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Abstract

The increased importance of fuel consumption in the books of aircraft operators has

led to a raised focus on the aspect of performance recovery for the engine overhaul

process. It follows thus the need for a method to systematically and cost-efficiently

investigate the impact of single workscope elements on engine efficiency.

A survey of existing studies and methods unearths recently developed methods for a

comprehensive maintenance planning. These methods do not yet incorporate the as-

pect of performance recovery in spite of the high effort made to adapt engine specific

workscope for observed hardware conditions. This is due to a lack of a systematic ap-

proach to establish a model correlating workscope and performance recovery. Research

linking the two has so far been focused on predicting workscope-induced performance

recovery based on pre-defined models and comparing the results with measured per-

formance changes. No method for an adaptive model, based on available field data,

has yet been established. Furthermore, any conceptual reflections to use field data to

assess workscope impact on performance recovery are focused on the use of test cell

data, rather than on-wing data recorded during engine operation.

To close this existing gap a new methodology is developed, correlating the engine

overhaul’s workscope and its effect. The workscope is therein defined by the degree

of restoration which quantifies the percentage of parts for which a given feature is

restored, either by repair or use of new parts. In order for the correlation model’s

extend to be manageable, the degree of restoration is defined for clusters comprising

multiple stages.

The workscope effect, in terms of performance recovery, can be analysed using test cell

or on-wing data both of which are subject to uncertainty induced by measurements and

the engine model. It is demonstrated that the latter leads to lower analysis uncertainty

for the high pressure components who are the primary lever for improvements on SFC

and EGT-margin. This is explained by the improved accuracy achieved with averaging

multiple snapshots. It is demonstrated that using an average of 50 filtered snapshots

is a valid approach, since the engine components may be considered to be a system of
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constant state during the operation time frame. Furthermore, the importance of the

proper choice of the core flow analysis method is demonstrated, as well as the potential

for analysis accuracy improvement using a more detailed engine model. It is shown that

these measures have the potential of improving the analysis accuracy of HPC and HPT

by a factor of 1.4 and 3.4 respectively. Analysis of recovered performance of fan and

LPT is demonstrated to be more sensitive to installation effects. For these components,

better accuracy can be achieved using test cell data, provided a performance test run

is carried out prior to the overhaul.

In order to correlate workscope and performance recovery, a general functional relation

is established to serve as the principal model. The model is then adapted to optimally

fit available field data from past engine overhauls through implementation within an

appropriate optimisation algorithm. An application to the high pressure components

provides plausible results indicating clear distinctions between the leverage that differ-

ent workscope elements provide for recovering performance. A cross validation using

the leave one out algorithm shows the results of the correlation to be sensible. The

potential for further improvement, for example by using measured dimension changes

of the different features for the workscope description, is discussed. With this inves-

tigation, it is understood for the first time what the feasibilities and limitations in

correlating workscope and performance recovery are. The established approach pro-

vides a basis for systems aimed at systematically planning engine workscopes with

respect to performance restoration.
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Kurzfassung

Die gesteigerte Bedeutung von Kraftstoffverbrauch für die Wirtschaftlichkeit von Flug-

linien hat zu einem erhöhten Fokus auf die Leistungswiederherstellung im Prozess der

Triebwerkswartung geführt. Daraus leitet sicher der Bedarf nach einer Methodik ab,

mit deren Hilfe sich der Einfluss einzelner Wartungsinhalte auf die Triebwerkseffizienz

systematisch und kosteneffizient untersuchen lässt.

Eine Recherche existierender Studien und Methoden zeigt kürzlich entwickelte Metho-

den für eine umfassende Wartungsplanung auf. Trotz der verstärkten Wartungspraxis,

triebwerksspezifische Wartungsumfänge auf den Hardwarezustand anzupassen, beinhal-

ten diese Methoden den Aspekt der Leistungswiederherstellung nicht. Es existiert kein

systematischer Ansatz um Leistungswiederherstellung und Wartungsumfang zu korre-

lieren. Sämtliche Untersuchungen, die diese beiden Aspekte miteinander verbinden,

basieren auf bestehenden Modellen für deren Zusammenhang. Diese Modelle dienen

als Basis, um Leistungswiederherstellung auf Basis von Wartungsumfang zu prognos-

tizieren und diese Prognosewerte anschließend mit gemessen Werten abzugleichen. Es

besteht aktuell keine Methodik zur Herleitung eines adaptiven Models mit Hilfe von

Felddaten. Konzeptionelle Überlegungen um Leistungswiederherstellung und War-

tungsumfänge miteinander zu korrelieren basieren des Weiteren auf der Nutzung von

Prüfstandsdaten anstelle von Daten, die im laufenden Flugbetrieb gesammelt wer-

den.

Um die bestehende Lücke zu schließen, wird eine neue Methode entwickelt, die War-

tungsumfänge von Triebwerken und deren Effekt hinsichtlich Leistungswiederherstel-

lung miteinander korreliert. Der Wartungsumfang wird dabei mit Hilfe des Grads der

Instandsetzung definiert. Dieser quantifiziert den Prozentanteil von Bauteilen, bei de-

nen ein gegebenes, leistungsrelevantes Merkmal mit Hilfe von Reparaturmaßnahmen

oder Neuteilverbau wiederhergestellt wird. Um die Detaillierung des Models handhab-

bar zu machen, wird der Grad der Instandsetzung für Cluster definiert, welche mehrere

Komponentenstufen beinhalten.

Der Wartungseffekt im Sinne von Leistungswiederherstellung kann mit Hilfe von Prüf-
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standsdaten oder Daten aus dem laufenden Flugbetrieb analysiert werden. Es wird

dargestellt, dass letzterer Ansatz zu einer höheren Analysegenauigkeit für die Hoch-

druckkomponenten führt, welche die primären Stellhebel für Wiederherstellung von

SFC und EGT-Margin sind. Dies lässt sich erklären mit Hilfe der erhöhten Genauigkeit,

die sich durch die Mittelung multipler Snapshots erreichen lässt. Es wird gezeigt, dass

die Mittelung von 50 Snapshots einen validen Ansatz darstellt, da die Komponenten

im betrachteten Betriebszeitraum als Systeme konstanten Zustands betrachtet wer-

den können. Des Weiteren wird sowohl die Bedeutung der gewählten Analysemetho-

de, als auch das Potential verbesserter Triebwerksmodelle für die Analysegenauigkeit,

aufgezeigt. Es wird gezeigt, dass diese Maßnahmen das Potential haben, die Analy-

segenauigkeit um den Faktor 1.4 bzw. 3.4 zu verbessern. Es wird ferner aufgezeigt,

dass die Analyse von Leistungswiederherstellung bei Bläser und Niederdruckturbine

sensibler gegenüber Installationseffekten ist. Diese Komponenten können mit Hilfe

von Prüfstandsdaten besser analysiert werden. Dies setzt jedoch einen zusätzlichen

Prüfstandslauf vor dem Wartungsvorgang voraus.

Um Wartungsumfang und Leistungswiederherstellung zu korrelieren, wird eine allge-

meingültige Funktion etabliert, welche das grundlegende Modell darstellt. Die Funk-

tionskoeffizienten werden anschließend mit Hilfe von Optimierungsalgorithmen ange-

passt um die Felddaten vergangener Wartungsvorgänge fehlerminimal abzubilden. Die

Anwendung dieses Ansatzes auf die Hochdruckkomponenten identifiziert die Primärhe-

bel der Wartungsinhalte für die Leistungswiederherstellung eindeutig und plausibel.

Eine Cross-Validierung unter Verwendung des „leave one out Algorithmus“ zeigt auf,

dass die korrelierten Modelltrends sinnvoll sind. Die Potentiale für verbesserte Kor-

relationsmodelle werden diskutiert. Maßnahmen umfassen unter anderem die genaue

Vermessung von Bauteilmaßen bzw. deren Veränderung im Rahmen der Wartung. Mit

Hilfe der vorliegenden Untersuchungen wird zum ersten Mal verstanden, welches die

Möglichkeiten und Beschränkungen bei der Korrelation von Wartungsumfängen und

Leistungswiederherstellung bei Triebwerken sind. Die dargestellte Methodik stellt die

Basis für Systeme zur systematischen Planung von Triebwerkswartung mit Hinsicht auf

Leistungswiederherstellung dar.
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Chapter 1

Introduction

In its 2011 study, Forbes magazine found that the number one concern in the global

airline industry is the supply and cost of fuel, followed by regulations to curb carbon

emissions [21]. The importance of fuel costs is underlined by the fact that they represent

20-25% of a typical airline’s Direct Operating Costs (DOC) and up to 40% in the case

of low cost carriers. Projections indicate an even further increase with fuel accounting

for up to 50% of the DOC for a typical airline by the year 2020 [27]. Meanwhile, the

industry is faced with an increase in competition and cost reduction pressure [76]. In

order to operate profitably and maintain competitiveness, airlines are forced to reduce

operating costs. Given the high share of fuel costs in DOC, airlines seek to realise parts

of this reduction by demanding more fuel efficient aircraft. This demand impacts the

development of both new airframes and new engines, with a major share of the improved

fuel efficiency currently being due to better engine designs [3]. Requirements for lower

fuel consumption also have an increased importance for the overhaul process with the

focus being once again on the engine rather than the airframe. Manufacturers estimate

that approximately two thirds of total aircraft efficiency loss is due to decreased engine

efficiency [12]. This increases the focus on engines in aircraft overhaul. Engines are

evaluated to be responsible for over 40% of an airline’s total maintenance costs [19].

During operation, engine components are subjected to deterioration resulting in an

increase of the engine’s Specific Fuel Consumption (SFC) as illustrated in fig. 1.1.

SFC increases due to performance losses of the components. Hence, the restoration of

engine efficiency is now considered an overhaul requirement, alongside the restoration

of mechanical integrity. This effect was first observed on a temporary basis during the

oil crisis of the 1970’s [59]. With oil costs projected to rise further in the mid-term and

long-term outlook [51], the importance of fuel efficiency restoration will remain high.

For the overhaul process, SFC restoration is to be considered alongside other targets,
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T ime [h]
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Figure 1.1: Generalized SFC deterioration as per [59], [66]

such as the restoration of engine life. For engine life, engine performance is attributed

a key role, as low margins on Exhaust Gas Temperature (EGT), compressor surge

line and spool speed have become relevant root causes for engine overhauls. This

adds to the process complexity, which is furthermore increased by the fact that the

hardware state of an engine is not known at the incoming stage . Hardware state may

vary significantly between engines due to variations in the manufacturing process and

operation [19], [62]. Hence, the challenge for the overhaul provider consists in defining

an optimised overhaul for each individual engine.
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Chapter 2

Existing Methods

Workflow management of any given manufacturing process is structured into four dif-

ferent aspects [67]:

• workflow content;

• workflow timing and duration;

• workflow space;

• workflow assignment.

Between these aspects, the workflow’s content and timing are most prominently de-

pendent on a system’s hardware state. For repair processes, the issue of timing has

been subjected in [30] and [73] with methods applicable to aero engines. In the case

of the repair content, a division into further sub-aspects, defined by the principal over-

haul targets, can be made. For an engine overhaul, the primary repair content are the

repair instructions, presented to the engine shop. These repair instructions are named

workscope. The workscope is defined, in coordination with the customer, based on the

findings made during engine disassembly and inspection. The principle targets for a

repair definition, aero engine or other machinery, are [70]:

• minimisation of Turn-Around-Time (TAT);

• minimisation of costs;

• maximisation of the repair quality.

The quality of the repair is defined by a system’s post overhaul reliability and per-

formance. The former aspect has been subjected in [30] by modelling the effects and

benefits of a given workscope with respect to a reduction of failure probability during
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continued operation. The present investigation fits into the latter aspect. It is aimed

at correlating single workscope elements and their effect on engine performance.

The change in component and engine performance observed for repaired engines is due

to feature changes of performance relevant hardware parts, such as a restoration of

blade surface roughness [58]. There are multiple publications discussing impact mod-

elling of one or few selected features for a specific component. An overview may be

found in [65]. An aggregation of publications on the deterioration mechanisms caus-

ing the feature changes is given in [62]. A detailed discussion of the sources listed

therein is waived for this work, so as not to go beyond its scope. Comprehensive works

wherein relevant hardware features of performance relevant components are considered

in an entirety are rare. In [65], such an approach is used while focusing on hardware

and performance variation found in new production engines. In [62], a comprehensive

approach is established in order to investigate engine deterioration due to operation.

Probabilistic component performance during operation is modelled, using the model

developed in [65], considering both performance variation due to production scatter,

as well as due to differently deteriorating engines. A similar deterioration model is

used in [48], with the focus set on predicting maintenance costs. This investigation

considers both aspects of mechanical integrity and performance as the triggers for and

cost drivers of an engine shop visit. All three works use an approach wherein the

correlation between a component’s hardware features and its performance is prede-

fined. The impact on overall engine performance parameters is then predicted with

performance calculations. For validation, the results are compared with test cell data

and on-wing data respectively. Furthermore, they aim at predicting the time between

maintenance events already during the design phase. Hence, their application in an

operative environment seems to be limited.

