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Kurzfassung

Kurzfassung

Diese Arbeit beschäftigt sich mit der direkten numerischen Simulation (DNS)
kompressibler und inkompressibler Mehrphasenströmungen und hat als Ziel die
Erweiterung eines inkompressiblen Zweiphasenlösers in den Bereich kompres-
sibler Strömungen.

Ausgangspunkt ist der existierende Mehrphasenlöser FS3D zur Simulation drei-
dimensionaler, inkompressibler Strömungen. Für diesen Code wird die Model-
lierung der Oberflächenspannung im Hinblick auf die sogenannten parasitären
Strömungen detailliert untersucht. Hierbei handelt es sich um numerisch ver-
ursachte, unphysikalische Geschwindigkeiten. Es wird gezeigt, dass ihr Ausmaß
durch die Verwendung einer geeigneten numerischen Approximation (Balanced-
Force-Diskretisierung) um mehrere Größenordnungen reduziert werden kann.

Der Schwerpunkt der Arbeit liegt auf der Erweiterung des inkompressiblen,
druckbasierten numerischen Verfahrens in den Bereich kompressibler Mehr-
phasenströmungen. Hierzu werden sowohl der physikalische als auch der ma-
thematische Hintergrund der Gleichungen für kompressible und inkompressible
Strömungen diskutiert und es wird der Übergang von kompressibler zu inkom-
pressibler Strömung aufgezeigt. In diesem Zusammenhang werden grundlegen-
de eindimensionale Untersuchungen zur Kopplung kompressibler und inkom-
pressibler Strömungsgebiete präsentiert. Basierend auf diesen Betrachtungen
werden mehrere iterative Kopplungsmethoden abgeleitet und anhand von Test-
rechnungen validiert.

Das Multiple-Pressure-Variables-Verfahren (MPV) wird vorgestellt, welches die
Erweiterung inkompressibler Löser in den kompressiblen Bereich ermöglicht.
Das Verfahren beruht auf einer asymptotischen Druckzerlegung, welche die
unterschiedliche Bedeutung des Druckes für kompressible und inkompressible
Strömungen berücksichtigt. Auf diese Weise ist der inkompressible Grenzwert
der kompressiblen Gleichungen definiert und nicht singulär. Die MPV-Methode
wird zunächst für kompressible, einphasige Strömungen eingeführt und an-
schließend auf kompressible Mehrphasenströmungen erweitert. Hierbei spielt
die Behandlung der Phasengrenzfläche und der dort auftretenden Sprünge in
den Materialeigenschaften und Zustandsgleichungen eine zentrale Rolle. Wäh-
rend das abgeleitete druckbasierte Verfahren den Dichtesprung zwischen den
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beiden Phasen verschmiert, weist die Thermodynamik einen scharfen Sprung
über die Phasengrenze hinweg auf. Im Gegensatz zu vielen dichtebasierten
Mehrphasenlösern leidet das MPV-Verfahren nicht unter Druck- und Geschwin-
digkeitsoszillationen am Ort der Phasengrenze. Dies lässt sich auf die Verwen-
dung des Druckes als primäre Variable zurückführen, was im Rahmen einer de-
taillierten Analyse des numerischen Verfahrens gezeigt wird. Die MPV-Methode
wird durch mehrere ein- und zweiphasige, eindimensionale Riemannprobleme
validiert. Hierbei liegt der Fokus für die einphasigen Strömungen auf Unter-
suchungen, die die Shock-Capturing-Eigenschaften des Verfahrens und seine
Fähigkeit zur Simulation von Wellenausbreitung betreffen. Das MPV-Verfahren
zeigt dabei, dass es sowohl für ein- als auch für zweiphasige Riemannprobleme
sehr gute Ergebnisse liefert. Abschließend werden Simulationsergebnisse von
dreidimensionalen Stoß-Tropfen-Interaktionen präsentiert.
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Abstract

Abstract

This work is directed towards the direct numerical simulation (DNS) of com-
pressible and incompressible multiphase flows. The main objective is the ex-
tension of an incompressible two-phase solver to the compressible flow regime.

The starting point is the existing multiphase solver FS3D for the simulation
of three-dimensional, incompressible flows. For this code, the topic of surface
tension modeling is looked at in detail with respect to the so-called parasitic
currents. These spurious, unphysical velocities are caused by the numerical
approximation of surface tension and a balanced-force algorithm is presented
that considerably reduces the parasitic currents by several orders of magnitude.

The main focus of this thesis is on the extension of an incompressible, pressure-
based numerical approach to the simulation of compressible multiphase flows.
For this purpose, the physical and mathematical background of the govern-
ing equations for incompressible and compressible flows is discussed and the
transition from the compressible to the incompressible regime is addressed. In
this context, fundamental investigations for the coupling of compressible and
incompressible flow regions are presented in one space dimension. On the ba-
sis of these considerations, several iterative coupling schemes are derived and
validated with the help of generic test cases.

The pressure-based Multiple Pressure Variables (MPV) method that allows
the extension of an incompressible flow solver to the compressible regime is
presented. The numerical scheme builds upon an asymptotic pressure decom-
position taking into account the different roles of pressure for incompressible
and compressible flows. This avoids the singular incompressible limit of the
compressible flow equations. At first, the MPV method is introduced for single-
phase flows. Then its extension to compressible two-phase flows is presented.
In this context, the treatment of the material interface between the two fluids
and the corresponding jump in the material properties and the equations of
state play a crucial role. While the present approach numerically smears the
density jump between the two phases, the thermodynamic transition is a sharp
one. Contrary to many density-based two-phase flow solvers, the MPV scheme
does not suffer from oscillations in pressure and velocity at the interface lo-
cation due to the use of pressure as primary variable. A detailed analysis of
this behavior is presented. Finally, the MPV scheme proves to accurately solve
one-dimensional single- and two-phase Riemann problems. For the single-phase
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flows, the focus is on the wave propagation and shock-capturing properties of
the MPV method. In three space dimensions, the numerical scheme is success-
fully applied to the computation of shock-droplet interactions.
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1. Introduction

The focus of this work is on the simulation of multiphase flows characterized by
the presence of a gas-liquid interface that separates two immiscible fluids. This
kind of flow contains gas and liquid at the same time where the components
may be from a single fluid that is present in its gaseous and liquid phase or
they come from different fluids. Yet, in the context of the present thesis phase
changes are not taken into account. Apart from gas-liquid interfaces, it is also
possible to have liquid-liquid interfaces between different immiscible liquids like
oil and water. However, although being in principle accessible by the presented
numerical methods, the latter are not within the scope of research of this work.

In the following, a short motivation is given that illustrates the significance of
multiphase flows in nature and technical applications and it is explained why
their numerical investigation is of special interest. Then, a general overview
over the prerequisites of numerical simulations is given. The different steps
of a numerical simulation are clarified in general and for the simulation of
multiphase flows in particular. Afterwards, an introduction to the numerical
simulation of two-phase flows is given, including references to already existing
work in the literature. Finally, the objectives of this work are listed and an
outlook on the structure of this thesis is given.

1.1. Motivation

Multiphase flows are omnipresent in daily life and a lot of examples can be
found with regard to their occurrence in nature and in technical applications.

Two-phase flows with a gas-liquid interface play an important role in meteo-
rology for the investigation of clouds and rain drops. Another relevant phe-
nomenon is groundwater flow, where the flow of an air-water mixture through
the porous soil is studied. Fundamental processes of the oil production are
also described by multiphase flows, as the oil coming from the underground
is usually mixed with gas. An example that includes two liquids is the oil
propagation after an oil spill in the ocean.

1



1. Introduction

Some technical applications come from the field of power plants. Here, the
design of boilers used for the steam production to drive turbines and the cooling
of nuclear reactors are examples that include multiphase flows. Cavitation
is another important phenomenon that has to be taken into account for the
construction of pumps, valves and hydraulic systems, for example. Cavitation
is induced in such devices if the pressure locally drops below the vapor pressure
limit. In such a case, phase change occurs and gas bubbles are created. Their
presence influences the functioning of the device and the bubble collapse may
additionally cause drastic damages.

Liquid sprays are of special interest for many technical processes in divers fields.
They range from applications in the food industries, agriculture and painting
to medical sprays. However, one of the most important field of application is
the fuel injection into combustion engines and a lot of effort has already been
spent in understanding fuel atomization and evaporation.

This list is long enough to prove the importance of multiphase flows and the
strong interest linked to their investigation, but it is far from being complete
and a lot more examples can be found.

The experimental investigation of two-phase flows is very often difficult and
cumbersome. There is only limited access to measure the temperature and
pressure distribution inside droplets and gas bubbles and it is also hard to
determine an internal velocity distribution there. This is the reason why nu-
merical simulations are quite appealing for the investigation of two-phase flows.

In general, the last decades have shown a strong increase in the development
and application of numerical methods in the academic and industrial context.
There is a trend to combine numerical simulations with experiments, such that
the expensive experimental investigations can be reduced to a minimum and
may partially be replaced by numerical computations. This development is
driven by the steadily growing computer performance. In comparison to an
experimental investigation, numerical simulations very often give faster results
and are cheaper. This leads to a strong interest to intensify the development of
new numerical approaches for computational fluid dynamics (CFD), including
the simulation of multiphase flows that are even more complex to handle on
the numerical level than standard single-phase flows.

The following section provides a brief introduction to the structure of CFD
simulations, where the focus is on the simulation of multiphase flows.

2



1.2. Numerical flow simulation

1.2. Numerical flow simulation

To perform a numerical simulation, different steps are required that can be
summarized in a simulation chain, following Hirsch [1]. It will be shown that
each part of the simulation chain introduces errors and uncertainties to the
numerical approach. Models and assumptions are introduced that often contain
simplifications to the real world phenomenon and that are characterized by
empiricism. Therefore, the results of a numerical simulation can never be
completely in accordance with the real world, as there always remains a certain,
often undefined, level of error. This fact has to be taken into account when
the final simulation results are judged and interpreted. The simulation chain
is displayed in a schematic picture in Fig. 1.1 and the corresponding steps are
described in the following

Figure 1.1.: The simulation chain.

1.2.1. Simulation chain

The first step in the simulation chain is the description of fluid flows in nature by
physical models. This is done choosing the appropriate flow equations. In the
context of most CFD simulations, the flow phenomena can be described by the
viscid Navier-Stokes equations or the inviscid Euler equations. In order to stay
as close as possible to the real world phenomena described by the equations,
a direct numerical simulation (DNS) shall be performed for the subsequent in-
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1. Introduction

vestigations. This means that the equations are solved directly without further
simplifications or the introduction of additional physical models.

In a next step, these equations are looked at in more detail. Generally, they
are sets of nonlinear partial differential equations that are not easy to handle
from a mathematical point of view. Because of their nonlinearity, they allow
discontinuities like shock waves and a general analytical solution for such a
three-dimensional set of equations is not available.

The solution of the equations requires the discretization of the mathematical
model and the use of numerical methods. For this purpose, the equations are
discretized in space on a computational mesh, such that the continuity in space
is replaced by a finite number of points or control volumes. On this mesh, the
equations have to be evaluated and this includes the introduction of discrete
quantities as well as the discrete evaluation of their derivatives. If the scope of
research is on unsteady phenomena, a temporal discretization is needed, too.
Once all these aspects have been taken care of, a numerical simulation can be
performed. The knowledge of the assumptions, simplifications and resulting
limitations of all the above steps is crucial to obtain reliable computational
results and to be able to reasonably interpret them. It should be clear that
every physical model just describes a part of nature and is restricted to the
particular assumptions and circumstances it is based on. Furthermore, the
numerical discretization introduces additional limitations.

In the following, the different parts of the simulation chain are discussed in
more detail in the context of this thesis. It is shown that this work addresses all
chain links ranging from basic considerations of the physical and mathematical
modeling of nature to a detailed analysis of a numerical discretization scheme
and its properties.

1.2.1.1. Physical and mathematical modeling

The choice of the physical model for two-phase flows is not trivial as is illus-
trated below.

Generally, the flow can be described by the Navier-Stokes or the Euler equa-
tions, where the latter exclude viscous effects and heat conduction. Both of
them are sets of partial differential equations that describe the conservation
of mass, momentum and energy. Including viscosity and heat conduction, the
Navier-Stokes equations are closer to the real world phenomena than the Euler
equations. However, the simplifications of the Euler equations are justified for
certain flow regimes. This is for example the case when gas dynamic effects
like shock waves are dominant and the influences of viscosity are negligible.

4



1.2. Numerical flow simulation

For such flows, the results of the Euler and the Navier-Stokes equations are
virtually identical to each other and this justifies the use of the simpler Euler
equations that are easier to handle from a numerical point of view. But once
viscosity is getting more important, the Euler equations give wrong results and
it is necessary to switch to the Navier-Stokes equations.
To make things even more complex, both sets of equations can be used in a
compressible or incompressible formulation characterized by different underly-
ing physical assumptions. In the case of a compressible flow, the conservation
equations for mass, momentum and energy are coupled and the resulting sys-
tem is closed by an equation of state that relates pressure, density and internal
energy to each other and therefore thermodynamically characterizes a fluid.
For the incompressible flow equations, hydrodynamics is decoupled from ther-
modynamics. This corresponds to the decoupling of the energy equation from
the mass and momentum conservation equations. The incompressible flow
equations only take into account hydrodynamic effects, as only the mass and
momentum equations are solved. This separates internal and kinetic energy
from each other and the incompressible fluid is not described by an equation of
state. The energy equation finally degenerates to a transport equation in the
absence of heat conduction.
Furthermore, the role of pressure is different for compressible and incompress-
ible flows. In the compressible flow regime, the pressure has a hydrodynamic
and a thermodynamic meaning, it has to obey an equation of state. For an in-
compressible flow, the pressure loses its thermodynamic importance as there is
no equation of state. It is of purely hydrodynamic nature and has to guarantee
that the zero divergence constraint of the velocity is satisfied.
All these simplifications for the incompressible regime are justified if the flow
is dominated by hydrodynamic effects as it is the case for low speed flows with
small pressure and temperature gradients.
From a mathematical perspective, the difference between the compressible and
the incompressible flow equations is also of interest. The inviscid compress-
ible equations are of hyperbolic nature while their incompressible counterpart
is hyperbolic-elliptic. This has direct consequences on the physical phenom-
ena that are captured by the equations. The propagation of pressure waves
can be described with the hyperbolic compressible equations. However, the in-
compressible flow equations are of elliptic nature implying that pressure waves
move infinitely fast and that they cannot be simulated in this context.
This gives a first impression that it is important to know about the basic
assumptions and limitations of the flow equations. Moreover, the different
mathematical properties require different numerical approaches as is pointed

5



1. Introduction

out in the following section.

1.2.1.2. Numerical methods

A lot of different numerical schemes are available for CFD computations. All
of them have their advantages and drawbacks. In the context of this thesis,
the interest is in the simulation of compressible and incompressible flows and
for this purpose, the flow solvers can be classified into two categories: density-
and pressure-based methods.

Incompressible flows are solved with pressure-based approaches. For such a
method, pressure is the primary variable. Usually, a Poisson equation for pres-
sure is solved and the velocity update is performed on the basis of the new
pressure values [1, 2]. In contrast, a density-based solver is commonly em-
ployed to solve the compressible flow equations. These methods use density as
primary variable and solve the conservation equations of mass, momentum and
energy. Pressure is then determined via density and energy that are inserted
into the equation of state.

With respect to the spatial and temporal discretization, the two approaches dif-
fer as well. While a collocated grid arrangement is used for the density-based
solvers, many pressure-based methods use a staggered grid arrangement that
facilitates the evaluation of the pressure Poisson equation [3]. The temporal
discretization is usually purely explicit or implicit for the density-based meth-
ods. Pressure-based methods often employ a semi-implicit time discretization
where the convective terms are treated in an explicit manner while the elliptic
Poisson equation has to be solved in an implicit way.

In general, density-based schemes have problems to approach the incompress-
ible limit. This limit is singular, the role of pressure changes, kinetic and inter-
nal energy are decoupled and the system of equations gets stiff. It is possible
to avoid this stiff behavior introducing an asymptotic expansion of the pres-
sure [4–7] and corresponding numerical schemes have already been proposed
in literature [7–11]. They allow the extension of incompressible pressure-based
flow solvers to the compressible regime. The so-called multiple pressure vari-
ables (MPV) approach [7,10,11] is such a method and it is used in the following
to compute compressible flows with a pressure-based method.

1.2.1.3. Numerical simulations

In a last step, the numerical methods are applied to the real world phenomenon
of interest by starting the computation. The corresponding computational re-

6



1.3. Direct numerical simulation of two-phase flows with interface resolution

sults can then be post-processed and visualized and the outcome may be inter-
preted physically. For this interpretation, the above discussed simplifications
and characteristics of the numerical schemes have to be kept in mind.
In the case of the present work, one- and three-dimensional simulations have
been performed. Their focus has been on the validation and verification of
the developed numerical methods for two-phase flows and not on large scale
high performance computing. For some of the one-dimensional calculations,
exact analytical solutions have been available and they are compared to the
numerical results in order to assess the computational methods.

After this general description of the CFD simulation process, the following
section provides a more detailed introduction to the DNS of two-phase flows
including the resolution of the material interface.

1.3. Direct numerical simulation of two-phase flows with
interface resolution

The simulation of multiphase flows is characterized by large jumps in the ma-
terial properties across the interface separating two phases. An additional
difficulty is the resolution and tracking of the interface itself. Both issues are
of crucial importance for incompressible and compressible flows.

A lot of work has already been done in the field of interface tracking. Different
methods have been introduced, each of them has its specific strengths and
weaknesses. Following [12] the schemes can be grouped into two categories, the
first group consists of the so-called moving and adaptive grid methods and the
second group comprises the fixed grid methods.

For a moving grid method, the grid cell boundaries are always aligned to the
interface. This allows to accurately separate the different phases from each
other. Every grid cell only contains one fluid type and the solution of the
corresponding flow equations can be done separately for each fluid. The in-
teraction between the fluids is controlled by explicit jump conditions at the
interface location. A variety of such schemes can be found in [12] and more
recently Nguyen et al. [13] proposed a discontinuous Galerkin (DG) method on
adaptive, interface-aligned grids. A considerable disadvantage of such meth-
ods is the constant remeshing that has to be performed when the interface is
moving, as the mesh generation is quite expensive and cumbersome. Topology
changes like they occur during the breakup and merging of interfaces are also
very difficult to handle for these methods.

For the fixed grid methods the interface is not aligned to the cell boundaries.
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Different classes of fixed grid methods exist. In particle methods, marker parti-
cles are placed at the location of the interface. These particles are advected by
the fluid velocity in a Lagrangian way [12,14]. The interface can be tracked ac-
curately by this approach, but the treatment of interface breakup and merging
is difficult. Another widespread method for incompressible flows is the volume
of fluid (VOF) approach of Hirt and Nichols [15] described in more detail in
section 2.7.1. The basic idea of the VOF method is to indirectly capture the
interface by tracking the volume fraction of the different phases. The interface
geometry has then to be reconstructed on the basis of the volume fractions.
This method can only be applied to incompressible flows in its original form, as
it is based on volume conservation that is not guaranteed for compressible flows.
The level set approach [16,17] (cf. section 2.7.2 for more details) represents the
interface by the zero level set of a continuous function that is often equivalent
to a signed distance function in relation to the interface. This method also
captures the interface in an indirect way, but it is applicable to incompress-
ible as well as compressible flows. It can easily be implemented numerically,
however special care has to be taken in order to guarantee that the level set
function remains a distance function during the computation [17]. Moreover,
the level set method is known to be not strictly mass-conserving. So far, a
lot of effort has been spent to improve the mass conservation properties of the
level set method. The proposed remedies include the discretization of the level
set function by a high-order numerical scheme [18,19] as well as the use of local
grid refinement in the vicinity of the interface [20,21]. There also exist level set
methods for incompressible flows that use the VOF method to minimize the
mass losses [22–24].
There are various physical phenomena that are linked to the interface topol-
ogy and its location, like surface tension and evaporation. The effects of the
capillary forces can be included in the incompressible flow equations using well-
established surface tension models [25, 26]. However, special attention has to
be paid to a correct, balanced-force implementation of the models in order to
prevent unphysical spurious velocities [27]. These spurious currents are caused
by discretization errors of the surface tension force and an inaccurate estima-
tion of the surface curvature. In the context of this work, the implementation
of a balanced-force surface tension model is presented that effectively reduces
the spurious currents by several orders of magnitude. It follows the discretiza-
tion of François et al. [27] and uses a curvature estimation based on the height
function approach of Popinet [28].
For incompressible flows thermodynamic effects are not taken into account by
the flow equations and therefore evaporation processes cannot be described by
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an equation of state and have to be modeled [29]. However, this modeling is
only admissible in a certain range of temperature and pressure. Once there are
important temperatures and pressures, the compressible flow equations have to
be used in order to correctly simulate the flow under extreme ambient condi-
tions. In the following, the differences between incompressible and compressible
two-phase flow simulations are addressed.
The DNS of two-phase flows including the resolution of the material interface
is often performed on the basis of the incompressible Navier-Stokes equations.
Typical technical applications concern droplets in an air environment at ambi-
ent pressure. In such a configuration, the liquid itself can be considered to be
almost incompressible. Usually, the droplets are moving at low speed, such that
the compressibility of the gas can also be neglected. Under these circumstances
the use of the incompressible flow equations is justified: kinetic and internal
energy are decoupled resulting in the separation of thermodynamics and hy-
drodynamics. In the absence of phase change, such flows are dominated by
hydrodynamics and an equation of state is not needed as the thermodynamic
state of the fluid is virtually constant. However, in the case of droplets at high
speed at least the gaseous phase should be described by the compressible flow
equations.
If the propagation of pressure waves inside the droplet is not of interest, it might
be favorable to treat the liquid as incompressible while the compressibility
effects are only taken into account in the gas phase. Such a treatment avoids
small time steps as the fast pressure waves inside the liquid are not resolved
by the numerical scheme and therefore do not slow down the computation.
In the course of this work, a fundamental one-dimensional investigation for
such a compressible-incompressible coupling is carried out in the absence of
phase change and surface tension. The incompressible liquid domain can be
described by the analytical solution of the one-dimensional incompressible Euler
equations. The coupling to the compressible flow is established in an iterative
way, based on jump conditions for pressure and velocity across the interface and
the solution of a half-Riemann problem on the compressible side of the interface.
At the interface location, the coupling algorithms deliver the numerical flux
terms to the adjacent compressible flow solver, similar to a boundary condition.
To take care of the different meaning that pressure has for compressible and
incompressible flows, the pressure decomposition of the MPV approach is used
[7, 10, 11]. Different coupling schemes are presented taking into account the
effects of hydrodynamics, thermodynamics and a combination of both.
In the context of fuel injection processes, more extreme ambient conditions have
to be faced that are characterized by an augmented pressure and temperature.
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Especially for strong pressure and temperature gradients in the flow field, the
thermodynamic description of the fluids by an equation of state can no longer
be neglected and has to be taken into account by the numerical simulation in
order to get accurate results. This requires the use of the compressible flow
equations for both phases.
For the simulation of fully compressible multiphase flows additional difficulties
come into play. Besides the large jumps in the material properties, the equation
of state is different on either side of the material interface. As the fluids can
differ significantly in their properties, their equations of state are also very
dissimilar in nature. In this context, problems may arise due to the numerical
smearing of the density across the material interface. The interface represents a
contact discontinuity that is smeared over several grid cells by standard shock-
capturing schemes. When the smeared density is inserted into the different
equations of state an unphysical pressure is caused. From a mathematical
point of view, this represents a stiff problem and the change in the equation
of state is very challenging as it results quite often in spurious pressure and
velocity oscillations in the vicinity of the interface. To prevent these oscillations
several interface treatment approaches have been derived that can be grouped
into two categories: diffuse and sharp interface methods.
Sharp interface approaches treat the interface as a distinct discontinuity. This
is equivalent to a discontinuous transition in material properties and in the
equation of state. A very popular sharp interface approach is the ghost fluid
method of Fedkiw et al. [30]. The basic idea of the scheme is to solve two
single-phase Riemann problems at the location of the interface in order to
avoid problems with unphysical intermediate density values. For this purpose,
the interface is tracked by a level set method and ghost cells are introduced in
the vicinity of the interface. The ghost values are computed using an entropy
based extrapolation and finally a standard Riemann solver can be used to
compute the fluxes at the material interface. This approach is oscillation-free
for general equations of state and density ratios. However, Liu et al. showed
that the method has problems to handle strong shocks and they proposed a
more robust ghost fluid approach in [31].
On the contrary, the basic idea of diffuse interface methods is a smooth tran-
sition between two fluids including a numerical mixing of fluid properties. The
difficulty for such methods is to establish a mathematically, physically and nu-
merically consistent mixing. Especially with regard to the different equations of
state, the transition has to be realized in a thermodynamically consistent way.
The diffuse interface methods can be sub-divided into rather simple methods
using a single velocity and pressure distribution in the whole computational
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domain for both fluids (one-pressure, one-velocity models) and the more elab-
orated two-pressure, two-velocity approaches.
Such a one-velocity, one-pressure-model has for example been proposed by
Karni, who developed a nonconservative numerical method for the Euler equa-
tions in primitive variables [32]. The approach eliminates the spurious os-
cillations, but due to its conservation errors it is only applicable to shocks of
moderate strength. For one-dimensional flows obeying the perfect gas equation
of state, Abgrall presented a numerical approach that solves the conservation
equations and imposes further conditions on the energy that guarantee that
the pressure stays constant across the interface [33]. Given these additional
conditions, the scheme is also not fully conservative, but it still allows the cal-
culation of strong shock waves. Saurel and Abgrall extended this method in [34]
to multi-dimensions and the more general stiffened gas equation of state that
allows the simulation of multiphase problems with liquid and gaseous phases.
As is obvious, these models often contain limiting assumptions with respect to
their conservation properties and the equations of state that can be used.
A class of more general and sophisticated diffuse interface methods are the
two-pressure, two-velocity models that solve the conservation laws for mass,
momentum and energy by individual equations for each fluids, where the cou-
pling is established by nonconservative terms in the conservation equations.
These schemes build on the Baer-Nunziato model introduced in [35] to de-
scribe the deflagration-to-detonation transition in reactive granular materials.
Since then, a lot of effort has been put into the enhancement of this approach
giving rise to several derivatives of the original method, as they are described
for example in [36,37].
The DNS of compressible multiphase flows is still a very active field of research,
where numerous approaches are proposed by several researchers. While there
are various ways of treating the interface including the jump in material prop-
erties and the equation of state, the majority of the numerical schemes builds
upon a density-based flow solver for the underlying flow equations. In contrast,
the focus of this thesis is on the DNS of compressible multiphase flows with a
pressure-based method.
For this purpose, the MPV method for single-phase flows is extended to the
compressible flow regime in the context of multiphase flows. The numerical
approach for the extension can be considered as a mixture of diffuse and sharp
interface treatment. On the one hand, the thermodynamic transition between
the fluids is happening in a sharp manner. On the other hand, the density
is numerically smeared. Due to the pressure-based approach, pressure is used
as primary variable and this facilitates the prevention of unphysical pressure
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oscillations at the interface, as it will be shown. The presented MPV method for
multiphase flows can be used to extend incompressible multiphase flow solvers
to the compressible regime.

1.4. Objectives

The principal objective of this work is the development of a pressure-based
numerical approach for the simulation of compressible multiphase flows. In
this context, the following aspects are covered:

• Starting from an existing incompressible multiphase code, the modeling
of surface tension and the reduction of parasitic currents are addressed
in the context of the incompressible Navier-Stokes equations.

