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Abstract

For the modeling of a static gravity field, the impact of ocean tides is subtracted from the
GRACE data. Since there are more than one ocean tide model available, it is worth to learn
the difference between the models and the consequence of applying different model. Three ocean
tide models FES2004, EOT08a and EOT10a provided in the form of tidal maps are compared
in this thesis. Based on the tidal maps, the disturbance in the potential and in the acceleration
due to a single ocean tide is derived by using spherical harmonic analysis. Tools for visualization
are developed to demonstrate the difference between the EOT models and FES2004 globally at
a specific time point or locally at a specific site in a time period. Furthermore, a simulation of
the GRACE mission and spherical harmonic analysis using the differential gravimetry approach
build a closed loop simulation together, from which it can be find out, how the model difference
affects the gravity field derived from GRACE data in the frequency domain.
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Chapter 1

Introduction

The GRACE dual satellite mission offers the possibility of computing highly accurate gravity
fields. Among the factors that influence its quality, the ocean tide model is one of the candidates.
The effects due to ocean tides, which are the strongest short-period water mass redistribution
in the Earth systems, are assumed known and could be removed from the gravity field by using
a ocean tide model. Therefore, the quality of the ocean tide model has direct impact on the
Earth gravity field derived from GRACE. Considering that the research work of GRACE data
may use different ocean tide models, it is useful to investigate the model differences, in order to
avoid wrongly interpretation of the model differences as apparent sea level variations or gravity
variations.

The most well known ocean tide model in recent years, FES2004, taken as a reference model in
GRACE gravity field modeling, is a combined product based on a hydrodynamic model. Among
all the available global tide models, it has the highest resolution and is arguably most accurate.

In 2008, a new global ocean tide model, EOT08a was generated by German Geodetic Research
Institute (DGFI) using an empirical analysis of harmonized and cross-calibrated multi-mission
altimeter data acquired between October 1992 and October 2005 (Savcenko and Bosch, 2008).
Besides the altimeter data of TOPEX, Poseidon, ERS-1 and ERS-2 mentioned previously, data
from GFO, Jason-1 and ENVISAT are used in EOT08a. Two years later, EOT10a was derived
as an update of EOT08a. The observation duration is extended to April 2010 and instead of
altimeter of ERS-1 and GFO, data from Jason-2 is involved (Savcenko and Bosch, 2008).

The involved ocean tide models in this thesis are FES2004, EOT08a and EOT10a, which are all
provided in the form of tidal maps. The main task of this thesis is to derive the disturbance
in the potential and in the acceleration due to ocean tides based on the tidal maps of each tide
model and to compare the potential difference between the models. It aims to identify the areas
that show the model difference and the variation of the model difference over time. For a better
understanding of the comparison result, tools for visualizing the model difference are developed,
with which a specific single tide from each models can be compared and the result is interpreted
in terms of geoid height. Furthermore, by a simulation of the GRACE mission and the developed
analysis tool, one can find out how the model error affects the gravity field derived from GRACE
data in the frequency domain.

The theoretical foundation of this thesis is introduced in Chapter 2. The mathematical formula
are implemented in MATLAB for computing the disturbance in the potential and the accelera-
tions due to ocean tides, for building the simulator and the corresponding analysis tool. Chapter
3 and Chapter 4 present the comparison results of the investigated ocean tide model. Since the
disturbance in the potential due to ocean tides is not only a function of the observation position
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but also the time point, we observe these two aspects separately to make the visualization work
easier. Chapter 3 focuses on the global visualization of model difference at a certain time point.
By setting the observation points on the earth surface it is achieved by a 2D graphic. Chapter
4 shows the timely variation of model difference at some certain point. In Chapter 5, a closed
loop simulation is introduced and an example result of the implementation is shown.
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Chapter 2

Theory of ocean tides analysis

This Chapter starts with an introduction of ocean tides and ocean tide modeling. Latter on,
mathematical background of the computation from tidal maps to spherical harmonics and to
the disturbance in the potential and acceleration will be discussed. Furthermore a simulator is
built for the twin GRACE satellites to study to which extent the ocean tides impact the satellite
motion. In the end, spherical harmonic analysis is performed to a simulated signal, which is
composed of acceleration vectors generated by gravity field and a certain ocean tide model.

2.1 Ocean tides and ocean tide model

The Earth responses to the tide-generating potential (potential of celestial bodies) by means of
various deformations, two of which are ocean tides and ocean-tide loading. The term ocean tides
refers to the motion of the ocean surface (the relocation of water masses) relative to the seabed
as a result of tide-generating forces. Ocean-tide loading is the deformation of the seabed and
the mainland close to the coast as reaction to the effect of ocean tides. All deformations lead
to a disturbance in the potential, which results in a direct disturbance in the acceleration at an
observed space point, for instance a particular point in satellite orbit. It must be declared that
the disturbance in the potential as well as disturbance in the acceleration discussed in this study
are consequences of ocean tides and ocean-tide loading.

The reaction of the ocean to the tide-generating potential is described by frequency dependent
tidal heights. With the assumption of ocean tides’ linear behavior, every single one of them can
not only be decoupled from all other tides, but also be handled separately without knowing the
other tides. A single ocean tide ζs(λ, φ, t), which is marked with the subscript s indicating a
certain frequency, is expressed in terms of amplitude ξs(λ, φ) and phase δs(λ, φ), in which (λ, φ)
indicates geocentric longitude and latitude.

ζs = ξs cos(θs + χ− δs) (2.1)

In the equation above θs(t) represents the Doodson argument and χ the Doodson-Warburg phase
bias. The Doodson argument (Doodson, 1921) of a certain ocean tide s is defined as a linear
combination of the six classic Doodson elements (numerical value see (Simon et al., 1994)), τ , s,
h, p, N ′ and Ps, which are invented to describe the position of the Sun and the Moon with respect
to the Earth. Besides the six classic Doodson elements, elements that describe the position of
other celestial bodies w.r.t the Earth are also used for argument calculation of the major tides
today. However, the other celestial bodies are not considered in this thesis work, because the Sun
and the Moon are the two main sources of generating ocean tides. The relative position of the
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Sun and the Moon w.r.t. the Earth change all the time, so these six elements are time dependent.
The Doodson numbers d1,s, d2,s, d3,s, d4,s, d5,s and d6,s are integer with values between 0 and
9. They are usually written as a six digits number which is unique for each tide. Since the six
Doodson elements are time dependent with the reference epoch at 0:00 on 1st. January 2000,
the Doodson argument θs(t) is a function of time and expressed as

θs = d1,sτ + (d2,s − 5)s+ (d3,s − 5)h+ (d4,s − 5)p+ (d5,s − 5)N
′
+ (d6,s − 5)Ps (2.2)

The value of Doodson-Warburg phase bias χ is frequency dependent (Dow, 1988). Details of the
tides and the categories can be found in Tab. 3.2 and Chapter 3.2 and 3.4.

χ =


0 for semi diurnal and long period tide
π
2 for 165.555 tide namely K1 tide

−π
2 for diurnal tide except 165.555 tide

Ocean tide models are distributed as two gridded maps for each major constituent (tide of main
frequency). One is the map of the phase and the other one is the map of the quadrature amplitude
of tide heights. Except the modelized major constituents, there are still many minor tides in the
whole frequency spectrum of ocean tides. On one hand the absence of those minor tides in ocean
tide models reduces the workload of modeling; on the other hand, it is hard to distinguish the
minor tides and the major constituents from the observation data. In the light of the admittance
theory (Marsh et al., 1987), the minor tides can be linear interpolated from major constituents.
Although each minor tide plays only a small role, their total influence is significant. In spite of
that, they are neglected in this thesis because of the small magnitude of their difference between
models. Thus, the main subjects in this thesis are the major constituents.

2.2 Expansion of tide maps to spherical function

In the last section a single ocean tide ζs(λ, φ, t) is described by a mathematical expression in
Eq. 2.1. For convenience, the ocean tide can also be written in complex form as ζ∗s .

ζ∗s = ξse
i(θs+χ−δs)

= (ξs cos δs − iξs sin δs)e
i(θs+χ) (2.3)

In the next step ζ∗s is going to be expanded into spherical harmonic function [DOW,1988; textsc-
GASOTTO, 1989], which is realized by the expansion of ξs cos δs and ξs sin δs to the maximum
degree of N as shown in Eq. 2.4. Plm(sinφ) is the usual Legendre function of the first kind of
degree l and order m . Afterwards the abbreviation Plm will be used. The other parameters
(alm,s, blm,s, clm,s and dlm,s) in both equations are spherical harmonic coefficients.