In this context it is clear that existing studies leave open the subject of correlating

workscope and performance changes. The principal idea has, however, already been

discussed and non-comprehensive studies have been carried out. In [58], it is discussed

to record maintenance and performance data for the purpose of correlating maintenance

events with performance. The general idea, however, is dismissed due to the lack of

efficient IT solutions. The lack of available data to assess performance changes for a

given workscope is circumvented in [33]. It is proposed to simply trend engine and

component performance parameters in order to detect shifts of the typical overhaul

process within a fleet. In order to improve trend accuracy it is suggested to classify

workscopes and subsequently filter for similar overhauls. The study names the option

to analyse on a modular level, in addition to solely observing overall engine parameters,
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as a key element. In [15], it is suggested to use engine data, prior to and following

the overhaul, coupled with workscope records, to deduce the performance effect of an

overhaul. Global performance parameters, such as EGT, thrust and spool speed are

investigated. Test data is compared with predicted values for different workscopes.

Reasonable agreements between predicted performance recovery and observed values

is achieved. In [22], a different approach is used. The impact of single workscopes

on performance is investigated with multiple back-to-back engine test cell runs. Due

to the costs of non-mandatory engine tests, the number of investigated workscopes is

limited.

The overview of existing methods shows that there is a lack of studies providing a

comprehensive approach to relate workscope with component performance changes in

an operational environment. This lack is due to:

• a lack of information on component performance state before the shop visit;

• limited instrumentation allowing for only few components to be observed;

• a large number of engine parts with impact on performance that is relevant when

summed up but not singularly large enough to be observable.

The potential business benefit of being able to correlate workscope and performance

impact is generally agreed to be immense. It would allow for an improvement of the

input-to-output ratio of engine overhauls, as well as for a different quality of discussion

between maintenance provider and aircraft operator.
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Chapter 3

Project Objective and Proceeding

The aim of this research is to provide a means to correlate the workscope and the

performance recovery of overhauled engines. In this context, it is important to under-

stand what the natural limitations of such a correlation are. Following the framework

established in chapter 1, the correlation’s principle requirements are, that:

• it shall be applicable to different engine designs for the derivation of individual

impact models;

• it shall be able to integrate any hardware feature with an impact on performance

recovery due to overhaul;

• the correlated parameters shall be physically interpretable, thus providing trans-

parency of the result;

• it shall be based on data which is easily accessible by independent maintenance

providers.

In order to meet these requirements, as well as to overcome the obstacles discussed

in chapter 2, the methodological investigation is build on three pillars as shown in

figure 3.1. The Assessment of the Overhaul Workscope, shall quantify the hardware

change induced by an engine overhaul. This entails the establishment of a parameter

describing the workscope based on available hardware records not containing geometric

measurements. A sensible degree of detail to which part groups have to be separated has

to be established. The Assessment of the Overhaul Effect shall be based on available on-

wing data. The accuracy limits of this assessment are to be established and compared

to the accuracy of a potential performance recovery assessment with test cell data.

Furthermore, the most accurate method of assessing performance recovery shall be

determined. Finally, the Correlation of Overhaul Workscope and Effect links workscope



8
P

ro
ject

O
b
jectiv

e
a
n
d

P
ro

ceed
in

g

Assessment of the Overhaul Workscope

Shop overhaul
data

time (engine
operation), workscope

General feature
deterioration model

∆X = f(time,
const.)

Quantification of
workscope items

∆Xfeat,stage = f(time,

workscope, const.)

Workscope item
grouping

∆Xfeat,cluster = f(time,

workscope, const.)

Assessment of the Overhaul Effect

On-wing data of
overhauled engines

temperatures
pressures, etc.

Uncertainty
quantification

Measurement uncertainties,

model uncertainties

Engine performance
calculation

Analysis results
of on-wing data

Analysis results
of generic data

Quantification of
performance

recovery

Analysed performance
recovery

Quantification of
analysis uncertainty

Predicted analysis
uncertainty for on-wing data

Discussion of uncer-
tainty: data source
& analysis method

Correlation of Overhaul Workscope and Effect

Correlation
process definition

Correlation process

Validation & application
with field data

Correlation of workscope
with performance
recovery

Statistical error of
correlation model

Discussion of
correlation results

Discussion of corre-
lation accuracy

F
igure

3.1:
Schem

e
of

the
project

architecture



Project Objective and Proceeding 9

and performance recovery. The correlation shall be validated with the available engine

field data for workscope and for observed performance recovery. The uncertainty of

the correlated model is to be compared to the predicted limitations of the performance

recovery assessment. Furthermore, the resulting values of the correlation are to be

discussed and physically interpreted.
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Chapter 4

Assessment of the Overhaul

Workscope

4.1 Operation-Induced Feature Changes

The general phenomenon of hardware changes during engine operation is referred to

as deterioration. In order to define the potential for a feature’s restoration during

overhaul, it is necessary to understand its incoming state at the point of overhaul.

This might be derived from its operational history [62]. A general functional state-

ment describing the relation between a given technical system’s operating time and

the deterioration-induced change of the state X of a hardware feature k, is given in

[17]:

∆Xk = ak · t1/bk . (4.1)

Therein the variable t is, depending on the underlying mechanisms, either measured

in operating cycles or hours. The linear coefficient ak indicates the deterioration ex-

tent. The deterioration rate is determined by the coefficient bk, which depends on the

deterioration type:

• bk < 1: exponentially progressing deterioration (observed for example for fret-

ting);

• bk = 1: linearly progressing deterioration (observed for example for sliding abra-

sion);
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• bk > 1: digressive deterioration evolution (observed for example for running-in

processes).

The model as per equation 4.1 has already been applied to aero engines in [61], where

the efficiency loss of turbo components over time is modelled with b = 2. In [58], the

principal characteristic of the function is also applied to turbo component efficiency

losses, which are, depending on the underlying mechanism, modelled to be of linear or

digressive evolution. These models are validated with field hardware data. In [58] it

is shown, that for some mechanisms deterioration is delayed at the start, resulting in

a constant hardware state at the beginning of engine operation. Such a delay can be

due to protective measures such as hardware coatings [13]. In order to incorporate this

effect, equation 4.1 is modified by the parameter t0,k, describing the time until which

no deterioration of a feature occurs:

∆Xk = ak ·max (0, t− t0,k)
1/bk . (4.2)

As per [58], the nature of turbo component deterioration mechanisms is modelled to

be either linear or digressive. It is noted, that contrary to this model, burn-back of

High Pressure Turbine (HPT) nozzles constitutes a mechanism which is of progressive

nature [11]. However, this mechanism was not observed for the engine fleet used in this

investigation. The boundary condition bk ≥ 1 is thus imposed for this investigation.

The deterioration model of equation 4.2 describes a typical feature evolution with op-

erating time. For the present case, it represents the mean evolution for an engine fleet.

The actual hardware state of a single engine may be described by a probabilistic model

incorporating engine specific scatter about the mean evolution [65], [62]. This model,

enhanced by the initial period of zero deviation, is illustrated in figure 4.1. Feature

scatter is already observed for new engines due variations in the production and build

processes [65]. Following the beginning of deterioration, the scatter increases due to

engine-to-engine variations in the deterioration rate. These variations are explained by

different environmental and operating conditions [62]. Furthermore, they can be caused

by engine-specific deviations from mean duration of a flight cycle [65] or by on-wing

maintenance actions [56]. A common probabilistic deterioration model may be used

for a homogeneous fleet, with a similar variation of environmental and operating condi-

tions for all engines. For the purpose of this investigation, a mathematical description

of the mean deterioration is used. The probabilistic character of actual deterioration

is, however, to be kept in mind and subject for discussion of the investigation’s results

later on.
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Figure 4.1: Schematic representation of probabilistic hardware feature evolution (on
the basis of [65])

4.2 Modelling Overhaul-Induced Feature Restoration

Performance recovery can be realised during engine overhaul by restoring deteriorated

features. In current practice, feature states prior to and following the engine overhaul

are not persistently monitored. This is due to associated costs, as well as restraints

on shop capacities and TAT. An alternate parameter describing feature restoration is

therefore needed. This parameter is required to

• be based on input data recorded during the overhaul;

• be applicable to all performance relevant features;

• integrate different means used to restore a common feature.

The latter requirement refers to the restoration of a feature being realisable through

part repairs or replacement with new parts. Repairs may be further sub-categorised.

Standard repairs are made available in the engine maintenance manual. Their execution

is licensed to maintenance providers and Outside Vendors (OV). Non-manual repairs

may be developed by the maintenance provider and applied once clearance by the

authorities has been granted.

Both manual repairs and non-manual repairs are aimed at restoring features to the

hardware’s new state. The two are therefore modelled to have the same mean effect

on features as new part consumption. In practice, due the different processes of repair

and new part consumption, the resulting mean effects will deviate from one another.

Hence, an uncertainty of the chosen model results which is to be kept in mind and
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subject for discussion of the investigation’s results later on.

All three operations are modelled to reverse the process of feature deterioration from

new production to the shop incoming state, quantified in equation 4.2. In order to ac-

count for the fact that not all hardware parts are overhauled, the degree of restoration is

introduced as a workscope measure, analogously to the characteristic consumption fac-

tor presented in [17]. The degree of restoration ξ of the feature k of a component group

j is described by the number of parts subjected to a restoration measure m, divided

by the total number of parts of the component group. This relation is documented in

equation 4.3:

ξj,k =
Nj,k,m

Nj,tot

. (4.3)

With equation 4.3 and the inverse of equation 4.2, the component group’s mean feature

restoration can be modelled. It is described by equation 4.4:

∆Xj,k = −aj,k · ξj,k ·max (0, t− t0,j,k)
1/bj,k . (4.4)

The degree of restoration can be derived from recorded overhaul data since every repair

is designated one feature’s restoration. The complete workscope therefore includes a

mix of multiple repairs per part and allows for a separate tracking of the restoration

for each feature. Workscoping information used for tracking is found in:

• the workscope planning records;

• material consumption tracking systems;

• route cards archived in engine build records;

• modification tracking systems.

Channeling all available information stored in these sources in order to calculate the

feature restoration requires a thorough study of the overhaul process. Using the engine

manual and certification documents of the internally developed repairs, an overview is

established in matrix form, indicating all measures by which a feature can be restored.

This is illustrated in table 4.1.
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Restoration of ...
stage 1 stage 2 · · ·

feature 1 feature 2 feature 1 feature 2
Engine manual repair I x
Engine manual repair II x
Engine manual repair III x x
Non-manual repair i x x
New parts stage 1 x x
New parts stage 2 x x
· · · x x

Table 4.1: Exemplary matrix for component feature restoration due to workscoping

4.3 Regard of the Level of Detail

The established model for overhaul-induced feature restoration can be used for corre-

lation on a stage-wise basis. However, this is not practical as performance effects of

singles stages are not observable with engine production instrumentation. Therefore,

the level detail of the correlation needs to decreased.

Clustering provides a practical approach to the reduction of complexity based on sim-

ilarity considerations [64]. In [65] and [50], for example, feature variation of the High

Pressure Compressor (HPC) are considered on a whole component basis. In the present

case, clustering based on similarity regarding the potential for performance recovery is

expedient. This requirement can be further broken down into similarity of the impact

on performance and similarity of feature changes. Hence, component groups which are

of similar material and are subject to similar deterioration mechanisms, thus exhibiting

similar feature changes, form a cluster if their impact of feature change on performance

is similar. Assuming, for example, that the deterioration of the compressor front stages

is dominated by erosion along the blade height and the deterioration of the compres-

sor rear stages is mainly due to changes of the blade tip clearance, the compressor is

separated into a front and a rear part.

For a selected cluster, the degrees of restoration can be calculated. For a cluster n of

multiple compressor stages or turbine stages, the degree of restoration ξn,k of a feature

k is herein defined as the arithmetic mean of all ξj,k of that cluster’s stages:

ξn,k = ξj,k . (4.5)



16 Assessment of the Overhaul Workscope

Equation 4.5 can mathematically be enhanced using weighing factors in order to assign

an individual leverage to each stage. As the proposed cluster does already separate the

higher loaded front stages from the rear ones, the use of weighing factors is waived.

Analogously to equation 4.4, the cluster’s feature restoration is defined as:

∆Xn,k = −an,k · ξn,k ·max (0, t− t0,n,k)
1/bn,k . (4.6)

4.4 Identification of Performance-Relevant Features

The underlying mechanisms impacting deterioration, such as erosion or fouling, are well

covered in open literature. The features impacted by these mechanisms are understood.

A comprehensive overview may be found in [62]. The resulting list of features subject

to deterioration and with an impact on performance is extensive. For a purposeful

correlation, it is important to determine reasonably which features are expendable

in the deterioration modelling process, thus permitting an extraction from the list of

primary levers for performance restoration.

The potential for such a reduction in complexity is demonstrated in [65]. It is shown

that the eleven most influential features, of the different engine components, explain

more than 90% of the observed engine-to-engine scatter in SFC for new production

engines. The 20 most influential features explain above 97% of the SFC scatter. A

similar finding is made in [58] for deterioration-sensitive features impacting perfor-

mance. Based on the findings presented therein, an overview of the relevant hardware

features with an impact on component performance loss, is presented in table 4.2.

