often used as a basis for code generation in modeusoftware engi-
neering frameworks, such as the Executable UML approachetibkfet al. [103] in 2002
or the Model Driven Architecture (MDA) [112] initiative fra the Object Management

3 UML-based central product model 55

Major Area Diagram Type Main Concepts
Class diagram class, association, generalization, interface
Composite structure diagram part, port, connector, role, collaboration
Structure Component diagram component, port, dependency, realization
Deployment diagram artifact, node, deployment
Object diagram instance specification, link
Package diagram package, package import, package extension
Activity diagram activity, action, node, flow
Sequence diagram interaction, lifeline, message, occurrence
State machine diagram state machine, state, transition, region
Behavior Use case diagram use case, actor, extend, include
Communication diagram interaction, lifeline, message, sequence number

Interaction overview diagram interaction, interaction use, activity node
Timing diagram interaction, lifeline, state, timeline, duration

Table 3.1: UML 2.1.1 diagrams

Group’ (OMG). Modeling languages such as the UML are used in thises@&ot only
for documentation but for code generation and ultimatelypimgramming. Modeling
languages thereby potentially represent a new programpangdigm [56] at a higher
abstraction level than textual programs as shown in Fig.F3ofvever, the transformation
of a graphical model such as a UML model into a lower leveluakprogram is not yet
as mature as the similar compilation of a high-level progsauch as C into lower level
assembler code or machine language.

A UML model can represent a software architecture at diffeedbstraction levels.
A software representation in UML can for example be indepahof the programming
language in which the software is coded and independenteobfierating system on
which the software runs. On the other hand, a UML model camiatdude programming
language- and operating system-dependent features. n/fthi MDA approach of the
OMG, the abstract UML model is called Platform Independeiwids! (PIM) while the
less abstract UML model is called Platform Specific ModelNB.SA PSM is derived
from a PIM within the MDA software development lifecycle asplayed in Fig. 3.5.
As the same software often needs to run on different opegratystems, the separation
in PIM and PSM enables to reuse the PIM for several specififgpias. Several PSMs
can be generated based on one PIM through model transformaifhe OMG issued in

30bject Management Group (OMG) in 2008,t p: / / www. ong. or g/

http://www.omg.org/

56 3.3 UML-based object-oriented modeling

Modeling languages
Customer Account ?
=~
Object-oriented languages ’
public class Customer {
private String name;}
Procedural languages o
void main(){
printf("Hello!\n");} l,"
Assembler languages
MOV SRC, DST o
Machine code
00101011 01010111 o

Time

Level of abstraction

)
Figure 3.4: Increasing levels of abstraction in progranghparadigms (after Gruhn [56])

2008 the Query/View/Transformation (QVT) standard [11Blihiformly describe model
transformations.

3.3.3 UML specification

The syntax and semantics of the UML are specified in the UMtaltfucture and Super-
structure specifications [121, 122]. The UML syntax is daéddnto concrete and abstract
syntax similar to the syntax specification of programmingglzages [104]. The con-
crete keyword-dependent syntax of programming languagsggdcified by grammars in
Backus-Naur Form (BNF) while the concrete graphical UML synsaspecified through
style guidelines described in English and through grapl@eamples. The UML Class
construct for example is to be represented through a reletavigch should optionally
contain compartments for attributes and operations. Ootter hand, the abstract UML
syntax describes the valid relationships between UML cantt and how the UML con-
structs are built up. Similarly, the abstract syntax of pamgming languages describes
the relationships between programming language constautth as Program, Declara-
tion and Variable in a keyword-independent way.

The abstract UML syntax is described by the UML metamodels tomposed of
a subset of the UML which is called the Infrastructure Lilgrft21]. It contains con-

3 UML-based central product model 57

Requirements

9

MDA Process mostly text

\

PIM

\/

Low-level Design

/

PSM

Code

\

/

Code

\

Deployment

e

Figure 3.5: MDA software development lifecycle (after Kpepet al. [87])

structs of UML class diagrams which are very general such assCIAssociation and
Property. The Infrastructure Library is therefore reused higher abstraction level to
define the UML meta-metamodel which is specified by the Metg@b-acility (MOF)
Core Specification [113].

In theory, an unlimited number of modeling layers, or metale, can exist. No ad-
ditional layers above MOF are defined because it is reflexieetd its self-defining el-
ements. The same bootstrapping technique also applie® tBxtended BNF (EBNF)
notation whose self-representation in EBNF only takes sanmes[[52]. MOF is the
metamodel for many metamodels other than the UML metamdd€@F version 1.4.1
was released in addition to the OMG as an I1SO standard [750@%2MOF and MOF-
based models are serialized in XML according to the XML Matadnterchange (XMI)
standard [117]. As a consequence, different modeling toafsexchange UML models
as they are serialized in the common XMl interchange stahdar

The semantics of the UML are described through formal camgs expressed in the
Object Constraint Language (OCL) [114] and in precise Englidte detailed semantics
of each UML construct are described in English. A list of doaisits applies to each UML
construct to define additional well-formedness rules. Gairgs are formally defined in
OCL when possible. Overall, the UML specification is composed combination of
languages including a subset of the UML, the Object Congttainguage (OCL) [114]
and precise English. The definition of the UML is summarizedable 3.2.

Modeling tools are not forced to support the complete UMLcHpEation. Compli-
ance levels and language units have been defined in ordeatdeemodeling tools to

58 3.3 UML-based object-oriented modeling

Concept Purpose UML solution

abstract syntax the concepts from which models are created classwliabievel M2

concrete syntax concrete rendering of these concepts UML notatiommialiy
specified

well-formedness rules for the application of these concepts constraitie astract
syntax (e.g. using OCL)

semantics description of the meaning of a model natural language specifi-
cation

Table 3.2: UML Language Definition (after Atkinson and KuH8g

support and share the same UML subsets. Four compliancks lemetaining different
language units have been defined, whereby each upper lavgrises and extends the
functionality of the lower level. The lowest compliancedéis LO and only includes lan-
guage units related to classes, types and packages. Intordechange UML diagrams
between tools, the Diagram Interchange specification [h&S]been defined. The adher-
ence to a compliance level is further detailed by expresiagadherence to the abstract
syntax, concrete syntax and the Diagram Interchange sthn@lae abstract syntax com-
pliance for example enables to output and read UML modelsNt.XConcrete syntax
compliance enables to represent UML constructs in the atdimbd notation.

3.3.4 UML modeling concepts

This Section presents the most important UML diagrams whidlbe presented in Sec-
tions 4 to 6 to describe application-specific model infoliorafrom different disciplines
in a UML-based product model. Each UML diagram only représarspecific aspect of a
UML model. As a consequence, a UML model usually consistewésal UML diagrams
which complement each other. In this Section, UML class, pasite structure and activ-
ity diagrams are introduced. The UML consists of over 200 etiod concepts of which
only a few dozen are used frequently. The complete UML refezas the UML speci-
fication which consists of the UML Infrastructure [121] antU Superstructure [122]
documents.

The essential UML modeling concept i<kss A class declares the features, con-
straints and semantics which are common to a group of objéctdass acts as a tem-
plate from which concrete objects can be instantiated. ¢bjare synonymous with
template instances or with the UML modeling constrinstance specificatioand can
theoretically stand for anything, whether software or ptglsentities. Depending on the
domain-specific context, templates and template instaaqmesar under different terms.

3 UML-based central product model 59

Class Diagram

Class -+ eemrmrrmsemsmmssersmssssssssnsnes s Vehicle vehicle . driver| person
topSpeed : km/h T age : Integer
O 7 T —— e I
Car Truck | e e,
Property «ssssssssssssssessanay numberOfSeats : Integer loadCapacity : kg “Association
Object Diagram
Instance Specification .- DBS V12 : Car vehicle driver | james Bond : Person
topSpeed : km/h = 307 age : Integer = 45
Slot .. numberOfSeats : Integer = 2

Figure 3.6: UML class and object diagrams

The class and object diagrams in Fig. 3.6 for example includ€ar” class and a
corresponding “DBS V12~ instance. The classifier of the ins&is shown next to the
instance name. Attributes of a class which are common tanathnces of a class are
described in UML aproperties The “Car” class for example has the “numberOfSeats”
property oftype“Integer”. The instantiation of properties is describewtighslots. The
“DBS V12" car instance for example has a slot referring to themberOfSeats” property
with a value equal to two.

An important concept in object-oriented modeling is theeiritance relationship be-
tween classes. A child class thereby automatically ink\éni properties of a parent class.
Redefinition of identical properties in a similar class isréiyy avoided. The concept of
inheritance enables to categorize classes in hierarclagsdbon their similarities. The
relationship between the child and the parent class is tgaeeralizatiorin UML. The
“Car” class in Fig. 3.6 for example has a generalization i@tship with the “Vehicle”
class. The “topSpeed” property of the parent “Vehicle” slessthereby transmitted to the
child “Car” class. As a consequence, the “DBS V12" car instdma®a slot referring to
the “topSpeed” property with a value equal to 307km/h.

A class property can be represented graphically througheagoing from the class
owning the property to the class being the property type. lifgeis termedassociation
in UML and allows to visualize class dependencies. Propesiyes and multiplicities
are then depicted next to the associations. The “Vehicl@ssin Fig. 3.6 for example
has a “driver” property of type “Person” which is represengeaphically through an as-
sociation between both classes. Similarly, the “PersoaSshas a “vehicle” property of
type “Vehicle”. This type of association is bidirectionaichis equivalent to two sepa-
rate directed associations. The association can be ireghin the object diagram to

60 3.3 UML-based object-oriented modeling

represent the instance slots which correspond to the clageies of the association.
The association instance is thereby described by a linectalink which connects the

related instances. The “James Bond” person instance formgamas a slot referring to

the “vehicle” property with a value equal to the “DBS V12" casiance and vice versa
the “DBS V12" car instance has a slot referring to the “driverdperty with a value equal

to the “James Bond” person instance.

Composite Structure Diagram

Class ewerserserersessesnnns Car
[27 T TR WA ——— V12 : Engine
Connector R | powers
rearAxle : Axle
"'n,.sprocketLeft : Sprocket sprocketRight : Sprocket
powersLeftWheel powersRightWheel
S hub : Hub hub : Hub
rearWheelLeft : Wheel rearWheelRight : Wheel
Class Diagram
[0 2 F R IS Sprocket

«interface»

[A10=) 0 = o= X B P
torque : Nm

Usage ... «use»

C/ass ... Hub

Figure 3.7: UML composite structure and class diagrams

The composition hierarchy within an object is representedugh the composite
structure diagram of its classifier. The internal structofea car is for example rep-
resented through the composite structure diagram of the’“@ass as in Fig. 3.7. A
composition structure diagram shows internal objects heit telationships. The com-
posite structure diagram does not directly specify inteimstances within a composite
object but the roles that internal instances play. Propexi the composite class which
correspond to roles are call@érts The “Car” class is for example composed among
others of the “V12” part of type “Engine” and of the “rearAXlgart of type “Axle”. The
destruction of the composite object leads to the destmictdts internal objects.

3 UML-based central product model 61

Relationships between roles are described thraayimectorsand only apply within
the context of the composite object. Connectors descrilis lm the exchange of infor-
mation between parts. A link may be an instance of an assagjair it may represent
the ability of the instances to communicate. The connecared “powers” between the
“V12” and “rearAxle” parts for example represents a link. Ara detailed description of
the information exchange between parts requimesfacesand possiblyports

Interfaces are protocols for the exchange of informatia@rtd=can be connected with
each other if their interfaces are compatible. Ports desche possible interaction points
of parts. A port can be linked through a connector with anofiat if the required
interfaces of one port are provided by the other and viceaverBhe “rearAxle” and
“rearWheelLeft” parts are for example connected througir tlespective “sprocketLeft”
and “hub” ports which share the common “Power” interfacedapicted in the class
diagram in Fig. 3.7. The “Sprocket” class implements, or tineo words delivers, the
information which is specified in the “Power” interface wehthe “Hub” class requires it.
These dependencies are respectively described in UML ghrioterface realizatiorand
usagerelationships, as shown in the class diagram in Fig. 3.7.

Activity Diagram

Activi ty """""""""""""""""""""""""""""""""" Manufacturing Process
Initial NOQE s
Activity Parameter Node ... Parts Painting
Object FIOW «eeeeericncicssssabisensin,
ACLION weremrmsemsmsmimns e Assembly
Decision NOQE - b Test
= T TN S

Deliver Car
Actl\//ty Final NOQE v,

Figure 3.8: UML activity diagram.

Flow graphs are generally used to depict a certain logic ocgss. Flow graphs are
described in UML througlactivitiescomposed ohodesandedgesand are displayed as
activity diagrams. Activity nodes represeattions input and output objects of actions in
the form ofpinsor the coordination of flows through for exampéek nodes

62 3.3 UML-based object-oriented modeling

A “Manufacturing Process” is for example described as UMLivity diagram in
Fig. 3.8. The activity starts at thmitial node and finishes at thactivity final nodeand
is for example composed of the “Painting” and “Assembly’i@as. Activity edges rep-
resent directed connections between activity nodaisject flowsare edges which have
objects passing along them. Activities can have input aripudyparameters througdc-
tivity parameter nodesThe “Manufacturing Process” activity for example has artga
input parameter which is sent to the “Painting” action tlgioan object flow.

The UML concepts of classes, instances, relationshipsposite structures and ac-
tivities are generic. The UML can therefore also be used tdehoon-technical aspects.
Parunak and Odell [126] have for example represented ssiciadtures such as terrorist
organizations through UML class and activity diagrams. tNexhe use of the UML to
describe object-oriented software architectures, UMExtiiagrams are typically used to
describe data models.

The featherweight extension mechanism is the easiest arstst®of adding keywords
onto the general purpose UML modeling constructs. Theweight extension mecha-
nism stands for the attachment onto the UML elementstefeotypesvhich for further
detailing can own properties. Stereotypes enable to addohespecific information on
top of the generic UML modeling elements. Several stereagygan be applied to the
same UML modeling element. Stereotypes are graphicallgesgmted within a pair of
guillemets. Stereotypes are for example applied to a cladsts properties, as depicted
in Fig. 3.9, to represent a CATIA-based geometric part andtttsoutes. They can also
have an icon to change the graphical appearance of the UMhbegleit is applied on.
This increases the recognizability of the specific modedrimiation within the general
purpose UML model.

Generic UML Class with Application-specific CATIA Part
application-specific extensions

CATIA point position jointPointPosition

................................. »
StereOtypeS f;;t material: Steel CATIA material
i , mass: 0,022kg”
|«catiaPar» thickness : mm <_> 9 CATIAmass
«catiaPar» length : mm v
«catiaPointPosition» jointPointPosition : mm
«catiaMaterial» material : String CATIA parameters thickness §
«catiaMass» mass : kg ~

length.

Figure 3.9: Example of UML stereotypes

The stereotypes specific to a domain are regrouped in a $ptdia packagecalled
profile. All geometry-specific stereotypes of Fig. 3.9 would for mxde be defined in
a geometry-specific profile. Several profiles are for exarap#lable for the design of
real-time embedded systems [120], airworthiness-comipsiafety-critical software [173]

3 UML-based central product model 63

or System on a Chip (SoC) [116, 145]. However, no profiles hawen lakeveloped to
represent geometric, controller and multibody system rhiof@mation in UML.

Heavyweight extensions aim at modifying or creating UML raliay constructs. It is
generally recommended to favor the slimmest possible UMEresion in order to share
the highest interoperability with other UML users and tool$e lightweight approach
was therefore chosen as UML extension mechanism in thexdaftéhis thesis.

3.4 UML for product data integration

Important modeling languages such as EXPRESS for the s@indaon of product data,
UML for the specification of software architectures and OWL datologies consist of
a wide range of generic modeling concepts which have gaindd acceptance. Among
the languages with standardized generic modeling conteptdML is unique as it is:

¢ the most widely adopted
¢ the de facto standard to describe object-oriented systems
¢ the only one to describe both in detail static and behavespécts

The UML, as a de facto standard for object-oriented softwardeling [88], is already
well established and adopted by many software engineerfw&e engineering is not
only a major discipline but is playing an increasingly praemt role in product design,
especially as more and more traditional mechanical cowltevices are replaced with
electronic devices. The electronic fly-by-wire control macism for example, which
was first introduced for fighter jets, is now increasingly egngg for higher safety in
other types of vehicles such as small aircraft, automolaifestrucks [137].

As described in Section 3.3.2, the UML resulted from the gatfon of various object-
oriented modeling methods based upon the object-orientegtgamming paradigm. Al-
though it was developed for software modeling, it is congde general purpose model-
ing language as it mostly consists of generic modeling qoisce

The UML consists of modeling entitites which can describéetail both static and
behavioral aspects. EXPRESS, like most data modeling layggusuch as entity-rela-
tionship diagrams, can on the other hand only describeia staipshot of an information
model [3]. Similarly, OWL has no language constructs to descdynamic processes.
However, the ability to specify dynamic processes is imgoartn many disciplines such
as controller or software design. As described in Table 8.$ection 3.3.2, the UML
consists of several diagram types, such as activity diagragguence diagrams and state
machine diagrams in order to describe dynamic processeaddition, the UML can

64 3.4 UML for product data integration

describe the local behavior of entities through methodglwvbnly operate on local entity
attributes.
Further important UML language features include:

e the modeling of entity instances
e its extension mechanisms
e its non-proprietary freely accessible specification

The UML supports the description of entity instances, whimot the case with
EXPRESS or most data modeling languages which strictly sggpadine concepts of an
entity and an entity instance. As opposed to conventional afedeling techniques, the
schema and the schema instances can be situated in the samentidl. This allows
to quickly change the schema and adapt the schema instaco@sliagly. The UML
does not require the schema instances to conform to the schiéms can be practical in
scenarios in which both the schema and the schema instaaqmdg/rchange, such as in
the modeling of product configurations [102]. This allowditst define instances and to
classify them at a later stage for example through reasgriograms as with ontologies
or through formal concept analysis [5].

The UML would simply serve a documentation purpose if it odgscribed object-
oriented models through general purpose UML modeling cootst. Through the addi-
tion of domain-specific information via UML extension menisans, the UML model can
be interpreted and reused for different purposes. The megtiént example in software
engineering is the interpretation of the same UML model fierautomatic generation of
code in different programming languages. Similarly, thateat within a UML model
can also be interpreted in order to generate or update sppaiiuct models.

The UML is defined through a non-proprietary specificatiorichttan be accessed
at no cost. This promotes its diffusion among users and softvproviders. Several
open-source projects, such as the Eclipse Utfdject, the Eclipse Graphical Modeling
FrameworR and TOPCASEDP offer free UML editors. In addition, the non-proprietary
UML specification enables a company to have the guaranteettdl be able to rep-
resent its product information across a complete prodiémtyicle, which may last for
example in the aerospace industry up to 50 years.

“Eclipse UML2,wwv. ecl i pse. or g/ un 2
SEclipse Graphical Modeling Framework (GMRyw. ecl i pse. or g/ gnf
5TOPCASEDww. t opcased. or g/

www.eclipse.org/uml2
www.eclipse.org/gmf
www.topcased.org/

3 UML-based central product model 65

According to Szykman et al. [156], a common product infoiioratepresentation for
cross-domain interoperability needs to fulfill the followgirequirements:

e not tied to a single vendor software solution

e open and non-proprietary

e simple and generic

e extensible by allowing additional concepts to create adwoangineering context
e not dependent on any one product development process

e capable of capturing that portion of the engineering cdriteat is most commonly
shared in product development activities

The first five criteria are fulfilled by the UML. The UML is an ap@on-proprietary
modeling language which is not tied to any software vendbhak gained wide accep-
tance due to its simplicity and generic capabilities antiesefore used for data modeling
or ontology modeling next to software modeling. The UML offextension mechanisms
and was designed as an object-oriented modeling langudgpendent of any software
or product development process. The presented UML chaistate seem to ensure a
long term viability for the UML standard.

According to Szykman’s last criteria, a common product linfation representation
should enable interoperability by representing the mostraonly shared information.
As the UML includes standardized and well-known generic eliod concepts to de-
scribe object-oriented systems, this thesis investighteseuse of the UML to establish a
central product model in order to integrate typical meaatr application-specific model
information.

3.5 UML-based integration approaches

The UML offers extension mechanisms in order to reuse themmpurpose modeling
language for the description of domain-specific informati@he same UML class can
for example be used to describe a Java or a C++ class. The iextanechanisms are
separated into lightweight and first-class extensions. [igigweight extensions, also
called stereotypes in the UML terminology, add supplenrgrgamantics to UML ele-

ments. The lightweight extensions which are specific to tacedomain are regrouped
in packages called profiles. Several profiles are for examyddable for the design of
real-time embedded systems [120], airworthiness-comipsiafety-critical software [173]
or System on a Chip (SoC) [116, 145]. A new modeling languagedas lightweight

extensions of the UML is the Systems Modeling Language (SyqW18] for systems

66 3.5 UML-based integration approaches

engineering. On the other hand, the first-class extensiamamsm consists of changing
the UML metamodel according to MOF. As a consequence, a nadehmg language can
be created by changing the syntax and semantics of the UML.

The UML is both involved directly in product data integratiapproaches as an object-
oriented modeling language and indirectly as a data magiédinguage. The use of the
UML as a data modeling language, similar to the STEP-releERESS modeling lan-
guage, is very frequent. Among many examples it was used ftoedan interchange
format for the exchange of STEP- and PDM system-related[datd or to define a for-
mat for electro-mechanical assemblies [134]. Anothera@aliapproach is the use of the
UML as a software modeling language to specify systems stipggroduct data inte-
gration. The UML is for example applied to the specificatioi?®DM systems [41, 58].

The direct use of the UML for product data integration is lesexmon as it is still
mostly used for the design of software and real-time systi@#ls However, the same
adaptation mechanisms which are applied to add domainfgpEmantics to the general
purpose UML in the context of model-based software engingeran also be used to
integrate product information.

The Methodology for Knowledge Based Engineering ApplicagigMOKA) [154]
has for example extended the UML through stereotypes to tbenMoka modeling lan-
guage for the description of products and design procesBkes. Moka modeling lan-
guage, however, contributes only little to product datagnation as it does not represent
application-specific model information. UML classes antivities are thereby extended
by lightweight extensions which denote general produletted concepts such as assem-
blies, parts and attributes.

Similarly, the UML has also been extended for the conceptuadieling of mass-
customizable products such as configurable personal cengJdl]. Another example is
MECHATRONIC UML [24] for the design of self-optimizing mectranic systems [23],
whereby UML component and statechart diagrams are extetalddscribe feedback
controllers and the dynamics of physical systems.

A prominent example of a UML extension is the Systems Modgelianguage (Sys-
ML) for the specification, analysis, design, verificatiomamalidation of a broad range of
systems. SysML includes additional constructs for modediystem requirements, behav-
ior, structure and parametrics [44]. SysML is suited forquat modeling [11]. Peak et
al. show how SysML supports simulation-based engineerasipth and analysis through
SysML parametrics concepts which are applied to a mechlaeeanple that integrates
computer-aided design and engineering analysis (CAD/CAEY,[130]. SysML ver-
sion 1.1 was released in 2008. Therefore, this modelingulagg cannot be considered

3 UML-based central product model 67

as mature and stable as UML which has already undergone mapoovements since
1997 [89]. So changes in the new SysML modeling language igiéyhprobable. Al-
though SysML is already an extension of UML, it can itselfoate extended for more
specific domains. SysML has been extended for the simulafianechatronic systems
by integrating bond graphs [159] and the Modelica modelamglage [132, 80].

SysML is a new modeling language which will probably underganges in the near
future. However, once SysML has reached a mature and staltles sit will probably be
better suited for multidisciplinary product data integvatthan the UML. Since SysML
is based on UML, UML extensions supporting the represeariaif product information
can eventually be reused to a large extent in SysML.

Current UML-based integration approaches are largely dus software. So far,
UML extensions often enable a domain-specific represemathich is too abstract to
be interpreted. No UML extensions for example currentlysexd represent detailed
application-specific models from mechanical engineering.

3.6 Summary

Central product models use generic modeling concepts i tvdepresent specific mod-
eling concepts of various disciplines. Although modelsifrdifferent engineering dis-
ciplines are highly diverse, most models which are editeith wurrent state-of-the-art
software applications share common modeling conceptsdardo support modular de-
sign. The capacity to easily exchange model componentsoaredise model components
across several models promotes flexibility and produgtiit modeling. In order for
engineers to easily recognize their modular-structuredehimformation within a larger
central product model, the central product model needs tmbwrised of generic model-
ing concepts which can describe in detail modular comp@éiject-oriented modeling
concepts are used to describe modular software. As theyeag¥ig, they can also be used
beyond software modeling for the representation of speeibdular model components
of various engineering disciplines. The modeling concepta central product model
require standardization as a central product model is d&eno be used by many parties.
The Unified Modeling Language (UML) is the de facto standarcbbject-oriented mod-
eling and is widely used in software engineering. This théserefore investigates UML
extensions in order to establish a central product model.

Chapter 4
UML profiles for geometric models

The geometric model of a product plays an important role gireering design as it has
an impact on many other product aspects. Apart from docuatientand packaging stud-
les, geometric models are for example used to drive the ctanpumerically controlled
(CNC) machining of complex surfaces or to generate meshed Im@mtestructural and
aerodynamic analyses. On the one hand, the UML-based grothaez| needs to capture
geometric information which is commonly shared in a mustagplinary context. This
includes for example important geometric characterigiosh as volume, mass, center
of gravity and moment of inertia. On the other hand, the UMisdd product model
needs to represent application-specific geometric mogletmcepts in order to automat-
ically translate the UML-based representation of geormatformation into application-
specific geometric models. Chapter 4 presents UML exten$arrice UML-based rep-
resentation of geometric information. Sections 4.1, 4@ 4B respectively present the
mapping of CATIA-, SolidWorks- and VRML-specific geometric deds into UML.

4.1 UML profile for CATIA-specific geometry

CATIA! is a top end geometry authoring application widely used énehgineering in-
dustry and was therefore chosen for this research work.i$nSéction, the mapping of
parts, part parameters, part dependencies, assemblyaiotsstassembly models, user
defined features and scripts into a UML-based product madakisented.

4.1.1 Parts

Modern CAD tools offer a multitude of features and operatitmngefine geometry on the
2D level and to extrapolate it to 3D. According to the CATIAt@nology, geometric data

IDASSAULT SYSTEMESht t p: / / www. 3ds. cont product s/ cati a/

http://www.3ds.com/products/catia/

70 4.1 UML profile for CATIA-specific geometry

Is structured according to the following hierarchy: 2D getiyis contained in sketches,
3D geometry in bodies or geometrical sets which in turn argained in parts. A part
represents the main modular model component which supijperteuse and exchange of
geometric information across several models. An assenflgwars is called in CATIA a
product.

If a part is to be updated, it would be a waste of time to updat esingle part in
every product one at a time. For this reason, a CATIA part isygplate, just as a class
in object-oriented modeling. Each occurrence of a part inssembly is an instance of a
part. If a partis updated, all part instances are updatemhaatically. This object-oriented
modeling paradigm plays a central role in CATIA and other CABIgolt is thus intuitive
to map a CATIA part into a UML class tagged withaatia Part» stereotype. Fig. 4.1
shows an example of a class corresponding to a part repmgentod. Part instances
are translated into UML as class instances (Fig. 4.1 right)enable the loading of an
existing part during the automatic translation from UMLArEATIA, the «catia Part»
stereotype has an optionidePathattribute of type String to indicate the file path to the
existing part document.

CATIA Part UML Class CATIA Part Instance UML Instance Specification
Rod «catiaPart> QS Rod (rodinstance1) e
==dily Parameters Rod Rod thickness = "5"

B “thickness’ =5mm | «catiaPar» thickness : mm i Parameters length = "40"

=g - - «catiaPar» length : mm = material = "Steel"
length” =80mm “thi ‘= " n

- o «catiaPointPosition» jointPointPosition : mm B thickness” =5mm mass = "0.03

=~ PartBody «catiaMaterial» material : String &P *length’ =40mm

[.
Pad.1 «catiaMass» mass : kg
@ PartBody
#A sketch.1 ® S
T—EI Pad.2 <<|nsta[1_c§:Qf>a -7 &Measure
/ Line.A e 1

= ﬁ *Mass' =0,03kg

" Point.1
t/ Line.2

jointPoint

<C oot L] @ Rod (rodinstance?2) rodInstance2 : Rod
«instanceOf» Rod thickness = "10"
length = "40"

gu_\ Parameters h
jntPntPos = "[-74.93 12.04 36.42]"

=8 Aluminium

=-Measure EET “thickness' =10mm

=N N
=G *Mass' =0,018kg BF "length’ =40mm
:- PartBody
L. jointPoint \

Figure 4.1. CATIA part and part instances with correspondiidL class and instance
specifications

The elements owned by the rod part are displayed left in Figirda typical CATIA
tree structure composed of geometric elements. These geosmities can be described
as properties of the corresponding rod UMtatia Part» class. Properties can for exam-
ple be of type Body to describe this type of geometry contamreof type Point, Line or
Plane for geometric elements. The mapping of geometricifives such as points and
lines into UML is represented in Sections 4.2 and 4.3.

4 UML profiles for geometric models 71

4.1.2 Part parameters and measures

A comfortable method in CATIA to customize the geometry of & pathout manipulat-
ing geometric primitives such as points and planes is tHiqaagameters. A part can be
tailored for different configurations through the use ofetént parameter values. This
approach is referred to as parametric design. The rod pafohaxample two parameters
to tune its thickness and length (Fig. 4.1 left). These patars are common to all rod
part instances. Examples of part instances with differandimeter values are shown in
Fig. 4.1 right. Parameter values set in the part definitiendafault values for all part
instances, but part instances can individually overwhgse values. Parameters of CA-
TIA parts are mapped as UML properties of the correspondilty kcatia Part» class
and tagged with &catia Par» stereotype. The datatype of the property corresponds to
the parameter unit, such as mm in the example above. Theenefed datatype can be
either predefined in a package containing all the Sl valuesyy introduced as needed
into the UML model. A similar but unique part parameter isdiseedescribe the material
applied on the part. The material value can, like normal ipatars, vary between part
instances (Fig. 4.1). Because of its unique nature, the mbRnoperty is tagged with a
«catiaM aterial» stereotype (Fig. 4.1 left).

CATIA offers the possibility to measure characteristics ebmetric elements or of
complete parts. Measures such as the mass, the centre af gnathe inertia matrix of
a part are valuable part properties which often have an itmaother engineering do-
mains. These values are also hard to determine manually thkegeometry is complex.
Important part measures are translated as properties otlied class with appropri-
ate stereotypes such asatiaM ass», «catiaCG» or «catialnertia». The example in
Fig. 4.1 displays the mass measure in the tree structureeafoith part and the related
«catiaM ass» property in the rod class. The names of the properties cambiteaay as
the correlation with the CATIA measure is defined by the stisygm Similarly the mea-
surement of point coordinates is a frequent operation. InLUtkis measure is translated
as a UML property tagged with@&atia Point Position» stereotype. To enable the UML
property to have a different name from the measured poiatnime of the point to be
measured is saved in an attribute of the respesituéia Point Position» stereotype.

Measure and parameter values of CATIA part instances aregsepted in UML as
literal string values in theslots of the related UML instance specifications. The UML
part instance rodinstancel in Fig. 4.1 for example has anstbta defining featurecor-
responding to the thickness property of tteatiaPart»rod class and with a literal string
value of “5”.

72 4.1 UML profile for CATIA-specific geometry

4.1.3 Dependencies between parts

Dependencies between parts are frequent. The dependéid ptien referred to as the
child part and the referenced part as the parent part. The it is then updated when
the parent part changes. For instance, the lowermost fothredlider part (Fig. 4.2 left)
is dependent on the rail profile form of the base part repteselny a sketch (Fig. 4.2
right). There are two methods for a child part to referencelament of a parent part.
One is direct but does not enable a later replacement of trenppart with a similar
part. In the previous example, this would result in the skt directly referencing the
Sketch.2 element of the base part. In software terms, thigdime similar to hard coding,
which is considered an anti-pattern. The downside of thisadiapproach is that if the
base part is replaced with a similar part, the previouslgiigel dependency needs to be
redefined.

Slider o
C'ilia Pe . r PartBody
artBody T-El Pad.1
FEI Pad.1 @ Pocket.1
T-EI Pad.2 Tt-@ Sketch.2 4
#-7] Pad.3 #-7] Pad.2

® @ External References CATIA CCP Link @ Publication g ~
[#- sliderBaseProfile(BaselrailProfile) | > railProfile
CATIA External Reference CATIA Publication
UML Interface
«catiaPart» UML Usage ﬁ;ﬁ::g'_:f:gﬁ::r UML Interface Realization | «catiapart»
! slider «catiaCCPLink» il Base

railProfile : Sketch

Figure 4.2: Top: CCP link between the slider and the base para\published sketch
element. Bottom: Dependency described in UML through rdlatetia Part» classes
requiring and providing &catia Publication» interface

The other more flexible referencing method in CATIA consi$tssing an intermedi-
ary interface. The parent part explicitly declares the elet® that are to be made easily
available to other parts. These are called the publishedesles and are owned by the
parent part. A published element is linked with the georoednitity it is representing.
The published element can also have a more descriptive Hanelte geometric element
it is standing for, such as railProfile instead of Sketchig.(&.2 right). The child part
then does not directly reference the geometric entity inpdwent part but its represen-
tative, namely the corresponding published element of #re his allows to decouple
the reference from the concrete referenced geometriggeaititwing the reference to stay
the same although the referenced geometric entity may ehahige parent part can be
swapped for another one while the previously defined depeydwill persist under the

4 UML profiles for geometric models 73

condition that the new parent part offers the same publisterdents. Published elements
are identical if they have the same name and are of the sarmeTie use of publications
makes the exchange of geometric entities more transpandrgraables a more modular
part architecture. The base part for example publisheskitels of the rail track under a
publication called railProfile and the slider references plublication (Fig. 4.2).

The concept of a publication is similar in object-orienteétware design to an inter-
face describing a service required by one class and offgraddther. It is often a recom-
mended practice in software design to define a dependenagbettwo software classes
via an interface-typed reference that can stay the same wtelimplementing class can
easily be swapped. Due to the similarity between the cormfegopublication in CATIA
and of an interface in object-oriented software progranggtime publications list of a CA-
TIA part is translated in UML into a UML interface tagged withccatia Publication»
stereotype. And the class corresponding to the CATIA parthasterface realization re-
lationship with the«xcatia Publication» interface. The published elements are translated
into attributes of thexcatia Publication» interface with corresponding names and types.
In the example of Fig. 4.2, theatia Part» base class realizes theatia Publication»
IBaseToSlider interface, owning the published elemenPrafile of type Sketch.

The dependency of a part on a geometric entity of anotheripégpendent of any
assembly context is called in CATIA a Cut Copy and Paste (CCP) Askhe use of pub-
lications is recommended, the dependency of a child padtiginected at the parent part
but at the published geometric entities. The CCP link deperydsndescribed in UML
as a UML usage dependency between the UML class represéhéraild part and the
UML interface corresponding to the published elements [i@te usage dependency is
tagged with a«atiaCC P Link» stereotype. ThecatiaPart» Slider class of Fig. 4.2 for
example has &catiaC'C P Link» usage dependency on tkeatia Publication» |IBase-
ToSlider interface. The railProfile sketch element will dé¢e be provided by an imple-
menting class, in this case theatia Part» Base class.

4.1.4 Products

It is common to decompose the entire geometry of a produzsieneral parts to facilitate
the reuse of single parts in other projects. An assembly dfipatances is called in

CATIA a product. An example of a product composed of sevesd@abled part instances
forming a slider-crank mechanism can be found in Fig. 4.3 JliderMotion product is

composed of skeleton, base, crank, rod and slider partniossa All part instances are
visible except the skeleton instance which only consista @D sketch describing the
main kinematic features of the slider mechanism (Fig. 4.7).

