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Nomenclature

Roman

a Over-heat ratio of hot-film sensor

cgr, cph Group and phase velocity

D Diameter of a pipe

d Distance

dR Diameter of roughness element

f Frequency

fg Cut-off frequency

fNy Nyquist frequency

h Height of roughness element

L Reference length

N Number of points

p Pressure

q0, q′ Steady and fluctuating physical parameter vector

Re Reynolds number VD/ν

Reh Roughness-height Reynolds number huh/ν

Rex Streamwise Reynolds number ux/ν

Sr Strouhal number

t Time

Tu Turbulence intensity

ū, v̄, w̄ Averaged steady velocity components

û, v̂, ŵ Amplitude components of eigenfunction
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ũ By eN-factor corrected amplitude in streamwise direction

u′, v′, w′ Fluctuating velocity components

ue Free-stream velocity

uh Boundary-layer velocity at the height of roughness element in a case

without the roughness element

up Streamwise velocity difference u(z)− u(zmax)

V Averaged flow velocity in a pipe

x, y, z Cartesian coordinate system, x streamwise, y wall-normal, and z span-

wise direction

xR Streamwise position of roughness element

ymax Maximum length in wall-normal direction

Greek

α, β Streamwise and spanwise complex wave number

δ1 Displacement thickness of boundary-layer

δr Phase shift factor in the Floquet system

η′ Fluctuating wall-normal vorticity

η̂ Vorticity amplitude

ν Kinematic viscosity

ωx Streamwise vorticity distribution

ω Complex angular frequency

Φ Phase distribution

ρ Density

τ Settling time after a move of hot-film probe

ξ Streamwise coordinate component based on phase velocity

Subscript

A Air

avg Averaged value

c Cathode

R Roughness element
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re f Reference value

s, t Spatial, temporal

vari, sinu Varicose and sinuous mode

W Water

w Wire

Acronyms

CFD Computational Fluid Mechanics

CTA Constant Temperature Anemometer

DLR German Aerospace Center, Deutsches Zentrum für Luft- und Raum-

fahrt e.V.

DNS Direct Numerical Simulation

DPSS Diode-Pumped Solid-State

FFT Fast Fourier Transform

HP High-Pass

IAG Institut für Aerodynamik und Gasdynamik

LP Low-Pass

LST Linear Stability Theory

LWK Laminar Water Channel, Laminarwasserkanal

ODE Ordinary Differential Equation

PIV Particle Image Velocimetry

TS Tollmien-Schlichting

TTL Transistor-to-Transistor Logic
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Abstract

Analysis of flow instability is of importance to understand laminar-turbulent tran-

sition which is a crucial factor for aerodynamic performance. The present study

deals with influences of a roughness element on the flow instability of a laminar

boundary-layer. Roughness elements in laminar boundary-layers generate local-

ized disturbances. They grow transiently and formulate streamwise elongated

streaky structures downstream. Spanwise periodicity of these streaky structures

disturbs the streamwise development of two-dimensional Tollmien-Schlichting

waves in a laminar boundary-layer. In this way, a delay of the laminar-turbulent

transition is achieved (flow stabilization). On the other side, physically unavoidable

velocity reduction behind the roughness elements brings on high shear layers in

wall-normal direction at the same time. Also, separations or strong vortical struc-

tures occur occasionally depending on both shape of the roughness elements and

flow conditions. They cause a flow destabilization and sometimes trigger a by-

pass transition. Because these two opposite phenomena happen concurrently and

interact with each other, it is difficult to precisely understand the instability mech-

anisms provoked by the roughness elements.

Therefore, the goal of the present work is to study the stability of a laminar

streaky layer induced by a roughness element. This work consists of two parts:

Bi-global linear stability analysis and experimental measurements. A complex in-

stability procedure of the three-dimensional streaky layers arranged parallel in

streamwise and periodical in spanwise direction can be analysed by a bi-global

approach. Corroborating experiments were conducted in the laminar water chan-
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nel at the University of Stuttgart. Simultaneous operation of two hot-film probes

and signal processing enabled to find the theoretically calculated unstable eigen-

modes in practical flow. In addition, observations of both velocity distribution in

a complex flow field and nonlinear vortex structures were carried out by a flow

visualization using a hydrogen-bubble method and Particle-Image-Velocimetry

measurements.

As a result, a streaky layer which includes streamwise elongated high- and

low-speed streaks and a separation behind the roughness element was found by

a CFD computation using a laminar solver and confirmed by time-averaged ex-

perimental velocity components. The bi-global LST identified two highly unsta-

ble eigenmodes. These eigenmodes oscillate symmetrically and asymmetrically

with respect to the spanwise coordinates and were accordingly termed varicose

and sinuous mode, respectively. Their streamwise evolution depends mainly on a

streamwise development of the streaks. Experimental results confirmed the pres-

ence of these two unstable modal modes. The varicose mode dominants flow

instability, and the sinuous mode has a smaller signal-to-noise ratio.

Additionally, an external forcing was tried to increase the initial amplitude of

the smaller sinuous mode with respect to the varicose one. Despite some defi-

ciencies of the experimental setup, a separate artificial amplification of a specific

eigenmode, i.e. the sinuous mode, was possible. In the latter part of the present

study, the nonlinear behaviour of the streaky layer further downstream and the

breakdown under an over-critical condition were explored. Because the linear the-

ory cannot calculate nonlinear instability, complex three-dimensional flows and

vortical structures were investigated by experimental flow visualization methods,

and an evolution from nonlinear streaks to hairpin vortices was detected.



Zusammenfassung

Die Analyse der Strömungsinstabilität ist bedeutungsvoll um die laminar-tur-

bulente Transition, die ein entscheidender Faktor für aerodynamische Leistung-

en ist, zu verstehen. Die vorliegende Studie befasst sich mit Einflüssen eines

Rauhigkeitselements auf die Strömungsinstabilität einer laminaren Grenzschicht.

Rauhigkeitselemente in laminaren Grenzschichten erzeugen lokale Störungen. Sie

wachsen vorübergehend und bilden längliche streaky-Strukturen in Strömungs-

richtung. Spannweite Periodizität dieser streaky-Strukturen stört die Entwicklung

von zwei-dimensionalen Tollmien-Schlichting-Wellen in Strömungsrichtung. Auf

diese Weise wird eine Verzögerung der laminar-turbulenten Transition erreicht

(Strömungsstabilisierung). Auf der anderen Seite bringt die physikalisch unver-

meidbare Geschwindigkeitsreduzierung hinter den Rahigkeitselementen zur glei-

chen Zeit Hoch-Scherschichten in der Wandnormalrichtung hervor. Auch entste-

hen Ablösungen oder starke Wirbelstrukturen abhängig sowohl von der Form des

Rahigkeitselemente als auch von den Strömungsverhältnissen. Sie verursachen

eine Destabilisierung der Strömung und lösen manchmal eine bypass-Transition

aus. Da diese beiden entgegengesetzten Erscheinungen gleichzeitig geschehen

und miteinander interagieren, ist es schwierig, die Mechanismen der bei den

Rahigkeitselementen provozierten Strömungsinstabilität genau zu verstehen.

Daher ist das Ziel dieser Arbeit, die Stabilität der bei einem Rauhigkeitsele-

ment induzierten laminaren streaky-Schicht zu untersuchen. Die Arbeit besteht

aus zwei Teilen einer bi-globalen linearen Stabilitätsanalyse und experimentellen

Messungen. Ein komplexes Stabilitätsverhalten der drei-dimensionalen streaky-

Schicht, die parallel in Strömungsrichtung und periodisch in Spannweitenrich-
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tung angeordnet ist, kann durch einen bi-globalen Ansatz analysiert werden.

Bestätigende Experimente wurden im Laminarwasserkanal der Universität Stutt-

gart durchgeführt. Der gleichzeitige Betrieb von zwei Heißfilmsonden und Sig-

nalverarbeitung ermöglichten, die theoretisch berechneten instabilen Eigenmoden

in der praktischen Strömung zu finden. Darüber hinaus Beobachtungen sowohl

der Geschwindigkeitsverteilung im einen komplexen Strömungsfeld und nicht-

linearen Wirbelstrukturen wurden durch eine Strömungsvisualisierung mit Hilfe

einer Wasserstoff-Blasenmethode und Particle-Image-Velocimetry Messungen durch-

geführt.