ξs cos δs =

N∑
l=0

l∑
m=0

(alm,s cosmλ+ blm,s sinmλ)Plm(sinφ)

ξs sin δs =
N∑
l=0

l∑
m=0

(clm,s cosmλ+ dlm,s sinmλ)Plm(sinφ) (2.4)
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Substituting Eq. 2.4 into Eq. 2.3, the equation is rewritten as

ζ∗s =
N∑
l=0

l∑
m=0

[(alm,s cosmλ+blm,s sinmλ)−i(clm,s cosmλ+dlm,s sinmλ)]ei(θs+χ)Plm(sinφ) (2.5)

The real part that we would like to focus on can be expressed as

ζs = Re(ζ∗s ) =
N∑
l=0

l∑
m=0

[
1

2
(alm,s∓dlm,s) cos(θs+χ±mλ)+

1

2
(clm,s±blm,s) sin(θs+χ±mλ]Plm (2.6)

At this point ellipsoidal corrections (Balmino, 1995) are introduced. The increasing precision in
measurement techniques today demands that ellipsoidal corrections should be applied to spherical
harmonics considering that the tide models are described on the oblate shape of the Earth. The
calculating process is given in Section 2.3 in detail. Distinguished from the coefficients without
correction, the corrected coefficients are marked with asterisk, for example the term a∗lm is used
instead of alm. Now instead of Eq. 2.6 we have

ζs =

N∑
l=0

l∑
m=0

[
1

2
(a∗lm,s ∓ d∗lm,s) cos(θs + χ±mλ) +

1

2
(c∗lm,s ± b∗lm,s) sin(θs + χ±mλ]Plm (2.7)

Further, new terms which are linear combinations of the corrected spherical harmonic coefficients
are introduced to simplify the writing.

ζs =

N∑
l=0

l∑
m=0

[C±
lm,s cos(θs + χ±mλ) + S±

lm,s sin(θs + χ±mλ]Plm (2.8)

with

C±
lm,s =

1

2
(a∗lm,s ∓ d∗lm,s) S±

lm,s =
1

2
(a∗lm,s ± d∗lm,s)

So far the coefficients C±
lm,s and S±

lm,s have been, just like the amplitude of tide heights, in the
unit of length. It is known that the spherical harmonic coefficients should be dimensionless.
Thus they are scaled by a dimension factor and converted by Eq. 2.9 to Ĉ±

lm,s and Ŝ±
lm,s. The

factor G is the gravitational constant (6.67428× 10−11 m3kg−1s−2), ge means equatorial gravity
(9.7803278 ms−2) and ρw is the density of seawater (1025 kgm−3).

Ĉ±
lm,s =

4πGρw
ge(2l + 1)

C±
lm,s Ŝ±

lm,s =
4πGρw
ge(2l + 1)

S±
lm,s (2.9)

Then, Eq. 2.8 turns into Eq. 2.10

ζs =

N∑
l=0

l∑
m=0

[Ĉ±
lm,s cos(θs + χ±mλ) + Ŝ±

lm,s sin(θs + χ±mλ]Plm (2.10)

Performing the substitution again, the equation can be expressed in a simpler way as shown in
Eq. 2.11.

ζs =
N∑
l=0

l∑
m=0

(C lm,s cos(mλ) + Slm,s sin(mλ))Plm (2.11)
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with

C lm,s = cos(θs + χ)(Ĉ+
lm,s + Ĉ−

lm,s) + sin(θs + χ)(Ŝ+
lm,s + Ŝ−

lm,s)

Slm,s = cos(θs + χ)(Ŝ+
lm,s − Ŝ

−
lm,s)− sin(θs + χ)(Ĉ+

lm,s − Ĉ
−
lm,s) (2.12)

Now to exam the features of those coefficients, it is clear that time t is one of the variables in
ζs(λ, φ, t) and the footnote s means ζs is unique at different frequencies. The derivation process
shows that the coefficients Ĉ±

lm,s and Ŝ
±
lm,s in Eq. 2.10 are neither time dependent nor frequency

dependent, but C lm,s and Slm,s are. Both of them contains the Doodson argument θs(t), which
is a function of time, and Doodson-Warburg phase bias χ, which is frequency dependent.

2.3 Ellipsoidal correction to spherical harmonics

As a foundation of ocean tide models, it is assumed that the potential disturbance results from a
surface layer of water masses coated on a ellipsoidal body. In the article “Ellipsoidal Corrections
to Spherical Harmonics of Surface Phenomena Gravitational Effects” (Balmino, 1995), formulas
are derived to the second order with respect to the flattening of the ellipsoid and the layer
thickness. The computation of ellipsoidal corrections in this section is based on the algorithm
described in the article, though adjustments are made to adapt it to the treatment of tidal
maps.

The spherical harmonic analysis of the two components ξs cos δs and ξs sin δs in Eq. 2.3 generates
two pairs of coefficients namely (alm,s, blm,s)and (clm,s, dlm,s) in Eq. 2.4. Taken the first pair as
an example, in Eq. 2.13 they are combined to one term hlm, which is going to be frequently used
in the calculation later.

(2− δlm)hlm = alm,s − iblm,s δlm =

{
0, l 6= m
1, l = m

(2.13)

To simplify the writing of the formulas later on, new terms are defined as follows:

ε2 =
1

2
e
′2 ε4 =

3

8
e
′4

with e′ as the second eccentricity which is related to the first eccentricity by

e
′2 = e2/(1− e2)

and

elm =
1

2l + 3

[
(l −m+ 1)(l −m+ 2)

2l + 1

(l +m+ 1)(l +m+ 2)

2l + 5

]1/2
flm =

2l(l + 1)− 2m2 − 1

(2l − 1)(2l + 3)

glm =
1

2l − 1

[
(l −m)(l −m− 1)

2l − 3

(l +m)(l +m− 1)

2l + 1

]1/2
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and

slm = elmel+2,m

tlm = elm(fl+2,m + flm)

ulm = elmgl+2,m + f2lm + el−2,mglm

vlm = glm(flm + fl−2,m)

wlm = glmgl−2,m

The terms in the next block together build the ellipsoidal correction. They are expressed with
the help of the definitions above. The value of Re is given in Section 2.1. In this part, only
the numerical relationship is given, in order to show the calculation process in this thesis. For
more information about the physical meaning of the terms, please find in the article (Balmino,
1995).

δ1K0
lm = hlm

δ1K1
lm = −(l + 2)ε2 [el−2,mhl−2,m + flmhlm + gl+2,mhl+2,m]

δ1K2
lm =

[
(l + 1)(l + 2)

2
ε22 + (l + 2)ε4

]
· [sl−4,mhl−4,m + tl−2,mhl−2,m + ulmhlm + vl+2,mhl+2,m + wl+4,mhl+4,m]

δ2K0
lm =

1

Re

l + 2

2
hlm

δ2K1
lm = − 1

Re
(l + 1)ε2 [el−2,mhl−2,m + flmhlm + gl+2,mhl+2,m]

δ2K2
lm =

1

Re

[
l(l + 1)

2
ε22 + (l + 1)ε4

]
· [sl−4,mhl−4,m + tl−2,mhl−2,m + ulmhlm + vl+2,mhl+2,m + wl+4,mhl+4,m]

Klm = δ1K0
lm + δ1K1

lm + δ1K2
lm + δ2K0

lm + δ2K1
lm + δ2K2

lm (2.14)

It makes sense that the term δ1K0
lm equals hlm which is the combination of the coefficient

pair (alm,s, blm,s), because the uncorrected spherical harmonic coefficients are derived under the
condition that the earth’s flattening is not taken into account. So in Eq. 2.14, the first term is
the original state and the terms after it are actually the corrections

The last step is to return to the system of harmonic coefficient pair (a∗lm,s, b
∗
lm,s). Obviously

Eq. 2.13 and Eq. 2.15 share the same form but the equations are calculated in the opposite
directions.

a∗lm,s − ib∗lm,s = (2− δlm)Klm (2.15)

Obtaining c∗lm,s and d
∗
lm,s is achieved in the same way by inserting clm,s and dlm,s into Eq. 2.13.
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2.4 Potential and acceleration

To compare the ocean tide models, the tidal maps must be converted to physical quantities such
as potential or acceleration. In general a geopotential field V at a certain point can be developed
in spherical harmonic function. The disturbance in the gravitational potential due to a single
ocean tide of frequency s at a point with spherical coordinate (φ, λ, r) exterior or on the surface
of the Earth can be expressed as

V tide
s (φ, λ, r) =

GM

Re

n∑
l=0

l∑
m=0

(
Re
r

)l+1

(C lm,s cosmλ+ Slm,s sinmλ)Plm(sinφ) (2.16)

Here GM is geocentric gravitational constant (3.986004418 × 1014 m3s
−2), Re the equatorial

radius of the Earth (6378136.6 m), Plm(sinφ) the usual Legendre function of the first kind of
degree l and order m. The potential is determined up to degree and order of n which must
be not larger than the maximum degree and order of the spherical harmonic expansion N in
Eq. 2.4. Comparing equation Eq. 2.16 and Eq. 2.11, it is obvious that the solid spherical harmonic
function of potential field has an upward continuation term which depends on degree l and the
dimensioning is performed by the constant factor GM/Re.