74 4.1 UML profile for CATIA-specific geometry

base

CATIA Product /Sllder

5'%“._)j sliderMotion
#@ Skeleton (skeletonlnstance)
2| Base (baselnstance)

rod

crank
2md Crank (crankInstance)

& Rod (rodInstance)
#@ Slider (sliderInstance)

UML Class
«catiaProduct»

SliderMotion sliderMotion : SliderMotion
skeletonPart : Skeleton skeletonPart = skeletonInstance
basePart : Base basePart = baselnstance
crankPart : Crank crankPart = crankInstance
rodPart : Rod rodPart = rodInstance
sliderPart : Slider sliderPart = sliderInstance

Figure 4.3: CATIA product and related UML class and instance

As large assemblies can be composed of smaller assemlbigegetomposition of
the geometry into products can also occur. So a product$s,asl a part, also a tem-
plate that can be instantiated. A product standing for alagsembly can hence contain
product instances representing smaller assemblies. Dilne teimilarity of a product to
a part in respect to their common template nature, a CATIA gpebds translated like a
CATIA part in UML into a UML class, but tagged with &catia Product» stereotype.
Products can, just like parts, have parameters to tunedkeimetry, have measures such
as their mass and also publish their geometric entities«c@tia Product» classes can
have properties tagged with the same stereotypes preyiptessented for properties of
«catiaPart» classes and also implemestatiaPublication»interfaces. To support an
executable translation of UML into CATIA, thecatia Product» stereotype also has the
optionalfilePathattribute to refer to an existing product. Furthermore,ttpnost prod-
uct in the product hierarchy to be considered for the UML to @Agonversion is tagged
with a «catia Root Product» instead of a casuakatia Product» stereotype.

«catiaProduct»
SliderMotion

fixedParts movingParts

FixedPart MovingPart

«catiaPart» «catiaPart» «catiaPart» «catiaPart»
izl Base Crank il Rod Slider

Figure 4.4: Possible introduction of non CATIA-specific gas for a better classification

The part or product instances owned by a product are dedandgML as properties
of the «catia Product» class. The properties are typed with corresponeiagia Part»
or «catiaProduct» classes. The sliderMotion class for example has propentese

4 UML profiles for geometric models 75

types are respectively equal to tkeatia Part» skeleton, base, crank, rod and slider
classes (Fig. 4.3 bottom left). But the mapping between te@ntes owned by the CA-
TIA product and the properties owned by theitia Product» class does not need to be
one to one. New classes can be introduced in UML that do na tieir equivalent in
CATIA. This enables a better higher level classification &<¢hatia Part» classes. The
parts of the sliderMotion product can for example be sepdraito fixed and moving
parts (Fig. 4.4). Generalization relationships would tbgist between thecatia Part»
classes and the non CATIA-specific classes. The sliderMetatia Product» class in-
stance would then reference its owned part instances vix@dParts and movingParts
slots.

4.1.5 Assembly constraints

CATIA assembly constraints ensure the correct positionntbaientation of part or prod-
uct instances relative to each other within an assembly.s&erably constraint therefore
references the involved geometric entities and accordiritsttype restricts the relative
movement of these entities. The revolute axes of the rod baer art instances for
example need to coincide (Fig. 4.6), so that if one part ipldted, the other part will
be displaced accordingly. Assembly constraints are own&ATIA by the product. As
constraints need to reference specific geometric entitisnaparts, it is recommended
that they reference the published representatives of coadentities. Through the use of
published elements playing an intermediary role, the camdtcan stay the same while
the concerned parts or features are replaced with simikes.on

The published elements of a CATIA part are contained in ongyumamed list called
the publications list whereas a UML class can implementrs¢W#ML interfaces. In the
first case, the origin or type of a dependency cannot be révedjas all the published
elements are stored in the same publications list indeperafeheir role. In the latter
case, each UML interface can depict for higher modularity elarity a certain type of
service between a realizing and a client class. The liroatif mapping all published
elements into one UML interface does not apply. The pubtislements translated into
UML can be separated into several interfaces accordingetio tbles, allowing a better
overview of the different publishing intentions. It is faxample the case with the base
partin Fig. 4.5, which provides the railProfile sketch malrkas a green dashed line for the
slider according to the IBaseToSlider interface and othengaric entities for assembly
colored green and corresponding to the IBaseForAssemiggfacte.

A CATIA assembly constraint is translated into a UML consitaCATIA constraints
are owned by a product, so the UML constraints are owned nethtedcatia Product»

76 4.1 UML profile for CATIA-specific geometry

CATIA Publications UML Interface Realizations
i Base «catiaPart» «catiaPublication»
Publication Base [#] 1BaseToslider

railProfile

jointAxisForCrank

railProfile : Sketch

«catiaPublication»

contactPlaneForCrank @ IBaseForAssembly
xyPlaneForSlider jointAxisForCrank : Line
xzPlaneForSlider contactPlaneForCrank : Plane

xyPlaneForSlider : Plane
xzPlaneForSlider : Plane

Figure 4.5: Published elements of the base part mappediifeostht UML interfaces

class. According to the type of the assembly constraint ANt constraint is tagged
with a specific stereotype such asatiaF'iz» or «catiaCoincidence». If necessary,
the specific stereotype owns attributes for a complete gtgor of the constraint. A
«catia Angle» stereotype for example owns attributes to specify an angligevand an
angle sector.

9 sliderMotion

F2 Rod (rodInstance)

Tr Rod
=-Publications
L jointAxisForSlider /t/
:r@ Slider (sliderinstance)

Slider

=-Publications
jointAxisForRod

=L Constraints CATIA Assembly Constraint
ﬁ RodAndSliderAxisCoincidence (rodinstance,sliderinstance)

UML Constraint
«catiaProduct» <<catiaCoincidence>>
SliderMotion <Constraint> RodAndSliderAxisCoincidence
constrainedElements:
rodPart : Rod <Property> rodPart, <Property> jointAxisForSlider
sliderPart : Slider <Property> sliderPart, <Property> jointAxisForRod

Figure 4.6: CATIA coincidence assembly constraint and retspgeUML constraint

TheconstrainedElemerattribute of the UML constraint needs to refer to the element
corresponding to the geometric part entities confined bYC#REIA constraint. The UML
constraint can therefore refer either to the instance siote the«catia Product» class
properties representing the constrained geometric elsmdn the first case, the con-
straint only applies to specific part instances. In the lattee constraint applies to all
«catia Product» class instances but can only be successfully resolved iptbperties
representing the constrained parts haveudtiplicity equal to one.

In the first case, the constraint refers to the product imgtaioncerned and to the
instance slots whose defining features correspond to thieshatl geometric elements
described ascatia Publication» interface properties. In the second case, the constraint
references sets of two properties, one representing tioé/agt part and one the involved
geometric entity. The UML coincidence constraint of Fig fbr example references the

4 UML profiles for geometric models 77

rodPart and sliderPart properties of thetia Product» sliderMotion class as well as the
properties representing the axes owned by the respeciivén Publication» interfaces.

4.1.6 Dependencies between part instances

CATIA supports the design of a part in relation to already @xgsparts in an assembly.
This design method is referred to as relational design oeagyd in context. The result-
ing part dependencies, called import links, are only adtive certain assembly context,
unlike CCP links which define part dependencies independeartyassembly context.

CATIA import links are often used in combination with a soledlskeleton or adapter
model which significantly reduces the overall number of dagiendencies. The skeleton
model describes the geometric entities upon which the fesiecassembly will be built
and enables to easily configure the entire assembly by omigtan) the skeleton model.
The skeleton model usually only contains basic geomettitciensuch as points, lines,
planes and sketches to indicate the positioning or the difaes of the concrete parts
making up the assembly. The use of a skeleton model for tHeoang of geometry
Is in its principle similar to the use of the template metha&sign pattern in software
engineering [47] which describes a basic frame, also cédleeleton”, in which complex
software components can fit in.

In the case of the sliderMotion product, the skeleton maagliesented by a skeleton
part, describes the dimensions that apply to the neighpgramts such as the base, the
crank, the rod and the slider (Fig. 4.7 left). The use of mathions is again recommended
as in every case in which a part, product or constraint rafese a geometric entity. So
the skeleton part publishes the parameters such as cragtk_enrodLength.

The published entities are partitioned into several UMleifaces according to the
interaction the skeletorcatia Part» class has with each neighborikgutia Part» class
(Fig. 4.7 right). The jointRadius parameter, which desaithe radius of every revolute
joint cylinder between the bodies, is present in each iaterfas every part depends on
this value. The neighboring parts declare their dependendiie skeleton part by having
a UML usage dependency on theitia Publication» interfaces tagged witheatialm-
port Link» stereotype, just as in the case of CCP links.

As an import link dependency is only present in the contexamfassembly, it is
described in UML as a UML assembly connector between patteeafomposite structure
of a «catiaProduct» class (Fig. 4.8). The “ball-and-socket’notation used ig.F.8
represents the parts offering and requiring interfacesi@asailable if the parts have as
classifier a UML component instead of a class. A UML compoieatsubtype of a class
and as a consequence has the same properties as a UML cléss n&pping of a CATIA

78

4.1 UML profile for CATIA-specific geometry

Base

Ell
£l External Parameters

¥

Slider
| -
&5 External Parameters

“jointRadius®

“sliderJointHeight"

Skeleton
-- PartBody
i'@ skeletonSketch
100 % Publication

jointRadius
Re CATIA Import Links
crankLength p

rodLength

basedJointHeight
baseBodyHeight
sliderJointHeight

7 16 25

Crank Rod

_ | =
I I
=13 External Parameters =-gng External Parameters

*jointRadius” “jointRadius”
“crankLength® ‘rodLength’
«catiaPart» «catiaPart»
L&l Base L&l Slider
«catiaImportLink» «catiaImportLink»
«catiaPublication» UML Interfaces «catiaPublication»
@ ISkeletonToBase @ ISkeletonToSlider
jointRadius : mm jointRadius : mm
baseJointHeight : mm sliderJointHeight : mm
baseBodyHeight : mm UML Interface
sliderJointHeight : mm Realizations
«catiaPart»
@ Skeleton
«catiaPublication» «catiaPublication»
@ ISkeletonToCrank @ ISkeletonToRod
jointRadius : mm jointRadius : mm
crankLength : mm rodLength : mm
«catialmportLink» UML Usages «catiaImportLink»
«catiaPart» «catiaPart»
@ Crank @ Rod

Figure 4.7: Top: CATIA import links between the skeleton atedrnieighboring parts.

Bottom: Corresponding UML«eatialmportLink» interface usages between related
«catiaPart» classes

4 UML profiles for geometric models 79

product or part into a UML class can be replaced with a mapipitaga UML component.
The stereotypes previously applied on classes can alsofie@dpn components. The
composite structure diagram of the sliderMotion comporiEig. 4.8) shows the wiring
of its owned parts. Through the “ball-and-socket’notatias for example easily visible
that any crank part instance playing the role of a crankRe=etia to refer to the geometric
entities of a skeleton part instance playing the role of des&agPart in the context of a
sliderMotion product instance.

SliderMotion

basePart : Base sliderPart : Slider
skeletonPart : Skeleton

crankPart : Crank rodPart : Rod

Figure 4.8: CATIA import links displayed as UML connectordfye composite structure
diagram of the relatedcatia Product» class

4.1.7 PowerCopies

CATIA PowerCopies enable the reusability of a design intedtame very similar to user-
defined features. Common geometric operations are for exatefined as PowerCopies.
PowerCopies are comparable to operations with input argtsaeinl an outcoming result.
They represent knowledge templates which can be instadtiatdifferent geometrical
contexts. However, a PowerCopy is not defined by specifyiregsthgle steps to reach
a target feature. Instead, it is defined according to an &rexisting target feature.
CATIA detects all geometric entities such as points, linesfanes, and all non-geometric
entities such as parameters and formulas which composeiradi¢srget feature. The
user chooses from this set the entities which are to be \ariabhese then represent
the input arguments of the Powercopy which is either savexpart or in a catalog. A
PowerCopy can be reused in another context, such as in arpattteto create a similar
target feature however based on different input argumertie. features inserted by the
application of PowerCopies are not necessarily of geomesitiare. They can also include
non-geometric aspects such as checks and rules.

The example in Fig. 4.9 shows the definition of the CreatefflteverCopy. It creates
an EdgeFillet feature and a formula based on two faces andiasraalue. The target
EdgeFillet feature, displayed in purple in the 3D modelhis tesult of applying a fillet

80 4.1 UML profile for CATIA-specific geometry

CATIA PowerCopy UML Class
@ﬁ Fillet Target feature: PowerCopy input entities: «catiaPowerCopy»
E!I_I Parameters it CreateFillet Fl.» facel CreateFillet
e I Y y 2 «catiaPowerCopylInput» facel : Face
BP ‘radius’ =10mm &9 Edgefillet "G face2 >é) CreateFillet «catiaPowerCopyInput» face2 : Face
fi-4 Formula EI radlus

PowerCopy «catiaPowerCopyPar» radius : mm

T %CreateFillet
r PartBody
S B
&) EdgeFillet
Figure 4.9: CATIA PowerCopy and related UML class

with a radius of 10mm on both green box faces. The applicatiothe CreateFillet
PowerCopy on another part is shown in Fig. 4.10. The PowerCopystantiated with
two crank part faces colored green and a radius value of 2mimpas arguments. The
resulting crank fillets are colored purple. The result offlee&verCopy application, which

IS synonymous with its instantiation, is displayed in theide tree of the crank part as
edgeFilletinstance feature.

PowerCopy instance

. Composition of UML Instances
inside part Instance

@ Crank (crankInstance)
"ﬂél';j Crank PowerCopy input entities: crankInstance : Crank
Parameters ,crankFace1l
/

=] . , -
| “filletRadius® =2mm - ------ radius -
.. PartBody , —_ CreateFilletInstance : CreateFillet
7] \ 9 facel = crankFacel
t Pad.1 X face2 = crankFace2

£ CreateFilletinstance crankFace2 radius = 2

Figure 4.10: CATIA PowerCopy instance and related UML ins¢éanc

As PowerCopies represent knowledge templates, they aresamed in UML as
classes. The PowerCopy-specific classes are tagged witln & PowerCopy» stereo-
type. PowerCopy input parameters are described as UML preperf the«catia Power-
Copy» class and are tagged with<«aatia PowerCopyPar» stereotype. Accordingly,
PowerCopy input entities are described as UML propertiessaadagged with &catia-
PowerCopylInput» stereotype. The application of PowerCopies are correspghdie-
scribed as UML instances efatia PowerCopy» classes.

The CreateFillet PowerCopy of Fig. 4.9 is for example desdribdJML as a«catia-
PowerCopy» class with its face-related properties tagged witkcatia PowerCopy-
Input» and its radius property tagged withwaatia PowerCopy Par» stereotype. The
CreateFilletinstance PowerCopy instance for example nefereboth crank faces as input
arguments and sets the radius value to 2mm (Fig. 4.10). The@wopy instance is
inserted into the crankinstance part. The compositiortiogiship between the instances

4 UML profiles for geometric models 81

Is mapped one-to-one into UML, so the related UML crank pastance is composed of
the UML PowerCopy instance.

CATIA user defined features are knowledge templates verylaino PowerCopies.
They are mapped into UML just as PowerCopies. The main diffezdies in the black
box character of user defined features. The result of a Poygridstantiation is visible
in the CATIA design tree. It might for example show the ensitiehich have been added
through the application of a PowerCopy. On the other handfehrires added by the
user defined feature instantiation are not visible in thegtetsee. According to the pre-
vious example, a user defined feature instance correspptaline PowerCopy instance
would not represent the fillet feature in the design tree. dpp@ication of a user defined
feature is only represented in the design tree through semete to a user defined feature
instance. As a consequence, a user defined feature enabiesetbdesign know-how
without disclosing the details of a geometric operation.

4.1.8 Scripts

CATIA supports several programming languages, such as Mgasic Script (VBS), Vi-
sual Basic Application (VBA), Java and C++, for the automatodrroutine geometry
editing tasks. A CATIA-specific VBS/VBA program is also calledscript or macro.
Routine geometry steps are programmed in a script and candogitex and reused in
different contexts. The CATIA script in Fig. 4.11 for examleates a pocket feature
based on a sketch and a depth value. Its execution is showmpé@y in Fig. 4.12.

CATIA Script UML Class

zutb criatePiFkSt(sketchTimf, pocketDepth) «catiaScript»

et part = catiaDocument.Par E
Set mainBody = part.MainBody GreateROGRES
part.InWorkObject = mainBody «catiaScriptPar» sketchName : String
set sketch = mainBody.Sketches.Item(sketchName) «catiaScriptPar» pocketDepth : mm
Set shapeFactory = part.ShapeFactory «create» createPocket (sketchName, pocketDepth)
Set pocket = shapeFactory.addNewPocket(sketch, pocketDepth)
End Sub

Figure 4.11: CATIA script and corresponding UML class

As scripts represent a program, they can be translated Miodperations. The result
of a script activation is a feature which is represented inLLAd an instance. To indicate
that a UML instance is the result of a UML operation, the dfgssof the instance can
own the respective operation and declare it as a constraperation with a single return
result of the type of the owning class. A constructor operais typically tagged with a
«create» stereotype (Fig. 4.11).

Although the mapping of a CATIA script into a UML operation isakible, a less
modeling-intensive and simpler UML representation of a GXBLript is possible. A

82 4.2 UML profile for SolidWorks-specific geometry

script represents a template which can be executed, in oibrels instantiated. A script
can thus be described in UML through a UML class and a scrifwamon through a
UML instance. The application of theatia.Script» and«catiaScript Par» stereotypes
respectively on the UML class and UML properties is sufficiEnunambiguously de-
scribe in UML a CATIA script and its parameters. The activatmf a script is then
described through a corresponding UML instance.

The location of the CATIA script is described in toatiaScriptPathattribute of the
«catiaScript» stereotype. The execution order of scripts may be imposgsute some
may be based on the result of a previous script executionhitncase, the execution
priority of a script is set through tharder attribute of thexcatiaScript» stereotype.

A script is executed within a part or a product instance. Assalt, the part or product
instance owns the new features created by the script dotivalhe composition rela-
tionship between the part or product instance and the resulte script activation are
translated into UML as a composition relationship betwéenrélated UML instances.

The execution of the createPocket script of Fig. 4.11 in deslpart instance is for
example displayed in Fig. 4.12. In this case, the scriptvatitin only adds a pocket
feature to the slider part instance. As a result of the saxgicution, the design tree
shows the new pocket feature named pocketinstance and aheegigc model displays a
hole in the slider part. Similar to the composition of CATIAafares visible in the design
tree, the corresponding UML slider instance owns the poitistance which represents
the result of the script activation. The input values for életivation of the createPocket
script are stored in the slots of the pocket instance whassifier is the<catiaScript»
CreatePocket class.

Script activation in part Instance Composition of UML Instances

Sllder (sliderInstance) Sllder (sliderinstance) sliderInstance : Slider

iﬁ-‘ Slider ﬁ;‘ Slider
_»
"_ PartBody =" PartBody
a—@ sketchForPocket ocketInstance : CreatePocket

L ocketlnstance
El P sketchName = "sketchForPocket"
*"@ sketchForPocket pocketDepth = 30

Figure 4.12: Script activation inside a part instance andesponding UML instances

4.2 UML profile for SolidWorks-specific geometry

SolidWorkg is a popular 3D mechanical computer-aided design (CAD) aeatiin which
shares common modeling concepts with CATIA but also has sdrite @awvn. This Sec-

2DASSAULT SYSTEMESht t p: / / www. sol i dwor ks. coml

http://www.solidworks.com/

4 UML profiles for geometric models 83

tion first presents the mapping of SolidWorks-specific atd@sinto UML similar to the
mapping of CATIA-specific products into UML. The Section tremows the mapping of
detailed geometric entities such as planes and axes into,MMich was not addressed in
the last Section. Finally, the Section shows the UML-basgdasentation of SolidWorks-
specific assembly constraints which are defined differahty in CATIA.

4.2.1 Assemblies

The definition of geometry in SolidWorks is very similar tathn CATIA. 2D geometry
is defined in sketches, which are extrapolated to 3D geormelrigh itself is saved in part
or assembly documents. Both parts and assemblies are tesypthich can be inserted
through instantiation into other assemblies. Figure 4H®&vs the Solidworks assembly
model of the slider-crank mechanism and its correspondesigd tree. The assembly
contains part instances as well as geometric entities suplaaes and axes.

SolidWorks Assembly UML Class
@ SliderMation «sldWorksRootAsm>»
\<\> Frant SIiderMotion
Q round Slider features * Feature
@ Center i
& Raillevel base 1 | «sldWorkspart>
.) BB
& CrankJointLevel ase
N 1
Q Slider JointLewvel crank <<slt::rlr<::"akrt»
", CrankRotations 1
ot]) rod «sldWorksPart>»
Q CrankOrientatio i) Rod
X “ i 1
¥ Q% () Base<1:= R slider «sldWorksPart»
+ Q% (-1 Crank<1= [slider
+- B ()Rod<1> Base Crank

-y (-} Slider <1
Figure 4.13: SolidWorks assembly model of the slider-cnagichanism

The mapping of SolidWorks parts and assemblies into UML énidtal to the map-
ping of CATIA parts (Subsection 4.1.1) and products (Subseet.1.4) into UML with
the only difference being the stereotype names. The Solid$\Vassembly of Fig. 4.13
named sliderMotion is for example translated into a UML skagyged with &sldW orks-
Root Asm>» stereotype. The owned parts, such as the base, the cranigdiand the
slider, are described as UML classes tagged withldlV orks Part» stereotype. Assem-
blies are normally depicted in UML with @sldW orksAsm» stereotype but the highest
assembly in the model hierarchy is tagged witks&lWW orksRoot Asm» stereotype to
reflect its unique role. The resulting class diagram showhiegcomposition between the
assembly and its owned parts is represented in Fig. 4.18 righ

84 4.2 UML profile for SolidWorks-specific geometry

SolidWorks Assembly UML Instance Specification
Q@ sliderotion [Z] =Instance Specification: shderMotion

£ Front =% =Slok> Features
232 Ground 1= «Instance Yalue:= Ground
Q Center 1=l <Instance Yalue = Center
~<% R ailLewvel 4Zl «Instance Yalue:x Fronk
. . H4Zl <Instance Yalue = Raillevel
% ;ng;;::t::;l 4=l <Instance Yalue = CrankJointLewvel
+_\" I S 1= <Instance value: Slider JaintLewvel
ot) . 4=l <Instance Yalue = CrankRotationdxis
<S>')* CrankOrientation 4=l <Instance Yalue = CrankOrientakion

* % Base<l» =% <3lob> base

+ % Crank<1x 4] <Instance Yalue> Base=<1>

E % Rod<1= =% «Slak= crank,

+ % Slider <1 {3 <Inskance Yalue> Crank<1 =
=% «Slot rod
=] <Instance Value:= Rod<1=
=% =3lak = slider
4=l <Instance Yalue = Slider <1z

Figure 4.14: UML instance of the slider-crank mechanismd¥gbrks assembly model

The tree structure of the UML instance corresponding to tie®/orks assembly is
shown in Fig. 4.14. The slots of the sliderMotion instanceegpond to the properties
of its «sldW orksRoot Asm» SliderMotion class. The slots of the sliderMotion instance
contain instance values which refer to instance specifioati The features slot for ex-
ample contains instance values referring to the instanfciae @eometric entities such as
planes and axes. Each other slot refers to an owned parhaesta\n ordering of geo-
metric entities and parts in another set of UML propertiesoading to other criteria is
possible. The current example closely mirrors the Solid&/momposition structure in
UML.

Each assembly has three reference planes according to vikiolvned geometric
entities are positioned. In the example of the slider-crardchanism, the planes are
named Front, Ground and Center. To differentiate the reterptanes from casual planes,
the corresponding UML instances are tagged witsl@\V orks Root Plane» Stereotype.

4.2.2 Geometric entities

A SolidWorks assembly can directly contain on the same caitipa level detailed ge-
ometric entities in addition to part or assembly instanddse sliderMotion assembly in
Fig. 4.13 is for example composed of several planes such #s=Relior CrankJointLevel.
CATIA assembly models are on the other hand only composedtbpproduct instances
and only indirectly contain geometric entities throughitlosvned part instances. Geo-

4 UML profiles for geometric models 85

metric entities play a more important role in SolidWorksritl@a CATIA. The SolidWorks
geometry is therefore often changed through the modificaifaletailed geometric enti-
ties. It is hence necessary to represent detailed georeetitees in UML.

Geometric entities are often defined according to diffeset$ of argument types as
well as based on other geometric entities. An axis can fomgka be defined either by
being perpendicular to a plane and passing through a paytgoing through two points.
The type of a geometric entity specifies the invariant sebskfble defining arguments.

Geometric entity types represent a class of similar geaoetitities and are therefore
described in UML as classes. Each geometric entity typefinetbaccording to specific
arguments which are described as properties of their régpédML entity type-specific
class. To avoid a redundant definition of invariant georoedritity type-specific UML
classes in every UML model, they are predefined only once enStlidworks profile.
Specific UML classes corresponding to geometric entity sygeich as Plane and Axis,
have therefore been defined in the SolidWorks profile.

A geometric entity instance, such as the RailLevel plane efstiderMotion assem-
bly in Fig. 4.13, is for example represented in UML by an inst& whose classifier
is the predefined Plane class of the SolidWorks profile. Thereace to predefined
domain-specific classes does not hinder a simultaneouspleuitomain interpretation
as instances can have several classifiers. As an exampldid&V8iks-specific UML
plane instance which additionally needs to represent a CAécific plane can have as
second classifier the predefined Plane class of the CATIA profil

SolidWorks Axis Definition Menu

N
.

bed

Selections

- UML Instance of Axis
Front
CranklaintLevel [Z] «Instance Specification CrankRotationfxis
= imiki
CramkRotationAxis] «<Slok> definitionTvpe
., | one LinefEdaejasis 4= «Instance Yalue > bwoPlanes
F =
yr-= Front) i <Slok: argurments
. 7 15 «Instance Yalue= CranklointLewvel
. N . e ™~
| Twa Paints{ertices 7 4=l <Instance Value > Front
-'."Il CylindricalConical Face /// - \
(\\ \\\\: ' %
A;’ Paint and FaceFlane CrankJoiR?te(e;lY//X\

Figure 4.15: Axis defined by two planes and corresponding Uhétance

The SolidWorks assembly model of the slider-crank mecimaumsFig. 4.13 contains
geometric entities to establish a skeleton model upon wihielowned parts can be posi-
tioned. The crank part must for example rotate around ancaxismon to the base part.
The axis is defined as CrankRotationAxis in the sliderMotioseashly model (Figure

86 4.2 UML profile for SolidWorks-specific geometry

4.15). Both the base and crank parts are positioned accotalihg The axis is defined
as the intersection of two planes. As a consequence, thenargs to define the axis re-
fer to two planes, namely the Front and CrankJointLevel gafégure 4.15 shows the
SolidWorks menu to define the axis based on different argtsn@&ihe different definition
types are described in the SolidWorks profile as enumeréterals. The UML instance
describing the CrankRotationAxis is of type Axis and refer®tigh slots to the same
information as in the SolidWorks menu. The first slot spesifiee definition type by con-
taining an instance value whose instance attribute is ¢quié “twoPlanes”’enumeration
literal. The second slot specifies the input arguments tfiragnistance values referring to
the CrankJointLevel and Front plane instances.

SolidWorks Plane Definition Menu
<52
Selections

f:lj CrankRaotationaxis
CrankJointLevel

UML Instance of Plane

bid

[E «Instance Specification = CrankOrientation

= %0 «Slat> definitionType
1Z] <Instance Value > atangle

=199 =Slot> arguments
1Z] «Instance VYalue = CrankJointLevel
1Z] «Instance Walue = CrankRotationaxis

«=* | Through Lines/Paoints

D- Farallel Plane at Poink

B || 50-00deg 2 / 7 = %0 «5lot> offsetangle
o5 L / . 5 <Literal String= 50.0
[¥]Reverse direction . am@fn/n :L EV;I e // - =1 ::_SI:::I:}: rexverselireckion
S~ | Mormal ko Curve \\ g;an/T(YRotationAxis T4F <literal Boolean: true
L/
wn | On Surface

Figure 4.16: Plane defined by its angle to another plane amdsmonding UML instance

Another example of a geometric entity belonging to the slctank mechanism as-
sembly is the CrankOrientation plane displayed in Fig. 4.h&tvdefines the orientation
of the crank. It is, just like the axis, also described acocwydo a definition type, in
this case “at angle” with a value of 50.00deg and relativevo arguments, namely the
CrankRotation axis and the CrankJointLevel plane.

In contrast to part-related modeling concepts, geometrities were represented in
UML without stereotypes. A geometric part is a modular mao®hponent. As a re-
sult, the semantics of part-related modeling conceptsesponded to the semantics of
generic UML modeling concepts with an applied stereotypethis case, the combina-
tion of a stereotype with a UML modeling element formed a niegial information unit.
On the other hand, geometric entities do not form encap=dil@mipdular entities but are
often only meaningfully defined based on other geometritiest As an example, the
definition of an axis may require two points. While geometntitees can be mapped

4 UML profiles for geometric models 87

one-to-one into corresponding UML elements, the appbecatf stereotypes would not
add any useful semantics since a geometric entity is onlynmgtully represented in
UML in combination with its dependent geometric entities.

4.2.3 Mates

Assembly constraints position the geometric elementsivelto each other and are called

in SolidWorks mates. The type of a SolidWorks mate is notolésin the design tree but
only recognizable by opening its definition menu. CATIA on titeer hand directly
displays the type of constraint in the design tree througltam. Due to this difference,
SolidWorks mates are mapped slightly differently than CABgsembly constraints into
UML. A SolidWorks mate is described in UML as a constraintged with a non type-
specific«sldW orksMate» stereotype. The arguments required to define a SolidWorks
mate in UML are specified through the attributes of the UMLstaaint and of its applied
«sldW orksMate» stereotype.

SolidWorks Constraint Definition Menu

Mate Selections £
AxisForRod@Crank- 1 @sliderMotion
AxisForCrank@R od- 1 @sliderMotion AxisForCrank
StandardKates 2 UML constraint
Coincident =
__ Sk = <sldworksMate = <Constraint > crankRodointAxis
“> | Parallel
Properky Value
1L | Perpendicular o 5l Warks Mate
Alignment '= Antidligned
Angle '= 0.0
Distance '= 0.0
q/? Flip Dimension '= false
Type '= coincident
&

= ML
Constrained Element © <Instance Specification > AxisForFod,
e O <Inskance Specification > AxisForCrank

Mate alignment:

Figure 4.17: Coincidence constraint between two axes amdsymonding UML constraint

A set of arguments and options depending on the mate typejisreel for the full
definition of a SolidWorks mate. The mate-specific optionshsas type, distance, an-
gle, flipDimension and alignment are described in UML thioulge properties of the
«sldW orksM ate» stereotype (Fig. 4.17). The alignment option of the Solid&aoin-
cidence mate is a supplementary argument to unambiguoeBhedhe orientation of the
constrained geometric entities before mating. The flipDisi@n option enables to swap
the direction in case of a distance mate. The geometric eltsneenstrained by the mate

88 4.3 UML profile for VRML-specific geometry

are described in UML as instances. The UML constraint, gpoading to the Solid-
Works mate, references the constrained geometric elerttaoisgh its constrainedEle-
ment attribute.

In the case of the slider-crank mechanism, the joint axis®ttank and of the rod for
example need to coincide (Fig. 4.17 top right). A SolidWomkate of type Coincidence
having both axes as arguments is therefore defined. Thenadiginoption is set to An-
tiAligned. As shown in Fig. 4.17, the mate type is not recagbie in the design tree of
the assembly. The corresponding UML constraint is disglage=ig. 4.17 bottom right.
In case of distance and angle mates, distance and angle\akieequired.

4.3 UML profile for VRML-specific geometry

The Virtual Reality Modeling Language (VRML) is a file formatpable of representing
static and animated 3D and multimedia objects with hyplkslito other media such as
text, sounds, movies and images. VRML browsers, as well d®dng tools for the
creation of VRML files, are widely available for many diffetguiatforms.

The second version of the specification, known as VRML97 or VRML[165], has
been accepted as a standard format by the Internationahiegi@n for Standardization
(1SO) and the Web3D Consortitfmvas formed to ensure its development. VRML has
been superseded by Extensible 3D (X3D) [166] which is a névdtandard in an XML-
based format. However, VRML is still very widespread and mabymodeling programs
support an automatic translation into VRML.

Subsection 4.3.1 presents the basic VRML file structure. &tlos 4.3.2 presents the
mechanism used for the translation of detailed VRML-spedificrmation into a UML
model. Subsection 4.3.3 shows VRML files displaying lessitkta thus less granularity
as well as another mapping technique for the translatiotns&etion 4.3.4 presents the
UML-based linking of CATIA and VRML data to enable an automatianslation of
CATIA into VRML via the UML-based product model.

4.3.1 File structure

A VRML file is defined in a text file with the .wrl ending for WorldAn example of a
VRML plaintext file and corresponding geometry rendered byRIML browser is dis-
played in Fig. 4.18. A VRML file essentially consists of a scgnaph and an event
routing. The scene graph hierarchically contains nodeswtiescribe audio-visual ob-

3Web3D Consortiumht t p: / / waww. web3d. or g/

http://www.web3d.org/

4 UML profiles for geometric models 89

jects and their properties. The event routing is a mechatogmnocess events generated
by nodes so that the scene graph can change dynamicallytiédwddiy, a VRML file can
contain prototypes which allow a set of VRML node types to beereded by the user.
Their implementation is then browser-dependent.

The slider VRML file in Fig. 4.18 only contains a scene graph aocvent routing
nor prototypes. The file begins with a comment highlightediamk grey which acts
as a header to support an easier identification of the file. tfgiedable nodes have an
enumeration of properties whereby only one is active at eng.tIn the slider example,
the bindable nodes Background and Viewpoint are highligimdalue. If for example
several viewpoints were defined, only one viewpoint coulatiese.

VRML Document

#VRML V2.0 utf8 Document

Background {skyColor 11 1}

Viewpoint {
position 0.10.10.1
orientation 0.200652 0.450352 0.870013 2.401999
description "lsometric Viewpoint"

block Transform {
scale 0.001 0.001 0.001
rotation 0.0 0.0 1.0 1.5707
children [
Shape {
appearance Appearance {
material Material {
diffuseColor 0.4900.490 1
}
}
geometry Extrusion {
creaseAngle 2.5
crossSection [
9.00 0.00, 8.2-3.42,
6.39-6.39, 3.42-8.28,
0.00-9.00, -3.42-8.28,
-6.39-6.39, -8.2-3.42,
-9.00 -0.00,-9.00 20.00,
9.00 20.00,9.00 0.00
1
spine [0.0-10.00.0, 0.0 10.00.0]
}

1
}

cylinder Transform {..}

UML Instances

[Z] =Instance Specification > shdertokion

=]

%2 =slot:> background
20 <Slot> vigwpoinks
%2 «Slot» block
15 «Instance Yalue = block

[Z] «=vrmlDEF == <Instance Specification= block

=

#0 =slot > scale
#3 <Slok > rotation
#2 =slot > children
=] «Instance Yalue= shape

=
=]

<Instance Specfication > shape
20 <Slot> appearance
%2 =5lok> geometry
15 <Instance Yalue = extrusion

=
=]

=

=)

<Instance Specification > extrusion
#2 =5lok> creasedngle
s <literal String 2.5
%2 =slok:> crossSection
5 <literal String> 9.00 0.00, 8.2 -3.42, 5,39
¥ =slot:> spine
s <literal Skring=0.0-10.0 0.0, 0,0 10,0 0.0

Figure 4.18: VRML-rendered geometry of the slider with cepending sample VRML
text file and UML instances

The scene graph consists in the slider example of two grgupades of type Trans-
form. Their names are declared after the keyword DEF andesgectively “block” and
“cylinder”. A grouping node defines a coordinate space f®wchild nodes. The Trans-
form grouping node enables to position and orientate thie cloides which describe the
visible geometry within the scene. Every node is detailedubh fields. The orientation
of the block Transform node is for example specified throtghotation field (Fig. 4.18).
The visible geometry described in the block Transform naddefined by its children
field. The child node of the block Transform node is of type&hdt contains an appear-

90 4.3 UML profile for VRML-specific geometry

ance field referring to an Appearance node that specifiessbhahattributes, for example
material and texture, to be applied to the geometry. The gégrfield contains an Extru-

sion node which is specified by fields such as creaseAngles8extion and spine. The
second cylinder Transform node is similar to the block Tramms node and its content is
therefore not displayed.