Rotor tip clearance is reported to be the most important feature, impacting both

efficiency and capacity of all turbo components except for the HPT. For the HPT,

the capacity is governed by the vane throat area. Medium efficiency losses due to

increased surface roughness have been observed for all compressors, whereas typical

roughness increases observed throughout operation cause only negligible turbine per-

formance changes. Changes in airfoil contour induce performance deviations of the fan

and the HPC. For the former, the reported contour change is a blunting of the blade

leading edge, while the latter has been assigned to non-negligible changes of its blade

leading and trailing edge angles, as well as thicknesses. HPT efficiency and capacity

have been related to a twisting of the vane, which creates a leakage flow path at the

inner platform. A last aspect highlighted in [58] is a change of turbine area, due to
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Fan Booster HPC HPT LPT 1

η wred η wred η wred η wred η wred

Blade clearance (tip ++ ++ ++ ++ ++ ++ ++ 0 ++ ++
... and/or liner loss)
Blade profile (angle 0 0 0 0 ++ ++ 0 0 0 0
... change & thickness loss)
Blade leading edge ++ ++ 0 0 0 0 0 0 0 0
... contour (blunting)
Airfoil surface roughness + - + - + 0 0 0 0 0
Vane twist (for inner plat- 0 0 0 0 0 0 ++ ++ 0 0
... form form-fitting)
Vane trailing edge bowing 0 0 0 0 0 0 0 ++ 0 0

Table 4.2: Hardware features relevant for turbo component performance loss due to
deterioration(++:high, +:medium, 0:none/negligible, -: not specified) as
per [58]

bowing of the vane trailing edge, which impacts the HPT’s capacity only. The findings

of [58] do not present any evidence as for any relevant potential for performance recov-

ery due to HPC vane clearance restoration. It is noted, that this does not provide an

indication for vane clearance not having any impact on HPC performance, but rather

of it not being subject to an increase due to deterioration.

A principal sameness of feature-induced performance impacts between different engine

types cannot be assumed [65]. Furthermore, differences in engine operation prohibit a

generalization based on reference data. However, the presented findings may be used

as a best possible approximation of feature-induced performance losses. The classifica-

tion shown in table 4.2 is therefore used as the basis for this investigation’s correlation.

Features with a medium or high relevancy for performance loss are considered for the

correlation, while those with no or a negligible impact are disregarded. Turbine vane

twist is not considered in this study, as the used engine design does not incorporate

a form fitting construction of the HPT’s second vane inner platform, so as to pre-

vent leakage flow over the stator cascade. Instead a seal construction between the

stationary platform and the rotating disc is used to prevent leakage flow. Based on

the findings presented in [77], seal clearance increase is thus considered as a source for

HPT efficiency and capacity change.

1LPT: Low Pressure Turbine
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Chapter 5

Assessment of the Overhaul Effect

With modern engines, a means to assess the performance state prior to and following

the shop visit is available in the form of monitoring data recorded during operation.

The share of engines, within the global fleet in operation, for which such on-wing data

is recorded is substantial with a trend towards full coverage. Between 2004 and 2009

alone, their global share was estimated to rise from 50% to 70% [7]. Meanwhile, civil

turbofan engines are increasingly well instrumented, as shown in figure 5.1.

Figure 5.1: Evolution of monitored gas path measurements [38]

The number of sensors has increased beyond the scope of parameters, needed for the

engine control system, allowing for a more detailed component analysis. Also, auxiliary

parameters, such as bleed pressures or bleed mass flows, are observed to be included

in the transmitted monitoring data of one or more recent engine designs. Sensors

additional to the baseline are sometimes offered by Original Equipment Manufacturers

(OEM) as Monitoring Kits (MK) to meet the increasing demand in health monitoring

applications.
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5.1 Demonstration of the Assessment Methodology

The methodology applied to the assessment of the effect of maintenance on engine

performance shall be demonstrated using a realistic example. A two-spool turbofan

engine with a high Bypass Ratio (BPR) and a mixed nozzle configuration is chosen.

It is typical of an engine installed on a short- to medium-range, narrow-body, twin-jet,

commercial passenger aircraft. The engine represents a 1990’s technology and features

a Full Authority Digital Engine Control unit (FADEC). The engine is equipped to

measure 12 parameters that can be used for component analysis, listed in table 5.1.

The flight Mach number is provided as an additional parameter by the aircraft in-

strumentation. Furthermore, ambient pressure and temperature are measured through

the aircraft instrumentation. These parameters may be used as an alternative to the

engine’s inlet condition measurements, depending on which one provides the higher

accuracy.

Sensor of ... Name Parameter

engine

T2 Inlet temperature
p2 Inlet pressure
p125 Fan exit pressure
T25 Booster exit temperature
p25 Booster exit pressure
T3 HPC exit temperature
ps3 HPC exit static pressure
EGT Exhaust Gas Temperature (LPT exit)
p5 LPT exit pressure
nL Low pressure spool speed
nH High pressure spool speed
wf Fuel mass flow

aircraft
T0 Free flow temperature
p0 Free flow pressure
M Mach number

Table 5.1: Engine gas path parameters measured with serial instrumentation

Field data is taken from one operator. The served network’s environmental conditions

are as typically found for a European or Northern American operator. An analysis

of the fleet’s rotation shows for all aircraft to be equally dispatched within the route

network. The probability distributions of environmental factors impacting engine hard-

ware, such as particle type and concentration of the air, can thus be assumed to be

equal for all aircraft [62].

Aircraft altitude, flight Mach number, temperature deviation from standard day con-
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ditions and the power rating Engine Pressure Ratio (EPR) are analysed to vary with

a normal distribution between flights. A fleet analysis shows engine power settings,

flight Mach number and ambient conditions to be of equal probability distributions for

all aircraft.

With the monitoring data collected during cruise operation, component states are

analysed using Gas Path Analysis (GPA), a standard performance calculation method.

It is also validated for scenarios of only single stages of an analysed component being

subject to a change in performance [47]. Performance calculation generally constitutes

a discipline that is well-established and discussed in open literature, such as [49] and

[72]. Therefore, a detailed discussion is waived at this point.

Total engine mass flow is assessed using the capacity curve of the mixed nozzle. Mea-

surement of the core mass flow is not available in engine production instrumentation

and needs to be analysed using either of the following approaches [31]:

• analysis based on the known capacity of one of the core’s turbo components;

• analysis through a heat balance equation for a control volume of known fuel mass

flow, as well as known inlet and outlet temperatures.

Each core flow analysis method poses particular constraints with regard to the problem

of performance recovery analysis. For example, using a component’s capacity charac-

teristic for core flow analysis is most sensible if its capacity is not changed during the

engine shop visit due to that component not having been overhauled. When analysing

performance recovery this is to be considered, as well as the fact that each compo-

nent’s analysis uncertainty varies between the applied core flow analysis methods. In

other words, for a given component some analysis methods yield more precise analysis

results than others. In the case of the heat balance method, the fact that it requires

a turbine temperature measurement is problematic for performance recovery analysis.

Temperature profiles in the hot section are inhomogeneous and depend on combustor

characteristics such as variation in fuel nozzle capacities or cooling flow field in the

liner vicinity [22]. These characteristics often do change throughout the overhaul pro-

cess due to fuel nozzle cleaning or a change of their circumferential position. Overhaul

records furthermore showed EGT sensors to be often replaced during overhaul due to

faulty functioning prior to the shop visit. EGT measurements are thus disregarded in

this investigation and only the core flow analysis methods using capacity characteristics

are considered in the following.
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5.1.1 Modelling of Non-Observable Turbo Components

In order to improve the results of the analysed performance recovery, the engine per-

formance model has been enhanced with respect to non-analysed parameters and sec-

ondary performance effects. In table 5.2 an overview is given which parameters can be

analysed directly based on the available instrumentation.

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity - x x - x x x x x -
HPT capacity - x x x x x x - x -
LPT capacity - x x x x x x x - -

Table 5.2: Observable component performance parameters for different core flow anal-
ysis methods

Fan efficiency cannot be analysed directly. In [58], it is proposed to couple fan efficiency

loss and fan capacity loss. As shown in table 4.2, fan deterioration is primarily due

to two degradation mechanisms, which inversely are also the mechanisms for potential

performance restoration. It is primarily caused by deterioration of the rotor leading

edge and an increase in tip clearance. Test data for engine-specific impact of lead-

ing edge deterioration and tip clearance increase on fan performance is not available.

Therefore, experiences from a reference engine is used as suggested in [45]. The effects

of a changed leading edge geometry for transonic fan blades have been studied in [23]

and [74] for a CFM56-5 engine. The decrease in fan efficiency was found to be 1.75

times higher than that of fan capacity. For the fan tip clearance a ratio of 1.15 was

found [63] for the same engine. For an overhaul including a restoration of the main

features, the ratio of recovered efficiency to recovered capacity is expected to be be-

tween those values. The fan efficiency scaling factor is therefore modelled, using the

arithmetic mean, to have a degradation 1.45 times as high as the fan capacity scaling

factor:

fη = 1 + 1.45 · (fwred
− 1) . (5.1)

The used ratio of 1.45 compares well to the findings presented in [61], where the ratio

of total fan efficiency loss to total fan capacity loss due to deterioration is analysed to

be 1.6 based on field data of a JT9D engine.

LPT capacity is used to separate the efficiencies of the two turbine components. For
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engines subject to an LPT overhaul, which are however uncommon, this induces an

error in the analysis of recovered turbine efficiencies. Changes in LPT capacity with

operation are due to changes of the tip clearance, as are changes of its efficiency as

discussed in [58]. Therein, the ratio of efficiency change to capacity change is analysed

to be −1.5. Further studies, quantifying the ratio of clearance-induced capacity change

and efficiency change of LPTs, are not available. The LPT capacity scaling factor is

therefore modelled to have an increase 0.67 times as high as the LPT efficiency loss.

fwred
= 1− fη − 1

1.5
. (5.2)

The correlation can be applied when using booster or HPT capacity for core flow

analysis. Using the LPT capacity method, the LPT efficiency is not analysed and

the correlation may not be applied. This core flow analysis method should therefore

only be applied for overhauls during which the engine’s LPT is not overhauled. These

engines are modelled to have an overhaul-induced LPT capacity change equal to zero.

As mentioned above, overhaul data available to the author showed this to be a common

case.

Changes of the booster capacity or HPT capacity need to be modelled when using the

respective core flow analysis methods. A possible approach is to establish a theoretical

model linking hardware data and capacity change [10]. An alternative approach is the

use of model distributions [24], provided the changes in capacity can be considered to

be the result of a random experiment. A random experiment is defined as an operation

which is repeated under identical conditions [8]. In the present investigation, a fleet of

engines is used which:

• are all of the same type. Differences of new engine performance can thus be ex-

plained by the probabilistic character of the processes of production and assembly

[65];

• are all operated by one airline and with an identical route mix, which leads

to equal probability distributions for environmental conditions and geographic

locations. Performance loss, due to continuous operation or single events, may

therefore also be described by a common probabilistic model [65];

• are all subject to the same overhaul processes for disassembly, inspection, repair

and assembly. Workscope definition is based on identical requirements, defined

in the engine manual and the Workscope Planning Guide, and the probabilistic

incoming state of the engine hardware.
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It is therefore assumed that changes of booster and HPT capacities are of random

nature and may be described by a probabilistic model. The principal use of the prob-

abilistic model is shown in figure 5.2 based on the HPT capacity method. Engines

for which the HPT is not overhauled, are modelled to have an overhaul-induced HPT

capacity change equal to zero. It is noted, that the HPT is also not disassembled for

these engines. A build-rebuild-effect, discussed in [42], is therefore assumed to not oc-

cur. Engines for which the HPT is overhauled, are modelled to have a non-zero change

in HPT capacity. The engine data base has been searched for overhauls where the

LPT is not overhauled while the HPT is overhauled. Using the LPT capacity method

for core flow analysis, a statistical variation of the change in HPT capacity has been

established. The analysed statistical mean value is used to model changes of the HPT

capacity. The statistical model is subject to errors. These errors and their impact on

component analysis are subject to quantification in chapter 5.3.

Fleet
data base

Engines with HPT overhaul
& no LPT overhaul

Engines without
HPT overhaul

Engines with
HPT overhaul

Engine component
analysis with LPT
capacity method
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Frequency

Statistical HPT
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capacity method

Engine component
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capacity method
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Figure 5.2: Setup of the statistical model for HPT capacity recovery

5.1.2 Modelling of Secondary Effects

In [39], it is shown that lack of a Reynolds number model for turbo component induces

non-negligible uncertainties in the performance recovery analysis. Therefore, Reynolds

number models have been set up for the fan, booster, HPC and LPT. For the HPT no
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model is set up, given that its performance can be assumed independent of Reynolds

number variations within cruise flight regimes [9].

For the combustion chamber no Reynolds number model is set up, as both its perfor-

mance parameters, efficiency η and pressure loss ∆p, can be considered independent of

a change in Reynolds number [31].

Inlet, bypass, ducts and Turbine Exhaust Case are also not modelled to be subject to

a performance variation due to alternating engine inlet conditions. The results of a

preliminary analysis of the variations of their pressure loss coefficient ζ are shown in

table 5.3. The calculation is based on the approach presented in [69]. It is observed

that the maximum deviation of the pressure loss coefficient, which is herein defined by

the 3σ variation of the operating conditions, is 4.1% for the Turbine Exhaust Case.

Given a maximum design pressure loss of 1.5% for this component, as stated in [72]

and [25], this translates in a standard deviation for the pressure loss of 0.02%. It is

concluded that no Reynolds number effect modelling needs to be integrated in the

models of inlet, bypass and ducts due to the low order of magnitude of uncertainty on

component performance analysis.