It should be noted that V tide
s is only part of the total disturbance in the potential, because so far

the ocean-tide loading has not been considered. The ocean tides redistribute water mass with
respect to land and the Earth as a whole responses to external forces caused by this process as an
elastic body. The effect as result is described as the ocean-tide loading. To make the model more
accurate, it should be taken into account. The disturbance in the potential due to ocean-tide
loading V loading

s are computed in different ways according to the data type in each model. For
more information about the dataset offered by the ocean tide models please see Chapter 3.1.

Since Model FES2004 has no loading tidal maps, following the description in the IERS Con-
ventions, the load deformation coefficient (LOVE number) k′l of degree l are adopted for the
calculation. In Eq. 2.17 we see that V loading

s is actually a fraction of V tide
s with the load defor-

mation coefficient as factor (Casotto, 1989).

V loading
s (φ, λ, r) = k

′
lV

tide
s (φ, λ, r) (2.17)

in which k
′
2 = −0.3075, k′3 = −0.195, k′4 = −0.132, k′5 = −0.1032, k′5 = −0.0892, for the rest

degree k′l = 0.

The models ETO08a and EOT10a provide besides tidal maps also the corresponding loading tidal
maps. Since both types of maps share the same data structure, for tide s V loading

s is obtained by
going through the steps from Eq. 2.4 to Eq. 2.16 with the data from loading tidal map instead
of the tidal map as well.

In summary the disturbance in the potential at point (φ, λ, r) caused by tide s is the total effect
of two types of deformation.

Vs(φ, λ, r) = V tide
s (φ, λ, r) + V loading

s (φ, λ, r) (2.18)

The disturbance in the potential at point (φ, λ, r) generated by tides from several frequencies is
the sum of single tides.

V (φ, λ, r) =
∑
s

Vs(φ, λ, r) (2.19)
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The disturbance in the potential can be also interpreted by using geoid height following the
Bruns formula N = T

γ , in which N , T and γ stand for geoid height, gravity potential and gravity
constant respectively. In the case of this thesis γ takes the value of mean equatorial gravity
ge = 9.7803278 ms−2.

The vector on the left panel below is the partial derivation of a potential in the local spherical
coordinates system (LSCS) whose physical meaning is acceleration. If the potential refers to
a particular point in satellite orbit for instance, the acceleration vector can be transformed to
the Earth-fixed Cartesian system (E) by using the rotation matrix given in Eq. 2.20. So the
acceleration vector in the Earth-fixed Cartesian system is equals to RE

LSCS∇V .

∇V =


∂V
∂r

1
r
∂V
∂φ

1
r cosφ

∂V
∂λ

 RE
LSCS =


cosφ cosλ − sinφ cosλ − sinλ

cosφ sinλ − sinφ sinλ cosλ

sinφ cosφ 0

 (2.20)

Taken the potential in Eq. 2.16 as an example, the partial derivatives can be written explicitly
in the following form.

∂V tide
s

∂r
= −GM

r2

n∑
l=0

l∑
m=0

(l + 1)

(
Re
r

)l
(C lm,s cosmλ+ Slm,s sinmλ)Plm

1

r

∂V tide
s

∂φ
=

GM

r2

n∑
l=0

l∑
m=0

(
Re
r

)l
(C lm,s cosmλ+ Slm,s sinmλ)

∂Plm
∂φ

(2.21)

1

r cosφ

∂V tide
s

∂λ
=

GM

r2

n∑
l=0

l∑
m=0

m

cosφ

(
Re
r

)l
(Slm,s cosmλ− C lm,s sinmλ)Plm

Owing to the linearity in Eq. 2.18 and Eq. 2.19, the acceleration vector at point (φ, λ, r) caused
by a tide of frequency s is expressed as

∇Vs(φ, λ, r) = RE
LSCS [∇V tide

s (φ, λ, r) +∇V loading
s (φ, λ, r)] (2.22)

and the acceleration vector at the same point generated by tides from several frequencies is
expressed as

∇V (φ, λ, r) =
∑
s

∇Vs(φ, λ, r) (2.23)

2.5 Orbit simulation and spherical harmonic analysis

2.5.1 Orbit simulation

A satellite’s position and its velocity can be determined by six Keplerian elements a, e, i, Ω, ω
and M0.
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• Semimajor axis a: the sum of the periapsis and apoapsis distances divided by two.

• Eccentricity e: shape of the ellipse, describing how flattened it is compared with a circle.

• Inclination i: vertical tilt of the ellipse w.r.t. the reference plane, measured at the ascending
node

• Right ascension of the ascending node Ω: horizontally orients the ascending node of the
ellipse w.r.t the reference frame’s vernal point

• Argument of perigee ω: the angle measured from the ascending node to the semimajor axis

• Mean anomaly at the reference epoch M0: position of the orbiting body along the ellipse
at epoch t0

The mean motion n =
√

GM
a3

enables the calculation of the mean anomaly

M = n · (t− t0) +M0 (2.24)

The value of GM is given in Section 2.4. After iteratively determining of the eccentric anomaly
E by equation

E = M + e · sinE (2.25)

The position vector xo in orbit system can be described by the true anomaly ν and orbit radius r
with the knowledge from Eq. 2.26 and Eq. 2.27. The subscript o represents the orbit coordinates
system, i means the inertial coordinates system and e is the Earth-fixed coordinates system.

xo = [r cos ν r sin ν 0] (2.26)

with

cos ν =
cosE − e

1− e · cosE
sin ν =

√
1− e2 sinE

1− e · cosE
r =

a(1− e2)
1 + e · cos ν

(2.27)

or in a simpler way

xo =
[
a(cosE − e) a

√
1− e2 sinE 0

]
(2.28)

The velocity vector is the first derivation of the position vector in time. With the knowledge

dE

dt
=

1

1− e cosE

dM

dt
=

n

1− e cosE
(2.29)

we get

vo =
dxo
dt

=

[
−na sinE

1− e cosE

na
√

1− e2 cosE

1− e cosE
0

]
(2.30)

Both the position vector and the velocity vector can be transformed from the orbit coordinates
system into inertial coordinates system by using Eq. 2.31, in which R3 is the rotation matrix
with respect to z-axis and R1 to x-axis.

xi = R3(−Ω)R1(−i)R3(−ω)xo (2.31)
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Further, they can also be transformed into the Earth-fixed coordinate system and converted into
spherical coordinates.

xe = R3(GAST )xi (2.32)

where GAST stands for Greenwich Apparent Sidereal Time, and with apparent right ascensions
referred to the equinox. It should be mentioned that precession, nutation and polar motion are
neglected here.

2.5.2 Spherical harmonic analysis

The spherical harmonic analysis is achieved by using the differential gravimetry approach. The
subscript A and B in the formulas later indicate two satellites respectively. The core principle
of this analysis, as presented in Eq. 2.33, is the relative gradient projected on the line-of-sight
vector. Explanation of the symbols are offered in the following paragraphs.

(∇VB −∇VA)eAB = ∇V rφλ
B erφλB −∇V rφλ

A erφλA (2.33)

On the right hand side of Eq. 2.33, ∇VB and ∇VA refer to the partial derivatives of potential
at satellite B and A respectively and the symbol eAB stands for the line-of-sight unit vector
between satellite A and B in inertial system. On the right hand side of Eq. 2.33, the components
are in local system of the two satellites respectively. The equal sign can be applied in Eq. 2.33
because the result in both coordinate systems is a scalar. The explicit expressions of ∇V rφλ

B and
∇V rφλ

A originated from Eq. 2.20 and Eq. 2.21 in spherical coordinates of the Earth-fixed system
(rB, φB, λB) and (rA, φA, λA) separately. The notations erφλB and erφλA represent that the line of
sight unit vector eAB in the LSCS is evaluated at the location of satellites B and A.

Since the rotation matrix of the Earth-fixed Cartesian system to the LSCS RE
LSCS , given in

Eq. 2.20, depends on the position of the satellite, the transformation needs to be evaluated for
each satellite separately.

erφλB = RE
LSCS(rB, φB, λB)R3(GAST )eAB (2.34)

erφλA = RE
LSCS(rA, φA, λA)R3(GAST )eAB (2.35)

Therefore, Eq. 2.33 can be expressed as Eq. 2.36

(∇VB −∇VA)eAB =
∂V

∂r
erB −

∂V

∂r
erA +

1

rB

∂V

∂φ
eφB −

1

rA

∂V

∂φ
eφA

+
1

rB cosφB

∂V

∂λ
eλB −

1

rA cosφA

∂V

∂λ
eλA (2.36)

in which

erφλ =
[
er eφ eλ

]
(2.37)

Since the values of the components on the left hand side of Eq. 2.36 can be acquired through
measurement, they build the observation vector l. On the right hand side of Eq. 2.36, the
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spherical harmonic coefficients C lm,s and Slm,s, which are unknown parameters, can be written
explicitly to build the vector x, with the help of Eq. 2.21. Further the explicit entries for the
design matrix A can be derived as well. It is worth mentioning that the position of a specific
element depends on the maximum degree L of the spherical harmonic expansion and the ordering
of coefficients. This is neglected here for simplicity.