• The relationship between the compressible and the incompressible flow
equations is investigated. Fundamental one-dimensional investigations
are performed to derive procedures for the coupling of compressible and
incompressible flow regions.

• The main focus is on the extension of the pressure-based MPV method
to the DNS of compressible two-phase flows including the resolution of
the interface.

• The MPV scheme is assessed with respect to single- and two-phase flows.

According to the above introduced simulation chain (cf. Fig. 1.1), this includes
work in all of the different fields: The physical and mathematical modeling is
addressed by the fundamental investigations for the coupling of compressible
and incompressible flow regions. The numerical methods are covered by the in-
vestigations concerning the MPV method and its extension to two-phase flows.
Moreover, surface tension is related to the physical as well as to the numerical
modeling. Finally, the MPV method is assessed by numerical simulations.

1.5. Outline

The outline of this thesis is as follows: In the next chapter the governing equa-
tions of this work are introduced and it is shown how the transition from the
compressible to the incompressible flow regime can be made. Chapter 3 deals
with a fundamental investigation of the coupling of compressible and incom-
pressible flow regions. The differences between the two flow regimes with re-
spect to the physical and mathematical background are discussed and iterative
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coupling procedures are presented in one space dimension. Chapter 4 intro-
duces the numerical schemes that are used and extended in this work. This
comprises the incompressible FS3D code, including the numerical treatment
of surface tension, and the pressure-based MPV method for compressible and
incompressible flows with its extension to compressible multiphase flows. The
computational results of the numerical schemes in one and three space dimen-
sions are shown and discussed in detail in chapter 5. Chapter 6 summarizes
this thesis and provides open questions and an outlook on future work.
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2. Equations

The governing equations are introduced in the following. This includes the
Euler equations in compressible and incompressible form as well as the incom-
pressible Navier-Stokes equations.

Special attention is paid to the transition from the compressible to the incom-
pressible flow regime. For this purpose an asymptotic pressure decomposition
is introduced to avoid the otherwise singular incompressible limit of the flow
equations. The one-dimensional Euler equations in the zero Mach number
limit are looked at in more detail, as they can be solved analytically. The cor-
responding solutions for a perfect gas and a Tait fluid are presented. For the
incompressible three-dimensional flow regime, the Navier-Stokes equations are
given for two-phase flows and the pressure jump due to surface tension at ma-
terial interfaces is discussed. In the context of the DNS of two-phase flows, two
interface tracking methods are described: the VOF approach for incompress-
ible flows and the level set method for incompressible as well as compressible
flows.

2.1. The compressible Euler equations

The three-dimensional conservation equations for mass, momentum and total
energy are known in compressible gas dynamics as the Euler equations and
they describe inviscid flows without gravitational and external forces and heat
conduction

∂ρ

∂t
+∇ · (ρ~v) = 0 , (2.1)

∂(ρ~v)

∂t
+∇ · [(ρ~v) ◦ ~v] +∇p = 0 , (2.2)

∂e

∂t
+∇ · [~v (e+ p)] = 0 . (2.3)

Here, ρ denotes the density, p the pressure, ~v the velocity, t the time and e
the total energy per unit volume. The total energy e consists of the internal
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energy ε and the kinetic energy

e = ρε+
1

2
ρ |~v|2 . (2.4)

The system (2.1)-(2.3) has to be closed with an equation of state that relates
pressure to density and internal energy. For gaseous fluids the perfect gas
equation of state is well-known

p = (γ − 1)(e− ρ

2
|~v|2), (2.5)

with γ being the adiabatic exponent. In the above formulation, the internal
energy already has been replaced by the total energy minus the kinetic energy.
For liquids like water, the Tait equation of state is frequently applied

p = (γ − 1)(e− ρ

2
|~v|2)− γ(k0 − p0), (2.6)

where p0 is a reference pressure and k0 determines the compressibility of the
fluid. However, there also exists the so-called stiffened gas equation of state [34]
that combines the two previous equations (2.5)-(2.6) and that is used in the
following

p = (γ − 1)(e− ρ

2
|~v|2)− γp∞. (2.7)

The constant p∞ characterizes the compressibility of the fluid. It is obvious
that equation (2.7) includes the perfect gas equation of state (2.5) by choosing
p∞ = 0 as well as the Tait fluid equation of state (2.6) for p∞ = (k0−p0). The
Tait equation of state is also known in the following form that does not include
the energy variable

p = k0

((
ρ

ρ0

)γ
− 1

)
+ p0, (2.8)

with ρ0 as reference density.

2.2. The incompressible Euler equations

For the incompressible case, the three-dimensional Euler equations reduce to
the conservation of mass and momentum

∂ρ

∂t
+∇ · (ρ~v) = 0 , (2.9)

∂(ρ~v)

∂t
+∇ · [(ρ~v) ◦ ~v] +∇p = 0 . (2.10)
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The energy equation (2.3) is not needed to describe the flow field, as internal
energy and kinetic energy are decoupled for isothermal flows. This corresponds
to the decoupling of thermodynamics and hydrodynamics and therefore an
equation of state is not present in the case of incompressible flows.

For an incompressible flow, the material derivative of the density is equal to
zero:

Dρ

Dt
=
∂ρ

∂t
+ ~v · ∇ρ = 0. (2.11)

The mass conservation equation (2.9) can be rewritten in terms of the material
derivative

Dρ

Dt
+ ρ∇ · ~v = 0, (2.12)

such that it is obvious that for an incompressible flow with Dρ
Dt

= 0 the mass
conservation equation reduces to a divergence constraint for the velocity field

∇ · ~v = 0. (2.13)

For homogeneous incompressible fluids, the different parts of the material
derivative are even independently equal to zero:

∂ρ

∂t
= 0, (2.14)

∇ρ = 0. (2.15)

However, the two parts do not have to be equal to zero simultaneously and
therefore the density does not necessarily have to be constant. An example for
an incompressible flow with varying density are density stratifications in the
ocean.

Furthermore, the incompressible, zero Mach number limit of the compressible
Euler equations shows that the density is also allowed to vary temporally while
it is spatially constant in the considered control volume. This is equivalent to
a global compression of the control volume and results in a nonzero divergence
constraint for the velocity. This notion of a zero Mach number flow is intro-
duced in detail by the following asymptotic considerations for the transition
from the compressible to the incompressible regime and the corresponding zero
Mach number equations.
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2.3. The transition from compressible to incompressible
flow

For small Mach numbers M → 0 the compressible equations (2.1)-(2.3) ap-
proach the incompressible limit case. However, the incompressible limit of the
above system is singular as the speed of sound and the flow velocity differ by
several orders of magnitude. The singular behavior is more obvious from the di-
mensionless compressible Euler equations that are obtained using the following
set of non-dimensional variables:

x′ =
x

xref
, ρ′ =

ρ

ρref
, ~v′ =

~v

|~vref |
, p′ =

p

pref
, t′ =

t |~vref |
xref

, (2.16)

where the subscript ref denotes the reference values and ′ marks the dimen-
sionless variables.

Usually, the compressible equations are non-dimensionalized choosing the refer-
ence pressure as pref = ρref |~vref |2. However, in the present case the pressure
is attributed an independent reference value to take into account the scale dif-
ferences of fluid velocity and speed of sound when the incompressible limit is
approached. While the fluid velocity has its own reference velocity ~vref the
speed of sound is non-dimensionalized by

cref =

√
pref
ρref

. (2.17)

Together with the reference velocity ~vref , a parameter called global flow Mach
number M can be introduced

M =
|~vref |√
pref/ρref

, (2.18)

that determines the compressibility of the flow. The parameter M directly
relates the reference velocities for the flow velocity ~vref and the speed of sound
cref that are of the same order of magnitude for compressible flows, hence the
Mach number parameter is equal to one. For incompressible flows, the Mach
number parameter tends to zero as the speed of sound approaches infinity.

Inserting these non-dimensional variables into the Euler equations (2.1)-(2.3),
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the following system is obtained

∂ρ′

∂t′
+∇ · (ρ′~v′) = 0 , (2.19)

∂(ρ′~v′)

∂t′
+∇ ·

[
(ρ~v′) ◦ ~v′

]
+

1

M2
∇p′ = 0 , (2.20)

∂e′

∂t′
+∇ ·

[(
e′ + p′

)
~v′
]

= 0 . (2.21)

The non-dimensional conservation equations for mass and energy still look the
same, but the Mach number parameter M appears in the momentum equa-
tion (2.20). It is obvious that the equation is stiff for small values of M and
that the incompressible limit M → 0 is even singular and has to be further
investigated. The superscript ′ of the dimensionless variables is omitted in the
following.

2.3.1. Asymptotic pressure decomposition

In order to get more insight into the incompressible limit, an asymptotic expan-
sion of the primitive flow variables ~W in dependence of the global flow Mach
number has been introduced by several authors in literature [4–6]

~W = ~W (0) +M ~W (1) +M2 ~W (2) + . . . with ~W = (ρ,~v, p). (2.22)

The asymptotic considerations for the low Mach number limit show that the
leading order terms of density and velocity converge to their incompressible
counterpart. Whereas the pressure splits into two main parts in dependence of
the global Mach number M :

p(~x, t) = p(0)(t) +M2p(2)(~x, t). (2.23)

The leading order pressure term p(0) is spatially constant and satisfies the equa-
tion of state in the limit case M = 0. It may be considered as a thermodynamic
background pressure in such a zero Mach number region. The pressure p(2) is
the hydrodynamic pressure of the M = 0 limit equations and guarantees the
divergence constraint for the velocity.
The pressure decomposition is now introduced into the Euler equations (2.19)-
(2.21). From the momentum equation (2.20) it can be seen that due to the pres-
sure splitting, the term 1

M2∇p in the compressible equations remains bounded

in the zero Mach number limit and tends to ∇p(2). In order to further clarify
the incompressible limit, the compressible energy equation (2.21) is written in

19



2. Equations

terms of pressure and kinetic energy. For this purpose, the non-dimensional
stiffened gas equation of state is used that relates pressure and internal energy
to each other

p = (γ − 1)(e−M2 ρ

2

∣∣~v2
∣∣︸ ︷︷ ︸

ekin

)− γp∞. (2.24)

Replacing the total energy in equation (2.21) with the help of the above equa-
tion of state and introducing the pressure decomposition of equation (2.23) into
the Euler equations, they may be written as

∂ρ

∂t
+∇ · (ρ~v) = 0 , (2.25)

∂(ρ~v)

∂t
+∇ · [(ρ~v) ◦ ~v] +∇p(2) = 0 , (2.26)

∂

∂t

(
p(0) +M2p(2) + (γ − 1)M2ekin

)
+

∇ ·
[
~v
(

(γ − 1)M2ekin + γ(p(0) +M2p(2) + p∞)
)]

= 0 . (2.27)

This is a pure reformulation of the Euler equations (2.1)-(2.3) with the pressure
decomposition of equation (2.23) under the assumption of a given background
pressure p(0)(t). The incompressible limit equations are now easily obtained by
letting M tend to zero (M → 0):

∂ρ

∂t
+∇ · (ρ~v) = 0 , (2.28)

∂(ρ~v)

∂t
+∇ · [(ρ~v) ◦ ~v] +∇p(2) = 0 , (2.29)

∂

∂t

(
p(0)
)

+∇ ·
(
γ(p(0) + p∞)~v

)
= 0 . (2.30)

These zero Mach number limit equations include the possibility for changes
of the background pressure and density in time due to a compression from
the boundary. Both quantities are always constant in space. If no compression
from the boundary occurs, then the thermodynamic pressure becomes constant
in space and time and equation (2.30) is equal to the divergence-free constraint
of equation (2.13). Moreover, the system of equations (2.28)-(2.30) is then
equivalent to the incompressible Euler equations (2.9)-(2.13).
The asymptotic considerations of Klainerman et al. [6] concerning the transition
from the compressible to the incompressible flow regime have been derived for
isentropic flows. They have been extended to non-isentropic flows by Klein [7]
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in order to take into account variable densities and a temporal variation of the
background pressure in the zero Mach number limit. On the basis of these
considerations, Munz et al. derived the multiple pressure variables approach
(MPV) in primitive [10] and conservative [11] formulation. Basically, the MPV
method builds on the pressure decomposition of equation (2.23) that is now
discussed in more detail.

2.3.1.1. The background pressure p(0)

Following [11], a few remarks can be made on the background pressure p(0).
First of all, it is spatially constant but allowed to change over time. In the
incompressible limit, it is the background pressure p(0) that formally satisfies an
equation of state such that the singular incompressible limit of the compressible
flow equations can be avoided. The background pressure p(0) can be defined as
the spatially averaged pressure in the computational domain Ω

p(0)(t) =
1

|Ω|

∫
Ω

pdΩ. (2.31)

The temporal evolution of the background pressure p(0) is described by the en-
ergy equation (2.27). For this purpose it has to be reformulated into a pressure
equation using the mass equation (2.25) and the momentum equation (2.26)

∂p(0)

∂t
+ γ(p(0) + p∞)∇ · ~v = 0. (2.32)

The background pressure p(0) is constant in space but is allowed to vary over
time such that the above equation can be rewritten as

dp(0)

dt
= −γ(p(0) + p∞)∇ · ~v. (2.33)

As a next step the Gauss theorem is applied to the divergence operator

∇ · ~v =

∫
∂Ω

(~v · ~n)dA, (2.34)

where ~n is the unit normal vector that is directed outward on the boundary ∂Ω.
This integral describes the effects of a global compression of the domain Ω. If
the domain boundaries are in a relative motion to each other, the background
pressure changes due to a compression from the boundaries.
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Finally, the equation for the temporal evolution of p(0) is obtained by averag-
ing equation (2.33) in space over the domain Ω and by replacing the velocity
divergence by the Gauss theorem following equation (2.34)

dp(0)

dt
= −γ(p(0) + p∞)

|Ω|

∫
∂Ω

(~v · ~n)dA. (2.35)

The equations (2.33) and (2.35) allow the formulation of a divergence constraint
for the velocity ~v

∇ · ~v =
1

|Ω|

∫
∂Ω

(~v · ~n)dA. (2.36)

It is evident that the divergence of the velocity directly depends on a surface
integral over the domain boundaries and therefore on the effects of outer com-
pression due to a relative motion of the domain boundaries. In the absence of
any outer compression, the surface integral vanishes and the incompressible,
divergence-free constraint for the velocity is recovered

∇ · ~v = 0. (2.37)

In the context of such a classical incompressible flow, p(0) is not only constant
in space but also in time according to equation (2.35).

2.3.1.2. The hydrodynamic pressure p(2)

In the asymptotic context, the hydrodynamic pressure p(2) helps to avoid the
singular limit of the momentum equation (2.20). Moreover, it has to guarantee
the zero divergence constraint for the velocity in the case of incompressible
flows.
The hydrodynamic pressure p(2) is the primary variable of the numerical scheme
resulting in the solution of a Poisson equation for p(2). For compressible flows,
the sum of p(0) and p(2) has to satisfy an equation of state.

2.4. One-dimensional solution of the Euler equations in
the zero Mach number limit

In the following, the focus is on the one-dimensional Euler equations for which
analytical solutions for a perfect gas and a Tait fluid can be derived in the
spatial domain Ω = [a, b] in the zero Mach number limit. The one-dimensional
scalar velocity is simply denoted v subsequently. A local coordinate x is intro-
duced whose origin is located at the left boundary of Ω. Moreover, according to
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the asymptotic expansion (2.22) the density is decomposed into a background
density ρ(0) and a density ρ(2) that includes density changes due to hydrody-
namic effects

ρ(~x, t) = ρ(0)(t) +M2ρ(2)(~x, t). (2.38)

Together with the pressure decomposition of equation (2.23) the asymptotic
expansion of the density is inserted into the Euler equations for the subsequent
investigations. The leading order pressure and density terms p(0) and ρ(0)

satisfy the equation of state in the limit case M = 0. This zero Mach number
regime is considered in more detail in one space dimension in the following.

2.4.1. Perfect gas

The zero Mach number Euler equations (2.28)-(2.30) are reduced to one space
dimension for the perfect gas, setting p∞ = 0. The density ρ(0) is assumed to
be constant in space, but may vary in time according to a compression from the
boundaries like it is the case for the pressure p(0). Under these assumptions,
the equations (2.28)-(2.30) can finally be written as

ρ
(0)
t = −ρ(0)vx, (2.39)

vt + vvx = − 1

ρ(0)
p(2)
x , (2.40)

vx = − 1

γp(0)

dp(0)

dt
, (2.41)

where the subscripts x and t designate the corresponding partial spatial and
temporal derivatives. Equation (2.41) shows that the original energy equation
drastically simplifies in the one-dimensional M → 0 case and reduces to an
evolution equation for the background pressure p(0).
Starting from the equations above, the analytical solution can be determined
in the domain Ω. From equation (2.41), the time dependent solution of the
background pressure p(0) for a perfect gas in the limit case M → 0 is obtained
as

p(0)(t) = p(0)(t = 0) · e−γ
∫ t
0
vb(τ)−va(τ)

|Ω| dτ
, (2.42)

where va and vb designate the velocities at the left and the right boundary of
the M = 0 region Ω = [a, b]. Furthermore, as the pressure p(0) only depends
on time it is evident from equation (2.41) that the velocity gradient is always
spatially constant and therefore the velocity field has to be linear in space

v(x, t) = va(t) +
x

|Ω| (vb(t)− va(t)). (2.43)
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2. Equations

The relation for the background density ρ(0) results from equation (2.39) as

ρ(0)(t) = ρ(0)(t = 0) · e−
∫ t
0
vb(τ)−va(τ)

|Ω| dτ
. (2.44)

In a last step, the momentum equation (2.40) can be reformulated to calculate
the hydrodynamic pressure p(2)

p(2)
x = −ρ(0)(vt + v · vx). (2.45)

Insertion of equation (2.43) and a final integration with respect to x finally lead
to

p(2)(x, t) = −ρ(0)(t)
(

(va)t + va
vb−va
|Ω|

)
x−

ρ(0)(t)
2|Ω|

(
(vb)t − (va)t + (vb−va)2

|Ω|

)
x2. (2.46)

The pressure p(2) is determined by equation (2.46) up to an integration con-
stant. This constant depends on the pressure boundary conditions. In a general
case without pressure boundary conditions, any constant pressure can be added
to p(2) and in equation (2.46) the integration constant is simply chosen to be
zero.

In the end, the solutions for the spatially constant background pressure p(0)(t)
and density ρ(0)(t) are obtained, as well as the relation for the temporal and
spatially variable hydrodynamic pressure p(2)(x, t). In all the cases, the knowl-
edge of the velocity at the domain boundaries is a prerequisite to evaluate
the relations for density and pressure, whereas the solution of p(2)(x, t) also
depends on the temporal derivative of the velocity.

2.4.2. Tait fluid

Similar to the above derivations for the perfect gas, the zero Mach number Euler
equations can also be solved analytically using the Tait equation of state (2.6).
For this purpose, the non-dimensional stiffened gas equation of state (2.24)
with p∞ = (k0 − p0) is used.
The change of the equation of state only affects the energy equation. Finally,
the one-dimensional version of the equations (2.28)-(2.30) is written as follows
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2.5. The incompressible Navier-Stokes equations for two-phase flows

for the Tait equation of state

ρ
(0)
t = −ρ(0)vx, (2.47)

vt + vvx = −1

ρ
p(2)
x , (2.48)

vx = − 1

γ(p(0) + k0 − p0)

dp(0)

dt
. (2.49)

The exact solution for the pressure p(0) is obtained in an analogous way to the
perfect gas case

p(0)(t) = p0 − k0 + (p(0)(t = 0)− p0 + k0) · e−γ
∫ t
0
vb(τ)−va(τ)

|Ω| dτ
. (2.50)

Since the change in the equation of state only influences the energy equation, it
is just the relation for the pressure p(0) that has to be adapted, while the solu-
tions for the density ρ(0) (cf. equation (2.44)) and the hydrodynamic pressure
p(2) (cf. equation (2.46)) stay unchanged.

2.5. The incompressible Navier-Stokes equations for
two-phase flows

The incompressible Navier-Stokes equations for two-phase flows are given by
the continuity equation and the momentum equation

∇ · ~v = 0, (2.51)

∂(ρ~v)

∂t
+∇ · (ρ~v) ◦ ~v = −∇p+ ρ~k +∇ · µ[∇~v + (∇~v)T ] +

~fγδS . (2.52)

Here µ is the dynamic viscosity, ρ~k takes into account body forces, the term ~fγ
is a body force that represents the influence of surface tension in the vicinity of
the interface and δS is a delta function concentrated on the surface. Apart from
the volume force ~fγ for the surface tension, the momentum equation (2.52) re-
sembles that of a single-phase flow. This is the so-called one-fluid formulation
for incompressible two-phase flows where the coupling of the two fluids is pro-
vided by variable material properties ρ and µ and the surface tension term ~fγ
that acts at the interface location [38].
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2. Equations

2.6. Surface tension

At an interface separating two immiscible fluids a pressure jump

p2 − p1 ≡ ∆p = σκ, (2.53)

appears according to the Young-Laplace equation [39]. Here σ is the surface
tension coefficient and κ represents the curvature that is defined as

κ = −∇ · ~n, (2.54)

with ~n being the surface normal pointing from the fluid to the gas phase. Hence,
surface tension is directly proportional to the curvature κ in the present case,
as σ is taken to be constant. Several numerical models have been developed
in order to include surface tension into the incompressible Navier-Stokes equa-
tions.
As is obvious from equation (2.52), for incompressible flows surface tension is
accounted for as a volume force in the momentum equation. Due to the delta
function δS the corresponding force ~fγ on the right-hand side of the equation
is only present at the interface while it vanishes in grid cells away from the
interface.

2.7. Interface tracking methods

For the DNS of two-phase flows, the interface location and resolution is of
crucial interest. Therefore, an additional transport equation is introduced to
describe the movement of the material interface between the two fluids. There
are several well-established interface tracking schemes that have already been
introduced briefly in section 1.3. In the following the VOF and the level set
method are presented, that are both used in this work.
The VOF method has originally been designed for incompressible flows as the
density field is reconstructed from the volume fractions at each time step. For
a VOF extension to compressible flows, especially in cells containing gas and
liquid, the determination of density and internal energy of the two fluids has
to be done applying special methods [34,40]. The level set method can directly
be applied to compressible as well as incompressible flows.

2.7.1. The volume of fluid (VOF) method

The volume of fluid method was developed by Hirt and Nichols [15]. It is based
on a conservation equation for the volume of the liquid phase and therefore it is
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2.7. Interface tracking methods

suited to incompressible flow simulations. For the representation of the phases,
an additional variable f is introduced which represents the volume fraction of
the liquid phase

f =


0 in the gaseous phase,

0 < f < 1 in cells containing a part of the interface,

1 in the liquid phase.

(2.55)

A two-dimensional example is given by Fig. 2.1.
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(a) Discrete distribution of the
liquid volume fraction f ; interface
location unknown.
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(b) Interface is linearly recon-
structed following the PLIC ap-
proach.

Figure 2.1.: Representation of the fluid phases by the volume fraction variable
f of the VOF method.

The movement of the interface is tracked via the transport of the volume frac-
tion f by the following transport equation

∂f

∂t
+ ~v · ∇f = 0. (2.56)

For incompressible flows, the equation can be reformulated in a conservative
way because of the divergence constraint for velocity ∇ · ~v = 0

∂f

∂t
+∇ · (f~v) = 0. (2.57)
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2. Equations

The volume fraction itself only contains the information about the cell average
of the liquid volume, as is obvious from Fig. 2.1(a) and the location of the inter-
face is unknown. Simple advection of the volume fraction f leads to a smearing
of f and therefore of the interface that yet has to be kept sharply resolved.
Thus, at every time step, the interface is linearly reconstructed on the basis of
a piecewise linear interface calculation (PLIC) algorithm [41]. This geometrical
reconstruction is illustrated for the two-dimensional case in Fig. 2.1(b). Based
on the reconstruction, the liquid and gaseous fluxes across the cell faces are
determined and the interface is prevented from being smeared across several
grid cells during the advection.
In the context of the investigations linked to unphysical parasitic currents, the
VOF method is looked at in more detail in section 4.3, especially with respect to
the computation of surface curvature on the basis of the VOF volume fractions.

2.7.2. The level set method

Based on Osher et al. [16], a level set variable Φ is initialized as a signed distance
function with respect to the interface. Hence, its zero level set determines
the interface position. The level set distribution for a spherical droplet with
radius R = 0.25 is illustrated in Fig. 2.2 on a plane through its center. The
initialization as a distance function is obvious, the levels inside the droplet have
a negative sign while they are positive outside.
In order to track the interface movement, the following transport equation in
primitive variables can be used

∂Φ

∂t
+ ~v · ∇Φ = 0. (2.58)

The level set function is advected by the fluid velocity ~v. In the given case,
interface and fluid velocity are equal to each other as phase transition is not
taken into account.
If equation (2.58) is used in the context of a numerical scheme designed for the
solution of conservation laws, it might be more convenient to treat the level set
function in a conservative manner to easily implement it into the solver. For
this purpose, equation (2.58) is modified in the following way

∂Φ

∂t
+∇ · (~vΦ) = Φ∇ · ~v. (2.59)

However, it is obvious that in contrast to the VOF transport equation (2.57) for
incompressible flows, a new term appears on the right-hand side of the equation.
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Figure 2.2.: Level set function Φ for a spherical droplet of radius R = 0.25
(cut through the droplet center).

As the velocity field has a divergence that is different from zero in the case of
compressible flows, this new term has to be taken care of. For incompressible
flows with∇·~v = 0, equation (2.59) is automatically in conservative formulation
as the term on the right-hand side vanishes.
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3. Coupling of compressible and
incompressible flow regions

In the following chapter the development of different iterative methods for the
coupling of compressible and incompressible (zero Mach number) flow regions
in one space dimension is presented. The description follows the investigations
in [42] and the one-dimensional scalar velocity is denoted v in this chapter.

The numerical simulation of multiphase flows that include liquid droplets and
gas is often based on the incompressible Navier-Stokes equations assuming
both fluids to be incompressible. But, there are several applications for which
the treatment as overall incompressible flow becomes inaccurate, such as the
injection and combustion of fuel droplets or shock induced mixing of liquids,
where density changes cannot be neglected at least in the gas phase.

One approach to overcome this problem is to treat gas and liquid both as
compressible fluids. In this fully compressible treatment, the liquid is also
modeled by the compressible flow equations with an appropriate equation of
state. As already discussed in section 1, this coupling bears some difficulty,
because the change of the equation of state at the interface often generates
pressure and velocity oscillations if no special interface treatment is applied
[43]. To prevent such unphysical oscillations, there exist different numerical
schemes that can be classified into diffuse and sharp interface methods (cf.
section 1.3). Considering both fluids as compressible, thermodynamics and
fluid flow are strongly coupled. Additionally, the compressible treatment of
the liquid phase introduces large scale differences in the speed of sound that
is very high in the weakly compressible fluid in comparison to the gas phase.
This represents a severe restriction for the computational time step within an
explicit time approximation or leads to a bad condition number in an implicit
time approximation and finally results in a dramatical increase of computation
time.

