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9.1 Introduction

In recent years lidar technology found its way into wind energy. The main application is still

the site assessment, but the possibility to optimize the energy production and reduce the loads

by nacelle or spinner based lidar systems is becoming an important issue. In terms of control

the inflowing wind field is the main disturbance to the wind turbine and most of the wind

turbine control is designed to deal with variations in this disturbance. From control theory,

the control performance can be improved with the knowledge of the disturbance. Due to the

measurement principle and the complexity of the wind lidar assisted control is a wide field of

research. The main idea is to divide the problem in a measurement and a control problem.

The presented work describes first how wind characteristics, such as wind speed, direction

and shears, can be reconstructed from the limited provided information (see Section 9.2).

Based on the models of the wind turbines (see Section 9.3) it is investigated in Section 9.4,

how well the lidar information can be correlated to the turbines reaction.

In the next sections, several controllers are presented, see Table 15. All controllers are de-

signed first for the case of perfect measurement and then adjusted for realistic measurements.

The most promising approach is the collective pitch feedforward controller using the knowl-

edge of the incoming wind speed providing an additional control update to assist common

collective pitch control. Additional load reduction compared to the sophisticated feedback

controllers could be archived (Schlipf et al., 2010a). The concept has been successfully tested

on two research wind turbines (Schlipf et al., 2012a; Scholbrock et al., 2013). Then a feedfor-

ward control strategy to increase the energy production by tracking optimal inflow conditions

is presented. The comparison to existing indirect speed control strategies shows a marginal

increase in energy output at the expense of raised fluctuations of the generator torque (Schlipf

et al., 2011). A Nonlinear Model Predictive Control (NMPC) is also presented, which predicts

and optimizes the future behavior of a wind turbine using the wind speed preview adjust-

ing simultaneously the pitch angle and the generator torque. The NMPC achieves further

load reductions especially for wind conditions near rated wind speed (Schlipf et al., 2012b).

Furthermore, a cyclic pitch feedforward controller using the measured horizontal and vertical

shear is introduced to assist common cyclic pitch control for further reduction of blade loads.

Simulations results from Dunne et al. (2012) are promising, but they have to be further in-

vestigated under more realistic conditions. Finally, the benefit of lidar assisted yaw control

is explored. A promising way to obtain a accurate measurement of the wind direction is to

measure it over the full rotor plane ahead of the turbine by lidar. The expected increase of

the energy output is about one percent of the annual energy production, when using the wind

direction signal from the lidar system instead of the sonic anemometer (Schlipf et al., 2011).

9.2 Model Based Wind Field Reconstruction

In this section a method is proposed to retrieve the necessary information for lidar assisted

control out of lidar data. First the ambiguity in wind field reconstruction is presented. Then

lidar and wind models are introduced which can be applied to reconstruct wind characteristics.

Further details can be found in Schlipf et al. (2011) and Schlipf et al. (2012c).
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Table 15: Possible application and benefit of lidar assisted control.

benefit potential Section

collective pitch feedforward less loads < 20% 9.5

direct speed control more energy marginal 9.6

model predictive control more energy + less loads < 1% + < 30% 9.7

cyclic pitch feedforward less loads < 20% 9.8

lidar assisted yaw control more energy < 2% 9.9
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Figure 116: (left) Ambiguity in wind field reconstruction. (right) System theoretical view on

lidar measurements and wind field reconstruction.

9.2.1 Ambiguity in Wind Field Reconstruction

It is not possible to measure a three-dimensional wind vector with a single nacelle or spinner

based lidar system due to the limitation to the line-of-sight wind speed. But with simple

assumptions the wind vector can be reconstructed:

1. no vertical and no horizontal wind component

2. no vertical component and homogeneous flow

In Figure 116 the effect of both assumptions is shown. In this example the 3D vectors in the

locations p1 and p2 (measured at the same height) are reconstructed from the line-of-sight

wind speeds vlos,1 and vlos,2. The first assumption yields a11 and a21 representing a horizontal

shear. By the second assumption the resulting vectors a12 and a22 are equal representing a

cross-flow. A dilemma (“Cyclops Dilemma”) exists, if the lidar is used for yaw and cyclic pitch

control at the same time: If the first assumption is used to calculate the inhomogeneous inflow,

perfect alignment is assumed. If the second assumption is used to obtain the misalignment,

homogeneous flow is assumed.

9.2.2 Lidar Model for Reconstruction

All known settings of a lidar system can be considered as inputs, all unknown influences as

disturbances and the measurements as outputs (see Figure 116). In system theory a distur-

bance observer can be used to reconstruct the disturbances from the system in- and outputs,

if observability is given. Robustness evaluates, how well this is done in the presence of model

and measurement uncertainties. For static systems observability and robustness can be simpli-

fied to the questions, whether a unique disturbance can be found which caused the measured

output with given input and how sensible it is for uncertainties. For this purpose, a model of

the system is needed, similar to a simulation model and the observation can be considered to

be inverse to a simulation.

A lidar measuring in point i can be modeled by

vlos,i =
xi
fi
ui +

yi
fi
vi +

zi
fi
wi, (184)

which is a projection of the wind vector [ui vi wi] and the normalized vector of the laser

beam focusing in the point [xi yi zi] with a focus length fi. Since there is only one equation
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for three unknowns, it is impossible to reconstruct the local wind vector. Observability can

be restored by changing the wind model, which has to be chosen according to the application

and the quality of the results depends on the model validity.