4.3.2 Scene graph

The VRML scene graph forms a hierarchical tree structure ofeso Nodes are speci-
fied either through fields or through further owned nodes. VYR&IL document shown
in Fig. 4.18 is composed of nodes which display a high levedethil. The document
therefore displays high granularity. A one-to-one mappfigne VRML nodes into UML
enables to easily recognize the VRML-specific content in tMLWnodel.

The VRML node types, such as Shape or Extrusion, can be iregizshtand are as a
consequence described in UML as classes. Similar to the\Solks-specific geometric
entity types, the classes corresponding to the VRML nodestgpe invariant. Instead of
being defined redundantly several times in different UML eidegthey are described only
once in the VRML profile. The VRML node type-specific classesrafiin the VRML
profile form a VRML metamodel, which can be displayed in a cthagram. A selection
of type-specific node classes is represented in the clagsadieof Fig. 4.19. The VRML
node types are described as UML classes and their fields as juibflerties. The class
diagram for example shows the different VRML geometric nogees, such as Box or
Extrusion, which share a generalization relationship withGeometricNode class.

VRMLFile Transform Shape Appearance
scale : String
rotation : String
Background Viewpoint GeometryNode Material
skyColor : String position : String diffuseColor : String
orientation : String
description : String
Box Cone Cylinder Sphere Extrusion
creaseAngle : String
q . q . crossSection : String
PointSet ElevationGrid IndexedLineSet IndexedFaceSet spine : String

Figure 4.19: Selection of VRML type-specific node classefieMRML profile

The VRMLFile class does not represent an existing VRML nodee VRMLFile
class represents the container for all VRML nodes inside a VRIdtument. It can for
example be composed of Transform nodes which themselvelsecaomposed of Shape

4 UML profiles for geometric models 91

nodes and so on. The possible composition of sample VRML nigdgisplayed in the
UML class diagram of the VRML metamodel (Fig. 4.19). It is coomto all VRML
files and as a consequence also to all VRML-specific UML mod@éisly a sample of
the VRML node types is currently predefined in the profile. Hesveit is possible to
dynamically create missing types in the UML model withoutdiag to update the profile.
These VRML-specific UML types need to be tagged wikkvami» stereotype.

Every VRML node can be defined in UML through an instance. Thapmsition of
VRML nodes is therefore easily mappable into a compositiob Ml instances. Every
UML instance in Fig. 4.18 for example belongs to at least ofdW.-specific UML
classifier predefined in the VRML profile. The block instance égample belongs to
a class named Transform. Figure 4.18 exemplarily displagscomposition of UML
instances corresponding to the composition of nodes in RKIN file. The composition
hierarchy composed of four levels is recognizable in the VRiN&._through the tabs and
in UML through the linking of the instances (Fig. 4.18). Iretexample, the composition
hierarchy from top to bottom includes the VRML file, the Traors node named block,
the shape node and the extrusion node.

VRML nodes are described through fields such as spine in treeafabe Extrusion
node. VRML fields refer either to string values or to other od&imilar to VRML fields,
UML instances can own values through UML slots which canrrefestring values or to
other instances. An instance slot thereby stores valuesding to the properties of the
instance classifiers. The extrusion instance is for exangfieed through slots according
to the creaseAngle, crossSection and spine propertieg @xtrusion class. A UML slot
refers to a string value through a UML literal string and to BllUinstance through a
UML instance value. In the slider example, the extrusionengers to the creaseAngle
through a literal string and the sliderMotion instance rete the block node through an
instance value (Fig. 4.18).

The sliderMotion instance has a special role as it represtye complete VRML
model. Its classifier is therefore tagged witkeaml File» stereotype. It owns proper-
ties namedurl andheader During an automatic translation from a UML model into a
VRML file, the generated VRML file is saved according to the lamaspecified in the
url attribute. The optional header attribute defines the lime of the generated VRML
file which is usually a comment detailing the VRML documenteyp

To avoid defining the same node several times, VRML nodes caittiguted a name
acting as a node identifier. The required node can then beerefed through its name.
This can for example be useful for an appearance node whietisn® be reused. The
node identifier is defined by the DEF keyword followed by thenea Contrary to UML

92 4.3 UML profile for VRML-specific geometry

instances, not every VRML node has a name. The UML into VRMLgia&ion only
exports UML instance names to VRML node names if the instancegagged with a
«wrmlD E F» stereotype. This is for example the case with the block ntsigFig. 4.18).

4.3.3 Assemblies

The VRML file content can be split into smaller separate VRMLsfil€he smaller VRML
files can then be reused in other VRML assembly files which cefisrence their embed-
ded VRML files. The content of VRML assembly files is thus lessiied. The VRML
assembly model of the slider mechanism can for example beasead of the separate
base, crank, rod and slider VRML files, as shown in Fig. 4.20.

VRML Assembly

#VRML V2.0 utf8
baselnstance Transform {
children Inline {
base.wrl url “file:///C:/base.wrl"
}
rotation 1.00.0 0.0-0.0
translation 0.00.00.0
}
crankInstance Transform {
children Inline {

crank.wrl) url “file:///C:/crank.wrl”
}
\ rotation 0.0 1.0 0.0 -2.71798778432
translation -0.02249 0.0050 0.033

}

rodInstance Transform {

children Inline {
rod.wrl) url “file:///C:/rod.wrl"
}
rotation 0.0 1.0 0.0-0.538828151930
translation -0.02249 0.01 0.03381

}
sliderInstance Transform {
children Inline {
slider.wrl) url “file:///C/slider.wrl"
}
rotation 1.00.0 0.0-0.0
translation -0.1371 0.0 0.0
}

Figure 4.20: VRML assembly model composed of smaller VRML files

A VRML assembly file contains inline nodes which specify thgbwnified Resource
Locator (URL) attributes the referenced embedded VRML files. Iline node can be
embedded inside a Transform node so that the referenced VRKtewrt is placed within
a VRML assembly file with a specific orientation and positioheTorresponding values
are described respectively through the rotation and tatiosl fields of the Transform
node. Consequently, the insertion of an embedded VRML fileariRML assembly is
fully defined by only three properties, namely the URL, theifpms and the orientation
of the embedded VRML file. This allows to describe VRML assenfldys composed
of embedded VRML files in a corresponding UML model through VRIe-specific

4 UML profiles for geometric models 93

instances instead of equivalent detailed VRML node-speicifitances. As a result, the
less detailed VRML assembly file can be mapped into UML withdeimstances.

The embedded VRML file is described in the VRML assembly file digtoa Trans-
form node. It is thus described in UML, similarly to a CATIA oo&IWorks part, as
a UML class with acvrmliTrans formN ode» stereotype. UML constraints referring to
property values can be more easily described and resolaedtML constraints referring
to stereotype values. As the URL, position and orientatidnesof embedded VRML
files often depend on other CAD models, they are describedigiw@roperties of the
«wrmlTrans formNode» class and are tagged respectively withrmlInlineU RL»,
«vrmlTranslation» and«vrml Rotation» stereotypes.

Composition of UML classes

«catiaRootProduct, vrmlFile» «catiaPart, vrmITransformNode»
SliderMotion Crank
base : Base «catiaVRML_URL, vrmlInlineURL» vrmIURL : String
crank : Crank «catiaAxisAngleRotation, vrmIRotation» orientation : (1x4) [- - - rad]
rod : Rod «catiaOriginShift, vrmITranslation» position : (1x3) [mm]
slider : Slider

Composition of UML instances

[l <Instance Specification:> shderMotion

=% <Slok base [Z] «Instance Specification = crankInstance
4=l <Inskance Value = baselnstance =0 <Slot= vrmlRL

=% <Slat crank v «literal Skrings C:forank,wrl
{Z <Instance Yalue s crankinstance| ———> |E-%0 <Slot= orientation

=-%1) =Slat: rod s «litersl Skring=[0.0 1.0 0.0 -2,717]
=] =Inskance Yalue > rodinstance =0 <Slot> position

=% <slot> slider T aliteral String [-22.49 5 33.511]
J1Z] <Inskance Yalue: sliderInstance

Figure 4.21: Selection of classes and instances corregpptaithe VRML assembly

In the example of the slider-crank mechanism, the requite@stypes are displayed
in the class diagram of Fig. 4.21 which only shows the Slidetidvh and Crank classes.
The SliderMotion class represents the VRML assembly file agdirespondingly tagged
with a «wrmlFile» stereotype. The stereotype hdRL and headerproperties for an
automatic translation of a UML model into a VRML assembly fil€he Crank class
represents an embedded VRML file and is thus tagged withraulTrans formN ode»
stereotype. The URL, the orientation and position of thelcigpecific embedded VRML
file are defined through UML properties which are respedtiteeged withcvormlInline-

U R L», «wwrmlRotation» and«vrmlTranslation» stereotypes.

Figure 4.21 exemplarily shows the slider mechanism ingtaramed sliderMotion
which owns the crank instance. The crank-specific conteliorisxample loaded from a
file situated at “C:/crankwrl” and positioned within the glidnechanism assembly at the
position [-22.495 5 33.811] with an orientation describedjaaternion equal to [-0.0 1.0
0.0-2.717].

94 4.3 UML profile for VRML-specific geometry

The description of VRML content in UML through predefined sles, as in the pre-
vious Section, or through a few stereotypes, as in this @gas possible simultaneously.
A hybrid approach is appropriate if a VRML file is composed ofbenided VRML files
as well as detailed VRML nodes. A UML model can then at the same Ibe composed
of instances of stereotyped classes as well as of predefiRddlLspecific classifiers.

4.3.4 VRML assembly files based on CATIA

A 3D geometry authoring tool offers professional editingdtions, such as features and
boolean operations, which are non existent in VRML. It is adageous to use a 3D
geometry authoring tool to edit a desired geometry and theaxport it into the VRML
format. Most CAD software applications support an export @bmetric parts into the
VRML format. In the example of the slider mechanism, the srgsse, crank, rod and
slider VRML parts would ideally be defined in a 3D geometry authg tool such as
CATIA and then be exported into VRML.

In contrast to the export of single geometric parts, the exqdfawomplete CAD assem-
bly models into VRML is not always possible. A VRML assembly fil&ich is intended
to correspond to a CAD assembly model can reference the expsirigle VRML parts
and place them according to the position and orientationesgabf the parts within the
CAD assembly model. However, a change in the geometry woujdine another se-
guence of time-consuming manual export, measure and co@s&procedures.

UML to CATIA

< A CATIA to VRML
E UML
o v —> CATIA @ Single
o] <7

«catiaRootproduct; | CATIA to UML
il SliderMotion
o>c UML to VRML @ Assembly
A > VRML File
—
= \/
-}

Figure 4.22: CATIA-based generation of a VRML assembly fileWhL

The central UML-based product model can enable a quick aatiompdate of VRML
assembly models based on CATIA assembly models. The CATIA &/ represen-
tations of the slider mechanism parts are semanticallyvatgnt in an abstract UML
representation. Each mechanism part is therefore deddnbthe UML model through

4 UML profiles for geometric models 95

a class which is common to both the CATIA- and the VRML-specikometry. The
previously presented VRML- and CATIA-specific stereotypeas loa applied in superpo-
sition onto the same UML classes and properties. Since tine $8ML element repre-
sents both CATIA- and VRML-specific geometry, data consistdretween the different
geometric formats is guaranteed. Both CATIA parts and VRML $farm nodes are de-
scribed in UML through classes. Similarly, CATIA- and VRMLespfic orientation and
position values are described through UML properties. TMLdlasses and properties
which refer to the same slider mechanism parts can thereftagged with CATIA- as
well as with VRML-specific stereotypes as in Fig. 4.21. Thel&Motion class repre-
senting the complete assembly is for example tagged wittusia Root Product» and
a «wrmlFile» stereotype. The Crank class and all its properties are taggadooth
CATIA- and VRML-specific stereotypes.

The process of automatically generating a VRML assembly filgeld on a CATIA
assembly model via a common UML-based product model is textm Fig. 4.22. The
first step consists of exporting the CATIA-specific geometegatibed in UML into a
CATIA assembly model. Within the UML into CATIA translationqeess, CATIA then
exports the newly generated CATIA parts into VRML files, as degal in the second step.
Step three returns the position and orientation measurdeeaiewly generated CATIA
part instances inside the CATIA assembly model back to the Uiidel. The UML
model contains, after its interaction with CATIA, the reeuarinformation to generate a
VRML assembly file based on the single CATIA- generated VRML fided the CATIA-
specific part orientation and position measures, as disglaystep four of Fig. 4.22.

4.4 Summary

Chapter 4 described the UML extensions required to repraesentyML-based product
model the commonly shared geometric product informatianhss volume, mass, cen-
ter of gravity and moment of inertia, as well as geometricliappon-specific modeling
concepts, such as parts, assemblies, assembly constpairitdependencies, features and
geometric primitives, in order to enable an automatic ettt of UML-based geometric
information into application-specific geometric modeldieTapproach was investigated
with modern and widespread 3D geometry modelers such as GAddWorks and
VRML.

The semantics of geometric modeling concepts conformeuketgsemantics of gener-
alized object-oriented UML modeling concepts. Part anémasdy models correspond to
geometric templates which can be instantiated and inserteether geometric models.

96 4.4 Summary

Features are recurrent geometric operations which equgdhgsent templates that can be
instantiated for the editing of detailed geometry. Geormndéémplates and template in-
stances were therefore described in UML respectively tiinalasses and class instances.
As a result, part and assembly model attributes such as masfume were represented
in UML through class properties, part interfaces throughlUdlass interfaces, and as-
sembly constraints through UML class constraints. The fiséeoeotypes on the generic
UML modeling elements then sufficed to describe their apgibo-specific geometric
denotation.

However, the combination of a UML modeling element with aplagal stereotype
is not meaningful to describe a low-level geometric entityich is defined according to
further geometric entities. A sketch element can for exanty@ defined as being on a
specific plane, which itself is positioned according to #petines. The properties of
a UML stereotype are not suited to describe the varied aralldétdecomposition of a
low-level geometric entity. Instead, a data model of thaowes geometric entity types
was described in UML through a UML class for each geometriityetype such as Point,
Line and Sketch. As the geometric data types do not changgwtre predefined in their
respective application-specific UML profile. Instances ebignetric entity types, such as
specific points, lines and sketches, were then represeateddingly as UML instances.

In summary, high-level object-oriented geometric modgtioncepts were described
in UML through corresponding generic UML modeling concepith their respective
stereotype and detailed low-level geometric entities wepeesented as instances of pre-
defined geometric UML types. In both cases, the mapping let\yeometry-specific and
generic UML modeling concepts occurred according to anyeasderstandable one-to-
one correspondence.

Chapter 5

UML profiles for dynamic system
models

Many real world problems in product design involve time-glegeent processes. Their
description often results in an accumulation of differeh&quations. A dynamic sys-
tem is composed of mathematical equations to compute treedigpendent variance of
system states. An example of a safety-critical dynamicesyss an aircraft autopilot
which automatically stabilizes an aircraft by adjusting&aft control surfaces in case of
disturbances. The algorithm of a controller is often ad@jgiecording to several criteria
including stability, minimal energy consumption and quiekctivity. Algorithms are of-
ten first tested through the simulation of their correspogdiynamic system model and
later implemented in code to be runnable on an embeddedsySection 5.1 presents
the mapping of a Simulink-specific dynamic system model WitdL.

A special kind of dynamic system is the multibody system cosegl of bodies which
by mutual interaction follow translational or rotationagplacements. The possible rela-
tive movement of each body to another is described by physicanections whose num-
ber and type influence the motion of the entire multibodyeystAn example of a multi-
body system is an industrial robot whose capacity to follew movements for new tasks
depends on the number of its arms and types of joints. Besieabifity, its speed and
energy consumption depend on its selected movement andeitsal properties. The
simulation of a multibody system can for example be usefabtopute the forces needed
to set it in a desired motion, which in turn will determine tlegjuired power supply for
the system. Following the standard Newtonian dynamicst afsdifferential equations
and constraint conditions can mathematically describenbigon of a multibody system.
Section 5.2 describes the mapping of a SimMechanics-speacifitibody system model
into UML.

98 5.1 UML profile for Simulink-specific dynamic systems

5.1 UML profile for Simulink-specific dynamic systems

Simulink! is used in many disciplines, from aerospace engineeringst@sis biology, to
graphically model and simulate dynamic systems. It wasfoes chosen in this research
work as dynamic system modeling application to investighte mapping of dynamic
system modeling concepts into UML.

5.1.1 Simulink model

Simulink models represent relationships between systatassin a block diagram. A dy-
namic system is described in Simulink by a block diagram isting) of blocks connected
by lines. A wide range of blocks for signal sources, signaks; linear and non-linear
components is available and the definition of custom bloslaso possible. The lines
between blocks represent the flow of signal values. A simplarchic system for exam-
ple is represented in Fig. 5.1 top. The source block outpsiawsoidal signal which is
separated into two signals, one of which is integrated aveg by the operation block.
Both signals are regrouped as a single signal before endithg isink block which saves
and displays the incoming values over time during simufatibhe incoming sinusoidal
signal is displayed in blue and its integrated version irpfu(Fig. 5.1 top).

E!simpleMudel K
File Edit View Simulation: Format Tools Help

hzE& = »

uuuuuu

100%

UML Activity Fork Node Object Flow

simpleModel

1: double

«integrator»

1 operation |_]
0
'
'
L

CaIlBeh‘aviorAction Pin

Figure 5.1: Simulink model and corresponding UML activitagram

1The MathWorks, Simulin®,
http://ww. mat hwor ks. com pr oduct s/ si mul i nk/

http://www.mathworks.com/products/simulink/

5 UML profiles for dynamic system models 99

A Simulink model is composed of data flows between ports ofuimk blocks. These
flows could be defined by UML connectors between ports of pamsed by a UML
composite class describing the Simulink model. But the oowtis streaming nature of
Simulink data flows is better represented by UML object flolant UML connectors.
This is underlined by the fact that the UML specification [LpPoposes astreamtext
annotation to be applied on pins of object flows. Furthermibre graphical similarity of
Simulink signals is higher with UML object flows than with awectors. Simulink models
containing blocks and signals are therefore mapped into WHdtlivities consisting of
actions and object flows. An example of a Simulink model asadrresponding UML
activity is displayed in Fig. 5.1. The UML activity descrnilgj a Simulink model is tagged
with a «simulink M odel» stereotype.

5.1.2 Blocks

Due to the frequent use of similar blocks responsible foilamcomputations, Simulink
offers a library of standard block types which can be extdniole user defined block
types. Blocks inside a Simulink model are, strictly speakingtances of predefined block
types. The operation and sink blocks of the Simulink modée].(b.1 top) for example
are respectively instances of the block types Integratdr@oope. Each Simulink block
represents a computation depending on its type and its leipabameters. The source
block instance for example outputs a sinusoidal signal raieg to its frequency and
amplitude parameter values.

The relationship between block types and block instanceteigtical to the relation-
ship between UML classes and UML instance specificationsa Agnulink block type
represents a behavior, Simulink block types are mappeduMa activities instead of
casual classes and Simulink block instances are interpastenstance specifications hav-
ing as classifier the corresponding activity. The most comsstandard block types of
the Simulink library are translated as predefined actwitiethe UML Simulink profile.
Simulink block type parameters are depicted as properfi¢éiseir equivalent UML ac-
tivities. Some parameters are common to all block types asdhe position of a block
inside a Simulink model. Common parameters are translatecpnoperties of a higher
level activity which is inherited by all other block typeespfic activities of the Simulink
profile.

The UML callBehaviorActions graphically represent the Simi block instances
and are tagged with a Simulink block type-specific steremtyphe Simulink block in-
stance operation of the Simulink model in Fig. 5.1 for exampltranslated into a UML
action tagged with arintegrator» stereotype standing for the Integrator block type.

100 5.1 UML profile for Simulink-specific dynamic systems

The stereotype icon facilitates the recognition of the Sinkblock type-specific actions
in the UML activity diagram. As the Simulink block instancetdils are described in
a related UML instance specification, each UML action refees the related UML in-
stance specification through aativitylnstanceroperty of the applied block type-specific
stereotype. As thactivitylnstanceroperty is common to all Simulink block type-specific
stereotypes, the property is declared with a general stgredrom which all block type-
specific stereotypes inherit.

The Simulink library offers a multitude of different blockges, so not each one is
mirrored as a predefined activity in the Simulink profile. bse a predefined activity to
denote a Simulink block type is missing, a correspondingyi@cican be defined in the
UML model. It is then tagged with a neutrakimulink BlockType» stereotype while
its owned block-specific properties are tagged widls@anulink Block Property» stereo-
type. The related action is tagged witkk@mulink Block» stereotype.

5.1.3 Signals

Simulink signals forward streams of values between Sirkublocks. The Simulink
source block of Fig. 5.1 for example outputs values of typeltid®. UML object flows
are edges between nodes that can have objects passingl@angue to their similarity,
Simulink signals are translated into UML object flows withegaplied«simulinkSignal»
stereotype. The Simulink signal label, if existent, is sptigalent to the name of the UML
object flow. The Simulink input or output signals are attattwethe ports of the Simulink
blocks. The ports of the Simulink blocks are converted inkdLLpins as they specify the
inputs and outputs of the UML actions. TheimulinkSignal» object flows then con-
nect the pins. The source and target attributes of the otigwes are therefore set to their
corresponding connected pins and the incoming and outgaiinigputes of pins are set
respectively to their incoming and outgoing object flowscle&imulink signal transmits
one value per simulation time step. TiWeightattribute of the UML object flows, which
determines the number of tokens consumed from the souroe so@ach traversal, is
therefore always set to 1. Tlyeiard attribute of the object flows, which determines if the
object flow can be traversed, is always set to true.

The Simulink signal data type is equal to the block outpuadgbe which is double by
default. Simulink blocks can output one-, two-, or multiéinsional signals. The easiest
Is a scalar signal which consists of a stream of scalar vatiadrequency of one scalar
value per simulation time step. This is the case with the@®and integrator blocks
of Fig. 5.1. But signals can also consist of a stream of muftetisional vectors. The
mux block in the same Simulink model for example receivesstwams of scalar values

5 UML profiles for dynamic system models 101

and combines them into a single vector output stream of dsiar(1x2). The Simulink
signal data type is translated as UML type of the source aget@ins of the respective
«simulinkSignal» object flow.

Simulink signals can have branches which split a signal imtdtiple signals. The
output signal of the Simulink source block of Fig. 5.1 is faample separated into two
signals directed at the operation and mux blocks. As a UMK farde splits a flow into
multiple concurrent flows, a Simulink branch is depicted WUas a fork node with a
«simulink Branch» stereotype. The incoming and outgoing attributes of thk fmde
are set to the incoming and outgoirgimulinkSignal» object flows. The Simulink
mux block of Fig. 5.1 could be interpreted as a UNtin node The Simulink mux
block combines its multiple inputs into one composite otigdgnal. Simulink composite
signals have no functional effect but can simplify the apgeee of a Simulink model
when many parallel signals exist. Similarly, a UML join nosgnchronizes multiple
input flows into one output flow. In order to keep the resemi@abetween the UML
and the Simulink model as high as possible, the Simulink mMogkas translated like the
other blocks into a UML action.

5.1.4 Subsystems

Large Simulink models can be decomposed into smaller maddilsd subsystems which
improve the overall overview of the modeled system. A sutesyss an encapsulated
model which can be reused in the context of another Simuliodleh A Simulink model
can refer to an embedded subsystem via a block of type Suhsytéis can lead to a
hierarchy of embedded models of any depth. The Simulink mofd€ig. 5.1 can for
example be decomposed as in Fig. 5.2 into a main and an embetutel. The main
Simulink model contains a block of type Subsystem whichreefe the embedded sub-
system containing the previous integrator and mux blocks.

A Simulink subsystem is mapped like a Simulink model into a WURktivity but
tagged with acsimulinkSystem» stereotype. The&simulinkModel» stereotype is in
fact a specialization of thesimulinkSystem» stereotype, as it represents the upper-
most Simulink system in the hierarchy of a Simulink model. @sonsequence, the
«simulink M odel» stereotype is defined in the Simulink profile as having a geizex-
tion relationship with thesimulinkSystem» stereotype.

The Simulink subSystem block instance is mapped like therditock instances into
a UML callBehaviorAction with an applied block type-speciicubsystem» stereotype.
The Subsystem block type is mapped like other block typek@Simulink library as a
predefined activity with subsystem-specific propertieh@$imulink profile. The UML

102 5.1 UML profile for Simulink-specific dynamic systems

UML Activity
] simpleModel2 = 18] simpleModel2
File Edit View Smulstion Format Tools Help
OzEa = »
«sin» «subSystem» «scope»
- B sinewave [] [| 2! subSystem [scope
j\&,, 77)
source subSystem scope
100% odeds
UML Subactivity

7] simpleModel2/subSystem 9(=11E3]
Fle Edt Wiew Smuation Format Tods Help «inport»
in1

N EEe T > «outport»
outl
(I/ B)
- W \OJT/‘ (] «integrator» [} N
1 1 integrator Ac}iviry
tegrator Parameter
L00% ode4s Node

subSystem

Figure 5.2: Simulink subsystem and related UML subactivity

action representing the Simulink subSystem block instagiess to an instance specifica-
tion describing in detail exclusively the parameter valokthe subSystem block instance
while its behaviorattribute refers to the embeddegimulinkSystem» activity.

Inputs and outputs of a Simulink subsystem are describedrbyl®k blocks of type
Inport and Outport. Inputs and outputs of a UML activity aepitted by input and output
activity parameter nodes. So the in- and outports of a Sitkidubsystem are translated
as UML activity parameter nodes of tkesimulinkSystemactivity and are tagged ac-
cordingly either with aninport» or an «outport» stereotype (Fig. 5.2 bottom right).
The Simulink subsystem of Fig. 5.2 has for example an Inplatkbnamed “in1” and
an Outport block named “outl”. The incoming or outgoing eslof a Simulink sub-
system are translated as UML parameters ofdhgort» and«outport» UML activity
parameter nodes. Thikrectionattribute of UML parameters is set to In or Out according
to their incoming or outgoing nature. The Simulink signaladgype of the incoming or
outgoing values of Simulink In- and Outport blocks is tramst as the UML type of the
corresponding UML activity parameter nodes and parameters

5.1.5 Case study: slider position controller

An example of a dynamic system model applied to the slidenlcmechanism of Fig. 4.3
is a slider position controller. By applying a torque on thants, the slider can be dis-
placed along its track (Fig. 5.3). The controller is resjoiedor computing the torque to
be applied on the crank so that the slider follows a targetipas The Simulink dynamic

system to simulate the slider position controller and tineuation results are shown in
Fig. 5.4 left. The simulation results are displayed throtighresult Scope block (Fig. 5.4

5 UML profiles for dynamic system models 103

top left) showing the target slider position as a green stepwashed line and the actual
slider position as a purple continuous line. The simulatiesults show that the slider
follows the target position with a slight overshooting atle@osition adjustment.

<
T X
50 ﬁjﬁ

@)

Figure 5.3: Displacement of the slider according to a tomp@ied on the crank

The target slider position is determined by a Simulink blatkype RepeatedSe-
guencesStair which switches the target position from 0 t& @ters at every sample time
of 1 second. The differenc#& between the actual and the target slider position is for-
warded to blocks of type Gain, Integrator and Derivative sumtimed up to determine the
torquer to be applied on the crank to minimize the slider positiorengrox. This most
common type of controller is known as a proportional-ingkgrerivative (PID) controller.
A saturator block limits the highest possible torque to q@iad to 0.02 Nm to respect the
limits of a simulated motor. The sliderMechanism block cores the new slider position
as a consequence of the torque applied on the crank. It isibedan this example as
a black box but its internal structure representing a mottjbsystem is described in the
next chapter. The resulting actual slider position is fookea back to complete the con-
trol loop and is also sent to the result block for visualiaatiThe parameters of the Gain,
Integrator and Derivative blocks can further be adjustezbating to the requirements
concerning controller stability, speed and energy congiomp

The UML activity corresponding to the Simulink model of tHeder position con-
troller is displayed in Fig. 5.4 right. As the Simulink Sunobks show the operators act-
ing on their signal inputs, the pins of the UML actions reprégg the Simulink blocks
of type Sum have an attached UML keyword to display the cpoeding sign.

welbelp AlAnoe

NN Buipuodsailod puamjenuod uonisod JSPIS By JO [9pPOW YUlNWIS 'S aInbiq

Simulink Model

7] sliderPositionController

File Edit Yiew Simulation Format Tools Help
= - T
D|DE§|$E|¢=§?|DQ|) IIE.D INormaI L”DIE—I»@
‘ * o
M >) P50
target Kp 0.05 A
1 ¥ ' 15
P01 >—P 5 te > > > |:| 5
Ki integrator saturator E
o
result o v‘
Pi1.5 >——Pdu/dt sliderMechanism -0.01
Kd derivator 0 2 . 3 4
Time [s]
|Ready |100% lode45 7|
UML Activity
sliderPositionController
«»
[]
«repSeqStair» «+»| «sum» «gain» «subSystem»
P target [} L =z L) ke a5, slider-
Mechanism
. «gain» «integrator» «mux» «scope»
[={Ki l:‘ EES 2 integrator «sum» «saturate» [El result
: z = saturator >
«+»
«gain» «derivative»
L) [/kd 4 derivator
~—

0T

swiaisAs alweuAp oyoads-yulnwis oy apyosd JNN TS

5 UML profiles for dynamic system models 105

5.2 UML profile for SimMechanics-specific multibody sys-
tems

SimMechanic$is an extension of the Simulink software and is specialinettié motion
simulation of multibody systems. SimMechanics allows faresent a multibody system
in a graphical model from which the mathematical equationddscribe the multibody
system motion are automatically derived and solved. Sinfdeics thus greatly facili-
tates the error-prone process of establishing and solgogtens of motion, especially
in the case of mechanical systems composed of many bodigeiatsl

5.2.1 SimMechanics model

A simple multibody system is for example the double pendubafriig. 5.5 formed of
two cylinders connected by a revolute joint. The dashedslisigow the trajectory of
both cylinder ends when the cylinders are left to oscillw®ugh the force of gravity
for 0.5 seconds after being initially placed in the left 8tay position without velocity.
The corresponding SimMechanics model is shown at the topgf3=7. A multibody
system is described in SimMechanics as a block diagramasirtala dynamic system
in Simulink. SimMechanics blocks represent in particuladies, joints, force elements,
sensors and actuators.

support

joint1
pendulum1

Figure 5.5: Trajectory of a double pendulum

A body is represented in SimMechanics by a block of type BodythB@ndulum
bodies of Fig. 5.5 are for example described in SimMechamspectively through the
penduluml and pendulum2 blocks of type Body shown in Fig.Aody is specified in
SimMechanics by its mass, its moment of inertia tensor ancbbydinate systems which

°The MathWorks, SimMechanit¥,
http://ww. mat hwor ks. com pr oduct s/ si nrechani cs/

http://www.mathworks.com/products/simmechanics/

106 5.2 UML profile for SimMechanics-specific multibody srsis

are fixed to the body and move with it (Fig. 5.8). These attdatmordinate systems
are used to define the initial position of the bodies as welthakinematical constraints
between them. The body block corresponding to the pendubfrfrig. 5.5 for example
needs three coordinate systems to be completely defined5lBg The CG coordinate
system describes its initial center of gravity position andntation and the CS1 and CS2
coordinate systems are needed for the definition of revgbimé constraints with their
neighboring blocks, namely the support and the second femdalock.

support

LLLYL S

Base

support

Revolute Joint between /
Base and Follower \

joint1 Coordinate Systems

[

Follower

pendulum1
Cs1

pendulum1 ﬁ

Cs2

Figure 5.6: Coordinate systems for the representation oudldgendulum in SimMe-
chanics

The kinematical constraints which restrict the motion & thodies are specified in
SimMechanics as blocks. For example, the revolute jointsigf 5.5 which restrict the
motion of the pendulums are specified in SimMechanics akblottype Revolute Joint
(Fig. 5.7). A joint block is connected with the constrainexd coordinate systems. The
SimMechanics joint2 block for example (Fig. 5.7) is coneelatith the coordinate system
CS2 of the pendulum1 block and with the coordinate system C8feqfendulum?2 block
to define a revolute joint between the respective coordisgséems of both pendulum
bodies. Furthermore, a SimMechanics model is always coetpota ground block to
define a gravity force acting on the multibody system and air@mment block to specify
a fixed coordinate system (Fig. 5.7).

A SimMechanics model describes a multibody system by spegiits internal struc-
ture composed of bodies and connections. The SimMechariceling elements are
therefore close to the concepts of internal structures ilLlUMSimMechanics model is
hence mapped into a UML class describing its internal stmecthrough UML parts,
ports and connectors. The class describing a SimMechanickelms tagged with a
«simM ech M odel» stereotype. An example of the UML composite structure cpoed-
ing to the SimMechanics model depicting the double pendusushown at the bottom of
Fig. 5.7 .

5 UML profiles for dynamic system models 107

SimMechanics Model

IZ] DoublePendulum
File Edit Wiew Simulstion Format Tools Help

bOeE&] » 05 Hormal || g B & | - W

e M §_E‘.B FR‘.HB T 6
gravity

support joint1 pendulum1 H joint2 pendulum2

Ready : 1 100% l odeds

Block Connéction Pért

UML Class
DoublePendulum
@gra ity * support J intl : J int2 pendulumZ
Environment GroundWithEnv R olute R olute BodylS
Part Connecror Port

Figure 5.7: SimMechanics model of a double pendulum andesponding UML com-
posite structure diagram

5.2.2 Blocks

Similar to Simulink, SimMechanics has a predefined librafblock types. SimMe-
chanics blocks inside a SimMechanics model are instancpgedefined SimMechanics
blocktypes. The penduluml block (Fig. 5.7) for example isrestance of the blocktype
Body. The relationship between a SimMechanics block typeabtbck instance in a
SimMechanics model is identical to the relationship betwadJML class and a UML
instance specification. Therefore, a SimMechanics blopk g translated into a UML
class and a block instance into a UML instance specificafldre frequently used block
types of the SimMechanics block type library are mapped mnemlefined UML classes
in the SimMechanics profile.