There is an alternative to the fully compressible treatment of both phases.
In the case of a sharp interface coupling of compressible and incompressible
domains, both regions can be numerically modeled by appropriate approaches.
But, this is also not too simple because the governing equations are different.
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3. Coupling of compressible and incompressible flow regions

Such an incompressible-compressible coupling was already proposed by Caiden
et al. [44]. They used a sharp interface tracking within a ghost fluid approach
for the coupling. Their coupling conditions are based on the requirement that
velocity as well as pressure are continuous across the material interface. The
pressure on the compressible side is coupled with the hydrodynamic pressure
from the incompressible region.
In the following, a compressible-incompressible coupling is realized on the basis
of the asymptotic pressure decomposition of equation (2.23) introduced for the
zero Mach number limit. The investigations are focused on a detailed study in
one space dimension and give insight into the basic coupling of the two flow
regions without surface tension and dissipative effects.
At first, jump conditions for velocity and pressure across the compressible-
incompressible interface are described. On the basis of these conditions, itera-
tive coupling schemes are presented that connect the solution of a half-Riemann
problem on the compressible side to the analytical solution of the zero Mach
number Euler equations on the incompressible side. The coupling algorithms
are designed to provide the numerical fluxes to the adjacent compressible flow
solver at the compressible-incompressible interface and therefore they act as
boundary condition.

3.1. Jump conditions at a compressible-incompressible
interface

Across an interface between compressible and incompressible flows, the fol-
lowing jump conditions are supposed to hold true in the one-dimensional case
without surface tension, viscosity and mass transfer

[v] = 0, (3.1)

[p] = 0, (3.2)

where the brackets [·] indicate the jump in the enclosed quantity. This is
consistent with the demand for continuity of velocity and pressure across the
interface. The density stays uncoupled and can therefore be discontinuous.

3.2. Two generic examples

In the following, two generic test cases are presented to motivate and assess
the coupling procedures. The first case is dominated by the effects of hydro-
dynamics as the liquid region is accelerated due to a pressure gradient at the
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domain boundaries. The second example describes the pure, symmetric com-
pression of a liquid region and because of the symmetry only half of the domain
is considered.

3.2.1. Hydrodynamic test problem

The focus of the first test is on the hydrodynamic behavior of the incompressible
region and follows the test case configuration of [44]. It describes the hydrody-
namic acceleration of a zero Mach number region by a pressure gradient. For
this purpose, the test setting of Fig. 3.1 is used that shows the setup in the
space-time domain. The pressures, velocities and densities in the different flow
regions are given and denoted by the subscripts l and r for the left and right
compressible flow region. In the vicinity of the interface, the flow variables in
the compressible domain are additionally marked by the superscript ∗.
The incompressible domain is connected to two compressible flow regions,
where there is an initial pressure gradient imposed on the incompressible re-
gion. As pl 6= pr, the incompressible domain is set in motion and the coupling
of the momentum across the interface cannot be neglected. The ∗ values in
the vicinity of the interface are obtained as solution of a half-Riemann prob-
lem. The test case is used to assess two different coupling algorithms. First,
the compressible interface pressure p∗ is coupled to the hydrodynamic pressure
p(2) of the M = 0 region, while the thermodynamic pressure p(0) is neglected.
Then, a second coupling scheme is presented that couples the pressure of the
compressible region to the hydrodynamic pressure p(2) and the thermodynamic
background pressure p(0) of the zero Mach number region.
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Figure 3.1.: Test case setup for the hydrodynamic acceleration of an incom-
pressible domain.
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3.2.2. Pure compression test problem

The second example is a pure compression of a liquid region by a pressure
wave from the compressible region. This example may be thought of as the
compression of a radially symmetric droplet which is compressed by a higher
pressure from outside. The transfer of momentum is neglected and the focus
is solely on the compression of the droplet. Therefore, an acoustic wave is
generated that travels through the compressible region and finally impinges on
the interface between the compressible and the M = 0 region and causes a
compression of the zero Mach number region. To simplify this problem, the
planar case is considered as it is depicted in Fig. 3.2 in the space-time domain.
In contrast to the above test case, this case is not accessible by the approach of
Caiden et al. [44], as they do not take into account any compressibility effects.

Figure 3.2.: Compression of a radially symmetric droplet.

It is obvious from Fig. 3.2 that the problem is symmetric as pl = pr, ρl = ρr,
vl = vr and therefore, only the left half of the domain is considered prescribing
a symmetry boundary condition at the center of the M = 0 domain as it is
displayed in Fig. 3.3. To simulate this test case, an algorithm is presented that
couples the compressible interface pressure p∗ to the thermodynamic pressure
p(0) of the zero Mach number domain. For this coupling, the hydrodynamic
pressure p(2) is neglected and its effects are not taken into account.
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3.3. Iterative coupling procedures

Figure 3.3.: Test case setup for the compression of a radially symmetric
droplet. Only the left half of the original setting is considered
using a symmetry boundary condition.

3.3. Iterative coupling procedures

In the following, three different algorithms are presented for the coupling of a
compressible flow with a zero Mach number flow in one space dimension. While
the compressible flow region is discretized and solved by a numerical scheme,
the zero Mach number region is treated analytically on the basis of the equa-
tions derived in section 2.4. The link between the two different flow domains
is established by the jump conditions of section 3.1 that require the equality of
pressure and velocity across the interface. In general, the interface represents
a boundary of the compressible flow region and the coupling algorithm delivers
the quantities needed for the evaluation of the compressible flux at the interface
location, given in one space dimension by

f =

 ρv

ρv2 + p

v(e+ p)

 . (3.3)

This means that the coupling approaches act like boundary conditions that
prescribe the compressible flux terms. The flux calculation is based on the
evaluation of a half-Riemann problem on the compressible side of the interface
and the analytical equations of the zero Mach number region on the other side
of the interface. The process is controlled by the jump conditions given by the
equations (3.1)-(3.2). The scheme iterates until the equality of pressure and
velocity across the interface is reached.
A schematic of the half-Riemann problem and the two flow regions is given in
Fig. 3.4. It can be seen that the compressible state, marked by the subscript
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Figure 3.4.: Half-Riemann problem at the interface between the compressible
and the zero Mach number flow region.

comp is connected to the zero Mach number flow, indicated by the subscript
M = 0, by the solution of the half-Riemann problem. The evaluation of the
shock or expansion relations on the basis of the compressible flow variables gives
the compressible star state next to the contact discontinuity. According to the
jump conditions, the equality of velocity and pressure has to be guaranteed

v∗ = vM=0, (3.4)

p∗ = pM=0, (3.5)

and this is done by iterating over pressure and velocity solving the half-Riemann
problem and the exact relations for the M = 0 region, until the termination
criterion is satisfied.

The difficulty in the coupling arises due to the fact that the pressure has differ-
ent meanings in the Mach number zero and the compressible region. While in
the compressible region the pressure is coupled with all other variables by the
equation of state, the pressure in the Mach number zero equations splits into
two parts, the spatially constant thermodynamic background pressure p(0) and
the hydrodynamic one p(2). Moreover, in the zero Mach number limit, the con-
nection between the two pressures p(0) and p(2) is lost as they are completely
decoupled from each other. For this reason, the coupling of a compressible to
a zero Mach number region requires assumptions with respect to the pressure
coupling.

Three different schemes have been developed that differ in the way the hy-
drodynamic and thermodynamic pressure of the zero Mach number region are
coupled to the compressible pressure. For this purpose, different assumptions
are necessary for the zero Mach number pressure term pM=0 that is coupled to
the compressible pressure p∗ at the interface:
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3.3. Iterative coupling procedures

• The first scheme is a purely hydrodynamic coupling and the compressible
pressure p∗ is supposed to be equal to the hydrodynamic pressure p(2),
while the thermodynamic pressure p(0) is neglected

p∗ = p(2). (3.6)

• The second algorithm represents a purely thermodynamic coupling ap-
proach, where the compressible pressure p∗ is coupled to the thermody-
namic pressure p(0) of the zero Mach number region, while the hydrody-
namic pressure p(2) is neglected

p∗ = p(0). (3.7)

• In a third approach, a combination of thermodynamic and hydrodynamic
effects is considered for the zero Mach number region. Here, the compress-
ible pressure p∗ is coupled to both, the hydrodynamic pressure p(2) and a
spatially constant background pressure p(0). As stated by the incompress-
ible equations, the hydrodynamic pressure p(2) is just determined up to
a constant as only its gradient is used in the momentum equation (2.29).

The pressure p(2)′ is introduced in the zero Mach number region, which
is continuous to the compressible pressure at the interface. This pressure
is then split into the hydrodynamic and thermodynamic part according
to

p(2) := p(2)′ − 1

|Ω|

∫
Ω

p(2)′dΩ = p(2)′ − p(0). (3.8)

Hence, the mean value of p(2)′ is accumulated in the thermodynamic
background pressure p(0), which may vary in time by a global compression
of the zero Mach number domain and which is defined in equation (2.31)
as the mean pressure.

All algorithms are designed to provide the compressible fluxes at the domain
boundaries of the compressible flow region needed to update the flow solution
during one computational time step. In the following, the three algorithms are
presented in detail.

3.3.1. Coupling procedure based on the hydrodynamic
pressure

This algorithm couples the pressure p∗ of the compressible region with the
hydrodynamic pressure p(2) of the zero Mach number region

p∗ = p(2), (3.9)
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3. Coupling of compressible and incompressible flow regions

where the thermodynamic pressure p(0) is neglected. Moreover, a compression
of the domain from the boundaries (cf. equation (2.36)) is not allowed, such
that the velocity has to be divergence-free vx = 0. In one space dimension,
this is equivalent to a spatially constant velocity. For this case the zero Mach
number limit does not allow any compressible effects and coincides with the
fully incompressible equations. The algorithm is suited to treat the hydro-
dynamic acceleration of an incompressible flow domain driven by a pressure
gradient as it is described in section 3.2.1. At the compressible-incompressible
interface, the coupling algorithm gives the compressible flux based on an iter-
ative procedure that combines the solution of a half-Riemann problem on the
compressible side and the exact solution of the incompressible domain. The
iteration is controlled by the jump conditions (3.1)-(3.2) and it is stopped once
the velocity satisfies the corresponding termination criterion.
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Figure 3.5.: Half-Riemann problems for the hydrodynamic coupling. The hy-
drodynamic pressure p(2) is coupled to the compressible pressure.

Subsequently, the iterative procedure for the update of the flow variables from
time tn to tn+1 is described. The iteration is started by imposing a left pressure
pnl and a right pressure pnr to the incompressible region (cf. Fig. 3.5). Based
on this pressure gradient, a guess for the interface velocity v∗ is determined.
Afterwards, the solution of two half-Riemann problems gives the interface pres-
sure p∗l,r. The flow-chart for this iterative coupling procedure is illustrated in
Fig. 3.6. In more detail, the coupling can be described as follows:

• At the beginning of the iterative procedure, a first order explicit predictor
is applied to the momentum equation (2.40) in order to get a predictor
of the interface velocity v∗ at the new time level tn+1. As a divergence-
free velocity distribution is supposed, the momentum equation can be
rewritten as

v∗ = vn −∆t

(
p

(2)n
x

ρ(0)n

)
, (3.10)
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Figure 3.6.: Hydrodynamic coupling scheme: hydrodynamic pressure p(2) is
coupled to the compressible pressure.

where ∆t stands for the discrete time step. Due to the divergence-free
constraint, the velocity v is spatially constant inside the incompress-
ible, one-dimensional domain as it is also the case for the density ρ(0).
Moreover, with vx = 0 it is directly evident from the momentum equa-
tion (2.40) that the hydrodynamic pressure p(2) has a linear distribution

inside the incompressible domain. Hence, the pressure gradient p
(2)n
x

is constant and is evaluated at the beginning of the iteration using the
pressure in the adjacent compressible domains

p(2)n
x =

pnr − pnl
|Ω| , (3.11)

where pnr and pnl designate the compressible pressure at the left and the
right boundary of the incompressible domain Ω, respectively (cf. Fig. 3.5).
To control the iteration process, it is necessary to store the velocity v∗

additionally as v∗∗.
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3. Coupling of compressible and incompressible flow regions

• On the basis of the velocity predictor the inner loop of the iteration starts
as follows:

– Taking the predictor of the velocity v∗ from equation (3.10) as an
input, a half-Riemann problem is evaluated to determine the com-
pressible state close to the domain boundaries. This is illustrated
in Fig. 3.5 and to start the evaluation of the half-Riemann problem,
the arithmetic mean value of the incompressible pressure p(2) and
the pressures pnl,r in the compressible region is computed, such that
it can be determined whether the shock or expansion relations have
to be applied to solve the half-Riemann problem in the compressible
domain. The evaluation of the corresponding equation leads to the
compressible pressure p∗l,r at the left and right boundary.

– The new pressure p∗l,r can now be inserted directly into the pressure
gradient of the momentum equation (3.10)

v∗ = vn − ∆t

ρ(0)n

(
p∗r − p∗l
|Ω|

)
. (3.12)

This leads to a better velocity estimation for v∗.

– At each iteration, the new velocity estimate v∗ is compared to the old
velocity v∗∗. If the change in velocity falls below a certain threshold
ε, the iteration is stopped. Otherwise, the newly computed velocity
v∗ is stored as v∗∗ and the iteration is repeated by evaluating the
shock or expansion relations using the new velocity predictor for v∗.

• At the end of the iteration, the compressible fluxes are evaluated. Having
already determined the pressure p∗l,r and the velocity v∗, the only missing
part is the density ρ∗l,r. Once the corresponding relations are evaluated,
the fluxes for the compressible region can directly be calculated on the
basis of the star values.

While the hydrodynamic test problem in Fig. 3.1 can be solved in a straight-
forward way and the pressure difference between the two compressible regions
drives the iteration procedure, the pure compression problem cannot be han-
dled by the present approach. Here, the pressure gradient introduces a velocity
boundary condition at the interface which is inconsistent with the incompress-
ible equations where the velocity has to be divergence-free and therefore spa-
tially constant in one space dimension. Such a pure compression can only be
treated by taking into account the thermodynamic pressure in the incompress-
ible flow region, which is described next.
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3.3. Iterative coupling procedures

3.3.2. Coupling procedure based on the thermodynamic
background pressure

This algorithm establishes a coupling of the pressure of the compressible region
p∗ with the thermodynamic pressure p(0) of the zero Mach number region

p∗ = p(0), (3.13)

and the hydrodynamic pressure p(2) is neglected. Such a thermodynamic cou-
pling allows to take into account compressible effects in the zero Mach number
limit as they are described for the test setting of section 3.2.2. Assuming the
compressible pressure to coincide with the thermodynamic background pres-
sure p(0) of the zero Mach number region, the velocity divergence is allowed
to be different from zero in the M = 0 flow domain. As is obvious from the
equations (2.41) and (2.49), the velocity has a linear distribution if a compres-
sion from the boundaries and therefore a temporal change of the background
pressure p(0) is allowed. From a physical point of view, the test setup of sec-
tion 3.2.2 corresponds to the radially symmetric compression of a zero Mach
number region. For this reason, a symmetry plane is introduced in the test
setting. This is evident from Fig. 3.3, where the right boundary is displayed
as a solid wall that is equivalent to a symmetry plane at the center of the zero
Mach number domain (cf. Fig. 3.2 and Fig. 3.3), as the velocity has to be equal
to zero there.

Again, the coupling algorithm returns the flux terms for the compressible flow
solver and the iterative procedure is based on the exact relations for the zero
Mach number region and the evaluation of a half-Riemann problem on the
compressible side of the interface. The iterative procedure is controlled by the
jump conditions for velocity and pressure given by the equations (3.1)-(3.2)
and the iterations are stopped, once the termination criterion for the pressure
has been satisfied.

In the following, the coupling algorithm for the computation of the compressible
fluxes needed to update the flow variables from time tn to tn+1 is described
in detail and the setting is displayed in Fig. 3.7. The procedure starts with
the evaluation of a half-Riemann problem in the compressible flow region that
gives an interface velocity v∗. On the basis of this velocity, the new background
pressure p(0) of the zero Mach number region is determined and, according to
the coupling conditions, used as new interface pressure p∗ for an evaluation of
the half-Riemann problem resulting in a new interface velocity.

The procedure is illustrated in Fig. 3.8 and described in the following:
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Figure 3.7.: Half-Riemann problem for the thermodynamic coupling. The
thermodynamic pressure p(0) is coupled to the compressible pres-
sure.
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Figure 3.8.: Thermodynamic coupling scheme: background pressure p(0) is
coupled to the compressible pressure.

• Start the iteration by a first pressure guess for p∗. A quite simple choice
is to use the arithmetic mean value of the left pressure pnl and the incom-
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3.3. Iterative coupling procedures

pressible pressure p(0)n at the beginning of the time step (cf. Fig. 3.7).

• On the basis of the guessed interface pressure p∗ the inner iteration is
started:

– A half-Riemann problem is evaluated to get the interface velocity
v∗. Comparing p∗ to the pressure pnl gives the information if both
states are linked by an expansion (p∗ < pnl ) or a shock (p∗ > pnl ).
This provides the relation for the computation of the velocity v∗ at
the interface.

– The interface velocity v∗ is used as input for the analytical solu-
tion of the incompressible pressure p(0) (cf. equation (2.42)). The
obtained pressure p(0)n+1 is compared to the pressure p∗ from the
previous iteration. In the end, p(0)n+1 and p∗ have to be equal. If
the difference is smaller than a selected threshold ε, the iteration
is stopped. Otherwise the determined pressure p(0)n+1 is stored as
p∗ and the inner iteration is repeated with the evaluation of the
half-Riemann problem.

• Once the interface pressure p∗ satisfies the termination criterion, the it-
eration loops are stopped and the half Riemann problem is evaluated
with the determined pressure p∗ as input. This computation delivers the
interface velocity v∗ and density ρ∗.

• Finally, the compressible flux is evaluated on the basis of the star state
ρ∗, v∗, p∗.

The scheme presented in this subsection couples the two regions by exchange of
velocity and pressure in the compressible flow region and background pressure
in the Mach number zero flow region, while the density stays uncoupled across
the contact discontinuity. This is in accordance with the physics of the problem
as the contact discontinuity represents the material interface. Concerning the
Mach number zero region, only the velocity of the compressible phase is of
importance, whereas the hydrodynamic pressure remains zero. In the case of
the compressible fluid, both variables, pressure and velocity are needed in order
to perform the coupling procedure.
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3. Coupling of compressible and incompressible flow regions

3.3.3. Coupling procedure based on multiple pressure
variables (MPV)

The objective of the present algorithm is to consider both, thermodynamic and
hydrodynamic effects inside the zero Mach number domain. According to the
multiple pressure variables (MPV) approach [10], the background pressure p(0)

and the hydrodynamic pressure p(2) are used together allowing a compression
of the M = 0 domain as well as momentum transfer via the effects of the
hydrodynamic pressure. The pressure p(2)′ in the M = 0 region is coupled to
the compressible pressure p∗ at the domain boundaries

p∗ = p(2)′ . (3.14)

With reference to equation (3.8) the hydrodynamic pressure p(2) is only deter-
mined up to a constant that includes thermodynamic effects. To finally couple
the two different flow regions, this constant has to be evaluated on the basis of
the thermodynamic background pressure p(0) that is equivalent to the integral
average of the p(2)′ distribution in the domain Ω:

p(0) =
1

|Ω|

∫
Ω

p(2)′dΩ = p(2)′ − p(2). (3.15)

This relation between the two pressures enables to determine the hydrody-
namic pressure distribution p(2) in the zero Mach number region. The velocity
divergence is allowed to be non-zero. Therefore, a variation of the background
pressure is possible with reference to the equation (2.33). Furthermore, the
equations (2.41) and (2.49) show that the velocity distribution is linear in space.
This is important for the hydrodynamic pressure p(2) that is obtained by spa-
tial integration of equation (2.45) and is therefore described by the quadratic
function of equation (2.46).
The focus is now on the setting of Fig. 3.1 that describes the acceleration of
a zero Mach number region and that has already been used for the purely
hydrodynamic coupling of section 3.3.1. The goal is to include compressible
effects to the purely hydrodynamic acceleration by taking into account the
thermodynamic background pressure p(0).
The building blocks of the present MPV coupling approach are again the so-
lution of half-Riemann problems for the compressible fluid and the analytical
solution of the zero Mach number region such that in the end the compressible
fluxes can be calculated at the interface between the M = 0 region and the
compressible flow domain. The jump conditions across the interface remain
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Figure 3.9.: Half-Riemann problems for the combined thermodynamic and
hydrodynamic MPV coupling. Thermodynamic and hydrody-
namic pressure are coupled to the compressible pressure.

unchanged (cf. equations (3.1)-(3.2)) and the iterative procedure is stopped
once the interface pressure satisfies its termination criterion.
Subsequently, a description of the MPV coupling approach is given that de-
termines the compressible fluxes for the temporal update of the flow variables
from time tn to tn+1. At the beginning of the iterative process, the pressures pnl
and pnr are prescribed, as it can be seen in Fig. 3.9. The background pressure
p(0) is initialized at the beginning of the computation (t = 0) as the arithmetic
mean of the surrounding compressible pressures

p(0)(t = 0) =
1

2
(pl(t = 0) + pr(t = 0)). (3.16)

In contrast to the purely hydrodynamic coupling of section 3.3.1 the pres-
sure gradient p

(2)
x of the hydrodynamic pressure p(2) is now linear due to the

quadratic distribution. For this reason, a guess of the interface velocities v∗l
and v∗r is needed to determine the change of the thermodynamic background
pressure inside the zero Mach number region. Once this pressure is known, it
is possible to evaluate the distribution of the pressure p(2)′ . Afterwards, the
pressure gradient p

(2)
x is used to compute the interface velocities v∗l and v∗r

that serve as input for the half-Riemann problems at the interfaces, such that
finally new interface pressures p∗l and p∗r are obtained. Then the iteration is
repeated, until the termination criterion has been satisfied and the compress-
ible fluxes are computed. This coupling procedure is summarized in Fig. 3.10
and characterized as follows:

• Start with a first guess for the interface velocities v∗l,r and pressures p∗l,r.
An adequate guess might come from the solution of a two-phase Riemann
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3. Coupling of compressible and incompressible flow regions

problem at the material interface. The guessed pressures and velocities
are stored as v∗∗l,r and p∗∗l,r to control the iteration procedure.

• Based on the initial guess for the interface velocities and pressures, the
inner loop is started:

– In a first step, a predictor for the background pressure p(0)n+1 is
determined from equation (2.42), where the interface velocities v∗l,r
are inserted.

– The background density ρ(0)n+1 is determined analogously: the in-
terface velocities v∗l,r are inserted into equation (2.44).

– Then, the quadratic pressure distribution p(2)′(x, tn+1) is evaluated.
This is done, using the compressible pressures p∗l,r as boundary con-
ditions. The last unknown of the quadratic function is eliminated
by prescribing the computed background pressure p(0)n+1 as the in-
tegral mean value of the p(2)′ distribution

1

|Ω|

∫
Ω

p(2)′(x, tn+1)dΩ
!
= p(0)n+1. (3.17)

– Once the pressure distribution p(2)′n+1 is known, the hydrodynamic
pressure is obtained as p(2)n+1 = p(2)′n+1 − p(0)n+1 according
to equation (3.8) and its spatial gradient can directly be inserted
into the discretized momentum equation, delivering new interface
velocities v∗l,r

v∗l,r = vnl,r −∆t

(
vnl,r(v

n
l,r)x +

(p
(2)n+1
l,r )x

ρ(0)n+1

)
. (3.18)

– The new velocity estimates v∗l,r are used as input for the half-Riemann
problem connecting the compressible states at the left and right to
the corresponding interface velocity and pressure. Hence, by pre-
scribing the velocity, a new star pressure p∗l,r is obtained at the
interface.

– At each iteration, the new estimates of p∗l,r are compared to the
old star pressures p∗∗l,r. If the pressure change falls below a certain
threshold ε, the iteration is stopped. Otherwise, the old velocities
v∗l,r are stored as v∗∗l,r, while the same is done for the pressure result-
ing in p∗∗l,r. Then the iteration cycle is repeated by evaluation of a

new pressure estimate p(0)n+1.
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3.3. Iterative coupling procedures

• Once the termination criterion is satisfied, the compressible fluxes are
evaluated. Having already determined the pressures p∗l,r and the veloc-
ities v∗l,r, the only missing part is the density ρ∗l,r. On the basis of p∗l,r
and v∗l,r the half-Riemann problem is evaluated to compute the interface
densities ρ∗l,r. Then, the fluxes for the compressible region can directly
be calculated based on the star values.

Figure 3.10.: Multiple pressure variables coupling scheme: Background pres-
sure p(0) and hydrodynamic pressure p(2) are coupled to the
compressible pressure.
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The focus of the present chapter is on the different numerical schemes that have
been used and developed for this work. Based on the existing Free Surface 3D
(FS3D) code for the simulation of incompressible two-phase flows, numerical
methods are presented that aim at the extension of FS3D to the compressible
flow regime.

Starting from the simulation of incompressible flows, the numerical basics of
the incompressible FS3D code are briefly presented. Additionally, a detailed
description of the surface tension modeling in the context of incompressible
flows is given. Two surface tension models are described and the numerical
discretization of the surface tension term is discussed including the phenomenon
of spurious currents. The origin of the parasitic currents in the FS3D code is
shown as well as the remedy for their elimination.

Afterwards, the focus is on the development of a numerical scheme to extend
FS3D to compressible two-phase flows. A numerical method is needed that
allows to stay as close as possible to the already existing numerical structures,
this means the use of a pressure-based numerical solver and the spatial dis-
cretization of the flow equations on a staggered grid.

Such a scheme is the pressure-based Multiple Pressure Variables (MPV) method
for the simulation of compressible and incompressible flows. The MPV scheme
builds upon an asymptotic pressure expansion in order to avoid the singular
incompressible limit of the compressible flow equations. The MPV approach
for single-phase flows is introduced and extended to compressible two-phase
flows on the basis of the inviscid Euler equations in conservative form.

In the multiphase context, special attention is paid on the developed interface
treatment for which on the one hand, the thermodynamic transition is happen-
ing in a sharp manner without any mixing or blending of the equations of state.
On the other hand, the initial density jump between the phases is smeared by
the numerical method. It is proved that the first order two-phase MPV ap-
proach gives oscillation-free results in the vicinity of a material interface using
this interface treatment. This is demonstrated via the detailed analysis of a
transport of a two-phase contact discontinuity. Moreover, a semi-conservative
MPV formulation is derived where the energy equation is replaced by a pressure
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equation in non-conservative form. This gives the scheme additional flexibility
as the only remaining link to the equation of state is the speed of sound. The
range of applicability of this approach is discussed and shown.

Finally, a short overview is provided concerning two numerical schemes used for
validation and verification purposes during the numerical development. This
includes a one-dimensional multiphase DG scheme that has served as numer-
ical framework for the validation of the coupling procedures derived in chap-
ter 3. For the single-phase MPV approach, a variety of test cases has been
performed to assess its shock-capturing properties and its capability to simu-
late the propagation of pressure waves. The corresponding numerical results
have been compared to those of a standard Godunov-type finite volume solver
whose main features are presented briefly.

4.1. The incompressible Free Surface 3D (FS3D) code

The Free Surface 3D (FS3D) code is a DNS VOF method for the simula-
tion of isothermal, incompressible two-phase flows in three space dimensions
[29, 38, 45, 46]. The code uses the so-called one-fluid formulation of the incom-
pressible Navier-Stokes equations for two-phase flows, where jump conditions at
the material interface are implicitly taken into account by the use of variable
material properties [38]. Therefore, the single set of equations (2.51)-(2.52)
can be used for the whole flow domain and there is no need to establish any
additional jump conditions at the interface.