9.2.3 Wind Model for Collective Pitch Control

The simplest model assumes that only the rotor effective wind v0 is present and no shears or

inflow angles. In this case, the ui component is equal to the rotor effective wind, vi and wi
are neglected. Using (184) the rotor effective wind estimate v0L can be defined for n points

measured in the same vertical measurement plane in front of the turbine as:

v0L =
1

n

n∑

i

vlos,i
fi
xi
. (185)

9.2.4 Wind Model for Cyclic Pitch Control

In the second model, it is assumed that the wind is homogeneous in a vertical measurement

plane in front of the turbine. If there is no tilted inflow and no misalignment, the turbulent

wind vector field is reduced to v0 and the horizontal and vertical shear (δH and δV ):

ui = v0 + δHyi + δV zi. (186)

The advantage of this reduction is that n measurements gathered simultaneously in the

same measurement plane can be combined to get an estimation for the rotor effective wind

characteristics. For non simultaneous measurements of scanning systems, the last n focus

points of a scan can be used. Following equation is obtained using (186) and (184):


vlos,1
:

vlos,n




︸ ︷︷ ︸
m

=



x/f1 xy1/f1 xz1/f1
: : :

x/fn xyn/fn xzn/fn




︸ ︷︷ ︸
A



v0
δH
δV




︸ ︷︷ ︸
s

. (187)

A solution for all three wind characteristics can only be found, if rank(A) = 3. For n = 3

there is one unique solution

s = [v0 δH δV ]
T = A−1m. (188)

For n > 3 a solution can be selected by the method of least squares.

9.2.5 Wind Model for Yaw Control

This model assumes that there is no shear and no tilted inflow and that the u and v wind

component are homogeneous. Using (184) a linear system in u and v can be formulated:


vlos,1
:

vlos,n




︸ ︷︷ ︸
m

=



x/f1 y1/f1
: :

x/fn yn/fn




︸ ︷︷ ︸
A

[
u

v

]

︸︷︷︸
s

. (189)

This system can be solved using the estimator (188), if rank(A) = 2.

9.2.6 Wind Model for Complex Terrain

In the presence of inflow angles and shears the measurement in point i can be defined as

uWi = v0 + δHyWi + δV zWi, (190)

The wind coordinates [xWi yWi zWi] can be transformed to the lidar coordinate system by

a rotation of the horizontal and vertical inflow angle, αH and αV . A numerical inversion for
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Figure 117: Degrees of freedom for the reduced nonlinear model (left), the first order model

(center) and the linear model (right).

the nonlinear equations can be achieved with the least-squares minimization problem

min
v0,αH ,αV ,δH ,δV

n∑

i=1

(
vlos,i −

xWi

fi
uWi

)2

, (191)

and the wind vector can be calculated with (190) and the inverse transformation.

9.3 Modeling of the Wind Turbine

The crucial part of a successful feedforward and model predictive controller design is the ade-

quate modeling of the dynamic system to be controlled. The model should be simple enough

to allow a partial system inversion (for the feedforward controller design) and simulations in

reasonable computation time (for the NMPC) and at the same time it should be accurate

enough to capture the system dynamics that are relevant for the wind turbine control. The

reduced model can also be used in an estimator to estimate the rotor effective wind speed

from turbine data.

9.3.1 Reduced Nonlinear Model

Classically aeroelastic simulation environments for wind turbines such as FAST (Jonkman and

Buhl, 2005) (used later in this work) provide models close to reality but far to complex to be

used for controller design. In addition, current remote sensing methods such as lidar are not

able to provide a wind field estimate with comparable details to a generic wind field used by

aeroelastic simulations (generated in this work with TurbSim (Jonkman and Buhl, 2007)). In

this section a turbine model with three degrees of freedom (see Figure 117) is derived from

physical fundamentals and the wind field is reduced to the rotor effective wind speed which

is measurable with existing lidar technology.

The first tower fore-aft bending mode, the rotational motion and the collective pitch actu-

ator are based on Bottasso et al. (2006):

JΩ̇ +Mg/i =Ma(ẋT ,Ω, θ, v0) (192a)

mTeẍT + cT ẋT + kTxT = Fa(ẋT ,Ω, θ, v0) (192b)

θ̈ + 2ξωθ̇ + ω2(θ − θc) = 0. (192c)

Equation (192a) models the drive-train dynamics, where Ω is the rotor speed, Ma is the

aerodynamic torque and Mg the electrical generator torque, xT the tower top fore-aft dis-

placement, θ the effective collective blade pitch angle, and v0 the rotor effective wind speed.

Moreover, i is the gear box ratio and J is the sum of the moments of inertia about the

rotation axis of the rotor hub, blades and the electric generator. Equation (192b) describes

the tower fore-aft dynamics, Fa is the aerodynamic thrust and mTe, cT , and kT are the tower

equivalent modal mass, structural damping and bending stiffness, respectively. These values

were calculated according to Jonkman et al. (2009). Finally, equation (192c) is a second-order
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model of the blade pitch actuator, where ω is the undamped natural frequency and ξ the

damping factor of the pitch actuator and θc is the collective blade pitch control input. The

nonlinearity in the reduced model resides in the aerodynamic thrust and torque acting on the

rotor with the radius R:

Ma(ẋT ,Ω, θ, v0) =
1

2
ρπR3 cP (λ, θ)

λ
v2rel (193a)