The containment relationship between a SimMechanics memttla SimMechanics
block instance is described in UML on the class and on theuntt level. On the class
level, it is represented as a composite aggregation rakdtip between the UML class
related to the SimMechanics model and the UML class relatethé SimMechanics
block type. The resulting property of theimMechM odel» class is called a part and
is tagged for easier recognition with a SimMechanics blggetspecific stereotype. The
SimMechanics support block of type Ground is for example meagdnto UML as a part
tagged with acground» stereotype (Fig. 5.7 bottom). The application of the SimMe-
chanics block type-specific stereotype is only visible tigto the block type-specific icon
applied to the part. The containment relationship betwe&maVechanics model and
a SimMechanics block instance also applies on the instaves. | The instance of the
«simMechM odel» class references the instance representing the SimMeshiloick.

108 5.2 UML profile for SimMechanics-specific multibody srsis

So in the example of the double pendulum of Fig. 5.7, the nt&taf the DoublePendu-
lum «sim M ech M odel» class references an instance of the Ground class playinglée
of a support.

SimMechanics block instances inside a SimMechanics modet@nected to each
other via SimMechanics ports. Similarly, UML parts insid&®IL class interact with
each other through UML ports. The SimMechanics ports of albtgpe are therefore
mapped into UML ports of the related UML block type-specifiass. But the ports of
SimMechanics block instances are not always determineahigjfr their block type but
sometimes also by the block instances themselves. The ta@fiof UML ports on the
instance level is however not possible in UML, as UML ports oaly be defined as class
attributes and are automatically valid for all instancethaut exception. To overcome
this problem, the UML classes in the SimMechanics profilade the SimMechanics
block types do not own ports and new UML classes are intradlucehe UML model
to represent specialized versions of the UML block typecsjmeclasses with additional
ports if needed.

The penduluml and pendulum?2 blocks are for example botheo$aime block type
Body but do not have the same number of ports, as pendulum2nieapast less. The
UML parts corresponding to the pendulum blocks are resgeygtof type Body2CS and
BodylCS. Both new classes inherit from the Body class of the Siohisiieics profile
but have a different number of ports. The class Body2CS owreetports (Fig. 5.8
top right) as the penduluml part owns two ports represenis®y defined coordinate
systems and one port representing the center of gravitylowte system. The UML ports
are either tagged with a port-specific stereotype suchsas M echCS», standing for
SimMechanics coordinate systemim M echC'G», standing for SimMechanics center
of gravity, or with a generatsim M ech Port» stereotype. The type of the SimMechanics
port is reflected as type of the UML port. The possible poret/are defined in the
SimMechanics profile.

A body coordinate system is defined in SimMechanics by itgilorand orientation
relative to another existing coordinate system. These Sintinics attributes are dis-
played in the penduluml block parameters window in Fig. &8 [The UML attributes
describing such a coordinate system are also grouped tgatid belong to the UML
class SimMechCS which is the type of the ports representmbaldy coordinate systems.
The SimMechCS class is saved in the SimMechanics profile asidptayed in Fig. 5.8,
listing for space reasons only the attributes concerniggrtitial coordinate system posi-
tion. The type of some attributes is an enumeration alsonig@hg to the SimMechanics
profile. The componentsinAxesOf property is for exampleypet CSEnum. This is an

5 UML profiles for dynamic system models 109

enumeration consisting of literals such asdjoining” which specifies an equivalence
with a neighboring coordinate system.

SimMechanics Body Block Properties

ZBlock Parameters: pendulumi gl

Body
Repieserits a user-defined rigid body. Body defined by mass m, inertia tensor |, and coordinate origing and axes for
center of gravity [CG] and other user-specitied Body coordinate systems. This dialog sets Body initial position and
orientation, unless Body and/or connected Jaints are actuated separately.

Mass properties
Mass: 03087 kg v
Inertia |[6.4332e-06 0 0; 0 6.4332e-06 0: 0 0 3 858e-06] kg'm"2 %
Position | Orientation

Show | Port Name Origin Position Units Translated from Components in

Porit | Side Vector [x v 21 __ Drigin of Axes of
OJ Left ~ CG 02500 jm o wES1 ~ |C51 ~
Leift ~ C51 [ooo] m % Adjoining + |Adjgining v
Right » C52 [s500 M [MICS1 w|CS1 - S

(1]] l Cancel J l Help]
UML Class UML Class
«simMechBody» «simMechCG» CG : SimMechCS SimMechCS
C
Body2CS «simMechCS» CS1 : SimMechCS | showPort : Boolean

«simMechMass» mass : kg

«simMechCS» CS2 : SimMechCS

portSide : PortSideEnum

originPosition : String
positionUnits : PositionUnitsEnum

«simMechlInertia» inertia : kg*m~2

translatedFromOriginOf : CSEnum
componentsInAxesOf : CSEnum

Figure 5.8: Top: Properties of the penduluml1 Body Block. BottaiiL Classes corre-
sponding respectively to the Body blocktype and the cootdiagstem port type

Important SimMechanics block properties such as the mabmartia of a body block
are directly editable in their block parameter windows (Big). The distinction between
the UML properties corresponding to the essential bloalkbaites and the others which
are not visible in a SimMechanics block parameters windoheipful. This distinction
is possible by introducing into the UML model new UML classelsich inherit from
the UML SimMechanics blocktype-specific classes of the Seohanics profile. This
specialization is in fact already necessary due to the pdtte new classes redefine, if
considered helpful, the important properties so that theseonly these are then visible in
the UML model. The redefined properties are tagged with aibaté-specific stereotype
such as the mass property of the Body2CS class which is tagtjed «sim M ech M ass»
stereotype (Fig. 5.8 top right). The multidisciplinaryeaf some redefined properties can
then subsequently be captured by superpositioning oth@icapon-specific stereotypes
on these properties. This will be demonstrated in the skdank mechanism case study
in Section 5.2.5.

110 5.2 UML profile for SimMechanics-specific multibody srsis

5.2.3 Connections

Interactions between SimMechanics blocks inside a Simlglieicls model are described
through connections displayed as undirected lines betweds of blocks. Interactions
between corresponding UML parts are specified through UMinegators between UML
ports of UML parts. So the SimMechanics connections are ed@s UML assembly
connectors tagged with @im M echConnection» stereotype. The connectors between
ports are valid according to the UML specification if bothisa@oncerned have a common
interface. One of the ports concerned must provide thigfade and the other must
require it. UML interfaces have therefore been defined irSimeMechanics profile.

The coordinate system ports belonging to the body blockeXample provide coor-
dinate system data which is required by the coordinate syptets belonging to the joint
blocks. A common CoordinateSystem UML interface has for tlaise been defined in
the SimMechanics profile. The CoordinateSystem interfapeogided by the body block
SimMechCS ports and is required by the joint block ports (5i§). The CoordinateSys-
tem interface is the most common but similar interfacesettogr with the application of
interface realizations and usage dependencies, haveedsodefined for other cases.

If the UML connectors belong to a UML component instead of alUiass, the com-
posite structure diagram can display through the “ball-emcket” notation the requiring
or providing role of parts such as in Fig. 4.8. But to keep tleial similarity between
the SimMechanics model and the UML composite structurerdiagas high as possible,
the context classifier is a UML class showing the connectatisont “ball-and-socket”
notation.

5.2.4 SimMechanics model as a Simulink subsystem

Multibody systems are often set in motion through contbbetuators. It is therefore
useful to combine a multibody system model with a contrafterdel to test and simu-
late a complete system. A SimMechanics multibody systemetmah be combined with
a Simulink controller model in one common Simulink modelm$echanics blocks of
type Actuator can receive Simulink signals describing adoor a torque and forward
them to SimMechanics blocks describing a body or a joint. Recally, SimMechan-
ics blocks of type Sensor can measure the motion of a bodyantgnd output it as a
Simulink signal. Due to the decision of mapping Simulinkdds and signals into UML
activity diagram elements and SimMechanics blocks andections into UML compos-
ite structure diagram elements, a Simulink model contgimin the same modeling level
both Simulink and SimMechanics information cannot be mdppt® one common UML

5 UML profiles for dynamic system models 111

diagram. Elements of an activity diagram cannot contaitspand connections and a
composite structure diagram cannot contain actions aretofpws.

It is therefore necessary to separate the SimMechanickdlivom the Simulink
blocks before converting them to UML by introducing a Simulsubsystem containing
exclusively SimMechanics-related information. Only tloam the combined Simulink/
SimMechanics model be translated into UML. As describedenti®n 5.1.4, a UML
callBehaviorAction representing a Simulink subsystem kloefers to a UML activity
representing the related Simulink subsystem. The Simuitdlsystem which contains a
SimMechanics model is mapped into a UML subsystem activiiictvis set aglassifier
behaviorof the UML class representing the SimMechanics model. The.ldibsystem
activity is empty and is used to link the UML action repregggmia Simulink subsystem
with the composite structure of a UML class representingSimMechanics model. In
the example of the slider position controller of Fig. 5.4 #liderMechanism block is a
Simulink subsystem block referring to an embedded SimMeiclsaViodel.

The SimMechanics in- and outport blocks are translated a4 d&legation ports
of the relatedsimMechModelelass and are tagged with correspondifigport» or
«outport» stereotypes. A UML interface named SimMechData has beeatedten the
SimMechanics profile to describe the flow of data through the_delegation ports. The
types of the delegation in- and outports respectively mecand provide the SimMechData
interface. The directed signals originating or ending i it and outport blocks of the
SimMechanics model are translated as directed UML delegatbnnectors.

P
baseRight CS2
X e t.;. - =
| l_> baselLeft ;I
(1
Cs2
Cs1
CG
Cs1 cG

Cs2

Figure 5.9: Schematic 2D view of coordinate systems for theraction of the slider-
crank mechanism in SimMechanics

5.2.5 Case study: slider-crank mechanism as multibody system

The slider-crank mechanism of Fig. 4.3 is an example of aibudy system. The
schematic 2D representation of the decomposition of thleiskirank mechanism into
bodies and coordinate systems for the representation amntligbody system in Sim-

112

5.2 UML profile for SimMechanics-specific multibody srsis

SimMechanics Model as Simulink Subsystem

[=] sliderControlisliderMechanism

File Edit ‘iew Simulation Format Tools

Help

DzES 1= b =50 Nomal - He B & hEE®
Jﬁ inputTorque 65X
baseleft Env baseRight
gravity
% & 1 7
o0 " itions)
[‘F revolutel torqueActuator positionSensor prismatic I
w |
?—Ecsz & cs1 F ‘1: se—m@cs2 My csim-or ‘Tf B o n m
crankInstance revolute2 rodInstance revolute3 sliderInstance
Feeady 100%: odedS
UML Class [ElinputTorque =N
sliderMechanism
|- |-
baseleft : GroundWithEnv gravity : Environment baseRight : Ground
1 ™
» "
revolutel : RevolutelInput torqueActuator : JointActuator positionSensor : JointSensor E prismatic : Prismatic10utput
F F

szg F B Cs2 F B
s woicy 1 1 e s] 2
st

Figure 5.10: SimMechanics model of the slider-crank meigmams Simulink subsystem
and corresponding UML composite structure diagram

Mechanics is shown in Fig. 5.9. The corresponding SimMeicisamodel is represented
in Fig. 5.10. The crank, rod and slider parts are represant&imMechanics as body
blocks. The base part is fixed and is represented by two grblouks. Joint blocks
define the possible movement of each body relative to anotbeordinate systems are
introduced as in Fig. 5.9 to define the interaction points @wgltions of the bodies. The
crank body is for example described by three coordinateesyst The CG coordinate
system stands for the position of its center of gravity aredl@$1 and CS2 coordinate
systems represent the interaction points with the neigh@drodies such as the rod and
the base. The kinematical constraint to limit the moveméth@crank relative to the rod
to a rotation around a common axis is defined by a constraitytpaf Revolute between
the CS1 coordinate system of the crank and the CS2 coordinstiensyf the rod. This
constraint is represented in the SimMechanics model by alutyjoint block named
revolute2 connecting both constrained coordinate systems

The SimMechanics multibody system model of the sliderdcnaechanism is com-
bined with a Simulink controller model to simulate a contdlbehavior of the mecha-
nism. The Simulink controller model presented in Sectidh%adjusts the position of

5 UML profiles for dynamic system models 113

the slider by rotating the crank. The slider-crank mechans described in Simulink
by a subsystem block named sliderMechanism (Fig. 5.4) lgaaginput signal a torque
value and as output signal a position value. The underlyuizsygstem consists of the
SimMechanics model of Fig. 5.10. The SimMechanics in- angharis are visible as
UML delegation ports in the underlying SimMechanics modghe incoming signal is

forwarded to a joint actuator block connected to the reedlyoint which applies a torque
on the CS2 coordinate system of the crank to make it rotatelleéBiynthe position of the

CS1 coordinate system of the slider is measured by a joinbsdmsck connected to a
prismatic block. The corresponding UML class compositacitire is displayed at the
bottom of Fig. 5.10.

5.3 Summary

Chapter 5 has described the UML extensions required to represa UML-based prod-

uct model Simulink-specific dynamic models as well as Simhéeics-specific multi-

body system models. Simulink-specific dynamic system nsoded SimMechanics-
specific multibody system models are respectively simddulL activity diagrams and

UML composite structure diagrams. As shown in Fig. 5.4 argl bi10, the graphical

resemblance between Simulink models and UML activity diatg as well as between
SimMechanics models and UML composite structure diagrarhgh.

The Simulink-specific dynamic system model is a block diagcamposed of blocks,
signals and subsystems. As the Simulink dynamic system lmsdeell as the subsystems
represented specific behaviors, they were mapped into UMlitaes. The Simulink
signals represented information flows and were accordingdpped into UML object
flows. Simulink block types represented templates and weseribed as predefined UML
activities within the Simulink profile. Simulink block irstces were mapped into both
UML actions and UML instances to respectively graphicagpidt the block instances
within UML activity diagrams and capture the values of thedid instances. The UML
actions thereby referenced the UML instances through @aitgre property. ldeally,
block instances should be mapped into a single UML modelieghent which would
unite the characteristics of both UML actions and instances

The SimMechanics-specific multibody system model is aldoekidiagram, however
composed of blocks, ports and connections. The conneatapresent static dependen-
cies instead of dynamic information flows such as in Simulifike multibody system
model was represented as a UML composite structure diagi@imMechanics block
types were thereby translated into UML predefined classdscannections into UML

114 5.3 Summary

connectors. As with Simulink block instances, the direa-tmone mapping of a Sim-

Mechanics block instance into a corresponding UML modeétggnent is not possible.

The block instances were mapped into UML parts and UML irc#arto respectively

graphically depict block instances within the UML compestructure diagram and cap-
ture the values of block instances. The direct mapping ofrdV&chanics block instance
into a corresponding UML modeling element is not possibleabee UML composite

structure diagrams describe the internal structure ofss@éobjects and do not directly
refer to concrete instances.

In contrast to Simulink and SimMechanics models which dbecinteractions be-
tween block instances, UML object diagrams do not supp@tntiodeling of complex
interactions between objects as they are intended to tesstatic snapshots of software
runtime objects and their links. UML object diagrams withproved capabilities to de-
scribe interactions between objects would facilitate atmrene mapping of dynamic and
multibody system models into UML. Future UML releases mayrétfiore introduce new
modeling concepts for a better representation of objeetaations.

The mapping of Simulink, SimMechanics and combined Sink/SmMechanics
models into UML was applied to the slider-crank mechanismngxe. As the blocks
within the Simulink and SimMechanics models contain dethihformation, importing
the existing models into UML was preferable to describingJML the Simulink- and
SimMechanics-specific information from scratch. The tiaien of UML models into
Simulink and SimMechanics models was validated by gemegatiodels identical to the
imported ones. Despite the inability of the UML to represeetailed interactions be-
tween instances, the dynamic and multibody system modelsedigreat resemblance
with their corresponding UML diagrams and therefore alldwemostly intuitive one-to-
one mapping.

Chapter 6

UML profiles for data retrieval and
constraint processing

Products are often composed of parts which are ready-matia\ailable off-the-shelf.
The characteristics of these components, such as theimdiores, are often stored in
spreadsheets. Section 6.1 presents the mapping of Exeafispspreadsheet data into
UML. A central product model also needs to reference datdtreg from external program-
specific computations. In this case, it must represent fometvith their input and output
arguments. Section 6.2 describes the mapping of Matlabigpé&inctions into UML.
Furthermore, relationships between features of distinotiets can be represented in a
central product model through algebraic equations. Seéti® presents UML constraints
to describe algebraic equations and their resolution.

6.1 UML profile for Excel-specific spreadsheet data

Excel is a widely used spreadsheet application. It displays cetjanized in rows and
columns, each cell containing data or a formula with reéativ absolute references to
other cells. Excel furthermore has a multitude of graphiogstbilities, which allows nu-
merical data to be interpreted as graphs or charts. Produatisl often stored in Excel
documents which contain several spreadsheets. In the ésafipig. 6.1, the width and
length values of crank parts are stored in an Excel spreatisiigach cell is identified
through its location in the spreadsheet. The spreadshkshne are numbered alphabet-
ically while the rows are sorted numerically. The crank kanghich applies to all crank
instances is for example saved in cell C2 while the crank mt&taspecific width values
are respectively stored in cells B3 and B4.

IMicrosoft Office Excelyww. mi cr osof t . cont excel /

www.microsoft.com/excel/

116 6.2 UML profile for Matla®-specific functions

Excel cell values UML properties and slots
R E € Crank Siereor i
ereotype properties:
width length width : mm excelCc}e/I;I)ReF;:pCZ
«excelCellValue» length : mm excelSheet = spreadsheet1
All cranks 50 AN excelWbPath = C:/crank.xls

crankinstance1 10 /",«instanceOf»\\\

B W N =

cranklnstance2 20

crankInstancel : Crank crankInstance?2 : Crank

«excelCellValue» width = 10 «excelCellValue» width = 20
length = 50 length = 50

Figure 6.1: Excel cell values and corresponding UML prdperand slots

A UML class represents the properties which are common td afdastances. A
value which is common to all instances is therefore set amuttefalue of the correspond-
ing property. The Crank class of Fig. 6.1 for example has ahadiid a length property.
According to the Excel spreadsheet, the length value, edlgellow in the spreadsheet,
applies to all crank instances. The default value of thetlepgoperty of the Crank class
therefore needs to be linked with the respective Excel dédie property is then tagged
with an«excelCellV alue» stereotype which has three attributes to specify the cedi-lo
tion, the specific spreadsheet and the location of the Examiment which is also called
workbook. Through the tagged property, the Excel lengthierddas been transferred to
each instance, as displayed in the length slots of the crastinces. On the other hand,
the Excel width values which are colored purple only apply dpecific instances. In
UML the crank instance-specific values are stored in thaipeetive UML slots. In this
case, the sameexcelCellV alue» stereotype is applied to the slot to link the slot value
with the Excel cell value. Both UML crank instances therefoage a width slot tagged
with an«excelCellV alue» stereotype which refers to an Excel cell value.

The presented Excel-specific stereotype is responsiblednsferring the Excel cell
values to the UML model. Other stereotypes can handle thersevransfer of UML
values to an Excel document. The method of applying a stgveain properties or slots
can also be used to link UML values with values stored in ottea sources such as
databases.

6.2 UML profile for Matlab ®-specific functions

The MATLAB application offers an integrated environmenpparting computation, vi-
sualization and programming. MATLAB allows to solve mangtteical computing prob-
lems, especially those with matrix and vector formulatjassit includes libraries which
offer state-of-the-art software for matrix computationneTname MATLAB stands for
matrix laboratory. The MATLAB programming language is aliyigvel language and in-

6 UML profiles for data retrieval and constraint processing 171

cludes matrix-based data structures, control flow statésnfmctions and object-oriented
programming features. Collections of MATLAB functions (Me§) are grouped in tool-
boxes, as for signal processing, control systems, neutainks, fuzzy logic, wavelets,
simulation and many other domains.

The results of Matlab-specific computations can have an ¢inpa other product
data. By representing the Matlab-specific computations iV based product model,
the Matlab-specific data can be linked with other applica8pecific data. This Sec-
tion shows the representation of a Matlab function in a UMLdelo An example of a
Matlab function is displayed in Fig. 6.2. The header dedldhe function name getSli-
derMaxSpeed, its input argument simTime and output argtmerSpeed. The Matlab
function will launch a simulation of the sliderControl Sirmk model for 10 seconds. The
Simulink model simulates the control of the slider-crankch@nism as in Section 5.1.5
and records the speed of the slider along the rail. Figurest&ofs the Simulink model
which has a few additional blocks for the speed measurenidrg. maximum speed of
the slider is recorded at specific time intervals in an ar@y&d maxSpeedRecord. The
maximum speed which occurred during the simulation is etyutiie last recorded value
in the array and is set equal to maxSpeed which is the outgutraant of the function.

UML operation Simulink simulation

«Class > SliderCrankMechanism r
&% = =matlabFunchion=> <Operation: getSliderMaxSpeed (simTime @ 5) @ m/s e
= &% <Parameter: simTime : s
5 =literal String 10
= &Y <Parameter= maxSpeed | mis
_*s <literal String> 05785

T

Matlab Command Window Matlab function

>> maxSpeed = getSliderMaxSpeed(simTime)
function [maxSpeed] = getSliderMaxSpeed(simTime)

maxSpeed =

(sim('sliderControl’, simTime);
0.5788 maxSpeed = maxSpeedRecord(length(maxSpeedRecord), 2);

Figure 6.2: Processing of a UML operation referring to a lslafunction

Functions or methods are represented in UML through omeratiThe input and out-
put arguments of an operation are specified through parasnétee getSliderMaxSpeed
operation for example has a simTime input argument whiolgsasented in UML through
a parameter with a direction attribute set to “in”. The owtprgument maxSpeed is
mapped into a parameter with a direction attribute set ttufrd. The parameter values
are described through literal strings. The input argumiemigne is for example setto 10s

118 6.3 UML profile for constraint processing

and the output argument maxSpeed, resulting from the catpntby the Matlab func-
tion, is set to 0.5788m/s. The Matlab-specific function gnizable in the UML model
as an operation tagged withcanatlabFunction» stereotype. The name of the UML op-
eration is then identical to the name of the function. Theaory in which the Matlab
function is saved is specified in the workspacePath attibfithe «matlabFunction»
stereotype. It can also specify through an order attribugesequence in which several
Matlab functions need to be evaluated.

Figure 6.2 shows a tree view of the UML operation modelingnaets including the
input and return parameters and their values. AccordinggdXML specification, UML
operations can only have one parameter with the directiod kieturn”. This is the case
In many programming languages such as Java or C++. HowevélalMfanctions can
have several output arguments. In this case, the outputemngts are mapped into UML
parameters with the direction kind “out”. UML operationg @eneric modeling elements
which can represent functions of different programmingylaages.

6.3 UML profile for constraint processing

Dependencies between design variables can be descritmejthmathematical state-
ments to ensure data consistency. The mathematical statiewen describe a multi-
tude of different relationships between design variablef ss inequations or differential
equations. The most common type of mathematical statendemisg product design
are equations which describe an equality between two esiprescomposed of design
variables.

Equations can be described either in an explicit or an intpiom. Explicit equations
describe the evaluation of a parameter based on a knownidorahd a set of known
variables in the forme,, = f(z1,z2,...,x,-1). If the explicit representation allows to
compute one specific unknown variable, the engineer is fotcelecide which variables
are input and which are output. According to the exampley t¢m z,, variable would
be computed based on the other known variables. This is @atipal in conceptual
design as it requires the analysis of different what-if sce&rs to explore the possible
design space [136]. Trade-off studies can only be condunygaermutating the known
and unknown variables.

The implicit or declarative representation is of the fofitx,, xo,...,z,) = 0 and
does not visually impose a specific unknown variable. Thdigiipepresentation can be
reused in different scenarios as the definitions of the knamshunknown variables can
be swapped. However, the explicit representation doeseausssarily imply an explicit

6 UML profiles for data retrieval and constraint processing 191

resolution of the equation according to only one specifionomkn variable. Many math-
ematical toolboxes can automatically transform one eippresentation into another
in order to solve an equation according to another set of knamd unknown variables.
The sequence steps to solve an equation, or an equatiomsyeste as a consequence
not predetermined and do not stand for explicit computatiohhe resolution order of
the equations is then not fixed but computed according to tiesvik and unknown de-
sign variables. The simple equations presented in Fig. i@ 3egpresented in an explicit
form but are handled and manipulated by mathematical taetbas if they were in a
declarative form.

Design variables are described as UML properties. UML cairgls can set condi-
tions or restrictions on UML properties. They are for exaengiplayed in light red next
to the classes in Fig. 6.3. The UML constraints describe taapuawhich affect the length
and thickness parameters of the crank and rod parts of therslrank mechanism. The
UML constraints are composed of UML opaque expressions sordee the algebraic
equations.

Equations as UML constraints Constraint processing
— — Set of equations: Solution
sova Ien;:: o sova Ieng‘:h o {crank.length = 10 * crank.thickness Path
«! var» . «! var» N
«spgvar» thickness : mm «spgvar» thickness : mm _) crank.length =rod.length / 2 _) Generator

rodP : Rod rod.length = 20 * rod.thickness

{length = 10 * thickness} {length = 20 * thickness} rod.thickness = 5}

Set of variables:
{length = rod.length / 2} {thickness = 5} Iz dlarein @l @
rod.length, rod.thickness}

crank : Crank rod : Rod
length = 50 length = 100 @ Math.
thickness = 5 thickness = 5 Solver

rodP = rod <« Software

Figure 6.3: Resolution of equations described as UML comésra

By referring to the properties of a class, the constraintsraferce for all instances
of that class. So a constraint definition based on class pgiep&an lead to a multitude
of instance-specific constraints. These are then compdsadigue instance-specific
variables which are not to be mistaken for class-specifipgmoes. The transformation of
class-specific into instance-specific constraints is iggibthe first step of Fig. 6.3 which
displays the resolution process of the UML-based equatidhg constrained variables
have in addition to the property name a prefix depending omngtance name in order
to create a unique variable. As an example, the Crank classfspconstrainfength =
10 x thickness is transformed into the crank instance-specific constraintk.length =

10 * crank.thickness.

120 6.3 UML profile for constraint processing

Constraints can refer to properties of a class and also toepiep of referenced
classes. As displayed in Fig. 6.3, the length of the cranleddg on the length of the ref-
erenced rod. The constraint refers to the length propertigeofod via the rodP property
of the Crank class. The length property of the rod is transéalimto a unique instance-
specific variable when replacing the class-specific comsgravith instance-specific con-
straints. For example, the class-specific constraimgth = rodP.length/2 is replaced
with the crank and rod instance-specific constraintk.length = rod.length/2.

The automated resolution of UML-based equations consistg\eral steps as de-
scribed in Fig. 6.3. The first step consists of generatintaime-specific equations based
on property-specific equations. The set of instance-spemiiations can be directly sent
to a mathematical solver. However, the solution path geoe(&PG) [142], which is
based on a bipartite matching algorithm acting on a graptesemtation of dependencies
between equations and constrained variables, is able tpuenthe resolution order of
the equations. The solution sequence of the equationsrisftine determined in a second
step before solving the equations by a computer algebramystich as Matl&h Mathe-
matica or Maplé in a third step. The computed results are sent back to the UNddlein
in the slots of the corresponding instances, as displaystemfour in Fig. 6.3.

The unresolved properties which are involved in equatioasagyged with aspgvar»
stereotype while the constant properties are tagged wikpaconst» stereotype. The
abbreviation “spg” stands for solution path generator afers to the algorithm used to
compute the equation solving sequence for a set of deslarguations. Although UML
constraints can refer directly to the constrained progpsgittirough their constrainedEle-
ment attribute, tagged properties allow a better visutinaof the equation variables.

Each UML opaque expression specifies the language of thessipn. One prede-
fined language for writing constraints is the Object Constraanguage (OCL) [114].
It is a query language predominantly used to specify valnesta define pre- and post-
conditions regarding the execution of operations. Howetiexr OCL does not support
and interpret mathematical operands and is therefore mato$elto solve mathematical
equations. As the resolution of algebraic equations iscbasghe common preprocess-
ing SPG algorithm which is independent of the postprocgssiathematical solver, the
equations are stored in UML expressions with the languapg™'s

Other languages can be defined for the resolution of othexstyd equations. An
example of an equation consisting of matrices is describdelg. 6.4. Position or iner-
tia values are often represented through matrices. Theftmamation of a position vector

2The MathWorks, Matlabht t p: / / www. mat hwor ks. con pr oduct s/ mat | ab/
3Wolfram Research, Mathematidat, t p: / / www. wol f r am coni pr oduct s/ mat hemat i ca/
“Maplesoft, Mapleht t p: / / www. mapl esoft . com pr oduct s/ Mapl e/

http://www.mathworks.com/products/matlab/
http://www.wolfram.com/products/mathematica/
http://www.maplesoft.com/products/Maple/

6 UML profiles for data retrieval and constraint processing 211

Equation with matrices as UML constraint

Crank
pointPosition1 : 1x3 [mm]
pointPosition2 : 1x3 [mm]
rotationMatrix : 3x3 [-]

Matlab Command Window

pointPosition2 = pointPosition1 * rotationMatrix Bl

pointPosition2 = @
111 20 93

crank : Crank

pointPosition1 = [100 50 20]

pointPosition2 = [111 20 93]

rotationMatrix = [0.86 0 0.5;
0.5 0 0.86;
010]

) >> pointPosition2 = [100 50 20] * [0.86 0 0.5;0.5 0 0.86;0 1 0]

Figure 6.4: Resolution of equations involving matrices désd as UML constraints

into another reference frame can occur by multiplying itveitransformation matrix. The
equation in Fig. 6.4 describes the relation between theiposiectors pointPosition1 and
pointPosition2 respectively in the reference frames iedek and 2. The equation is de-
scribed in UML by an opaque expression owned by a constriaitiis case, the equation
is represented in an explicit form and the resolution of tipeagion is explicit. The left
side of the equation represents the unknown variable paositiBn2 while the right side
contains the known variables pointPosition1 and rotatiatrM. The known variables are
replaced with their values and the equation is directly seatmathematical solver such
as Matlab (step 1). The result of the Matlab computatiom(8)as sent back to the UML
model and placed in the corresponding UML slot (step 3). AsUIVL expression de-
scribing the equation is directly solved by Matlab, its laage is correspondingly set to
Matlab. In the case of several Matlab-specific equationspalsmentary stereotype can
be applied on the UML expression to specify the order in wiiehexplicit equations are
to be solved.

6.4 Summary

Chapter 6 has shown the retrieval of data from data sourcésasuExcel spreadsheets.
The UML-based reference to spreadsheet data occurs wittosgpes that are applied
either on UML properties or on UML slots. Similar stereotgpmn reference values in
other data sources such as databases.

Furthermore, the UML-based product model can also refextereal computations.
This was shown with the representation of a Matlab-specifiction as a UML operation.
The settings which are required to automatically call armdl Matlab function and to
return the result were described as properties of a Matlattifon-specific stereotype for
UML operations. The input and return parameters were mappedrdingly into UML

122 6.4 Summary

operation parameters. Similarly, references to othereatéunctions can be represented
in UML through UML operations with appropriate stereotypes

Mathematical dependencies between UML properties wereritbesl as algebraic
equations. Chapter 6 presented the description of algebrpiations through UML
opaque expressions which were owned by UML constraints. seh@f equations was
resolved through a solution path generator algorithm andthematical toolbox. The
interpretation of UML opaque expressions depends on thaguage. Further types of
equations can thus be described. As an example, the resohitiequations involving
matrices was demonstrated.

Chapter 7
UML model for centralized workflows

As presented in the previous Chapters 4 to 6, applicationHspgeometric and dynamic
system models as well as spreadsheet data can be mappedcononaon UML-based
product model. In order to guarantee data consistencyndiemeies between application-
specific models can be defined within the common UML modelti®ed.1 presents the
different methods to define these interdisciplinary depects. As a result, the auto-
matic update or generation of new application-specific nsd@sed on changes within
the central UML model, allows an efficient and consistentueaizon of different product
configurations. Section 7.2 shows the process allowing sbocuize the central UML-
based product model and to propagate automatically, as ih-b&sed software engi-
neering, changes from the central UML model to applicagpeeific models. Moreover,
each transaction with the central model can be automatedighra programming in-
terface in Java and design processes can be graphicallgilesthrough UML activity
diagrams. Section 7.3 introduces the Java applicationrgnoigning interface and the ex-
ecutability of UML activity diagrams. Section 7.4 descslihe frameworks that have
been used to implement the translators between the UMLdbaesatral product model
and each application-specific model.

7.1 UML-based modeling of dependencies

The process steps allowing to achieve a consistent UMLebpseduct model are sum-
marized graphically in Fig. 7.1. The first step consists gbamting application-specific
models into a UML model. In a second step, dependenciesmiitiei UML-based prod-
uct model are established. In a third step, the dependeactesesolved. In a fourth
step, the consistent UML-based product information is etgabback to the application-
specific models either by generating new models or by upglaiisting ones. This

124 7.1 UML-based modeling of dependencies

Section presents the various possibilities of linking miigtiplinary product data in a
common UML model. They include the constraints, generabrarelationships and the
superposition of stereotypes.

Controller @ @ @

Simulink import add constraints solve constraints
; —_— : : :
Multibody system ! - UML model .) Symbolic equations
. K ' UML model > . - 4
SimMechanics P ' with constraints |« Matlab
< .
Geometry
CATIA @
export

Figure 7.1: Typical process to achieve data consistendyiméa UML model

Dependencies between UML properties can be defined throiih ¢dnstraints as
presented in Section 6.3. In the case of the slider-crankharesm, several CATIA mea-
sures must match SimMechanics attributes. As presentedatiofi 4.1.2, the center of
gravity position of the rod is for example measured by CATIAlenthe term inertia cen-
ter (Fig. 7.4 left) and is saved in the correspondingtiaC'G» centerOfGravity property
of the «catia Part» Rod class (Fig. 7.3). As shown in Section 5.2.2, the SimMeickan
specific center of gravity position is specified by the origasition vector attribute of the
CG coordinate system belonging to the rod body block (Fig.rigHt). It is described
in UML as originPosition attribute of the relatedim MechCG» CG port of thecsim-
MechBody» Body2CS class (Fig. 7.3).

<<catiaPart>> <Component> Rod

i Data consistency » {7} <Constraint> CG.originPosition == centerOfGravity |
ithrough constraints 1 {2} <Constraint> CS1.originPosition == jointPosition

/ <Generalization> Body2CS

<<catiaPar>> <Property> thickness : mm
<<catiaMaterial> > <Property> Material : kg
<=catialG=> <Property> centerOfGravity : mm

< =<catiaPointPosition> > <Property> jointPosition : mm

Figure 7.2: UML constraints to describe dependencies

Both CATIA and SimMechanics center of gravity positions atatiee to an identical
inertial coordinate system and thus need to be equal. A UMistraint describes this re-
lation in an opaque expression with the bad§#.origin Position == centerO fGravity
as displayed in Fig. 7.2. As presented in Section 5.2.4, imd/8chanics rodinstance is
composed of the CS1 and CS2 coordinate systems. A similarraonss needed to set

7 UML model for centralized workflows 125

the position of the CS1 coordinate system of the SimMechanitinstance body block
(Section 5.2.4) equal to a point position measured by CAT Iide @efinition of CS2 co-
ordinate system of the SimMechanics rodinstance body bilees not require a UML
constraint as it is already defined in relation to the CS1 doatd system in the SimMe-
chanics model.