Als Ergebnis wurden die länglichen high- and low-speed streaks in der Strö-

mungsrichtung und eine Ablösung hinter dem Rauhigkeitselement durch eine

CFD-Berechnung gefunden und von den gemittelten experimentellen Geschwin-

digkeitskomponenten bestätigt. Die bi-globale LST hat zwei hoch instabile Eigen-

moden identifiziert. Diese Eigenmoden schwingen symmetrisch und asymmet-

risch in Bezug auf die spannweite Koordinate und sind entsprechend mit vari-

cose und sinuous bezeichnet. Die Entwicklung der instabilen Eigenmoden in Strö-

mungsrichtung wurden auf einer Entwicklung der streaks basiert. Experimentelle

Ergebnisse bestätigten das Vorhandensein der beiden instabilen Moden. Die vari-

cose-Mode dominiert die Strömungsinstabilität und die sinuous-Mode hat eines

kleineres Signal-zu-Rausch-Verhältnis.

Zusätzlich wurde durch eine externe Anregung versucht, die initiale Am-

plitude der kleineren sinuous-Mode zu erhöhen. Trotz einigen Schwächen des

experimentellen Aufbaus war eine separate künstliche Amplifikation einer spe-

zifischen Eigenmode, d.h. der sinuous-Mode, möglich. Im letzten Teil der vor-

liegenden Studie wurden der nichtlineare Verhalten der streaky-Schicht weiter

stromabwärts und der Zusammenbruch im überkritischen Zustand untersucht.

Da die lineare Theorie keine nichtlineare Instabilität berechnen kann, wurden

komplexe drei-dimensionale Strömungen und Wirbelstrukturen durch experi-

mentelle Strömungsvisualisierungsmethoden beobachtet. Eine Entwicklung aus

der nichtlinearer streaks in Haarnadelwirbel wurde festgestellt.



Chapter 1

Introduction

1.1 Background

Laminar and turbulent boundary-layer The velocity at the immediate surface

of aerodynamical bodies is zero (no-slip condition) in viscous flows. The velocity

increases gradually in wall-normal direction and finally reaches the free-stream

velocity. Prandtl (1904) divided for the first time such a flow field into two regions:

a very thin layer adjacent to the surface, in which the fluid viscosity plays an

important role, is defined as boundary-layer. The frictionless flow outside the layer,

which has a non-viscous effect, is called irrotational potential flow.

Reynolds (1883) in his experiment using a flow along a pipe showed a transi-

tion from laminar to turbulent flow, as a dimensionless number exceeds a critical

value. This dimensionless number, now called Reynolds number, is expressed as

the ratio of inertia and viscous forces, Re = VD/ν, and it consists of flow ve-

locity V, the diameter of the pipe D and the kinematic viscosity of fluid ν. In a

similar manner, laminar-turbulent transition of boundary-layers (cf. Figure 1.1) can

be also characterized by the streamwise Reynolds number Rex = ux/ν, where x

is the streamwise distance from the leading edge. At small Rex below a critical

number Recr where transition occurs, stable fluid elements move along a straight

path in downstream direction while maintaining a relatively thin layer thickness



2 1 Introduction

laminar transitional turbulent

receptivity
primary

instability

secondary

instability turbulence

TS modes

fundamental / subharmonic

resonance,  vortices
for small initial 

disturbances:

ue

oncoming 

disturbances

roughness,

vibrations

sound

boundary-layer 

thickness

Figure 1.1: Laminar and turbulent boundary-layer on a flat plate and evolution of
its instability (Kloker, 2008)

(laminar boundary-layer). As Rex increases, namely, as boundary-layer flow evolves

in downstream direction, flow instability grows and unstable random eddies ap-

pear in the boundary-layer. They actively transport high energy momentum fluid

and the velocity distribution consequently becomes more uniform in wall-nor-

mal direction (turbulent boundary-layer). Accordingly, friction drag at the wall also

increases (Schlichting and Gersten, 2000).

Flow stabilization Although the boundary-layer flow has been comprehensively

studied for over a century, the stability problems related with the laminar-turbu-

lent transition and flow stabilization catch still many attentions in both environ-

mental and economical aspects (Green, 2008). Nowadays, more strict environ-

mental regulations about CO2 production and a continuous increase of oil price

intensively pressure a reduction of oil consumption of transportation vehicles, for

example, airplanes or automobiles. In terms of aerodynamics, because turbulent

boundary-layers make larger wall friction than laminar ones, flow stabilization

for delaying the transition and maintaining the laminar boundary-layer as long

as possible is of importance to save the oil consumption.

There have been many efforts to delay the laminar-turbulent transition. Suc-

tion at the wall (Schrauf (2005); Friederich and Kloker (2012)) retains laminar

boundary-layer by pulling high-momentum fluid towards the wall which leads
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to attenuated growth of flow instability. Another recent active method is the di-

electric barrier discharge (DBD) actuator (Duchmann et al., 2013) by which fluids

are displaced into the plasma state and then draws the high-momentum energy

upper boundary-layer onto the bottom. As a passive stabilization method, usage

of an array of roughness elements (Fransson et al. (2005); Fransson et al. (2006);

Fransson and Talamelli (2012)) has been introduced. In fact, surface roughness,

for example insects or dust on the wing surface, has been considered as a fac-

tor to produce aerodynamic resistance or noise by increasing the flow instability.

However, the studies about streamwise elongated streaks in laminar boundary-

layers have showed that roughness elements having an appropriate shape and

size can delay the laminar-turbulent transition. Particularly, this passive method

is a very efficient way due to an easy install and a saving of additional operating

energy. In a similar manner, Shahinfar et al. (2012) used an array of passive vortex

generators to maximize this stabilising effect.

1.2 State of the art

In this section, several scenarios passing from laminar to turbulent boundary-

layer (Subsection 1.2.1) are summarized. Previous studies of flow instability with

localized disturbances generated by roughness elements are the particular focus

here. Subsection 1.2.2 introduces streamwise elongated streaks in boundary-lay-

ers which are induced by roughness elements.

1.2.1 Paths to turbulence

Initial disturbances in boundary-layers are formed by surrounding conditions,

e.g., vortical disturbances in free-stream and external acoustic perturbations (see

Figure 1.1). Local changes in the boundary-layers, such as surface roughness and

vibrations, or wall-curvatures, also play an important role in the initiation of dis-



4 1 Introduction

increasing disturbance level
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(C) (D)
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Figure 1.2: Paths to turbulence (Reshotko, 2001)

turbances in the boundary-layer. This entrainment process of initial disturbances

into the boundary-layer has been called receptivity (Morkovin, 1968). As seen in

Figure 1.2, paths of flow instability from laminar to turbulence are distinguished

by the magnitude of initial disturbances forced by the receptivity mechanism.

Classical scenario: TS path and bypass transition Infinitesimal initial distur-

bances in a boundary-layer generated by a low-level external perturbation are

developed into two-dimensional disturbance waves stretched parallel in a span-

wise direction, so-called Tollmien-Schlichting (TS) waves. Theoretically (cf. Linear

Stability Theory in Section 2.1), they are calculated with an assumption of normal

mode in linearized perturbation equations (Tollmien (1929); Schlichting (1933)).

These eigenmodes grow exponentially in the downstream direction (TS path, Path

(A) in Figure 1.2), process called primary instability (cf. Figure 1.1). Experimentally,

under a very low-level turbulence intensity Tu < 0.1 % of a wind tunnel with

controlled disturbance input (Schubauer and Skramstad, 1943), this theoretical
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primary instability has been confirmed.