Fa(ẋT ,Ω, θ, v0) =
1

2
ρπR2cT (λ, θ)v

2
rel, (193b)

where ρ is the air density, λ the tip-speed ratio, defined as

λ =
ΩR

vrel
, (194)

and cP and cT are the effective power and thrust coefficients, respectively. The nonlinear cP
and cT coefficients can be obtained from steady state simulation. The relative wind speed

vrel is defined as a superposition of tower top speed and mean wind speed

vrel = (v0 − ẋT ), (195)

and is used to model the aerodynamic damping. The equations (192) to (195) can be organized

in the usual nonlinear state space form:

ẋ = f(x, u, d)

y = h(x, u, d), (196)

where the states x, the inputs u, disturbance d and measurable outputs y are

x =
[
Ω xT ẋT θ θ̇

]T
, u =

[
Mg θc

]T
,

d = v0, y =
[
Ω ẍT θ θ̇

]T
.

9.3.2 Estimation of the Rotor Effective Wind Speed from Turbine Data

The nonlinear reduced model (192) can be further reduced to a first order system (see Fig-

ure 117) by ignoring the tower movement and the pitch actuator:

JΩ̇ +Mg/i =Ma(Ω, θ, v0) (197a)

Ma(Ω, θ, v0) =
1

2
ρπR3 cP (λ, θ)

λ
v20 (197b)

λ =
ΩR

v0
. (197c)

This model is used to estimate the rotor effective wind speed v0 from turbine data. If parameter

such as inertia J , gear box ratio i and rotor radius R as well as the power coefficient cP (λ, θ)

are known, and data such as generator torqueMg, pitch angle θ, rotor speed Ω and air density

ρ are measurable, the only unknown in (197) is the rotor effective wind v0.

Due to the λ-dependency of the power coefficient cP (λ, θ) no explicit solution can be

found. A solution could be found by solving (197) by iterations. But this would produce high

computational effort for high resolution data. Therefore, a three dimensional look-up-table

v0R(Ma,Ω, θ) is calculated a priori from the cubic equation (197b), similar to van der Hooft

and van Engelen (2004). Here, the equation (197b) is solved first in λ for numerical reasons.

The aerodynamic torque Ma can then be calculated online from turbine data with (197a).

9.3.3 Linear Model

For the cyclic pitch feedforward controller (see Section 9.8), a model including the blade

bending degree of freedom is needed. It is obtained from an azimuth dependent nonlinear

aeroelastic model considering the rotor motion, first flapwise bending modes of each blade

and the first tower fore-aft bending mode as depicted in Figure 117. The aeroelastic model is

linearized, transformed with the Coleman-Transformation and decoupled, details see Schlipf

et al. (2010b).
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Figure 118: (left top) Normalized range weighing function fL(a) for a pulsed lidar system.

(left bottom) Scope of circular scan (right) and the wind prediction.

9.4 Correlation of a Lidar System and a Wind Turbine

9.4.1 Simulated Lidar Measurements

Compared to (184) lidar measurements can be modeled more realistically for simulations by

the following equation:

vlos,i =

∫ ∞

−∞

(
xi
fi
u(a) +

yi
fi
v(a) +

zi
fi
w(a)

)
fL(a)da. (198)

The weighting function fL(a) at the distance a to the focus point depends on the used lidar

technology (pulsed or continuous wave). Here, a Gaussian shape weighting function with

full width at half maximum (FWHM) of W = 30 m is used, see Figure 118, following the

considerations of Cariou (2011). 3D Wind fields generated e.g. with TurbSim (Jonkman and

Buhl, 2007) over time t and the coordinates y and z can be scanned at a trajectory point

[ti + TTaylor,i, yi, zi] by assuming Taylor’s Hypothesis of Frozen Turbulence with

TTaylor,i = xi/ū. (199)

In this work, a pulsed system with a circular trajectory is used, which is performed within

Tscan = 2.4 s with 12 focus points in 5 focus distances equally distributed between 0.5D and

1.5D with the rotor diameter D = 126 m, resulting in an update rate of 0.2 s, see Figure 118.

This trajectory was realized by a real scanning lidar system installed on the nacelle of a 5

MW turbine (see Rettenmeier et al. (2010)). In the simulation, effects such as collision of the

laser beam with the blades, volume measurement and mechanical constraints of the scanner

from data of the experiment are considered to obtain realistic measurements.

9.4.2 Reconstruction of Rotor Effective Wind Speed

The wind characteristics are then reconstructed using (185): For each distance i the longitu-

dinal wind component is averaged over the last trajectory for a rotor effective value and the

obtained time series of the measurements v0Li is time-shifted according to Taylor’s frozen

turbulence hypothesis, see Figure 118. The rotor effective wind speed v0L(t) is then calculated

by

v0L(t) =
1

5

5∑

i=1

v0Li(t− TTaylor,i). (200)

This improves the short term estimation, because the measurements of further distances can

be stored and used to obtain more information when reaching the nearest distance.
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Optimization of the maximum coherent wavenumber.

9.4.3 Correlation

The correlation between the lidar estimate of the rotor effective wind speed v0L and the rotor

effective wind speed v0 can be calculated by the transfer function

GRL =
SRL
SLL

(201)

and the squared coherence

γ2RL =
|SRL|2
SRRSLL

(202)

using the auto spectrum SLL from the lidar signal and SRR from the rotor signal as well as

the cross spectrum SRL between the rotor and the lidar signal. With the definition of Bendat

and Piersol (1971) cross and auto spectra can be calculated, omitting all scaling constants,

by

SRR = F{v0}F∗{v0}

SRL = F{v0}F∗{v0L}

SLL = F{v0L}F∗{v0L}, (203)

where F{} and F∗{} are the Fourier transform and its complex conjugate, respectively. The

same idea is used for the blade effective wind speed in Simley and Pao (2013).