For C lm,s coefficients:

aij = −GM
r2B

(l + 1)(
Re
rB

)lPBlm cos(mλB)erB +
GM

r2A
(l + 1)(

Re
rA

)lPAlm cos(mλA)erA

+
GM

r2B
(
Re
rB

)l
∂PBlm
∂φ

cos(mλB)eφB −
GM

r2A
(
Re
rA

)l
∂PAlm
∂φ

cos(mλA)eφA

−GM
r2B

(
Re
rB

)l
m

cosφB
PBlm sin(mλB)eλB +

GM

r2A
(
Re
rA

)l
m

cosφA
PAlm sin(mλA)eλA (2.38)

For Slm,s coefficients:

aij = −GM
r2B

(l + 1)(
Re
rB

)lPBlm sin(mλB)erB +
GM

r2A
(l + 1)(

Re
rA

)lPAlm sin(mλA)erA

+
GM

r2B
(
Re
rB

)l
∂PBlm
∂φ

sin(mλB)eφB −
GM

r2A
(
Re
rA

)l
∂PAlm
∂φ

sin(mλA)eφA

−GM
r2B

(
Re
rB

)l
m

cosφB
PBlm cos(mλB)eλB +

GM

r2A
(
Re
rA

)l
m

cosφA
PAlm cos(mλA)eλA (2.39)

According to the classic form for applying least squares adjustment, we reform Eq. 2.36 into
matrix form.

l = Ax (2.40)

The result of the least squares adjustment follows

x = (ATA)TAl (2.41)
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Chapter 3

Global visualization of the model differences

The theoretical foundation of how to deal with tidal maps and calculate disturbance in the po-
tential was provided from Section 2.1 to 2.3. In this Chapter the potential difference between
models are interpreted and compared in measure of geoid height with the help of global visu-
alization. The first part of this chapter introduces the data set in each model. To make the
comparison later easier, one of the models is chosen as the reference model. The comparison of
each constituent from different models comes in the following 3 Sections, which are divided on
the basis of tide period, since the model differences of constituents with similar frequency have
some features in common.

According to the previos knownledge in Chapter 2, it is known that the potential of ocean tides
varies over time. The potential difference between ocean tidal models, therefore, is also a function
of time. During the investigation, the model differences in a period of time are globaly visualized.
However, it is hard to show the time feature within 2-dimensional graphics of the Earth. Hence
the main task of this chapter is only to identify the locations with distinct model difference and
to gain a sense of the extent, to which the models differ from each other. The timely model
difference will be discussed in chapter 4.

In this chapter, graphics are chosen as typical examples of potential difference at a certain time
point. The color bar in the images for each constituent are unified, so that the comparison
between models can be directly perceived. All the potential difference are calculated at the
height of 6378146 m from the Earth center.

3.1 Data set and reference model

All in all, three ocean tidal models, FES2004, EOT08a and EOT10, are investigated in this
these work. It must be mentioned that the data set of FES2004 model has two versions, one of
which is presented directly as spherical harmonic coefficient delivered from IERS. The other one
is provided in form of tidal maps just like EOT08a and EOT10a model. The data offered by
FES2004 are in two different forms, but theoretically they ought to represent the same model.
As a mater of fact the coefficients derived from the tidal maps after the instructions in Chapter
2 are not identical to the coefficients offered by IERS. Hence the two types of Data of FES2004
are treated as individuals, whose names are distinguished by the suffix “IERS” in brackets.
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Name Data Source Data Type
FES2004(IERS) IERS Conventions spherical harmonic coefficients
FES2004 IERS Conventions tidal maps
EOT08a Savcenko R. andW. Bosch (2008) tidal maps and loading tidal

maps
EOT10a Savcenko R. andW. Bosch (2010) tidal maps and loading tidal

maps

Table 3.1: Models used for comparison

While the harmonic coefficients and tidal maps of 19 major constituents are provided in
FES2004(IERS) and FES2004, the other models only offered as tidal maps of certain con-
stituents. Tab. 3.2 below offers an overview of the available tidal maps in each model. Only
15 constituents are listed here. The rest 4 constituents contained in FES2004(IERS) are Om1,
Om2, Sa and Ssa, whose periods cover range from semiannual to several years. Since for some
constituents the tidal maps are not available from the EOT models, the EOT models adopt
the corresponding tidal maps from FES2004 for those constituents, when we calculate the total
potential of these 19 constituents.

Tide Period [d] EOT08a EOT10a FES2004
Mm 27.56 -

√ √

Mf 13.66 -
√ √

Mtm 9.13 - -
√

Msqm 7.096 - -
√

Q1 1.1195
√ √ √

O1 1.0758
√ √ √

P1 1.0027
√ √ √

K1 0.9973
√ √ √

S1 -
√ √

2N2 0.5377
√ √ √

N2 0.5274
√ √ √

M2 0.5175
√ √ √

S2 0.5000
√ √ √

K2 0.4986
√ √ √

M4 0.2587
√ √ √

Table 3.2: Available tidal maps in the EOT models and FES2004

According to the degree of development in IERS Conventions the FES2004(IERS) were computed
up to degree and order 100, so this accuracy is maintained for spherical harmonic expansion of
the tidal maps and loading tidal maps. Considering that FES2004 provides tidal map for single
constituent like the EOT models, FES2004 is chosen as reference. What we observed in this
thesis, is the difference between models. By using the tidal maps, three models are treated in
the same process. Therefore, after the subtraction systematic effects will be cancel. All the
comparisons made later in this chapter are based on the potential of one of the EOT model
minus FES2004 presented in measure of geoid height. The way of potential converted to geoid
length is told in the section 2.4.
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Fig. 3.1 and Fig. 3.2 provide an impression of total potential difference, namely the sum of
potential difference of 19 major constituents, between models at 12:00 UTC on 10. January
2000. Overall Fig. 3.1 and Fig. 3.2 show similar patterns except that one has an positive extreme
spot in the northern Hudson Bay (the Foxe Basin) but the other one has negative extreme values
along the Canadian St. Lawrence River. As the images have the same color bar, it is not difficult
to notice that EOT10a resembles FES2004 a little bit more than EOT08a, at least at this time
point. It should be mentioned that although there are signals in the river area near the estuary
but the signals are normally not strong. It is unlikely that the great model difference occurs
there. Later it is also proved by the producer of the EOT models (Savcenko and Bosch, 2008)
that EOT10a has error at St.Lawrence River.
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Figure 3.1: Total potential difference between EOT08a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2001
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Figure 3.2: Total potential difference between EOT10a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

In both images, 4 large patterns appear along the equator. Although the patterns are not
regular oval, we can clearly tell that the positive and negative value occur in turn. According
to the feature of the spherical harmonic coefficients, the connection between the graphic and
the coefficients of degree l order m can be build. The number of the transition points between
positive and negative extreme in longitude equals to 2m, while the number of the transition
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points between positive and negative extreme in latitude equals to l − m. From the irregular
patterns in Fig. 3.1 and Fig. 3.2 we can tell that the model difference distributes in many different
frequency, but the most dominant one is C22 and S22.

3.2 long period constituents

The investigated long period tides include Mm, Mf, Mtm and MSqm (see Tab. 3.2). Due to
the lack of tidal maps in the EOT models, EOT08a is completely excluded from the comparison
and EOT10a only takes part in the comparison of Mm and Mf with FES2004. So the situation
here is very simple, which is explained by the table below with the main features of the model
difference.

Tide EOT08a - FES2004 EOT10a - FES2004
Mm - Zonal stripes with extreme spot near the equator
Mf - max. difference < 0.6 mm
Mtm - -
Msqm - -

Table 3.3: Overview of the model difference at long period constituents

Since the potential difference of tide Mm and Mf between ETO10a and FES2004 share most of
the features, only the images of tide Mf are illustrated here. As demonstrated in Fig. 3.3, there
are horizontal stripes on the globle map and spots in the ocean region lined up on the equator.
From the image, it is not easy to tell spherical hamonic coefficients of which degree and order
dominate the model difference. It is certain that the main factors are the coefficients of low
frequency.
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Figure 3.3: Potential difference of Mf tide between EOT10a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000
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3.3 Diurnal constituents

The investigated diurnal tides include Q1, O1, P1, K1 and S1 (See Tab. 3.2). The small S1 tide
is cause by diurnal atmospheric presser loading. Since its excitation is unlike any other diurnal
tides, it is quite unique in this constituent group. The other tides share several common features
such as four large scale patterns in each quadrant of the potential difference graphic and extremes
with the same sign are usually in the diagonal quadrants.

Tab. 3.4 provides an over view of the magnitude of the potential difference between models. The
maxim values listed here may not coincide with them from the illustrations later in this section,
because the graphics can only show the situation at a certain time point, but at this point the
global maximum may not occur. The maximum difference of the two EOT models with respect
to FES2004 is almost the same.