Subsequently, as they reach an amplitude above an order of 1 % of free-stream

velocity, the TS waves evolve into a new steady or quasi-steady state which con-

sists of spanwise vorticity structures (Schmid and Henningson, 2000). At this

stage (secondary instability, see Figure 1.1), Klebanoff et al. (1962) experimentally

found spikes which are large amplitudes in a short-time event and initiate turbu-

lence. A numerical study by Rist and Fasel (1995) shows these spikes as a high

wall-normal shear on a head of three-dimensional Λ-vortices. These Λ-vortices

are experimentally observed as a fundamental (K-type) and subharmonic (N- or

H-type) mode in staggered pattern (detailed in Kachanov (1994)). A breakdown

of these three-dimensional vortical structures occurs when lifting the head and

growing a number of scales and frequencies and by subsequent mode interac-

tions (transition).

Together with this well-known TS path, bypass transition (path (E) in Figure

1.2) is also understood (Morkovin, 1985). If external disturbances are over 10 % of

free-stream velocity or local perturbations with substantial magnitude are forced

in the boundary-layer, the flow by-passes the TS mechanism and evolves rapidly

to turbulence at subcritical Reynolds numbers.

Non-modal transient growth As mentioned above, the classical TS mechanism

can be obtained only in a carefully controlled laboratory. In most practical flows,

disturbances with moderate amplitudes are excited inside boundary-layers. Phys-

ically, they pull down higher momentum from the upper part of the boundary-

layer and push up lower momentum from the lower part (lift-up effect). Landahl

(1980) showed that an algebraic increase of streamwise perturbations occurs in

a short time because of this lift-up mechanism. Afterwards, an exponential de-

cay of the perturbations follows, which is called transient growth (Reshotko, 2001).

This non-modal transient growth is expressed mathematically as a non-orthogonal

growth between normal modes (Schmid, 2007).
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Disturbances experiencing transient growth evolve in three different ways to-

wards turbulence according to the magnitude of amplitudes. In the first case,

path (B) in Figure 1.2, relatively small disturbances after a lower algebraic growth

are advanced in modal eigenmode growth as a primary instability and then fol-

lowed by secondary instability in order, as in path (A). In the second way (path

(C)), finite amplitudes are formed in the transient growth with either external

or local moderate perturbations. They attain a new quasi-steady flow and the

secondary instability begins. Third, disturbances grow over a critical limit, then

directly evolve into turbulent state through bypass mechanisms (Path (D)).

Optimal growth and disturbances In these paths, the case in which distur-

bances grow to the maximum before reaching bypass transition is called optimal

transient growth. Initial upstream disturbances which accomplish the optimal

growth are called optimal disturbances (Butler and Farrell, 1992; Luchini, 2000).

Andersson et al. (1999) calculated the spatially optimal disturbances in boundary-

layers and showed that steady counter-rotating vortices in streamwise direction

with a spanwise wave number β = 0.45 yield the optimal initial disturbances.

Here, the behavior of streamwise rotation is the most effective way to realize the

lift-up mechanism.

Some experiments to study the transient growth have been conducted by

means of free-stream turbulence (Matsubara and Alfredsson, 2001; Westin et al.,

1994) and distributed surface roughness (Kendall, 1981; Reshotko and Leventhal,

1981). However, there are difficulties involved in obtaining the optimal distur-

bances in producing steady vortices and controlling a fixed spanwise wave length.

To solve these problems, White (2002) tried to use an array of roughness elements.

He showed stationary disturbances in the form of streamwise counter-rotating

vortices on both left and right sides of the roughness elements and a transient

growth of the disturbances with a controlled spanwise wave length. White and

Ergin (2003) investigated the receptivity and transient growth of initial distur-
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bances generated by various heights of roughness elements which are the most

critical parameter to determine flow instability. Experiments have been performed

for relatively low roughness-height Reynolds number Reh ≤ 162. These discov-

ered that the streamwise disturbance energy in transient growth could be scaled

by the squared Reynolds number based on the roughness-height Re2
h. Some other

geometrical parameters are the ratios between height and boundary-layer thick-

ness and the ratios between height and interval between the roughness elements

(Choudhari and Fischer, 2005; Fransson et al., 2004; Joslin and Grosch, 1995). Piot

et al. (2008) summarized several previous results for various roughness element

shapes, and observed that structures of streamwise vortices also depend on the

elements’ shape. A nonlinear receptivity mechanism may also influence a gen-

eration of streamwise counter-rotating vortices either one pair or a pair on both

spanwise sides (Tumin and Reshotko, 2004).

Suboptimality of roughness-induced disturbances The studies of White (2002)

and Fransson et al. (2004) showed that transient growth initiated by roughness

elements qualitatively agrees well with the non-modal growth theory, but quanti-

tative comparisons are less consistent. Local disturbances generated by the rough-

ness elements reach their maximum growth farther upstream at lower local wave

number β than predicted by the optimal theory and accordingly decay earlier

downstream. To find a physical reason for this suboptimal behavior, Fransson

et al. (2004) calculated theoretically the optimal disturbance under the same con-

ditions as their experiments and then compared the calculations with their experi-

mental results by changing the wall-normal position of initial streamwise vorticity

in the calculations. They found that, at a lower wall-normal position of stream-

wise vortices, a suboptimal growth very similar to that found in the experiments

occurred. Moreover, the wall-normal position was remarkably close to the height

of the roughness elements used in the experiment.

Here, we should keep in mind that the roughness elements induce not only



8 1 Introduction

streamwise rotating vortices, which lead to transient growth, but also spanwise

vorticity within the wall-normal shear layer. This layer behind the roughness el-

ement normally includes inflection-points on velocity profiles, which produce

unstable perturbations in the wake zone and occasionally develop into a sepa-

ration. According to Piot et al. (2008), a streaky layer behind a roughness ele-

ment is induced on competition between the streamwise vortices and the wake

effects, depending on the shape of the roughness elements. Hence, this wall-nor-

mal shear may influence the formation of the streamwise vortices in combination

with spanwise vorticity and become a possible cause of suboptimality. Moreover,

this wall-normal shear could be at the origin of bypass transition via vortex shed-

ding (Rizzetta and Visbal, 2007) or hairpin vortices (Acarlar and Smith, 1987) in

an over-critical case. However, Fransson et al. (2004) in their theoretical study

mentioned above did not include spanwise vorticity for initial disturbance in the

wake zone owing to difficulties in calculation. Hence, a detailed analysis of the

flow and its stability in the vicinity of roughness elements and in the wake zone

is needed.

1.2.2 Streamwise elongated streaks

Non-modal transient growth with moderate external and/or localized perturba-

tions in boundary-layers typically appears as streamwise elongated streaks (Path

(C) in Figure 1.2). In this subsection, previous studies of the generation of these

streamwise streaks and their instability are introduced. In addition, flow stabiliza-

tion effects based on these streaks are explained in order to set out the motivation

of the present study.

Generation of streaks Several methods to induce transient growth and sub-

sequently streamwise streaks in boundary-layers have been presented hitherto.

First, Matsubara and Alfredsson (2001) performed experiments by means of mod-

erate free-stream turbulence in a range 1 < Tu < 6 %. Streaks were measured by
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two-point hot-wire measurements and presented as a rapid decay of free-stream

turbulence in high frequency ranges into disturbances with low frequencies in

a boundary-layer. These disturbances grew linearly according to increasing dis-

placement thickness Reynolds numbers. Such experimental results were also seen

in a theoretical calculation by Luchini (2000) for optimal disturbance results. Sec-

ond, Elofsson et al. (1999) used continuous suctions at the wall with a constant

wave number for generating stationary streaky structures in a channel flow. Sev-

eral different amplitudes of streaks were obtained by varying the suction rates.

Growth rates of the streaks increased linearly according to the amplitudes. Third,

Fransson et al. (2004) attempted to generate streamwise high- and low-speed

streaks using an array of cylindrical roughness elements in boundary-layers. As

explained in the previous subsection, this method using roughness elements is

the most appropriate method to induce optimal growth. Quasi-steady stream-

wise vortices were generated on both right and left sides of the roughness el-

ements, and a sinusoidal base flow including streaks with controlled spanwise

wave number was formed through the non-modal transient growth process. A

formation of streamwise vortices, which are dependent on various geometrical

parameters of roughness elements and their initial arrangement, consequently in-

duces streaks further downstream. A DNS (Direct Numerical Simulation) study

by Wörner (2004) investigated the flow field in the vicinity of a roughness element

and showed a pair of counter-rotating inner and outer steady vortices around the

roughness element. One high-speed and two low-speed streaks were then in-

duced in each spanwise side. Fransson et al. (2004), White (2002), and Joslin and

Grosch (1995) found a pair of high- and low-speed streaks on both sides further

downstream.