For real time applications the spectra can be obtained from lidar measurements and turbine

data using the estimator (197). The transfer function can be approximated by a standard low

pass filter. Therefore, the maximum coherent wavenumber can be found with the cut-off

frequency (-3 dB) of the corresponding filter (see Figure 119 in Schlipf and Cheng (2013)).

The correlation between a lidar system and a turbine can be calculated also analytically us-

ing analytic wind spectra, e.g. the Kaimal model. The measured wind can be considered as a

sum of signals and due to the linearity of the Fourier transformation, the spectra can be calcu-

lated by a sum of auto and cross spectra, using (185), (198), and (200). In the full-analytical

case, already the case of a staring lidar is very complicated. In the semi-analytical case, the

rotor effective wind can be expressed by the mean of all n longitudinal wind components ui
hitting the rotor plane:

v0 =
1

n

n∑

i=1

ui. (204)

This model can then be used to design an optimal filter which is the crucial part of the

controller described in the following sections. Another application is to optimize lidar systems

(Schlipf et al., 2013a): Figure 119 shows how the maximum coherent wavenumber changes,

if the focus distance x from a turbine with a rotor diameter of 40 m and the radius r of a

scan with three measurements are varied. Furthermore, lidar measurements can be evaluated,

whether the provided signal quality is sufficient for control, see e.g. Schlipf et al. (2012a);

Scholbrock et al. (2013).
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Figure 120: (left) Feedforward controller with adaptive filter. (right) Reaction to an EOG in

case of perfect measurement using the 5 MW NREL turbine in FAST (Jonkman et al., 2009):

Baseline controller only (black) and with additional feedforward (grey).

9.5 Lidar Assisted Collective Pitch Control

The lidar based collective pitch feedforward controller is the most promising approach for load

reduction. In this section the controller and adaptive filter design will be presented and some

results from the initial field testing.

9.5.1 Controller and Adaptive Filter Design

The collective pitch feedforward controller (see Figure 120) is based on the work in Schlipf

et al. (2010a); Schlipf and Cheng (2013) and combines a baseline feedback controller with

a feedforward update. The main control goal of the collective pitch feedback controller ΣFB

is to maintain the rated rotor speed Ωrated. The system Σ is disturbed by a wind field V ,
which can be measured by a lidar system ΣL in front of the turbine before reaching the rotor.

If the wind would not change on its way (ΣE = 1) and in the case of perfect measurement

the measured wind speed v0L and the rotor effective wind speed v0 are equal. In this case

and assuming a simple nonlinear wind turbine model (197), the effect of the wind speed on

the rotor speed can perfectly compensated moving the collective pitch angle along the static

pitch curve θSS(v0) without any preview. If a more detailed model is used along with a pitch

actuator, the proposed feedforward controller still can achieve almost perfect cancellation of

an Extreme Operating Gust (EOG), see Figure 120. In this case, only a small preview time τ

is necessary to overcome the pitch actuator dynamics.

In reality v0 cannot be measured perfectly due to the limitation of the lidar system and ΣE

is quite complex to model. However, if the transfer function (201) from the measured wind

speed to the rotor effective wind speed is known, it can be used to obtain a signal as close

as possible to the rotor effective wind speed. Therefore, an adaptive filter is proposed along

with a time buffer which can be fitted to the transfer function:

ΣAF = Gfiltere
−Tbuffers ≈ ΣE Σ−1

M . (205)

The filter depends on the mean wind speed ū, which can be obtained with a moving average

ΣMA, and on the maximum coherent wavenumber k̂ and the static gain G0, which can be

identified with a spectral analysis ΣSA and the observer ΣO from (188). The buffer time (see

Figure 118) is necessary to apply the signal with the prediction time τ , considering the delay

of the filter Tfilter and the scan Tscan, assuming Taylor’s Hypothesis:

Tbuffer = TTaylor −
1

2
Tscan − Tfilter − τ. (206)
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9.5.2 Field Testing

The collective pitch controller has been successfully tested together with the National Re-

newable Energy Laboratory (NREL) in Boulder, Colorado in two different control campaigns.

The scanning SWE-Lidar system was installed on the two-bladed CART2 and the OCS from

Blue Scout Technologies on the three-bladed CART3. The main purpose of these campaigns

was to provide a proof-of-concept of the feedforward controller. More details can be found in

Schlipf et al. (2012a); Scholbrock et al. (2013).

In a first step the correlation between both turbines and the installed lidars was investigated,

using the estimator (188). The maximum coherent wavenumber in the transfer function (201)

was identified for the CART2 and the scanning lidar at k̂ = 0.06 rad/m and for the CART3

and the OCS at k̂ = 0.03 rad/m.

Then the adaptive filter and the feedforward controller was applied to each turbine. Here,

a pitch rate update θ̇FF instead of θFF was used:

θ̇FF(t) = v̇0(t+ τ)
dθss
dv0ss

(v0(t+ τ)) (207)

Figure 121 shows the main result of the field testing, which is a reduction of the generator

speed variations with the feedforward pitch rate update on, compared to the case with only

the feedback controller. In the case of high correlation, the standard deviation of the rotor

speed has been reduced by 30% for the CART2 and by 10% for the CART3. The difference

is due to the lower correlation of the OCS on the CART3: The rotor speed is only reduced

up to the frequency corresponding to the maximum coherent wavenumber.