Tide Q1 O1 P1 K1
global maximum

[mm geoid] 0.6 2 1 2.5

Table 3.4: Magnitude of the global maximum difference between the EOT models and FES2004 for di-
urnal constituents

In Fig. 3.4 the two pairs of extremes with round and clear edge center clockwise on the Pacific
Ocean southeast of Japan, the Indian Ocean southwest of Australia, Patagonia and the Pacific
southwest of the United States. In comparison the most noticeable feature of Fig. 3.5 is the
blurry boundary of the anomalous patterns instead of clean-cut contour line. The extremes
appear roughly in the same location but the with different magnitude. From the patterns it
can be ... that the most model difference reflects on the spherical harmonic coefficient C21 and
S21.
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Figure 3.4: Potential difference of Q1 tide between EOT08a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

For O1 tide, the images for potential difference between the EOT models and FES2004 are not
presented here, since both images resemble Fig. 3.4 every much. The form and the location of
the patterns are very similar. The only difference is that the extreme has a magnitude of 2 mm
in term of geoid height in both images of O1 tide.
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Figure 3.5: Potential difference of Q1 tide between EOT10a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

Fig. 3.6 and Fig. 3.7 demonstrate the model difference for P1 tide. In Fig. 3.6 one of the pattern
with maximum covers the whole North Atlantic, the Hudson Bay and the Baffin Bay and extends
to the Mediterranean Sea and the Gulf of Mexico. Another large positive patch covers the eastern
half of the Indian Ocean, the South China Sea and the whole Indonesia Sea. The two negative
patterns are located in the North Pacific Ocean together with the Sea of Okhotsk and the Atlantic
Ocean between South America and Africa respectively. The global maximum emerges in the sea
southeast of Singapore. In addition a yellow spot in the Arabian Sea also attracts the attention.
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Figure 3.6: Potential difference of P1 tide between EOT08a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

Fig. 3.7 shows that EOT10a differs from FES2004 mainly in the Hudson Bay and the pattern
extends through North America to the Pacific Ocean southwest of the Unites States. It is easy
to be noticed that among the positive difference on the North America Plate a negative spot
emerges along the Canadian St. Lawrence River. The other negative differences are in the Sea
of Okhotsk near the coastline of Russia and in the ocean around the southern South America.
Although we can roughly recognize the four large patches with extreme values, it is not that easy
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Figure 3.7: Potential difference of P1 tide between EOT10a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

to connect the potential difference to the spherical harmonic coefficients of a specific degree and
order.

For K1 tide, Fig 3.8 presents the potential difference between EOT08a and FES2004. The image
for model EOT10a and FES2004 is omitted, because it is almost the same as Fig 3.8. The form,
the location and the color of the patterns are nearly the same. So as the magnitude of the
extreme values. Compared to the other diurnal tides, K1 tide has the largest potential difference
between models. New phenomena emerge in the potential difference graphic of K1. Instead of
four large patterns, it shows six separate regions with extreme values. The most notable one is
that model difference up to 1 mm of geoid height occurs in the northwest Indian Ocean, south
of the Arabian Sea, in the Read Sea and the Persian Gulf. Distinct model difference in this area
appears for the first time as we go through the investigation previous in this chapter.
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Figure 3.8: Potential difference of K1 tide between EOT08a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000
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3.4 Semidiurnal constituents

The investigated semidiurnal tides include 2N2, N2, M2, S2 and K2 (See Tab. 3.2). M2 and
S2, caused directly by the moon and the sun, are the most dominant tide in all these major
constituents. The total potential difference between the EOT models and FES2004 (See Fig. 3.1
and Fig. 3.2) appear to be dominated by the M2 and S2 tide. 2N2 is rather a weak tide and
from the table below it can be seen that its potential differences between the EOT models and
FES2004 are quite small.

Tide 2N2 N2 M2 S2 K2
global maximum EOT08a-FES2004 0.2 1 4 5 1

[mm geoid] EOT10a-FES2004 0.2 1 4 15 1

Table 3.5: Magnitude of the global maximum difference between the EOT models and FES2004 for semid-
iurnal constituents

For M2 tide, the potential difference between EOT08a and FES2004 is shown in Fig. 3.9. Large
scale patterns emerge in the equatorial Pacific Ocean, in the equatorial Atlantic Ocean, in the
Indian Ocean and the South China Sea. Positive and negative extremes occur alternately, two
of which are in the Pacific Ocean. Although the form of the four patterns are not regular, it can
be clearly recognized that they line up along the equator. Similar to Fig 3.1 told at the end of
Section 3.1, the model difference reflects mostly on the coefficients C22 and S22.

The potential difference of M2 tide between EOT08a and FES2004 looks much the same as
Fig. 3.9 with the only difference that the maximum in the north Hudson Bay vanishes. Thus,
the graphic is omitted.

 

 M2

 180° W  135° W   90° W   45° W    0°     45° E   90° E  135° E  180° E 

 90° S 

 45° S 

  0°   

 45° N 

 90° N 
mm

−4

−3

−2

−1

0

1

2

3

4

Figure 3.9: Potential difference of M2 tide between EOT08a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

Furthermore, there are also small patches around the Great Lakes, in the north Hudson Bay and
in the Sea of Okhotsk close to the Russian coast. That the extreme in the north Hudson Bay
(the Foxe Basin) has the value around 4 mm in terms of geoid height offers the proof that the
model difference in this region is contributed mainly by M2 tide.More to be noticed is that a red
spot with the value of approximately 2.5 mm in geoid height stands out in the Joseph Bonaparte
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Gulf of Australia. The pattern in the Atlantic extends further to the Greenland Sea covering the
west part of the Mediterranean Sea,the North Sea and the Baltic Sea.

The two graphics of potential difference for N2 tide is omitted here, since they are very similar to
M2 only with color bar of different magnitude. For N2 tide, EOT10a has only slight difference to
FES2004 in the north Hudson Bay, which can be hardly recognized. N2 tide also shows distinct
difference between EOT08a and FES2004 in this region, as M2 tide does,but with a smaller
magnitude of 1 mm in terms of geoid height.
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Figure 3.10: Potential difference of S2 tide between EOT08a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000
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Figure 3.11: Potential difference of S2 tide between EOT10a and FES2004 in terms of geoid height,12:00
UTC on 10.Jan.2000

Regarding S2 tide, the most prominent feature is that EOT10a is very different from FES2004
in the area with the Canadian St. Lawrence River in the center. At the time point of Fig. 3.11,
the extreme value at this place does not reach the maximum, which can reach more than 15 mm
in terms of geoid height. More details about the potential difference at this place can be fund
in Section 4.1.2. In Fig. 3.11, patterns are visible in the equatorial Pacific Ocean, in the Indian
Ocean and in the water near southern Africa.
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In Fig. 3.10, EOT08a differs from FES2004 in the Pacific northwest of South America and the
Caribbean Sea, in the Atlantic Ocean and the Indian Ocean close to the Antarctica. In the
Yellow Sea, there is a red spot with the value about 3 mm in terms of geoid height. Comparing
Fig. 3.10 and Fig. 3.11, it is obvious that the extreme value in the Pacific Ocean is much smaller
in Fig. 3.11.
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Figure 3.12: Potential difference of K2 tide between EOT08a and FES2004 in terms of geoid
height,12:00 UTC on 10.Jan.2000
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Figure 3.13: Potential difference of K2 tide between EOT10a and FES2004 in terms of geoid
height,12:00 UTC on 10.Jan.2000

Similar to the graphics of M2, Fig. 3.12 shows patterns in the equatorial Pacific Ocean, in the
equatorial Atlantic Ocean, in the Indian Ocean and in the Bay of Bengal. The patterns of K2
and the continental margin fit into each other more neatly than any other constituents previously
in this Chapter did. The most noticeable differences in small areas are in the Hudson Bay with
geoid height value of about 0.7 mm as well as at the Patagonian Shelf with geoid height value of
about 0.6 mm. There are also small patches scattered in the Yellow Sea, in the Sea of Okhotsk
close to the Russian coast, in the Gulf of Mexico, in the Sea close to the northeast coastline of
United States, in the South China Sea and the Banda Sea. Not far from the Antarctica coastline,
positive and negative patterns appear in turns.
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Comparing Fig. 3.13 to Fig. 3.12, there is no extreme values in the Hudson Bay but in the area
with the Canadian St. Lawrence River in the center. The size of the large patterns with positive
value in the Pacific Ocean and the Indian Ocean is significantly reduced. EOT10a has apparently
smaller difference to FES2004 regarding K2 tide.

3.5 Quarter-diurnal constituent

In all the major constituents investigated in this theses work, M4 which also belongs to the group
of shallow water tides, is the only quarter-diurnal constituent. In shallow water the dynamics
become nonlinear and the tide frequency spectrum appears more complicated (?). Not until
recent years did it become possible to resolve shallow water tides from other major constituents.
M4 is the tide that is caused by the nonlinear distortions of M2 in shallow water.