Instability of streaks Based on a streaky base flow obtained by a DNS calcu-

lation with optimal disturbances input (Andersson et al., 1999), Andersson et al.

(2001) investigated an inviscid secondary instability of the streaks based on a
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linear Floquet expansion. They found the most dangerous sinuous mode, about

26 % amplitude of free-stream velocity, and a more stable varicose mode. An-

other study by Ricco et al. (2011) which induced the streaks by physically realiz-

able free-stream disturbance rather than represented by an optimal disturbance,

showed also that the sinuous mode is the most unstable. Vaughan and Zaki (2011)

studied the secondary instability of a zero-pressure-gradient boundary-layer dis-

torted by unsteady Klebanoff streaks, which leads to a lower critical streak ampli-

tude than the steady streaks of Andersson et al. (2001). An interesting finding in

their results is that, according to the amplitudes of the steady streaks, the most un-

stable mode is changed from the sinuous to the varicose mode. Breakdown of the

streaks to turbulence was found in the study by Hack and Zaki (2014) which in-

vestigated the secondary instability of boundary layer streaks by means of direct

stability analysis. They found that the streaks formed by the free-stream pertur-

bations evolved into the sinuous mode as a most unstable mode. The breakdown

is initiated by the amplification of localized instabilities of individual streaks af-

ter a wavy non-linear behavior calculated by a non-linear DNS. To induce the

varicose mode, they used an adverse pressure boundary-layer with free-stream

turbulence. In this case high-speed streaks were lifted over the low-speed streaks

and a wall-normal inflection was formed. Breakdown of the streaks happened

with a formation of Λ-vortical structures.

Flow stabilization by streaks Cossu and Brandt (2004) investigated the influ-

ences of streamwise streaks on stability of unstable TS waves by calculating per-

turbation kinetic energy. For perturbations, normal modes with the Floquet ex-

pansion corresponding to the spanwise periodical basic flow were applied. Evo-

lution equations for the perturbation kinetic energy were divided into a viscous

dissipation term and two production terms, which consist of Reynolds stresses as-

sociated with wall-normal and spanwise shear. Growth rates of the perturbations

were determined by these terms. As a result, the negative perturbation energy
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caused by spanwise shear contributed to reducing the energy growth rate of un-

stable TS waves. In other words, the stabilizing mechanism is explained by the

fact that the spanwise velocity gradients of the streamwise elongated streaks dis-

turb the streamwise development of the two-dimensional TS waves. They also

showed that stronger amplitudes of streaks can stabilize the TS waves more ef-

fectively. This implies that the optimal transient growth is expected to maximize

such an effect of flow stabilization.

Piot et al. (2008) studied the stability of a streaky boundary-layer using a bi-

global stability approach. The streaky base flow was induced by a cos3-shaped

roughness element in a DNS calculation of Wörner (2004). They also found de-

caying growth rates of a streaky layer, including unstable TS waves. Experimental

attempts were carried out by Fransson et al. (2005), using an array of cylindrical

roughness elements. They showed a smaller amplification of TS wave than in a

case without streaks. Moreover, the amplitudes of streaks grew proportional to

the element’s height, and amplification of TS waves was decayed more effectively,

as predicted by Cossu and Brandt (2004). Accordingly, Fransson and Talamelli

(2012) and Shahinfar et al. (2012) attempted a maximizing of the stabilization ef-

fect using vortex generators, which induce streaks with strong amplitudes while

avoiding a high wall-normal shear to prevent bypass transition. In these ways, a

passive flow stabilization method using roughness elements emerged.

1.3 Present contributions and overview

Aim Transient growth of localized disturbances generated by roughness ele-

ments has been investigated in various aspects as introduced in the previous sec-

tion. Streamwise elongated streaks derived from the transient growth can stabilize

the boundary-layer flow by delaying the laminar-turbulent transition. Thanks to

its advantages of easier installation and a saving of operation energy in compar-

ison with active methods, such a passive flow stabilization method has recently
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received renewed attention. However, the roughness elements also play a role as

obstacles in flows. High shear on the top of the roughness elements is a major

factor in flow destabilization. Besides, the roughness elements initiate a com-

plex combination of vortices in both a streamwise and spanwise direction, and

their influences on a generating process of streaks, namely suboptimal transient

growth, have also not yet been clearly understood. Secondary instability of such

a streaky boundary-layer including wake effects of roughness element have not

been assessed sufficiently hitherto.

Therefore, the purpose of the present study is to analyze the stability of a

streaky boundary-layer induced by a roughness element. This streaky layer con-

sists of strong velocity gradients in wall-normal and spanwise direction. A bi-

global linear stability analysis is suitable for modal stability analysis of such a

three-dimensional streaky layer in the wake zone (Theofilis, 2003). To date, not

many experiments have been done parallel to theoretical and numerical efforts

for analyzing the instability of the streaky layer. Contrary to a theoretical anal-

ysis, in which modal modes are calculated independently of each other, the si-

multaneous occurrence of modal modes and the interaction between them can

be explored in experiments. Besides, the linear theory is not able to deal with

nonlinear behavior. Modal modes grow based on larger amplitudes increased

through transient growth, thus evolving easily into a secondary nonlinear state.

Therefore, the present study consists mainly of experimental observations. Addi-

tionally, the nonlinear behavior of the streaks in the farther downstream region

and the breakdown by an over-critical condition with a higher external velocity

will be also considered.

At first, a CFD (Computational Fluid Mechanics) numerical calculation and

experimental measurements by CTA (Constant Temperature Anemometer) and

PIV (Particle Image Velocimetry) in the laminar water channel (LWK) were per-

formed to explore the steady streaky boundary-layer flow. By observing the steady

velocity and vorticity field in the vicinity of the roughness element and in the
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wake zone, it is found that the streaky layer consists of a separation and high-

and low-speed streaks and shows how the streaks are generated. Comparisons

of experimental disturbances with numerical velocity gradients in both wall-nor-

mal and spanwise direction enable the major reasons for flow instability to be

predicted. Additionally, a cross-validation between numerical and experimental

results is accomplished. The bi-global modal stability analysis is implemented

based on this steady streaky base flow. As a result, varicose and sinuous eigen-

modes are identified and instability features of their eigenfunctions are analyzed.

These theoretical results are confirmed by experimental measurements in which

streamwise perturbations at each opposite side in the spanwise direction are ac-

quired by two simultaneous hot-film probes in order to obtain each varicose and

sinuous signal. As will be explained in Section 5, the varicose mode dominates the

instability characteristics in the natural condition. To identify the sinuous signal

is very difficult, owing to disturbances of the varicose mode and/or experimen-

tal noise. Therefore, an attempt is made to raise the sinuous mode by artificial

forcing. In the last part of the present work, three-dimensional flow structures of

nonlinear behaviour and breakdown of the streaks are observed by a hydrogen-

bubble flow visualization.

Outline The present study is organized as follows. Fundamentals of linear sta-

bility theory, and a bi-global approach and its numerical method in the present

work are presented in Chapter 2. In Chapter 3, the experimental setup is de-

scribed. The laminar water channel (Section 3.1) and the shape of the roughness

element and its installation in the test section (Section 3.2) are explained. In Sec-

tion 3.3, several Reynolds numbers Reh are tested, changing either the height of

the roughness element or the external velocity to find a test flow condition. This

is followed by a short introduction of flow measurement techniques (Section 3.4).

Setup and operation of an external disturbance input to force a specific mode are

presented in Section 3.5. Chapter 4 deals with features of the steady underlying
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flow and a generation mechanism of a streaky layer by the roughness element.