The coupling of the two fluids is provided by variable material properties ρ
and µ and a source term that accounts for the effects of surface tension. It
is important for the one-fluid approach that the change in material properties
happens in a smooth and regularized way, in order to prevent numerically
induced oscillations in the vicinity of the interface. The material properties are
chosen according to the fluid occupying a grid cell, depending on the volume
fraction variable f of the liquid phase

ρ(~x, t) = ρg + (ρl − ρg) · f(~x, t), (4.1)

µ(~x, t) = µg + (µl − µg) · f(~x, t), (4.2)

where the subscripts g and l denote the gaseous and the liquid phase. Moreover,
the incompressible Navier-Stokes equations (2.52) contain an additional source

term ~fγ for the surface tension, which is directly linked to the interface location
via a delta function δS .
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The temporal evolution of the volume fraction f is computed with the VOF
approach (cf. section 2.7.1) and the incompressible Navier-Stokes equations
are solved applying a projection method according to [2] in order to update
the velocity at each time step. This leads to a Poisson equation that couples
pressure and velocity. A brief overview over this method for the simple first
order Euler time discretization is given in the following. More details can be
found in [38].
The projection method builds upon a predictor-corrector approach for the ve-
locity. Based on the velocity at the old time level ~vn, at first a temporary
velocity ~̃v is computed by evaluation of the momentum equation taking into
account the influences of accelerations due to viscosity, convection, surface
tension and other forces excluding the influence of pressure. The resulting pre-
dictor velocity field is not divergence-free and has to be corrected. This leads
to the solution of a pressure Poisson equation that is derived by application of
the zero divergence constraint for velocity to the momentum equation. The so-
lution of the Poisson equation delivers the pressure gradient ∇pn+1 of the flow
field that finally corrects the predictor velocity ~̃v according to the divergence
constraint. The Poisson equation can be written as follows

∇ ·
[

1

ρ(fn+1)
∇pn+1

]
=
∇ · ~̃v
∆t

. (4.3)

Combining temporary velocity ~̃v and pressure pn+1 from the solution of the
Poisson equation, the divergence-free velocity field at the new time level is
obtained

~vn+1 = ~̃v − ∆t

ρ(fn+1)
∇pn+1. (4.4)

4.2. Surface tension modeling

In the following, it is shown how surface tension can be modeled and included
into the incompressible Navier-Stokes equations. In principle, the description
of the pressure jump by equation (2.53) could directly be used in order to derive

the volume force ~fγ for the momentum equation (2.52) of the incompressible
Navier-Stokes equations as

~fγ = σκ~n, (4.5)

where ~n is the interface unit normal vector. However, in the context of the
incompressible one-fluid formulation, some numerical smoothing operations for
the surface tension force are needed in order to properly take into account
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capillary effects near the interface. Therefore, surface tension has to be calcu-
lated based on a numerical model. Two common surface tension models for
incompressible two-phase flow simulations are briefly presented subsequently.

4.2.1. The continuum surface stress (CSS) model

A widespread model for surface tension is the continuum surface stress (CSS)
model of Lafaurie et al. [26]. By writing the Navier-Stokes equations in a
momentum conserving form, they introduce the capillary pressure tensor

T = −σ(I − ~n ◦ ~n)δS , (4.6)

where I is the unit tensor. Moreover, the capillary force ~fγ can then be written
as the divergence of T

~fγ = −∇ ·T. (4.7)

Normal vectors and delta function δS are calculated based on the gradients of
the smoothed volume fraction variable f .

4.2.2. The continuum surface force (CSF) model

The basic idea of the continuum surface force (CSF) model introduced by
Brackbill et al. [25] can be described as follows. Instead of considering the
fluidic interface as a sharp discontinuity, a smooth transition is supposed from
one fluid to an other. It is assumed that the interface has a finite thickness
that corresponds to the smallest length scale h resolvable by the computational
mesh. Consequently, surface tension is also considered to be of continuous
nature and it acts everywhere within the transition region. Brackbill et al.
proposed to replace equation (4.5) by

~fγ = σκ∇f. (4.8)

This corresponds to a weighted dispersion of the surface tension force across a
transition region, using the gradient of the volume fraction variable f as weight.

4.3. Parasitic currents in the FS3D code

The following description of parasitic currents and the balanced-force dis-
cretization in the context of the incompressible FS3D code is taken from [47].
From a physical point of view, the surface tension force is balanced by the
pressure jump across the interface. As the volume force is only different from
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zero at the interface, no additional jump conditions with regard to momentum
conservation have to be applied. As detailed above, surface tension is numer-
ically approximated by a volume force using a continuum model. For many
DNS codes the application of the CSF or CSS model creates unphysical para-
sitic currents in the vicinity of the surface. However, the presence of parasitic
currents limits the range of phenomena accessible by the codes. Especially the
simulation of droplets or bubbles with small radii at low speed is often not pos-
sible. In these cases, the numerically induced parasitic currents are dominant
and therefore lead to unphysical simulation results.
In order to overcome this phenomenon, many efforts have been taken by vari-
ous researchers. For two-dimensional computations Meier et al. [48] proposed
a method to determine curvature more accurately using an estimator function,
tuned with a least-squares-fit against precomputed reference data. An approx-
imation of the surface tension based on spline interpolants was presented by
Ginzburg et al. [49]. For three-dimensional calculations, Renardy et al. [50]
developed the PROST algorithm (parabolic reconstruction of surface tension)
and Jafari et al. [51] presented the PCIL method (pressure calculation based on
the interface location) where the pressure forces at the interfacial cell faces are
calculated according to the pressure imposed by each fluid on the portion of the
cell face that is occupied by that fluid. This list is far from being complete as
there are many other approaches aiming at the reduction of parasitic currents.
All of these methods are based on the development of completely new surface
tension models. In contrast to this, François et al. [27] introduced the notion
of the balanced-force discretization of the classical CSF model. According to
them, two main ingredients have to be taken into account to reduce spurious
velocities:

1. Correct spatial discretization of equation (4.8).

2. Accurate estimation of curvature κ.

The following section details both aspects and shows the adaptation of FS3D
to such a balanced-force formulation.

4.3.1. Balanced-force algorithm

The FS3D code uses a spatial discretization based on a Cartesian grid and the
variables are stored on a staggered grid arrangement (cf. Fig. 4.4) according
to [3]. In the context of the VOF method the volume fraction f is stored at
the centers of the mass CVs. In order to guarantee an accurate, balanced-force
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Figure 4.1.: Evaluation of the volume fraction gradient ∇f based on a stencil
of 6 cells (red) and on the direct neighbors of the cell face (blue).
The box surrounded by the dashed lines marks the 6 cell stencil
for the cell face (i+ 1/2, j).

discretization, according to [27], the surface tension term ~fγ (cf. equation (4.8))
has to be calculated at the center of the cell faces. Furthermore, it is of crucial
importance that pressure and surface tension are discretized in the same way.

Special care has to be taken in order to evaluate the gradient of the volume
fraction ∇f . In the FS3D code, based on [25], the evaluation of the gradient
is performed on a stencil of 18 cells for three-dimensional calculations. For
explanation purposes Fig. 4.1 is illustrating a two-dimensional example. Here,
the gradients at the cell face centers of row (j) are given by the corresponding
values in red. Taking the face at (i+1/2) as an example, the gradient∇fxi+1/2,j

is based on the gradients in the rows (j − 1), (j), (j + 1) that are calculated on
the basis of the cells adjacent to the face (i+1/2) respectively, e.g. ∇̃fxi+1/2,j

=
f(i+1,j)−f(i,j)

∆x
for row (j). Here, ∇̃ designates the local gradient with respect to

the cell face. Afterwards, the gradient at the position xi+1/2,j is obtained as

∇fxi+1/2,j
=

1

4

(
∇̃fxi+1/2,j−1

+ 2∇̃fxi+1/2,j
+ ∇̃fxi+1/2,j+1

)
. (4.9)

This leads to a total stencil for the cell face (i+ 1/2, j) that is surrounded by
the dashed lines in Fig. 4.1.
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It is obvious that the above discretization implies a coupling of the rows
(j − 1), (j), (j + 1) via the evaluation of the gradients for the surface tension
calculation. Having a closer look at the discretization of the pressure terms in
the Poisson equation (4.3) in x-direction for the cell (i, j), it is found that all
pressure values are taken from row (j) and that the rows (j − 1) and (j + 1)
are not included

1

∆x

(
p(i+1,j) − p(i,j)

ρ(i+1/2,j)

−
p(i,j) − p(i−1,j)

ρ(i−1/2,j)

)
=
~̃v(i+1/2,j) − ~̃v(i−1/2,j)

∆t
. (4.10)

However, the rows (j − 1) and (j + 1) play a role for the velocity ~̃v that is
directly dependent on the discretization of surface tension where these rows
are included as detailed above. It is found that this coupling is one of the
causes for the parasitic currents in the FS3D code. Therefore, the gradient
evaluation is changed to a more local formulation only taking into account
direct neighbors of the cell faces. This leads for the cell face (i+ 1/2, j) to the
following new gradient

∇fxi+1/2,j
= ∇̃fxi+1/2,j

=
f(i+1,j) − f(i,j)

∆x
, (4.11)

instead of the old gradient given by equation (4.9). Returning to Fig. 4.1,
the two approaches can be compared directly. According to the two methods,
the gradients are given for the previous method (red) and the local approach
(blue) in row (j). While the transition from one fluid to the other is spread
over four cell faces with the previous approach, the local approach only uses
two cell faces to disperse the jump in pressure.
In the three-dimensional case, the gradients for the different space directions
are evaluated in an analogous way, only taking into account direct neighbors
of the respective cell face.
Besides the discretization of the surface tension force (equation (4.8)), the
correct estimation of surface curvature is very important and shall be discussed
in the following section.

4.3.2. Curvature Estimation

Topology information like normal vectors and curvature are needed for the
surface tension models and have to be determined on the basis of the interface
tracking scheme. For level set methods, the calculation of surface normals and
curvature is possible by differentiation of the level set variable. As the level set
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function is smooth, the derivatives can be evaluated numerically without any
problems.
For VOF methods the situation is different as the VOF field is not smooth a
priori. The discrete character of the VOF variable complicates the curvature
evaluation. If the curvature is directly computed as the second derivative of the
volume fraction field, aliasing errors are encountered [52] that do not vanish
with grid refinement. To prevent such errors, most VOF approaches smooth
the volume fraction field prior to the curvature calculation and this is also the
case for the FS3D code.
The curvature evaluation method that is presented here is based on a height
function approach, coupled to a local paraboloid fitting if the grid resolution is
not sufficient. The procedure is inspired by the work of Popinet [28]. A geomet-
rical height function approach is used whose stencil is variable and adapts itself
to capture the local topology in an optimal way as it can be seen in Fig. 4.2(a).
The heights are determined in each cell column containing an interface cell
by summing up the volume fractions. It is obvious from Fig. 4.2(a) that the
summation ends once the cells are completely filled with gas or liquid. In the
figure, the resulting height is marked by an arrow and the horizontal, dashed
line.
To evaluate the curvature in an interface cell, the height function is determined
in the cell column of the interface cell and in the columns of its neighbors. The
orientation of the columns is directly depending on the surface normal. The
local interface height is calculated following the direction of the largest absolute
component of the normal vector. Figure 4.3 illustrates the stencil for the three-
dimensional evaluation of the curvature in the central cell column (dashed). To
determine the curvature, the heights H in z-direction are computed in all nine
cell columns. Then the curvature can be evaluated from the following relation

κ =
H ′′

(1 +H ′)3/2
, (4.12)

where the superscript ′ marks the spatial derivatives of the height function
H and a discrete form of equation (4.12) is obtained using finite differences
according to [27]

κ =
Hxx +Hyy +HxxH

2
y +HyyH

2
x − 2HxyHxHy

(1 +H2
x +H2

y )3/2
. (4.13)

The derivatives of the height function H with respect to x and y can simply
be evaluated by finite difference approximations. For the x-direction they can
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Figure 4.2.: Evaluation of local interface heights based on the liquid volume
fraction.

be written as

Hx =
Hi+1,j,k −Hi−1,j,k

2∆x
, (4.14)

Hxx =
Hi+1,j,k − 2Hi,j,k +Hi−1,j,k

∆x2
. (4.15)

The derivatives in the y-direction are calculated in an analogous way and the
cross derivative Hxy is given as

Hxy =
Hi+1,j+1,k −Hi+1,j−1,k −Hi−1−j+1,k +Hi−1,j−1,k

2∆x · 2∆y
. (4.16)

As already mentioned, grid resolution is not always sufficient to determine
the curvature via the height function approach. This is the case for highly
curved topology, for example during breakup, or in case of inappropriate mesh
resolution. Such a case is illustrated in Fig. 4.2(b). While the heights can be
computed for the two columns at the left, the grid is to coarse to determine
a height in the third column. To estimate the local curvature in such cases, a
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x
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z

n

Figure 4.3.: Stencil for the curvature estimation in three space dimensions in
the central cell column (dashed) with the largest component of
the surface normal in direction of the z-coordinate.

paraboloid is fitted to known points on the surface. For this purpose, first the
already available local heights are used and where the local height cannot be
computed, the interface reconstruction of the PLIC routine is employed. The
PLIC algorithm approaches the surface in each interface cell by a plane whose
barycenter is calculated and used for the paraboloid fitting. The fitting is done
via a least squares fit of the above determined heights and barycenters. In
three space dimensions the paraboloid is given by

z = f(ai, ~x) = a0x
2 + a1y

2 + a2xy + a3x+ a4y + a5, (4.17)

and the curvature can easily be calculated as the second derivative

κ = 2
a0(1 + a2

4) + a1(1 + a2
3)− a2a3a4

(1 + a2
3 + a2

4)3/2
. (4.18)

All the above shown procedures apply to an orientation of the surface normal
in z-direction. The x- and y-direction are treated in an analogous way.
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4.4. The Multiple Pressure Variables (MPV) method

Leaving the incompressible flow regime, the focus is now on the MPV method.
This numerical approach extends an incompressible pressure-based flow solver
to the compressible regime and in the following, a detailed description of the
numerical scheme is given including the temporal and spatial discretization of
the MPV method. Moreover, its extension to compressible two-phase flows is
presented and open questions and limitations are discussed.

4.4.1. Spatial and temporal discretization of the Euler
equations

Starting from the Euler equations (2.25)-(2.27) that include the pressure de-
composition (2.23), the discrete set of equations with pressure as primary vari-
able is given as follows for the MPV scheme ρ

ρ~v

p+ γp∞ + (γ − 1)M2ekin


t

+

∇ ·

 ρ~v

(ρ~v) ◦ ~v
(γ − 1)M2ekin~v


ex

+∇ ·

 0

p(2)I

γ(p+ p∞)~v


im

=

0

0

0

 . (4.19)

The superscripts ex and im designate the explicit and implicit time discretiza-
tion of the respective terms and I stands for the unity matrix. It is evident
that the conservation equation for mass is independent from the other equa-
tions and is treated in a fully explicit manner while momentum and energy
equation contain explicit as well as implicit parts.
Combining compressible and incompressible flows, the MPV approach builds
upon a semi-implicit time discretization. This includes an explicit discretiza-
tion of the convection terms while all terms linked to the speed of sound are
discretized implicitly. This procedure takes care of the physical and mathe-
matical background: While the compressible Euler equations build a system
of hyperbolic equations where pressure has to obey an equation of state, their
incompressible limit is described by a hyperbolic-elliptic system. In the latter
case pressure waves are traveling at infinite speed and the incompressible pres-
sure has to guarantee that the divergence constraint for the velocity is satisfied.
Therefore, the role of pressure changes and requires an implicit treatment of
the pressure terms.
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From a numerical point of view, this singular limit is important for the compu-
tational time step. For compressible flows, the time step of an explicit numerical
scheme has to obey the CFL condition in order to guarantee stability [53]

∆t ≤ C ·min
i

(
∆x

|u|+ (c/M)

)
i

, (4.20)

where C is the Courant number (C < 1), ∆x designates the length of the cell
edge, u stands for the convective velocity, c denotes the speed of sound and i is
the cell index. The consideration is limited to the one-dimensional case for the
sake of simplicity . It is obvious that for increasing speed of sound, the time
step goes to zero. To avoid this singular behavior, the above discussed semi-
implicit time discretization is used where all terms that are linked to pressure
and therefore the speed of sound, are treated in an implicit manner to guaran-
tee their stability. The stability of the remaining explicit terms only depends
on the convective velocity u.
This is obvious from the Jacobian matrix of the explicit flux terms of equa-
tion (4.19) in one space dimension. The corresponding eigenvalues are all equal
to the flow velocity u and in principle it is possible to choose the time step of the
semi-implicit MPV method exclusively on the basis of the convective velocity u

∆t ≤ C ·min
i

(
∆x

|u|

)
i

. (4.21)

The discretization of space and time is presented subsequently for the MPV
scheme according to the method of lines approach that is characterized by a
separation of spatial and temporal discretization [1, 54].

4.4.1.1. Temporal discretization

In the following, the focus is on the temporal discretization of the flow equa-
tions. As the MPV scheme is based on the method of lines approach, temporal
and spatial discretization are done in two separate steps and the equations are
now only discretized in time such that a semi-discrete formulation is obtained
(still continuous in space but discrete in time).
From a mathematical point of view, the system of partial differential equations
(PDE) is transformed into a system of ordinary differential equations (ODE) by
the choice of a spatial discretization. In general, the ODE system that results
from the semi-implicit MPV approach can be written as follows

d~U

dt
= f (~Un) + g(~Un+1), (4.22)
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where ~U designates the vector of the discretized conservative variables of the
Euler equations and n stands for the time level. The operator f (~Un) represents
the explicitly discretized, non-stiff convective terms while the stiff terms are
discretized implicitly and grouped together in the operator g(~Un+1). As is
obvious from equation (4.19), the density can be treated in a purely explicit
manner as there aren’t any pressure terms in the corresponding equation. Yet,
momentum and energy equation contain pressure terms and therefore both
equations have to be discretized semi-implicitly.

Three different time discretizations are used that are of first and second order
accuracy. The first order scheme uses the simple explicit and implicit Euler
method that can be expressed as follows

~Un+1 = ~Un + ∆t
[
f (~Un) + g(~Un+1)

]
. (4.23)

To achieve a second order temporal discretization approach two different time
integration methods are presented subsequently. The first one is a combination
of Runge-Kutta for the explicit part and Crank-Nicolson for the implicit terms
of the MPV approach (RK2CN). This approach necessitates the introduction
of an intermediate time level at the instant tn+1/2

~Un+1/2 = ~Un +
∆t

2

[
f (~Un) + g(~Un+1/2)

]
, (4.24)

~Un+1 = ~Un + ∆tf (~Un+1/2) +
∆t

2

[
g(~Un) + g(~Un+1)

]
. (4.25)

The second time discretization that is of second order in time is the semi-
implicit backward differentiation formula (SBDF) method [11] that is described
in appendix A.

A more detailed insight into the temporal discretization of the MPV scheme
is given in the following based on [11]. For this purpose, the solution proce-
dure of the first order Euler explicit and implicit time discretization method is
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described. The time-discrete Euler equations are given by

ρn+1 − ρn

∆t
+∇ · (ρ~v)n = 0, (4.26)

(ρ~v)n+1 − (ρ~v)n

∆t
+∇ · (ρ~v ◦ ~v)n +∇p(2)n+1 = 0, (4.27)(

p(0) +M2p(2) + (γ − 1)M2ekin
)n+1

∆t
−(

p(0) +M2p(2) + (γ − 1)M2ekin
)n

∆t
+

∇ ·
[
~v
(

(γ − 1)M2ekin + γ(p(0) +M2p(2) + p∞)
)]

= 0. (4.28)

As a first step, the conservation equation of mass is solved

ρn+1 = ρn −∆t∇ · (ρ~v)n. (4.29)

Once the density ρn+1 at the new time level is known, velocity and pressure are
updated on the basis of the momentum equation and the energy equation. To
achieve this, the MPV scheme uses a projection method and as it is common
for incompressible schemes a Poisson equation for pressure has to be solved. To
derive this equation, the following predictor-corrector relations are introduced
for pressure and velocity:

p(2)n+1 = p(2)∗ + δp(2), (4.30)

~vn+1 = ~v∗ + δ~v. (4.31)

The variables δp(2) and δ~v designate the corrector values for the corresponding
predictors that are marked by the superscript ∗ and the superscript n+1 stands
for the new time level. As a next step, this ansatz has to be inserted into the
momentum equation (4.27) to get a relation between the two correctors δ~v and
δp(2)

δ~v = −∆t
∇δp(2)

ρn+1
. (4.32)

To update pressure and velocity, the predictors p(2)∗ and ~v∗ have to be deter-
mined first. For the pressure, p(2)∗ = p(2)n is a simple choice and the velocity
~v∗ is then easily calculated from the momentum equation

~v∗ =
1

ρn+1
((ρ~v)n −∆t [(ρ~v ◦ ~v)n +∇p∗]) . (4.33)
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The predictor-corrector relations for the pressure p(2)n+1 (equation (4.30))
and the velocity ~vn+1 (equation (4.31)) are introduced into the energy equa-
tion (4.28) together with the relation between the two correctors δp(2) and
δ~v given by equation (4.32). This then results in a Poisson equation for the
pressure corrector δp(2)

M2δp(2) −∆t2∇ ·
[
γ(pe + p∞)

ρn+1
∇δp(2)

]
=

M2[p(2)n − p(2)∗]− dp(0)n −∆t∇ · (γ(pe + p∞)~v∗)− (γ − 1)M2δk∗, (4.34)

where pe is a tentative value for the pressure at the new time level and dp(0)n

describes the effects of outer compression originating from the domain bound-
aries (cf. equation(2.35))

dp(0) = −∆t · γ(p(0) + p∞)

|Ω|

∫
Ω

~vn · ~ndA. (4.35)

The term δk∗ represents the contribution of the kinetic energy ekin

δk∗ = e∗kin − enkin + ∆t∇ · (ekin~v)n. (4.36)

The kinetic energy e∗kin is an approximation to the energy at the new time
level, evaluated on the basis of the explicitly determined density ρn+1 and the
predictor velocity ~v∗. Due to the use of pe and e∗kin the Poisson equation is
linearized and solved in an iterative way until convergence of δp(2) is reached.
Then, pressure and velocity can be updated in the whole flow domain using
the equations (4.30) and (4.31).

As a final step, the pressure decomposition has to be corrected. At the begin-
ning of the calculation, the compressible pressure is decomposed into the back-
ground pressure p(0) and the hydrodynamic pressure p(2). As equation (4.35)
is used as a guess for the temporal evolution of p(0), the background pressure
p(0)n+1 at the new time level is no longer necessarily equivalent to the average
of the pressure pn+1 and therefore the average of the hydrodynamic pressure
p(2)n+1 does not disappear. For this reason, the average hydrodynamic pressure
p(2)n+1 at the new time level is determined and subtracted from the hydrody-
namic pressure p(2)n+1 while it is added to the background pressure p(0)n+1,
such that the consistency of the pressure decomposition is always guaranteed.
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4.4.1.2. Spatial discretization

The spatial discretization of the MPV method is carried out on an equidistant,
Cartesian, staggered grid in three space dimensions, according to [3]. For
the purpose of explanation, such a mesh is depicted in Fig. 4.4 for the two-
dimensional case. It is obvious that there are different control volumes (CV)
for mass and momentum. While all scalar values like density ρ, pressure p
and the level set function Φ are located at the cell center of the mass CV,
the velocity components are stored at the center of the momentum CV that
coincides with the center of a mass CV cell face. There is a different momentum
CV for each space direction as is evident from Fig. 4.4. The same principle
applies to three dimensions.

Figure 4.4.: Staggered grid arrangement: different variables and control vol-
umes (CV).

While the MPV scheme uses the conservative Euler equations, the flow variables
are stored on the staggered grid as primitive variables. This implies interpola-
tion steps for density and velocity. For example, the momentum (ρu)i+1/2 at
the center of the momentum CV (i+ 1/2) is calculated as follows

(ρu)i+1/2 =
1

2
(ρi + ρi+1)ui+1/2. (4.37)

The convective fluxes for the first order spatial discretization are evaluated in
a simple upwind manner. To further illustrate this, several examples are given
for the flux evaluation in the MPV context. For the sake of simplicity, the
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calculations are limited to the fluxes in x-direction.
The density flux in x-direction in cell i is calculated as

∂

∂x
(ρu)i =

1

∆x

[
(ρu)i+1/2 − (ρu)i−1/2

]
, (4.38)

and

(ρu)i+1/2 = ui+1/2

{
ρi for ui+1/2 > 0,

ρi+1 for ui+1/2 ≤ 0.
(4.39)

The same applies to (ρu)i−1/2 and all the other density fluxes. For the mo-
mentum, the fluxes are determined in an analogous way, taking into account
the shifted momentum CV on the staggered grid. The momentum flux in
x-direction is obtained as

∂

∂x
((ρu)u)i+1/2 =

1

∆x
[((ρu)u)i+1 − ((ρu)u)i] , (4.40)

and

((ρu)u)i+1 = ui+1

{
(ρu)i+1/2 for ui+1 > 0,

(ρu)i+3/2 for ui+1 ≤ 0,
(4.41)

with

ui+1 =
1

2
(ui+1/2 + ui+3/2). (4.42)

The momenta (ρu)i+1/2 and (ρu)i+3/2 are evaluated according to equation (4.37).
For the second order MPV scheme, a linear reconstruction is performed based
on the MUSCL approach [55]. In every cell the flow variables are reconstructed
in a piecewise linear way in each space direction using slope limiters as it is il-
lustrated by the following example for the density reconstruction in x-direction.
First, a slope inside each cell has to be determined such that no new maxima
are created by the reconstruction process. A quite simple slope limiter is the
minmod limiter

minmod(a, b) =


a for |a| ≤ |b| , ab > 0,

b for |a| > |b| , ab > 0,

0 for ab < 0.