However, in the case of low correlation, which was due to the impact with the met mast

and guy wires, an increment of the generator speed variations can be seen, because of the

wrong pitch action by the feedforward controller. This confirms, that it is possible to assisted

wind turbine controllers with lidar measurements, but the signal has to be carefully filtered

to have a beneficial effect.

Although load reductions have been detected as well, in next campaigns the feedback

controller should be tuned: The benefit gained in rotor speed variation can be transformed in

further load reduction by relaxing the feedback controller gains (Schlipf and Cheng, 2013).
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9.6 Lidar Assisted Speed Control

The main purpose of variable speed control for wind turbines below rated wind speed is to

maximize the electrical power extraction (Burton et al., 2001). Therefore, the turbine has to

operate with the rotor blades held at the optimal angle of attack. This blade inflow angle is

represented by λ (197c). The optimal tip speed ratio λopt can be found at the peak ĉP of the

power coefficient. The aerodynamic optimum can be achieved by tracking λopt via adjusting

the generator torque Mg. This section depicts how tracking λopt can be done dynamically by

using the knowledge of the incoming wind, more details see Schlipf et al. (2011, 2013b).

9.6.1 Controller Design

The baseline speed control (Burton et al., 2001) to maintain in steady state the maximum

power coefficient ĉP can be determined with the reduced nonlinear model (197) by:

Mg,ISC =
1

2
ρπR5 ĉP

λ3opt
i3

︸ ︷︷ ︸
kISC

Ω2
g. (208)

Equation (208) with constant kISC is known as the indirect speed control (ISC). Using the

lidar technology, v0 and thus λ become measurable, and therefore, the proposed controller is

considered as direct speed control (DSC). The basic idea of the proposed DSC is to keep the

ISC feedback law (208) and to find a feedforward update Mg,FF to compensate changes in

the wind speed similar to the one used for collective pitch control, see Figure 120. With the

derivative of the rotor effective wind speed v̇0 the DSC is:

Mg,DSC =Mg,ISC −iJ
λopt
R

v̇0
︸ ︷︷ ︸

Mg,FF

. (209)

Higher order DSCs can be found (Schlipf et al., 2013b). Similar to the collective pitch feed-

forward controller, this controller in the nominal case perfectly maintains λ at its optimal

value. This still holds, using a full aero-elastic model, assuming perfect measurement of v0.

But Figure 122 shows, that Mg has to be negative already with a small gust with 1 m/s

amplitude due to the high inertia J , introducing high loads on the shaft.
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Figure 123: (left) Relative changes of the DSC in the standard deviation of λ and low-speed

shaft loads compared to the ISC. Dots: optimal case. (right) Relative power extraction for

the CART3. Dots: Field test results: ISC (gray) and DSC (black).

9.6.2 Simulation Using Real Data

The lidar raw data and the estimated v0R obtained with (188) from the CART3 control

campaign (see Figure 121) are used for simulations to test the DSC. The simulations are

done with an aeroelastic model of the CART3 implemented in FAST (Jonkman and Buhl,

2005), disturbed by a hub height wind field of v0R. The same adaptive filter (205) is used,

see Figure 122. In this case the benefits over conventional simulations with lidar simulation

and wind evolution models (Bossanyi, 2012) are that effects such as measurement errors and

delays, real wind evolution, and site specific problems can be included into the simulations.

If used along with the ISC controller, the simulated turbine’s reaction will be close to the

measured turbine data due to the fact that the used estimation of the rotor effective wind

speed v0R is an inverse process to the simulation. If used along with the DSC controller, it

can be estimated in a realistic way, which effect the DSC would have produced in this specific

situation. Furthermore, the DSC can be tuned to the real data.

A set of simulations with different k̂ and τ are done. Figure 123 shows the changes from

the DSC to the ISC in the standard deviation of λ and damage equivalent loads (DEL) on

the low-speed shaft. The optimal values for k̂ = 0.025 rad/m and τ = 1 s from this brute

force optimization (minimizing σ(λ)) are close to the value from Section 9.5. This confirms,

that it is important to filter the data according to this specific correlation.

Here, the standard deviation σ(λ) can be reduced from 0.527 to 0.328, resulting in a power

production increase of 0.3%, which is close to the theoretical value of 0.2% from Figure 123.

The loads on the shaft are approximately doubled. This proofs, that only marginal benefit can

be gained by tracking the optimal tip speed ration, which does not justify the usuage due to

the higher loads on the shaft.

9.6.3 Discussion

The fluctuation of the tip speed ratio can be used as a measure for the potential of energy

optimization. Assuming the distribution of the tip speed ratio ϕλopt;σ to be Gaussian with

mean λopt and a standard deviation σ(λ), then the generated power can be estimated by

Pel(σ(λ)) = Pel,max

∫ ∞

−∞

ϕλopt;σ(λ)cP (λ)dλ. (210)

The collected data from the CART3 field testing justify a Gaussian distribution (Schlipf et al.,

2013b). In Figure 123 this potential is quantified for the CART3.
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Figure 124: (left) Principle of NMPC. (rigth) Reaction to an EOG in case of perfect mea-

surement using the 5 MW NREL turbine in FAST (Jonkman et al., 2009): Baseline controller

only (dark gray), baseline with feedforward (light grey) and NMPC (black).