Chapter 5 presents the main results of the stability analysis. Section 5.1 shows

eigenmode spectra, in which a grid convergence study and the streamwise evo-

lution of unstable eigenmodes are examined. Eigenfunctions of relatively stable

modes are also shown. Second, theoretical and experimental results of the modal

stability analysis are presented and compared with one another in Section 5.2.

Streamwise development and interactions between the two unstable modes are

considered. This is followed by the preliminary results of forced mode (Section

5.3). Comparisons with unforced mode and some limitations of the current device

for forcing asymmetrical disturbances are described. In Chapter 6, nonlinear mo-

tion of streaks is considered and breakdown is tested on an over-critical Reynolds

number by a higher external velocity. Finally, the main results are summarized

and conclusions are given in Chapter 7.



Chapter 2

Bi-global Linear Stability Theory

Analysis of flow instability has been considered in two ways. The first is by es-

timating a rate of change of perturbation energy and the second is by tracking

small perturbations in time and space (Schmid and Henningson, 2000). The lin-

ear stability theory (LST) based on the second method has historically been well

established and will be used in the present work for theoretical analysis. In this

chapter, fundamentals of the classical local stability theory are summarized by

referring both to Schlichting and Gersten (2000) and Kloker (2008) (Section 2.1).

Thereafter, a bi-global approach for the analysis of a three-dimensional streaky

layer and its numerical method are introduced in Section 2.2.

2.1 Linear stability theory

A starting point of the stability theory is to decompose the flow quantities into a

basic stationary state ūi and a small perturbation u′i:

ui = ūi + u′i. (2.1)

It is assumed that this flow satisfies the Navier-Stokes equations. For a two-di-

mensional laminar boundary-layer, it could be assumed that changes in stream-
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wise direction are much smaller than in the wall-normal direction, owing to a long

enough streamwise distance compared with the boundary-layer thickness (paral-

lel-flow assumption). Thus, the streamwise velocity component depends mainly on

the wall-normal coordinate ū = ū(y), and the other velocity components vanish

v̄ = w̄ = 0. In addition, the perturbations are very small compared to the steady

quantities; thus their production can be neglected (linearization). Accordingly, the

Navier-Stokes equations for incompressible flow can be reformulated based on

these assumptions into the linearized momentum equations:

∂u′

∂t
+ ū

∂u′

∂x
+ v′

dū
dy

= −∂p′

∂x
+

1
Re
∇2u′

∂v′

∂t
+ ū

∂v′

∂x
= −∂p′

∂y
+

1
Re
∇2v′

∂w′

∂t
+ ū

∂w′

∂x
= −∂p′

∂z
+

1
Re
∇2w′.

(2.2)

Orr-Sommerfeld and Squire equation To solve the linearized equations (2.2)

for two-dimensional laminar boundary-layers, the mathematical procedures set

out below are needed. First, to eliminate the pressure terms in the equations,

the pressure disturbance equations are obtained by taking the divergence of the

linearized momentum equations and employing the continuity equation. These

are then combined with the ∇2 of the y-momentum equation. This results in an

equation for the normal velocity component v′. Second, to describe the three-

dimensional disturbances, wall-normal vorticity η′ is combined with derivatives

of the momentum equations. As a result, two equations are formulated for v′ and

η′. These small disturbances can be assumed as a wavelike form

v′(x, y, z, t) = v̂(y)ei(αx+βz−ωt)

η′(x, y, z, t) = η̂(y)ei(αx+βz−ωt)
(2.3)
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where α and β are the streamwise and spanwise complex wave number, respec-

tively. ω is the complex angular frequency. v̂ and η̂ are the amplitude across the

shear layer. By applying these ansatzes into the equations, the linearized equa-

tions (2.2) can be finally rewritten as a 4th-order ordinary differential equation

(ODE) eigenvalue problem, the so-called Orr-Sommerfeld and Squire equation as

below,

[
(−iω + iαū)(D2 − k2)− iαū′′ − 1

Re
(D2 − k2)2

]
v̂ = 0[

(−iω + iαū)− 1
Re

(D2 − k2)

]
η̂ = −iβū′v̂

(2.4)

where, k2 = α2 + β2 and D is a derivative operator. Primes denote y-derivatives.

Boundary conditions at the wall and free-stream are v̂ = Dv̂ = η̂ = 0. The Orr-

Sommerfeld equation for the Blasius boundary-layer was first solved by Tollmien

(1929) and Schlichting (1933); hence, this solution was named Tollmien-Schlicht-

ing waves (TS waves).

To solve this eigenvalue problem, there are two strategies: temporal and spa-

tial. Waves are periodic in the x- and z-direction for the temporal approach and

in the t and z-direction for the spatial approach. Thus, α and β for temporal and

ω and β for spatial case can be inserted as a constant real number. Each complex

number ω for temporal and α for spatial analysis can now be calculated. The

results of their imaginary part ωi and αi describe growth rates of perturbations

and a point of neutral stability αi = ωi = 0 divides flow instability into a stable

and an unstable state. Detailed results of eigenvalues and -functions containing

various effects on the solutions are found in Schlichting and Gersten (2000).

A general property of the perturbation equation For an inviscid flow, viscous

terms are omitted from the Orr-Sommerfeld equation (2.4) (Rayleigh equation).

Many earlier studies of stability analysis dealt with inviscid flows because the

equations are simpler and they enable some important analytical results to be
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obtained. Rayleigh (1880) deduced that flows of which the velocity profile has an

inflection point are unstable (point of inflection criterion). He proved that this is a

necessary condition for the appearance of unstable waves, and Tollmien (1935)

showed that the presence of an inflection point is a sufficient condition for an am-

plification of unstable perturbations. Physically, inflection points occur on velocity

profiles where adverse pressure gradients exist, and they raise flow destabiliza-

tion (inviscid instability).

Secondary instability As mentioned in Chapter 1, two-dimensional TS waves

evolve into three-dimensional quasi-steady perturbation structures. The theoret-

ical approach for secondary stability of such three-dimensional perturbations is

performed in a similar manner to that for primary instability above. First, it is

assumed that infinitesimal disturbances in primary instability are superimposed

on a new approximately steady or quasi-steady basic state of periodic base flow.

Here, three-dimensional infinitesimal disturbances u∗i for the secondary instabil-

ity are defined as

u∗i = φ∗i (ξ, y) · ei(α∗z−β∗t) (2.5)

where α∗ is the wave number of secondary perturbation. A new coordinate system

based on a phase velocity of the TS wave cph,

ξ = x− cpht (2.6)

is applied for describing a new steady basic flow in a coordinate system (ξ, y, z).

To calculate these three-dimensional perturbations, the Floquet system (Herbert,

1988) is applied. According to a phase shift factor δr in a range 0 ≤ δr ≤ 1/2,

instability is separated 0 for the harmonic and 1/2 for the subharmonic case.

These theoretical results are described in detail in Herbert (1988). Experimental

confirmations have been done by several researchers (Kachanov and Levchenko,

1984; Klebanoff et al., 1962) showing that harmonic (K-type) and subhamonic (H-
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type) perturbations for secondary instabilities move downstream with the same

velocity as the phase of TS waves.

Secondary instability for streamwise streaks As introduced in section 1, the

inviscid secondary instability of the streamwise streaks was calculated by Ander-

sson et al. (2001). They assumed that perturbation quantities consist of a single

wave component in the streamwise direction.

p(x, y, z, t) = Re
{

p̃(y, z)eiα(x−ct)
}

(2.7)

where α is the streamwise wave number and c is the phase speed. Here, the

Floquet exponent was also applied for presenting the secondary instability

p̃(y, z) =
∞

∑
k=−∞

p̂k(y)ei(k+γ)βz. (2.8)

β is the spanwise wave number of the primary disturbance field. The detuning

parameter γ of the Floquet system shows γ = 0 for a fundamental and γ = 1/2

for a subharmonic instability mode. These symmetries for even and odd mode in

a spanwise direction make either a sine or cosine expansion. As a result, defined

sinuous and varicose modes are formed in fundamental and subharmonic modes

on the high- and low-speed streaks.