Compared with the major constituents in other period groups, large changes take place in the
graphic of potential difference between models. Large scale patterns that occur all the time in
the graphics of constituents previously talked about do not exist in and Fig. 3.15. All the model
differences locate either on the water or in coastal regions. The most notable places in Fig. 3.14
are the dark red spot in the Gulf of Guinea and in the Pacific Ocean as the global maximum.
M4 shows clear difference on the northwest European shelf, for it is generated by the dominant
M2 tide whose potential difference between models is also strong in this region. In the Hudson
Bay and the Patagonian shelf the models show again distinct difference. Close to the lands
around the Indian Ocean and around the Atlantic Ocean, small areas with opposite color turn
up in turn. This phenomenon can also be seen in the south Atlantic and the south Indian Ocean
observed in east and west direction.

In general EOT10a has potential difference from FES2004 less than 0.2 mm in geoid height. The
scattered small spots in Fig. 3.14 have much smaller value but can still be recognized in spite of
the vague impression. In Fig. 3.15 the positive maximum locates in the Pacific Ocean. The two
negative maximum lie in the Bering Sea and the Atlantic Ocean south of Brazil. The rest other
spots are located at the estuary of the Amazon River, at the Patagonian shelf, in the sea on the
south of UK and the sea on the west of France.
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Figure 3.14: Potential difference of M4 tide between EOT08a and FES2004 in terms of geoid
height,12:00 UTC on 10.Jan.2000
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Figure 3.15: Potential difference of M4 tide between EOT10a and FES2004 in terms of geoid
height,12:00 UTC on 10.Jan.2000
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Chapter 4

Local visualization of the model differences

In the last chapter, many locations are identified with distinct potential difference between
models. Some of them have been mentioned very often, such as the Hudson Bay, the Canadian
St. Lawrence River, the South China Sea, etc. In this chapter we focus on the time aspect of
potential difference. It is realized by observing the potential difference at a specific point with
the height of 6378146 m from the earth center in a period of time. For each chosen location, the
potential difference due to the major constituents as well as the total potential differences are
investigated. Furthermore, the first derivative of the potential namely the acceleration at the
given point is computed. Both the absolute acceleration from each model and the acceleration
difference between models are presented as well.

All together 30 places are picked out over the world as the interesting areas for this these work.
The chosen places are listed in the Appendix A with coordinates of longitude and latitude.

The graphics in this chapter always display the time dimension in the X-axis. The zero point
means the start of the observation and from the scale marks represent the number of hours
or days after the start time. For the diurnal tide the time period is set as 36 hours and for
the semidiurnal tide 18 hours. K1, the strongest tide in the diurnal tide group, as well as the
dominant M2 and S2 are illustrated each time for a chosen place. The superposition of all the
diurnal constituents except S1, the semidiurnal and the quarter-diurnal constituents in this study
is also graphically presented with a time span of 30 days to show the total potential difference
between models.

4.1 The Foxe Basin and the St. Lawrence River Valley

The model difference at the Foxe Basin and the St. Lawrence River Vally show the most promi-
nent features. These two places have been identified by the first two graphics of Chapter 3 (See
Fig. 3.1 and Fig. 3.2).

4.1.1 The Foxe Basin

The Foxe Basin is in the Canadian territory, on the north of the Hudson Bay. They are connected
by the Foxe Channel. The largest potential difference in the Foxe Basin occurs between EOT08a
and FES2004 in M2. Fig. 4.1 illustrates the potential difference of M2 in this area at interval of
3 hours. These images coincide with the situation presented in Fig. 4.1.
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15:00 UTC on 4. March, 2000
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Figure 4.1: Potential difference of M2 between EOT08a and FES2004 in geoid height, the Foxe Basin
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Figure 4.2: Potential difference of single constituent at 65◦N 80◦W, start time 00:00 UTC on 4. March,
2000
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The graphics of four single constituents reveal the variation of model difference over time, which
resemble a sinusoidal behavior with the period of the constituent, whose period conforms to
the period of the corresponding constituent. Here the M2 tide shows strong potential difference
between EOT08a and FES2004 with the maximum value exceeding 4 mm in geoid height. On the
contrary the curve of EOT10a minus FES2004 in the chart of M2 has much smaller amplitude
of about 1 mm. In the other three charts the amplitudes are all less than 2 mm. The EOT10a
resembles FES2004 very much at the K2 tide. Slight phase shift can be identified at K1 and M2
and it is clearly visible at S2.

The superposition of the potential difference of the major constituents mentioned at the beginning
of this chapter generates a complicated structure, whose data of 30 days are presented in Fig 4.3.
In the graphic, that the peaks of the two curves appeal very often not at the same time, indicates
slight phase shift between EOT08a and EOT10a. However, the graphic shows mostly that they
have different amplitude. From observing the local maximum it is fund that EOT08a differs
from FES2004 at most about 2 mm in geoid height more than EOT10a does. EOT10a differs
from FES2004 not more than 5 mm in geoid height.
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Figure 4.3: Total potential difference at 65◦N 80◦W, start time 00:00 UTC on 1. March, 2000
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Figure 4.4: Absolute value of accelerations and acceleration differences at 65◦N 80◦W, start time 00:00
UTC on 1st March, 2000

Fig. 4.4 illustrates both the absolute value of accelerations and their difference in a short time
period, while Fig. 4.5 and Fig. 4.6 provides a impression of them in 30 days. All the accelerations
are derived from the corresponding total potential in Fig. 4.3. In Fig. 4.4, phase shift and
difference in amplitude are both clearly visible.
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In the left panel of Fig.4.5, we see that the absolute value of accelerations are between 0.01
and 0.11 mGal. Their form resemble a sinusoidal behavior. The largest acceleration belongs to
EOT10a and the smallest one to FES2004. The phase shift of the absolute value of acceleration
between the models brings the acceleration differences in a wave form which is asymmetry both in
form and value. In Fig.4.5 the absolute value of acceleration oscillate both with a high frequency
as shown in Fig.4.4 and with superimposed low frequency which has a period of half month.
In Fig. 4.6 we see that the acceleration differences are predominantly positive and sometimes
exceeding 0.02 mGal. Moreover the acceleration difference between EOT08a and FES2004 is
basically larger than between EOT10a and FES2004.
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Figure 4.5: Absolute value of accelerations at 65◦N 80◦W, start time 00:00 UTC on 1st March, 2000
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Figure 4.6: Acceleration difference at 65◦N 80◦W, start time 00:00 UTC on 1st March, 2000

4.1.2 The St. Lawrence River Valley

The most tremendous model difference all over the world emerges at the St. Lawrence River
Valley with the evidence that the potential difference of S2 between EOT10a and FES2004 nearly
reaches 16 mm in geoid height. The St. Lawrence River connecting the Great Lakes with the
Atlantic Ocean traverses the Canadian provinces of Quebec and Ontario and forms part of the
international boundary. The coordinate 47◦N 71◦W of Quebec is chosen for the research in this
area. It should be aware that the chosen place is on land and the acquired signals from river
valley are normally very weak, which means that this area ought to be excluded from the model
of ocean tides and show no potential difference between them. The comparison shows that the
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model EOT10a has a shortage at the St. Lawrence River Valley. This is also proved through
the personal communication with the producer of the EOT models (Savcenko and Bosch, 2008),
that EOT10a performs not well at this location due to a poor observation.
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Figure 4.7: Potential difference of S2 between EOT10a and FES2004 in geoid height, the St. Lawrence
River Valley

Fig. 4.7 illustrates the potential difference of S2 in this area at interval of 3 hours. These images
coincide with the situation presented in the graphic of S2 in Fig. 4.8. Compared with Fig. 4.2,
the order of the constituents S2 and M2 in Fig.4.8 are changed over, because not M2 but S2 has
a more outstanding profile at the St. Lawrence River Valley. Although the tremendous potential
difference of S2 tide between EOT10a and FES2004, EOT08a only differs from FES2004 for less
than 1 mm in geoid height. The potential differences of the other major constituents are all less
than 2 mm. Phase shift is not very evident.

The amplitude of the total potential difference between EOT10a and FES2004 from Fig. 4.9
shows that the model difference is dominated by S2, which suppress the contribution of other
major constituents. Total potential difference between EOT08a and EOT10a is within 5 mm of
geoid height and stays more often in the positive side than the negative side. The half month
period are relative vague in Fig. 4.9 but can still be recognized.