(4.43)

Here a and b are the left and right differential quotients of the density

a =
ρi − ρi−1

xi − xi−1
, (4.44)

b =
ρi+1 − ρi
xi+1 − xi

. (4.45)
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The slope sρ,i in cell (i) is then determined as

sρ,i = minmod(a, b), (4.46)

such that the reconstructed density at the cell boundary (i+ 1/2) is obtained
as

ρi+1/2,− = ρi +
∆x

2
sρ,i, (4.47)

ρi+1/2,+ = ρi+1 −
∆x

2
sρ,i+1. (4.48)

The + and − sign designate the reconstructed variable at the location (i+1/2)
in the right cell (i+ 1) and in the left cell (i), respectively.
Finally, the density flux calculation (4.39) can be simply adapted to the recon-
structed density values

(ρu)i+1/2 = ui+1/2

{
ρi+1/2,− for ui+1/2 > 0,

ρi+1/2,+ for ui+1/2 ≤ 0.
(4.49)

The same principle applies to the other space directions and flow variables.
Special attention has to be paid on the discretization of the Poisson equation
for pressure. While the left-hand side of equation (4.34) is discretized with
finite differences, an upwind flux formulation is used on the right-hand side for
the pressure term.
The pressure derivatives on the left-hand side are evaluated by central difference
approximations, similar to classical incompressible schemes. On a staggered
grid, the decoupling of pressure and velocity is automatically avoided, however
special care has to be taken with respect to the discretized divergence operator
on the left-hand side and the discretization is illustrated by the following one-
dimensional example for the x-direction

∇ ·
[
γ(pe + p∞)

ρn+1
∇δp(2)

]
= 1

∆x2

[(
γ(pe+p∞)

ρn+1

)
i+1/2

· (δp(2)
i+1 − δp

(2)
i )

]
−

1
∆x2

[(
γ(pe+p∞)

ρn+1

)
i−1/2

· (δp(2)
i − δp

(2)
i−1)

]
. (4.50)

Interpolation operations for density and pressure have to be performed in order
to get the corresponding values at the faces of the mass CV (i± 1/2).
On the right-hand side of the Poisson equation (4.34), there is the term

∇ · (γpe~v∗), (4.51)
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involving the spatial derivatives of pressure and velocity. Contrary to the above
central discretization this term has to be handled in an upwind manner. This
upwind treatment guarantees accurate simulation results as a central finite
difference approximation leads to oscillations at the location of shocks. For the
sake of explanation, only the flux calculation for the x-direction is shown and
fluxes in the other spatial directions are calculated in an analogous way

∇ · (γpeu∗) =
γ

∆x

[
(peu∗)i+1/2 − (peu∗)i−1/2

]
, (4.52)

and for the first order case, the flux is determined as

(peu∗)i+1/2 = u∗i+1/2

{
pei for u∗i+1/2 > 0,

pei+1 for u∗i+1/2 ≤ 0.
(4.53)

4.5. A semi-conservative MPV approach

The previous sections have shown a direct dependence of the discretized MPV
scheme on the equation of state. This dependency comes from the introduc-
tion of pressure as primary variable and the reformulation of the energy equa-
tion (2.21) in terms of the pressure variables p(0) and p(2). In order to replace
the internal energy by the corresponding pressure terms, an equation of state
has to be given in analytical form. If the equation of state is not explicitly
given in an analytical formulation, the above described reformulation of the
energy equation is not easily possible and an alternative approach is needed.
For a general equation of state, Fedkiw et al. [56] proposed to reformulate the
convective derivative of the pressure in order to get a nonconservative pressure
equation

Dp

Dt
= pρ

Dρ

Dt
+ pe

De

Dt
. (4.54)

Here, pρ and pe denote the partial derivatives of pressure with respect to density
and total energy, respectively. Finally, by using mass and momentum equations
the following equation is obtained according to [56]

∂p

∂t
+ ~v · ∇p = −ρc2∇ · ~v. (4.55)

To use this pressure equation in the MPV context, the pressure decomposition
of equation (2.23) has to be introduced

∂

∂t
(p(0) +M2p(2)) + ~v · ∇p(2) = −ρc2∇ · ~v. (4.56)
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The only remaining link of equation (4.56) to the equation of state is established
by the speed of sound c. Hence, this formulation allows to directly apply the
MPV scheme to an arbitrary equation of state when the energy equation is
replaced by equation (4.56).

The resulting MPV method for the Euler equations can be considered to be
semi-conservative as the conservative pressure equation (2.27) is replaced by
the nonconservative equation (4.56) while the mass and momentum equations
are kept in conservative form (cf. equations (2.25)-(2.26)). Equation (4.56) is
now discretized in an implicit manner

∂p

∂t
+ (~v · ∇p)n+1 = −(ρc2∇ · ~v)n+1. (4.57)

The pressure equation is linearized by the use of the estimates pe and ce for
the pressure and the speed of sound at the new time level

∂p

∂t
+ ~vn+1 · ∇pe = −ρn+1(ce)2∇ · ~vn+1. (4.58)

With respect to the conservative MPV approach, only the energy equation is
modified while the conservation equations for mass and momentum stay the
same. Therefore, a new Poisson equation for the pressure corrector δp(2) has to
be derived from equation (4.58) by introducing the predictor-corrector ansatz
given by the equations (4.30)-(4.32). The resulting Poisson equation can be
written for the first order Euler time discretization as

M2δp(2) −∆t2
[
∇pe

ρn+1
· ∇δp(2) + ρn+1(ce)2∇ ·

(
1

ρn+1
∇δp(2)

)]
=

M2(p(2)n − p(2)∗)− dp(0) −∆t( ~v∗∇pe + ρn+1(ce)2∇ · ~v∗), (4.59)

and is finally solved iteratively.

The use of non-conservative formulations and primitive variables leads generally
to a decoupling of internal and kinetic energy. It will be shown by numerical
computations in sections 5.1.2.2 and 5.1.2.3 that the present approach is still
capable to accurately capture weak shocks, while it has problems to correctly
predict stronger shocks.

For the following investigations, the conservative MPV method described in
section 4.4 is used, unless otherwise stated.
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4.6. Extension of the MPV scheme to compressible
two-phase flows

This section describes the extension of the MPV method to two-phase flows,
as it has been presented in [57, 58]. At first, it is explained how the MPV
approach tracks the interface and how the thermodynamic transition from one
fluid to an other is handled. Afterwards, the investigation of the transport of a
two-phase contact discontinuity proves that the MPV method does not suffer
from unphysical velocity and pressure oscillations at the material interface.

The DNS of compressible two-phase flows is a rather challenging task as the
two fluids often differ significantly in their material properties as well as in their
thermodynamic behavior expressed by the equation of state. For this reason,
it is crucial to accurately know and track the interface location at each time
step. Additionally, the thermodynamic transition between the two fluids has
to be handled numerically.

Introducing the level set function Φ and its transport equation (2.58) to the
MPV solver, it is possible to describe and evolve the material interface in the
course of the computation. The level set Φ is initialized as a signed distance
function with respect to the interface, such that its zero level set coincides with
the interface location.
Numerically, the level set variable is transported using the pseudo-conservative
formulation of equation (2.59). This allows to easily implement the level set
method in a standard conservation scheme like a finite volume solver. The level
set equation can then be treated analogously to the mass conservation as the
same upwind flux calculation can be used taking into account the additional
term on the right-hand side of equation (2.59).

The two-phase MPV approach builds upon a sharp thermodynamic transition
without any mixing of the different equations of state. Each grid cell is ex-
clusively assigned to one fluid and therefore to a specific equation of state. In
general, the different fluids can be easily identified depending on the sign of the
level set. While Φ has a positive sign in the gaseous phase, it is negative in the
liquid phase. Due to the use of the general stiffened gas equation of state (2.24)
the MPV method offers the possibility to treat two different fluids by the same
equation of state without any difficulty. The fluids differ in the constants γ
and p∞ that are allowed to vary from one grid cell to an other such that each
cell (i, j, k) is assigned to a specific value γ(i,j,k) and p∞,(i,j,k). At every time
step, a loop over all grid cells is performed and based on the level set variable
the corresponding values γ(i,j,k) and p∞,(i,j,k) are set. This treatment shifts
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Figure 4.5.: Physical and computational interface.

the physical interface to the cell faces, creating a computational interface that
is of staircase shape, as it can be seen in Fig. 4.5. Once γ(i,j,k) and p∞,(i,j,k)

are assigned, the usual MPV solution procedure of the Poisson equation can
be applied. For the first order Euler time discretization the Poisson equation
is written as follows

M2δp(2) −∆t2∇ ·
[
γ(i,j,k)(p

e + p∞,(i,j,k))

ρn+1
∇δp(2)

]
=

M2[p(2)n − p(2)∗]− dp(0)n−
∆t∇ · (γ(i,j,k)(p

e + p∞,(i,j,k)) ~v∗)− (γ(i,j,k) − 1)M2δk∗. (4.60)

Similar to the conservative single-phase flow case, the term ∇ · (γ(i,j,k)p
e ~v∗) is

treated as a pressure flux in order to avoid numerical inaccuracies for shock
waves. Yet, in the specific case of a multiphase shock tube that corresponds to
an air bubble collapse in water, the treatment of the pressure term has to be
modified in order to properly capture the shock wave.
The test case is described in more detail in section 5.1.5.4 and it is charac-
terized by strong density and pressure jumps. Considering the fact that the
pressure term ∇·(γ(i,j,k)p

e ~v∗) has been created applying an equation of state to
replace energy by pressure it also represents a part of the internal energy of the
corresponding fluids. In the present simulation of the air bubble collapse, the
two fluids differ significantly in the internal energy across the multi-material
interface. To take this into account, the standard upwind pressure flux at the
interface is replaced by two flux terms where each of them is suited to the
corresponding fluid. As the test case is one-dimensional, the following example
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of the modified flux is limited to the x-direction, while the same principle can
be applied to the other directions: ∂

∂x
(γpeu∗)i = γi

pei (u∗i+1/2−u
∗
i−1/2)

∆x
u∗i+1/2 < 0,

∂
∂x

(γpeu∗)i+1 = γi+1
pei+1(u∗i+3/2−u

∗
i+1/2)

∆x
u∗i+1/2 > 0.

(4.61)
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Figure 4.6.: Interface treatment for the (peu∗) flux term. At the interface,
the (peu∗) flux term is evaluated separately for each fluid as the
upwind procedure cannot be applied.

Figure. 4.6 illustrates the flux calculation. It shows the case of a left and a
right moving interface and it is evident that there are now two flux terms that
are evaluated at the interface location (i+ 1/2) instead of a single upwind flux.
Independently of the flow direction, the pressure pe for the flux evaluation is
always equal to pei in cell (i) and to pei+1 in cell (i+ 1) for an interface located
at (i+ 1/2).
This corresponds to a nonconservative flux evaluation at the material interface.
While this treatment improves the simulation results for the air bubble collapse
problem, there are other test cases where the nonconservative fluxes corrupt
the shock-capturing capabilities of the MPV scheme.
Unless otherwise stated, the fluxes are determined in a conservative manner for
the calculations presented in chapter 5.

4.6.1. Transport of a two-phase contact discontinuity

The material interface represents a discontinuity in the equation of state that
may lead to spurious pressure and velocity oscillations at this location, es-
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pecially when density-based flow solvers in conservative formulation are used
without any special interface treatment [43].
A simple but crucial test case is the transport of a two-phase contact discon-
tinuity in one space dimension. Once the discontinuity is transported, it is
smeared numerically by standard flow solvers. The smearing of the density
may cause problems for density-based solvers and possibly introduce spurious
pressure oscillations as a stiff equation of state is very sensitive to the density
smearing. The oscillations are amplified by the numerical scheme and if a nu-
merical method suffers from such oscillations, a special interface treatment is
needed [43].
The MPV scheme does not suffer from these unphysical oscillations. The pres-
sure is used as primary variable, this means it is directly calculated by the
numerical scheme solving the corresponding Poisson equation. For a conserva-
tive density-based method, the situation is slightly different. The pressure is
treated as secondary variable and is computed from the equation of state and
the internal energy. This makes the scheme prone to the smearing of density
and energy as the resulting unphysical values introduced into the equation of
state lead to an incorrect pressure. In this context, the advantage of the MPV
scheme lies in the fact that it is based on the conservative Euler equations,
which are subsequently reformulated in primitive variables such that pressure
and velocity are used as primary variables.
The following considerations are done on the basis of the conservative MPV
scheme that is presented in section 4.4 and that is extended to two-phase flows
according to the current section. A closer look at the transport of a one-
dimensional two-phase contact discontinuity with the first order spatial dis-
cretization shows the oscillation-free behavior of the first order MPV method.
For this simple case, velocity and pressure are constant in the whole flow do-
main and only density is jumping across the contact discontinuity, as well as
the material coefficients γ and p∞.
For the test, two fluids with densities ρL, ρR and material coefficients γL, γR
and p∞,L, p∞,R are considered, where the subscripts L and R mark the left and
right fluid. Pressure p and velocity u > 0 are constant in the whole domain.
Let the initial discontinuity be located at the cell face (i+ 1/2). The setup is
illustrated in Fig. 4.7.
In the following, a detailed investigation of the discretized equations shows the
oscillation-free transport. At first, the mass equation is solved and there is only
cell (i+ 1) that has to be updated

ρn+1
i+1 = ρR −

∆t

∆x
u(ρR − ρL). (4.62)
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Figure 4.7.: Transport of a two-phase contact discontinuity. Initialization
with jump in density and the material coefficients γ and p∞.

Then, the momentum equation is evaluated in order to get the predictor ve-
locity u∗. Again, there is only one value that has to be updated, this time it is
the velocity at the location (i+ 1/2)

u∗i+1/2 =
1

ρn+1
i + ρn+1

i+1

·
(
ρL + ρR −

∆t

∆x
u(ρR − ρL)

)
· u. (4.63)

As the density ρn+1
i = ρL stays unchanged, the sum ρn+1

i + ρn+1
i+1 can directly

be evaluated as

ρn+1
i + ρn+1

i+1 = ρL + ρR −
∆t

∆x
u(ρR − ρL). (4.64)

Inserting the sum of the densities ρn+1
i +ρn+1

i+1 calculated in equation (4.64) into
equation (4.63) for the velocity predictor u∗i+1/2 it is obvious that the predictor
is always equal to the constant transport velocity

u∗i+1/2 = u. (4.65)

The last step of the MPV scheme is the solution of the Poisson equation (4.60).
A look at the right-hand side shows that for constant pressure and velocity,
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there is only the term δk∗ that is different from zero

=0 for p=const︷ ︸︸ ︷
M2[p(2)n − p(2)∗]−

=0 foru=const︷ ︸︸ ︷
dp(0)n

−∆t∇ · (γ(i,j,k)(p
e + p∞,(i,j,k))u

∗︸ ︷︷ ︸
=0 for p=const andu=const

−(γ(i,j,k) − 1)M2δk∗. (4.66)

As for the density, the investigation can be focused on cell (i+1) since all other
terms δk∗ are equal to zero a priori

δk∗i+1 = (e∗kin)i+1 − (enkin)i+1 + ∆t∇ · (ekinu)ni+1,

=
1

2

(
ρR −

∆t

∆x
u(ρR − ρL)

)
· u2 − 1

2
ρRu

2 +
1

2

∆t

∆x
(ρR − ρL)u3,

= 0. (4.67)

Hence, the right-hand side of equation (4.60) is always equal to zero for con-
stant pressure and velocity independent of the material coefficients γ and p∞.
Therefore, the pressure corrector is also equal to zero everywhere δp(2) = 0
such that pressure and velocity remain unchanged and the first order scheme
is oscillation-free in the vicinity of the interface.

4.7. Limitations of the MPV method and open questions

In the following section, some open questions are presented that have to be dealt
with for the future development of the MPV method. The discussed issues have
been noticed during the validation and verification process of the numerical
approach and a closer investigation of the phenomena showed that fundamental
questions seem to arise concerning the numerical method, its discretization in
space and time and the treatment of the boundary conditions.

4.7.1. Second order MPV approach in space and time with
high density ratios across contact discontinuities

With the extension of the MPV method to second order in space and time, the
oscillation-free behavior of the numerical scheme close to density discontinuities
can no longer be guaranteed. It is shown that this behavior is basically linked
to the interplay of spatial and temporal discretization on the one hand and the
interpolation steps on the staggered grid on the other hand.
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Analogously to the transport of the contact discontinuity for the first order
scheme in section 4.6.1, the focus is now on the same one-dimensional setting
displayed in Fig. 4.7. This time, the second order RK2CN time discretization
in combination with the spatial reconstruction of the flow variables is used (cf.
sections 4.4.1.1 and 4.4.1.2). The test can be limited to a gaseous single-phase
flow (γL = γR and p∞,L = p∞,R = 0) with contact discontinuity and jump in
density (ρL, ρR), where the subscripts L and R mark the regions left and right
of the discontinuity. Pressure p and velocity u > 0 are constant and the initial
discontinuity in density is located at the cell face (i+ 1/2).

A first look at the one-dimensional momentum equation in semi-discrete for-
mulation (discrete in time) already reveals a difference compared to the first
order scheme as there appears the intermediate time level n+ 1/2

(ρu)n+1 − (ρu)n

∆t
+

[
∂(ρu2)n+1/2

∂x
+

1

2

(
∂p(2)n

∂x
+
∂p(2)n+1

∂x

)]
. (4.68)

From the discrete formulation of this equation the velocity predictor u∗i+1/2 at
the location of the contact discontinuity can easily be determined as pressure
and velocity initially are constant everywhere

u∗i+1/2 =
2

ρn+1
i + ρn+1

i+1

·
[
(ρu)ni+1/2 −

∆t

∆x

(
(ρu2)

n+1/2
i+1 − (ρu2)

n+1/2
i

)]
. (4.69)

However, the difficulty lies now in the computation of the momentum flux term
at the instant tn+1/2

1

∆x

(
(ρu2)

n+1/2
i+1 − (ρu2)

n+1/2
i

)
. (4.70)

For the flux term evaluation, the density ρn+1/2 and the velocity un+1/2 have
to be known and they are computed with the first order Euler scheme. While
the velocity stays constant during this step due to the properties of the first
order scheme (cf. section 4.6.1) the density has to be updated to the time
level n+ 1/2, but changes only in cell (i+ 1) and the corresponding density is
obtained as

ρ
n+1/2
i+1 = ρR −

1

2

∆t

∆x
u(ρR − ρL). (4.71)

In a next step, the momentum at time level n + 1/2 is determined. Based on
the density ρ(n+1/2) this is done by simply averaging the surrounding density
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values to the cell center of the momentum control volumes where the velocity
u is already available

(ρu)
n+1/2

i+1/2 =
(ρi + ρi+1

2
ui+1/2

)n+1/2

. (4.72)

This interpolation applies to all momentum control volumes. Afterwards, the
momentum is linearly reconstructed using the MUSCL approach. Finally, the
momentum flux term reads as follows

1

∆x

(
(ρu2)

n+1/2
i+1 − (ρu2)

n+1/2
i

)
=

1

∆x

3

4
(ρR − ρL)u2

[
1− 1

2

∆t

∆x
u

]
. (4.73)

In order to evaluate equation (4.69), the density update to time level n+ 1 has
to be done additionally. Following the RK2CN procedure this also includes
the intermediate time level n + 1/2 and a spatial reconstruction step for the
calculation of the density fluxes. For the sake of brevity, these steps are omitted
and the focus is directly on the discrete form of equation (4.69)

u∗i+1/2 =
1
2

[
ρL + ρR − 3

2
∆t
∆x

(ρR − ρL)(1− 1
2

∆t
∆x
u)u
]

1
2

[
ρL + ρR − ∆t

∆x
(ρR − ρL)(1− 1

4
∆t
∆x
u)u
] · u. (4.74)

It is obvious that in contrast to the first order case (cf. equations (4.63)-(4.64))
the numerator and the denominator of the fraction in equation (4.74) do not
cancel, therefore the predictor velocity u∗i+1/2 is different from u.

Moreover, the right-hand side of the pressure Poisson equation (4.60) is also
different from zero in the present case and the remaining term there is

(ρR − ρL)
∆t

∆x
u3

(
1

8
u

∆t

∆x
− 1

2

)
. (4.75)

This directly leads to velocity and pressure oscillations. It can be seen from
equation (4.74) that the differences between numerator and denominator get
more important the more the two densities ρL and ρR differ from each other.
Additionally, the more the velocity u is different from zero the more the os-
cillations are pronounced. This is also the case for the remaining term (4.75)
of the Poisson equation and it directly explains why the problem is of minor
importance for small density ratios and low flow velocities but leads to spuri-
ous oscillations once the densities differ by several orders of magnitude. This
behavior is illustrated by two numerical examples in section 5.1.3.1.
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4.7.2. Outlet boundary conditions

The outlet boundary conditions of the conservative MPV scheme on a staggered
grid in one space dimension are discussed in the following.
For the MPV method, the outlet boundary condition is realized using ghost cells
at the domain boundaries as it is common for finite volume schemes. In order to
realize non-reflecting boundary conditions, the values of the first and last grid
cell of the domain are copied to the corresponding ghost cell in each space direc-
tion, such that the gradient of the flow variables vanishes. For standard finite
volume Godunov-type methods this procedure allows one-dimensional shock
and expansion waves to leave the domain without any reflection at the domain
boundary. Yet, this is not the case for the pressure-based MPV method, as it
is shown in section 5.1.3.2 where a numerical analysis of the outlet boundary
conditions is presented.

4.8. Numerical codes for validation and verification
processes

In this section, two codes are briefly presented that have been used to validate
the coupling procedures of chapter 3 and to assess the capabilities of the MPV
method regarding the simulation of pressure waves.

4.8.1. One-dimensional sharp interface coupling approach

The compressible-incompressible coupling procedures of section 3 are numeri-
cally investigated using a one-dimensional sharp interface approach for the sim-
ulation of compressible two-phase flows. This code has originally been designed
to simulate two fluids of different compressibility, characterized by dissimilar
equations of state. The numerical scheme is based on the Euler equations and
allows to track the movement of a material interface and the developed coupling
schemes can be used at the interface location to prescribe the conservative flow
variables for the numerical flux calculation.
In the following, it is shown how the coupling algorithms are implemented
into the one-dimensional framework. The compressible two-phase solver (cf.
appendix B) is able to handle the coupling of compressible and weakly com-
pressible flow regions with the ghost fluid method. For this purpose, the whole
flow domain is discretized and a numerical solution is computed as is depicted
in Fig. 4.8. It can be seen that a weakly compressible region is approaching
the zero Mach number limit. However, as the speed of sound is very high
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numerical solver (ghost fluid method to couple flow domains) 

compressible compressible weakly compressible 
(approaching M=0) 

Figure 4.8.: The whole computational domain is discretized and solved nu-
merically by the ghost fluid approach of the one-dimensional
framework. The zero Mach number limit is approached by a
weakly compressible fluid. This setting is used to compute the
reference solution for the compressible flow domains.

numerical solver analytical 
solution

numerical solver 

compressible compressible M=0 

coupling algorithm 
gives flux terms

Figure 4.9.: The zero Mach number region is solved analytically and is there-
fore not discretized. The iterative coupling algorithm delivers
the flux terms needed as boundary condition for the compress-
ible solver of the one-dimensional framework.

in this region, its numerical discretization introduces small time steps and is
slowing down the computation. In order to prevent this, the presented cou-
pling algorithms can be used that do not discretize the M = 0 region but treat
it analytically and provide the compressible fluxes at the domain boundaries.
This is practical if the pressure waves inside the zero Mach number region can
be neglected and it is not necessary to resolve them. With the use of such a
coupling scheme, the configuration with respect to the numerical discretization
and solution procedure changes to the setting illustrated in Fig. 4.9.

A more extensive description of the sharp interface scheme can be found in
appendix B and even more details are presented in [59] by Jaegle et al.
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4.8.2. Godunov-type finite volume solver

To assess the shock-capturing properties of the MPV scheme and its capabilities
for the simulation of pressure waves, an extensive numerical investigation is
performed that includes several test cases. The numerical results are compared
to those of a standard finite volume solver that serves as a reference.
In contrast to the pressure-based MPV approach, the employed finite volume
code is a density-based method that discretizes the flow equations on a col-
located spatial grid. Moreover, an explicit time discretization is used. With
regard to the numerical fluxes, they are computed on the basis of Riemann
solvers such that the finite volume approach is of Godunov-type.
In appendix C the basic ideas of a Godunov-type finite volume approach are
briefly described.
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The focus of this chapter is on the assessment and validation of the numerical
approaches that have been presented in the chapters 3 and 4. This includes the
fundamental investigation of the one-dimensional coupling procedures for com-
pressible and incompressible flow regions as well as the application of the MPV
approach to several single-phase and multi-material shock tube test cases in
one space dimension. In the three-dimensional space, incompressible and com-
pressible two-phase flows are investigated. In the incompressible flow regime
the simulation of surface tension is addressed and compressible flows with pres-
sure waves are simulated using the MPV method.

5.1. One-dimensional calculations

The developed numerical schemes are now applied to one-dimensional test cases
for validation and verification purposes. First, the coupling schemes for com-
pressible and incompressible flow regions are validated by the computation of
the two test cases presented in section 3.2. Afterwards, the pressure-based
MPV method is assessed with respect to its shock-capturing properties for
single-phase flows and compared to a density-based Godunov-type scheme.
Moreover, the MPV approach for the simulation of compressible multiphase
flows is validated. This validation process ranges from the transport of a sim-
ple contact discontinuity between two gases to the simulation of numerically
demanding two-phase shock tube problems.

5.1.1. Coupling of compressible and incompressible flow
regions

In this section, the coupling schemes of section 3.3 are applied to the two test
configurations of section 3.2. At first, the results of the classical hydrodynamic
coupling approach (cf. section 3.3.1) are shown, then the thermodynamic cou-
pling scheme for the pure compression (cf. section 3.3.2) is applied to the
corresponding test case. Finally, the first test case configuration is calculated
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using the MPV coupling approach that accounts for thermodynamic and hy-
drodynamic effects (cf. section 3.3.3).

For the computations, the numerical framework described in section 4.8.1 is
employed. This framework is applied to the test cases in two different versions.
At first, the original fully compressible two-phase flow solver is used to simu-
late the test cases and to create a reference solution for the compressible flow
domains (cf. Fig. 4.8). Then, a second computation is performed using the
coupling algorithms to simulate the zero Mach number region (cf. Fig. 4.9).
As it has already been detailed in section 3, the exact solution of the one-
dimensional zero Mach number Euler equations is used to describe the M = 0
regions and the coupling to the adjacent compressible flow region is established
by an iterative procedure requiring the equality of pressure and velocity across
the interface. Finally, the coupling algorithms provide the numerical flux terms
for the compressible flow solver at the interface.

A comparison of the different coupling schemes and the ghost fluid method
with respect to the computational effort is strongly problem dependent. For
example, the simple purely thermodynamic coupling scheme that is based on
the analytical solution performed about 10% faster than the ghost fluid method
for the considered test cases. But, this situation changes according to the size of
the zero Mach number domain. The present work is focused on the coupling in
the simple one-dimensional context. For practical applications in two and three
space dimensions, the analytical solution in the incompressible domain has to
be replaced by a standard incompressible solver. In this case a considerable
reduction of the computational effort would be expected using the coupling
schemes for problems characterized by a great difference of the sound speeds
and a large incompressible domain.

The numerical studies for the following test cases have originally been per-
formed in the context of [42].

5.1.1.1. Hydrodynamic coupling

In this section, the computational results of the hydrodynamic coupling ap-
proach presented in section 3.3.1 are discussed. The algorithm couples the
pressure of the compressible region to the hydrodynamic pressure p(2) of the
incompressible domain. In order to assess the pure hydrodynamic coupling,
the test case of section 3.2.1 is used. The whole flow region is initially at rest
and a pressure difference is prescribed that accelerates the incompressible re-
gion. The initial conditions for the different flow regions are given in Fig. 5.1.
The incompressible domain (0.4 < x < 0.6) is treated analytically by the cou-
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pling scheme following the procedure of section 3.3.1. The parameters for the
numerical scheme are chosen as follows.

0 1

IC 
ρ=1, v=0, p=2.5,
γ=1.4

IC 
ρ=1, v=0, p=1,
γ=1.4

x

IC 
ρ=1, v=0, 
p=1.75,
γ=7.15 (M=0)

0.4 0.6

compressible compressibleincompressible / 
M=0

Figure 5.1.: Setup for the hydrodynamic acceleration of an incompressible
region: initial conditions (IC).

L∞ norm L2 norm

Density ρ 2.39 · 10−2 1.54 · 10−3

Velocity v 4.39 · 10−2 2.91 · 10−3

Pressure p 7.45 · 10−2 4.99 · 10−3

Table 5.1.: Hydrodynamic test case: L∞ and L2 norm comparison of the
results of the hydrodynamic coupling and the ghost fluid type
scheme.