9.7 Nonlinear Model Predictive Control

Model predictive control (MPC) is an advanced control tool, which predicts the future behav-

ior of the system using an internal model and the current measurements. With this information

the control actions necessary to regulate the plant are computed by solving an optimal control

problem over a given time horizon. Part of the solution trajectory for the control inputs are

transfered to the system, new measurements are gathered and the optimal control problem

is solved again. The feedforward controller presented in the previous sections are updates

to existing pitch and torque feedback controllers. In contrast the MPC is a control strategy

which in the presented case controls pitch angle and generator torque independently from

the common feedback controllers. This provides the possibility for further improvements, but

also makes real applications more complex. Here, the basic principle and simulation results

of a nonlinear model predictive control (NMPC) are presented. More details can be found in

Schlipf et al. (2012b,d).

9.7.1 Controller Design

There are several advantages of MPC in general. One is that it can handle multi-variable and

non-quadratic (different number of inputs and outputs) control tasks naturally: additional

control inputs or outputs will merely increase the number of optimization variables. Another

advantage is that it considers actuator and system constraints during solving the optimal

control problem. Furthermore, it provides a framework for incorporating a disturbance pre-

view dynamically and tuning of MPC controllers is done intuitively by changing weights of a

definable objective function. However, the main advantage of MPC is that it is in a math-

ematically sense an optimal controller. Solving the optimal control problem is not an easy

task and several methods exist. Independent of the used method, the basic principle of model

predictive control is illustrated in Figure 124 using piecewise constant parametrization: Future

control action is planned to fulfill the control goal, e.g. reference signal tracking, considering

a predicted disturbance. The considered optimal wind turbine control problem can be de-

scribed by the following problem: The objective is to find the optimal control trajectory which

minimizes the cost function, which is defined as the integral over the time horizon of the

objective function from the actual time to the final time, with the reduced nonlinear model

(192) and the set of constraints. The crux of designing the NMPC is to translate the verbal

formulation of the control goal to a mathematical formulation. In wind energy the overall

goal of development can be stated very roughly as “minimizing energy production cost”. In
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classic wind turbine control (Burton et al., 2001) this is in general done by tracking optimal

tip speed ratio below a certain wind speed defined as rated wind speed and by limiting rotor

speed and power above the rated wind speed. The used objective function and constraints

can be found in Schlipf et al. (2012b).

The optimal control problem is converted by the Direct Multiple Shooting method (Find-

eisen, 2005) into a nonlinear program. The control inputs are discretized in piecewise constant

stages and the ODEs of the model are solved numerically on each interval. The optimization

is performed over the set of initial values and the control outputs. Additional constraints are

applied to ensure that the states at the end of each stage coincide with the initial conditions

of the subsequent stage.

The nonlinear program can be solved iteratively with Sequential Quadratic Programming

(SQP). The separation of the optimization problem into multiple stages results in a faster so-

lution. Here Omuses (Franke, 1998) is used, a front-end to the large-scale SQP-type nonlinear

optimization solver HQP.

9.7.2 Simulation Results

In a first step the different control strategies are compared with their reaction to gusts. For

this purpose, hub-height time series are created with extreme operation gusts at vrated + 2

m/s = 13.2 m/s. At first the simulations are run with the reduced nonlinear model such

that the internal model and the simulation model are identical. Furthermore, the wind speed

is directly fed into the NMPC assuming perfect measurements and the tower states are

assumed to be measurable. This is done to make results more apparent and to show the

effect of different optimization goals: The NMPC tries to reduce rotor speed variation and

the tower movement. Figure 124 compares the pitch angle, generator torque, rotor speed, and

tower base fore-aft bending moment for the baseline controller, the feedforward controller of

Section 9.5 and the NMPC. The NMPC and the feedforward controller are able to minimize

the rotor speed deviation. The feedforward controller only uses the pitch angle to achieve this

goal. The NMPC additionally uses the generator torque to achieve the minimization of the

tower movement and the variation of the rotor speed due to its competence to incorporate

multivariable control.

In a second step various simulations with a set of turbulent TurbSim wind fields are con-

ducted, featuring A-type turbulence intensity according to IEC 61400-1 and a Rayleigh dis-

tribution with C = 12 m/s, to estimate the benefit for fatigue load reduction. The adaptive

filter (205) and a nonlinear estimator (Schlipf et al., 2012b) are used.

Figure 125 summarizes the results for all 33 simulations. Even if the NMPC controller

is computationally more complex, the framework provides a high performing benchmark for

development and comparison of less computationally-complex controllers.
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9.8 Lidar Assisted Cyclic Pitch Control

The block diagram in Figure 126 illustrates the used feedforward control schema for the cyclic

pitch control problem. More details can be found in Dunne et al. (2012), Schlipf et al. (2010b)

and Laks et al. (2011).

The collective pitch controller is extended by two additional control loops: The flapwise

blade root bending moments of the three blades M123 are transformed by the Coleman

transformation Tc into a yaw and tilt moment MH and MV . These signals are fed back into

two additional feedback controllers ΣH,FB and ΣV,FB. Here, standard PI controllers are used

following those of Bossanyi et al. (2012). The horizontal and vertical blade root bending

moment MH and MV are mainly disturbed by the horizontal and vertical shear δH and

δV . The shears can also be estimated by a lidar system (see Section 9.2) and can be used to

calculate the feedforward updates θH,FF and θH,FF for the horizontal and vertical control loop.