In Fig. 4.10 we see that the left panel and right panel show very similar pattern which is domi-
nated by FES2004. The curve from FES2004 and EOT08a overlap with each other and are both
under 0.01 mGal. Therefore their difference forms a line almost with constant value of zero.
The acceleration from EOT10a has a bell shape and repeats itself approximately every 6 hours
with slight change in amplitude. The acceleration difference between EOT10a and FES2004 also
forms a bell shape, because they have magnitude difference of factor 10.
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Figure 4.8: Potential difference of single constituent at 47◦N 71◦W, start time 00:00 UTC on 1st March,
2000
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Figure 4.9: Total potential difference at 47◦N 71◦W, start time 00:00 UTC on 1st March, 2000
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Figure 4.10: Absolute value of acceleration and acceleration difference at 47◦N 71◦W, start time 00:00
UTC on 1st March, 2000
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The Similarity of acceleration value from FES2004 and EOT08a is also maintained in a long
time period as showed in Fig. 4.11, in which the blue curve of FES2004 is totally covered by
the green one. The graphic of acceleration difference in long time period, which is not presented
here, looks very much the same as Fig. 4.11.
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Figure 4.11: Acceleration difference at 47◦N 71◦W, start time 00:00 UTC on 1st March, 2000

4.2 The Patagonian Shelf and the South Pacific Ocean

It is a fact that the signals in Patagonian shelf and in deep oceans are quite strong (Savcenko
and Bosch, 2008), so the ocean tide models must be very good at these areas. In this section one
point in the Patagonian Shelf and one point in the middle of the South Pacific Ocean are chosen
as examples to show the model difference in area with strong signals. These two examples
demonstrate that both the EOT models do not significantly differ from each other but from
FES2004.

4.2.1 The Patagonian Shelf
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Figure 4.12: Potential difference of single constituent at 51◦S 64◦W, start time 00:00 UTC on 4. March,
2000

The Patagonian Shelf extends from Uruguay to the Strait of Magellan. It is relatively narrow
in the North but widens progressively to the South, where the chosen point is located. Fig. 4.12
shows that the potential differences of K1, M2 and S2 between the two EOT models are quite
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small and between the EOT models and FES2004 are significant but not more than 2 mm in
geoid height. In the chart of S2 we see both amplitude difference and clear phase shif clearly.
The total potential difference between the EOT models and FES2004 is no more than 7 mm in
geoid height and show a periodic variation of amplitude in half month.
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Figure 4.13: Total potential difference at 51◦S 64◦W, start time 00:00 UTC on 1. March, 2000

Except the small difference in amplitude,the absolute values of acceleration of three investigated
models coincide with each other pretty well. The amplitude in Fig.4.15 tells that EOT10a
differs from FES2004 slightly less than EOT08a from FES2004 in regard to the absolute value
of acceleration. The maximal absolute value of acceleration at this point exceed 0.10 mGal,
however the acceleration differences between models are less than 0.01 mGal.
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Figure 4.14: Absolute value of acceleration at 51◦S 64◦W, start time 00:00 UTC on 1. March, 2000
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Figure 4.15: Acceleration difference at 51◦S 64◦W, start time 00:00 UTC on 1. March, 2000
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4.2.2 The South Pacific Ocean

The point 51◦S 64◦W in the middle of the South Pacific Ocean is taken as an example for
deep oceans. The situation at this chosen point is alike the last example in many aspects. The
potential difference between the two EOT models is quite small but between the EOT models
and FES2004 it show difference in some extent.

The potential differences of S2 between the EOT models and FES2004 are less than 1 mm in
geoid height and show again clear phase shift between the EOT models. EOT10a differs from
FES2004 a little bit more than EOT08a does. The chart of K1 shows amplitudes and phase shift
alike the situation of K1 in the other examples of chapter. The two curves of M2 coincide with
each other perfectly, which means that the two EOT models are exactly the same at this place
with respect to potential of M2. Compared with the other M2 chart previously, we notice that
the y-axis of this M2 chart changes its scale, for the potential difference exceeds slightly 2mm in
geoid height.
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Figure 4.16: Potential difference of single constituent 30◦S 120◦W, start time 00:00 UTC on 4. March,
2000

The total potential difference between the EOT models and FES2004 is no more than 5 mm in
geoid height and a periodic variation of amplitude in half month is not very pronounced. As
stated above, the two curves coincide with each other well, because of the resemblance of the
EOT models at this chosen place.
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Figure 4.17: Total potential difference at 30◦S 120◦W, start time 00:00 UTC on 1. March, 2000

In all these three models, the ocean tides have an influence on the acceleration at the observation
point far below 0.05 mGal. Since the three lines overlap in Fig. 4.18, only the red line representing
EOT10a on the top can be seen. That means the tide models have almost the same absolute
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value of acceleration at this point in the middle of the deep ocean. If we pay attention to the
scale of y-axis in Fig. 4.19 that illustrates the value difference, we know that the value differences
is factor 10 smaller than the absolute value of accelerations and the EOT models have exactly
the same value of acceleration here.
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Figure 4.18: Absolute value of acceleration at 30◦S 120◦W, start time 00:00 UTC on 1. March, 2000
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Figure 4.19: Acceleration difference at 30◦S 120◦W, start time 00:00 UTC on 1. March, 2000

4.3 The Arctic and the Antarctic

The vast land of the Antarctic is covered by permanent ice sheet as well as most of the Arctic.
There should be no signal or at least very weak signals for measurements in those areas, as the
water is not in liquid state. Theoretically no model difference or very little difference should be
fund in these regions. Fig 4.20 and Fig 4.21 present the total potential difference between the
models and the absolute value of acceleration of each model at one location in the middle of
Antarctic.
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Figure 4.20: Total potential difference at 78◦S 44◦W, start time 00:00 UTC on 1. March 2000
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Figure 4.21: Absolute value of acceleration at 78◦S 44◦W, start time 00:00 UTC on 1. March 2000
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Chapter 5

Spherical harmonic analysis of GRACE
observations under the influence of ocean tide
model errors

5.1 Adaptation to GRACE satellites

Based on the knowledge introduced in Section 2.5, two Matlab scripts haven been written for
the two tasks in this chapter. One of them is called SIMULATOR, which performs the orbit
simulation of the twin GRACE satellites. The other one is named SIMSOLVER that carries
out the spherical harmonic analysis by using the output datasets from SIMULATOR as input
information. These two scripts contribute to form a closed loop simulation where influences of
errors can be evaluated by comparing the input and output models. It will be explained in the
later part of this section.

The numerical information of GRACE satellites from the University of Bonn (Ilk et al., 2005)
is adopted to build the simulator. Except for the difference in launch time of 30 seconds, the
two satellites share the same value for the orbit parameters, namely five of the six Keplerian
elements.

GRACE 1 GRACE 2

t0: launch time [dd mm yy hh min sec] 15 07 2000 00 00 00 15 07 2000 00 00 30
a: Semi-major axis [km] 6778 6778
e: Eccentricity 0.001 0.001
i: Inclination [rad] 1.562069681 1.562069681
Ω: Longitude of the ascending node [rad] 0 0
ω: Argument of perigee [rad] 0 0

Table 5.1: The initial values of GRACE

SIMULATOR generates data sets in an arbitrary time period described by time series t which
are defined by start and end time and time step. The input data also includes the two ocean
tide models that are going to be compared and the maximum degree of the spherical harmonic
expansion. After each execution, SIMULATOR outputs data for the two GRACE satellites, the
GAST angle and the time series t in the form of modified Julian day. The data for each satellite
contains the items listed in Tab. 5.2.
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Item Reference system Coordinate system Data Type
Position xi Inertial Cartesian vector
Speed vi Inertial Cartesian vector
Position xe Earth-fixed Spherical vector
Disturbance in the acceleration a1 Earth-fixed Cartesian vector
Disturbance in the acceleration a2 Earth-fixed Cartesian vector
Signal f Earth-fixed Cartesian vector

Table 5.2: The output of simulator for the twin GRACE satellites

The disturbance in the acceleration a in Tab. 5.2 is the accelerations due to ocean tides along the
satellite orbit at the desired time stamps. The numerical subscripts indicate the correspondence
to the two input ocean tide models. Besides the acceleration of this kind, the accelerations due
to Earth gravity field g is also simulated along the orbit. The simulated signal f listed in Tab 5.2
is generated by Eq. 5.1.

f = g + a1 − a2 (5.1)

SIMSOLVER performs spherical harmonic analysis for the signal f. The subscripts A and B in
Section 2.5.2 correspond to the first and the second GRACE satellites. The term ∇VA and ∇VB
in Eq. 2.33 are in this case specified to the simulated signal f for the two GRACE satellites
respectively. The simulation scenarios are simplified in such a way as there is no noise on the
data for the GRACE observable. SIMSOLVER yields besides the spherical harmonic coefficients
also its formal errors and if requested the standard deviation. Currently the solver does not
handle any error information, i.e. the pseudo-observations are assumed equally precise.