A second order DG approach in combination with a grid size of ∆x = 0.025 is
used. The time step is equal to ∆t = 5 · 10−5 and the calculation is stopped at
the time tend = 0.065. With the help of the compressible ghost fluid method,
a reference solution is created using the Tait equation of state for the incom-
pressible region. This means that without applying the coupling algorithms,
the whole domain 0 ≤ x ≤ 1 depicted in Fig. 5.1 is discretized and solved nu-
merically by the compressible two-phase flow solver as described in section 4.8.1
and displayed in Fig. 4.8. The incompressible flow region 0.4 ≤ x ≤ 0.6 has
also to be discretized and simulated. It is treated as weakly compressible and
the Tait equation of state is applied in this region. The parameters of the
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Tait equation of state are chosen as p0 = 1.75, ρ0 = 1.0 and k0 = 3310. The
coupling of the different flow domains is handled by the two-phase approach of
the numerical framework.
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Figure 5.2.: Velocity and pressure plot for the hydrodynamic coupling of a
compressible (perfect gas) and an incompressible (weakly com-
pressible Tait fluid for reference solution) region at t = 0.065.
Comparison of the hydrodynamic coupling procedure and the
ghost fluid type method.

The higher pressure at the left causes an acceleration of the incompressible re-
gion. As a consequence, the compressible fluid at the right is compressed, while
there is an expansion traveling through the left compressible region. This is
evident from the velocity and pressure plots in Fig. 5.2, where the compression
and expansion wave can be seen. The results of the hydrodynamic coupling
method and the ghost fluid approach are matching excellently, as can be seen
in Fig. 5.2. A closer look at the plots shows discontinuities in the solution that
are due to the direct visualization of the DG polynomials that are discontinu-
ous across cell borders. Only minor deviations are visible from the comparison
of the reference solution to the results of the coupling scheme for the flow
variables in the compressible region in terms of the L∞ and L2 norms. The
corresponding norms are summarized in Tab. 5.1.
Using the hydrodynamic coupling approach, the behavior of the compressible
flow can therefore be modeled in accordance with the ghost fluid method with-
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out being forced to resolve the pressure waves inside the incompressible region.
Therefore, the time step restrictions are less severe which leads to a faster
computation.

5.1.1.2. Thermodynamic coupling

In the following, the results of the thermodynamic coupling algorithm of sec-
tion 3.3.2 are presented. The compressible pressure is coupled to the spatially
constant background pressure p(0) of the zero Mach number region. Two differ-
ent configurations of the test case of section 3.2.2 are investigated with different
equations of state for the M = 0 fluid. In both cases, a sound wave is trav-
eling through a compressible gas. It finally hits the boundary between the
compressible region and a zero Mach number domain consisting of a gas in the
first and of a liquid in the second case. The interface between the two fluids is
supposed to be steady, as the acoustic wave is weak and therefore only causes
low interface velocities.

Coupling a compressible perfect gas to an incompressible (M → 0)
perfect gas region
In order to demonstrate the explicit coupling mechanism, an acoustic wave
traveling through a compressible perfect gas and impinging on a zero Mach
number perfect gas region is investigated. The setup of the test case has been
introduced in section 3.2.2 and is depicted in Fig. 5.3 including its initial and
boundary conditions.
At the left boundary x = 0 the acoustic wave is generated by a time dependent
sinusoidal velocity boundary condition

v(x = 0, t) = 0.01 sin(18t). (5.1)

At the right boundary x = 1.1 the domain is supposed to be bounded by a
reflecting wall, according to the assumption of a symmetric compression. This
enforces the velocity to be zero v(x = 1.1, t) = 0 at all times. The initial
conditions in the compressible region are chosen to equal

(ρ, v, p) = (1, 0, 1) , 0 < x ≤ 1. (5.2)

Applying the solution of the iterative coupling procedure as a boundary con-
dition at the interface x = 1, the domain 1 < x ≤ 1.1 is not discretized for
numerical simulation.
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compressible (perfect gas) M=0 (perfect gas)

0 1 1,1

IC 
ρ=1, v=0, p=1,
γ=1.4
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ρ=0.001, v=0, p=1,
γ=1.4

BC 
v(t)=0.01sin(18t)

BC 
v=0
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Figure 5.3.: Setup for the radially symmetric compression: Initial conditions
(IC) and boundary conditions (BC) for the coupling of a com-
pressible perfect gas and a zero Mach number perfect gas region.
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Figure 5.4.: Velocity and pressure plot for the thermodynamic coupling of a
compressible and a zero Mach number region (perfect gas respec-
tively) at t = 1.5. Comparison of the thermodynamic coupling
procedure and the ghost fluid type method.

In order to compare the results obtained with the coupling mechanism, a second
computation is provided that is based on the ghost fluid type scheme. In this
case, the complete domain 0 ≤ x ≤ 1.1 is discretized and the incompressible
regime is approached by a weakly compressible fluid (cf. Fig. 4.8). This is the
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reason why the density in the region 1 < x ≤ 1.1 is chosen to ρ = 10−3 in
order to augment the speed of sound in this domain, approximating a M = 0
behavior.
For the simulations, the grid resolution has been chosen to ∆x = 0.025, the time
step size has been fixed to ∆t = 10−4 and the computation ends at tend = 1.5.
Furthermore, a third order DG scheme has been used.
Figure 5.4 illustrates the results for velocity and pressure that are obtained
by the iterative coupling procedure and the ghost fluid type method. As is
obvious from the two plots, there are only minor differences as the curves are
nearly identical. Concerning the M = 0 region, only the computed solution
of the ghost fluid type scheme is shown indicating the expected linear velocity
distribution as well as a constant pressure. For the compressible flow region, a

L∞ norm L2 norm

Density ρ 1.54 · 10−2 6.49 · 10−4

Velocity v 1.83 · 10−2 7.76 · 10−4

Pressure p 2.15 · 10−3 9.09 · 10−4

Table 5.2.: Pure compression (two perfect gases): L∞ and L2 norm compar-
ison of the results of the thermodynamic coupling and the ghost
fluid type scheme.

direct comparison of the coupling scheme and the ghost fluid method has been
performed by the calculation of the L∞ and L2 norm for density, velocity and
pressure. The corresponding norms are listed in Tab. 5.2. It is evident that
the differences between the two schemes are small.

Coupling a compressible perfect gas to an incompressible (M → 0)
Tait fluid region
As a second configuration, a compressible perfect gas region and a M = 0
region being occupied by a fluid obeying the Tait equation of state (e.g. water)
are considered. For the setting of the test case the same domain decomposition
as in the previous case is used, yet with different initial conditions that are
given in Fig. 5.5.
At the left boundary x = 0, the velocity boundary condition of equation (5.1) is
applied. According to the previous simulations a grid spacing of ∆x = 0.025 is
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compressible (perfect gas) M=0 (Tait)

Figure 5.5.: Setup for the radially symmetric compression: Initial conditions
(IC) and boundary conditions (BC) for the coupling of a com-
pressible perfect gas and an incompressible Tait fluid region.

used, the time step is ∆t = 10−4 and the computation is stopped at tend = 1.5.
The third order DG scheme is applied and the parameters k0 and p0 of the Tait
equation of state are chosen as k0 = 300 and p0 = 1.
The results of this coupling are presented in Fig. 5.6. As in the previous case,

L∞ norm L2 norm

Density ρ 3.2 · 10−3 1.46 · 10−4

Velocity v 3.8 · 10−3 1.73 · 10−4

Pressure p 4.5 · 10−3 2.04 · 10−4

Table 5.3.: Pure compression (perfect gas and Tait fluid): L∞ and L2 norm
comparison of the results of the thermodynamic coupling and the
ghost fluid type scheme.

the velocity and pressure plots for the compressible flow region resemble each
other quite well. This is confirmed by the comparison of the curves by L∞ and
L2 norm in Tab. 5.3.

Having a look at the velocity plot in Fig. 5.6, it is evident that the slope of the
velocity in the M = 0 region is less steep in comparison to the perfect gas case
of Fig. 5.4, whereas the velocity is still not constant but varies linearly from
v(x = 1.0) 6= 0 to v(x = 1.1) = 0.
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Figure 5.6.: Velocity and pressure plot for the thermodynamic coupling of a
compressible (perfect gas) and a zero Mach number (Tait fluid)
region at t = 1.5. Comparison of the thermodynamic coupling
procedure and the ghost fluid type method.

5.1.1.3. Multiple pressure variables (MPV) coupling

The last coupling method deals with the coupling of the compressible pressure
to a combination of the spatially constant background pressure p(0) and the
hydrodynamic pressure p(2) of the zero Mach number region. This combines
thermodynamic and hydrodynamic effects.
The MPV coupling of section 3.3.3 is applied to the test case introduced in
section 3.2.1, whose setup is depicted in Fig. 5.1. Again, an initial pressure
difference accelerates the M → 0 region. Yet, this time a compression of the
domain is possible due to the fact that thermodynamic effects are taken into
account and that the velocity has no longer to be divergence-free.
By adding compressibility effects to the coupling scheme, an appropriate initial
value for the background pressure p(0) has to be chosen. As already mentioned
in section 3.3.3, our initial choice for the background pressure p(0) is the arith-
metic mean of the surrounding pressures (cf. equation (3.16)). This leads to
an initial pressure p(0) = 1.75 in the present case.
The numerical setup is identical to the one of the previous calculations for
the hydrodynamic coupling method in section 5.1.1.1. Again the second order
DG scheme together with a grid spacing of ∆x = 0.025 is used. The time
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step is equal to ∆t = 5 · 10−5 and the calculation is also stopped at the time
tend = 0.065. The same reference solution of the ghost fluid method is employed
as for the comparison with the pure hydrodynamic coupling in the previous
section (cf. Fig. 5.2) where the Tait equation of state is applied to the weakly
compressible region of the ghost fluid approach with the following parameters:
p0 = 1.75, ρ0 = 1.0 and k0 = 3310. With respect to the computation with the
coupling scheme, the present MPV approach takes into account compressible
effects for the previously incompressible domain (0.4 < x < 0.6). Therefore,
an equation of state is needed and the Tait equation of state with the above
parameters is also employed for the zero Mach number region by the MPV
coupling scheme.
The comparison between the ghost fluid method and the MPV coupling is
displayed in Fig. 5.7. A first look at the plots reveals that both approaches
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Figure 5.7.: Velocity and pressure plot for the combined thermodynamic and
hydrodynamic coupling of a compressible (perfect gas) and a
M = 0 (Tait fluid) region at t = 0.065. Comparison of the
MPV coupling procedure and the ghost fluid type method.

are in a good agreement to each other in the compressible flow regions. This
is confirmed in a quantitative way by comparing the results of the coupling
scheme to the ones of the ghost fluid method in terms of the L∞ and L2 norms
for the flow variables in the compressible flow region. The norms can be found
in Tab. 5.4.
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L∞ norm L2 norm

Density ρ 2.26 · 10−2 1.44 · 10−3

Velocity v 4.23 · 10−2 2.80 · 10−3

Pressure p 7.19 · 10−2 4.83 · 10−3

Table 5.4.: Hydrodynamic acceleration: L∞ and L2 norm comparison of the
results of the MPV coupling and the ghost fluid type scheme.
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Figure 5.8.: Velocity and pressure plot for the coupling of a compressible
(perfect gas) and a M = 0 (Tait fluid) region at t = 0.065.
Comparison of the pure hydrodynamic coupling, the MPV cou-
pling approach and the ghost fluid method.

The results of the pure hydrodynamic coupling and the MPV coupling approach
can now directly be compared to each other and to the reference solution. A
first qualitative impression is provided by the velocity and pressure plots of
Fig. 5.8. It is barely possible to distinguish the three curves in the compress-
ible flow domains. The only visible differences concern the zero Mach number
region, where small deviations are present. Yet, as the main interest is in the
solution of the compressible flow region, both coupling approaches are directly
compared in a more quantitative way in this region.
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A brief look at Tab. 5.1 and Tab. 5.4 shows that the MPV coupling approach
is always closer to the reference solution that is the same for both coupling
approaches. In a second step, the norms of both coupling schemes can be com-
pared and the deviation of the pure hydrodynamic coupling from the norms of
the MPV coupling is determined. This is done in Tab. 5.5, where the relative
deviation is given. It is obvious that the MPV coupling approach is about 3%
to 6% closer to the reference solution for the compressible flow region than
the pure hydrodynamic coupling approach. This indicates that the fully com-
pressible solution is clearly approached with the MPV coupling and that even
for this test case, dominated by hydrodynamics, it is favorable to include the
thermodynamic background pressure.

L∞ norm L2 norm

Density ρ +5.6% +6.6%

Velocity v +3.9% +4.0%

Pressure p +3.6% +3.4%

Table 5.5.: Hydrodynamic acceleration: Deviation of the L∞ and L2 norm of
the pure hydrodynamic coupling from the corresponding norms of
the MPV coupling.

5.1.1.4. Conclusions

Three different coupling schemes have been applied to the test cases of sec-
tion 3.2. The methods differ in the way they couple the pressure of the com-
pressible flow region to the incompressible region where the pressure is split
into a hydrodynamic and a thermodynamic pressure. While the pressure of
the compressible region is coupled to either the hydrodynamic or the ther-
modynamic pressure for the first two approaches, a third coupling scheme is
based on the coupling of the hydrodynamic and the thermodynamic pressure of
the zero Mach number region to the pressure of the surrounding compressible
flow (MPV approach). Jump conditions across the interface are used to finally
control the iteration process that is based on the solution of a half-Riemann
problem on the compressible side and the exact solution of the Euler equa-
tions in the zero Mach number domain. At the compressible-incompressible
interface, each of the coupling algorithms provides the numerical fluxes as a
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boundary condition for the compressible flow solver.

The purely thermodynamic coupling is validated with a test case character-
ized by compressible effects originating from the compression of the zero Mach
number region boundaries. A second test case describes the acceleration of an
incompressible domain due to a pressure gradient and it is used to assess the
hydrodynamic coupling as well as the combined hydrodynamic and thermody-
namic coupling approach. For all test cases, the results of the compressible flow
domain have been compared to those of a compressible two-phase flow sharp
interface method and an excellent agreement can be observed. Moreover, the
direct comparison of the hydrodynamic approach and the MPV coupling, that
combines hydrodynamic and thermodynamic effects, shows that the results of
the MPV coupling are slightly closer to the fully compressible solver than those
of the purely hydrodynamic approach that neglects compressible effects.

5.1.2. Validation of the MPV scheme for single-phase
problems

The focus is now on the pressure-based MPV scheme. It is assessed to one-
dimensional compressible single-phase flows and proves to accurately handle
standard shock tube problems. Moreover, a comparison between the conserva-
tive and the semi-conservative MPV method is performed.

5.1.2.1. Sod test case

The classical test cases for the assessment of compressible flow solvers in one
space dimension are shock tube problems, where a Riemann problem is solved.
For these examples, analytical solutions exist and the numerical scheme can
directly be assessed with respect to its capability to properly resolve expansion
fans, contact discontinuities and shock waves. A variety of well established
test cases exists described in the literature and a good overview is given by
Toro [60].
One of them is the following example that is known as Sod’s shock tube [61]
whose initial conditions are given by

ρL
vL
pL
γL

 =


1.0

0

1

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


0.125

0

0.1

1.4

 ;x > 0.5. (5.3)
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Figure 5.9.: Sod test case: density, velocity and pressure plot of the MPV
simulation (first (O1) and second (O2) order, 100 grid cells) and
the exact solution at t = 0.2.

The test case has been computed with the first and the second order MPV
method on a grid of 100 cells. It can be seen from Fig. 5.9 that the MPV
approach is able to resolve the wave structure of the problem that consists of a
left running expansion fan, a contact discontinuity and a shock that moves to
the right. The numerical solution is in good agreement with the exact solution.
Moreover, the differences between the first and the second order scheme are
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evident. The second order approach generates an improved numerical solution
as it approaches the exact solution more precisely and shows a better shock
resolution. It resolves the shock wave within three grid cells while the first
order approach needs five cells for the approximation. Additionally, the contact
discontinuity is less smeared and resolved more accurately. For the second
order calculation, the RK2CN time discretization has been used and the spatial
reconstruction has been carried out with the minmod slope limiter.

5.1.2.2. Sod test case with the semi-conservative MPV approach

In the following, the semi-conservative MPV approach (cf. Sec. 4.5) is applied
to the shock tube test case of Sod [61]

ρL
vL
pL
γL

 =


1.0

0

1

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


0.125

0

0.1

1.4

 ;x > 0.5. (5.4)

The standard single-phase test case is calculated with the MPV method in
semi-conservative formulation and compared to the results of the conservative
scheme in Fig. 5.10. For both numerical approaches a first order spatial and
temporal discretization is applied and the computation has been carried out
on a mesh with 100 grid cells. The results of the two schemes are close to the
exact solution. However, differences are visible with respect to the resolution
of the contact discontinuity and the shock wave. The density plot reveals that
the two approaches predict slightly different shock locations and also strengths.
Due to the use of the non-conservative pressure equation, the semi-conservative
approach has difficulties to capture the shock accurately.
This is even more evident from Fig. 5.11 that shows the results of both schemes
on a finer grid using 1000 grid cells for the spatial discretization. It can be seen
that while the conservative MPV method converges to the exact solution, the
semi-conservative method is deviating from the analytical solution. The shock
position and strength are slightly mispredicted as is obvious from the close-up
view in Fig. 5.11.

5.1.2.3. Sod test case for a covolume gas using the
semi-conservative MPV approach

The advantage of the semi-conservative approach is that it can easily be applied
to arbitrary equations of state as long as the speed of sound can be evaluated.

95



5. Computational results

X

ρ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Exact Solution

MPV1D (O1)

MPV1D semi­cons (O1)

X
v

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
Exact Solution

MPV1D (O1)

MPV1D semi­cons (O1)

X

p

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Exact Solution

MPV1D (O1)

MPV1D semi­cons (O1)

Figure 5.10.: Sod test case: density, velocity and pressure plot of the MPV
simulation in semi-conservative and conservative formulation
(first order (O1), 100 grid cells) and the exact solution at
t = 0.2.

To demonstrate this property, the shock tube test case of Sod is modified,
replacing the perfect gas by a covolume gas.

The covolume equation of state is a simple generalization of the perfect gas
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Figure 5.11.: Sod test case: density plot of the MPV simulation in conserva-
tive and semi-conservative formulation (first order (O1), 1000
grid cells) and the exact solution at t = 0.2. At the right: close-
up view at the location of shock and contact discontinuity.

equation of state (2.5)

p =
γ − 1

1− bρ (e− ρ

2
|~v|2). (5.5)

According to [60], the parameter b takes into account the covolume of the
gas that is occupied by the molecules themselves and for b→ 0 the perfect gas
equation of state (2.5) is obtained. For the following computation the covolume
b is chosen as a constant.
The pressure Poisson equation (4.59) for the semi-conservative scheme has the
speed of sound as the only link to the fluid equation of state. Therefore,
equation (5.5) is not needed directly but only to derive the relation for the speed
of sound that can be easily computed from the following equation (cf. [60])

c =

√
γp

(1− bρ)ρ
. (5.6)

The numerical test case for the covolume gas is performed with the initial setup
of the Sod shock tube given by equation (5.3) and additionally the covolume b is
chosen to be constant and equal to b = 0.8. The results of the computation are
displayed in Fig. 5.12. The numerical simulation has been performed with the
first order scheme and 100 grid cells. A first look reveals that the exact solution
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Figure 5.12.: Sod test case for a covolume gas (b = 0.8): density, velocity and
pressure plot of the MPV simulation in semi-conservative for-
mulation (first order (O1), 100 grid cells) and the exact solution
at t = 0.15.

of the problem has changed considerably using the covolume gas in comparison
to the original shock tube case of Sod (cf. Fig. 5.9). The semi-conservative
scheme is able to nicely approach the exact solution of the Riemann problem
and has less problems to accurately capture the shock than for the original Sod
case. Because of the weaker shock strength and the lower shock speed, the
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conservation errors are less pronounced.

5.1.3. Limitations of the MPV method

Subsequently, some numerical examples are shown that confirm the theoretical
reasoning of section 4.7 concerning the second order extension of the MPV
method and the outlet boundary conditions of the pressure-based scheme on a
staggered grid. It is shown that the second order scheme is prone to velocity
and pressure oscillations in the presence of large density jumps and that for
the outlet boundary conditions the standard finite volume treatment leads to
reflections at the domain boundaries.

5.1.3.1. Second order MPV approach in space and time with high
density ratios across contact discontinuities

The extension of the MPV method to second order in space and time comes
along with the loss of the oscillation-free behavior of the numerical scheme
close to density discontinuities, even for single-phase flows. This is illustrated
by the following two examples. At first, the transport of a moderate contact
discontinuity in density is considered according to Park [62]

ρL
vL
pL
γL

 =


1.0

1

1

1.4

 ;x < 0.2


ρR
vR
pR
γR

 =


0.7

1

1

1.4

 ;x > 0.2. (5.7)

The corresponding velocity and pressure plots of the second order MPV scheme
are displayed in Fig. 5.13 together with the exact, constant solution. The results
clearly show pressure and velocity oscillations. However, a closer look at their
scale reveals that the amplitudes are very small. This changes dramatically for
larger density ratios, as it is demonstrated subsequently.

Compressible two-phase flows are characterized by dissimilar equations of state
that govern the different fluids and that may lead to coupling problems at the
interface location, as it has already been discussed in detail. Aside from this
effect, there are also the material properties that are jumping considerably. A
realistic density ratio is in the order of 1000, as it is the case for water and air
for example. Unfortunately, the above presented second order MPV scheme is
unable to properly transport such a density jump even for a single-phase flow.
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Figure 5.13.: Transport of contact discontinuity in density (ρL = 1, ρR =
0.7): velocity and pressure plot of the MPV simulation and the
exact solution at t = 0.4. The simulation uses 100 grid cells
and the second order MPV scheme (RK2CN).
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Figure 5.14.: Transport of contact discontinuity in density (ρL = 1000,
ρR = 1): velocity and pressure plot of the MPV simulation
and the exact solution at t = 0.4. The simulation uses 100 grid
cells and the second order MPV scheme (RK2CN).
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This is illustrated by the following setup
ρL
vL
pL
γL
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1
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 ;x > 0.2. (5.8)

The scheme now has to deal with a considerable jump in density (three orders of
magnitude) and the results are displayed in Fig. 5.14. This time, the oscillations
are clearly more pronounced and the pressure has even unphysical negative
values. Therefore, the current second order version of the scheme is not able to
properly transport such a contact discontinuity with a pressure ratio of 1000.
To remedy this problem, one possibility might be to locally switch to the first
order MPV approach at the location of large density gradients, as they are
often present in two-phase flows. The first order MPV approach is free of
oscillations even in the presence of high density ratios (cf. section 4.6.1). The
loss of accuracy may be compensated by locally refining the grid. In the case of
two-phase flows, the level set function can act as an indicator to identify cells
close to multi-material interfaces with large density gradients.

5.1.3.2. Outlet boundary conditions

For the pressure-based MPV method, the standard finite volume outlet bound-
ary conditions cannot be applied. This has already been discussed in sec-
tion 4.7.2 and is now proven numerically.
In order to investigate the boundary conditions, the classical Sod test case [61] is
used whose initial conditions are given by equation (5.3) and the computation is
stopped at t = 0.5 when shock and expansion have already reached the domain
boundaries. The shock wave travels at supersonic speed while the waves of the
expansion fan are subsonic.
Figure 5.15 shows the exact solution and the results of the first order MPV
scheme using 200 grid cells. The standard outlet boundary condition using
ghost cells (cf. section 4.7.2) is denoted outlet BC and it is evident from all
three plots, that there are considerable reflections at the boundaries. In order
to further investigate this, a second boundary condition is employed. For this
condition, the exact solution of the Riemann problem is written in the ghost
cells at each time step and the boundary condition is therefore called exact
BC. The plots show a considerable reduction of the reflections by this kind of
boundary condition. A closer look at the results reveals that there are still
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Figure 5.15.: Sod test case: density, velocity and pressure plot of the first
order MPV simulation (200 grid cells) with the standard outlet
boundary condition (outlet BC) and the exact boundary con-
dition for the Sod test case (exact BC) and the exact solution
at t = 0.5.

reflected waves, but their magnitude is far smaller than in the case of the
standard outlet conditions.

As the exact solution at the boundaries is not available for every numerical
simulation, this kind of boundary condition cannot always be applied and an
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alternative has to be found in order to attenuate the oscillations on the stag-
gered grid. From the above investigations it is known that the focus has to
be on the treatment of the velocity. It is sufficient to use the exact solution of
the Riemann problem for the velocity and to simply copy pressure and density
to the ghost cells. With these mixed boundary conditions, the same results
are obtained as for the exact boundary condition treatment whose results are
displayed in Fig. 5.15.

5.1.3.3. Conclusions

These two examples show that there are still open questions to be dealt with.
Especially the extension of the numerical approach to second order is of vital
interest for the future application of the solver to more realistic and therefore
computationally more challenging problems that cannot be treated with the
first order scheme.
Because of the above discussed pressure and velocity oscillations, the following
one-dimensional investigations of the single-phase MPV scheme are limited
to the first order method as the numerical examples include strong density
gradients.

5.1.4. Characterization of the MPV scheme regarding the
simulation of pressure waves and its shock-capturing
properties

In the following, the capability of the conservative MPV method, presented
in section 4.4, to correctly simulate the propagation of pressure waves is as-
sessed, as well as its shock-capturing properties. For this purpose, different
one-dimensional shock tube test cases from the literature are considered.
In the context of this work, several defects related to the numerical solution
of Riemann problems are investigated for the pressure-based MPV approach
and a density-based Godunov-type method. The corresponding test cases are
well-known and there exist overviews in the literature [63–65]. At first, shock
tube problems with large density jumps are examined that pose problems to
many numerical schemes [63, 64]. Then, the focus is on the slowly moving
shock of Quirk [65] as a second test problem. A very detailed analysis of this
phenomenon can be found in [66]. Another well-known test case that causes
trouble to many numerical approaches is the 123 problem [67] where strong
rarefactions lead to near vacuum conditions. As a last example the wall heating
phenomenon [68] is investigated.
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For all test cases, the computational results of the pressure-based MPV scheme
are compared to those of a density-based finite volume Godunov-type solver
(cf. appendix C) and a detailed discussion is presented.