2.2 Bi-global approach

As seen above, the classical linear stability analysis for the shear flows based on

1D eigenfunctions has been theoretically well established in the last few decades.

However, in the present study, the streaky layers induced by roughness elements

consist of both streamwise streaks and high wall-normal shear with a separation,

and the classical method is not suitable for such a complex three-dimensional

underlying base flow. According to Cossu and Brandt (2004) who quantified the
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kinetic perturbation energy of streaky boundary-layers on TS-like waves, each

positive and negative production in terms of Reynolds stresses is associated with

the wall-normal and spanwise shear of the streaky layer, respectively. Solutions

of two-dimensional eigenvalue problems can describe the essentially non-parallel

base flows which are inhomogeneous in two directions or periodic in the third

spatial direction (Theofilis, 2003). Therefore, a bi-global LST is an appropriate

method for the present study. Groskopf et al. (2008) examined the bi-global LST

to analyze the stability of a supersonic boundary-layer with roughness elements

depending on both directions of the velocity gradient, and showed a good agree-

ment with unsteady DNS calculations. A brief introduction to a bi-global stability

solver and numerical calculation procedures are given in this section and a more

detailed description and examples can be found in Theofilis (2003) and Groskopf

et al. (2008).

2.2.1 Governing equations and boundary conditions

The bi-global stability solver used in the present study is based on the three-

dimensional Navier-Stokes equations with components which are normalized by

a free-stream velocity u∗e , reference length L∗, and density ρ∗, where ∗ means

dimensional quantities. Non-dimensional time t and pressure p are defined as

follows:

t =
t∗u∗e
L∗

, p =
p∗

ρ∗u∗2e
. (2.9)

The normalized components are decomposed into the steady primary state q0

which is a solution of the underlying flow equation and unsteady perturbating

quantities q′:

q(x, y, z, t) = q0(x, y, z) + q′(x, y, z, t). (2.10)

In addition to that, the assumptions below are employed to formulate the equa-

tions for a linear stability analysis.



2.2 Bi-global approach 21

• A quasi-parallel assumption ( ∂
∂x ≡ 0) for steady base flow, i.e.

q0 = q0(y, z). (2.11)

It should be mentioned that this assumption does not imply v0 ≡ 0 for fully

parallel flow like in the classical LST. Because this eliminates streamwise

vortices on a two-dimensional spanwise (y, z)-plane, a less-severe restriction

that only the mean value in spanwise periodic flows is zero (v̄0 ≡ 0) is set

for the present study. Such a way, v0 and w0 for the streamwise streaks are

retained, while v0 for the Blasius flow is being disregarded.

• Perturbating quantities are small (q′ < 1) and its production can be ne-

glected (q′i · q′j � 1) (Linearization).

• Perturbations can be thought to occur like waves and applied in the modal

ansatz:

q′(x, y, z, t) = q̂(y, z) · ei(αx−ωt) (2.12)

where q̂(y, z) is the amplitude distribution of perturbations. α and ω are the

streamwise spatial wave number and the angular frequency, respectively,

and both of them could be complex values.

Finally, the equations could be formulated to the generalized eigenvalue problem

in temporal approach (α ∈ R, ω ∈ C):

A q̂ = ωBq̂ (2.13)

where, A and B are coefficient matrices. With a no slip condition at the bottom

and the high enough ymax from maximum shear layer, the Dirichlet condition is

applied at the bottom plate and top free-stream

q̂(0, z) = q̂(ymax, z) = 0. (2.14)
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Each left and right side in spanwise direction is supposed as a periodic wall.

2.2.2 Numerical method

For the base flow calculation The steady primary state q0 was calculated by

means of a CFD simulation (Herzog, 2013) with a laminar steady model in a

three-dimensional computation domain in Figure 2.1. The commercial software

Star-CCM+ with Gridgen for grid generation were used. To reach a consistent

Blasius flow input before the roughness element and to fully cover the flow in-

fluenced by a roughness element in downstream, the streamwise domain length

extends from x = 1.915 ∼ 3.655 m. A stretch of the domain in y-direction is

y = 0 ∼ 24 · δ1, where, δ1 is the displacement thickness in the middle of the rough-

ness element at x = 2.35 m in the case without roughness element. Although

boundary conditions in the stability calculation are periodic, the half domain in

spanwise direction z = 0 ∼ 3 · dR (dR is the diameter of the roughness element)

was calculated with a symmetry condition for saving computational cost. Because

the spanwise computation domain 3 · dR is sufficiently large and the influences

of the roughness element cannot reach the boundary wall, differences between

these two conditions can be neglected. Configurations of the roughness element

and all other flow conditions followed the experimental conditions identically (cf.

Section 3).

For the stability analysis The generalized eigenvalue problem Equation (2.13)

was solved by the implicitly restarted Arnoldi method (IRAM) implemented in

the ARPACK routines (Lehoucq et al. (1998)) for such a huge size eigenvalue prob-

lem. Two-dimensional cross-cut slices of the steady state q0 at different stream-

wise positions were extracted from the three-dimensional CFD calculation vol-

ume and interpolated by the cubic spline method onto the 2D stability analysis

domains (See Figure 2.1). These stability planes were calculated independently at

each selected streamwise position.
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Figure 2.1: Computational volume domain for CFD calculation and 2D grid plane
for stability analysis

Central finite-differences were used for the discretization of first and second

derivatives on a Cartesian grid. A mesh refinement and stretching were imple-

mented in both y- and z-direction to concentrate the grid nodes on the center of

the roughness element where variables’ quantities change remarkably. A method

of Erlebacher and Hussaini (1991), which consists of two steps as described be-

low, was used for the y-direction. First, an intermediate variable ψ is substituted

for a computation domain η ∈ [−1, 1] according to

ψ + tε tanh
(

ψ− ψ0

∆ψ

)
=

η − η0

∆η
(2.15)

where the degree of influence of the hyperbolic tangent is set to tε = 1.2. Second,

the ψ is transformed into a physical domain y ∈ [0, ymax] by

y =
y½ymax(1 + ψ)

ymax − ψ(ymax − 2y½)
. (2.16)

In this way, a half number of nodes could be collected within a length of twice

the boundary-layer thickness (y = 0 ∼ 2 · δ99) by setting y½ = 2 · δ99. ∆ψ and ∆y
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are related via

∆ψ =
dψ

dy

∣∣∣∣
y=y0

∆y. (2.17)

To aggregate densely towards the bottom wall and to widen the grid gradually

in a normal direction, a focus point y0 = 0.0 m is inserted with a concentration

width ∆y0 = y½. For a sufficiently large computation area, the end of the free-

stream is set to ymax = 20 · δ99 (not scaled in Figure 2.1). The detailed executing

procedures can be found in Erlebacher and Hussaini (1991).

For the spanwise z-direction, a simple formula (Schmid and Henningson,

2000) such as

z = zmax · ẑ
√

δz√
1 + δz − ẑ2

, ẑ ∈ [−1, 1] (2.18)

where a stretching factor δz = 0.1 and spanwise range zmax = 0.4 m is used for a

concentration of the grid in the middle of the roughness element at z = 0.0 m in

a physical domain z ∈ [−zmax, zmax] (cf. Figure 2.1).