«simMechBody»
.) Body2CS
| Regroqug) «simMechMass, catiaMass» mass : kg
1 by superposition «simMechlInertia, catialnertia» inertia : kg*m~2
«simMechCG» CG : SimMechCS
«simMechCS» CS1 : SimMechCS
«simMechCS» CS2 : SimMechCS

Regrouping

. by inheritance
«catiaPart»
«catiaPar» thickness : mm
«catiaMaterial» Material : kg
«catiaCG» centerOfGravity : mm
«catiaPointPosition» jointPosition : mm
| «instanceOf>»
Common rod '
representation i rodInstance : Rod
in UML . \\\\
.. CATIA Part Instance SimMechanics Block Instance
Distinct rod .
representations mcs2 4 |csim
in specific models
' Q Rod (rodInstance) rodInstance

Figure 7.3: Regrouping application-specific propertiesrheritance and superposition
of stereotypes. Example: CATIA and SimMechanics featur@sneon to a rod instance

UML generalization relationships can describe dependsnbetween application-
specific model properties. A UML instance can regroup dgfférproperties by having
multiple inherited classifiers. The crank, rod and slidertp&om the slider mecha-
nism example of Chapters 4 and 5 are represented in UML by #rkrstance, rodin-
stance and sliderIinstance instances. All instances shaisaine SimMechanics-specific
Body2CS class as in Fig. 5.10 but belong to different CATIA-#jeclasses as each
part has a different geometry. A UML generalization relasioip is therefore appro-
priate between the specialized CATIA-specific classes aacctimmon SimMechanics
class. ThexcatiaPart» Rod class has for example a generalization relationship with
the «simMech Body» Body2CS class as displayed in Fig. 7.3. The UML crank, rod,
and slider instances are instances of their CATIA-speciiscland through the gener-
alization relationship also instances of the common SintMes specific class. The
instances thus unite the separated CATIA- and SimMechampiesiic properties and can

126 7.1 UML-based modeling of dependencies

be translated either into a CATIA product model resultingantinstances or into a Sim-
Mechanics multibody system model resulting in block insemn(Fig. 7.3).

The same UML property can be relevant for several domainstlans be tagged
with several domain-specific stereotypes. In the slidankrmechanism example, the
SimMechanics-specific multibody model requires the iaépart properties of the CATIA-
specific geometric model as displayed in Fig. 7.4. The SintMais body blocks are
specified by their mass attribute, so the correspondigp M ech Body» Body2CS class
owns a mass property tagged witkk@m M ech M ass» stereotype (Fig. 7.3). The correct
mass values are imported by CATIA, so each of the CATIA-speUifitl. classes repre-
senting the CATIA parts of the slider-crank mechanism has ssmpeoperty tagged with
a «catiaM ass» stereotype (Fig. 7.3). As the mass property is common to alll8A
specific classes, it can be placed in the generalized Body243S wthich already owns
a semantically equivalent mass property. The Body2CS clasgiti@er own two mass
properties with respectively different names and stegggyor bind the semantically
equivalent properties in one common property tagged with stereotypes (Fig. 7.3).
The latter approach automatically guarantees data censisas the CATIA and SimMe-
chanics mass values are identical in the UML model and as seqoence also concur in
the corresponding CATIA and SimMechanics models (Fig. 7.4).

UML Instance Specification
rodInstance : Rod

CATIA Measures SimMechanics Attributes
cs1 X =-68,263mm IZ] Block Parameters: rodinstance !l
y=12,04mm Body
2=-6,693mm Represents a user-defined rigid body. Body defined by mass m. inertia tensor |, and coardinate origing and axes for

center of gravity (CG) and other user-specified Body coordinate spstems. This dislog sets Body initial position and

x=114,704mm arientation, unless Body and/or connected Joints are actuated separately
y=10mm N s
z=25mm -
Mass: [2.1651e2 kg -
Inertia; [7.408e-6 0.299-6 10.22-6: 0.35%-6 22.64%-6 -0.24%-6: 10.22e-6 -0.24%e-6 15,445 |kg'm™2
Postion | Orientation
Current selection : | T
= 5 Show Port Name Origin Position Units | Translated fram Components in
Product | Graphic r}f!gc_r_'_v_ar_v__;a!___ﬂ Drafting | Port | Side Wector 1y 2] Origin of Ares af
i i [] |Righh ~CG [68.2612040-663mm ~ world v [word v
velume: [7,5555-006m3 w65, 2630 Right CS1 [11471025 |mm % World « wiord v B
Mass: [0,0z2kg vi[12,09mm [[k wcsz2 poo |mm % |Adicining v Adicining v :]'
surface:[n,005mz 2i|-8,693mm
Inertia matrix 3

Dexi|7,406e-006kgxmz Dxy:[3,597e-007kgzmz 1%2:]1,022e-005kgxm2
Iyxi[3,597e-007kgxmz 1v¥:[2,2650-005kazmz 1¥2:]-2,458-007kgxm2
Izx:[1,022e-005kgxm2 12v:[-2,45e-007kgzmz 122:[1,545e-005kgxm2 [

ok |[cancsl | Hep |

Figure 7.4: Dependencies between the CATIA and SimMechaottgstances

7 UML model for centralized workflows 127

7.2 UML-based model customization

The central UML-based product model includes the proddotimation which is shared
by different disciplines and applications. It also repregseapplication-specific model-
ing elements in order to automatically translate its apyion-specific information into
application-specific models. Through the translation @ples presented in Chapters 4
to 6, centrally defined changes to the UML-based product hreadebe propagated auto-
matically to application-specific models. This allows aficgnt generation or update of
application-specific models in order to achieve consisgentlations.

The customizability of a UML-based product model is showthwie example of the
slider-crank mechanism. The showcased central UML mod=ingposed of representa-
tions of the application-specific CATIA, Simulink and SimMemics models as depicted
in step one of Fig. 7.1. The inter-model dependencies amgfgukein the UML model as
described in Section 7.1. The automatic translation stepsder to achieve a consistent
simulation of the controllable slider-crank mechanismsirewn in Fig. 7.5. In this sce-
nario, the length of the crank part is shortened from 50mmOimr@ and the derivative
gain of the PID controller is increased frond to 3.

UML-based central product model with changes
in geometric dimensioning and in controller behavior

4 @ <Instance Specification> skeletonlnstance
4 %3 <Slot> crankLength

& <Literal String> 30
4 [<Instance Specification> Kd

4 27 <Slot> gain

“: <literal String> 3

@{// \ \@A

Geon:petry Symbolic equations Multibody system Controller

CATIA Matlab SimMechanics Simulink
\9’ Kd

crank length = 50mm -> 30mm derivative gain=1.5->3

Figure 7.5: Translation steps for a consistent simulatioth@® controllable slider-crank
mechanism based on a central and customizable UML-basddgrmodel

128 7.2 UML-based model customization

The changes are first described centrally in the UML-basedumt model (Step one
in Fig. 7.5). The change of the crank length has an impact®ndihresponding geometric
and multibody system models as well as on the simulation@ttntrolled mechanism
motion. In the case of the slider-crank mechanism, the gagratthe mechanism can be
adapted according to the parameter values of the UML skefsd instance as presented
in Section 4.1.6. So the crank length is a property of theet&alpart instance (Fig. 7.5).
The geometric information within the UML-based product relog first translated into
the application-specific geometric model. As a result, a geametric assembly model
is generated and the new position and inertial propertieh@fparts are measured by
the geometric application and sent back to the UML modelpg8i® in Fig. 7.5). CA-
TIA was used as geometric application. The updated UML ptegserepresenting the
geometric part measures are then set equal to the corraagddiIL properties repre-
senting the multibody system part attributes through teeltgion of symbolic equations
by Matlab (Step three in Fig. 7.5). The UML properties spedtithe multibody system
are then consistent with the UML properties specific to th& geometric model. The
change of the derivative gain only has an impact on the cthetnmodel. Simulink and
SimMechanics are respectively used as applications foamyan system and multibody
system models. Lastly, the UML model generates Simulink @indMechanics models
for a consistent simulation of the controlled slider-cran&chanism motion (Step four in
Fig. 7.5).

crank length = 50mm crank length =30mm
derivative gain=1.5 derivative gain =3

>
4 75

Time [s] Time [s]

N A

L

»
75

Position [m]
Position [m]

Figure 7.6: Simulation of two controllable slider-crankahanism configurations

The simulation of the controllable slider-crank-mechaniwas presented in Sec-
tion 5.1.5. The results of the simulation are presentedgn F.6 for the original scenario
without change, whereby the crank length and the derivaiaie are respectively equal
to 50mm and .5, and for the new scenario, whereby the crank length is retiiac80mm
and the derivative gain increasedxoThe simulation result presents the position of the
slider in meters over time in seconds. The target slidertiposis colored black and the
actual slider position blue. The target position followstairsase pattern. In the first
case, the slider reaches the target position with a slightstmoting at each target posi-
tion adjustment. In the second case, the slider approabbearget position more slowly

7 UML model for centralized workflows 129

as the derivation gain has been increased. However, ther slisses the target position
by little. It is physically impossible for the slider to rdathe target position due to the
reduced crank length. Consequently, the slider is pusheddrat forth on the base rail
and cannot reach the target position in the second scenario.

7.3 Automated workflows

The UML-based product model, as presented in this theslsased on an application-
specific integration approach and is independent of anyyatodesign process. As a
result, the UML-based product model can be used in diffgpemtluct design processes
which may include frameworks for model-based or knowletlgsed engineering.

UML models can be created or customized through Java pragrAmava application
programming interface (API) for UML models is provided b thclipse UML2 Projeét
The Java APl was designed, and mostly generated, based o.arigkdmodel definition
within the Eclipse Modeling FramewotkUML models which are created by the API of
the Eclipse UML2 Project are saved in XMI and thus importableorofessional UML
editors for further use, such as for graphical display.

UML models can include large quantities of product inforimat Repetitive manual
manipulations of UML models in tree editors or in graphicaigtams are therefore often
error-prone and time-consuming. These tasks can be progedrithrough the Java API of
the UML model. Moreover, the translators between the UML el@ohd the application-
specific models can also be invoked through a Java API. Asudtrasmultidisciplinary
design process consisting of several design evaluatioth&e@mtions can be automated.
In the case of the slider-crank mechanism, the minimum reduyower supply for a spe-
cific slider configuration can for example be automaticayedmined iteratively through
the generation and subsequent evaluation of differentistems slider-crank mechanism
configurations.

Furthermore, the UML supports the graphical descriptiodesign processes through
activity diagrams. As described in Section 3.3.2, UML atfidiagrams are composed
of nodes and edges to represent various process stepsityAdtagrams represent a more
intuitive representation of design processes than Javgrgms. As a consequence, a
design process described as an activity diagram can bedshaceunderstood by more
parties. In this thesis, the executability of activity diags was implemented by linking
actions within an activity diagram with Java methods. Fegur7 for example presents

Model Development Tools - UMLAt t p: / / waww. ecl i pse. or g/ model i ng/ mdt / un 2/
2Eclipse Modeling Framework Project (EMMYt t p: / / ww. ecl i pse. or g/ nodel i ng/ enf/

http://www.eclipse.org/modeling/mdt/uml2/
http://www.eclipse.org/modeling/emf/

130 7.4 Software implementation

the reference of a UML setCrankLength action to a correspandava method whose
invocation changes the crank length in the UML model. Thevi#gtdiagram is executed
by invoking Java methods corresponding to UML actions. Tvas implemented using
the Java reflection packabehich is for example also used by debuggers.

UML Activity Diagram
umliModel UML Model

W Java Method 4 [<Instance Specification> skeletonlnstance
Bl setCranklength - =|-
8

crankLength
F--¥ setCrankLength (...)-==---)> 4 %9 <Slot> crankLength
== <Literal String> 30

Figure 7.7: Executable UML activity diagrams by linking UMictions with Java meth-
ods

Typical design criteria, steps, decisions or rules can Iseriged in Java methods
and represented graphically through UML activity nodes. MLUbased product model
can thus be automatically customized by an executable UMtesentation of a product
design process (Fig. 7.7). Chapter 8 presents case studiadiilg both Java programs
and UML activity diagrams for an automatic generation argt@mization of UML-based
product models.

7.4 Software implementation

The Application Programming Interface (API) of applicaisovas used to create or parse
application-specific models. The Visual Basic Script (VBS) ARCATIA and the Visual
Basic (VB) API of SolidWorks were used. The translation of a UMbdel into a CATIA-
or SolidWorks-specific geometric model was implemented éyegating and executing
a corresponding VBS or VB script. The translation of a geoimetrodel into UML
was implemented by using temporary XML files. The Eclipse Blody Framework was
used to specify the XML schema of temporary XML files and tcoeatically generate
corresponding Java APIs for an easy reading of the XML filesseBaon the geometric
information within the temporary XML files, corresponding/ll models were created.
Next to the application-specific APIs of geometric modelyalAPIs for Matlab and
Excel were provided by the respective JMatfiskad Apache POlprojects.

Simulink and SimMechanics models were directly accessexuighh their text files
in ASCII format. Using regular expressions, the SimulinkiSiechanics information

3Package java.lang.reflect,htt p: //j ava. sun. con j avase/ 6/ docs/ api / j ava/ | ang/
refl ect/package- sunmary. ht m

4JMatLink,ht t p: //j mat | i nk. sour cef or ge. net /

SApache POIht t p: / / poi . apache. or g/

http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html
http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html
http://jmatlink.sourceforge.net/
http://poi.apache.org/

7 UML model for centralized workflows 131

was extracted from the model text files and corresponding Whdldels were program-
matically generated based on the Java API of the Eclipse Upthject. Simulink/Sim-
Mechanics model text files were directly generated from thMl tbased representation
of Simulink/SimMechanics-specific information. SimilarMWRML text files were also
directly generated based on the VRML-specific informatiothinithe UML models.

The Design Compiler 43¥Xoftware was developed to support among other features
UML-based product design. It is built upon the open-sourckpEe Platformi which
supports the design of integrated development envirors(éDE). The Eclipse Platform
provides the core functionality of integrated developnewironments and is designed to
be extended by software modules which are called plugirefeBsional plugins have for
example been developed which offer IDEs for $awaC/C++° programming. Other plu-
gins offer UML editors such as Topcas@dr the Eclipse Graphical Modelifty(GMF)
framework.

7 Plug-in Development - “av2 =X
File Edit Source Refactor Navigate Search Project Run [UMLinteraces] Window Feip | U ML I f M b
e PR — ntertraces Mlenubar o [CRERE
e R HvOvQy BHGv &4 % Export to Simulink

Export to VRML
¥ Export to SolidWorks
Export to CATIA

1% Package Explorer i1 % Plug-ins. =0 8] sliderMechanism: il A320.umiclass_diagram &2

valuate with SAP
valuate with Matlab

exce
META-INF
>models
& A318umi 11 (ASCI -kkv)
&) A319.umi 1.1 (ASCI -kkv)
&) >A320uml 12 (ASCI -Kkv)

ml 1.1 (ASCH k)
(ASCH kkv)

1 (ASCH-kkv)
busA319.uml 11 (ASCII -kkv)

&) AirbusA320200.uml 11 (ASCII -kkv)

4

N | P .
Project Explorer f| -] UML Editor
TS BeT Lo TT (ST R | / // 3
X-48B.uml 11 (ASCH -kkv) [/ #
00.umi 1.1 (ASCIH -kkv) ,._;‘/ v 4
ot | of //
& Con perti
Property Value
Info
derivex d false
ditable 1
last modified 26. Januar 2009 15:08:56 . .
i e = Properties Window

name A319.umi
/Airplane_Design/models/A319.uml
595396 bytes

4 >UMLwithCatiaScript [maui] path
2 size

Figure 7.8: Design Compiler 43v2 based on the Eclipse Platfor

Figure 7.8 presents the Design Compiler 43v2 software basdte Eclipse plat-
form. The software allowing to translate application-sfieenodels into UML and vice
versa was equally bundled into Eclipse plugins. Similatthg software needed to exe-
cute UML activity diagrams was also bundled into a plugineTHML translator plugins

6Design Compiler 43vahtt p: //www. i i | s. de/

"Eclipse Platformht t p: / / www. ecl i pse. or g/ pl at f or ml

8Eclipse Java development tools (JDf),t p: / / www. ecl i pse. org/j dt/
9Eclipse C/C++ Development Tooling (CDt t p: / / www. ecl i pse. or g/ cdt/
0Topcasedht t p: / / www. t opcased. or g/]

LEclipse Graphical Modeling Framework (GMRww. ecl i pse. or g/ gnf/

http://www.iils.de/
http://www.eclipse.org/platform/
http://www.eclipse.org/jdt/
http://www.eclipse.org/cdt/
http://www.topcased.org/]
www.eclipse.org/gmf/

132 7.5 Summary

for UML-based product design have not changed the grapbsml interface of Eclipse
apart from adding menubar, toolbar and popup menu actiofsv&e modules required
for UML-based product design are regrouped in one softwaveg@ment through the
Eclipse Platform. The Design Compiler 43v2 for example ideks; next to the UML
translator plugins, a Java IDE and UML editors. The modulahi¢ecture of the Eclipse
Platform facilitates the integration of further features.

7.5 Summary

Chapter 7 has presented centralized workflows between etgzous application-specific
models through the use of a UML-based central product mdded.definition and eval-
uation of dependencies within the UML-based central prothadel is required in order
to achieve data consistency between various applicapenHsc models. Inter-model de-
pendencies were represented in UML by the definition of camgs, the regrouping of
properties by inheritance and superposition of stereatype

Furthermore, the UML-based central product model supdartedel customization.
Changes were defined centrally in the UML model and propagatézmatically to the
dependent application-specific models. The automatedmization of application-spe-
cific models is more efficient than the manual update of sépapplication-specific
models. The approach was shown for the evaluation of a nelerstrank mechanism
configuration.

The UML-based product model is based on an applicationdcemtegration ap-
proach and is independent of any product design process. résult, the UML-based
product model may be used within different product desigicesses. The Java API of
the UML model allows other frameworks, such as for modekdas knowledge-based
engineering, to access the UML-based product model. Funibre, UML activity dia-
grams can graphically represent product design proce$bes. executability was made
possible by linking activity nodes with Java methods. Pobdiesign processes can thus
be represented in UML activity diagrams and be executed nergge or modify UML-
based product models and translate them into applicapenHsc models.

The software for the translation of UML models into applicatspecific models and
vice versa, as well as the software for the executability BfLLActivity diagrams, were
bundled into Eclipse plugins. The Design Compiler 43v2 saftmincludes among others
these plugins as well as freely available plugins for Jaegm@mming and UML model
editing. As the Design Compiler 43v2 software is based on tip&e platform, it can
easily integrate further features.

Chapter 8
Test cases

This chapter reviews projects which were undertaken inmpaship with academia and
industry to highlight the use of a UML-based central producidel for the automated
generation of consistent model configurations. The tegtsc@elude models for the eval-
uation of different cabin pressure control systems (Sedid), the generation of cus-
tomizable conveyor systems (Section 8.2), the automatituation of different satellite
configurations (Section 8.3) and the generation of airgafimetry (Section 8.4).

8.1 Evaluation of cabin pressure control systems

This Section presents the evaluation of cabin pressurea@ytstems based on an inte-
grated modular avionics (IMA) architecture. The projecswadertaken in partnership
with the Institut fur Luftfahrtsystemeof the University of Stuttgart. IMA includes many
engineering aspects ranging from hardware to softwares tharefore hard to integrate
the numerous IMA aspects into a single model in order to aeh@n evaluation of an

IMA architecture.

A cabin pressure control system is responsible for ensumimgan-friendly pressure
conditions within an aircraft cabin. In this test case, thbig pressure control system
was designed according to an IMA architecture [125]. Avigystems were traditionally
designed as a federated architecture of computing resodexticated to specific func-
tions. In IMA, several functions share the same computirspuece so the number of
required on-board computers is reduced. As a result, the pdradigm is intended to
reduce the mass, volume and power consumption of aviontactures. IMA is a mul-
tidisciplinary task as it consists of ensuring the reliatiectionality of many systems
while at the same time minimizing the mass, volume and cogteo€omplete avionic ar-

Ynstitut fur Luftfahrtsysteme (ILSYt t p: // www. i | S. uni - stuttgart. de/

http://www.ils.uni-stuttgart.de/

134 8.1 Evaluation of cabin pressure control systems

chitecture. Due to the high diversity of computing and comioation resources as well
as the many topological configuration possibilities, thaleation of many different IMA
architectures is required in order to reach an optimal cardigpn.

Components within an IMA architecture are intended to bdysesplaceable and con-
figurable. IMA architectures are therefore composed of cencial off-the-shelf (COTS)
components in order to be scalable and adaptable for seliffeaknt aircraft types. An
IMA architecture is composed of processing units and dffietypes of links for inter-
module communication. An example of a module is the Core RBsiaeg Input/Output
Module (CPIOM) to execute specific avionic functions. Thegvile computing capa-
bilities for various applications and replace the tragiéibblack box concept.

Figure 8.1 presents two different cabin pressure contrstiesy architectures which
are not aircraft type-specific. They consist for example oiC®s, outflow valve control
and sensor modules (OCSM), outflow valves, pressure sensdrsudflow relief valve
dumps (ORVD). These processing modules are interconnéutedgh different types of
buses such as ARINC 429, CAN, RS422 and AFDX.

Selected aircraft sections are reserved for the safe pogif of processing mod-
ules within the fuselage. The selected sections providesacto power and enable the
diffusion of heat. Furthermore, they are easily accessthieaintenance personnel. Nev-
ertheless, a cabin pressure control system can vary in thieecbf processing modules
and in the type of communication buses, as depicted in Fig.&chitecture character-
istics such as mass, volume and cost need to be evaluatedeintorobjectively compare
different architecture configurations.

The components of the cabin pressure system were reprdssntéML classes and
instances. Properties which were common to several clagsesrepresented in a com-
mon abstract class. The classification hierarchy of thencplessure system is repre-
sented in the class diagram of Fig. 8.2. The directed linésinvihe class diagram show
inheritance relationships.

All components have a mass and a price. These propertiestivanefore placed in
the highest class within the class inheritance hierarcamealy in the Component class.
As a consequence, the mass and price properties were athautomatically by all lower
classes. The properties common to all computing resousaeh,as position and volume,
were described in the Unit class and similarly the propgrtimmon to all connections,
such as length and mass per length, in the Connection classvdllime computation
of the units assumed that the units were either of rectangulaylindrical shape. The
specific unit and connection types which appeared in thencpt@ssure system were
situated at the lowest level within the class hierarchy.

8 Test cases

135

Layout1

Mixer
Overpressure
Refilef Valve

.

— Diff
A | A A A Pressure Sensor
»| OSscMm 0OSsCcM —> oscMm 0sCcM
~> ! = — 3 4
A A 4 4 4
FWD FWD AFT AFT
Outflow Outflow Outflow Outflow
Valve 1 Valve 2 Valve 1 Valve 2 ARINC 429
CAN
RS422
AFDX
—— Discrete
Diff TTP
Pressure Sensor 28V DC
Layout2
Mixer
Overpressure
Refilef Valve

iyl

— Diff
Pressure Sensor

y

FWD
Outflow
Valve 1

AFT
Outflow
Valve 2

Diff
Pressure Sensor

Figure 8.1: Examples of different cabin pressure contrsteay architectures

AFT
Outflow
Valve 1

136 8.1 Evaluation of cabin pressure control systems
Component
mass : kg
price : EUR
Unit Connection
xPosition : m length : m
yPosition : m pricePerLength : EUR/m
zPosition : m massPerLength : kg/m
volume : mm#3
RectangularUnit CylindricalUnit AFDX Discrete TTP
length : mm cylinderHeight : mm
width : mm diameter : mm ———
height : mm AR429 Cable28VDC CAN
ciow ocow | Difffrsssensoodulel| Discretscoupler | OverbressursRalieaivebuma |
Cocoitswitchesunit | ARINC20Coupler | MinerOverPressureRelisVaive |
ValveControlModule
 outriowvalve | rrncouser
Difresssensor Rss22couter
CANCoupler

Figure 8.2: UML class diagram showing the generalizatidaiti@nships within the cabin

pressure system components

Each computing resource has input/output connection Ipiges. A CPIOM can
for example have up to 4 connections of type AFDX and up to Itheotions of type
ARINC 429. Each connection possibility of a certain type wasalibed in UML as a
property. The CPIOM class for example had properties namddX&Fonnections and
ARINC429Connections. These properties were represented dsddbbciations in the
class diagram of Fig. 8.3. The maximum number of connectassibilities of a certain
type was represented by the multiplicity of their respexpvoperties and was displayed
graphically next to the name of the associations.

0.4

- AFDXConnections
0..10

CPIOM - ARINC429Connections

0..10

- CANConnections
0..100

- DiscreteConnections

AFDX

AR429

CAN

Discrete

H <<catiaPart>> <Class> CPIOM
/7 <Generalization> RectangularUnit

» = <<excelCellValue, spgvar=> <Property> mass : kg

» = <<excelCellValue, spgvar=>> <Property> price : EUR
» B <<excelCellValue, spgvar>> <Property> length : mm
» @ <<excelCellValue, spgvar=>> <Property> width : mm
» @ «<excelCellValue, spgvar>> <Property> height : mm
» = <Property> AFDXConnections : AFDX [0.4]

» = <Property> ARINC429Connections : AR429 [0..10]

» = <Property> CANConnections : CAN [0.10]

» B <Property> DiscreteConnections : Discrete [0..100]

Figure 8.3: UML class diagram showing the associations®QRIOM class

The UML instances describing a concrete cabin pressuremyistyout could be rep-
resented graphically in a UML object diagram. However, a&s WML instances were

8 Test cases

137

I <Instance Specification> CPIOMB1
4 %0 <<excelCellValue, spgronst= > <Slot> xPosition
% <literal String> 4.0
4 %3 <<excelCellValue, spgconst>> <Slot> yPosition
& <literal String> -1.0
4 %0 <<excelCellValue, spgconst=> <Slot> zPosition
7% <literal String> 0.0
4 %0 <Slot> ARINC429Connections
1@ <Instance Value> AR429CPIOMB1toOCSM1
1@ <Instance Value> AR4290CSM1toCPIOMB1
4 %7 <Slot> volume
5 <literal String > 5562583.2
4 %3 <Slot> mass
= <literal String> 13.0
4 %7 <Slot> price
5 <literal String > 15000.0
4 %7 <Slot> length
& <literal String> 318.0
4 %0 <Slot> width
* <literal String> 90.4
4 %3 <Slot> height
= <literal String> 193.5

0 <Instance Specification> AR429CPIOMB1toOCSM1
4 %3 <Slot> unitl

10 <Instance Value> CPIOMB1
4 %7 <Slot> unit2

42 <Instance Value> OCSM1
4 #7 <Slot> price

& <Literal String> 56.0
4 ¥3 <Slot> mass

& «Literal String> 0.14
4 %3 <Slot> length

5 <Literal String> 14.0
4 7 <Slot> massPerLength

= <literal String> 0.01
4 #9 <Slot> pricePerLength

5 <Literal String> 4.0

Figure 8.4: Example of CPIOM and ARINC429 instances

very numerous, a resulting object diagram would not have le@sily comprehensible.
Therefore, the values of instance slots which were moshafténterest were represented
in tree views. Figure 8.4 for example shows the attributeesiof a CPIOM and an AR-
INC429 instance. The CPIOM instance has an instance valueingf¢o the ARINC429
instance under its ARINC429Connections slot.

Many values related to the cabin pressure system are aleitaBxcel spreadsheets.
The Excel values which applied to all UML class instancesenagtached to the corre-
sponding class properties through Excel-specific stepestySimilarly, the values which
only applied to specific class instances were added onto ithgpective instance slots.
Figure 8.5 examplarily shows the application of an Excelesiic stereotype to the xPo-

E Properties 2

Excel Wb Path
UML
Defining Feature

Property Value
= <Instance Specification> CPIOMB1 Excel Cell Value _
4 %21/ <<excelCellValue, spgconst>> <Slot> xPosition Excel Cell Ref ~|B8
= e
% <literal String> 4.0 Excel Sheet Topology#1

'= C/excel/CPCS_Specific_Components.xls

= < <catiaScriptPar>> <Property> xPosition : m

B

Position

w0~ n

—
=

Units xPosition [m] yPosition [m] zPosition [m]
Core Processing and Input/Output Module (CPIOMB1) 4 -1 0
Core Processing and Input/Qutput Module (CPIOMB2) 4 0,5 0
Core Processing and Input/Qutput Module (CPIOMB3) 4 0,5 0

Figure 8.5: UML-based representation of Excel cell values

138 8.1 Evaluation of cabin pressure control systems

2 «<Class> RectangularUnit
» {7} <Constraint> volume = length * width * height .

<Generalization= Unit
» & «<<catiaPar=> <Property> length : mm
» B <=catiaPar>> <Property> width : mm
» B <=catiaPar>> <Property> height: mm

. I : 1Az
H <<catiaPart>> <Class> CylindricalUnit R4
> {7} «Constraint> volume = cylinderHeight * pi * 0.25 * diameter ~2 . z y /,Ay
/' <Generalization> Unit . 4
» B <<catiaPar>»> <Property> cylinderHeight : mm Ax
+ B «<<catiaPar>> <Property> diameter: mm X

2 «Class> Connection
» 47} «Constraint> length = Abs[unitl.xPosition-unit2. xPaosition] + Abs[unitl.yPosition-unit2.yPosition] + Abs[unitl.zPosition-unit2.zPosition]
» {7} «Constraint> mass = massPerLength * length
» 17} <Constraint> price = pricePerLength * length

/# <Generalization> Component
» B <<spgvar>> <Property> length: m

@ <P > pricePerLength : EUR/ Connection Unit
roperty> pricePerLength : m length : m xPosition : m
» @ «Property> massPerLength : kg/m pricePerLength : EUR/m - unit2 | yPosition : m
massPerLength : kg/m zPosition : m

» & <Property> unitl : Unit
» B <Property= unit2 : Unit

- unitl | volume : mm~3

Figure 8.6: UML constraints to compute component volumesamnection lengths

sition slot of a CPIOM instance. The stereotype propertiés i@ a cell value within
a specific spreadsheet inside an Excel document. Similatgr attributes such as the
mass and the price of components were imported from Excel.

The volume of every component needs to be computed in ordaraoate the over-
all volume of a cabin pressure system configuration. Themelof a component only
depends on its own dimensions. The symbolic equations tguterthe volume of rect-
angular and cylindrical units were described in UML throudRIL constraints of the
UML RectangularUnit and CylindricalUnit classes (Fig. 8.63pectively. Furthermore,
the length of each connection was computed as it had an ingpaitte mass and price
of a cabin pressure system configuration. The length of eanhection depended on
the position of the connected components and was assumeltbiw & rectilinear layout.
The corresponding symbolic equation was described in UMaugh a UML constraint
of the UML Connection class (Fig. 8.6). It was assumed thanthss and the price of
a connection were proportional to the connection length.aA®nsequence, the UML
Connection class had two UML constraints to compute resgagtihe connection mass
and the price based on its length.

The UML model of the cabin pressure system consisted of taoyrelements to be
built from scratch manually. The UML model was therefore gyated by the execu-
tion of a Java program. Recurrent design steps to estabksbkL model of a cabin
pressure system were described in Java methods. The Javamreeferred to the prede-
fined methods to generate a UML model composed of classéanoes and constraints.

8 Test cases

The Java program also applied stereotypes onto the UML elesne allow an import of
Excel-specific spreadsheet data into UML as well as an exgfdhte UML-based geo-

metric information to a CATIA-specific geometric model.

UML Model

Layout1

Layout2

<Property> totalMass : kg

= <literal String> 168.359
<Property> totalVolume : dm*3
= <Literal String> 355.690
<Property> totalPrice : EUR

& «literal String> 111843.3

<Property> totalMass : kg

5 <Literal String> 143.300
<Property> totalVolume : dm#3
= <Literal String> 283.882
<Property> totalPrice : EUR

I <Literal String> 106246.3

e
OO}

Spreaasheet Geometry

o

Symbolic équations

Excel CATIA Matlab

Figure 8.7: Process to efficiently generate and evaluater€ift cabin pressure system
configurations

Figure 8.7 presents the steps leading to the evaluation d¥lb-bhsed representa-
tion of a cabin pressure control system. The easily adaptidta program was used to
create UML representations of different cabin pressuréesysonfigurations (Step 1 in
Fig. 8.7). The generated UML models then imported the Egpekific spreadsheet data
of the system components (Step 2 in Fig. 8.7). The spreatida&e also included the
position of the components within the aircraft. The UML mbdeas then exported to a
CATIA-specific geometric model to visualize the correct plaent of the cabin pressure
system components (Step 3 in Fig. 8.7). Figure 8.8 for exampy@sents the placement of
cabin pressure system components within an A380 aircrafteind\ext, the UML con-
straints describing the computation of mass, volume argepioperties were automat-
ically resolved based upon the solution path generator lrmd/fatlab-specific symbolic
toolbox (Step 4 in Fig. 8.7) as described in Section 6.3.

Figure 8.8: Geometric model of cabin pressure system uriitsrman A380

This process was applied to the evaluation of the two diffecabin pressure control
system architectures of Fig. 8.1. Figure 8.7 presents #waluation according to their

140 8.2 Automated design of conveyor system configurations

mass, volume and price. The second layout (Fig. 8.1 bott@®ins more appropriate
than the first one (Fig. 8.1 top) as it has a lower mass, volungepasice. This is not
surprising as the second layout is composed of fewer unithiolstic evaluation of a
cabin pressure system would however require the evaluafiamany more aspects such
as the system reliability.

In general, IMA architectures entail a high degree of migtigblinarity and multiple
potential configuration possibilities. They thereforersde be the ideal test case for a
UML-based central product model. Two versions of a simgiftabin pressure system
were used to show the capabilities of a UML-based productaitodgenerate consistent
system configurations. The UML-based product model thematiegrated Excel-specific
spreadsheet data and CATIA-specific geometric informatowell as symbolic equa-
tions to compute component values. The approach could beefuextended to investi-
gate the integration of other aspects related to IMA archutes.

8.2 Automated design of conveyor system configurations

Conveyor systems are used to transport materials from one fdeanother. Many kinds
of conveying systems are available for various needs iemifft industries including the
automotive, aerospace and packaging sectors. Conveyensysteed to be highly cus-
tomized for the specific needs of each customer. This Sedéseribes the use of a
UML-based product model to customize the design of motiedrchain conveyors for
the painting of automobiles. The geometric models have Ipgevided by one of the
leading conveyor suppliers for automobile manufacturifige UML-based generation of
identical geometric models was performed in order to prtveecapabilities of a UML-
based product model in an industrial context. Furthermtire,customizability of the
UML representation of conveyor systems was proven throbghgeneration of several
conveyor system versions.

SolidWorks was used as CAD application. The geometric aslyembdel of the
conveyor system was composed of several smaller asseroblied modules. The posi-
tioning of the modules occurred through assembly condtaifhe top assembly model
functioned like a skeleton model by providing planes acicwydo which the embedded
modules were placed. Figure 8.9 for example shows the ptries top assembly model
of the conveyor system and the placement of modules basde@oincidence of planes.

The geometric models of modules represented geometriclagespwhich were in-
stantiated and inserted into other assembly models. A gemmeodule model was
therefore represented in UML as a class and a correspondmmetric assembly model

8 Test cases 141

PLANE_MOD_4500_1 .

L

PLANE_MOD_5500_1 }

PLANE_MOD_3500_1 i .

PLANE_END_OE |

o

Figure 8.9: Example of a geometric model of the conveyoresysPlacement of modules
based on the coincidence of planes

instance as a class instance. Furthermore, the modulesoatrgorized in the UML
classes InletModule, ChainModule, IntermediateModuleédModule and DriverMod-
ule according to their common features as in Fig. 8.10. Afjpam their diverse functions,
the modules differed by having different planes within tfggometric models. All mod-
ules of type InletModule for example had planes named STARDJDULE, Right and
FLOOR.

The different inlet modules of varying length were desdlilie separate geometric
models. The module length is derivable from their name. le@ul1 for example shows
the inlet modules of varying length such as 4500mm, 5500mt&®0mm. As the
modules shared the same planes, the corresponding OE_@%0%500 and OE_6500
UML classes all inherited the properties from the commortrabs InletModule class.
The UML class diagram in Fig. 8.11 displays the common geomeatodule features
which are not explicitly described in the geometry-spe@iididWorks application.