Renom [−] Renom −Remin [−] ζnom [−] ζmax − ζnom [%]
Inlet 7.43 · 106 5.18 · 106 0.0097 0.73
Bypass 8.14 · 106 2.26 · 106 0.0104 1.69
Swan Neck Duct 1.90 · 106 6.10 · 105 0.0134 2.33
Inter Turbine Duct 1.20 · 106 3.77 · 105 0.0143 2.59
Turbine Exhaust Case 1.47 · 106 4.63 · 105 0.0126 4.12

Table 5.3: Reynolds numbers and pressure loss coefficient: Nominal values and maxi-
mum deviations for inlet, bypass and ducts at cruise conditions

Simplifications of the performance model of the engine nozzle are also examined. The

potential impact of a non-modelling of Reynolds number effects on analysis uncertainty

of turbo components is contemplated. Considering the complex nature of the mixing

process for core and bypass stream, the models proposed in [69] cannot be applied for

the mixed exhaust nozzle. In [35], a method is proposed to include Reynolds number

impact on nozzle performance in the engine model. Based on the Reynolds number

of the core section in the mixing plane, Re61, the variation of the nozzle discharge

coefficient cD is calculated as

∆cD = 104.548 ·
(

Re−1
61,ref −Re−1

61

)

+ 3.428 · 107 ·
(

Re−2
61,ref −Re−2

61

)

. (5.3)
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with Re61,ref as the core Reynolds number in the mixing plane at map reference con-

ditions.

The implications of a Reynolds number variation in the nozzle are visualized in figure

5.3. The regimes for which an impact on the discharge coefficient needs to be taken into

account are shown in this image. In the Reynolds number regime of Re61,ref = 4·105, for

example, a Reynolds number variation of −1 ·105 results in a variation of the discharge

coefficients of −0.00025. It may therefore be considered negligible with respects to

nozzle characteristics. For regimes of Re = 2 · 105 and below, the impact on the

discharge coefficient does become non-negligible. This regime is typical of business

jet flights, which operate at higher altitudes, but is usually not reached under cruise

conditions of commercial airline operation. For this investigation’s fleet, the Reynolds

number of the nozzle core section in the mixing plane at mean cruise conditions is

8.8 · 105. Its 3σ variation due to varying operating conditions is calculated to be

±1.94 · 105. For a negative deviation this corresponds to a variation of the discharge

coefficient of −0.00005. It is concluded that Reynolds number effects in the nozzle

are of a negligible order of magnitude, as are the implications of a non-modelling on

analysis uncertainty of other engine components. A Reynolds number model for the

nozzle is thus not integrated in the engine model.

Figure 5.3: Nozzle discharge coefficient change due to Reynolds number variation

Variations of the operating conditions impact component characteristics also through

a change of the tip clearance. An effect can be observed both on a turbo component’s

efficiency, as well as its capacity [36]. Changes of the tip clearance can be divided into

transitory effects and steady state effects [20]. The former effects are disregarded in this
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investigation, as cruise data is taken at stabilized operating conditions. Steady state

variation of the tip clearance can be due to component load level, such as a variation

of aerodynamic speed at constant inlet conditions, or a variation of the component

inlet conditions at a given aerodynamic speed [31]. For the former, the variation can

be integrated in the turbo component map [20], as is the case in the present model.

Component maps are set up to represent performance at standard cruise conditions.

For the latter, a correction model for the turbo components needs to be established. It

is noted that, based on the findings of [20], the assumption is made that steady state

clearance changes in the Secondary Air System (SAS) occur primarily in the regimes

of part power operation. Their changes are therefore not modelled.

The principal physical effects of turbo components’ steady state tip clearance changes

due to varying inlet conditions at constant aerodynamic speed are [31]:

• thermally induced change of casing radius and thickness;

• mechanically induced changes of the casing radius through a variation of the

inner to outer pressure difference;

• thermally induced change of disc radius and blade height;

• disc and blade radius change due to mechanical speed variation.

As suggested in [37], the change of mechanical speed is assumed to be the major

contributor to the clearance change. Clearance changes induced by centrifugal forces

are a function of actual mechanical speed and map speed [31]:

∆s = const. ·
(

n2 − n2
map

)

. (5.4)

The constant term in equation 5.4 is component specific and depends on rotor geome-

tries and material properties. Correlation between clearance and performance changes

have been subjected by numerous studies. The suggested models are both non-linear,

e.g. [20] and [6], and linear, e.g. [50] and [45]. For the present investigation, a linear

correlation is used. With equation 5.4, the dependency between relative speed change

and the efficiency scaling factor is modelled as:

fη,cl = kcl ·∆s/h

= kcl · const. ·
(

n2 − n2
map

)

.
(5.5)
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The capacity scaling factor is defined analogously. Given the small speed deviations

between cruise data points induced by a variation of the inlet conditions, the linear

model is further simplified:

fη,cl ≈ k′
cl · (n− nmap) . (5.6)

The constant k′
cl of equation 5.6 is component specific. It incorporates component

geometries, material properties and the exchange rate of clearance versus efficiency.

Its value is a priori unknown to anyone but the OEM. However, using on-wing data

it can be reverse engineered as shown in figure 5.4. HPC efficiency is analysed for

a data set of 400 snapshots. A trend between the variation of the mechanical speed

and the analysed efficiency scaler is observed, with a high scatter about the trend.

With the given data a linear model has been established using a regression based on a

least-square best fit. Due to the high scatter of the analysed scalers about the linear

regression, the significance of the model is tested. The scatter about the regression line

is explained by the analysis uncertainty of the HPC efficiency, which is relatively high

compared to the latter’s sensitivity to speed change. This is reflected by the regression’s

low R2 value of 0.37. However, the regression slope, which is tantamount to k′
cl, has a

t-statistic of 15.36 and a p-value of 4.35 · 10−42. The result can therefore be accepted

with a significance level above 95% [53]. The high significance of the regression, in

spite of the low R2 value, is explained by the large sample size. Analysis of data for

other components did not indicate any noticeable clearance effects. A clearance model

is thus setup for the HPC as the sole component.

Figure 5.4: Linear clearance model for HPC efficiency based on field data
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5.2 Measurement Uncertainties

5.2.1 Description of On-Wing Measurement Process

The typical measurement chain of an engine pressure measured on-wing is shown in

figure 5.5. In the case of multiple pickups, pressures are averaged pneumatically. A

pressure sense line routes the pressure to a transducer located within the Electronic

Engine Controller (EEC). The electric current output signal of the transducer is pro-

cessed into a digital signal by an analogue-to-digital converter. The information is send

electronically to the Engine Monitoring Unit (EMU) where it is stored temporarily. It

is then processed for data reduction purposes and send to a ground station from where

it is transferred to a data storage server. In this measurement chain, all elements within

the engine or aircraft are of unknown uncertainty for all parties but the OEMs. Un-

certainty due to hardware or data processing within the EEC in particular, is strictly

proprietary. Hence, a method is needed to assess uncertainty of the total measurement

chain relevant for performance recovery analysis.

Pressure Pickup

p

p

Pressure Transducer
p

E

A/D Converter
Temporary Storage

Data Processing

Data Transmission

Data Reception

Data Storage

EEC

Engine

Aircraft

Figure 5.5: Pressure measurement chain of production pressure instrumentation

A measurement’s error is divided into its systematic and its random error portions. In

[5], the random error is defined as ’the portion of the total measurement error that

varies in repeated measurements of the true value’. As furthermore stated, it can

be attributed to non-repeatability in the measurement system, environmental condi-

tions, data reduction techniques and measurement methods. Random measurement
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uncertainty is quantified by its standard deviation σ. A sample population’s standard

deviation S is considered an estimate of σ.

Systematic error is constant for a parameter when repeatedly measuring a constant true

value with a given installation. Its magnitude changes, however, between measurement

installations [5]. Systematic error may be reduced through system calibration. Contri-

butions to the systematic error left after calibration are referred to as the remaining

systematic uncertainty which is considered to be of normal distribution [26]. The re-

maining total systematic uncertainty is commonly quantified by its 95% confidence

estimate B. The stochastic part of the remaining systematic uncertainty may be as-

sessed using inter-laboratory or inter-facility tests with a constant reference system

being measured. The uncertainty’s standard deviation is estimated with the statistical

distribution of each facility’s mean measurement [5]. In analogy to random uncer-

tainty σsys and Ssys are used in the following to describe the actual and the estimated

distribution of the stochastic part of the remaining systematic error.

For the assessment of performance recovery due to engine maintenance, random mea-

surement uncertainty of all measured parameters needs to be considered. The remain-

ing systematic uncertainty is neglected for all measurements where the error remains

constant with the maintenance process. The resulting error in analysed performance

is considered to be constant and thus canceled in a pre-to-post-maintenance compar-

ison. The assumption of a constant remaining systematic error can be made for all

measurements of the engine powerplant, as long as the measurement system remains

unchanged. Any engines for which the corresponding measurement hardware was ex-

changed or re-calibrated during maintenance, are not used for this investigation. An

exception to this is measurement hardware of the EGT. As discussed in section 5.1,

EGT measurements are disregarded for recovery analysis.

For measurements of the engine’s free flow respectively inlet conditions and the Mach

number, the error induced by the remaining systematic measurement uncertainty is not

constant. Their corresponding sensors are part of the aircraft fuselage respectively the

engine cowling. Given that the overhauled engine is typically installed on a different

aircraft following the shop visit than the aircraft it is dismounted from before the

shop visit, the error varies due to the stochastic part of the systematic uncertainty.

Distributions of the systematic uncertainty need thus to be taken into account for these

measurements in order to assess the accuracy of the performance recovery analysis.



Assessment of the Overhaul Effect 31

5.2.2 Field Data-Based Assessment of Random Measurement

Uncertainty

For the assessment of the random measurement uncertainty, on-wing data of engines

installed on the same aircraft is used. The on-wing data is assembled of data pairs,

with each pair consisting of two cruise snapshots taken simultaneously for left wing

and right wing engine. The engine ambient conditions and power setting are thus

identical.

For each measured engine parameter ℜ a deviation between both measurements is

calculated. Depending on the parameter, the deviation is calculated as an absolute

difference:

∆ℜ = ℜl −ℜr , (5.7)

respectively as a relative one

∆ℜ =
ℜl −ℜr

ℜr

· 100 . (5.8)

A comparison of a time series of data pairs yields a non-constant curve with a data

scatter. For the series, a time frame is considered during which the engine on both

wings remain installed and without a switch. An example for an aircraft’s engine data

is shown in figure 5.6.

Figure 5.6: Deviation of left wing and right wing EGT before filtering
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Deviations between the two measurements are due to a variety of underlying causes:

• stochastic part of the remaining systematic measurement error;

• random measurement error;

• different initial engine hardware states due to production scatter and past oper-

ation;

• different engine deterioration rates during the considered time frame;

• different power setting trims of the engines;

• different engine settings: Variable Stator Vanes (VSV) angle, engine bleeds, gen-

erator load or Active Clearance Control (ACC);

• measurement malfunction.

In order to obtain an estimate of the random measurement uncertainty, the raw data

is processed via a series of filtering steps designed and discussed in [38]. The aim of

the filtering process is to obtain a data set, whose scatter is primarily due to random

measurement uncertainty of the measured parameters. In figure 5.7 the filtered data

is shown. It is observed that scatter is decreased. In the course of the filtering process,

scatter due to different engine settings is eliminated, as are outliers due to measure-

ment malfunctions. Due to the former the complete time frame of the first 300 data

points is also filtered out. Scatter due to different engine hardware states and engine

trims is rendered negligible by filtering for data points with similar engine operating

conditions.

Figure 5.7: Deviation of left wing and right wing EGT after filtering

From the filtered data, constant offsets between left and right wing EGT and time-
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dependent trends remain to be eliminated. Constant offsets are due to different initial

engine hardware states, engine trims and the remaining systematic measurement error.

The time-dependent trend observable in figure 5.7 is due to different engine deteriora-

tion rates during the considered time frame. For the purpose of their elimination, a

centered smooth curve for the filtered data is established and the scatter about that

curve is calculated. The used algorithm uses a range of ±25 snapshots for the centered

smooth curve. The remaining scatter, shown in figure 5.8, is primarily due to random

Figure 5.8: Smooth curve deviation of left wing and right wing EGT after filtering

measurement uncertainty. The processed data includes secondary effects. The standard

deviation of the data shown in figure 5.8 is thus considered a conservative estimate of

the random uncertainty of the engine measurements:

σ∆ℜ ≤ S∆ℜ . (5.9)

From the random measurement uncertainty of the difference between left and right

wing engine, the random measurement uncertainty of a measurement sensor can be de-

duced. The law of error propagation states that the standard deviation for a calculated

parameter Y is a result of the standard deviations of the independent parameters Ωi,

of which Y is a function [5]:

σY =

√

∑

i

(θi · σΩi
)2 , (5.10)

wherein the sensitivity θ is given by the partial derivatives of dependent and indepen-
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dent parameters:

θi =
∂Y

∂Ωi

. (5.11)

It is assumed that both left wing and right wing engine have the same measurement

hardware and thus the same random measurement uncertainty. With equations 5.9

and 5.10, the conservative estimate of the random uncertainty for a single sensor is

thus deduced as:

σℜ ≈ 1√
2
· S∆ℜ . (5.12)

This approach results in the uncertainty of all engine measurements shown in table

5.1. For a representative assessment of random measurement uncertainty a fleet of 20

aircraft is chosen. For each aircraft, the deviations of left wing and right wing mea-

surements are used to determine estimates of the random measurement uncertainty. A

comparison of the analysed standard deviations reveals different results between the

uncertainties derived with different engine pairs. These observed differences exceed

the 95% confidence intervals which are, calculated as per [18], below ±5% of the anal-

ysed standard deviations. They are due to non-constant phenomena, other than the

random measurement uncertainty, that are not filtered out. Non-detected outliers or

step changes in the trend, for example, may result in a higher standard deviation for

the data of some engine pairs. However, as a conservative approach, the highest value

between the 20 analysed standard deviations of an engine parameter’s measurement is

selected as the overall estimation of the random measurement uncertainty.