5.1.4.1. Strong rarefactions

In a first step, the shock-capturing properties of the MPV scheme are analyzed.
The investigations are mainly based on the work of Kudriakov et al. [64] that
identified strong rarefaction waves to be the origin of bad shock-capturing be-
havior.
According to their definition, a strong rarefaction is identified by a large dif-
ference in speed of the head and the tail wave of the rarefaction fan that can
be measured by the relation r of the wave slopes m

r =

∣∣∣∣mHead

mTail

∣∣∣∣ . (5.9)

Following the reasoning of [64], the ratio r can be considered to be critical for
r > 10 and the shock-capturing errors can be explained as follows.
At every time step, an averaging error is introduced at the vicinity of the
contact discontinuity. As the boundaries of the rarefaction fan are traveling
at very different speeds, the slow tail wave is supposed to stay close to the
contact discontinuity for many time steps. Therefore, from the beginning of
the computation, the averaging errors accumulate in this region which finally
leads to the mispredicted shock wave.
In order to characterize the pressure-based MPV approach, it is applied to
a series of shock tube problems with increasing initial density jumps, thus
the rarefaction strength is successively raised. The strength is measured by
the above proposed wave speed ratio r and additionally the numerical results
are compared to those of a standard density-based finite volume solver. Both
numerical schemes use a discretization of first order in time and space and
the number of grid cells is equal, too. The finite volume solver CFDFV is
of Godunov-type (cf. appendix C) and several Riemann solvers are available
for the intercell flux calculation. In the following, an exact Riemann solver is
employed unless otherwise stated.
The basis for the test series is the standard Sod test case, according to [61]
(cf. equation (5.3) for the initial conditions). The corresponding results of the
schemes, obtained with 100 grid cells, are displayed in Fig. 5.16. In general,
both solvers approximate the exact solution quite well as the strength and the
position of all waves are correctly predicted. Yet, a closer look at the velocity
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Figure 5.16.: Sod test case: density, velocity and pressure plot of the MPV
and the finite volume CFDFV simulation (first order, 100 grid
cells) and the exact solution at t = 0.2.

plot reveals that the results of the MPV method differ a bit stronger from the
exact solution of the rarefaction than those of the finite volume solver. For the
Sod test case, the indicator r shows a moderate wave speed ratio

r =

∣∣∣∣mHead

mTail

∣∣∣∣ = 2.78. (5.10)
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In a second step, the initial discontinuity in density is now increased by a factor
of 10, augmenting the density ρL

ρL
vL
pL
γL

 =


10.0

0

1

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


0.125

0

0.1

1.4

 ;x > 0.5. (5.11)

Due to the raise in the density ratio, the rarefaction wave speed ratio is in-
creased to

r =

∣∣∣∣mHead

mTail

∣∣∣∣ = 4.57. (5.12)

Since this problem is already more severe compared to the previous one, the
spatial resolution has been increased using 300 grid cells to discretize the do-
main. Both solvers are applied to the modified test case of equation (5.11) and
the results can be found in Fig. 5.17. The numerical solution of both schemes is
close to the exact one. Again, the MPV approach is inferior to the finite volume
approach with respect to the resolution of the expansion fan. Furthermore, the
pressure-based method produces a small overshoot at the shock position that
is visible in the velocity plot. Being faced with a sonic rarefaction, the solution
of the finite volume method contains a jump within the rarefaction fan. This
defect is known as entropy glitch [60].
Finally, an even more demanding test is performed by further increasing the
density to ρL = 100, resulting in a density ratio of ρL/ρR = 800

ρL
vL
pL
γL

 =


100.0

0

1

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


0.125

0

0.1

1.4

 ;x > 0.5. (5.13)

Hereby, the indicator r further raises to

r =

∣∣∣∣mHead

mTail

∣∣∣∣ = 6.06. (5.14)

The outcome of the computations is shown in Fig. 5.18 and as the rarefaction
is stronger than the previous one, the plots show that the entropy glitch of
the Godunov-type method is more pronounced. This time, the MPV method
clearly has trouble to capture the shock since neither its position nor its strength
are predicted accurately, as it is obvious from the close-up view of the density in
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Figure 5.17.: Modified Sod test case (density ratio ρL/ρR = 80): density,
velocity and pressure plot of the MPV and the finite volume
CFDFV simulation (first order, 300 grid cells) and the exact
solution at t = 0.2.

Fig. 5.19. While the finite volume scheme still is able to approximate position
and strength of the shock, the shock is not accurately captured by the MPV
scheme. This is also evident from the velocity plot in Fig. 5.18 and displays the
inferiority in shock-capturing of the pressure-based MPV method in comparison
to a standard finite volume scheme in the presence of large density ratios.
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Figure 5.18.: Modified Sod test case (density ratio ρL/ρR = 800): density,
velocity and pressure plot of the MPV and the finite volume
CFDFV simulation (first order, 300 grid cells) and the exact
solution at t = 0.2.

To further investigate and confirm this observation, the difference in wave
speeds in the rarefaction is drastically increased by not only imposing a high
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Figure 5.19.: Modified Sod test case (density ratio ρL/ρR = 800):close-up
of the density plot of the MPV and the finite volume CFDFV
simulation (first order, 300 grid cells) and the exact solution at
t = 0.2.

initial density ratio but also having a considerable jump in pressure
ρL
vL
pL
γL

 =


1.0376

6.0151

1000

1.4

 ;x < 0.7


ρR
vR
pR
γR

 =


0.001

0

1

1.4

 ;x > 0.7. (5.15)

In this case, pressure and density have an initial ratio of about 1000 and 800
grid cells have been used for the first order simulations. The simulation results
of the MPV scheme and the finite volume solver are displayed in Fig. 5.20. The
velocity distribution already shows that the MPV scheme is considerably devi-
ating from the exact solution. The finite volume code is run with two different
flux calculation approaches, an exact Riemann solver and the Lax-Friedrichs
method. While the exact Riemann solver is the most accurate way of flux eval-
uation, the Lax-Friedrichs flux represents a quite simple approximation to the
solution of the exact Riemann problem. Thus, the quality of flux evaluation is
considerably varied by the use of the two methods.
For this severe test, even the finite volume scheme is unable to accurately
capture the shock. This is illustrated by two close-up views on the shock
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Figure 5.20.: Severe shock tube case (density ratio ρL/ρR = 1037.6, pressure
ratio pL/pR = 1000): density, velocity and pressure plot of the
MPV and the finite volume CFDFV simulation (first order, 800
grid cells) and the exact solution at t = 0.002.

location for density and velocity, given in Fig. 5.21. The finite volume solver
still catches position and strength of the shock quite acceptably using the exact
Riemann solver for the numerical flux evaluation, whereas the shock position
is mispredicted by the MPV method as is obvious from the density plot. The
velocity close-up shows that both solvers differ from the exact solution. When
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Figure 5.21.: Severe shock tube case (density ratio ρL/ρR = 1037.6, pressure
ratio pL/pR = 1000): close-up views of density (left) and veloc-
ity (right) of the MPV and the finite volume CFDFV simulation
(first order, 800 grid cells) and the exact solution at t = 0.002.

the flux calculation method of the finite volume scheme is changed to the less
accurate Lax-Friedrichs flux, the results are tending towards those of the MPV
code. This indicates a strong dependency on the quality of the flux calculation.

According to [64], the main difficulty for numerical schemes in dealing with
strong rarefactions is to minimize the averaging errors over the rarefaction fan
at the beginning of the computation. If the numerical scheme has problems to
correctly build up the wave pattern, the solution inevitably stays disturbed for
the rest of the calculation. This effect can be demonstrated by a test, where
the initial solution is not a discontinuity, but the exact solution of the severe
shock tube problem with the initial conditions of equation (5.15) at the instant
t = 5 · 10−4. For this setup, density and velocity plot of the MPV scheme are
displayed in Fig. 5.22.

Starting from the developed wave structure, the MPV method is able to further
evolve the waves correctly as strength and position of the shock coincide with
the exact solution. This illustrates the problems of the pressure-based method
to capture the right waves from an initial discontinuity due to the lack of an
accurate Riemann solver. Being faced with an initial discontinuity, the waves
develop over several time steps during which the problem is not fully resolved
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on the computational mesh and physical behavior has to be ensured via the
numerical flux calculation.
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Figure 5.22.: Severe shock tube case (density ratio ρL/ρR = 1037.6, pressure
ratio pL/pR = 1000). The computation is initialized using the
exact solution at t = 5 · 10−4 that already contains the fully
developed wave pattern: density plot (top, left) and close-up
on shock location (top, right), velocity plot (bottom). MPV
simulation (first order, 800 grid cells) and the exact solution at
t = 0.002.
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In this context, a strong dependency on the quality of the numerical flux can
be deduced. While the finite volume scheme with the exact Riemann solver
performs soundly, the results are remarkably deteriorating when the flux eval-
uation is changed to the less accurate Lax-Friedrichs flux (cf. Fig. 5.20). The
MPV method uses an upwind method in combination with a central difference
discretization for the implicit part. Obviously, this discretization approach fur-
ther degrades the numerical results in direct comparison to the finite volume
approach with the already quite inaccurate Lax-Friedrichs flux. Moreover, the
results of Fig. 5.22 indicate that the numerical flux is most important in the
beginning of the computation to set up the wave pattern, as the MPV scheme
is capable of correctly evolving the shock in time starting from the already
existing waves.
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Figure 5.23.: Slowly moving shock: density plot of MPV and finite volume
CFDFV simulation at t = 1.75 (first order, 100 grid cells, finite
volume code with exact Riemann solver); close-up view at the
right.

5.1.4.2. Slowly moving shock

As a second example, the movement of a slow shock is investigated with the
two numerical schemes. Following Quirk [65] a shock wave is simulated that is
slowly moving from left to right. The pre- and post-shock states are given by
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the following initial conditions
ρL
vL
pL
γL

 =


3.86

−0.81

10.33

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


1.0

−3.44

1.0

1.4

 ;x > 0.5. (5.16)

The MPV approach and the density-based finite volume solver CFDFV have
been applied to the above initial conditions and the corresponding results are
displayed in Fig. 5.23-5.25. For the test, the first order version of both solvers is
used on a grid consisting of 100 cells and the simulation is stopped at t = 1.75.
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Figure 5.24.: Slowly moving shock: velocity plot of MPV and finite volume
CFDFV simulation at t = 1.75 (first order, 100 grid cells, finite
volume code with exact Riemann solver); close-up view at the
right.

A first look at the density plot of Fig. 5.23 already reveals the presence of
oscillations behind the right moving shock for the finite volume solver. The plot
on the right is a close-up view at the post-shock area. Here, the oscillations of
the density-based scheme are clearly visible while the solution of the pressure-
based method is free of oscillations. The same is true for the velocity and
pressure distributions in Fig. 5.24 and Fig. 5.25. In all cases, the post-shock
solution of the finite volume solver is characterized by pronounced oscillations.
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Figure 5.25.: Slowly moving shock: pressure plot of MPV and finite volume
CFDFV simulation at t = 1.75 (first order, 100 grid cells, finite
volume code with exact Riemann solver); close-up view at the
right.

With reference to [65] the resolution of a slowly moving shock is a well-known
defect of all Godunov-type schemes that can be explained by the fact that they
build on the recognition of wave patterns. Hence, spurious waves are introduced
that connect the pre- with the post-shock state and that are not present in the
physical problem consisting of a single shock wave.

Yet, the pressure-based scheme is not trying to identify certain waves, as it is
based on upwind formulae and a central difference discretization. Therefore,
the corresponding results are free of oscillations and superior to those of the
density-based Godunov-type schemes.

Apart from the Godunov-type methods, there are density-based approaches
based on the AUSM (Advection Upstream Splitting Method) flux, introduced
by Liou and Steffen [69], that are also able to handle slowly moving shocks
without oscillations. The AUSM scheme can be considered to be a combination
of Godunov and flux vector splitting approaches. The numerical flux is split in a
convective component treated in an upwind manner and a pressure component,
using a central difference discretization for the pressure term of the momentum
equation. The scheme has continuously been enhanced [70] and its capability
to treat slowly moving shocks is proven [71].
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5.1.4.3. 123 problem

A third test case is the so-called 123 problem taken from Einfeldt et al. [67].
This Riemann problem consists of two strong rarefaction waves, a left and a
right moving wave, and a stationary contact discontinuity located between the
rarefactions. In the vicinity of the contact discontinuity a very low pressure
close to vacuum is created. The density is also low in this flow region, an
additional aspect that has to be dealt with numerically. The initial data is
given by

ρL
vL
pL
γL

 =


1.0

−2.0

0.4

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


1.0

2.0

0.4

1.4

 ;x > 0.5. (5.17)

According to Einfeldt et al. [67] this Riemann problem is not linearizable, this
means that approximate Riemann solvers may break down when they are ap-
plied to this test case.
The 123 problem is solved by the MPV method and the density-based finite
volume approach CFDFV using the corresponding first order implementation
with 100 grid cells for both solvers. For the finite volume code, the test case
is run with an exact Riemann solver and the Lax-Friedrichs method for the
flux calculation. The density distribution is displayed in Fig. 5.26. At the
first look, the computational results resemble each other and approximate the
exact solution. Minor differences can be seen regarding the resolution of the
expansion wave fronts. Here, the MPV scheme gives slightly inferior results in
comparison to the finite volume solver. Moreover, at the location of the contact
discontinuity the differences between the schemes become more obvious and this
is shown by the close-up view of Fig. 5.26. In comparison to the exact solution
of the density, the finite volume code in combination with the exact Riemann
solver predicts density values that are too low. In contrast, the MPV approach
is overpredicting the density at the location of the contact discontinuity, but
is slightly closer to the density minimum of the exact solution than the finite
volume solver. Once the finite volume code is run with the Lax-Friedrichs flux
calculation, its behavior in the low density region is similar to that of the MPV
approach.
The velocity distribution is shown in Fig. 5.27. Again, the differences between
the numerical schemes are small and can only be seen in detail in the close-
up view at the location of the contact discontinuity. While the rarefaction
waves are traveling to the left and to the right, the velocity is equal to zero
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Figure 5.26.: 123 test case: density plot of the MPV and the finite volume
simulation at the time t = 0.1, including close-up view at the
right (first order, 100 grid cells). The finite volume CFDFV
code is run with an exact Riemann solver and the Lax-Friedrichs
flux.

in the center of the domain as is evident from the exact solution. None of
the numerical schemes is able to really reproduce the zero velocity. The finite
volume method with the exact Riemann solver is closest to the exact solution,
but it also shows slight overshoots in its approximation. The results of the MPV
method reveal to be inferior to those of the finite volume approach using the
exact Riemann solver. But, in direct comparison to the finite volume method
with the Lax-Friedrichs flux, the MPV results prove to be of superior quality.

Figure 5.28 illustrates the numerical results of the pressure distribution. As
for the density, it is obvious that the MPV method has problems to correctly
capture the front of the expansion waves. Moreover, it is clearly visible that the
finite volume method with the exact Riemann solver is quite well approaching
the pressure minimum of the exact solution. This is confirmed by the close-up
plot, also showing that the MPV method and the finite volume approach in
combination with the Lax-Friedrichs flux give comparable results in the low
pressure region close to the contact discontinuity. Both methods are not able
to correctly capture the minimum of the exact solution.

In general, the MPV method proves to be able to handle low density and low
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Figure 5.27.: 123 test case: velocity plot of the MPV and the finite volume
CFDFV simulation at the time t = 0.1, including close-up view
at the right (first order, 100 grid cells). The finite volume
CFDFV solver is run with an exact Riemann solver and the
Lax-Friedrichs flux.

pressure flows as they occur in this test case. This is not necessarily true for
any flux calculation method in the finite volume context. The very popular
approximate Riemann solver of Roe [72] is not able to compute this test case
and a detailed analysis concerning this defect can be found in [67].

As for the strong rarefaction case, it can be seen that the use of an exact Rie-
mann solver in the context of a finite volume approach improves the numerical
results. Starting a computation from a discontinuity, the exact Riemann solver
is able to introduce the wave patterns even if they cannot yet be resolved by the
computational mesh in the beginning. Once the less accurate Lax-Friedrichs
flux is used for the finite volume approach, the results tend towards those of
the MPV method and show once again the dependency of the computational
results on the flux calculation.

5.1.4.4. Noh test case (wall heating)

The next test case is based on Noh [68]. Similar to the above 123 problem,
constant density and pressure are prescribed on either side of the shock tube.
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Figure 5.28.: 123 test case: pressure plot of the MPV and the finite volume
CFDFV simulation at the time t = 0.1, including close-up view
at the right (first order, 100 grid cells). The CFDFV code is
run with an exact Riemann solver and the Lax-Friedrichs flux.

However, this time, there are two colliding shocks, caused by the opposite sign
of the velocities in the left and right half of the shock tube. In the original
test case setup [68], Noh uses an initial pressure that is equal to zero and that
may cause numerical problems. In order to avoid these problems, a very low
pressure of 10−6 is chosen according to Liska et al. [73] such that the following
initial conditions are obtained

ρL
vL
pL
γL

 =


1.0

1.0

10−6

5/3

 ;x < 0.5


ρR
vR
pR
γR

 =


1.0

−1.0

10−6

5/3

 ;x > 0.5. (5.18)

The solution of this test is characterized by two shocks whose strength tends
to infinity. They move in opposite directions from the domain center to the
boundaries and they create a constant density and pressure in the center of the
computational domain.
The results of the MPV method and the finite volume solver CFDFV are
displayed in Fig. 5.29. It is obvious that both solvers are very well approaching
the exact velocity and pressure distribution. The constant velocity and pressure
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Figure 5.29.: Noh test case: density, velocity and pressure plot of the MPV
and the finite volume CFDFV simulation (first order, 100 grid
cells) and the exact solution at t = 1.0.

in the domain center are predicted correctly. Only the MPV method shows
small oscillations at the shock location.

However, the situation is slightly different for the density. The density plot
of Fig. 5.29 shows an overshoot for the MPV method and an undershoot for
the finite volume scheme. This phenomenon is well-known as wall heating
and described in detail by Noh [68], Menikoff [74], Rider [75] and many other
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authors. This defect of shock-capturing schemes is typical for the reflection of
a shock wave at a solid wall. The collision of the above initialized shock waves
of equal strength is equivalent to such a reflection.
When the two shock waves are interacting, a numerical entropy production
occurs. This entropy error causes the density to locally be lower than the exact
solution in the case of the finite volume solver. As the pressure is correctly
predicted, it is obvious from the equation of state that the fluid is heated
locally and therefore the term wall heating has been introduced.
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Figure 5.30.: Noh test case: density plot of the MPV and the finite volume
CFDFV simulation with the Lax-Friedrichs flux (first order, 200
grid cells) and the exact solution at t = 1.0.

For the pressure-based MPV method, the effect is different. Here, we have
a raise in density and therefore the fluid is cooled. Each numerical approach
introduces an entropy error at the domain center and according to Noh [68],
in the absence of physical viscosity, this error can only be dissipated by an
artificial numerical viscosity. The nature of the defect is strongly dependent on
the numerical method and especially its phase error and numerical diffusivity
seem to play an important role, according to the literature [68, 74, 75]. This
finding is confirmed by the numerical results of Fig. 5.29. While the MPV
approach overpredicts the density and artificially cools the fluid, the finite
volume approach heats the fluid. The direct comparison of the two schemes
shows that the error amplitudes are of the same order of magnitude.

121



5. Computational results

Moreover, it can be proven that the numerical scheme can change its properties
once the numerical discretization is altered. This is evident from Fig. 5.30
where the results of the test case are displayed using the Lax-Friedrichs flux for
both methods. While the finite volume solver still shows the above detected
undershoot in density, the MPV method is now also underpredicting the density
and therefore heating the fluid. This emphasizes the sensitivity of the wall
heating defect to changes in the numerical discretization.

In addition, it is visible from Fig. 5.30 that the shocks are resolved differently,
although both approaches use the same flux calculation method. The finite
volume method captures the shock within six grid cells, while the semi-implicit
MPV scheme needs approximately ten grid cells.

5.1.4.5. Conclusions

The pressure-based MPV scheme has been used for the computation of divers
Riemann problems. For the standard Sod test case, it proves its capability to
accurately predict the propagation of pressure waves. Furthermore, its shock-
capturing properties have been assessed by applying it to test cases that are
known to be critical for standard finite volume Godunov-type flow solvers. The
corresponding findings are the following.

With regard to the simulation of strong rarefaction waves, several shock tube
tests have been performed and compared to the results of a standard Godunov-
type finite volume solver. According to the findings of Kudriakov et al. [64],
both methods run into trouble when they have to deal with large initial density
ratios, but the shock-capturing properties of the pressure-based method reveal
to be inferior to those of the finite volume scheme. The issue appears to be
related to the accuracy of the numerical flux evaluation that plays a crucial role
for these kind of Riemann problems. Changing the numerical flux calculation
of the finite volume scheme directly leads to a change in the predicted shock
position and strength. Since the flux calculation for the semi-implicit pressure-
based method cannot be changed as easily as for the explicit finite volume
scheme, the accurate resolution of strong rarefactions seems to be a problem
for the pressure-based MPV approach.

However, the absence of an explicit Riemann solver has also proven to be an
advantage in the case of the slowly moving shock wave of Quirk [65]. There,
the fact that the wave structures are not explicitly resolved by the numerical
scheme prevents the results from being oscillatory.

Moreover, the MPV scheme has shown to be able to handle low density and
low pressure flows as is obvious from the 123 problem. The numerical scheme
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5.1. One-dimensional calculations

gives an accurate solution that is close to the exact one and again the fact that
the MPV approach does not use a Riemann solver is of advantage as especially
linearized Riemann solvers have problems to deal with such kind of flows [67].

The test case of Noh reveals that the MPV method also suffers from the well-
known wall heating phenomenon. Its density error is comparable in amplitude
to that of the standard finite volume solver. However, it is also shown that the
error is dependent on the numerical discretization such that the MPV method
causes either cooling or heating of the fluid.

5.1.5. Application of the MPV scheme to two-phase problems

The MPV approach is applied to compressible two-phase flows and validated
by several test cases subsequently. The computations are carried out using the
compressible multiphase extension for the MPV scheme that is presented in
section 4.6 and most of the results are taken from [57]. Due to the large density
ratios, the computations are limited to the first order approach with reference
to the findings of section 4.7.1 and the corresponding results of section 5.1.3.1.

The oscillation-free behavior at the material interface is demonstrated for the
first order method by the transport of a contact discontinuity between two
perfect gases. Afterwards, two-phase shock tube test cases show that the MPV
method is able to accurately simulate the propagation of pressure waves in
the multiphase case. Additionally, the semi-conservative approach is applied
to a multiphase shock tube test case and compared to the MPV method in
conservative formulation.

5.1.5.1. Transport of a material discontinuity between two perfect
gases

This test case illustrates that the first order MPV method for the simulation of
compressible multiphase flows is free of oscillations in the vicinity of material
interfaces. An isolated material front between two perfect gases of different
density and adiabatic exponent is considered in this test case introduced by
Abgrall et al. [43]. The initial values are set as follows

ρL
vL
pL
γL

 =


1

1

1

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


0.1

1

1

1.6

 ;x > 0.5. (5.19)
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Figure 5.31.: Transport of a material discontinuity between two perfect gases:
density, velocity and pressure plot of the MPV simulation and
the exact solution at t = 0.25. The simulation is done with the
first order (O1) MPV scheme using 100 grid cells.

In general, the numerical scheme is expected to transport the discontinuity
with the given constant velocity. However, Abgrall et al. [43] showed that
conservative density-based methods may suffer from oscillations in the vicinity
of the material interface. These oscillations are prevented by the MPV method
using the pressure as primary variable (cf. section 4.6.1). The results of the
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MPV scheme are plotted in Fig. 5.31 and the pressure and velocity plots are
obviously free of oscillations.

5.1.5.2. Sod test case with two different gases

The MPV approach in conservative and semi-conservative formulation is now
applied to a two-phase shock tube that includes two perfect gases with different
adiabatic exponents γ. The Sod test case initialization is used, but this time
different values of γ are assigned to the fluids in the left and right half of the
shock tube

ρL
vL
pL
γL

 =


1.0

0

1

1.4

 ;x < 0.5


ρR
vR
pR
γR

 =


0.125

0

0.1

2.0

 ;x > 0.5. (5.20)

The semi-conservative approach can handle this without any difficulties as the
change in the adiabatic exponent is easily taken into account locally calculat-
ing the speed of sound in each grid cell. The MPV approach in conservative
formulation is also able to simulate this test case on the basis of the multiphase
treatment described in section 4.6.
The computation has been carried out on a grid with 200 cells and the first
order numerical scheme has been used in both cases. The corresponding re-
sults are shown in Fig. 5.32. The direct comparison of conservative and semi-
conservative scheme reveals differences between both approaches. The conser-
vative method is nicely approximating the different waves and it accurately
predicts the shock. As for the standard Sod test case, the semi-conservative
scheme approaches the analytical solution but has problems to exactly capture
shock position and strength (cf. Fig 5.10). In direct comparison to the con-
servative scheme, the semi-conservative approach has inferior shock-capturing
properties. This behavior gets more and more important with increasing shock
strength, as it can be seen from the results of the single-phase test cases of the
previous section. The use of a non-conservative pressure equation limits the
range of applicability of the semi-conservative scheme to rather weak shocks but
it gives the scheme a lot of flexibility as it can switch easily between different
fluids being only dependent on the local speed of sound. For both approaches
the results are free of oscillations in the vicinity of the material interface.
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Figure 5.32.: Sod test case for two perfect gases (γL = 1.4, γR = 2.0): density,
velocity and pressure plot of the MPV simulation in conserva-
tive and semi-conservative formulation (first order (O1), 200
grid cells) and the exact solution at t = 0.2.

5.1.5.3. Gas-water shock tube

The multiphase MPV approach in conservative formulation is now applied to
a more severe test case taken from Hu et al. [76]. This two-phase shock tube
includes a perfect gas and a water region modeled by the perfect gas equation
of state and the Tait equation of state respectively. The initial discontinuity is
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Figure 5.33.: Gas-water shock tube (perfect gas and Tait fluid): density, ve-
locity and pressure plot of the MPV simulation and the exact
solution at t = 8 · 10−4. The simulation is performed with 200
cells and the first order (O1) MPV scheme.

given by 
ρL
vL
pL
γL

 =


0.01

0

1000

2

 ;x < 0.5


ρR
vR
pR
γR

 =


1

0

1

7.15

 ;

k0

ρ0

p0

 =

3310

1

1

 ;x > 0.5. (5.21)
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The initial conditions show much bigger density and pressure ratios than for
the previous two-phase Sod shock tube (cf. equation (5.20)). Therefore, the
test case is more challenging for the numerical scheme.
From the physical point of view, the test case can be characterized as follows.
A shock wave is traveling through the water region and an expansion fan is
propagating in the gas region.

The results of the first order MPV calculation with 200 grid cells are shown
in Fig. 5.33. Again, the MPV approach shows a good, oscillation-free approx-
imation of the exact solution, the shock and expansion waves are captured
accurately.

5.1.5.4. Air bubble collapse

This last test case is an even more demanding two-phase shock tube that is
characterized by a density ratio of almost 1000. Physically it corresponds to an
air bubble collapse in one space dimension and has been taken from [77] where
the initial conditions are given by

ρL
vL
pL
γL

 =


1.0376

6.0151

1000

7.15

 ;

k0

ρ0

p0

 =

 3310

1

0.3477

 ;x < 0.7


ρR
vR
pR
γR

 =


0.001

0

1

1.4

 ;x > 0.7. (5.22)

The left side of the shock tube is filled with water at high pressure described
by the Tait equation of state while the right part is filled with a perfect gas.
Given these initial conditions a shock wave is created inside the gas region and
an expansion fan is moving through the water.

The computational results of the multiphase MPV approach in conservative for-
mulation are displayed in Fig. 5.34. For the calculation the first order scheme
has been used and a spatial resolution of 700 grid cells has been necessary
to accurately approach the exact solution. The numerical solution is close to
the exact solution of this severe test case. However, it has to be mentioned
that the flux calculation at the material interface has to be modified in a non-
conservative way according to section 4.6 to capture the shock wave correctly.
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Figure 5.34.: Air bubble collapse test case (perfect gas and Tait fluid): den-
sity, velocity and pressure plot of the MPV simulation and the
exact solution at t = 3 · 10−3. The simulation is performed
with 700 cells and the first order (O1) MPV scheme using a
special treatment of the pressure fluxes at the location of the
material interface.