[=] IntermediateModule

attributes
START_CONVEYOR : Plane
Right : Plane
FLOOR : Plane

operations

classes

[E] InletModule . B [=] DriverModule
attributes 7 / ! attributes
START_MODULE : Plane Front : Plane
Right : Plane R ' Right : Plane
FLOOR : Plane S / FLOOR : Plane
// . !

operations operations
classes classes

! =] ChainModule [=1 OutletModule
. attributes attributes
! Front : Plane Front : Plane
I Right : Plane Right : Plane

P soIoIzIzzzs=ss--- Top : Plane FLOOR : Plane

operations operations

classes classes

Figure 8.10: Abstract UML classes to classify different miedtypes

142 8.2 Automated design of conveyor system configurations

Assembly constraints were represented through UML congsras described in Sec-
tion 4.2.3 and referred to detailed geometric elements aagilanes, sketches, lines and
points. A one-to-one mapping of SolidWorks-specific gegroeintities into UML al-
lowed to easily recognize SolidWorks-specific informatinorUML. The low-level geo-
metric entities of modules were represented as UML inst&andth predefined classifiers
as described in Section 4.2.2.

The decomposition of the conveyor system is outlined in thesadiagram of Fig. 8.12.
The conveyor was represented in UML by the TKFAssembly clabgreby TKF stands
for “Trocknerférderer”. The geometric model of the complebnveyor system was repre-
sented by a SolidWorks-specific assembly model. The TKRAbbeclass was therefore
tagged with a<sldW orks Root Asm» stereotype.

The associations of the TKFAssembly class with other modldseses showed the
required number of module types. The multiplicity of theetModule property was for
example equal to one while the multiplicity of the shaftydriand chain modules ranged
from one to two. As a consequence, the root assembly modéleotdnveyor system
could only have one inlet module and it required either ongvorshaft, driver and chain
modules. The geometric elements of the root assembly moeled described as UML
type-specific properties such as the “planes” and “sketcpesperties. Furthermore,
the TKFAssembly class had associations with classes whkigfesented non geometry-
related conveyor information such as CountryOfmanufactdetorModule, MotorType,
conveyorSpeed and payloadMass.

The geometric assembly instance and its corresponding WistAmnce are represented
in Fig. 8.13. The assembly instance named “TKF Assemblyahts#” is composed of
planes, assembly instances and a sketch. The correspddiflagnstance is similarly

(=] InletModule
attributes
START_MODULE : Plane

Right : Plane
FLOOR : Plane
operations
classes

«sldWorksAsm, sapMaterial» «sldWorksAsm, sapMaterial» «sldWorksAsm, sapMaterial»
(=] OE_4500 5] OE_5500 =] OE_6500

Figure 8.11: Generalization relationships between theuteodasses and the common
abstract InletModule class

8 Testcases 143
«sldWorksRootAsm, sapMaterial»
[5] TKF Assembly
attributes
conveyorLength : m
conveyorSpeed : m/s
moduleTactDistance : m (51 MotorModule
= CountryOfManufacture payloadMass : kg Stributes
attributes inletModule : InletModule [1.2] | power: W
operations countryOfManufacture intermediateModules : IntermediateModule [0..*] motor—3Pkf : TKF Assembly
literals outletModule : OutletModule motorType : MotorType
GERMANY driverModules : DriverModule [1..2] operations
CHINA shaftModule : Shat’c!"lodule Casses
INDIA chainModules : ChainModule [1..2] il
planes : Plane [3..%] motormodule
sketches : Sketch [0..*]
countryOfManufacture : CountryOfManufacture motorType
motor : MotorModule [1..2]
operations =] MotorType
classes attributes
operations
literals
MOTORTYPE-M1
MOTORTYPE-M2
MOTORTYPE-M3
MOTORTYPE-M4
inletModule intermedigteModules outletMlodule shaftModule driverMQdules chamModules
[1..2] [1.2
=] InletModule [=] IntermediateModule (=] OutletModule [=] ShaftModule [=] DriverModule [=] ChainModule
attributes attributes attributes attributes attributes attributes
START_MODULE : Plane START_CONVEYOR : Plane Front : Plane Front : Plane Front : Plane Front : Plane
Right : Plane Right Plane Right : Plane Right : Plane Right : Plane Right : Plane
FLOOR : Plane FLOOR : Plane FLOOR : Plane FLOOR : Plane FLOOR : Plane Top : Plane
operations operations operations operations operations operations

classes

classes

classes classes classes classes

Figure 8.12: UML class diagram showing the main conveyotesyslasses

composed of slots referring to their respective geomegadures, according to the UML
TKFAssembly class properties as shown in Fig. 8.12. Allnexfiees to plane instances
were for example stored in the “planes” slot and all refeesnto intermediate modules
were similarly stored in the “intermediateModules” slot.

The conveyor could be configured according to several @iterorder to satisfy dif-
ferent requirements. The choice of modules depended optddecbnveyor length and on
the country-specific module supplier. The conveyor motpeteled on the payload mass,
conveyor length, conveyor speed and module tact distaraeh Bew conveyor configu-
ration influenced the geometric model of the conveyor systEine UML-based product
model therefore represented the conveyor information kviias likely to change. As
the UML-based product model also represented SolidWagoksiic modeling elements,
changes in the UML model could be automatically translatéa & corresponding Solid-
Works model. However, the UML-based product model did nolude all the detailed
geometric information and was thus easier to adapt to chgngiquirements than the
fully detailed SolidWorks-specific geometric model.

Design automation made it possible to ensure consistengyeba original design
requirements and new detailed geometric models. AlthohghUtML model of the con-
veyor system was not as detailed as the corresponding geor@elidWorks model, the
UML model still included a multitude of modeling elements.cReent changes were de-
fined in Java methods whose invocation automatically adapee UML model. Changes

144 8.2 Automated design of conveyor system configurations

Wy TKF Assembly Instance

% Front

5 FLOOR

% Right

B2 (- Lavour

G COMVEYOR_LEVEL
G CHAIN_LEVEL

4 PLANE_END_CE
G CHAIN_LEFT

G CHAIN_RIGHT

= <Instance Specification> TKF Assembly Instance
4 %3 <Slot> planes

<2 <Instance Value> Front

4 <Instance Value> FLOOR

42 <Instance Value> Right

12 <Instance Value> CONVEYOR_LEVEL
@ <Instance Value> CHAIN_LEVEL

12 <Instance Value> PLANE_END_OE

@ <Instance Value> CHAIN_LEFT

12 <Instance Value> CHAIN_RIGHT

@ <Instance Value> PLANE_MOD_3500_1
12 <Instance Value> PLANE_MOD_5500_1
12 <Instance Value> PLANE_MOD_4500_1

@ <Instance Value> PLANE_SHAFT
4 %3 <Slot> sketches
4@ <Instance Value> LAYOUT
4 0 <Slot> inletModule
@ <Instance Value> OE_4500<1>
4 1 <Slot> intermediateModules
12 <Instance Value> MOD_3500<1>
@ <Instance Value> MOD_5500<1>
12 <Instance Value> MOD_4500<1>
4 3 <Slot> outletModule
12 <Instance Value> EX_0_6500<1>
4 ¥ <Slot> driverModules
@ <Instance Value> DR_DRIVER_L<1>
12 <Instance Value> DR_DRIVER_R<1>
4 %3 <Slot> shaftModule
12 <Instance Value> CS_CARDAN_SHAFT<1=
4 3 <Slot> chainModules
12 <Instance Value> CHAIN_GUIDED<1>
3 <Instance Value> CHAIN_NOTGUIDED <1>

4 PLANE_MOD_3500_t
4 PLANE_MOD_S500_t
4 PLANE_MOD_4500_t
G PLANE_SHAFT

= OE_4500<1 >

+- W MoD_3500<1 >

=9 MOD_5500<1 3>

- S MOD_4500<1 >

+- T B _0_s500<1>

- DR_DRIVER L <13

+- Y DR_DRIVER_R<1>

=W C5_CARDAN_SHAFT <13

- CHAIN_GUIDED <1

=T CHATN_NOTGUIDED <13

Figure 8.13: Tree view of the SolidWorks assembly model ardesponding UML in-
stance

were consequently implemented faster and with higherbiilia than through manual

modifications. Figure 8.14 presents an outline of the Javhads which were used to
describe typical design steps within the conveyor desigrgss as well as typical de-
sign decisions based on variable requirements. The erxacoftithe Java methods within
a Java program enabled the generation of new updated UMLuptredodels based on
which corresponding SolidWorks conveyor models were aataally generated.

As described in Section 7.3, the design steps encoded innJareadepicted graphi-
cally in a UML activity diagram (Fig. 8.15). An activity diagm enabled a more trans-
parent view of a design process than a Java program. Varedperements, design steps
and information flows could thus be better illustrated. Thevdy diagram in Fig. 8.15
presents the design process of the conveyor system. Therssgjaf design steps and de-
sign decisions based on the requirements are visible inctivetya diagram. The “choose-
Motor” and “addIntermediateModule” actions for examplg@ereded on variable design
requirements. They were represented through activitytipptameters such as “conveyor
length” and “conveyor speed”. The “addinletModule” and d&xitletModule” for exam-
ple represented typical design steps. Activities could @ls decomposed into several
subactivities. The “addintermediateModule” action wasdrample described in more
detail through a subactivity. The UML model required SolmWs-specific as well as

8 Test cases 145

@ 7 initializationOfUMLModel(String)

@ 7 createTKFAssembly(TKFModel, String, Integer)

@ addInletModule(TKFModel, Integer, String)

@ % addOutletModule(TKFModel, Integer, String)

@ ° chooselntermediateModule(TKFModel, String, Double, String)
e addIntermediateModule(TKFModel)

et addModule8500(TKFModel)

et addModule7500(TKFModel)

et addModule6500(TKFModel)

@ % addModule5500(TKFModel)

@ % addModule4500(TKFModel)

@ addModule3500(TKFModel)

@ add DriverModule(String, Integer, TKFModel, Motor)

@ addShaftModule(TKFModel, String, Integer)

@ 7 addChainModules(String, Integer, String, Integer, TKFModel, Boolean, Boolean)
® % chooseMotor(Double, Double, Double, Double, TKFModel)

@ 7 saveUMLModel(TKFModel)

Figure 8.14: Java methods describing recurrent conveygsigdelecisions and steps

SAP-specific information to respectively describe the geioynand the bill of materials
(BOM) of the conveyor system. The SolidWorks-specific and SfEcific information
was represented like the conveyor requirements throughitgdhput parameter nodes
respectively colored yellow and blue.

The requirements as well as the SolidWorks- and SAP-spegfbcmation could be
directly edited within the UML activity parameter nodes.€ldctions of the activity dia-
gram referred to the Java methods of Fig. 8.14. As describ&dction 7.3, the activity
diagram could thus be executed similarly to a Java programe. UML activity diagram
of the conveyor design process was used to generate diffeidh models of conveyor
systems, based upon which consistent SolidWorks-spe&timgtric models were auto-
matically produced.

This Section presented the UML-based representation af\8orks-specific geomet-
ric models related to conveyor systems. The translation\k ihto SolidWorks resulted
in geometric models identical to the manually edited modelsmonly used in an in-
dustrial context. Furthermore, the customizability of thElL-based conveyor system
model was made possible by describing typical design remeénts and design steps in a
UML activity diagram. The executability of the activity djeam based on underlying Java
methods allowed the efficient generation of new conveyaesysnodel configurations.

146 8.2 Automated design of conveyor system configurations

activity TKFCreationProcessJ
mySpecial TKF — ? |n|t|al|zat|on(!);UMLModeI
JtkfModel
|)
createTKFAssembly <2 200000382
countryOfManufacture !! J assemblySAPMaterialNumber
JtkfModel
—_— A
V| = OE_4500
addInletModule ¢ inletModuleSIdWorksAsmName
N—a 200000383
inletModuleSAPMaterialNumber l—
countryOfManufacture
India
tkfModel,
] outletModuleSIdWorksAsmName
15 =4 addIntermediateModules
conveyorLength l
tkfModel
aﬁ EX_0_4500
addOutletModule 1 outletviodulesIdWorksAsmName
!! 200000405
outletModuleSAPMaterialNumbet
tkfModel
DR_DRIVER_L
6 conveyorLength ,tkiModel ﬁll!(.‘r\\,erLer'L iWorksAsmName - -
— lu v driverLeftSAPMaterialNumbetr
o ddDriverModul &< 200000399
moduleTactDistance | chooseMotor = a rivériModules
1500 I | motor ~—— — _Nfl———Fy-— driverRightSldWorksAsmName
payloadMass DR_DRIVER_R
conveyorSpeed
driverRightSAPMaterialNumber
1.25 = 200000399
tkfModel
l CS_CARDAN_SHAFT
addShaftModule | shaftSldWoksAsmName
shaftSAPMaterialNumbe 200000451
tkfModel guidedChainSIdWorksAsmName
—
true = .
isLeftChainGuided |~ addChainModules uidedChainSAPMaterialNumber CHAIN_GUIDEL
= J notguidedChainSld sAsmiNanpe
isRightChainGuided
false notguidedChainSAPMateriallNumber 200000227
tkfModel CHAIN_NOTGUIDE|
saveUMLModel 200000398

Figure 8.15: Activity diagram of the conveyor design praces

8 Test cases 147

8.3 Automated evaluation of satellite configurations

Due to the multidisciplinary nature of satellite design @hd mostly proprietary for-
mats of engineering software tools, a multitude of hetemegeis computer models are
employed during satellite design. A unified central productdel can manage the in-
terdependencies between different isolated models andugiee data consistency. This
Section highlights the UML as central product model to supgatellite design [53, 54].
The approach has been applied to the design phase of thau®sedellite [16] which is
part of the Stuttgart Small Satellite Prograof the Institute of Space Systefnat the
University of Stuttgart. This Section presents the UML tighight extensions necessary
to represent geometric features authored in CATIA and cbsyisiem features authored
in Matlab/Simulink in a common UML-based product model.tharmore, the represen-
tation of a design process as an executable UML activityrdiags shown for an iterative
design sequence consisting of several CATIA- and Matlabd$inik-specific evaluations.

The Perseus satellite is equipped with two different eleaitrpropulsion systems.
The Perseus mission is intended to accomplish the in-cgbttdnd validation of new
low-cost electric thruster systems during its flight to theam. Afterwards, the satellite
is anticipated to accomplish UV astronomy in the spectraidoaf 120 nm to 180 nm
with an on-board telescope. It is designed with differergjieeering software tools. The
two application-specific models of the satellite considerethis Section are a geometric
model authored in CATIA and a dynamic model authored in Sinkulilhe integration of
the application-specific data in the UML-based product nhades realized by lightweight
extensions in the form of stereotypes.

In Fig. 8.16, the CATIA product model of the pulsed plasmasteu(PPT) and its in-
stance within the larger satellite product model are depicThe corresponding UML el-
ements are represented below. CATIA parts and products wegpeaead into UML classes
respectively with«catia Part» and «catia Product» stereotypes. CATIA product and
part instances were represented by UML instances. The Pfdnite for example has
PulsedPlasmaThruster as classifier.

CATIA-specific geometric properties need to be represem¢aa UML-based prod-
uct model as they have an influence on the dynamic behavidreofdmplete satellite.
CATIA-specific measures belong to a part or a product and wezeefore described
in UML through corresponding UML class properties. For theegration of CATIA-
specific measures into the UML-based product model, stgrestwere applied to the
properties of a relatedcatia Part» or «catia Product» class. As an example, the posi-

2Stuttgart Small Satellite Progranwwy. ki ei nsatel |i ten. de
3Institut fir Raumfahrtsysteme (IRS9)t t p: / / www. i rs. uni - stuttgart. de/

www.kleinsatelliten.de
http://www.irs.uni-stuttgart.de/

148 8.3 Automated evaluation of satellite configurations

CATIA Product CATIA Product Instance
@ PulsedPlasmaThruster @ PulsedPlasmaThruster(PPT)

instance of

UML Class UML Class Instance
«catiaProduct» instance of) «catiaProduct»
PulsedPlasmaThruster PPT : PulsedPlasmaThruster

«catiaEulerRotation» orientation : 3x3 [-] orientation = [0.6427 -0.739 -0.198;
«catiaOriginShift» position : 1x3 [mm] 0.7660 0.6208 0.1663;
0.0000 -0.258 0.9659]

position = [240 -56.61 -202.2]

Figure 8.16: Left: CATIA product and corresponding UML claBsght: CATIA product
instance and corresponding UML class instance (after Gaoak [54])

tion and orientation of the thruster were described thrqugiperties tagged respectively
with «catia Euler Rotation» and«catiaOriginShi ft» stereotypes (Fig. 8.16). The val-
ues for these properties were retrieved from the CATIA instaand were stored as literal
string values in the slots of the UML class instance.

According to the CATIA geometry hierarchy, a product can eanfurther products
or parts. The CATIA-specific composition hierarchy was tfatesl one-to-one into a
corresponding UML class composition hierarchy. In Fig78the composition of CATIA
products and of the related UML classes belonging to thesBsrsatellite is depicted. The
class representing the top-level product in the compasltierarchy was labeled with a
«catia Root Product» stereotype. The containment relations of the CATIA productise
modeled with UML composite aggregations.

CATIA partinstances are positioned in an assembly accotdiagsembly constraints.
They were translated into UML constraints. CATIA constraiate owned by a product,
so the UML constraints were owned by the relatedtia Product» class. According to
the type of the assembly constraint, the UML constraint \@ggéd with a specific stereo-
type such asccatiaAngle» or «catiaCoincidence». \Whenever necessary, the specific
stereotype owned attributes for a complete descriptiohetonstraint. A«catia Angle»
stereotype for example owned attributes to specify an arajlee and an angle sector.

Changes in the UML model, concerning for example the choiqeadfs or the pack-
aging strategy, were automatically translated into a spoading CATIA model and vice
versa. For large CATIA models, the complete translation ofLUNnodel to generate a
new CATIA model or vice versa might have taken too much timee &dutiaUpdate»
stereotype was therefore applied to UML properties andtcaings. Only the CATIA
features which corresponded4autiaU pdate» UML elements were then updated. This

8 Test cases 149

CATIA Product Hierarchy UML Class Hierarchy

«catiaRootProduct»

b)
3 | PerseusSatellite PerseusSatellite

Q‘.__)j PropulsionDeck

*@ PulsedPlasmaThruster

e :
Q OnboardComputer «catiaProduct»

PulsedPlasmaThruster
@ OpticalDeck

«catiaProduct>»
PropulsionDeck

«catiaPart»
OnboardComputer

«catiaProduct>»
OpticalDeck

«catiaProduct>»
StarTracker

«catiaPart»

Telescope

Figure 8.17: Selection of the CATIA model composition hietgr and corresponding
UML class hierarchy (after Gross et al. [54]

allowed a quick update of specific parts within a larger asdegmithout having to regen-
erate the complete assembly.

Mathematical equations between properties were deschibéd UML-based prod-
uct model through UML constraints between UML propertiesacl constraint con-
tained a UML expression representing a symbolic matheada¢iguation. The orien-
tation and position properties for example of the PulsestR&T hruster class in Fig. 8.18
represented CATIA-specific measures which needed to be dedvi corresponding
Simulink-specific A_PPT_Thrand O_PPT_Thr properties ediog to another reference
frame. The computation of the O_PPT_Thr property for exang@pended on the ori-
entation and position properties as displayed in the eguablored blue. The equations
were computed using the values of the UML instances storéteityML model. To au-
tomatically resolve the equations, Matlab was used as edggistem since most property
values were matrices or vectors. The language attributeeddML expression was set to
“Matlab” so that only the Matlab-specific expressions weskected and evaluated. The
results of the calculations were transferred back to the Uhidel. In the PPT instance
of Fig. 8.18, the O_PPT_Thr vector was computed by Matlab.

A Simulink model was used for the simulation of the attitude arbit control system
(AOCS) of the satellite. The model simulated the behaviomvirenmental conditions,
actuators, sensors and on-board computers. Differentoin-atellite operations could
thus be simulated. The impact of the thruster orientationthenAOCS of the satellite
needed to be simulated accurately in advance. Since thesatthe complete Simulink
model of the Perseus satellite was limited due to propgetaolboxes, the Simulink
model was launched and accessed through a Matlab function.

150 8.3 Automated evaluation of satellite configurations

PulsedPlasmaThruster

«catiaEulerRotation» orientation : 3x3 [-]

«catiaOriginShift» position : 1x3 [mm] Matlab
propulsionDeck : PropulsionDeck —_—

A_PPT_Thr : 1x3 [-]

O_PPT_Thr : 1x3 [mm] ¢

simTime : sec

«matlabFunction» startSimulation (A_PPT_Thr, O_PPT_Thr) : sec

O_PPT_Thr = func(orientation, position, propulsionDeck.orientation) Iﬁ

PPT : PulsedPlasmaThruster

orientation = [0.6427 -0.739 -0.198; Matlab Simulink
0.7660 0.6208 0.1663;

0.0000 -0.258 0.9659] ' :
position = [240 -56.61 -202.2] =
propulsionDeck = propDeckInstance
A_PPT_Thr = [0.766 0.1663 -0.6208]

O_PPT_Thr = [71.480 -178.9002 209.1820]
simTime = 1614.1

Figure 8.18: Interfaces between UML and Matlab/SimulinkefaGross et al. [54])

The Matlab function was represented in UML by an operatiothihe «matlab-
Function» stereotype. In Fig. 8.18, the startSimulation operatiom lsa seen in the
PulsedPlasmaThruster class. The input and output argsrogtiite Matlab function were
described as UML parameters. The Simulink simulation basethe O_PPT_Thr and
A_PPT_Thr properties, describing respectively the thousfin position and orientation,
was launched through the Matlab startSimulation functidhe related UML operation
and properties are colored orange in Fig. 8.18. The timétinetsatellite reaction wheels,
under the application of a specific thrust origin and dietthad saturated was the sim-
ulation result simTime which was written back into the UML deb

Changes in the CATIA-defined geometry of the satellite haveffanteon its dynamic
behavior described in Simulink. To automatically keep ti@uink model consistent
with the CATIA model, a data exchange from CATIA to Simulink tfee UML-based
central product model had been implemented. After a changbd CATIA geome-
try, the new CATIA measures were imported back into the UMEdahproduct model
and the Simulink values were updated accordingly throughetfaluation of UML con-
straints which linked CATIA-specific and Simulink-specifidll properties. The result-
ing Simulink simulation was then consistent with the CATIpesific geometry of the
satellite.

As displayed in Fig. 8.19, the Simulink-specific O_PPT_Thuperty for example de-
pended on the CATIA-specific orientation and position propsr The CATIA model of
the pulsed plasma thruster (PPT) is shown in Fig. 8.19 ldfie UML representation of
the PPT is depicted (Fig. 8.19 middle) and the PPT-deper@lentlink blocks contribut-
ing to the dynamic behavior of the complete satellite arevsh@ig. 8.19 right). The
UML PPT class contains two attributes tagged with CATIA-spestereotypes which
mark the import of the orientation and position measurethefCATIA PPT product.

8 Test cases 151

UML Class

PulsedPlasmaThruster

«catiaEulerRotation» orientation : 3x3 [-]

«catiaOriginShift» position : 1x3 [mm]

A_PPT_Thr : 1x3 [-]

O_PPT_Thr : 1x3 [mm]

«matlabFunction» startSimulation (A_PPT_Thr, O_PPT_Thr) : sec

| O_PPT_Thr = func(orientation, position, propulsionDeck.orientation) B‘
CATIA Product Instance H

i instance of

‘@ PulsedPlasmaThruster(PPT) : p—
UML Class Instance /4- == i L
PPT Thrust = L rID oSOy -
PPT : PulsedPlasmaThruster Direction [-] - = -
U | orientation = [0.6427 -0.739 -0.198; -
i 0.7660 0.6208 0.1663; ol
. 0.0000 -0.258 0.9659] 4 o -
—— position = [240 -56.61 -202.2] " =
; A_PPT_Thr = [0.766 0.1663 -0.6208] / PPT Co[or:‘(]jmates A =
L O_PPT_Thr = [71.480 -178.9002 209.1820] il

Figure 8.19: Consistency between CATIA- and Simulink-spedita through a common
UML product model (after Gross et al. [54])

The UML instance contains the values imported from CATIA a#idated in blue. The
values required for the initialization of the Simulink méddee indicated in orange. The
UML constraint, marked partially in orange and partiallyblue, sets the link between
the CATIA- and Simulink-specific properties.

The impact of different thruster orientations on the sdtanatime of the satellite re-
action wheels was determined. This represented a testrszémeuding a dependency
between a geometric configuration and a related dynamiersybehavior. The orien-
tation of the satellite is disturbed by the torque the theuapplies on the satellite. The
reaction wheels of the attitude and orbit control system @&8) countervail the distur-
bance torque by increasing their rotation speed in ordee¢p khe satellite aligned. Over
time, the reaction wheels build up stored momentum that s:wé@de canceled. If the
wheels have reached their maximum rotation speed, sainratattained and the thruster
has to be cut off. The aim is to maximize the saturation timéhefreaction wheels by
finding the optimal thruster orientation.

The process of sequentially simulating different sagetivnfigurations was described
through an executable activity diagram. The process cusisf evaluating different
geometric satellite configurations according to their @ffen the saturation time of the
reaction wheels. Figure 8.20 shows the activity diagramtlierautomated evaluation
of satellite configurations with different thruster oriatibns. The process steps were
described in UML as call operation actions which were cotetewith UML object flows
to determine their order of execution. Process input argusneorresponded to UML
activity parameter nodes. In Fig. 8.20, process paramatershown on the left hand side
of the activity diagram. The upper input parameter contdiespath to the UML model
which is to be loaded. The two lower ones are used to desdrdbpdrameter name and
value which have to be changed during the simulation of wargatellite configurations.

152 8.3 Automated evaluation of satellite configurations

o
y

= joadUML

SatelliteModel

export2CATIA

SatelliteModel

file:/C:/data/model.uml |

umlModelURI

Initialization of model

SatelliteModel SatelliteModel

import
CATIAMeasures

SatelliteModel

update
SimulinkData

Loop for simulation

SatelliteModel

[counter<50]
‘ runSimulink
SatelliteModel

[counter>=50]

Figure 8.20: Activity diagram for the automated evaluatidrifferent Perseus thruster
configurations (after Gross et al. [54])

Thus every parameter of the UML-based central product mooeld be accessed and
changed easily. In this example, the angle of the thrusteraianged around the x-axis
of the satellite in 1.5leg steps (Fig. 8.21).

The activity diagram was executable by linking activityians with Java methods
which either modified the UML model or launched import/expoterfaces. The execu-
tion of the UML activity diagram in Fig. 8.20 started at thadi-filled UML initial node
at the top of the diagram. The first action loaded the UML pobanodel and the next
one exported the first satellite configuration to CATIA. Theustier orientation had an
impact on the thrust direction, the thrust origin, the ceoferavity and the inertia of the
satellite. These properties were therefore measured in &AMt sent back into the UML
model. UML constraints which linked CATIA-specific and Sinmki-specific properties
were then evaluated by Matlab. The Simulink simulation \wtdetermined the satura-
tion time was then launched based on updated CATIA-specifasores. The simulation
results were stored back in the UML model. The decision nddgijcted as a rhombus

8 Test cases 153

in the lower left corner, either ended the evaluation looptarted a new evaluation of a
new satellite configuration with a new parameter value. Th&l8Aand Simulink-based
evaluation of a satellite configuration via the UML-basendtca product model was then
repeated.

Test time for thruster

sec;
3000

2500

= angle &
angle 7.5°[—
angle 6
~angle 4.5
- angle 3
angle 1.5
— angle 0°

2000

1500

1000

Angle of thruster [deg]

R R e A e A I A A e A A

Figure 8.21: Results of the evaluation of different georsetanfigurations (after Gross
et al. [54])

Figure 8.21 shows the results of the automated evaluatidiffefent configurations.
Each point in the graph represents a different geometricstar configuration. On the
horizontal axis, the orientation angle of the thruster atbthe y-axis is drawn. On the
vertical axis, the resulting saturation time of the reactideels is depicted. The different
colors stand for a change of the thruster angle around thasxed the satellite. The
saturation time depends on the lever arm of the disturbaorgei¢ created by the thrust
and on the satellite position within the earth magnetic field

This Section presented the UML lightweight extensions ssa@gy to describe geomet-
ric features authored in CATIA and control system featurdb@ed in Matlab/Simulink
in a common UML model. Update mechanisms were implementedgport a quick re-
configuration of models and avoid a time-consuming germaratf complete models from
scratch. Furthermore, the UML-based product model wasussd in the context of auto-
mated design. The evaluation of a series of different tern@ientations according to the
saturation time of the reaction wheels was described asesutable UML activity dia-
gram. The sequential import/export procedures betweenppication-specific models
and the central UML-based product model were thereby egdcautomatically.

154 8.4 Generation of aircraft geometries

8.4 Generation of aircraft geometries

The generation of consistent geometric models of diffeamatraft configurations is typ-
ically a time-demanding effort. This Section presents tivd tbased generation of cus-
tomizable aircraft geometries [18, 19]. The project wasantaken in partnership with the
Institute of Aerodynamics and Gasdynaniio§the University of Stuttgart. The geomet-
ric models can be used subsequently for an aerodynamicsamalfydifferent geometric
aircraft configurations.

The definition of an aircraft geometry was based upon poimdsaalimited set of ge-
ometric operations. Points were chosen as they represensirthllest possible geometric
entity and thus allow to define a large variety of differemteaift geometries. A limited
set of geometric operations was used to create volumes bpsedoints. The operations
are shown in Figure 8.22. Sections were defined based ones sérpoints. Similarly,
guiding lines were defined based on points and gradient tondi Consequently, vol-
umes were defined based on a selection of sections and guidésy This sequence
of geometric operations was used to generate volumes pordsg to various aircraft
parts. Figure 8.22 presents the definition of fuselage and warts based on points.

> > >
- 7 :If
> > >
Points =) Sections =p Selection of Sections =p Volume

Figure 8.22: Definition of volumes based on points and sestfafter Boehnke et al. [19])

The aircraft geometry was defined in CATIA. The points repnése the main build-
ing blocks of the aircraft geometry and were positioned etiog to cartesian coordinates
in CATIA parts through CATIA user defined features. The geoinefperations to create
volumes were invoked by the execution of CATIA scripts. Otilg £ngine nacelle was
predefined as a CATIA user defined feature. All other aircraftpwere dynamically
generated based on points and scripts. The CATIA-specifimgea@ model of the air-

4Institut fiir Aerodynamik und Gasdynamik (IA®t t p: // www. i ag. uni - stuttgart. de/

http://www.iag.uni-stuttgart.de/

8 Test cases 155

craft was generated from scratch based upon a customizalegdoduct model. The
next paragraphs present the main geometric elements ofrtttafageometry and their
counterparts in UML.

The points were categorized according to the type of sethiey represented. Fig-
ure 8.23 for example represents the PointOnCircle and Pokit{pse point classes. Both
inherited from the common Point class with the Xccord, Ycband Zcoord properties
as all points were defined by cartesian coordinates. Thessatould include a variable
number of points. The section type-specific classes ther@ioluded symbolic equations
in the form of UML constraints in order to compute the poinbatinates as a function
of the variable number of section points. Figure 8.23 exanilglshows the computation
of the y and z coordinates respectively for a point on a ciacid a point on an ellipti-
cal section. Besides being computed by symbolic equatibegpdint coordinates could
also be imported from Excel spreadsheets. Figure 8.24 miea# the different section
type-specific point classes which allow to compute the poadrdinates for a specific
section type according to specific symbolic equations. t8an wing-specific sections
thereby belonged to the abstract PointOnProfile class amd specifically to a concrete
point location-specific class such as PointOnProfilefror@Aacklow or PointOnPro-
filefromNACAfrontup.

Point
Xcoord : mm
Ycoord : mm

{Xcoord == Cxcoordcenter} Zcoord : mm

{Ycoord == CRibRadius *
sin (360 / CNumOfPoints *

CNumOfPoint * pi / 180) + PointOnCircle PointOnEllipse
Cycoordcenter} CRibRadius : mm Ea : mm
CNumOfPoints : Integer Eb : mm
CNumOfPoint : Integer ENumOfPoints : Integer

Cxcoordcenter : mm ENumOfPoint : Integer
. Cycoordcenter : mm Excoordcenter : mm
cos (1360 / _CN:m_OfPomts * Czcoordcenter : mm Eycoordcenter : mm
CNumOfPoint * pi / 180) + Ezcoordcenter : mm
Czcoordcenter}

{Zcoord == CRibRadius *

Figure 8.23: Symbolic equations represented as UML canssrdafter Boehnke et
al. [19])

The sections were categorized in profiles and ribs which vwegneesented respectively
in UML through a Profile and a Rib class. The Profile class wathéurspecialized
according to wing type-specific profiles, such as WingPraffi&lapProfile. The types
of volumes, which were created based on the sections, wassifted according to the
aircraft parts they described, such as wings, fuselaggss #ad intersection elements.
Their geometric representation is depicted in Fig. 8.25thed corresponding abstract
UML representation as UML classes is shown in Fig. 8.24.