The estimated random measurement uncertainties for the engine instrumentation are

shown in figures 5.9 and 5.10 alongside reference values taken from uncertainty require-

ments for development instrumentation. It is to be kept in mind, that development

instrumentation is commonly subject to more stringent requirements for measurement

accuracy than production instrumentation. The reference values herein are stated to

provide a comparative indicating whether or not the orders of magnitude of the analysis

results are plausible. It is noted that for the different sensors, there is no one common

ratio for systematic vs. random uncertainty. Data presented in [71], for example, shows

random uncertainty to have a share of 12-95% of the total uncertainty.

For the majority of the parameters of figures 5.9 and 5.10, it is observed that the anal-

ysed random measurement uncertainties are lower than the reference values. This is
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due to the latter being requirements for total measurement uncertainty. Analysed val-

ues are thus lower than the reference ones, in spite of measurements from development

instrumentation being generally more accurate than those from production instrumen-

tation. This effect is most pronounced for the p5 measurement whose pressure probes

outnumber those of the other measurements. Prominent exceptions are the measure-

ments of p25 and p125 where the analysed random measurement uncertainty exceeds

the reference values. For the former, this result is supported by engine monitoring

diagnosis experience with the given engine type, which showed this measurement to

be less accurate than p25 measurements in other engine designs. For the p125 mea-

surement, an explanation is given by a constructive particularity of the design of the

engine used for this investigation. Air from the p125 sense line is also used for cooling of

electronic components of the engine. This causes an increased uncertainty in the pres-

sure measurement. It is furthermore observed that temperatures measured at elevated

temperature levels, namely T3 and EGT, have higher uncertainties than temperatures

measured in the colder engine sections. This is expected as measurement uncertainty

at high temperatures is typically proportional to the temperature [16].

Figure 5.9: Analysed measurement uncertainty of production instrumentation (ran-
dom) and reference values from development instrumentation requirements
(random & systematic)

It is concluded that the analysis provides plausible results. The obtained values are

used for the assessment of the uncertainty of performance recovery analysis.

Random measurement uncertainty of the aircraft-measured pressure and temperature

are estimated analogously to the method applied to engine sensors. As there is only

one measurement on the aircraft, the deviation is calculated with the respective engine

inlet measurement. For the temperature, for example, the deviation T0 − T2 is calcu-
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Figure 5.10: Analysed measurement uncertainty of production instrumentation (ran-
dom) and reference values from development instrumentation require-
ments (random & systematic)

lated. A comparison of the two different measurements requires for actual conditions

between the measurement plains of the Pitot tube and the engine inlet to be constant.

Engine inlet temperature maybe considered equal to free stream temperature [32], a

comparison is thus sensible. Pressure losses do occur alongside the aircraft fuselage,

as well as within the engine intake. For a given dynamic pressure, the pressure loss of

the engine intake may be considered constant [72]. For the aircraft, pressure losses are

dependent on flight speed. To render variations of the pressure losses negligible, only

data with similar operating conditions is therefore used.

Raw data is filtered for outliers and processed to include only data points with small

variations of engine operating conditions. Filtering for unusual engine settings or ac-

counting for engine deterioration is not necessary for inlet and aircraft measurements.

Aircraft and engine measurements are obtained with different hardware. Using the

random measurement uncertainty of the engine inlet measurement, obtained as per

equation 5.12, the random measurement uncertainty of the free flow parameter is esti-

mated with the law of error propagation:

σℜ0
≈

√

S2
∆ℜ0−2

− σ2
ℜ2

. (5.13)

Analysed random measurement uncertainties of the aircraft’s speed and temperature

measurements are higher than the respective measurements at the engine inlet. For a

measurement selection for the performance recovery analysis, however, the stochastic

part of the remaining systematic uncertainty needs to be considered, as well.



Assessment of the Overhaul Effect 37

5.2.3 Field Data-Based Assessment of the Stochastic Part of

the Remaining Systematic Measurement Uncertainty

Measurements of engine inlet conditions and free flow conditions are subject to a change

of the stochastic part of the remaining systematic uncertainty. With data being col-

lected only during non-turbulent flight conditions, actual engine inlet conditions are

the same for left and right wing engines. For the measurements, systematic differences

are however observed when comparing engine inlet measurements of the two sides. The

observed differences are the stochastic part of the remaining systematic uncertainty af-

ter calibration. By comparison of measurement data for an engine pair of one aircraft,

a mean difference is calculated when averaging multiple snapshots:

∆ℜ2 6= 0 . (5.14)

Raw data is filtered for outliers and processed to include only data points with small

variations of engine operating points, as discussed in section 5.2.2. Filtering for un-

usual engine settings or accounting for engine deterioration is not necessary for inlet

measurements. Calculation of the mean difference is repeated for multiple engine pairs,

yielding S∆ℜ2
, the normal distribution’s standard deviation of the mean difference. The

standard deviation of the stochastic part of the remaining systematic measurement un-

certainty for a single measurement is, in an analogous manner to equation 5.12, derived

as:

σsys,ℜ2
≈ 1√

2
· σ∆ℜ2

. (5.15)

For the assessment of the stochastic part of the remaining systematic measurement

uncertainty of aircraft instrumentation, aircraft measurements are compared to one

of the inlet measurements. The resulting standard deviation of the mean difference

S∆ℜamb−2
is used to estimate this stochastic part. With σsys,ℜ2

, obtained as per equation

5.15, the estimation is derived analogously to equation 5.13:

σsys,ℜ0
≈

√

S2
∆ℜ0−2

− S2
∆ℜ2

. (5.16)

Taking into consideration both the random measurement uncertainty and the stochas-

tic part of the remaining systematic uncertainty, temperature measurement from the
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aircraft is found to be less precise than that of the engine inlet temperature. For the

pressure measurement, the aircraft measurement is found to be more precise than the

engine one. This is to be expected as aircraft altitude and speed measurements, both of

which are critical for flight safety, are highly sensitive to pressure measurements. Air-

craft pressure measurement and engine inlet temperature measurement are therefore

selected as the measurements used for performance recovery analysis.

5.2.4 Requirement-Based Assessment of Maximum Permissible

Mach Number Measurement Uncertainty

Measurement uncertainty of the Mach number cannot be derived based on field data.

Therefore, an estimate is established based on certification requirements. Mach number

measurement is required to have a tolerance of ±0.005 at standard cruise conditions in

order to obtain aircraft certification [57]. With tolerances generally indicating maxi-

mum permissible deviations [29], this requirement is therefore taken as the upper limit

for the measurement’s 3σ variations. Maximum permissible values for the random

measurement uncertainty and the stochastic part of the remaining are thus given by

[44]:

0.005 =

√

(3σM)2 + (3σsys,M )2 . (5.17)

Given this interval, the stochastic part of the remaining systematic measurement un-

certainty and random measurement uncertainty can be calculated if their ratio

λ =
σsys,M

σM

, (5.18)

is known. The random measurement uncertainty then becomes:

σM =
0.005

3 ·
√
λ2 + 1

. (5.19)

The ratio of the stochastic part of the remaining systematic measurement uncertainty

to random measurement uncertainty is known for the free flow pressure based on the

assessments of sections 5.2.2 and 5.2.3. Assuming that the measurement of free flow

pressure respectively the differential pressure between total and static conditions has
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the same ratio, Mach number measurement uncertainties will also be of equal ratio.

Due to the non-linear relation between pressures and Mach number, the mathemat-

ical demonstration for this conclusion is given in appendix A.1. The assumption of

the pressure measurements having an equal ratio of the stochastic part of remaining

systematic measurement uncertainty to random measurement uncertainty needs to be

substantiated. It is made considering that aircraft pressure measurements are typically

part of one hardware set, a Pitot pressure tube with dedicated electronics. All elements

of the measurement chain are from the same supplier and therefore of identical design.

The ratio of uncertainties is thus considered equal.

With the given random measurement uncertainty, the stochastic part of the remaining

systematic uncertainty is calculated with equation 5.18. The results of this assessment

are maximum permissible limits for the uncertainties. Aircraft hardware is poten-

tially more accurate than defined in the certification requirements. Furthermore, the

remaining systematic uncertainty may contain a non-zero constant part.

5.2.5 Test Cell Measurements

Uncertainty of test cell measurements is assessed to enable a comparison of the accuracy

of performance recovery analysis based on monitoring data with one based on test cell

data. Performance recovery analysis based on test cell data can be carried out where

optional test cell runs are carried out at the incoming stage of the engine shop visit.

Performance analysis based on test cell data is generally considered to be more accurate

but is often not an option due to the high costs, increase in TAT and constraints

on test cell availability associated with incoming engine runs [22]. Performance data

collected during test cell runs includes all parameters of the engine instrumentation.

Furthermore, both additional parameters and parameters redundantly measured to the

ones available in engine instrumentation are recorded. Parameters measured in the test

cell are:

• engine thrust F (additional);

• total engine inlet flow w2 (additional);

• relative humidity ϕ (additional).

• spool speeds nL and nH (redundant);

• fuel flow wf (redundant).
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With the necessary specifications available, an uncertainty analysis as discussed in

[31] and [2] is carried out. Due to the superior accuracy of test cell instrumentation

compared to engine instrumentation, the former is used to assess the uncertainty of

performance recovery analysis with test cell data.

5.3 Model Uncertainties

Errors of the performance model constitute the second major source for inaccuracy

of the analysed performance recovery. Engine operation with engine settings which

deviate from the nominal settings for which the engine model setup, is one such source.

With monitoring data indicating only high flow or nominal flow setting of the bleed

valve, for example, the increased mass flow for the high flow setting cannot be quantified

in the engine model. The impact on analysis uncertainty is therefore decreased by

filtering out engine data with high flow setting. Non-nominal VSV settings and power

extraction are filtered out analogously. The impact of numerical precision of the data

collection and analysis process is negligible [39].

Not all sources of model uncertainties can be considered negligible for all analysed

components or may be reduced by filtering. These error sources are quantified. Some

of the discussed errors are due to installation effects and will apply only to the use

of on-wing data but not for test cell performance runs. Others do have an impact on

analysis uncertainty regardless of the data source.

5.3.1 Fuel Heating Value

Actual Fuel Heating Value (FHV) for a given flight is not measured. It is therefore

assumed to be a nominal, constant value set within the engine model. This is in

disagreement with reality where the FHV varies from flight to flight as each airport

has its own supplier, in some cases even multiple ones. Furthermore, variations may

occur between deliveries from the same supplier due to variations in the oil quality

and the refining process. Variations of the FHV induce also a model uncertainty for

performance recovery analysis based on test cell data. Unlike in development testing,

FHV is not measured with lab tests for test cell runs of overhauled engines. Variation

of the actual FHV is approximated by a Gaussian distribution with σ = 0.31% as

displayed in fig. 5.11. It is noted that FHV is constraint by a lower value, 42.8 MJ/kg

for Jet A1 [1].
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Figure 5.11: Distribution of FHV for airline operation as per US Department of Energy
survey [40]

5.3.2 Exhaust Nozzle Exit Area

Maintenance schedules of the engine exhaust nozzles are independent from the power-

plant. As overhauled engines are typically not installed to the same aircraft they were

installed on prior to the shop visit, an engine shop visit results in a change of the nozzle-

powerplant combination. This means for the powerplant to be matched with nozzles

of different exit area prior to and following its shop visit, causing a different mass flow.

These changes are not integrated in the engine model when analysing monitoring data

as unit specific information on the nozzle geometry is unknown.

In [4], the impact of manufacturing procedures on exhaust nozzle capacity of new en-

gines is investigated. The capacity standard deviation is quantified as σ = 0.43% based

on statistical evaluations off pass-off data. The impact of measurement uncertainty

on the analysis result is not extracted. Therefore, reference values for measurement

uncertainty at the exhaust nozzle exit plain are taken from [60]. The measurement un-

certainty for the indirectly measured capacity is quantified as σ = 0.38%. The actual

capacity variation, which is assumed to be due to area variation, is therefore calculated

as σ = 0.21% based on the law of error propagation.

5.3.3 Thrust Reverser Leakage

Leakage mass flow of the thrust reverser changes when installing the powerplant to an-

other airplane, as the nacelle is a different one. Changes of leakage are not incorporated

into the engine model for analysis with monitoring data due to a lack of information
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on unit specific leakage flow. This causes an error in bypass mass flow analysis.

It is assumed that leakage of thrust reversers varies from zero for a new or freshly

overhauled unit to a maximum value seen on units at the end of their overhaul cycle.

In [78], an increase of the SFC of up to 1% is attributed to the use of thrust reverser

due to pressure loss and maximum leakage during operation. Based on cruise condi-

tion synthesis calculations and the quantification of nacelle pressure loss mechanisms

presented in [25], it is assumed that the increase in SFC is divided into 0.34% due to

pressure loss and 0.66% due to leakage flows. For the engine type used in the course

of this research this translates into a maximum leakage of 0.33% of the bypass mass

flow.

5.3.4 Water Content of the Ambient Air

The water content of the ambient air sucked in by the engine may appear in all three

phases, as gaseous humidity, liquid rain or solid hail. Changes of the air’s water content

have an effect on both the gas constant as well as the isentropic exponent [36]. These

changes are not integrated in the analysis of monitoring data as measurements of the

local humidity, rain or hail is not available during flight. Instead, water content of the

air is set to a constant value in the engine model. For the present model, water content

is set to 0.

In [36] it is recommended that humidity effects on performance need only to be taken

into account for Water-to-Air-Ratios (WAR) above 0.005. In comparison, saturated

air at 10km cruise altitude and a temperature 20K above standard day conditions has

a WAR of only 0.0009. Humidity effects are therefore considered negligible for cruise

condition, an assumption verified by the findings presented in [39].