Without the modified pressure flux the shock strength and position are consid-
erably mispredicted.
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5.1.5.5. Conclusions

The MPV method shows to be able to simulate the propagation of pressure
waves for multiphase flows. The first order method is free of pressure and
velocity oscillations. This is true for the simple transport of a multi-material
contact discontinuity as well as for shock tube test cases. Moreover, the semi-
conservative MPV approach has been applied to the simulation of moderate
shock waves where it proves to be able to simulate arbitrary equations of state
without any difficulty, but also shows its limitations with respect to shock-
capturing. The MPV approach in conservative formulation is successfully ap-
plied to challenging gas-water shock tube problems.

5.2. Three-dimensional calculations

In the following, three-dimensional incompressible and compressible two-phase
flows are investigated. For the incompressible regime, the modeling of surface
tension and the reduction of unphysical spurious currents in the context of the
FS3D code is in the focus of this work.
The compressible MPV two-phase approach is applied to two shock-droplet
interaction test cases where it proves its capability for the three-dimensional
simulation of pressure waves in gas and liquid.

5.2.1. Reduction of parasitic currents in FS3D

The results of two numerical test cases for the validation of the balanced-
force surface tension approach of the FS3D code introduced in section 4.3 are
shown subsequently. The original study can be found in [47]. First, a static
spherical droplet is investigated. Afterwards, surface tension driven oscillations
are simulated.

5.2.1.1. Static droplet in equilibrium

For this test a static drop in equilibrium without gravity is considered with the
FS3D code. In the absence of any outer forces, the drop should maintain its
initial shape and the velocities should be zero everywhere throughout the whole
computation. Moreover, for a spherical droplet the pressure jump across the
interface, caused by surface tension, can be determined from equation (2.53).
For this purpose, the curvature κ is calculated analytically as

κ =
2

R
, (5.23)
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where R is the droplet radius. The corresponding simulation is performed with
a spherical water droplet with radius R = 10−3m that is surrounded by air.
The drop is placed at the center of a cubic computational domain with an edge
length of 4 · 10−3m. The domain is discretized by 64 equidistant grid cells in
each space direction. The computation has been run with the standard CSF
and CSS models as well as with the newly implemented balanced-force CSF
model of section 4.3.1.
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Figure 5.35.: Velocity field around and inside the static droplet in the xy-
plane at t = 0.03s (cut through the center of the droplet).

The resulting velocity distributions for both, the standard CSF implementation
and the new balanced-force surface tension approach, are shown in Fig. 5.35.
A vector plot of the velocities on a plane through the droplet center is shown
for the previous CSF model in Fig. 5.35(a) and for the new, balanced-force
CSF implementation in Fig. 5.35(b). The vectors in Fig. 5.35(b) are scaled by
a factor 100 compared to the length of those in Fig. 5.35(a). From the velocity
plots it is obvious that there is a dramatic reduction of spurious currents in the
computational domain.

In order to get a more quantitative evaluation, the temporal evolution of the
maximum velocity and the kinetic energy is depicted in Fig. 5.36. Compared to
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Figure 5.36.: Comparison of maximum velocity and kinetic energy in the
static droplet case for the CSS, CSF and the balanced-force
CSF surface tension models.

(a) Previous CSF model. (b) Balanced-force CSF model.

Figure 5.37.: Pressure distribution around and inside the static droplet in the
xy-plane at t = 0.03s (cut through the center of the droplet).
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the standard CSS and CSF models, the balanced-force CSF method reduces the
maximum velocity by two orders of magnitude. While this maximum velocity
only contains information about one special location in the domain, the kinetic
energy represents the entirety of the spurious currents. A strong reduction of
the kinetic energy can be observed with the balanced-force model (five orders
of magnitude).
Tests with prescribed, constant curvature make the parasitic velocities com-
pletely vanish. This indicates that the above discussed remaining spurious
currents of the balanced-force CSF model are due to the still not perfect cal-
culation of curvature.
The pressure jump across the interface is predicted quite well by the balanced-
force method as can be seen in Fig. 5.37. The Young-Laplace equation (2.53)
gives a pressure jump of ∆p = 1460 · 10−1 N

m
that is accurately reproduced

by the balanced-force approach. Moreover, the sharper interface resolution
due to the more local discretization of the surface tension force, presented in
section 4.3.1, can be notified.

5.2.1.2. Oscillating droplet

This test case aims at the computation of surface tension driven oscillations.
Therefore, an initially non-moving ellipsoidal droplet, whose polar radius is
bigger than its equatorial radii, is investigated with the FS3D code. Due to the
non-spherical shape, the droplet starts to oscillate because of surface tension.
For small deformations there exists an analytical approach by Lamb [78] that
describes the oscillations. Neglecting the density of the surrounding fluid, he
derived the following equation for the angular frequency of the oscillations

ω2 = l(l − 1)(l + 2)
σ

ρ1R3
. (5.24)

The parameter l characterizes the oscillation mode and for ellipsoidal deforma-
tions l = 2. Here, R represents the radius of the equivalent spherical droplet
corresponding to the mass of the ellipsoidal droplet.
The deviation of the calculated oscillation periods from the analytical value
of equation (5.24) is given in Tab. 5.6 for various test cases with droplets of
different sizes. While the results for the standard CSF and CSS models are
acceptable, an improvement can be observed when the balanced-force surface
tension method is used.
This improvement gets even more evident by looking at the amplitude of the os-
cillation, given in Fig. 5.38 by the temporal evolution of the surface area. While
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Deviation [%]

Mass [g] T (Eq. (5.24)) [s] CSS CSF CSF (balanced,hf)

3.689489 · 10−5 7.7164 · 10−4 −4.10 −6.43 1.73

2.951591 · 10−4 2.18251 · 10−3 −5.16 −7.68 1.95

9.961621 · 10−4 4.00954 · 10−3 −5.85 −7.47 2.01

2.361273 · 10−3 6.17308 · 10−3 −6.14 −7.74 1.97

4.611861 · 10−3 8.62715 · 10−3 −6.34 −7.85 2

Table 5.6.: Droplet oscillations, polar radius 10% bigger than the equatorial
radii: Comparison of the oscillation periods for the CSS, CSF and
the balanced-force CSF surface tension models.
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Figure 5.38.: Droplet oscillations, polar radius 10% bigger than the equatorial
radii, mass m = 2.361273 ·10−3g: Comparison of the oscillation
periods and amplitudes for the different surface tension models.

the periodic deformation of the droplet is described nicely with a constant min-
imum and a slight damping by the balanced-force method, the standard CSF
method shows an erratic development of the droplet’s surface area. Looking
at the CSS method, things get worse as the amplitude of the droplet oscilla-
tion increases in time, thus there is a generation of kinetic energy due to the
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spurious currents.

5.2.1.3. Conclusions

The computational results of a balanced-force CSF method for the calcula-
tion of surface tension within the framework of the incompressible VOF code
FS3D have been presented. The main features of the method are a balanced
discretization of the volume force at the interface as well as an improved cur-
vature calculation using height functions and a local paraboloid fitting (cf.
section 4.3.1).

The balanced-force method shows a strong reduction of spurious currents for
the calculation of a droplet in equilibrium. The maximum velocity of the
spurious currents can be reduced by two orders of magnitude and the kinetic
energy caused by the parasitic currents even shows a reduction of five orders
of magnitude. Looking at the case of an oscillating droplet, there is a clear
improvement with regard to the prediction of the oscillation frequency and the
temporal evolution of the oscillation amplitude.

In [79] this approach has also been successfully applied to study the rise be-
havior of small bubbles with the FS3D code.

5.2.2. Shock-droplet interactions

In the following, the focus is on three-dimensional simulations with the com-
pressible multiphase MPV approach. Two shock-droplet interaction test cases,
without the modeling of surface tension, are presented that originally have been
investigated in [58]. They are inspired by the test cases of Chang et al. [80],
whereas they only performed two-dimensional calculations.

Unless otherwise stated, the computations are set up as follows: The perfect
gas equation of state with the adiabatic exponent γ = 1.4 is used for the
surrounding gas phase and the stiffened gas equation of state with p∞ = 3309
is applied to the liquid phase inside the droplet. For the Tait equation of
state (2.8) this corresponds to the following choice of constants for the liquid:
k0 = 3310, p0 = 1 and ρ0 = 1000. For all test cases, the shock is initialized as
a discrete wave to minimize the effects of numerically caused spurious waves
created at the start-up phase. The discrete shock wave is taken from the results
of the MPV solver for the corresponding one-dimensional Riemann problem.
With this initialization, still weak waves are created that travel in x-direction
to the left (cf. Fig. 5.39(b)) while the shock is propagating to the right. To
prevent the waves from influencing the computational results by reflections at
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the boundaries, the domain size in the x-direction is chosen twice as large as in
the other two spatial directions. This also necessitates to double the number
of grid cells in this direction, such that for the standard case 128 equidistant
grid cells in x-direction and 64 equidistant grid cells in each of the other two
spatial directions are used. The computations are carried out with the second
order RK2CN MPV method.

5.2.2.1. Single droplet

The first test case describes the impact of an initially planar shock wave on
a spherical droplet. The simulation is characterized by the propagation of
pressure waves inside and outside the water droplet including several reflections.
The initial conditions of the test case are specified in Fig. 5.39(a) and the
pressure distribution on a slice through the center of the droplet at the instant
t = 7.5 · 10−3 is shown in Fig. 5.39(b).

(a) Sketch of the setup for the three-
dimensional shock-droplet interaction
test case including a single spherical
droplet.

(b) Slice through the droplet center at

t = 7.5 · 10−3 showing the distribution
of the pressure gradient log(|∇p|+ 1).

Figure 5.39.: Three-dimensional shock-droplet interaction: single droplet.

A more detailed analysis of the pressure field can be carried out by having a
closer look at the pressure and the pressure gradient distributions at different
instants that are given in Fig. 5.40. It is obvious that by plotting the gradient
of the pressure log(|∇p|+1), the wave structures can be resolved in more detail.
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Figure 5.40.: Three-dimensional shock-droplet interaction test case including
a single droplet. Pressure p and pressure gradient log(|∇p|+ 1)
at t1 = 4.8 · 10−3 (top) and t2 = 7.5 · 10−3 (bottom), slices
through the droplet center.

When the shock wave is impinging on the droplet surface, the shock is reflected
as well as transmitted into the droplet. While the reflected wave forms a bow
shock due to the spherical geometry of the droplet, the transmitted wave is
traveling through the droplet. Because of the higher speed of sound inside the
droplet, the shock wave obviously is moving faster inside than outside. This is
evident from the plot at t1 = 4.8 · 10−3 in Fig. 5.40. The pressure distribution
inside the droplet is no longer uniform, especially with respect to the pressure
gradient, indicating that the shock has already traveled through the complete
droplet. Moreover, the shock is reflected at the rear part as an expansion that
is moving back to the front. During the following time steps, the waves are
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reflected several times inside the droplet. At t2 = 7.5 · 10−3, the shock wave
has made its way around the droplet and the waves are interacting at the rear
part, forming a curved shock front in the gas phase.
Looking at the plots of pressure and pressure gradient, both are indicating a
perfectly symmetric distribution at any time.
The MPV method with the interface treatment presented in section 4.6 is not
suffering from any pressure or velocity oscillations near the interface. This is
illustrated in three space dimensions by the results displayed in Fig. 5.41. The
contour lines of pressure show a smooth transition between the two phases.
Additionally, the velocity vectors are not indicating any oscillations. Hence,
the pressure-based MPV method proves to give oscillation-free results for the
three-dimensional simulation of compressible two-phase flows.

(a) Contour lines of pressure. (b) Velocity field with vectors at each
grid node.

Figure 5.41.: Three-dimensional shock-droplet interaction test case: slice
through the droplet center at t1 = 4.8 · 10−3.

5.2.2.2. Two droplets

As a modification to the previous shock-droplet test case, a second spherical
droplet is introduced. This generates additional wave reflections and interac-
tions that finally result in a more complex wave pattern.
The initial setup is presented in Fig. 5.42(a) and the pressure gradient distribu-
tion on a slice through the droplet centers at the time t = 8.3 ·10−3 is depicted
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in Fig. 5.42(b). Similar to the single droplet case, Fig. 5.43 illustrates the pres-
sure as well as the pressure gradient distribution at the instant t = 8.3 · 10−3.

(a) Sketch of the setup for the three-
dimensional shock-droplet interaction
test case including two spherical
droplets.

(b) Slice through the droplet centers at

t = 8.3 · 10−3 showing the distribution
of the pressure gradient log(|∇p|+ 1).

Figure 5.42.: Three-dimensional shock-droplet interaction: two droplets.

Figure 5.43.: Three-dimensional shock-droplet interaction test case including
two droplets. Pressure p and pressure gradient log(|∇p|+ 1) at
t = 8.3 · 10−3, slices through the droplet centers.
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Inside the bigger droplet, the distribution of pressure is non-symmetric at
t = 8.3 · 10−3. This is particularly evident from the pressure gradient dis-
tribution. This effect is due to the presence of the smaller droplet. The right
moving initial shock wave finally impinges on the surface of the smaller droplet
where it is reflected. The reflected wave has a curved shape, it travels back
towards the bigger droplet and hits its surface in the rear part. This impact
influences the wave pattern inside the big droplet.

Figure 5.44.: Comparison of two-dimensional (1282 grid cells; right) and
three-dimensional (256× 1282 grid cells; left) computations for
the shock-droplet interaction test case including two droplets.
Distribution of the pressure gradient log(|∇p|+1) at t = 3·10−3,
slices through the droplet centers.

In Fig. 5.44 a three-dimensional simulation is compared to a two-dimensional
one at the instant t = 3 ·10−3. For the three-dimensional case, the initial setup
of Fig. 5.42(a) has slightly been modified. Firstly, the spatial resolution has
been increased using 256 grid cells in x-direction and 128 cells in the y- and
z-direction. Due to this higher spatial resolution it is possible to initialize the
shock closer to the droplet interface such that the initial distance from shock
wave to droplet center can be reduced to d = 0.0045 and computational time
can be saved. For the two-dimensional calculation, the same code has been
employed with a two-dimensional version of the above presented initialization
and spatial resolution, such that the size of the grid cells is equal.
There are two points to remark. First of all, the wave patterns inside the
droplets look different. This is due to three-dimensional effects, caused by the
spherical shape of the three-dimensional droplet that creates different wave
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reflections in comparison to the two-dimensional case. Moreover, behind the
bigger droplet, a very weak shock wave is visible in both cases. This wave is the
transmitted initial shock wave that has moved through the droplet and is now
propagating through the air behind the droplet. It is clearly more pronounced
in the two-dimensional case than in the three-dimensional calculation.

5.2.2.3. Conclusions

The presented three-dimensional shock-droplet interactions show that the MPV
method is able to resolve complex wave patterns including several wave reflec-
tions inside and outside of liquid droplets. Moreover, the three-dimensional
scheme proves to be oscillation-free in the vicinity of the interface and a com-
parison between a two- and a three-dimensional computation reveals that pres-
sure waves are reflected differently in the two cases due to the differences in
geometry and topology.
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In this thesis a pressure-based numerical method for the DNS of compress-
ible multiphase flows is presented. The numerical approach is suited to the
extension of incompressible multiphase flow solvers to the compressible regime.

In the context of this work, several investigations have been performed that
range from fundamental one-dimensional considerations for the coupling of
compressible and incompressible flow regions to the three-dimensional simu-
lation of shock-droplet interactions. From a physical and mathematical point
of view, the focus of this work is on the compressible and incompressible flow
equations and their connection. Hence, the coupling of compressible and in-
compressible flow regions has been investigated. Several iterative coupling pro-
cedures have been presented for the one-dimensional case. Such a coupling
is challenging due to the differences in the physical modeling and in the un-
derlying mathematical equations. It has been shown that the role of pressure
changes during the transition from the compressible to the incompressible flow
equations. The different coupling schemes are distinct in the way the pressure
of the compressible flow region is coupled to the incompressible pressure. Nu-
merical results indicate the accordance of the presented coupling schemes with
a fully compressible two-phase flow solver that approaches the incompressible
flow region by a weakly compressible fluid.

With respect to the simulation of incompressible two-phase flows, surface ten-
sion modeling has been investigated in the context of so-called parasitic cur-
rents. It has been shown that the magnitude of the numerically induced spuri-
ous velocities is directly dependent on the discretization of the capillary force
and the calculation of the interface curvature that is used in the surface tension
model. The presented results prove that the implementation of a balanced-force
surface tension approach in combination with an improved numerical curvature
estimation reduces the spurious velocities by several orders of magnitude.

The fundamental theoretical analysis concerning the coupling of compressible
and incompressible flow regimes and the topic of surface tension modeling are
complemented by intensive numerical investigations and developments for the
pressure-based MPV method. This numerical scheme originally extends an in-
compressible flow solver to the simulation of compressible single-phase flows in
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conservative formulation. The conservative MPV method has been extended to
the treatment of compressible two-phase flows. This includes its combination
with a level set interface tracking approach. It has been shown that the spa-
tial discretization of the MPV scheme allows to handle contact discontinuities
between two different compressible fluids in an oscillation-free manner. The
jump in the equation of state is taken into account similar to a sharp inter-
face approach, while the density jump is numerically smeared by the scheme.
Additionally, a semi-conservative approach has been derived that replaces the
energy equation by a nonconservative pressure equation allowing the use of
arbitrary equations of state.

The conservative numerical approach has been thoroughly assessed with re-
spect to single- and two-phase flows. A detailed numerical study on the shock-
capturing and wave propagation properties of the single-phase MPV scheme
has been presented. The results have been extensively discussed and compared
to those of a standard Godunov-type finite volume solver. The comparison
shows that the MPV scheme is often inferior to the finite volume solver and
that the origin of this behavior is the less accurate upwind flux calculation due
to the lack of a Riemann solver. However, this lack can also be beneficial, as the
MPV scheme does not have any trouble in handling test cases that are delicate
to Godunov-type methods. This includes for example the case of slowly moving
shocks for which the use of Riemann solvers introduces spurious oscillations,
or low density flows, where certain Riemann solvers break down. In the case of
compressible two-phase flows, standard multi-material Riemann problems have
been computed in one space dimension.

The MPV method proves to be able to simulate the propagation of pressure
waves for single-phase as well as for multiphase flows. Moreover, the scheme has
also been applied successfully to three-dimensional shock-droplet interactions
where the propagation and reflection of pressure waves has been simulated.

In general, the MPV scheme demonstrates its ability to simulate compress-
ible two-phase flows, including the propagation of pressure waves. However,
the simulation of shock waves with the MPV method has also shown certain
limitations, as the approach is inferior to density-based schemes in the case
of strong shocks and rarefactions, even in its conservative formulation. There-
fore, the MPV approach seems to be rather suitable to the weakly compressible
regime, where in the absence of strong shocks other compressible effects like
phase change play a dominant role. Besides, there are still a lot of open ques-
tions:

• The current MPV scheme is limited to the stiffened gas equation of state.
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Although this approach contains the perfect gas equation of state as well
as the Tait equation of state, the use of more realistic equations of state is
desirable. Such equations of state allow to simulate the thermodynamic
behavior more accurately and offer the possibility to take into account
a variety of physical effects like phase change and cavitation. For this
purpose, suitable cubic equations of state have to be implemented to the
pressure-based numerical scheme. In this context, a thermodynamically
consistent interface treatment will have to be derived for the MPV ap-
proach. It has already been proven in this thesis that due to the use of
pressure as primary variable, the prevention of pressure oscillations is fa-
cilitated. However, for a pressure-based scheme, the thermodynamically
consistent explicit insertion of a cubic equation of state into the energy
equation is not trivial.

• Multiphase flow simulations including liquid and gas are characterized by
high density ratios. It has been shown that the second order version of
the MPV scheme has difficulties in handling strong density jumps across
contact discontinuities, even for single-phase flows. In order to improve
the spatial order of accuracy without suffering from spurious oscillations,
a solution to this problem has to be found. A possible remedy may be
the use of the first order scheme in combination with an adaptive mesh
refinement in the direct vicinity of the density jump, i.e. at the interface
location.

• The investigation of the boundary conditions for the compressible MPV
solver on a staggered grid is of special interest, too. It has been found
and shown that the standard treatment for finite volume schemes cannot
be applied.

• At the interface, a lot of physical phenomena are happening that are of
interest for the numerical simulation, but that are not yet taken into ac-
count by the present MPV approach for compressible multiphase flows.
This includes the modeling of surface tension as well as the thermody-
namically consistent simulation of phase change.

• The tracking and resolution of the interface is crucial for the DNS of
two-phase flows. Especially the simulation of phenomena linked to the
interface topology (e.g. surface tension, phase change) requires an accu-
rately resolved material interface. In this context, a worthwhile aim is
to use a sophisticated interface tracking scheme. This may be realized
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by discretizing the level set equation with a high-order DG scheme. The
polynomial representation of the level set function allows to easily and
accurately evaluate its derivative that is needed to determine topology
informations like surface normals and curvature.
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A. SBDF time discretization

Based on the method of lines approach of equation (4.22) the second order time
discretization for the MPV scheme with the SBDF (semi-implicit backward
differentiation formula) method can be written as follows

~Un+1 =
1

1 + 2q

[
(1 + q)2~Un − q2~Un−1

]
+

(1 + q)∆t

1 + 2q

[
(1 + q)f (~Un)− qf (~Un−1) + g(~Un+1)

]
, (A.1)

where q is the time step ratio

q =
tn+1 − tn

tn − tn−1
. (A.2)

It is obvious that the SBDF method requires the flow variables of the instants
tn−1 and tn in order to compute the flow variables ~Un+1 at the new instant of
time.

147





B. One-dimensional DG sharp interface
approach for compressible two-phase
flows

The following description of the one-dimensional DG solver for multiphase flows
is an excerpt from [59] by Jaegle et al. where a more detailed description can
be found.
The multiphase solver is based on the compressible Euler equations and the
flow domain is discretized in space using a nodal DG approach [81] whose order
of accuracy can be adapted by choice of the polynomial degree of the basis
functions. The temporal discretization is done with a Runge-Kutta method of
order four. In order to avoid numerical oscillations that appear in high-order
formulations, a simple artificial viscosity approach based on a Jameson-type
sensor is available. The numerical fluxes are obtained using two different kinds
of Riemann solvers: in the single-phase regions, a standard HLL Riemann
solver [60] is used. The flux calculation only has to be modified at the location
of the liquid-gas interface. There, the numerical flux is evaluated on the basis of
one of the two-phase Riemann solvers described in [59]. The interface position
is advanced by time-integration of a level set transport equation where the
interface velocity is used that is given by the two-phase Riemann solver. The
sharp interface approach of the one-dimensional framework avoids numerical
smearing of the two phases imposing jump conditions (e.g. from a Riemann
solver) at the sharp interface between two grid cells. A technique similar to
the ghost fluid approaches by [82, 83] is used in the present case: at the cell
boundary closest to the position of the interface, the fluid type is discretely
switched between gas and liquid. The grid cells are either assigned to the
gaseous or the liquid phase as the material interface is shifted to the closest
cell boundary. Figure B.1(a) illustrates an interface with gas on the left and
liquid on the right side. For the solution of the Riemann problem, the two-phase
Riemann solver uses information from both fluids as initial data. A closer look
at the right side of Fig. B.1(b) shows that the numerical flux on the gaseous
side is calculated with information from the part of the Riemann solution left
of the contact discontinuity, while the flux in the liquid phase is based on the
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(a) Schematic of the DG polynomials and the definition
of the intercell Riemann problems.

(b) Example for the wave pattern of single- and multiphase
Riemann problems.

Figure B.1.: Schematic of the DG polynomials and the Riemann solvers used
by the one-dimensional sharp interface framework. Sketches by
Felix Jaegle [59].
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flow variables of the right half of the Riemann solution.
Besides the case of a stationary interface, this approach can also be applied
to a moving interface as the interface position is tracked accurately and inde-
pendently from the grid. The interface (i.e. the cell boundary closest to the
actual interface position) always moves from one grid node to the next. In such
a situation, an extrapolation step is needed. The one-dimensional framework
uses information from the two-phase Riemann solution to assign the unknown
state inside a cell that changes its fluid type during a time step. Just as with
the standard ghost-fluid method, conservation is not guaranteed. However, in
the temporal average the error on mass conservation can be expected to be small
if the interface position is accurately tracked.1

1by Felix Jaegle, cited from [59]
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C. Godunov-type finite volume approach

In the following, a short description of the basic ideas of a finite volume method
is given. More details can be found in the literature, for example in [54,84].
The present finite volume code CFDFV solves the compressible Euler equations
for single-phase flows in two space dimensions. The Euler equations are a sys-
tem of hyperbolic partial differential equations that describe the conservation
of mass, momentum and energy. The conservative formulation of this system
is given as follows

~Ut +∇ · f(~U) = 0, (C.1)

where ~U is the vector of the conserved quantities and f(~U) describes the flux
tensor

~U =


ρ

ρu

ρv

e

, f(~U) =

[
ρu ρu2 + p ρvu u(e+ p)

ρv ρuv ρv2 + p v(e+ p)

]
. (C.2)

The basic idea of the finite volume method is to use integral conservation equa-
tions, instead of the discrete conservation equations (C.1) that cause problems
at the location of discontinuities (shock waves for example). The integral for-
mulation of the equations is obtained by integration over the control volume
Vi and the time t:∫ tn+1

tn

∫
Vi

~UtdV dt+

∫ tn+1

tn

∫
Vi

∇ · f(~U)dV dt = 0. (C.3)

As a next step, the Gauss theorem is applied to equation (C.3)∫ tn+1

tn

∫
Vi

~UtdV dt+

∫ tn+1

tn

∫
∂Vi

f(~U) · ~ndSdt = 0. (C.4)

Then, integral averages of the conserved quantities are introduced for each
control volume Vi at each time tn and defined as

~Uni =
1

|Vi|

∫
Vi

~UndV. (C.5)
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The temporal integration of the conservation equation (C.4) in the interval
[tn, tn+1] leads to

~Un+1
i = ~Uni −

1

|Vi|

∫ tn+1

tn

∫
∂Vi

f(~U) · ~ndSdt. (C.6)

This is an evolution equation for the integral cell averages ~Uni . Up to now,
this evolution equation is exact as the conservation of the integral quantities
is guaranteed automatically. It is evident from equation (C.6) that the cell

average ~Uni is updated on the basis of the fluxes across the domain boundaries.
Now, the difficulty lies in the evaluation of the flux integrals. At each surface
si that confines the control volume, the corresponding flux integral has to be
evaluated

fsi =
1

|Vi|

∫ tn+1

tn

∫
si

f(~U) · ~ndSdt. (C.7)

In general, it is not possible to exactly evaluate these integrals as the quantities
at the domain boundaries and their temporal variation are unknown. There-
fore, approximations have to be introduced to compute the flux integrals.
First of all, the flow variables at the domain boundaries have to be known. They
may be reconstructed from the integral quantities. In the simplest first order
case, the flow variables are supposed to be constant in the whole control volume
and therefore they are identical to the integral cell averages. Once the flow
variables at the boundaries are determined, the evaluation of the fluxes is not
directly evident, as at each domain boundary the quantities are discontinuous.
The characteristic of Godunov-type schemes is to use Riemann solvers to de-
termine the quantities at the location of the control volume border on the basis
of discontinuous flow quantities and to describe their evolution in the tempo-
ral interval [tn, tn+1]. There exist a lot of different Riemann solvers and an
excellent overview is given in the book of Toro [60].
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