¥2'8 9.nbig

([6T] 're 12 axuyaog Jayehigas yeiole dL8woab Jo welbelp ssejd AN

«catiaPart>»

Wing
«catiaScriptPar» NumOfPoints
«catiaScriptPar» NumOfWing
«catiaScriptPar» NumOfProfiles

wing_Engines

«catiaUDF>»

Engine
«catiaUDFPar» Xcoord : mm
«catiaUDFPar» Ycoord : mm
«catiaUDFPar» Zcoord : mm
«catiaUDFPar» length : mm
«catiaUDFPar» radius : mm
«catiaUDFInput» xy plane
«catiaUDFInput» zx plane
«catiaUDFPar» pyllength : mm

«catiaScript»
FlapProfile

myWingProfile : WingProfile

myFlap : Flap

«catiaScriptPar» NumOfFlap

PointOnFlapProfile
myFlapProfile : FlapProfile

airplane-Wings

«catiaPart»
FlapGap

«catiaPar, spgvar» Firstx : mm
«catiaPar, spgvar» Firsty : mm
«catiaPar, spgvar» Firstz : mm
«catiaPar, spgvar» Secondx : mm
«catiaPar, spgvar» Secondy : mm
«catiaPar, spgvar» Secondz : mm
«catiaPar, spgvar» Radius1 : mm
«catiaPar, spgvar» Radius2 : mm
myfirstProfile : WingProfile
mysecondProfile : WingProfile
myFlap : Flap

wing_Profiles

airplane_FlapGaps

«catiaPart>»
Intersection
«catiaScriptPar» NumOfPoints

«catiaScriptPar» NumOfIntersection

«catiaScriptPar» NumOfProfiles

«catiaScriptPar» NumOfFirstProfileWing
«catiaScriptPar» NumOfFirstProfile

intersection_Profiles

«catiaPart»
Profile

«spgvar» alpha

«spgvar» beta

«spgvar» gamma

«spgvar» Profiledepth : mm
«spgvar» xcoordRoot : mm

«spgvar» ycoordRoot : mm

«spgvar» zcoordRoot : mm
«catiaScriptPar, spgvar» NumOfPoints
«catiaScriptPar» NumOfProfile

«catiaRootProduct>»

airplane_Intersections

Airplane

airplane_Fuselages airplane_Ribs airplane_CFDGeoms

airplane_Profiles

«catiaScriptPar, catiaPar, spgvar» NumOfaftPoint

PointOnProfilefromNACAbacklow

mm

«catiaScript> WingProfile
IntersectionProfile «catiaScriptPar» NumOfWing
«spgvar> f
«spgvar» | : mm
«spgvar> n
«spgvar» i
«catiaScriptPar» NumOflntersection
myfP : Profile
mysP : Profile
PointOnIntersectionProfile
mylIP : IntersectionProfile «spgvar» x| :
myP : PointOnProfile «spgvar» yl :

mm

«spgvar» yt : mm

«spgvar» yc : mm

«spgvar» theta

«spgvar» p
«spgvar> m
«spgvar» t

«spgvar» X : mm

«catiaPart» «catiaPart>»

Fuselage Rib
«catiaScriptPar» NumOfPoints «catiaScriptPar» NumOfPoints
«catiaScriptPar» NumOfFuselage fuselage_Ribs«catiaScriptPar» NumOfRib
«catiaScriptPar» NumOfRibs «catiaScriptPar» NumOfFuselage

rib_Points
fuselage_Points

«catiaUDF»

Point
«catiaUDFPar» Xcoord : mm
«catiaUDFPar» Ycoord : mm
«catiaUDFPar» Zcoord : mm

profile_ProfilePoints

PointOnCircle PointOnEllipse

airplane_Flaps

«catiaPart»

CFDGeom
«catiaScriptPar» NumOfFuselages
«catiaScriptPar» NumOfWings
«catiaScriptPar» NumOfFlaps

«catiaPart»
Flap
FfirstProfile : Profile
FsecondProfile : Profile
«spgvar» Freldepth

«catiaScriptPar» NumO

PointOnProfile

«spgvar» CRibRadius : mm
«spgvar» CNumOfPoints
«spgvar» CNumOfPoint
«spgvar» Cxcoordcenter : mm
«spgvar» Cycoordcenter : mm
«spgvar» Czcoordcenter : mm

«spgvar> Ea : mm
«spgvar» Eb :
«spgvar» ENumOfPoints
«spgvar» ENumOfPoint
«spgvar» Excoordcenter : mm
«spgvar» Eycoordcenter : mm
«spgvar» Ezcoordcenter : mm

PointOnProfilefromNACAbackup
«spgvar» xu : mm
«spgvar» yu : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar> m
«spgvar» t
«spgvar» X : mm

«spgvar» xl : mm
«spgvar» yl : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar» m
«spgvar t
«spgvar» X : mm

PointOnProfilefromNACAfrontiow

«spgvar» alpha

«spgvar» beta

«spgvar» gamma

«spgvar» Profiledepth : mm
«spgvar» xcoord

«spgvar» ycoord

«spgvar» zcoord

«spgvar» xcoordTranslation : mm
«spgvar» ycoordTranslation : mm
«spgvar» zcoordTranslation :
«spgvar» xcoordRotation : mm
«spgvar» ycoordRotation : mm
«spgvar» zcoordRotation : mm
«spgvar» xcoordRoot : mm
«spgvar> ycoordRoot : mm
«spgvar» zcoordRoot : mm

«spgvar» zcoordcenter : mm

ar» NumOfFlap
«catiaScriptPar» NumOfProfiles

PointOnProfilefromNACAfrontup

«spgvar» xu : mm
«spgvar» yu : mm
«spgvar» yt : mm
«spgvar» yc : mm
«spgvar» theta
«spgvar» p
«spgvar» m
«spgvar» t
«spgvar» X : mm

oGt

SalawWwoab Jeidlre Jo uonelauds) 'y

8 Test cases 157

Wing Fuselage Nacelle

Flap Intersection

Figure 8.25: Main geometric parts of the aircraft geomediffef Boehnke et al. [19])

The fuselage part consisted of rib sections as well as frodtadt points. The rib
sections were aligned along the longitudinal axis of thelage and were of circular or
elliptical shape. The front and aft points allowed to defingdong lines with gradient
constraints in order to design tapered or smooth fuselags. efhe guiding lines were
splines which followed the longitudinal axis of the fuseddgom the front point to the
aft point by passing through all rib points having the santein CATIA scripts then
formed the volume corresponding to the fuselage part basdbeorib sections and the
longitudinal guiding lines.

The wing part consisted of profile sections which were patarized in order to de-
scribe different airfoils. The profiles were customizedadmng to their depth, thickness,
maximum camber and camber position. Furthermore, thesntation was specified by
Euler angles. The profiles were defined by splines which attedeall profile points.
CATIA scripts generated volumes based on profiles and onipelykconnecting the pro-
files. The resulting volumes represented wing parts. Thenentacelle part was the only
part which was predefined as a parameterized user definenldedthe nacelle could be
adapted according to its radius and length as well as itsiposelative to the wing. The
nacelle could thus be placed under or over a wing.

Intersection parts were defined identically to wing partseyfwere placed for exam-
ple between the wings and the fuselage in order to define sttegeometry. Boolean
operations were then used to remove the volume of the imtigmseslement which coin-
cided with the neighboring parts. Flap parts were very sintib wing parts. However,
their geometric representation was more constrained gsothlg consisted of two pro-
files. The flaps were usually embedded in the wing parts. Adpelement in the form
of a cylinder was introduced in the geometric model of theraft. The volume of the

158 8.4 Generation of aircraft geometries

wing part which coincided with the flag-gap element was tleenaved through a boolean
operation to leave space for the placement of the flap.

The geometry of the aircraft was described as a CATIA prodistivincluded CA-
TIA part instances representing the various aircraft paiieke CATIA part instances
were generated dynamically through CATIA user defined festand CATIA scripts.
As described in Chapter 4, CATIA products, parts, user definatlifes and scripts were
represented in UML through UML classes with appropriateestiypes. The instances
of CATIA features were represented accordingly in UML througML instances. The
UML-based product model could thus represent CATIA-speddatures which could
be automatically translated into a CATIA-specific model of dircraft geometry. The
UML-based product model was easier to customize than ttelel@tapplication-specific
CATIA model as it only represented geometric informationathivas subject to change.

Excel cell values were imported into the UML model. The syiidxequations within
the UML-based product model were evaluated by a computebedgsystem in order to
compute the property values of UML instances, such as poiotdinates. The UML-
based product model could then be exported to CATIA.

The geometry of an aircraft requires the definition of margrgetric elements such as
a multitude of sections and points. Manual modificationsinits UML or corresponding
CATIA model were thus too time-consuming. A Java program wesefore used to
generate a UML model of an aircraft geometry which could k&lganodified in order
to insert, remove, or displace points and sections. The geagram referred to Java
methods for common tasks such as the insertion of UML ingtsmepresenting points,
ribs, profiles and larger volumes like wings. Lines of coderate the geometry of an
Airbus A321 are for example shown in Fig. 8.26 left. The Jakagpam for example
referred to the createRibinstanceFromCircle Java methogevBavadoc description is
represented in Fig. 8.26 right.

Main Java Program Javadoc of createRibinstancefromCircle(...)
//Main Fuselage

AirplaneRules.createRibinstancefromCircle(airplaneModel,1 ,1, 10,0 0,200 ,12); Create Rib Instance with PointOnCircle Instances
AirplaneRules.createRibinstancefromCircle(airplaneModel,2 ,1, 900 ,900 ,0 ,-200 ,12);

AirplaneRules.createRibinstancefromCircle(airplaneModel,3 ,1, 1100 ,1270 ,0 ,-200 ,12); Parameters:
AirplaneRules.createRibinstancefromCircle(airplaneModel,4 ,1, 1975 ,4699 ,0 ,0 12); airplaneModel AirplaneModel to be returned
AirplaneRules.createRibinstancefromCircle(airplaneModel,5 1, 1975 ,4700 0 ,0 12); NumOfRib Number of the Rib
AirplaneRules.createRibinstancefromCircle(airplaneModel,6 ,1, 1975 ,4701 0 0 12); NumOfFuselage Number of the Fuselage the Rib is in
AirplaneRules.createRibinstancefromCircle(airplaneModel,7 ,1, 1975 ,10000 ,0 ,0 12); radius Radius of the Circle
AirplaneRules.createRibinstancefromCircle(airplaneModel,8 1, 1975 ,15000 ,0 ,0 ,12); xcenter X Center Position of the Circle
AirplaneRules.createRibinstancefromCircle(airplaneModel,9 1, 1975 ,20000 ,0 ,0 12); ycenter Y Center Position of the Circle
AirplaneRules.createRibinstancefromCircle(airplaneModel,10 ,1, 1975 25399 ,0 0 ,12); zcenter Z Center Position of the Circle
AirplaneRules.createRibinstancefromCircle(airplaneModel,11 ,1, 1975 ,25400 ,0 ,0 12); Pointindex Number of Points to be created
AirplaneRules.createRibinstancefromCircle(airplaneModel,12 ,1, 1975 ,25401 ,0 ,0 12); Returns:
AirplaneRules.createRibinstancefromCircle(airplaneModel,13 ,1, 200 ,37000 ,0 ,1775,12); airplaneModel

Figure 8.26: Java code for the creation of UML instancesriefg to fuselage ribs

8 Test cases 159

Figure 8.27 presents a sample of various aircraft geonsatrad were generated based
upon a highly customizable UML model of an aircraft geomefitye aircraft models rep-
resent to a large extent, starting clockwise from the botefimBoeing’s X-48B Blended
Wing Body demonstrator, the Bell X-1, a conventional airgr#tie family of Airbus
A318/319/320/321 and a fictional artistic scramjet modehe Tatter example was for
example conceived and implemented, in collaboration witheanber of the Scramjet
Research Group at the University of Stuttadnly within a few hours. The variety of
generated examples showed the customizability of the Ulsiéeld central product model.

Figure 8.27: Various aircraft geometries based on a UML pcodhodel (after Boehnke
etal. [19])

This Section has shown the representation of low-level ggompoints and opera-
tions in a UML-based product model. The UML model includedrenthan geometric
information by capturing Excel-specific point coordinageswell as by computing the
point coordinates of predefined section types based on digrdmuations. The UML-
based product model was programmatically edited by a Jagrgom as the UML model
of an aircraft geometry is too large to be created manuallg meliable and efficient
manner. Changes within the Java program led to modificatiotise UML model and
consequently to the resulting CATIA-specific geometric rafictmodel. The variety of
generated examples showed the customizability of the Ulsiéeld central product model.

SGraduiertenkolleg-SCRamjétf t p: / / www. uni - stuttgart.de/itlr/graduierten/

http://www.uni-stuttgart.de/itlr/graduierten/

160 8.5 Summary

8.5 Summary

This Chapter presented the use of a UML-based product modekign scenarios which
included multiple inter-model dependencies and model fiaadions. The test cases
showed the representation of diverse geometric informatithin the UML-based prod-
uct model. The geometric information within the use cas@agces consisted of coarse-
grained geometric data, such as the simple rectangulandindrecal boxes for the rep-
resentation of cabin pressure system units, as well as §resded geometric data, such
as the highly detailed geometric primitives and operatiorgescribe aircraft parts. Fur-
thermore, the design of conveyor systems and of the Peraglbte included geometric
data from a professional industrial context. Besides gemtite use cases presented
the integration of Excel-specific spreadsheet data, as ageMatlab/Simulink-specific
dynamic system models and symbolic equations to achiegweaatsistency within the
UML-based product model. The UML-based product model sttppdhe integration of
diverse product information and proved its adaptabilitgléscribe various product con-
figurations. Furthermore, the test cases demonstratechffabdity of translating UML
model information into application-specific models.

In all test cases, modifications to the UML-based productehagre defined formally
in an executable format. The non-proprietary Java APl of UMbdels was used to
describe recurrent design steps or design decisions imdatreods. Furthermore, the test
cases related to the design of conveyor systems and thaiBaseelite represented design
processes through UML activity diagrams. The diagramsledabbetter overview of the
design requirements and design steps as well as of the gantmrmation flows within
a design process. The executability of UML activity diagsanas supported by linking
activity actions with predefined Java methods. The execwfdJML activity diagrams
resulted in the generation of UML-based product models ardexjuent application-
specific models which were conform to the original produguieements.

Chapter 9
Conclusion

Section 9.1 reviews the motivation to investigate a UMLdahsentral product model for
the management of multidisciplinary dependencies durnoglyct design. Section 9.2
summarizes the results regarding the mapping of disciadind application-specific mod-
els into a UML-based central product model and the use of ié-based central prod-

uct model for the design of customized multidisciplinarpgucts. Finally, Section 9.3

presents an outlook on the future harmonization of moddamguages as well as the
potential extensions of the UML-based central product rhode

9.1 UML-based central product model

Computer-aided design of multidisciplinary products imed the use of specialized dis-
cipline-specific software applications in order to moded aimulate various product as-
pects. Dependencies between models are thereby frequém@ same product informa-
tion often appears redundantly in various engineering nsod& change in one model
then requires the update of dependent models. Otherwisesithulation of models
based on inconsistent data will lead to meaningless or adsig results and subsequent
wrong design decisions. Synchronization of models mayluavtarge quantities of data.
The manual update of models by engineers therefore refsegerror-prone and time-
consuming task. Hence, a framework for automatic modeltgsda needed to guarantee
data consistency across all product models.

Data consistency between models is achieved automatitatiygh model-to-model
data exchange software. However, the development andenainte of each specific data
exchange connection represents a large effort. The usessiteatproduct model enables
a reduction in the required number of data exchange commschly acting as the hub in
a hub-and-spoke network. The central product model stechsndant product informa-

162 9.1 UML-based central product model

tion which is spread across several models and maintaiascgaitsistency through data
exchange connections between itself and each specific méaleéxample, in a scenario
with n specific models, the bidirectional linking of models via attal product model
requires only2n connections whilen(n-1) connections are necessary for the equivalent
direct linking of models .

Most current central product models are dedicated to thigies$ specific products.
However, some central product models are generic enough éoiployed for the design
of different product types. This is advantageous sincedhsescentral product model and
associated application-specific translation softwarebmreused for the design of vari-
ous products across a wide range of industry sectors. Anfangeneric central product
models none has yet gained wide acceptance nor reachedathe st an international
standard. Thus no standard for example currently existhéintegration of mechanical,
electronic and software information in a central productiegighat could support the de-
sign of mechatronic products. As software and electromesreore and more embedded
in conventional mechanical products, the development tEredsird central product model
is of utmost importance for the design of mechatronic préglugnging from aerospace
engineering to modern manufacturing facilities.

In general, the acceptance of a model and its modeling césdepends on the sim-
plicity with which specific aspects of a system can be desdribin the case of the cen-
tral product model, modelers need to easily describe diseispecific information and
inter-model dependencies. Most engineers are speciahzgukcific disciplines and are
only familiar with specific models and related modeling cgpts. However, the cen-
tral product model cannot represent diverse product aspeaentically as in specialized
discipline- and application-specific models because ihoasupport the multitude of var-
lous discipline- and application-specific modeling consefCentral product models are
therefore comprised of a limited manageable set of modaorgepts that correspond
to generalizations of specific modeling concepts. The @hofcgeneralized discipline-
and application-independent modeling concepts is cliticahe capability of the central
product model to represent product models from a wide rahdiesciplines and modeling
applications.

Although models of different engineering disciplines aighly diverse, most models
which are edited with current state-of-the-art softwarpliaptions share common mod-
eling concepts in order to support modular design. The appiaceasily exchange and
reuse model components across several models promotdsliftgxand productivity in
modeling. This avoids the time-consuming creation of meffeim scratch. Most models
therefore share common modeling principles in order tom@sonodular model compo-

9 Conclusion 163

nents. Common characteristics of modules include in- andutsit hidden and visible
outward-facing information, as well as templates and m=a.

There is currently no widely accepted standard to represihtgeneral overarching
concepts modules from different disciplines. However, oladty is especially important
in software engineering. Software design is an engineatisgjpline in which changes
and updates are more frequent than in other engineeringpliies as software code is
simpler to modify than tangible mechanical engineering ponents which require man-
ufacturing and resources. As a result, concepts that peomodular design are more
commonly found in software engineering than in other ergyimg disciplines. Sophis-
ticated programming concepts have been developed in seftarsgineering to support
modularity. The most prominent are the object-orientedy@mming concepts which
consist of encapsulating variables and functions into rfevdunits called objects. Graph-
ical models of object-oriented software represent thes@iaation, communication and
internal structure of software objects.

Although object-oriented modeling concepts are curremtiinly used for software
modeling, they are generic and can be used in the context efitaat product model to
describe the common modular structure of models from @iffeengineering disciplines.
Engineers can then recognize their discipline-specifarmftion within the larger central
product model due to the common modular structure of theifspewodel and the central
product model.

As a central product model is to be used across several linspit addresses many
parties and requires standardization because speciaingjaand dedicated conversion
tools are needed. Besides, a standardized central prodwl mwould be desirable as
it would not only eliminate the confusion caused by différeentral product models but
also reduce the development costs of translation software.

Since its emergence in 1997, the Unified Modeling Languagdl(lJhas been the
de facto standard for object-oriented modeling and is wideked in software engineer-
ing. This thesis investigated the capability of the UML tsdébe the common mod-
ular structure of various discipline-specific product miedeithin a central UML-based
product model. The integration of geometric, controlled amultibody system models is
required in many mechatronic products which abound in @a@es automobile or man-
ufacturing products. The approach of reusing the UML to supiine representation of
various models in a central product model was examined bsesepting state-of-the-
art application-specific geometric, controller and mutip system models in a common
UML-based product model.

164 9.2 Results

9.2 Results

Geometric, controller and multibody system models aresddsiccording to specialized
software applications. In order to recognize and interffretapplication-specific models
within the central UML-based product model, lightweight UMxtensions in the form
of stereotypes were applied on top of the generic UML modeéntities in order to
denote application-specific information. Stereotypescilaorresponded to a specific
application were regrouped in a UML profile. This thesis dadimpplication-specific
UML profiles to represent in a common UML-based product magbglication-specific
geometric, controller and multibody system models. Ther@ggh was demonstrated
for widely used state-of-the-art modeling applicationsie Tapping rules between the
application-specific models and the central UML model werplemented and tested in
various design projects in order to support consistenaysacvarious product models as
well as to contribute to the efficient design of customizadsteducts.

The UML profiles for geometric models captured commonly esdlageometric prod-
uct information, such as volume, mass, center of gravityraachent of inertia. This type
of information is typically stored redundantly in variousdels such as in geometric and
multibody system models or spreadsheets. The represantdtine redundant geometric
information centrally in the UML model makes it possible teek it consistent across
various specialized product models. A change in a specifabathman for example be for-
warded to the central model which can then update otherfapeuddels which require
synchronization. In addition, application-specific maadgiconcepts were represented in
the UML model in order to support the automatic translatibthe UML-based geometric
information into application-specific geometric modelsppfication-specific modeling
features such as parts, assemblies, assembly constgartslependencies, features and
geometric primitives were therefore mapped into the UMkdzhproduct model.

High-level object-oriented geometric modeling concepésendescribed in UML by
their homologous generalized UML modeling concepts withoaresponding applied
stereotype while detailed low-level geometric entitiegeveepresented in UML as in-
stances of predefined geometric types. This mapping lotpwed to represent geomet-
ric modeling concepts in UML and vice versa according to atorene correspondence.
Models from widespread 3D geometry modelers such as CATIASwiid\Works as well
as the open VRML format were mapped into UML. As most CAD modgéipplications
share a large common set of modeling concepts, the preserapping rules could also
be extended to other 3D geometric modeling applications.

The test cases in Chapter 8 included a variety of geometricetaodnodels with
highly detailed geometric entities, such as for the desfgnvariety of aircraft, as well as

9 Conclusion 165

models originating from existing industrial design pragsuch as the geometric mod-
els related to the design of the PERSEUS satellite and conggygtem configurations.
Furthermore, the slider-crank mechanism test case of Ghépteluded various types of
dependencies between geometric parts. All test cases dhtbeeepresentation of geo-
metric model information in UML and the subsequent autocndiL-based generation
of application-specific geometric models. In addition, té&t cases related to the design
of the slider-crank mechanism and the Perseus satellitweshthe automatic import of
geometric model information into the UML model.

Next to geometric models, dynamic system and multibodyesgshodels were map-
ped into UML. Both Simulink-specific dynamic system modeld &mMechanics-spe-
cific multibody system models are block diagrams compodedlaxk types, block in-
stances and edges between block instances. However, teg wlgh connect the blocks
represent in the Simulink dynamic system model signals,tirerowords information
flows, while they represent static connections in the SintMeas multibody system
model. Simulink-specific dynamic system models were tloeeemapped into UML
activity diagrams and SimMechanics-specific multibodyteysmodels into composite
structure diagrams.

The block types of both Simulink and SimMechanics modelsasgnt templates.
They were therefore both mapped into UML classes. Howeweniéhk blocks represent
a behavior in contrast to SimMechanics blocks which descsiiatic bodies and joints.
Simulink block types were therefore mapped into UML aciggtwhich are specialized
UML classes. Simulink-specific block instances were mappéal UML actions and
SimMechanics-specific block instances into UML parts. Idiadn, block instances were
also mapped into UML instances. Furthermore, the Simusip&eific edges between
block instances were represented as UML object flows betwaegan pins while the
SimMechanics-specific edges were depicted as UML conrebietween parts. Apart
from block instances, the mapping of Simulink and SimMeateimodeling concepts
into corresponding UML modeling concepts was bijectivepiher words according to
a one-to-one correspondence. The dynamic and multibodgraysiodels shared great
resemblance with their corresponding UML diagrams andefioee allowed a mostly
intuitive mapping.

The mapping of Simulink, SimMechanics and combined Sink/8mMechanics
models into UML was applied to the slider-crank mechanisamgple of Chapter 5. As
the blocks within the Simulink and SimMechanics models aonby default numerous
detailed information, the import of existing models into UM/as more efficient than
describing in UML the Simulink- and SimMechanics-specifitormation from scratch.

166 9.2 Results

The translation of UML models into Simulink- and SimMechamspecific models was
validated by generating models identical to the importegspm other words by perform-
ing a round-trip transformation.

UML stereotypes were defined in order to refer to externa daExcel spreadsheets.
The test cases related to the evaluation of cabin pressatensy in Section 8.1 and the
generation of aircraft geometries in Section 8.4 for examptuired the import of Ex-
cel data. Similar UML stereotypes could be specified in otderefer to values from
other data sources such as databases. Furthermore, a UMabtgpe was defined to re-
fer to external Matlab-specific functions. This allowed &fprm complex computations
and return the results back to the UML-based product modet. alutomated evaluation
of satellite configurations in Section 8.3 for example reegithe invocation of Matlab
functions for matrix manipulations. Similarly, referesde external functions other than
Matlab could be represented in UML through UML operationthveippropriate stereo-
types.

This thesis demonstrated that the UML can be used beyondentonal software
modeling to establish a standard central product model.oblject-oriented UML mod-
eling concepts corresponded semantically to the modebngepts of various disciplines
including geometric, dynamic and multibody system moddlbis facilitated the rep-
resentation of discipline- and application-specific mad&rmation in a central UML-
based product model.

Inter-model dependencies were described in the common U&Med product model.
Inter-model dependencies between features of variougptiiss and application-specific
product models were represented as dependencies betvatead leML properties. De-
pendencies between UML properties were described throddh ¢bnstraints which re-
ferred to algebraic equations. Their resolution was adudkrough a solution path gen-
erator algorithm and a computer algebra system. The résolaf the UML constraints
established data consistency within the central UML-bgseduct model and was used
in all test cases.

The automated creation or modification of the UML-basedre¢ptoduct model was
enabled by an Application Programming Interface (API) maJand was used in all pre-
sented test cases. Furthermore, UML activity diagrams weed to graphically describe
design processes. The graphical representation of a dpsigess through a UML ac-
tivity diagram is easier to understand than an equivalextize representation through a
Java program. A design process described as a UML actiatyrdim can thus be under-
stood by more parties. In order to achieve the same level efgability as with Java
programs, nodes within UML activity diagrams referred teaJmethods. An executable

9 Conclusion 167

UML activity diagram was used for the automated design ofvegar system configura-
tions (Sec. 8.2) and the automated evaluation of satediéigurations (Sec. 8.3).

The easily extensible open-source Eclipse platform was tesmtegrate UML trans-
lators and editors in a single software environment. Thdempntation of the various
translators between the UML model and the applicationifipanodels as well as the
software for the executability of UML activity diagrams vegoackaged as Eclipse plug
ins which extended the Eclipse platform. Furthermore oteriopen-source UML editors,
which were available as Eclipse plugins, were also usedtenexthe Eclipse platform.

As a result, a single software environment based on the geclgpatform regrouped the
features to perform UML-based product design.

The UML-based central product model represented apphicagpecific modeling con-
cepts in order to enable an automatic translation of the Udflresentation of application-
specific model information into detailed discipline- angbgation-specific models for
simulation. As a result, changes in the UML-based produaiehwere automatically
propagated to detailed application-specific models. Ctersiy between the central UML-
based product model and the application-specific modelguasanteed. This enabled to
efficiently generate a multitude of different consistentdeloconfigurations which were
used to evaluate various product configurations. The custdnie UML-based central
product model was used in all presented test cases. As arnpixatime customization
of the UML-based central product model of the slider-crardchanism in Section 7.2
allowed to automatically generate various consistent ggocand multibody system
models which involved the update of many values. The benaffiise centrally defined
UML model customization were especially visible in the paijrelated to the generation
of various aircraft geometric models in Section 8.4. A vigrf aircraft geometric mod-
els, which differed in size and topology, were generatechfaccustomizable UML-based
product model. They represented a wide range of aircraftiding a fictional artistic
scramjet, Boeing’s X-48B Blended Wing Body demonstrator, thé&X8& and the family
of Airbus A318/319/320/321.

9.3 Outlook

By integrating product information, the central product mlogkpresents a central data
repository which facilitates the use of knowledge-basegirerering or multidisciplinary
optimization frameworks since they only need to addresscémtral product model in-
stead of many separate engineering models. Through a itddaigie between the UML-
based product model and state-of-the-art engineeringvacdtapplications, multidisci-

168 9.3 Outlook

plinary design processes requiring several iterationgach an optimal product config-
uration could be fully automated. The UML-based product edaobuld therefore be
easily combined with a rule-based automated design commileroach as in Alber and
Rudolph [2, 141].

The choice of the UML as a product modeling language enablesé¢ the Model
Driven Architecture (MDA) concepts [112] - originally imided for software design -
for a formal engineering design process. The MDA is a fram&vior using modeling
standards such as the UML in software development. It pesvigh approach to reuse
abstract software models for the automatic generation wdws platform-specific soft-
ware models or code through model transformations. Engmgelecisions or design
rules could similarly be described as model transformatimd be executed by current
tools supporting MDA. Kerzhner and Paredis [83] for exanggplied graph-based model
transformations on MDA-compliant models to generate diffie alternatives of hydraulic
circuits.

The development of further domain-specific or applicaspecific UML extensions
covering different product lifecycle aspects such as meguénts, manufacturing and
costs would increase the integrative role and value of the_Uislsed product model. In
addition, the presented application-specific UML extensicould be further improved to
include more modeling concepts.

A future standardization of application-specific UML pre§iland their respective
mappings is required in order to share these on a large sdhlenany parties. Applica-
tion-specific UML extensions should ideally be defined inmemation with application
developers and the Object Management Group (OMG) which isrsartium aiming
at setting standards such as the UML. Furthermore, the mgmgdiapplication-specific
models into UML could be described through the Query/ViaariBformation (QVT)
standard [119] of the OMG.

Similarities between UML, OWL and other modeling languageshsas EXPRESS
exist. Itis therefore probable that the different modelamgguages which were developed
over the years in distinct disciplines, such as UML in sofevdesign, EXPRESS in data
modeling and OWL in artificial intelligence, will probably dargo a harmonization pro-
cess in the near future. Approaches are undertaken totédeilnteroperability between
UML, EXPRESS and OWL. Very widespread state-of-the-art UMLdelong tools could
then be used for EXPRESS as well as for OWL modeling. Approafdres narrower
coexistence and integration of EXPRESS and UML are therefwastigated [92]. The
Mexico' project for example is developing a new EXPRESS metamodethwmivould,

IMOF 2 Based EXPRESS Integration and Coexistence, httpu/medelalchemy.com/

9 Conclusion 169

just as the UML metamodel, be an instance of the MOF metamo8ehilarly, Kiko
and Atkinson [84] have compared in detail UML and OWL to fdatke their harmoniza-
tion. Atkinson [7] is in favor of developing a core level ugdtion of UML and OWL as
there is no fundamental difference between modeling anolayy representation. On-
tologies have been defined in UML in order to use common UMUstdor ontology
design [30, 90, 48]. UML models have thereby been transfdrin® executable logic
representations [42].

As described in Section 3.5, an important new extension of.UdvBysML [118] for
systems engineering. SysML includes additional modelmgstructs to describe system
requirements, behavior, structure and parametrics. Bu¥IBys a new modeling lan-
guage which has not yet reached a mature status similar to.langes in the new
SysML modeling language are therefore highly probable énrtbar future. Eventually,
SysML will most probably be better suited than UML to estslbla standard central prod-
uct model. As SysML is based on UML, both languages share rmammon modeling
concepts. Current UML profiles could therefore be reused trgelextent in SysML
models.

Appendix A

Tables of correspondence between
modeling concepts

CATIA-specific UML modeling Stereotype Section
modeling concept concept

Part Class «catiaPart» 4.1.1
Part instance Instance - 41.1
Part Parameter Property «catiaPar» 4.1.2
Part Measure Property e.gatiaMass» 4.1.2
Publication Interface «catiaPublication» 413
CCP Link Usage «catiaCC P Link» 4.1.3
Import Link Usage «catialmport Link» 4.1.3
Product Class «catiaProduct» 4.1.4
Product instance Instance - 4.1.3
Assembly Constraint Constraint egatiaCoincidence» 4.1.5
PowerCopy Class «catiaPowerCopy» 4.1.6
User Defined Feature Class «cattaU DF'» 4.1.6
Script Class «catiaScript» 4.1.7

Table A.1: Table of correspondence between CATIA and UML nindeoncepts

172

SolidWorks-specific UML modeling Stereotype Section
modeling concept concept

Part Class «sldW orksPart» 4.2.1
Assembly Class «sldW orksAsm» 421
Geometric entity type Class (predefined in profile) - 422
Geometric entity instance Instance - 4.2.2
Mate Constraint «sldWorksM ate» 4.2.3

Table A.2: Table of correspondence between SolidWorks avitl bhodeling concepts

VRML-specific UML modeling Stereotype Section
modeling concept concept

Node type Class - 4.3.2
Node instance Instance - 432
VRML Transform Node Class «wrmlTransformN ode» 4.3.3
VRML Transform Node Prop- Property e.g«vrmlRotation» 4.3.3
erty

Table A.3: Table of correspondence between VRML and UML miadetoncepts

Simulink-specific UML modeling Stereotype Section
modeling concept concept

Model Activity «simulink M odel» 51.1
Block type Activity (predefined in profile) - 5.1.2
Block instance Action + Instance e.gintegrator» 5.1.2
Block port Pin «simulink Port» 5.1.2
Signal ObjectFlow «simulinkSignal» 5.1.3

Table A.4: Table of correspondence between Simulink and Whdideling concepts

A Tables of correspondence between modeling concepts 173

SimMechanics-specific UML modeling Stereotype Section
modeling concept concept

Model Class «simMechM odel» 5.2.1
Block type Class (predefined in profile) - 5.2.2
Block instance Part + Instance esgiround» 5.2.2
Block port Port e.g«simMechCS» 522
Connection Connector «simMechConnection» 5.2.3

Table A.5: Table of correspondence between SimMechanat®84L modeling concepts

Excel-specific UML modeling Stereotype Section
modeling concept concept
Cell value Property or Slot «excelCellV alue» 6.1

Table A.6: Table of correspondence between Excel and UMLelagl concepts

Matlab-specific UML modeling Stereotype Section
modeling concept concept

Function Operation «matlabFunction» 6.2
Function argument Parameter - 6.2

Table A.7: Table of correspondence between Matlab and UMdteatiog concepts

Equation-specific UML modeling Stereotype Section
concept concept

Equation OpaqueExpressiorkmatlabFunction» 6.3
Equation variable Property «spguar» 6.3
Equation fixed variable Property «spgconst» 6.3

Table A.8: Table of correspondence between equation and bigdleling concepts

Bibliography

[1] ABRAMOVICI, M. Future trends in product lifecycle managementThe Future
of Product Development. Proceedings of CIRP’07, Bg2id07).

[2] ALBER, R.,AND RUDOLPH, S. "43" - a generic approach for engineering design
grammars. InProc. of the AAAI Spring Symposium - Computational Synthesis
Stanford(2003).

[3] ANDERL, R., OHN, H., AND PUTTER, C. EXPRESS.Handbook on Architec-
tures of Information Systems. Spring&f98), 59-80.

[4] ANDERL, R.,AND TRIPPENER D. STEP, STandard for the Exchange of Product
Model Data Teubner Verlag, 2000.

[5] AREVALO, G., FALLERI, J.-R.,AND NEBUT, M. H. C. Building Abstractions
in Class Models: Formal Concept Analysis in a Model-Driven Aggeh. In9th
International Conference on Model Driven Engineering Laages and Systems
(MoDELS 2006), LNCS, Spring€2006).

[6] ASSOCIATION FRANCAISE DE NORMALISATION (AFNOR). NF Z68-300 Au-
tomatisation industrielle - Spécifications du standarccliénge et de transfert
(SET), 1993.

[7] ATKINSON, C. Unifying MDA and Knowledge Representation Technologiks
The Model-Driven Semantic Web Workshop (MDSW 2004), SkpteMonterey
CA (2004).

[8] ATKINSON, C., AND KUHNE, T. Model-Driven Development: A Metamodeling
Foundation.|EEE Software 20(5(2003), 36—41.

[9] BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-
SCHNEIDER, P. F., EdsThe description logic handbook : theory, implementation,
and applications Cambridge University Press, 2007.

[10] BALDWIN, C. Y.,AND CLARK, K. B. Design Rules, Vol. 1: The Power of Modu-
larity. The MIT Press, 2000.

[11] BALMELLI, L. An Overview of the Systems Modeling Language for Prodactd
Systems Developmendournal of Object Technology 6(62007), 149-177.

176

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BATRES, R., WEST, M., LEAL, D., PRICE, D., MASAKI, K., SHIMADA, Y.,
FUucHINO, T., AND NAKA, Y. An upper ontology based on ISO 1592B8omputers
& Chemical Engineering 31(5-R007), 519-534.

BAZJANAC, V. Building energy performance simulation as part of inpen@ble
software environmentsBuilding and Environment 39(§2004), 879-883.

BEETZ, J.,vVAN LEEUWEN, J. P. AND DE VRIES, B. An Ontology Web Language
notation of the Industry Foundation Classes. 2Bnd CIB W78 Conference on
Information Technology in Construction, CIB-W78, Dresdeerr@any(2005).

BERNERSLEE, T., HENDLER, J., AND LASSILA, O. The semantic web. In
Scientific American Magazin&erard Piel, 2001.

Bock, D., LAU, M., SCHONHERR T., WOLLENHAUPT, B., HERDRICH, G.,
AND ROSER H.-P. PERSEUS - In-Orbit Validation for Electric Propulsi8ys-
tems TALOS and SIMP-LEX. I27th International Symposium on Space Technol-
ogy and Science, Tsukuba, Jag@009).

BobbDy, S., REzGul, Y., COOPER G., AND WETHERILL, M. Computer in-
tegrated construction: A review and proposals for futureation. Advances in
Engineering Software 38(102007), 677—687.

BOHNKE, D. Erstellung einer Flugzeugentwurfssprache fir die dygramische
Analyse mittels CFD-Methoden. Studienarbeit, InstitutAérodynamik und Gas-
dynamik der Universitat Stuttgart und am Institut fir Statnd Dynamik der Uni-
versitat Stuttgart, Januar 2009.