For rain, it is reported in [34] that even in the tropics, during the most rainy month,

WAR at 11km altitude will reach its maximum value of 0.023 only about 0.1% of the

time. It is furthermore stated that, during the worst month at the worst location, the

probability of encountering hail of any size at 10.67km altitude is 0.067%. Based on

these findings, rain and hail effects on performance are considered negligible for cruise

operation in the relevant, non-tropic environment.
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5.3.5 Booster and HPT Capacity Recovery

The applied statistical approach for modelling booster and HPT capacity recovery when

using either component for core flow analysis induces a model uncertainty. Causes for

the uncertainty are:

• engine-specific deviations from the model’s mean capacity recovery;

• uncertainty of the model’s mean capacity recovery.

A statistical quantification of engine-specific deviation from the true mean capacity

recovery is derived with the sample engines used for establishing the statistical model

discussed in chapter 5.1. The standard deviation of their analysed performance recov-

ery, S∆wred,an
, is calculated.

Uncertainty of the model’s mean capacity recovery is due to the finite number of

samples of the fleet data. As per central limit theorem, the distribution of an infinite

number of sample means has, for a sample size N , a standard deviation [44]:

σµ =
S√
N
. (5.20)

The uncertainty of the model’s mean capacity recovery is thus given by its standard

deviation. It is quantified as
S∆wred,an√

N
.

5.3.6 Secondary Air System

The SAS is an uncertainty source for the analysis of component performance recovery.

The uncertainty is due to:

• a variation of bleed mass flows from the compressor to the external air system;

• a variation of air mass flow at off-takes and feeds between the engine gas path

and the engine’s internal air system.

With the constraint of nominal bleed flow settings and small variations of the engine

operating conditions, variation of bleed flow to the external air system is negligible

[75].

Variation of the mass flows between gas path and internal air system can be both

due to changed seal clearances and to blockage of the turbine blades’ cooling holes.
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The latter is considered to be negligible for this investigation. Maintenance records

showed no cooling hole blockage for this investigation’s fleet. An explanation for this

circumstance is given by the engines not being operated in sandy environment.

For an assessment of mass flow variation due to changed seal clearances, clearance-to-

mass-flow exchange rates for the HPC given in [55] were used. Bleed air flows extracted

from the booster are neglected due to their low order of magnitude [43]. These exchange

rates have been established based on the same engine used for this investigation. Using

the exchange rates and maintenance-induced statistical variations of seal clearances,

deduced from maintenance records, variations of the mass flow were calculated. For

the two off-takes most sensitive to seal clearance changes, a decrease of the mass flow of

1.6% and an increase of mass flow of 0.4% respectively are found. The implications on

performance analysis uncertainty are shown in table 5.4. An impact is observed only

on HPC efficiency and both HPT performance parameters. HPT efficiency is most

sensitive. The induced analysis error is, however, still below one per mil.

Mass flow Fan Booster HPC HPT LPT
change at ... η wred η wred η wred η wred η wred

both ports 0.00 0.00 0.00 - -0.02 0.00 0.09 -0.08 0.00 0.00

Table 5.4: Analysis error (per cent) induced by a 1.6% decrease and 0.4% increase re-
spectively of the HPC’s two air off-takes most sensitive to clearance changes
of the internal air system

Variation of the air mass flow at off-takes and feeds induce also turbine performance

changes which cannot be simulated with performance calculations. These are [68]:

• a decrease of the specific enthalpy and a pressure loss due to the mixing process

of cooling air and the main air flow of the gas path;

• performed pumping work of the radial cooling air flow within the rotor blades.

Based on the exchange rates of turbine efficiency to a variation in feeding air mass

flow, as per [68], and the calculated maintenance-induced changes of the mass flow,

the non-simulated efficiency change of the two-stage HPT is assessed. It is found to be

below 0.5 per mil. Overhaul of the SAS is therefore considered to cause a negligible

uncertainty in performance recovery analysis for turbo components.
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5.3.7 Engine Settings

Engine settings that are not covered in the previous sections may cause further uncer-

tainty of component analysis. This is due to a a missing model of a setting’s impact on

component behaviour. Engine settings that impact performance and have not yet been

discussed are settings of the VSV system and power extraction. Their impact on the

uncertainty of analysed performance recovery is minimised by filtering out snapshots

with unusual engine settings. Any error made in the analysis is therefore constant for

all snapshots. The impact when comparing performance prior to and following a shop

visit is thus considered negligible.

5.4 Simulation of Performance Recovery Analysis

Uncertainty

5.4.1 Monte Carlo Simulation

Due to the iterative process of modular performance calculation the analysis uncer-

tainty cannot be derived analytically with the given model. A possible approach for

calculating the effect of statistically distributed parameters on engine performance

problems is the use of a Monte Carlo Simulation [65]. In figure 5.12, a scheme of a

used Monte Carlo Simulation of this investigation is shown.

The aim is to simulate analysis uncertainty due to random measurement uncertainty

of engine production instrumentation. Input variables for the analysis are generated

by overlaying nominal values for each measured parameter, representative of an av-

erage cruise operating point, with distributions describing the random measurement

uncertainties derived in section 5.2.2. Random values are pre-processed by rounding to

the digit precision available in transmitted on-wing data. The rounded values are used

as input for performance analysis using GPA. The calculation is repeated n-fold until

both the random input parameters and the calculated output parameters have resumed

stable mean values and standard deviations. The values are assumed stable and a sat-

isfactory approximation of the true mean and standard deviation if their relative rate

of change remains below 0.1% for 500 consecutive calculations. 6000 calculations are

needed to satisfy this criterion [38]. Analysis uncertainty due to the stochastic parts

of the remaining systematic measurement uncertainties is simulated analogously to the

setup shown in figure 5.12. In order to compare different core flow analysis methods,
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Figure 5.12: Schematic illustration of the Monte Carlo Simulation setup used for as-
sessing analysis uncertainty due to random measurement uncertainty

the Monte Carlo Simulations are each carried for the:

• booster capacity method;

• HPT capacity method;

• LPT capacity method.

Analysis uncertainty due to model uncertainties is also simulated using Monte Carlo

Simulations. A scheme of the setup used for simulating the effect of exhaust nozzle area

variation on analysis uncertainty is shown in figure 5.13. A cruise operating point, rep-

resentative of average operating conditions, is used for synthesis calculation. Exhaust

nozzle exit area of the synthesis model is varied about its nominal value according to

the magnitude given in sections 5.3.2. The output of the synthesis calculation is used

as generic data for an analysis calculation. Nozzle area of the analysis model is set to

its nominal, constant value, as would be the case for analysis of actual monitoring data.

The analysis yields distributions of component performance parameters as the overall

output of the Monte Carlo Simulation. As for the measurement induced uncertainties,

the simulation is repeated for all three core flow analysis methods. Simulations for un-

certainties in FHV and thrust revers leakage are carried out analogously. For modelled

recovery of booster and HPT capacity, only the respective core flow analysis method
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is used for the simulation.
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Figure 5.13: Schematic illustration of the Monte Carlo Simulation setup used for as-
sessing analysis uncertainty due a variation of the exhaust nozzle exit Area
(A8)

Generally, the uncertainties of measurements and engine model lead to variations in

analysed results. As an example, results of the uncertainty calculation for exhaust

nozzle exit area variation are shown in table 5.5. Booster capacity and HPT capacity

method yield lower variations for the core components’ characteristics than analysis

trough LPT capacity method. Furthermore, effects on booster and HPC parameters,

as well as on HPT capacity are small. It is observed that, between the core components,

analysis of the LPT’s efficiency is most sensitive to nozzle area variation with an un-

certainty of up to 1.26%. This is explained by the fact that LPT efficiency is analysed

using the power balance on the low pressure spool which depends on the bypass mass

flow. Compressor capacities and HPT characteristics are most sensitive to the use of

the LPT capacity method. This is to be expected as total engine mass flow, which is

analysed with nozzle capacity characteristics, has a strong impact on core mass flow

for this method.

The Monte Carlo simulations as described above are repeated for the test cell case. Ad-

ditional measurements available in the test cell and improved accuracies of redundant

measurements are considered in the model setup. Typical test cell operating conditions

are used for the simulation. Uncertainties due to installation effects which apply only

to on-wing monitoring data are not simulated.
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U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 1.38 0.95 0.00 - 0.00 0.00 0.13 0.01 0.44 0.29
HPT capacity 1.39 0.96 0.00 0.01 0.00 0.01 0.13 - 0.45 0.30
LPT capacity 0.74 0.51 0.00 0.48 0.04 0.50 0.38 0.33 - -

Table 5.5: Standard variation of analysed component performance due to nozzle exit
area variation and used core flow analysis method

5.4.2 Assessment of Total Analysis Uncertainty

Based on the simulated uncertainties of chapter 5.4.1, total uncertainty of performance

recovery analysis can be derived. In order to calculate total uncertainty, it is to be

considered that the simulated uncertainties are of three different types:

• random uncertainties due to snapshot variations (σ);

• stochastic part of systematic uncertainties due to installation distributions (σsys);

• stochastic part of systematic uncertainties due to pre-to-post overhaul changes

(σsys,∆).

An overview, which uncertainty type the simulated effects are, is given in table 5.6.

For the latter type, the simulated uncertainty is tantamount to uncertainty of analysed

performance recovery due to a single effect. For the former two, the uncertainty of the

performance recovery needs to be derived analytically based on the simulated uncer-

tainties. The derivation is given exemplary for the efficiency in the following. Capacity

recovery is calculated analogously.

Effect
Uncertainty is

random systm.
σ σsys σsys,∆

Nozzle area x
Thrust reverser x
Booster capacity x
HPT capacity x
Fuel Heating Value x
Measurement x x

Table 5.6: Types of simulated analysis uncertainties per underlying effect
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Efficiency recovery is calculated by comparing performance analysis prior to and fol-

lowing the shop visit:

∆η = ηpost − ηpre . (5.21)

With the law of error propagation the uncertainty of performance recovery for a given

σsys is derived as:

σsys,∆η =
√
2 · σsys,η . (5.22)

For random uncertainty, the uncertainty of performance recovery, when using one anal-

ysis point each prior to the shop visit and following it, derived analogously:

σ∆η =
√
2 · ση . (5.23)

By averaging multiple snapshots the actual value of recovered performance may be

approximated better as the impact of random errors is reduced [8]. However, when

averaging multiple snapshots deterioration effects need to be considered. It is to be

shown that the system in question, the engine, may be considered to be of constant

state. For that purpose a χ2-homogeneity test is carried out. The test, described for

example in [8], examines two or more sets of data with respect to their being of the

same population or not. In the present case a number of 50 valid snapshots is tested

for their being part of a constant engine state. For that purpose the first 25 snapshots

are defined to constitute the first data set which is compared to the second data set

comprising the snapshots 26 through 50. The test is carried out with field data from

134 engines. For all engines the last 50 valid snapshots before the engine shop visit

and the first 50 valid snapshots after overhaul are subjected to a χ2-homogeneity test

with a 99.9% confidence interval. Tested parameters are the efficiencies of HPC and

HPT, both of which are, by experience, suspect to so-called ’running-in’ effects. The

results of the test are presented in table 5.7.

For the HPC efficiency prior to the shop visit, the χ2-test is successful for all but 2.2%

of the tested engines. For the efficiency post shop visit, which is most critical for non-

negligible deterioration rate, all engines pass the test. For the HPT efficiency prior to

engine shop visit and following it, all engines pass the test, indicating a quasi-constant
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ηHPC ηHPT

pre post pre post
Failed χ2-tests 2.2% 0% 0% 0%

Table 5.7: χ2-homogeneity tests with a 99.9% confidence for HPC and HPT efficiency
for data of pre and post engine shop visit (50 snapshots each)

efficiency. This is attributed to the mandatory running-in procedure at the beginning of

the pass-off test cell run. It is concluded that averaging 50 valid snapshots to describe

the engine state before and after the overhaul is a valid approach.

With the uncertainties of performance recovery as per equations 5.22 and 5.23, the

confidence interval for averaging efficiency with 50 measurements can be calculated.

The uncertainty interval for 95% confidence, due to the uncertainty induced by a single

effect, is then calculated as [5]:

U∆η,95 = ±

√

(t95,sys · σsys,∆η)
2 +

(

t95√
50

· σ∆η

)2

. (5.24)

with t95 = f(Nref − 1) as the student t-factor. The reference sample therein is the

one used to calculate the standard deviation, in this case the Monte Carlo Simulation

with a population size greater 6000. For a population of sufficient size (Nref ≥ 30) the

student-t factor for the 95% confidence interval is well approximated as 2 [5].

For the uncertainty calculation of performance recovery analysis using test cell data,

equation 5.24 is applied with N = 1. A complete overview of the single effects’ confi-

dence intervals for the on-wing and the test cell case is given in appendix A.2. With

the confidence intervals for all single effects, as listed in table 5.6, the total confidence

interval for performance recovery analysis is:

U∆η,95 = ±
√

∑

i

U2
∆η,95,i . (5.25)

A comparison of different effects shows that few are responsible for the majority of

a performance parameter’s analysis uncertainties. As an example, an overview of to-

tal accuracy for the analysis of recovered HPC efficiency using the booster capacity

method, is shown in figure 5.14. Total uncertainty of ±0.15% is primarily attributed

to non-observable changes in booster capacity and measurement uncertainty. Given a
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correlation that accurately models the capacity change based on hardware information,

the best possible uncertainty which can be realised for the analysis of HPC efficiency

recovery is ±0.09%. Performance changes of smaller magnitude are not observable.