Static functions are proposed, which can be obtained from simulations or from modeling:

θH,FF = gHδHL (211)

θV,FF = gV δV L

Furthermore, the same filter (205) is used to avoid wrong pitch action. Also the time tracking

issue is solved similar to the collective pitch feedforward controller: The feedforward update

is added to the feedback with the prediction time τ before the shears reach the turbine.

To demonstrate the benefit of lidar assisted cyclic pitch control, a collective pitch feedback

only controller is compared to a cyclic pitch feedback only controller and a combined collective

and cyclic feedback and feedforward controller. A wind field with mean wind speed ū =

16 m/s and a turbulence intensity of 18% is used. Figure 127 shows the power spectral

densities of pitch rate and out-of-plane blade root bending moment of blade 1. Both individual

pitch controllers decrease variation of the blade root bending moment especially at the 1P

frequency, but only the feedforward controller can reduce the loads around 0.1 Hz due to the

collective feedforward part. Further investigations have to be done to investigate, whether

similar load reduction can be obtained without the cyclic feedforward part. A validation of

the lidar reconstructed rotor effective wind characteristics can be achieved by comparing to

those estimated from turbine data. Figure 128 compares the shears obtained from model

(186) with shears obtained by a simple estimation from blade root bending moment, showing

as expected a better correlation for δV than for δH . Further investigations have to be done

in addition to investigate, if the correlation between the lidar measurement and the turbine

reaction regarding the shears is sufficient to use it for feedforward control.
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9.9 Lidar Assisted Yaw Control

Due to the large moment of inertia of the rotor, the nacelle is aligned with the wind with

slow rates and only, if the misalignment exceeds a certain value (Hau, 2008). The demand

signal is normally calculated from a nacelle mounted wind vane or sonic anemometer. These

sensors are heavily disturbed for an operating turbine and are measuring at only one single

point. A nacelle mounted lidar system avoids these disadvantages, being able to measure the

undisturbed inflow over the entire rotor area. The first part of this section shows the capability

and the problems of a simulated lidar system. In the second part data is analyzed and finally

in the third part the improvements in energy yield by lidar assisted yaw control are discussed

theoretically. More details can be found in Schlipf et al. (2011).

9.9.1 Simulation Using Generic Wind

The scope of the presented simulation study is to test if the methods presented in Section

9.2 are robust and can be applied to turbulent wind fields. This is not obvious, because the

simulation model of the wind (here IEC Kaimal) and of the lidar (198) are more complex

than the wind (189) and lidar (184) model used in the reconstruction. Similar work has been

presented (Kragh et al., 2011), using an empiric reconstruction method and Mann turbulence.

The 33 Class A wind fields from Section 9.6 are generated with a horizontal mean flow angle

of αH = 10 deg. The 10 min-wind fields are scanned again with the mentioned lidar simulator,

imitating the SWE-lidar system (Rettenmeier et al., 2010) using a Lissajous-like trajectory.

The misalignment detected by the lidar αHL is estimated with the model (189) using those

focus points from the last n points, where no impact with the turbine blades is simulated.

Due to the positioning on top of the nacelle, similar to the one used in the experiment, this

usually results in a loss of ≈ 30%. The resulting αHL signal is very oscillating and for better

illustration a 1 min running average is used in Figure 129. Due to the effects described in

Section 9.2 the misalignment signal estimated with the lidar is disturbed by the horizontal

shear. For comparison, the misalignment signal of a point measurement is plotted, which

could be obtained from an undisturbed sonic anemometer on hub height.

For all 33 simulations the error of the misalignment estimation in the 10 min mean is below

1 deg due to the fact that the mean of the effective horizontal shear for the wind field is close

to zero. The results of this simulation study show that with the proposed method of wind

reconstruction it is possible for a simulated lidar to estimate the misalignment of a turbine in

the scale of 10 min similar to the simulated undisturbed sonic anemometer.
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Figure 130: Power loss due to static (left) and dynamic (right) misalignment.

9.9.2 Simulation Using Real Data

From the simulation study above it is hard to estimate the improvement of lidar assisted

yaw control compared to the standard control. Therefore, a simulation study can be done

using data from a real experiment. The absolute yaw direction signal is superposed with

the relative, 10 min averaged misalignment signals from the nacelle mounted lidar and sonic

anemometer. With this method it can be simulated, how the turbine would have been yawed

for both instruments, if the same yaw control strategy is applied. Finally, the resulting yaw

misalignment for both instruments can be calculated by comparing the simulated turbine

positions with the lidar wind direction, assuming the lidar is able to perfectly estimate the

averaged misalignment. Due to the average time and the threshold in the control strategy,

the difference in the fluctuation of both signals is relatively low.