Chapter 3

Experimental Setup

3.1 Laminar water channel

Measurements for experimental stability analysis were carried out in the laminar

water channel (LWK, Laminarwasserkanal, Figure 3.1) at the Institut für Aero-

dynamik und Gasdynamik (IAG) of the University of Stuttgart. This facility was

designed specifically for the study of instability of boundary-layer flows and their

laminar-turbulent transition. For this purpose, the test section has a 10 m long

streamwise distance with 1.2 m width and 0.5 m height; and this allows the whole

process of natural transition from laminar to turbulence to be observed. An 8.0 m

long glass flat plate with an elliptical leading edge (axial ratio 10:1) was installed

in the test section and a height of 15 cm from the bottom of the flat plate to the

free surface of water was maintained during all measurements. For a low turbu-

lence intensity, the LWK has a three-dimensional contraction with a ratio 1 : 7.7

and three screens. Consequently, the streamwise turbulence intensity is less than

0.05 % in the frequency range 0.1 ∼ 10 Hz at a free-stream velocity ue = 0.145 m/s

(Wiegand, 1996). Installation of the glass flat plate and a qualitative streamline test

are described in Appendix B. An additional screen is positioned at the end of the

flat plate (cf. Figure 3.9). This screen leads to a small pressure increase and im-

poses a zero pressure gradient on the whole plate, together with accurate control
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Figure 3.1: Schematic of the laminar water channel (LWK)

of the plate’s angle. Moreover, a pressure difference between the upper and lower

side of the plate forces a suction through a gap between the plate and the test

section walls. This prevents the formation of an unstable corner boundary-layer

flow. Good isolation of the LWK room having an air conditioner from the outside

and a sandwich structure of the test section walls with thick wall glasses, keeps

the change of water temperature in the test section below 0.05 °C/day and min-

imizes thermal convection perturbations. More detailed technical improvements

for stabilizing the flow in the LWK are introduced in Wiegand (1996).

Comparisons with wind tunnel In wind tunnel tests with small model inner

boundary-layer flows, flow measurements and visualizations may be limited by

a distinct size of instruments. For such cases, water channels are an appropriate

substitute owing to the one order smaller magnitude of kinematic viscosity of

water than air. For example, an experimental study by Fransson et al. (2004) in

a wind tunnel used cylindrical roughness elements of height h = 0.78 mm for a

roughness-height Reynolds number Reh = huh/ν = 340, where uh is the bound-

ary-layer velocity at y = h in the case without the roughness element, with a

free-stream velocity ue = 8 m/s. If the same Reynolds number is tested in a water

channel with an assumption of the free-stream velocity ue = 0.08 m/s which is

also a reference velocity in the present work, length scale about 6.7 times larger
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is obtained,

ReA ≈ ReW −→ LW

LA
=

uAνW

uWνA
≈ 6.7 (3.1)

where, subscript A and W denote air and water and L is a reference length. ν

is the kinematic viscosity at 20 °C. This provides particular advantages in mea-

surements and visualizations in the boundary-layers with such a small roughness

element. However, it should be noted that about 667 times longer measurement

time is required in the water channel under the same flow conditions,

SrA ≈ SrW −→ fW

fA
=

LAuW

LWuA
=

νAu2
W

νWu2
A
≈ 0.0015 (3.2)

where, Sr is the Strouhal number and f is the frequency.

Spanwise non-uniformity Streamwise elongated high- and low-speed streaks

are described as periodical velocity changes in the spanwise direction; hence, a

uniform velocity distribution in the boundary-layer is a prerequisite before reach-

ing the roughness element for avoiding any ambiguities in the streaks generated

by the roughness element. However, as seen in Figure 3.2 (a), a spanwise velocity

distribution with the maximum amplitude of disturbances of 1.75 % of the free-

stream velocity at z = 0.12 m existed in the LWK. This may have been caused by

both LWK’s own properties and debased screens in the contraction. To regulate

this variation, an additional screen was installed at the end of the contraction (Fig-

ure 3.2 (b)), with the result; that the variation of spanwise velocity distribution

was reduced to under ±2 % of ue in Figure 3.2 (a) and the maximum amplitude

of disturbances was 0.7 %. Furthermore, the inclined velocity distribution in the

spanwise direction is recovered in the downstream direction (dashed lines in Fig-

ure 3.3). The velocity variation does not exceed ±2 % at all streamwise positions.

The amplitudes of disturbances are also maintained at a low value, except near

the test wall side at about z = −0.2 m at the streamwise position x = 1.7 m.

The influence of the spanwise non-uniformity on the stability of boundary-layer
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Figure 3.2: (a) Velocity distribution in spanwise direction without (dashed line) and
with (solid line) the screen. Error bars describe rms-amplitudes of disturbances (b)
Installation of a screen of stainless steel mesh with a wire diameter d = 0.24 mm
and wire spacing M = 0.63 mm at the end of contraction

is proven to be less remarkable.

3.2 Roughness element

As discussed in Chapter 1, both transient growth of local disturbances gener-

ated by a roughness element and the appearance of a streaky layer behind the

roughness element are formed, depending on the shape and height of the rough-

ness element. According to the goal of the present analysis of the stability of a

laminar streaky layer, the shape and height were designed to induce streamwise

streaks that were as strong as possible, while avoiding a bypass transition. For
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Figure 3.3: Streamwise evolution of velocity distribution in spanwise direction.
Error bars describe rms-amplitudes of disturbances

these reasons, a smoothly curved cos3-shaped roughness element was selected

for obtaining relatively large streamwise vortices in comparison with separation

that is induced just behind the roughness element.

y(x, z) = h cos3
(

πr
dR

)
, 0 ≤ r =

√
x2 + z2 ≤ dR/2 (3.3)

where the diameter of the roughness element is dR = 0.145 m and its height is

h = 0.89 · δ1 = 8.3 mm (cf. Section 3.3). δ1 is the displacement thickness in the

case without the roughness element at xR = 2.35 m, where xR is the streamwise

position of the roughness element from the leading edge (cf. Figure 3.9). A math-

ematical illustration of the shape and an experimental model made of plexiglas

are shown in Figure 3.4 (a) and (b), respectively.

The experimental model was installed in the spanwise middle of the flat plate.
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Figure 3.4: (a) Mathematical and (b) experimental roughness element model (c)
Installation of the model in the test section and visualization of the wake flow by
potassium permanganate crystal

As seen in Figure 3.4 (c) and 3.6, the experimental model was placed by a sup-

port under the model, and splits between the roughness element and the flat

plate were sealed by silicon and covered by a tape with a 0.05 mm height (cf.

Figure B.1 (b) in Appendix B). Accordingly, there were no steps and splits that

could disturb the flow around the roughness element. In fact, an array of rough-

ness elements is considered in the CFD simulation with a periodical boundary

condition. However, only a single roughness element has been installed for the

experiments, owing to the limited width of the test section. The spanwise wave

length β = 6 · dR of the computational domain is large enough in consideration

of very weak spanwise spreading of streamwise streaks. Thus, discrepancies be-

tween numerics and experiments can be neglected.
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3.3 Flow condition

Flow phenomena are normally characterized by the non-dimensional Reynolds

number, and the flow in the present study, which is provoked by a roughness

element, is specified by the roughness-height Reynolds number Reh. As seen in

the previous section, Reh consists of the boundary-layer velocity and the height

of the roughness element, as well as the kinematic viscosity. Hence, Reh can be

controlled by changing the free-stream velocity and the height of the roughness

element. In this section, several Reynolds numbers obtained by changing these

two parameters are explored by flow visualization, and a test case is selected

for the present study, in which the streamwise streaks are growing as large as

possible, while avoiding bypass transition.

Hydrogen-bubble method The streaky flow behind the roughness element was

visualized by the hydrogen-bubble method. The principle of this method is to

visualize the flow by illuminating successively generated timelines by hydrogen

bubbles created by electrolysis. If a DC voltage is applied between two electrodes

in water working as an electrolyte itself, hydrogen bubbles arise on the cathode

(tungsten, ∅30 µm) and conduct themselves as tracer particles in the flow. As an

anode, a copper rod was used. The experimental setup is illustrated in Figure 3.5.

These bubbles are visualized by the light sheet of a DPSS (diode-pumped solid-

state) laser. The laser light sheet rays in a spanwise direction and illuminates

a two-dimensional (x, z)-plane. For observation in different heights, laser and

camera move up and down by the same distance, so that all pictures always have

the same length scale. The high- and low-speed streaks are essentially a spanwise

velocity variation, and this can be observed by the timelines. For an occurrence of

the timelines in the (x, z)-plane, a pulse duration of 2.0 ms and a pulse interval of

200.0 ms with a voltage of 1000 V were entered into a pulse generator. To observe

three-dimensional flow structures, for example the case in Figure 3.7 (c), a bubble
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Figure 3.5: Experimental setup for flow visualization by the hydrogen-bubble
method

 

glass plate

in test section

4.2 mm

dR = 145.0 mm

h = 8.3 mm

Figure 3.6: Schematic of roughness element on a support for changing in various
heights (left side) and a fixed model in a height of roughness element h = 8.3 mm
(right side)

carpet was introduced with a pulse duration 1.0 ms and a pulse interval 0.0 ms

with a voltage 70 V and illuminated by a halogen lamp.