Figure 5.14: U95 for analysed HPC efficiency recovery with on-wing data using the
booster capacity method

Uncertainty of analysed HPT efficiency recovery, when using booster capacity for

analysing the core mass flow, is shown in figure 5.15. HPT efficiency analysis is more

inaccurate than that of the HPC. Total uncertainty is ±1.18% including all effects.

Through improvements of the analysis model total uncertainty can theoretically be

reduced to ±0.35%. A maximum possible reduction by a factor of 3.4 is therefore pos-

sible. For the HPC efficiency uncertainty, as discussed above, the maximum possible

improvement factor is 1.4.

The use of on-wing data for the purpose of analysing component performance recovery

is to be compared with the use of test cell data. An overview of total uncertainty,

using the LPC capacity method for core flow analysis, is given in table 5.8. Analysis of

the booster and high pressure components’ efficiencies is more accurate using on-wing

data. This is explained by the improved analysis accuracy brought about by averaging

multiple snapshots with on-wing data. Capacity changes of the high pressure compo-

nents are more accurately analysed with test cell data. The relative gain in accuracy is,

however, small. Fan and LPT, both of whose analysis is more sensitive to installation

effects, are more accurately analysed with test cell data. Given the magnitude of the

difference, an additional test cell run prior to engine disassembly is beneficial only for
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Figure 5.15: U95 for analysed HPT efficiency recovery with on-wing data using the
booster capacity method

assessing an overhaul induced performance effect on these components. When compar-

ing uncertainties obtained with the HPT and LPT capacity method respectively, the

conclusions reached are the same as with the booster capacity method.

U95 [%]

Fan Booster HPC HPT LPT
η wred η wred η wred η wred η wred

On-wing data 5.02 3.46 1.41 - 0.15 2.30 1.18 1.51 2.50 1.66
Test cell data 0.82 0.56 1.79 - 0.85 2.13 1.32 1.38 1.34 0.89

Table 5.8: U95 (total uncertainty) for analysis based on on-wing and test cell data using
the booster capacity method
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Chapter 6

Correlation of Overhaul Workscope

and Effect

6.1 Correlation Process

For the correlation, the feature restoration model established in section 4.2 is enhanced

by a function defining the impact of feature change on performance loss. In common

practice, this functional relation is often described by a linear factor dk [65]. In the

case of the efficiency, one obtains:

∆ηk = dk ·∆Xk . (6.1)

With equation 4.6, the expected performance recovery due to the degree of restoration

of a feature k of a cluster n is thus modelled as:

∆ηn,k = αn,k · ξn,k ·max (0, t− t0,n,k)
1/γn,k , (6.2)

wherein the factor αk integrates the coefficients ak and dk, while γk corresponds to

the coefficient bk. Assuming linear independence of the multiple features impacting

performance recovery, as proposed in [65], total recovered performance is calculated

as:

∆η =
∑

n,k

αn,k · ξn,k ·max (0, t− t0,n,k)
1/γn,k . (6.3)
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In order to establish a model for the recovered performance specific to an engine type,

the coefficients αn,k, t0,n,k and γn,k in equation 6.3 need to be quantified. Applying

equation 6.3 to the field data of the available fleet of overhauled engines results in an

indeterminate system of non-linear, discontinuous equations. There is thus neither an

analytical, nor an unique solution for the coefficients. They are therefore approximated

using an optimisation algorithm [54].

The optimisation problem consists of minimising the deviation between measured and

predicted performance recovery on a whole-component basis, summed up across a fleet

of p-subscripted engines constituting the field data base. For the recovery of the effi-

ciency parameter ηpred, calculated with in equation 6.3, and the measured parameter

ηmeas, obtained per analysis as discussed in chapter 5, the target function can be de-

fined. With the coefficients αn,k, t0,n,k and γn,k in matrix form, it becomes:

f (A, T0,Γ) =
∑

p

|∆ηp,pred (A, T0,Γ)−∆ηp,meas| . (6.4)

Training of the model is achieved by minimisation of the target function through vari-

ation of the coefficients. Assuming only linear or digressive deterioration types, the

optimisation is subject to the following boundary conditions:

γn,k ≥ 1 , (6.5a)

as well as

αn,k ≥ 0 , (6.5b)

t0,n,k ≥ 0 . (6.5c)

For the choice of the algorithm, the following requirements need to be met. The

algorithm has to:

• be able to handle non-linear functions;

• be able to handle discontinuous functions;

• be able to handle multidimensional functions;

• operate without analytical function derivatives;
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• offer the best compromise, between all algorithms meeting the above require-

ments, of computing time and robustness.

With the given requirements, the downhill simplex method [52] is selected as the used

optimisation algorithm. As it does not allow to categorically exclude parts of the

solution space, boundary conditions are set by adding a penalty function to the target

function [28]. With the penalty function g (A, T0,Γ) the enhanced target function

becomes:

fenh (A, T0,Γ) = f (A, T0,Γ) + g (A, T0,Γ) . (6.6)

The penalty function takes on the value 0 if all independent variables are within the

permissible boundaries. If not, it takes on a high value causing the enhanced target

function to increase substantially and the optimisation algorithm to ’manoeuvre’ out of

the non-permissible solution space. For the implementation of the algorithm, the pa-

rameters which are to be optimised are normalised. The aim of normalisation is to have

parameters of a similar order of magnitude thus allowing for an optimal performance

of the algorithm.

6.2 Validation of the Correlation

For the validation, both the input data and the correlated model are assessed. Vali-

dation of the correlation is carried with two components. HPC and HPT are selected

given their high potential for recovery of SFC [59], [58] and EGT-Margin [61]. The

latter is typically used as the key performance indicator for engine health during op-

eration or at overhaul pass-off testing. It has also become a key factor for contractual

agreements between engine operator and the overhaul provider [22]. Selection of the

HPC and HPT is furthermore based on the superior accuracy with which their per-

formance recovery can be analysed in comparison to the other turbo components. As

discussed in section 4.3, the HPC is clustered into a front and rear so as to evaluate

workscope impact separately for each part. The considered features are based on the

classification presented in table 4.2. For the HPT, the more recently developed repair

of applying new coating to the blades is considered additionally. Re-coating of the

airfoils includes a stripping of the old, partially burned coating and an application of

a new and even layer, thus improving the blade surface.
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6.2.1 Assessment of the Input Data

Input data is assessed with respect to the resulting model’s validity range. For the

assessment, the principle ideas of data sampling are used. Methods for assessing the

validity range of the input data based on a continuously quantifiable value, do not

exist. Latin Hypercube Sampling (LHS) is applied for the assessment. It uses the

ideas of Latin square experimental design in order to eliminate confounding effects of

an experiment’s variables, if repetition of that experiment is to be carried out under

a strictly limited number of different conditions for these variables [14]. The idea, as

shown in table table 6.1, is to guarantee that each variable’s different ranges of values

are represented, regardless of how important they turn out to be. For a problem with

two variables, each divided into three possible ranges of values, this may be fulfilled

by a threefold repetition of the experiment. The minimum requirement is met if each

value range, in this case row or column, occurs at least once.

Variable 1:

range...

1 2 3

V
ar

ia
bl

e
2:

ra
ng

e.
.. 1 •

2 •

3 •

Table 6.1: LHS sample with 2 variables and 3 value ranges each

In the present case, the input variables are the degrees of restorations for each feature

and the time since last overhaul. For the degrees of restoration, two equally spaced

intervals covering the possible range from 0% to 100% are defined. For the time since

last overhaul, three equally spaced intervals are defined covering the range from 0 cycles

to the maximum number encountered in the data set. An analysis of the workscope

data of HPC and HPT shows there to be at least one sample point per plain in the

multidimensional table. It is therefore concluded, that the input data is sufficiently

well spread.
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6.2.2 Assessment of the Correlated Model

In order for the model to be mathematically independent of the sought solution, that

is to say to prevent over-fitting of the model, the test engines used for validation must

not be part of the training set [46]. Due to the limited size of the fleet, the leave one

out algorithm is used to decrease the size of the training set as little as possible, thus

guaranteeing a minimal variance of the solution. The scheme of the implemented

Start

j=1

~∆ηmeas,Ξ,~t

Data Separation

Cut data set j from records to obtain
~∆ηmeas,tr,Ξtr,~ttr & ∆ηmeas,val, ~Ξval, tval

Optimisation

Optimise target cofficients Aj, T0,j ,Γj

for training data set

Validation

Validate optimised coefficients:
∆ηpred,j = f

(

~Ξval, tval, Aj , T0,j ,Γj

)

ǫj = ∆ηpred,j −∆ηmeas,val

j = J

A′, T ′
0,Γ

′ &
~∆ηpred,~ǫ

Stop

Yes

No

j
=

j
+
1

Figure 6.1: Scheme of a cross-validation loop for component efficiency recovery using
the leave one out algorithm (LOO)
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calculation sequence for the correlation of worksocpe and performance data is shown

in figure 6.1. For a field data base of J overhauled engines, the algorithm takes as input

the vector of the measured performance recovery, here ~∆ηmeas, the matrix Ξ defining

the degree of restoration for K features of N clusters and the vector of operating

time, ~t. In a first step, one engine’s data set, which is to be used for validation, is

extracted leaving a reduced data base. The reduced data base is subsequently used

for training of an optimised model correlating workscope and performance with the

coefficient matrices Aj, T0,j and Γj, as discussed in section 6.1. The optimised model

is then used to predict the recovered performance of the validation engine based on

its degrees of restoration and operating time. In a final step, the predicted value

is compared to the measured one, yielding the prediction’s error ǫj. This process is

repeated J times, each time choosing another engine to be cut from the data base and

to be used for training of the optimised overhaul model. The resulting output are the

K ×N × J matrices of the optimised models, as well as the corresponding vectors, of

length J , for predicted performance recovery ~ηpred and for the prediction error ~ǫ.

Results of the cross-validation for the HPC and HPT efficiency are shown in figures

6.2 and 6.3. Predicted and measured efficiency recovery are illustrated, including the

95% confidence interval about the line for zero deviation between measurement and

Figure 6.2: Predicted and measured HPC efficiency recovery for analysis using the
booster capacity method

predictions. The confidence interval indicates the analysis uncertainty of the measured

recovery value. It is quantified based on the results of the uncertainty simulation

presented in section 5.4. It is observed, that the measured efficiency recovery deviates

equally to both sides of the zero deviation trend lines. The slopes of the data’s linear

fit curves are quasi-parallel to that of zero deviation. The vertical offset is explained
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statistically by the finite number of engines used for the cross-validation. Given the

general trend of the cross-validation, the fit of the correlated models for HPC and HPT

overhaul is concluded to be good.

Figure 6.3: Predicted and measured HPT efficiency recovery for analysis using the
booster capacity method

It is, however, observed from figures 6.2 and 6.3 that the scatter about the zero de-

viation curves exceeds that which is expected to be induced through the analysis un-

certainty. The differences between simulated analysis uncertainties, observed model

uncertainties and variations of the measured recoveries can be deduced from table 6.2.

For the HPC, observed model uncertainty is at 0.62%. This is below the variation of the

measured recovery which is 0.93%. However, the observed uncertainty is still above the

simulated analysis uncertainty of 0.08%. Similar observations are made for the HPT.

Observed uncertainty is at 1.12%, which is below the 2.09% variation of the measured

performance recovery and above the 0.59% for simulated analysis uncertainty. It is

thus concluded that the model improves the accuracy with which performance recov-

ery of the HPC and HPT can be predicted. However, potential for a more accurate

correlation remains.

ση [%]
HPC HPT

Variation of measured recovery 0.93% 2.09%
Observed model uncertainty 0.62% 1.12%
Simulated analysis uncertainty 0.08% 0.59%

Table 6.2: HPC and HPT efficiency: measured variation, model uncertainty and anal-
ysis uncertainty using the booster capacity method

The differences between observed uncertainty and simulated analysis uncertainty are
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explained by the former being due to uncertainty in both measured and the predicted

efficiency. The increased scatter is thus attributed to the uncertainty of the abscissa’s

parameter ∆ηpred. Uncertainty of the predicted efficiency recovery is, in parts, due

the established model giving an expectancy of a probabilistic problem. As discussed in

section 4.1, the model is set up to identify the mean potential for performance recovery.

Furthermore, uncertainty of ∆ηpred is due to:

• scatter about the mean value for the feature restoration for part repair or pro-

duction of new parts;

• variations within the assembly process [41], [42];

• analysis uncertainty impact on the optimisation;

• uncertainty in the workscope data.

A maintenance process including the measuring of feature changes, due to engine over-

haul and component assembly, is thus concluded to be indispensable for a more accurate

correlation between overhaul workscope and performance recovery.

6.3 Application of the Methodology

The demonstrated correlation methodology is again applied to the HPC and HPT, in

order to quantify the potential for performance recovery of the different features. The

entire fleet data is used for training without extracting any data sets as done for the

cross-correlation. The coefficients of the optimised correlation for the HPC are shown

in table 6.3. The resulting potential for performance recovery with operating time,

Restoration of ...
tip clearance tip clearance blade surface
(blade tip) (casing liner) contour roughness

Front Rear Front Rear Front Rear Front Rear
α 1 0.53 0.27 0.03 0.34 0.58 0.09 1.00 0.38
t0

2 0.30 0.70 0.30 0.08 0.27 0.68 0.19 0.41
γ 5.62 5.84 7.63 7.33 6.10 5.21 6.17 6.62

Table 6.3: Optimised correlation factors for the impact of HPC front and rear part
workscoping on efficiency recovery

1These coefficients have been normalised to the maximum value due to confidentiality reasons.
2These coefficients have been normalised to MTBSV due to confidentiality reasons.
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quantified relatively to the Mean Time Between Shop Visits (MTBSV) of the used fleet,

is shown in figure 6.4. It is observed that for blade features the potential is higher in

the front stages, a fact reflected in higher α-values. The difference between rear and

front part is more pronounced for blade contour and surface roughness than for blade

tip loss. For the blade features it is also observed that deterioration in the compressor

front occurs after less engine operating time than it does in the rear.