9.9.3 Discussion

Both studies above show, the yaw misalignment can be divided in a static and a dynamic

subproblem. In reality there will be a mixture of both, but this perception is helpful to rate

the benefits which can be achieved by using a lidar system for yaw control. If there is a static

misalignment ᾱH , the loss in power can be modeled as (Burton et al., 2001):

Pel(ᾱH) = Pel,max cos
3(ᾱH). (212)

Figure 130, shows e.g. that ≈ 10% of power is lost, if the turbine is misaligned by ≈ 15 deg

to one side. This value can be considered as a lower bound, because a misalignment in full

load operation will not have an effect on the power. A static misalignment can be solved by

better calibration of the standard nacelle anemometer and does not need a constant use of a

lidar system. In the case of the investigated data the detected static misalignment of 0.7 deg

only would cause a power loss of 0.02%. A constant use of a nacelle mounted lidar system is

justified, if the fluctuation of yaw misalignment can be reduced. Similar to the discussion in

Section 9.6.3 the misalignment can be assumed to be Gaussian distributed with zero mean

and a standard deviation σ(αH). Then the loss in power can be modeled by:

Pel(σ(αH )) = Pel,max

∫ ∞

−∞

ϕ0;σ(αH ) cos
3(αH)dαH . (213)

The loss in power due to the dynamic misalignment is plotted in Figure 130 and again is only

applicable to partial load operation. The reduction of σ(αH) and an improvement of the power

output is limited to the control strategy: a reduction to 0 deg would require immediate yawing

of the rotor which is neither feasible nor reasonable due to the induced loads. In the presented

investigation a reduction from 6.4 deg to 4.1 deg yield to an improvement from 99.3% −
98.2% = 1.1% using (213). This low value despite of assumed perfect reconstruction of the

alignment by the lidar system gives an estimation of improvement which can be expected.
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9.10 Conclusion and Outlook

Lidar systems are able to provide preview information of wind disturbances at various dis-

tances in front of wind turbines. This technology paves the way for new control concepts,

helping to compensate changes in the inflowing wind field. The complexity of the wind field,

the limitation due to the measurement principle and the combined aero-elastic character of

wind turbines makes this an interdisciplinary and challenging task. This field of research has

increased significantly in recent years and several controllers have been proposed for load

reduction or increasing the energy yield.

In this work a method is presented to reconstruct wind characteristics based on lidar mea-

surements and shortcomings are shown. This method is used in various approaches to increase

the energy production and to reduce loads of wind turbines: Collective pitch feedforward con-

trol and direct speed control uses the knowledge of the incoming wind speed to calculate

a control update to existing feedback controllers. Collective pitch feedforward control is a

promising strategy to reduce extreme and fatigue loads and has been successfully tested.

Filtering the lidar signal is an important issues, because not all turbulences can be measured.

The filter can be designed based on the correlation between the lidar measurement and the

reaction of the wind turbine. With the direct speed control only marginal benefit can be

gained. This is due to the fact that the standard variable speed control is already close to the

aerodynamic optimum. The approach of the Nonlinear Model Predictive Control differs from

the feedforward approaches: the future behavior of a wind turbine is optimized by solving an

optimal control problem repetitively using the wind speed preview adjusting simultaneously

the pitch angle and the generator torque. Therefore, loads on tower, blades and shaft can be

further reduced especially for wind conditions near rated wind speed. Further load reduction

of the blades can be gained with cyclic pitch feedforward control, extending the feedforward

approach to reduce also tilt and yaw moments of the rotor. Another approach uses the wind

direction estimation by a lidar system for yaw control. Here, an increase of energy produc-

tion by a couple of percent can be expected, depending on the control strategy and the

inhomogeneity of the wind.
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Notation

DEL Damage Equivalent Loads

EOG extreme operating gust

NMPC Nonlinear Model Predictive Control

PI proportional-integral (controller)

a distance to focus point

A constant variables for least squares method

cP ,cT power and thrust coefficient

d system disturbance

D rotor diameter

fi focus length of measurement point i
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fL weighting function

GRL transfer function from the lidar estimate to the rotor effective wind speed

i gearbox ratio

J sum of the moments of inertia about the rotation axis of the rotor hub

k̂ maximum coherent wave number

m known variables for least squares method

mTe, cTe, kTe the tower equivalent modal mass, structural damping and bending stiffness

Mg generator torque

Ma, Fa aerodynamic torque and aerodynamic

MyT tower fore-aft bending moment

MLSS low speed shaft torque

Moop1 out-of-plane bending moment

n number of measurements

R rotor radius

SRL cross spectrum between the lidar estimate to the rotor effective wind speed

SLL auto spectrum of the lidar estimate of the rotor effective wind speed

SRR auto spectrum of the rotor effective wind speed

s unknown variables for least squares method

TTaylor,i time delay based on Taylor’s Hypothesis of Frozen Turbulence from point i

Tscan time to finish a full scan

Tbuffer time to buffer data before applying the feedforward command

Tfilter time delay due to filtering

u system input

ui, vi, wi local wind components in measurement point i

ū mean wind speed

v0 rotor effective wind speed

v0L estimate of rotor effective wind speed from lidar data

v0Lf filtered estimate of rotor effective wind speed from lidar data

v0R estimate of rotor effective wind speed from turbine data

vlos,i line-of-sight wind speed in measurement point i

vrel relative wind speed

x system states

xi, yi, zi coordinates of measurement point i in lidar coordinate system

xWi, yWi, zWi coordinates of measurement point i in wind coordinate system

xT tower top displacement

y system output

αH , αV horizontal and vertical inflow angle

γ2RL coherence between the lidar estimate to the rotor effective wind speed

δH , δV horizontal and vertical shear

λ tip speed ratio

ξ, ω damping factor and undamped natural frequency of the pitch actuator

ρ air density

τ prediction time of a signal

ϕx̄;σ(x) Gaussian probability density function depending on mean x̄ and standard deviation σ(x)

θ, θc collective pitch angle and collective pitch angle demand

θFF feedforward pitch angle

Ω, Ωg rotor and generator speed

V wind field
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