INPUT:
spherical harmonic model
of the Earth gravity field

OUTPUT:
spherical harmonic model
of the simulated signal

the Earth gravity field g
along the oribt

the simulated signal f
along the orbit

Figure 5.1: Flow chart of the closed loop simulation

Fig. 5.1 demonstrates the principle of the closed loop simulation mentioned at the beginning of
this section. As input, we have a data set of the spherical harmonic coefficients of the Earth
gravity field model. Based on it, the simulated signal f can be computed as described in the
previous paragraphs. The difference between f and g is exactly the acceleration difference derived
from two tidal models. Since none of the ocean tide models is 100 percent correct, without
knowing the truth, there is no way to judge which model is absolutely better than the others.
Conventionally, a certain percentage of the model difference is regarded as error. Thus, the
signal f can be interpreted as the Earth gravity field under the influence of ocean tide modal
errors. The spherical harmonic coefficients derived from it, with the help of SIMSOLVER, are
faulted coefficients. Through the comparison of the two spherical harmonic coefficients sets, the
influence of ocean tide model errors on GRACE observation is demonstrated.
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In other words, the results of this closed loop simulation shows the difference of ocean tides
modeling in frequency domain. The difference appears mainly on the coefficients of lower degree.
Among those coefficients, the zonal spherical harmonics in odd degree are prominent. The
largest model difference (error) appears at the coefficient of degree 0 that describes the mass of
the Earth. Since GRACE observations are not sensitive to degree 0 at all, this must be an error
in the modeling. Further, it is found that the energy of the model errors distributes on certain
frequency, which are usually the natural frequency or its multiple of the GRACE satellites. This
phenomenon is mainly due to the time aliasing problem of GRACE.

5.2 Application examples

It is mentioned in Section 2.5.2 that the successful performance of the least squares adjustment
requires not only adequate observation redundancy, but also observations homogeneously cov-
ering the Earth surface. For the example in this section, the time period from 1. Aug. 2010
at 0 o’clock to 31. Aug. 2010 at 24 o’clock with time step of 5 s is chosen as the input time
series. Illustrated in Fig. 5.2 is the regional ground track plot of the first GRACE satellite for
this time period, during which the GRACE satellites cover the Earth fully. To achieve a better
visual presentation, the foot prints in Fig. 5.2 have a time interval of 1 min and are limited by
the longitude.
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Figure 5.2: Regional ground track plot of the first GRACE satellite,from 0:00 on 1. Aug. 2001 to 0:00
on 1. Sep. 2001

The two ocean tide models as input of SIMULATOR are ETO08a and FES2004 or EOT10a
and FES2004 in each case. To compute the Earth gravity field, we use the model named
itg_grace2010s (Mayer-Guerr et al., 2010). The maximum degree of the spherical harmonic
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expansion for the calculation is set as 50 and 100 respectively. This value can actually be any
integer number less than 180, because the adopted static gravity field model itg_grace2010s
is limited to degree 180. Although ocean tide models do not reach high degree like 100, it is still
interesting to find out what does the result looks like.

The output data of SIMULATOR are further provided to SIMSOLVER. The maximum degree of
the spherical harmonic expansion for signal f, as one of the input parameters of SIMSOLVER, is
consistent to the case for SIMLATOR, either 50 or 100. The numerical results of this example
shown in Fig. 5.3 are actually the difference of the spherical harmonic coefficients

C lm(f)− C lm(g) and Slm(f)− Slm(g)
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(b) Aug.2010, EOT10a - FES2004, maximum degree L=50

Figure 5.3: Impact of difference between ocean tide models on GRACE satellites interpreted in form of
spherical harmonic coefficients
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In spite of the resemblance of image (a) and (b) of Fig. 5.3, it can be recognized that the red and
orange color in image (b) is less than that in image (a), which means that EOT10a resembles
FES2004 more than EOT08a does. In both images, the grids with red and orange color gather
dominantly on the head of the coefficient triangle, namely in the area of low degree and order.
The maximum in both images appears at the coefficient in degree 0 order 0, according to Fig. 5.4,
which demonstrates the numeric information of the coefficients with degree lower than 8 in image
(a) and (b) of Fig. 5.3. As the statistical proof of the first sentence in this paragraph, it is seen
clearly that except the degree 0, the values from image (b) are smaller than that from image
(a). The other two patches of the warm color in Fig. 5.3 locate symmetrically at the waist
of the coefficient triangle showing strip patterns between order 30 and 34. This phenomenon
is demonstrated more clearly and strongly in Fig. 5.5, in which the maximum degree of the
spherical harmonic expansion is 100.
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Figure 5.4: Average and rms of the coefficients of a certain degree in image (a) and (b) of Fig. 5.3

Therefore, the strip patterns at certain order in Fig. 5.5 can be interpreted as the energy of the
error distributes on certain frequency, which are usually the natural frequency or the multiple of
it. For example, there are two symmetrical yellow strips in order 16, which are not very distinct
but still visible, especially in the image (a). This is also the natural frequency of the GRACE
satellites, since they circle the Earth 16 times a day. Further, apparently there are strips in near
the oder 32, whose absolute value is the double of 16. This phenomenon is mainly due to the
time aliasing problem of GRACE.
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Figure 5.5: Impact of difference between ocean tide models on GRACE satellites interpreted in form of
spherical harmonic coefficients
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At the end of this numerical example, a transformation from the frequency domain to the spatial
domain is performed. Based on the spherical harmonic coefficients, which are developed from
the spherical harmonic analysis with the max. degree of 50, potential field on the Earth surface
with the height of 6378146 m are calculated and presented in terms of geoid height. According
to the calculation result, the simulations have a system bias of −0.6083 mm. After subtracting
the bias, the potential field is shown as in Fig. 5.6.
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Chapter 6

Conclusion

Based on the given tidal maps from ocean tides model FES2004, EOT08a and EOT10a, the
disturbance in the potential due to ocean tides is successfully computed on the Earth surface for
each model. By using the global visualization tool and the local visualization tool developed in
this thesis, it is found that S2 and M2 tide are the tides that dominate the potential difference
between the EOT models and FES2004. EOT08a shows distinct potential difference to FES2004
for M2 tide at the Foxe Basin with the maximum of about 4 mm in terms of geoid height. EOT10a
makes improvement in this case that it reduces potential difference to FES2004 to approximately
1 mm in terms of geoid height. However, it shows a tremendous potential difference against
FES2004, almost 16 mm in terms of geoid height, for the S2 tide at the St. Lawrence River,
which is proved as model error (Savcenko and Bosch, 2008) for the S2 tide. Except the case
at the St. Lawrence River, for S2 tide in general, EOT08a has a little less potential difference
to FES2004 than EOT08a does. The difference between the EOT models is distinctly smaller
than the difference between the EOT models and FES2004. The periodogram of the potential
difference between the models tells that, besides amplitude, the EOT models also differ from
each other slightly in terms of phase.

The orbit simulation enables the presentation of the potential difference between the models
along the orbit of GRACE satellites. The spherical harmonic analysis shows that the potential
differences reflect mainly on the coefficients of lower degree which is not lager than 6. Except
the spherical harmonic coefficient of degree 0, which is inferred as an error in the modeling, the
other coefficients of the lower degree show that EOT10a resembles FES2004 more than EOT08a
does. Due to the time aliasing problem of GRACE, potential difference between models also
reflect on the coefficients of the order 16, which coincides to the natural frequency of GRACE
satellites, and its multiple.

As ocean tide model EOT11a is already available, the comparison of EOT11a and FES2004 can
be done in the future, based on which we can find out the improvement in EOT11a against
EOT08a and EOT10a.
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IX

Appendix A

List of the places studied in Chapter 4 with coordinates of longitude and latitude.

1. the Atlantic Ocean northeast of the United States 38◦N 74◦W

2. the Pacific Ocean southwest of the United States 35◦N 126◦W

3. the Foxe Basin 65◦N 80◦W 4. the Hudson Bay 60◦N 85◦W

5. the St. Lawrence River Valley 47◦N 71◦W 6. the Great Lake 45◦N 83◦W

7. the Gulf of Mexico 24◦N 90◦W 8. the Patagonian shelf 51◦S 64◦W

9. the Gulf of Alaska 57◦N 145◦W 10. the Oklotsk Sea 57◦N 143◦E

11. the Yellow Sea 35◦N 121◦E 12. the South China Sea 13◦N 114◦E

13. the Bay of Bengal 15◦N 87◦E 14. the Arafura Sea 7◦S 135◦E

15. the Arabian Sea 16◦N 64◦E 16. the Indian Ocean 26◦S 75◦E

17. the South Pacific Ocean 30◦S 120◦W 18. the South Atlantic Ocean 27◦S 14◦W

19. the North Atlantic Ocean 33◦N 36◦W 20. the Antarctica 75◦S 72◦W

21. the North Pacific Ocean 28◦N 165◦E 22. the Mediterranean Sea 40◦N 5◦E

23. the North Sea 54◦N 2◦E 24. the Baltic Sea 55◦N 17◦E

25. the Bay of Biscay 45◦N 4◦W 26. the Celtic Sea 49◦N 7◦W

27. the Arctic Ocean 80◦N 141◦W 28. the Northwestern Passages 68◦N 101◦W

29. the Weddell Sea 74◦S 44◦W 30. the Ross Sea 76◦S 173◦W
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