BOHNKE, D., REICHWEIN, A., AND RUDOLPH, S. Design Language for Air-
plane Geometries Using the Unified Modeling LanguageASME International
Design Engineering Technical Conferences & Computers armrdtion in Engi-
neering Conference, IDETC/CIE, August 30-September 2, Sgyo DS A(2009).

BoocH, G. Object-Oriented Analysis and Design with Applicationsddison-
Wesley Professional, 1994.

BoocH, G., RUMBAUGH, J., AND JACOBSON, |I. The Unified Modeling Lan-
guage User Guide Addison-Wesley, 1998.

BUILDING SMART INTERNATIONAL. Industry Foundation Classes (IFC) speci-
fication. IFC2x Edition 3htt p: // ww. i ai -t ech. org/ products/ifc_
specification/ifc-rel eases, 2006.

BURMESTER S., GQESE, H., MUNCH, E., OBERSCHELR O., KLEIN, F., AND
SCHEIDELER, P. Tool support for the design of self-optimizing mechaitanulti-
agent systemsinternational Journal on Software Tools for Technology Efean
10(3)(2008), 207-222.

http://www.iai-tech.org/products/ifc_specification/ifc-releases
http://www.iai-tech.org/products/ifc_specification/ifc-releases

Bibliography 177

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

BURMESTER S.,AND TICHY, H. G. M. Model-Driven Development of Recon-
figurable Mechatronic Systems with MECHATRONIC UMIModel Driven Ar-
chitecture, European MDAWorkshops: Foundations andA&pftbns, MDAFA2003
andMDAFA2004 Twente, The Netherlands, June 26-27, 2003 aképhing, Swe-
den, June 10-11, 2004, Revised Selected PgReBs), 47-61.

CHANG, X., AND TERPENNY, J. Ontology-based data integration and decision
support for product e-DesigrRobotics and Computer-Integrated Manufacturing
25(6)(2009), 863-870.

CHIN, K.-S., ZHAO, Y., AND MoK, C. STEP-Based Multiview Integrated Prod-
uct Modelling for Concurrent Engineeringinternational Journal of Advanced
Manufacturing Technology 20(122007), 896—906.

Ciocolu, M., Nau, D. S., AND GRUNINGER, M. Ontologies for Integrating
Engineering ApplicationsJournal of Computing and Information Science in En-
gineering 1(1)X2001), 12-22.

COLEMAN, D., ARNOLD, P., BOoDOFF, S., DOLLIN, C., GLCHRIST, H.,
HAYES, F., AND JEREMAES, P. Object-Oriented Development. The Fusion
Method Prentice Hall, 1994.

CONRAD, J., TiLL, D., KOHLER, C., WANKE, S.,AND WEBER, C. Comparison
of knowledge representation in PDM and by semantic netwadrk46th Interna-
tional Conference on Engineering Design ; 28 - 30 August 20@ris, France
(2007).

CRANEFIELD, S.,AND PuRvis, M. UML as an Ontology Modelling Language.
In Proceedings of the Workshop on Intelligent Informatioregnation, 16th Inter-
national Joint Conference on Artificial Intelligen¢£999).

DAMJANOVIC, V., BEHRENDT, W., PLOSSNIG, M., AND HOLZAPFEL, M. De-
veloping Ontologies for Collaborative Engineering in Metrbaics. InThe Se-
mantic Web: Research and Applications, 4th European Seciakb Conference,
ESWC 2007, Innsbruck, Austria, June 3-7, 2007. ProceedR@f37).

DEMARCO, T. Structured Analysis and System Specificatfrentice Hall, 1975.

DIJKSTRA, E. W. Go To Statement Considered HarmfGbommunications of the
ACM 11(3)(1968), 147-148.

DoucLAss, B. P. Real Time UML: Advances in the UML for Real-Time Systems
Addison-Wesley Professional, 2004.

DREVERMAN, M. Adoption of Product model data standards in the Proceiss-
try. Master’s thesis, USPI-NL and Dept. of Technology Masragnt, Eindhoven
University of Technology, 2005.

Du, X., JAO, J.,AND TSENG, M. M. Graph Grammar Based Product Family
Modeling. Concurrent Engineering 10(22002), 113-128.

178 Bibliography

[37] EASTMAN, C., AND AUGENBROE, F. Product modeling strategies for today and
the future. InBjork B-C and Jagbeck A. (eds.) The life-cycle of IT innawai
in construction - Technology transfer from research to picg Proc. CIB W78
conference, June 3-5 1998 Stockholm, Royal Institute dintéegy.(1998).

[38] EASTMAN, C., WANG, F., You, S.-J.,AND YANG, D. Deployment of an AEC
industry sector product model.omputer-Aided Design 37(1@005), 1214-1228.

[39] EASTMAN, C. M., AND FERESHETIAN, N. Information models for use in product
design: a comparisor€omputer-Aided Design 26(71994), 551-572.

[40] EUZENAT, J.,AND SHVAIKO, P. Ontology Matching Springer, 2006.

[41] EYNARD, B., GALLET, T., NOWAKA, P., AND ROUCOULES L. UML based
specifications of PDM product structure and workflol@omputers in Industry
55(3)(2004), 301-316.

[42] FELFERNIG, A., FRIEDRICH, G., AND JANNACH, D. Conceptual modeling for
configuration of mass-customizable produétdificial Intelligence in Engineering
15(2)(2001), 165-176.

[43] FIORENTINI, X., RACHURI, S., MANI, M., FENVES, S. J.,AND SRIRAM, R. D.
An Evaluation of Description Logic for the Development obBuct Models. Tech.
rep., National Institute of Standards and Technology, NIRS448., 2008.

[44] FRIEDENTHAL, S., MOORE, A., AND STEINER, R. A practical guide to SysML.:
The Systems Modeling Languadéorgan Kaufmann OMG Press, 2008.

[45] FRITZSON, P. Principles of Object-Oriented Modeling and Simulation willod-
elica 2.1 Wiley & Sons, 2004.

[46] GALLAHER, M. P., O'CONNOR, A. C., AND PHELPS, T. Economic Impact
Assessment of International Standard for the Exchange aduet Model Data
(STEP) in Transportation Equipment Industries. Tech., ST Planning Report
02-5, 2002.

[47] GaAmmMA, E., HELM, R., AND JOHNSON, R. E. Design Patterns. Elements
of Reusable Object-Oriented Softwardddison-Wesley Longman, Amsterdam,
1995.

[48] GAsEvic, D., DJURIC, D., AND DEVEDzIC, V. Model Driven Engineering and
Ontology Developmentpringer, 2009.

[49] GIEHLING, W. An assessment of the current state of product data témiiee.
Computer-Aided Design 4R2008), 750-759.

[50] GIMENEZ, D. M., VEGETTI, M., AND HENNING, H. P. L. G. P. PRoduct ON-
TOlogy: Defining product-related concepts for logisticarpling activities.Com-
puters in Industry 59(2-3)2008), 231-241.

Bibliography 179

[51] GRABOWSKI, H., ANDERL, R., AND POLLY, A. Integriertes Produktmodell
Beuth, 1993.

[52] GRAPE, P.,AND WALDEN, K. Automating the development of syntax tree gener-
ators for an evolving languag®@roceedings of the eighth international conference
on Technology of object oriented languages and systemsa Banbara, Califor-
nia (1992), 185-195.

[53] GRoss J. Entwicklung eines UML-Modells zur Datenintegrationrbealigitalen
Entwurf von Kleinsatelliten. Diplomarbeit, Institut fir Ranfahrtsysteme der Uni-
versitat Stuttgart, Dezember 2008.

[54] GROSS J., REICHWEIN, A., RUDOLPH, S., Bock, D., AND LAUFER, R. An
Executable Unified Product Model Based on UML to Support Satédesign. In
AIAA SPACE Conference & Exposition 14 - 17 September, Pasa@aiidornia
(2009).

[55] GRUBER, T. R. A Translation Approach to Portable Ontology Speciites.
Knowledge Acquisition 5(2)1993), 199-220.

[56] GRUHN, V., PIEPER, D., AND ROTTGERS C. MDA: Effektives Software-
Engineering mit UML2 und EclipseSpringer-Verlag Berlin Heidelberg, 2006.

[57] Gu, P.,AND CHAN, K. Product modelling using STERZomputer-Aided Design
27(3)(1995), 163-179.

[58] HAN, K. H., AND Do, N. An object-oriented conceptual model of a collabora-
tive product development management (CPDM) systternational Journal of
Advanced Manufacturing Technology 28 (7/(3006), 827—838.

[59] HAREL, D., AND RUMPE, B. Meaningful modeling: What's the semantics of
"semantics"2Computer 37(10§2004), 64—72.

[60] HENDERSONSELLERS, B., AND BULTHUIS, A. Object-Oriented Metamethods
Springer, 1997.

[61] ILAL, M. E. The quest for integrated design system: A brief sunegast and
current efforts.Middle East Technical University Journal of the Faculty o€IA-
tecture 24(2007), 149-158.

[62] INSTITUTE, T. S. C. ClIMsteel Integration Standards Release 2: Seconmidi
http: //wwv. ci s2. or g, 2003.

[63] 1ISO 10303-11:2004. Industrial automation systems iategration — Product
data representation and exchange — Part 11: Descriptidmohet The EXPRESS
language reference manual, 2004.

[64] ISO 10303-1:1994. Industrial automation systems atebiration — Product data
representation and exchange — Part 1. Overview and fundahpeimciples, 1994.

http://www.cis2.org

180

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

ISO 10303-21:2002. Industrial automation systems iaberation — Product
data representation and exchange — Part 21: Implementagtimods: Clear text
encoding of the exchange structure, 2002.

ISO 10303-214:2003. Industrial automation systentiategration — Product
data representation and exchange — Part 214: Applicatmtogwl: Core data for
automotive mechanical design processes, 2003.

ISO 10303-221:2007. Industrial automation systentiategration — Product
data representation and exchange — Part 221: Applicataogwl: Functional data
and their schematic representation for process plantg,.200

ISO 10303-22:1998. Industrial automation systems iategration — Product
data representation and exchange — Part 22: Implementagdinods: Standard
data access interface, 1998.

ISO 10303-225:1999. Industrial automation systentiategration — Product
data representation and exchange — Part 225: Applicataiogwl: Building ele-
ments using explicit shape representation, 1999.

ISO 10303-227:2005. Industrial automation systent iategration — Product
data representation and exchange — Part 227: Applicatiotogol: Plant spatial
configuration, 2005.

ISO 10303-41:1994. Industrial automation systems iabeyration — Product
data representation and exchange — Part 41: Integratedigeesource: Funda-
mentals of product description and support, 1994.

ISO 10303-42:1994. Industrial automation systems iaberation — Product
data representation and exchange — Part 42: Integratedgezsources: Geomet-
ric and topological representation, 1994.

ISO 15926-1:2004. Industrial automation systems aegration — Integration
of life-cycle data for process plants including oil and gasduoction facilities —
Part 1: Overview and fundamental principles, 2004.

ISO/IEC 19501:2005. Information technology — OpentBbimited Processing —
Unified Modeling Language (UML) Version 1.4.2, 2005.

ISO/IEC 19502:2005. Information technology — Meta &xjFacility (MOF),
2005.

JACOBSON, |., BoocH, G., ,AND RUMBAUGH, J. The Unified Software Devel-
opment ProcessAddison-Wesley Professional, 1999.

JACOBSON, I., CHRISTERSON M., JONSSON P.,AND OVERGAARD, G. Object
Oriented Software Engineering: A Use Case Driven Approa&tdison-Wesley
Professional, 1992.

Bibliography 181

[78] Jao, J. R., SMPSON, T. W., AND SIDDIQUE, Z. Product family design and
platform-based product development: a state-of-theearew. Journal of Intelli-
gent Manufacturing 18(1()2007), 5-29.

[79] JOHANSSON G., AND DETTERFELT, J. A UML based modeling approach for
multi domain system products. Proceedings of NordPLM’06, G6tebo(g006).

[80] JOHNSON, T., PAREDIS, C.,AND BURKHARDT, R. Integrating Models and Sim-
ulations of Continuous Dynamics into SysML. Rroceedings of Modelica’08,
Bielefeld(2008).

[81] KAROL, A., LAHTELA, H., HANNINENA, R., HTCHCOCK, R., CHEN, Q., DA-
JKA, S.,AND HAGSTROM, K. BSPro COM-Server-interoperability between soft-
ware tools using industrial foundation classeésergy and Buildings 34(9R002),
901-907.

[82] KEMMERER, S. STEP: The Grand Experience. SP939, National Institu$tam-
dards and Technology, Gaithersburg, MbBxt p: // www. nel . ni st. gov/
nmsi dl i brary/ doc/ st epbook. pdf ., 1999.

[83] KERZHNER, A. A., AND PAREDIS, C. J. J. Using domain specific languages to
capture design synthesis knowledge for model-based sgstagineering. Pro-
ceedings of the ASME 2009 IDETC/CIE Conference , San Diego, 2009

[84] KIkO, K., AND ATKINSON, C. A Detailed Comparison of UML and OWL,
REIHE INFORMATIK TR-2008-004. Tech. rep., University of Margim -
Fakultat fur Mathematik und Informatik - Lehrstuhl fir Se#tretechnik, 2008.

[85] Kim, K.-Y., MANLEY, D. G.,AND YANG, H. Ontology-based assembly design
and information sharing for collaborative product develemt. Computer-Aided
Design 38(12)2006), 1233-1250.

[86] KLEINER, S., ANDERL, R., AND GRAB, R. A collaborative design system for
product data integratiorlournal of Engineering Design 14(42003), 421-428.

[87] KLEPPE A., WARMER, J.,AND BAST, W. MDA Explained: The Model Driven
Architecture Addison-Wesley Professional, 2003.

[88] KoBRYN, C. UML 2001: a standardization odyss&ommunications of the ACM
42(10)(1999), 29-37.

[89] KoBRYN, C. UML 3 and the future of modelinglournal of Software and System
modeling 3(1(2004), 4-8.

[90] KOGUT, P., QRANEFIELD, S., HART, L., DUTRA, M., BACLAWSKI, K., KOKAR,
M., AND SMITH, J. UML for ontology developmeniihe Knowledge Engineering
Review 17(1j2002), 61-64.

[91] KRAUSE, F.-L., FRANKE, H.-J.,AND GAUSEMEIER, J. Innovationspotenziale in
der ProduktentwicklungCarl Hanser Verlag Miinchen Wien, 2007.

http://www.mel.nist.gov/msidlibrary/doc/stepbook.pdf
http://www.mel.nist.gov/msidlibrary/doc/stepbook.pdf

182 Bibliography

[92] KRAUSE, F.-L., AND KAUFMANN, U. Meta-Modelling for Interoperability in
Product DesignCIRP Annals - Manufacturing Technology 56(2p07), 159-162.

[93] KRIMA, S., BARBAU, R., HORENTINI, X., SUDARSAN, R., AND SRIRAM,
R. D. OntoSTEP: OWL-DL Ontology for STEP, NISTIR 7561. Teadp.;, NIST,
National Institute of Standards and Technology, 2009.

[94] LA RoccA, G., KRAKERS, L., AND VAN TOOREN, M. Development of an ICAD
Generative Model for Blended Wing Body Aircarft Design. 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimizatidr6 September, At-
lanta, Georgia(2002).

[95] LEAL, D. ISO 15926 Life cycle data for process plant: An overviél & Gas
Science and Technology - Revue de I'lFP 6@{2005), 629—-637.

[96] LEE, K., CHIN, S.,AND KIM, J. A core system for design information manage-
ment using Industry Foundation Class€amputer-Aided Civil and Infrastructure
Engineering 18(4J2003), 286—298.

[97] LIAN, C.,AND GUODONG, J. Product modeling for multidisciplinary collabora-
tive design.International Journal of Advanced Manufacturing Techrggi@0 (7/8)
(2006), 589-600.

[98] LIANG, J., $HAH, J., D’SouzA, R., URBAN, S., ArYASWAMY, K., HARTER,
E.,AND BLUHM, T. Synthesis of consolidated data schema for engineenalj a
ysis from multiple STEP application protocolsComputer-Aided Design 31(7)
(1999), 429-447.

[99] LIN, H., AND HARDING, J. A manufacturing system engineering ontology model
on the semantic web for inter-enterprise collaborat@omputers in Industry 58(5)
(2007), 428-437.

[100] LOCKETT, H., BARTHOLOMEW, P.,AND GALLOP, J. The Management of Prod-
uct Data in an Integrated Aircraft Analysis Environmedburnal of Computing
and Information Science in Engineering 4(2pP04), 359-364.

[101] MANNISTO, T., PELTONEN, H., MARTIO, A., AND SULONEN, R. Modelling
generic product structures in STEPomputer-Aided Design 30(14)998), 1111
1118.

[102] MANNISTO, T., AND SULONEN, R. Evolution of Schema and Individuals of Con-
figurable Products. IMdvances in Computer Modeling. ER’ 99 Workshops on
Evolution and Change in Data Management, Reverse Engingerimformation
Systems, and the World Wide Web and Conceptual Modeling Peaisce, Novem-
ber 15-18(1999).

[103] MELLOR, S. J.,AND BALCER, M. J. Executable UML: A Foundation for Model-
Driven Architecture Addison-Wesley Professional, 2002.

Bibliography 183

[104] MEYER, B. Introduction to the Theory of Programming Languagsentice Hall,
1990.

[105] NANDA, J., SMPSON, T. W., KUMARA, S. R. T.,AND SHOOTER, S. B. A
methodology for product family ontology development udiognal concept anal-
ysis and web ontology languagéournal of computing and information science in
engineering 6(2f2006), 103-113.

[106] NAssI, I., AND SHNEIDERMAN, B. Flowchart techniques for structured program-
ming. ACM SIGPLAN Notices 8(§1973), 12—26.

[107] NAUR, P., AND RANDELL, B. Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Gerriahy,Oct. 1968.
Tech. rep., Brussels, Scientific Affairs Division, NATO, P96

[108] NECHES R., HKES, R., ANIN, T., GRUBER, T., PATIL, R., SENATOR, T., AND
SWARTOUT, W. R. Enabling technology for knowledge sharingl Magazine
12(3)(1991), 16-36.

[109] NILES, I., AND PEASE, A. Towards a standard upper ontology. liiernational
Conference on Formal Ontology in Information Systems (FQi&jes 2-9(2001).

[110] NYTSCH-GEUSEN, C., KLEMPIN, C.,vON VOIGT, J. N.,AND RADLER, J. Inte-
gration of CAAD, Thermal Building Simulation and CFD by Usingéli=C Data
Exchange Format. IRighth International IBPSA Conference, Eindhoven, Nether-
lands, 967-74, August 11-12003).

[111] OH, Y., HUNG HAN, S.,AND SUH, H. Mapping product structures between CAD
and PDM systems using UMLComputer-Aided Design 33(72001), 521-529.

[112] OMG. MDA Guide Version 1.0.1. omg/03-06-0if t p: / / www. onyg. or g/
docs/ ong/ 03- 06- 01. pdf . Accessed 15 Mar 2009, 2003.

[113] OMG. Meta Object Facility (MOF) Core Specification Vers2.0. formal/06-01-
01,http://ww. ong. or g/ docs/ formal / 06- 01- 01. pdf ., 2006.

[114] OMG. Object Constraint Language, Version 2.0. for@@06-05-01htt p://
www. ong. or g/ spec/ OCL/ 2. 0/ PDF/ ., 2006.

[115] OMG. UML Diagram Interchange Version 1.0. formal/8004-04,htt p://
www. ong. or g/ spec/ UMLDI / 1. O/ PDF, 2006.

[116] OMG. UML Profile for System on a Chip (SoC). formal/06-08;htt p://
www. ong. or g/ docs/ f or mal / 06- 08- 01. pdf ., 2006.

[117] OMG. MOF 2.0/XMI Mapping, Version 2.1.1. formal/20d2-01,http://
www. ong. or g/ docs/ formal /07- 12- 01. pdf ., 2007.

[118] OMG. SysML final adopted specification. ptc/06-05-64t p: / / www. ong.
or g/ cgi - bi n/ apps/ doc?pt ¢/ 06- 05- 04. pdf ., 2007.

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/spec/OCL/2.0/PDF/
http://www.omg.org/spec/OCL/2.0/PDF/
http://www.omg.org/spec/UMLDI/1.0/PDF
http://www.omg.org/spec/UMLDI/1.0/PDF
http://www.omg.org/docs/formal/06-08-01.pdf
http://www.omg.org/docs/formal/06-08-01.pdf
http://www.omg.org/docs/formal/07-12-01.pdf
http://www.omg.org/docs/formal/07-12-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/06-05-04.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/06-05-04.pdf

184 Bibliography

[119] OMG. Meta Object Facility (MOF) 2.0 Query/View/Trdosmation Specification,
Version 1.0. formal/2008-04-0Htt p: / / www. ong. or g/ docs/ f or mal /
08- 04- 03. pdf ., 2008.

[120] OMG. UML Profile for MARTE, Beta 2. ptc/08-06-0%htt p: // www.
ongmart e. or g/ Docunent s/ Speci fi cati ons/ 08- 06- 09. pdf .,
2008.

[121] OMG. Unified Modeling Language (OMG UML) Infrastruceu Specification,
Version 2.2. formal/2009-02-Oht t p: / / www. ong. or g/ spec/ UM/ 2. 2/
I nfrast ructure/ PDF/, 2009.

[122] OMG. Unified Modeling Language (OMG UML) SuperstruglSpecification,
Version 2.2. formal/2009-02-07tt p: / / ww. onyg. or g/ docs/ f ormal /
09- 02- 02. pdf ., 2009.

[123] PAREDIS, C. J. J., DAZ-CALDERON, A., SINHA, R.,AND KHOSLA, P. K. Com-
posable Models for Simulation-Based Desigmngineering with Computers 17(2)
(2001), 112-128.

[124] PARNAS, D. L. On the criteria to be used in decomposing systems irdduies.
Communications of the ACM 15(1)972), 1053 — 1058.

[125] PARR, G. R.,AND EDWARDS, R. Integrated Modular Avionics Air & Space
Europe 1(2)1999), 72—75.

[126] PARUNAK, H. V. D., AND ODELL, J. Representing social structures in UML.
Agent-Oriented Software Engineering Il, Lecture Notes in QmspScience,
Springer 22222002), 1-16.

[127] PAaTIL, L., DUTTA, D., AND SRIRAM, R. Ontology-Based Exchange of Product
Data SemanticslEEE Transactions on Automation Science and Engineeriy 2(
(2005), 213-225.

[128] Pavez, L., Ed. STEP Datenmodelle zur Simulation mechatronischer Systeme
Karlsruhe : Forschungszentrum Karlsruhe Technik und Um\&6D1.

[129] PEAK, R. S., BJRKHART, R. M., FRIEDENTHAL, S. A., WiLSON, M. W., BA-
JAJ, M., AND KIM, I. Simulation-Based Design Using SysML Part 1. A Para-
metrics Primer. Irl7th International Symposium of the International Counail o
Systems Engineering, San Diego, California, USA June 242287).

[130] PeAK, R. S., BJRKHART, R. M., FRIEDENTHAL, S. A., WILSON, M. W., BA-
JAJ, M., AND KIM, |. Simulation-Based Design Using SysML Part 2: Celebrating
Diversity by Example. Il 7th International Symposium of the International Coun-
cil on Systems Engineering, San Diego, California, USA Jun&8.(2007).

[131] PEAK, R. S., LUBELL, J., SRINIVASAN, V., AND WATERBURY, S. C. STEP,
XML, and UML: Complimentary Technologieslournal of Computing and Infor-
mation Science in Engineering $2004), 1-20.

http://www.omg.org/docs/formal/08-04-03.pdf
http://www.omg.org/docs/formal/08-04-03.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
http://www.omg.org/docs/formal/09-02-02.pdf
http://www.omg.org/docs/formal/09-02-02.pdf

Bibliography 185

[132] PoP, A., AKHVLEDIANI, D., AND FRITZSON, P. Towards unified system mod-
eling with the ModelicaML UML profile. InProceedings of EOOLT'07, Berlin
(2007).

[133] PORTNER, P. H. What is Meaning?: Fundamentals of Formal Semantitsley-
Blackwell, 2005.

[134] RACHURI, S., HAN, Y.-H., FENG, S. C., Ry, U., WANG, F., RIRAM, R. D.,
AND LYONS, K. W. Object-oriented representation of electro-mectarssem-
blies using UML, NISTIR 7057. Tech. rep., NIST, GaithershuviD, 2003.

[135] RACHURI, S., SUBRAHMANIAN, E., BOURAS, A., FENVES, S., FOUFOU, S.,
AND SRIRAM, R. D. Information sharing and exchange in the context otipcb
lifecycle management: Role of standar@emputer-Aided Design 42008), 789—
800.

[136] REDDY, S. Y., KENNETH, AND FERTIG, K. W. Design Sheet: A System for
Exploring Design Space - Application to Automotive Drivedilr Life Analysis.
In Proc. Artificial Intelligence in Desigr{1996), Kluwer Academic Publishers,
pp. 34736—6.

[137] REICHEL, R., ARMBRUSTER M., TJADEN, H., ZIMMER, E., SPIEGELBERG
G., AND SULZMANN, A. Safety Critical Control Platform for Automotive Vehi-
cles. In6th Braunschweig Conference AAET Automation, Assistanc& aripbd-
ded Real Time Platforms for Transportation, Braunschw2@p5).

[138] RENSSEN A. V. Gellish: A generic Extensible Ontological Languad®S Press,
2005.

[139] RezGul, Y., BoDDY, S., WETHERILL, M., AND COOPER G. Past, present and
future of information and knowledge sharing in the congtaicindustry: Towards
semantic service-based e-constructi@dmputer-Aided Design (in Preg2009),
doi:10.1016/j.cad.2009.06.005.

[140] Roy, P. V., AND HARIDI, S. Concepts, Techniques, and Models of Computer
Programming The MIT Press, 2004.

[141] RupoOLPH, S. Know-How Reuse in the Conceptual Design Phase of Complex En-
gineering Products - Or: Are you still constructing manyal do you already gen-
erate automatically? I€@onference Proceedings Integrated Design and Manufac-
ture in Mechanical Engineering (IDMME 2006), May 17-19thre@oble, France.
(2006).

[142] RUDOLPH, S.,AND BOLLING, M. Constraint-based conceptual design and au-
tomated sensitivity analysis for airship concept studidgrospace Science and
Technology 8(4§2004), 333—-345.

[143] RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN
W. Object Oriented Modeling and DesigRrentice-Hall, 1991.

186 Bibliography

[144] SCHAEFER, J., AND RuDOLPH, S. Satellite design by design grammars.
Aerospace Science and Technology 92005), 81-91.

[145] SCHATTKOWSKY, T., HAUSMANN, J. H.,AND ENGELS, G. Using UML Activ-
ities for System-on-Chip Design and Synthesis.9th International Conference
on Model Driven Engineering Languages and Systems (MoDHEIOS)2 LNCS,
Springer(2006).

[146] SDDIQUE, Z., AND ROSEN, D. W. Product Platform Design: a Graph Grammar
Approach. IPASME Design Engineering Technical Conferences, Septer2bbs,1
1999, Las Vegas, Nevadh999).

[147] SOININEN, T., TIIHONEN, J., MANNISTO, T., AND SULONEN, R. Towards a
general ontology of configuratiorArtificial Intelligence for Engineering Design,
Analysis and Manufacturing 12(41998), 357-372.

[148] SONG, H., EYNARD, B., ROUCOULES L., LAFON, P.,AND CHARLES, S. Be-
yond geometric CAD system: implementation of STEP transl&io multiple-
views product modellerlnternational Journal of Product Lifecycle Management
2(1) (2007), 1 - 17.

[149] Sowa, J. Knowledge Representation: Logical, Philosophical and Coljrtal
Foundations Thomson Learning, 1999.

[150] Sowa, J. F. The Challenge of Knowledge Soup. Hpisteme-1 Conference in
Goa, India, in December 2004. Research Trends in Sciencen®ogy and Math-
ematics Education, edited by J. Ramadas & S. Chunawala, Hoabl&hCentre,
Mumbai.(2006).

[151] SRINIVASAN, V. Standardizing the specification, verification, and exuaje of
product geometry: Research, status and treGdsputer-Aided Design 42008),
738-749.

[152] SRINIVASAN, V. An integration framework for product lifecycle managam
Computer-Aided Design (in Pres®009), doi:10.1016/j.cad.2008.12.001.

[153] StArRzYK, D. STEP and OMG Product Data Management specifications:idegu
for decision makers. OMG Document mfg/99-10-04 and PDES Dexument
MGO001.04.00; htt p: / / ww. ong. or g/ cgi - bi n/ doc?nf g/ 99- 10- 04.
Accessed 15 Mar 2009, 1999.

[154] StOKES, M., Ed. Managing Engineering Knowledge, MOKA: Methodology for
Knowledge Based Engineering ApplicatioRsofessional Engineering Publishing.
LondonBury St Edmunds, 2001.

[155] SUDARSAN, R., FENVES, S., RIRAM, R., AND WANG, F. A product infor-
mation modeling framework for product lifecycle managemedomputer-Aided
Design 37(2005), 1399-1411.

http://www.omg.org/cgi-bin/doc?mfg/99-10-04

Bibliography 187

[156] SzZYKMAN, S., FENVES, S. J., KEIROUZ, W., AND SHOOTER, S. B. A
foundation for interoperability in next-generation pratidevelopment systems.
Computer-Aided Design 33(72001), 545-559.

[157] SzYKMAN, S., RIRAM, R. D.,AND REGLI, W. C. The Role of Knowledge in
Next-generation Product Development Systedwurnal of Computing and Infor-
mation Science in Engineering 1(®001), 3—11.

[158] THIMM, G., LEE, S.,AND MA, Y. Towards unified modelling of product life-
cycles.Computers in Industry 57(42006), 331-341.

[159] TURKI, S.,AND SORIANO, T. A SysML extension for bond graphs support. In
IEEE ICTA'05, ThessaloniKR005).

[160] ULRICH, K. The role of product architecture in the manufacturingfiResearch
Policy 24(3)(1995), 419-440.

[161] UNGERER M., AND BUCHANAN, K. Usage Guide for the STEP PDM Schema
V1.2. PDM Implementor Forum, Release 4.3, January 20@2,p: / / www.
st ept ool s. com support/stdev_docs/ express/ pdn pdnug_
rel ease4_3. pdf . Accessed 15 Mar 2009, 2002.

[162] US PRO. Initial Graphics Exchange Specification IGES 3US Product Data
Association (USPROMt t p: / / ww. uspr 0. or g/ docunent s/ | GES5- 3_
f or Downl oad. pdf ., 1996.

[163] VERBAND DER AUTOMOBILINDUSTRIE E.V (VDA). VDA Surface Interface
Version 2.0, 1987.

[164] W3C. OWL Web Ontology Language Guide. W3C RecommenddiioRebruary
2004,ht t p: / / www. W3. or g/ TR/ ow - gui de/ , 2004.

[165] wee3D. The Virtual Reality Modeling Language VRML97. Interna-
tional Standard ISO/IEC 14772-1:199htt p: // www. web3d. or g/ x3d/
specifications/vrm /I SO | EC 14772- VRM.97/ , 1997.

[166] weB3D. Extensible 3D (X3D). ISO/IEC FDIS 19775-1:2008ftp://
www. web3d. or g/ x3d/ speci fications/|I SO | EC 19775- 1.
2- X3D- Abstract Speci fi cati on/index. ht m , 2008.

[167] WEGNER, P. Concepts and paradigms of object-oriented programmagM
SIGPLAN OOPS Messenger 1(1p90), 7 — 87.

[168] WITHERELL, P., KRISHNAMURTY, S.,AND GROSSE |. R. Ontologies for Sup-
porting Engineering Design Optimizatiodournal of Computing and Information
Science in Engineering 7(22007), 141-150.

[169] YANG, D., DONG, M., AND Mi1AO, R. Development of a product configuration
system with an ontology-based approacomputer-Aided Design 40(82008),
863-878.

http://www.steptools.com/support/stdev_docs/express/pdm/pdmug_release4_3.pdf
http://www.steptools.com/support/stdev_docs/express/pdm/pdmug_release4_3.pdf
http://www.steptools.com/support/stdev_docs/express/pdm/pdmug_release4_3.pdf
http://www.uspro.org/documents/IGES5-3_forDownload.pdf
http://www.uspro.org/documents/IGES5-3_forDownload.pdf
http://www.w3.org/TR/owl-guide/
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/index.html
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/index.html
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/index.html

188 Bibliography

[170] YANG, Q.,AND ZHANG, Y. Semantic interoperability in building design: Meth-
ods and toolsComputer-Aided Design 38(1(®006), 1099-1112.

[171] ZHA, X. F.,AND Du, H. A PDES/STEP-based model and system for concurrent
integrated design and assembly planni@@mputer-Aided Design 34(14002),
1087-1110.

[172] ZHOU, Z. D., XIE, S. Q.,AND YANG, W. Z. A case study on STEP-enabled
generic product modelling frameworknternational Journal of Computer Inte-
grated Manufacturing 21(1(2008), 43—61.

[173] ZouGHBI, G., BRIAND, L., AND LABICHE, Y. A UML Profile for Developing
Airworthiness-Compliant (RTCA DO-178B), Safety-Critical 8sére. In10th
International Conference on Model Driven Engineering Laages and Systems
(MoDELS), LNCS, SpringdR007).

	Application-specific UML Profiles for Multidisciplinary Product Data Integration
	Table of Contents
	Acknowledgments
	Abbreviations
	Abstract
	Kurzfassung
	Introduction
	Product data consistency
	Central product models
	UML-based product data integration
	Outline

	Models for product data integration
	STEP
	Overview
	Integration approaches

	Industry sector-specific standards
	IAI/IFC
	ISO 15926

	Ontologies
	Ontology representation languages
	Integration approaches

	Summary

	UML-based central product model
	Generic modeling
	Modeling modular components
	UML-based object-oriented modeling
	Origins of object-oriented software development
	UML for software engineering
	UML specification
	UML modeling concepts

	UML for product data integration
	UML-based integration approaches
	Summary

	UML profiles for geometric models
	UML profile for CATIA-specific geometry
	Parts
	Part parameters and measures
	Dependencies between parts
	Products
	Assembly constraints
	Dependencies between part instances
	PowerCopies
	Scripts

	UML profile for SolidWorks-specific geometry
	Assemblies
	Geometric entities
	Mates

	UML profile for VRML-specific geometry
	File structure
	Scene graph
	Assemblies
	VRML assembly files based on CATIA

	Summary

	UML profiles for dynamic system models
	UML profile for Simulink-specific dynamic systems
	Simulink model
	Blocks
	Signals
	Subsystems
	Case study: slider position controller

	UML profile for SimMechanics-specific multibody systems
	SimMechanics model
	Blocks
	Connections
	SimMechanics model as a Simulink subsystem
	Case study: slider-crank mechanism as multibody system

	Summary

	UML profiles for data retrieval and constraint processing
	UML profile for Excel-specific spreadsheet data
	UML profile for Matlab1.241®-specific functions
	UML profile for constraint processing
	Summary

	UML model for centralized workflows
	UML-based modeling of dependencies
	UML-based model customization
	Automated workflows
	Software implementation
	Summary

	Test cases
	Evaluation of cabin pressure control systems
	Automated design of conveyor system configurations
	Automated evaluation of satellite configurations
	Generation of aircraft geometries
	Summary

	Conclusion
	UML-based central product model
	Results
	Outlook

	Tables of correspondence between modeling concepts
	Bibliography