Casing liner restoration is observed to have a higher potential for performance recovery

in the HPC rear. Furthermore, distinct differences are observed to potential from tip

clearance from the blade tip, reflected in different values for α and t0. The differences

can be explained by dissimilar deterioration characteristics due to unequal materials for

blades and casing. For all features, of blade and casing alike, the potential performance

recovery shows a clearly digressive trend, quantified by the coefficients γn,k > 5.

Figure 6.4: Potential for efficiency recovery with operating time for HPC features (for
an equal degree of restoration ξ); for front (black lines) and rear (blue lines)

Based on the correlation results it can be concluded, for the used engine, that the high-

est potential for performance recovery lies in restoration of the blade surface roughness,

followed by blade tip clearance restoration. Restoration of blade contour is sensible

only for the HPC front, while restoration of the casing liner is only sensible for the

rear. Overhaul of blade features in the rear are generally sensible only for engines with

a sufficient operating time. This information can be used by the maintenance provider

to optimise overhaul workscope.

The coefficients of the optimised correlation for the HPT are shown in table 6.4. The

resulting potential for performance recovery with operating time, again quantified rel-

atively to the MTBSV of the used fleet, is shown in figure 6.5. A potential for perfor-

mance recovery is observed only for clearance effects, not for the blade coating. The
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latter can be explained by the type of the used fleet. As stated in section 5.1, the served

network’s environmental conditions are as typically found for a European or Northern

American operator. Maximum temperatures and air contamination with sand are rel-

atively low in these regions compared to operation in the Middle East. Stresses on

the turbine hardware is thus lower, resulting in smaller damage of the blade surface or

coating. For the present fleet this damage causes no observable change of the turbine

efficiency and is therefore negligible. The optimised coefficients t0 and γ are, in the case

of blade coating restoration, physically irrelevant results to a numerical problem.

Restoration of ...
tip tip cavity blade

clearance clearance clearance coating
(blade tip) (casing liner) (seal fins)

α 3 0.00 1.00 0.64 0.00
t0

4 0.08 0.01 0.44 0.17
γ 3.32 4.92 8.25 4.56

Table 6.4: Optimised correlation factors for the impact of HPT workscoping on effi-
ciency recovery

Figure 6.5: Potential for efficiency recovery with operating time for HPT features (for
an equal degree of restoration ξ)

Recovery of the HPT efficiency can be realised both by restoration of the inter-stage

cavity clearance and the clearance between blade tip and casing. For the latter, the

correlation shows for tip clearance changes to be solely due to the casing liner. Between

restoration of the casing liner and of the cavity clearance, the former is shown to

have a higher potential for performance recovery. Quantitatively, this can be seen by

3These coefficients have been normalised to the maximum value due to confidentiality reasons.
4These coefficients have been normalised to MTBSV due to confidentiality reasons.
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the higher exchange rate between degree of restoration and performance, α, and the

first deterioration occurring shortly after the beginning of operation, indicated by a

lower coefficient t0. In turn, cavity clearance is shown to be an interesting lever in

guaranteeing remaining performance for a given period of operation following the shop

visit. It is noted that, as for the blade coating, the optimised coefficients t0 and γ for

blade tip restoration are physically irrelevant results to a numerical problem. As for

the HPC correlation, the results of the HPT correlation provide clear levers for the

maintenance provider to optimise engine overhaul workscope.
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Chapter 7

Concluding Discussion

7.1 Summary

The increased importance of fuel consumption in the books of aircraft operators has

led to a raised focus on the aspect of performance recovery for the engine overhaul

process. It follows thus the need for a method to systematically and cost-efficiently

investigate the impact of single workscope elements on engine efficiency.

A survey of existing studies and methods has unearthed recently developed methods

for a comprehensive maintenance planning. These methods do not yet incorporate the

aspect of performance recovery in spite of the high effort made to adapt engine specific

workscope for observed hardware conditions. This is due to a lack of a systematic ap-

proach to establish a model correlating workscope and performance recovery. Research

linking the two has so far been focused on predicting workscope-induced performance

recovery based on predefined models and comparing the results with measured per-

formance changes. No method for an adaptive model, based on available field data,

has yet been established. Furthermore, any conceptual reflections to use field data to

assess workscope impact on performance recovery are focused on the use of test cell

data, rather than monitoring data recorded during engine operation.

To close this existing gap a new methodology has been developed, correlating the

engine overhaul’s workscope and its effect. The workscope has therein been defined

by the degree of restoration which quantifies the percentage of parts for which a given

feature is restored, either by repair or use of new parts. In order for the correlation

model’s extend to be manageable, the degree of restoration in components with high

stage numbers has been defined for clusters comprising multiple stages.

The workscope effect, in terms of performance recovery, can be analysed using test
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cell or on-wing data both of which are subject to uncertainty induced by measure-

ments and the engine model. It has been demonstrated that the latter leads to lower

analysis uncertainty for the high pressure components who are the primary lever for

improvements on SFC and EGT-margin. This is explained by the improved accuracy

achieved with averaging multiple snapshots. It has been demonstrated that using an

average of 50 filtered snapshots is a valid approach, since the engine components may

be considered to be a system of constant state during the operation time frame. Fur-

thermore, the importance of the proper choice of the core flow analysis method has

been demonstrated, as well as the potential for analysis accuracy improvement using a

more detailed engine model. It has been shown that these measures have the potential

of improving the analysis accuracy of HPC and HPT by a factor of 1.4 and 3.4 respec-

tively. Analysis of recovered performance of fan and LPT has been demonstrated to

be more sensitive to installation effects. For these components, better accuracy can be

achieved using test cell data, provided a performance test run is carried out prior to

the overhaul.

In order to correlate workscope and performance recovery, a general functional relation

has been established to serve as the principal model. The model was then adapted to

optimally fit available field data from past engine overhauls through implementation

within an appropriate optimisation algorithm. An application to the high pressure

components provided sensible results indicating clear distinctions between the leverage

that different workscope elements provide for recovering performance. A cross vali-

dation using the leave one out algorithm showed the results of the correlation to be

sensible. The need for further improvement, for example by using measured dimension

changes of the different features for the workscope description, has been demonstrated.

With this investigation, it has been understood for the first time what the feasibilities

and limitations in correlating workscope and performance recovery are. The estab-

lished approach provides a basis for systems aimed at systematically planning engine

workscopes with respect to performance restoration.

7.2 Outlook

The use of more precise hardware data for the hardware’s feature state definition pro-

vides room for an improved correlation of overhaul actions and their effect. Given

the lower number of optimisation parameters needed for such a correlation, this would

also allow for the model to be set up with more detail. A clustering of two stages
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each for the HPC instead of a front and rear part would be such an increase in detail.

The deployment of the necessary processes for an enhanced data collection is foresee-

able for the near future, due to a higher degree of automation in measuring and data

recording.

Furthermore, performance recovery analysis with optimisation techniques presents a

possible field of investigation should an increase in the number of snapshots taken

during different flight phases become a new trend in future engine monitoring. The

prospect of an improvement of observability with using multiple operating point analy-

sis is of particular interest for the low pressure components, where analysis uncertainty

is highest.

The integration of the performance model for the engine overhaul in a comprehensive

model would allow for studies of an optimised workscope planning. The enhanced per-

formance model could be integrated with existing methodologies modelling the aspects

of scheduling, reliability and cost of engine overhauls. A possible extension to the per-

formance model could be realised with a prognosis model, so as to further minimise

SFC during operation and maximise on-wing time.
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Appendix A

A.1 Ratio of Pressure Measurements Uncertainties

For an indirect Mach number measurement M = f (ps, p, κ), the random measurement

uncertainty is given by the law of error propagation:

σM =

√

(

∂M

∂p
· σp

)2

+

(

∂M

∂ps
· σps

)2

+

(

∂M

∂κ
· σκ

)2

≈

√

(

∂M

∂p
· σp

)2

+

(

∂M

∂ps
· σps

)2

.

(A.1)

The impact of uncertainty in κ is negligible given the small uncertainty at typical cruise

ambient conditions [72]. The uncertainty of κ per degree temperature measurement

uncertainty is 0.00002. The stochastic part of the remaining systematic measurement

uncertainty is established analogously:

σsys,M ≈

√

(

∂M

∂p
· σsys,p

)2

+

(

∂M

∂ps
· σsys,ps

)2

. (A.2)

The ratio of the stochastic part of the remaining systematic measurement uncertainty
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and random measurement uncertainty, defined in equation 5.18, then becomes:

λ ≈

√

(

∂M
∂p

· σsys,p

)2

+
(

∂M
∂ps

· σsys,ps

)2

√

(

∂M
∂p

· σp

)2

+
(

∂M
∂ps

· σps

)2
. (A.3)

With the ratio for the pressure measurements, λ′, defined analogously to equation 5.18,

one then obtains:

λ ≈ λ′

√

(

∂M
∂p

· σp

)2

+
(

∂M
∂ps

· σps

)2

√

(

∂M
∂p

· σp

)2

+
(

∂M
∂ps

· σps

)2

≈ λ′ .

(A.4)

A.2 Uncertainties of Performance Recovery Analysis

On-Wing Data

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 1.00 0.69 1.41 - 0.09 0.46 0.15 0.32 0.74 0.49
HPT capacity 0.58 0.40 1.40 0.46 0.09 0.19 0.13 - 0.32 0.21
LPT capacity 0.65 0.46 1.40 0.78 0.09 0.42 0.29 0.24 - -

Table A.1: U95 for analysed component performance recovery (with on-wing data) due
to measurement uncertainty and used core flow analysis method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 0.15 0.10 0.00 - 0.00 0.00 0.07 0.02 0.12 0.08
HPT capacity 0.09 0.06 0.00 0.04 0.00 0.04 0.09 - 0.08 0.05
LPT capacity 0.02 0.02 0.00 0.13 0.01 0.13 0.14 0.06 - -

Table A.2: U95 for analysed component performance recovery (with on-wing data) due
to FHV variation and used core flow analysis method
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U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 3.89 2.68 0.00 - 0.00 0.01 0.37 0.02 1.24 0.83
HPT capacity 3.94 2.72 0.00 0.03 0.00 0.03 0.37 - 1.26 0.84
LPT capacity 2.09 1.44 0.00 1.37 0.11 1.42 1.07 0.94 - -

Table A.3: U95 for analysed component performance recovery (with on-wing data) due
to nozzle exit area variation and used core flow analysis method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 0.30 0.20 0.00 - 0.00 0.00 0.01 0.00 0.02 0.01
HPT capacity 0.29 0.20 0.00 0.00 0.00 0.00 0.01 - 0.02 0.01
LPT capacity 0.28 0.19 0.00 0.02 0.00 0.02 0.02 0.01 - -

Table A.4: U95 for analysed component performance recovery (with on-wing data) due
to variation of thrust reverser leakage and used core flow analysis method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 2.97 2.04 0.00 - 0.12 2.25 1.11 1.48 2.03 1.35
HPT capacity - - - - - - - - - -
LPT capacity - - - - - - - - - -

Table A.5: U95 for analysed component performance recovery (with on-wing data)
due to non-observable booster capacity change and used core flow analysis
method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity - - - - - - - - - -
HPT capacity 4.56 3.15 0.00 3.28 0.18 3.39 1.76 - 3.04 2.03
LPT capacity - - - - - - - - - -

Table A.6: U95 for analysed component performance recovery (with on-wing data) due
to non-observable HPT capacity change and used core flow analysis method
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Test Cell Data

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 0.44 0.31 1.79 - 0.60 0.63 0.38 0.38 0.29 0.19
HPT capacity 0.46 0.32 1.79 0.58 0.62 0.87 0.32 - 0.43 0.28
LPT capacity 0.47 0.33 1.79 0.47 0.61 0.84 0.52 0.47 - -

Table A.7: U95 for analysed component performance recovery (with test cell data) due
to measurement uncertainty and used core flow analysis method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 0.01 0.01 0.00 - 0.00 0.01 0.45 0.17 0.55 0.37
HPT capacity 0.07 0.05 0.00 0.26 0.02 0.27 0.61 - 0.39 0.26
LPT capacity 0.29 0.20 0.00 0.88 0.07 0.91 0.97 0.42 - -

Table A.8: U95 for analysed component performance recovery (with test cell data) due
to FHV variation and used core flow analysis method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity 0.69 0.47 0.00 - 0.13 2.02 1.18 1.31 1.19 0.79
HPT capacity - - - - - - - - - -
LPT capacity - - - - - - - - - -

Table A.9: U95 for analysed component performance recovery (with test cell data)
due to non-observable booster capacity change and used core flow analysis
method

U95 [%]

Core flow Fan Booster HPC HPT LPT
analysis method η wred η wred η wred η wred η wred

Booster capacity - - - - - - - - - -
HPT capacity 0.96 0.66 0.00 2.75 0.16 2.87 1.73 - 1.65 1.10
LPT capacity - - - - - - - - - -

Table A.10: U95 for analysed component performance recovery (with test cell data)
due to non-observable HPT capacity change and used core flow analysis
method
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