Changing the height of the roughness element The height of the roughness el-

ements is a fundamental parameter determining the instability of streaky bound-

ary-layer flows induced by roughness elements. To find an appropriate height

of the roughness element, three different heights were tested with a fixed free-

stream velocity ue = 0.1 m/s. The height can be changed by a support under the

experimental model, as in Figure 3.6. The element has an upper roughness part
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Figure 3.7: Flow visualization for three different heights (a) height of the element
h = 4.2 mm, cathode wire at xc = 2.6 m, yc = 4.0 mm (b) h = 8.3 mm, xc = 2.65 m,
yc = 6.0 mm (c) h = 12.5 mm, xc = 2.6 m, yc = 10.0 mm and camera position
x = 2.8 m

of a height h = 0.5 · δ1 ≈ 4.2 mm (cf. left side in Fig. 3.6), where δ1 is the displace-

ment thickness at x = 2.35 m in the case without the roughness element with a

free-stream velocity ue = 0.1 m/s.
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Figure 3.7 shows the results of flow visualization by timelines (Figure 3.7 (a)

and (b)) and bubble carpet ((c)). The cathode wire is positioned at xc = 2.6 and

2.65 m, respectively, where the maximum growth of the streaks’ amplitudes was

predicted. With the height h = 4.2 mm in Figure 3.7 (a), a minimal velocity vari-

ation in spanwise direction is observed, but the streamwise streaks are uniden-

tifiable. The high- and low-speed streaks are seen clearly in the case with the

height h = 8.3 mm in Figure 3.7 (b). Behind the roughness element (center of the

figure), a low-speed streak arises and high-speed streaks locate on each left and

right side. Additionally, as the experimental model rises up, the cylindrical part

of the model is disclosed in the flow, which also induces high- and low-speed

streaks outside. These outside streaks are also seen as a continuous line in Figure

3.7 (c). In the case of a higher height h = 12.5 mm, hairpin vortices followed by

a breakdown to turbulence were observed. From these results, the height of the

roughness element h = 8.3 mm was selected and a new experimental model with

that height was manufactured (cf. right side in Figure 3.7) and installed in the test

section for the whole measurements.

Changing free-stream velocity Another important parameter in the flow insta-

bility by roughness elements is the boundary-layer velocity. Thus, a parametric

test was done by adjusting four different free-stream velocities. The first result

with the lowest velocity ue = 0.045 m/s in Figure 3.8 (a) shows very weak high-

and low-speed streaks. As the velocity increases to ue = 0.06 and 0.08 m/s,

the streaks are seen more clearly, as in Figure 3.8 (b) and (c). The timelines of

low-speed streak in the middle become increasingly dense, in contrast to the

widening gap between the timelines of outer high-speed streaks. This means

that both the wake behind the roughness element and the streamwise rotat-

ing vortices concurrently occur more intensively along with a velocity increase,

and, as a result, larger amplitudes of the high- and low-speed streaks are in-

duced. In the case with the highest velocity ue = 1.0 m/s, the time lines are



3.3 Flow condition 35

(a)

(b)

(c)

(d)

Figure 3.8: High- (solid) and low- (dashed ellipse) speed streaks for four different
free-stream velocities (a) ue = 0.045 m/s (b) ue = 0.06 m/s (c) ue = 0.08 m/s (d)
ue = 0.1 m/s. Timelines begin at xc = 2.6 m, yc = h = 8.3 mm

broken in the middle, as seen in Figure 3.8 (d). Because the laser sheet illumi-

nates only a two-dimensional plane, three-dimensional vortical structures cannot

be pictured in Figure 3.8 (d). Spanwise expansion of the chaotic motion was ob-

served, although not visible in this figure. In conclusion, the free-stream velocity

ue = 0.08 m/s with the height of the roughness element h = 8.3 mm corre-

sponding to a Reynolds number Reh = huh/ν = 329 is selected for the present
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study. This roughness-height Reynolds number is a little smaller than the critical

Reynolds number, according to Klebanoff et al. (1962). A streamwise Reynolds

number Rex = xRue/ν = 1.88× 105 is calculated where the roughness element is

located.

3.4 Measurement techniques

For an analysis of flow instability of the streaky layer, accurate measurements

of disturbances generated locally by the roughness element are of importance.

These disturbances are characterized by a periodic shedding originating from an

unstable shear layer on the top of the roughness element and by quasi-steady

streamwise rotating vortices on both sides of the roughness element. To analyze

these two different types of disturbances and their complex mixing downstream,

both a sensitive response to small changes in a short time and temporally contin-

uous measurements in a time period for spectral investigations are needed. The

Constant-Temperature-Anemometry (CTA) method with hot-film probes satisfies

these requirements.

However, the hot-film probe itself is an obstacle disturbing the flow field and

cannot measure negative velocity components of, for example, a separation be-

hind the roughness element. Particle-Image-Velocimetry (PIV), which is a non-in-

trusive optical measurement technique using a laser illumination, can solve these

problems. Moreover, results of PIV measurements give a highly resolved spatial

observation (a whole-flow-field technique) and can be compared intuitively with

numerical simulations.

Therefore, the CTA method was mainly used to measure velocities and dis-

turbances at several selected streamwise positions. A simple positioning of the

hot-film probes in the test section by a traversing system enables a long down-

stream range to be covered. PIV measurements were accessorily performed to

measure and visualize the flow and separation in the wake near the roughness
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element. The PIV method was also used to catch a non-linear motion of three-

dimensional vortex structures in the last part of the present study (Chapter 6).

Several major components for the CTA and PIV measurement system and some

features at the LWK will be introduced in this section. Fundamentals and general

operating instructions are described in Bruun (1995) for CTA and in Raffel et al.

(2007) for PIV measurements.

3.4.1 Constant temperature anemometry

The CTA method is a thermal technique measuring temperature changes on

heated sensor by flows. The sensor of the hot-film probe is made of a nickel-

fiber-film coated by quartz that allows to operate in water (Dantec, 2005). Sen-

sor heating and maintaining constantly on an over-heated temperature against

cooling by flows are done by a CTA bridge from which temporally continuous

signals are generated. The electronical signals acquired by a A/D converter are

transformed into velocities by a calibration curve. Appendix C describes in detail

the technical procedure to setup the CTA measuring system and calibrating it

for getting the calibration curve. Technical data and experimental parameters are

summarised in Table 3.1.

Signal conditioning and acquisition For measurements of the small distur-

bances in a high resolution, an analog low-pass filter (IMD EST 1BU T4) of

fg,LP = 5 Hz was set to eliminate the noise in the high frequency area, and

then the DC part of the signal was separated by a high-pass filter with a cut-off

frequency fg,HP = 0.1 Hz (cf. flow chart in Figure 3.9). The AC signal was am-

plified by an amplifier (IMD DMC-45-R) 100 times for natural cases and 50 times

for the forcing cases with external disturbance input. Consequently, the signals

were acquired by a 16-bit A/D converter (NI USB-6216 BNC). To minimize the
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influences of the cut-off frequency of the high-pass filter, a settling time

τ =
10

fg,HP
= 100 s (3.4)

had been employed after every moving of the probe by the traversing mecha-

nism. With these parameters, a sufficiently low cut-off frequency can be set while

preventing an excessive measurement time.

A fast Fourier transform (FFT) had been carried out for spectral analysis of the

measured time signal. A spectral resolution ∆ f = fmin = 0.01 Hz was selected

and the corresponding measuring duration is

T =
1

∆ f
= 100 s. (3.5)

For an efficient signal sampling and transforming, the maximum frequency (Nyquist

frequency) is determined as fmax = fNy = 5.12 Hz, according to this the sampling

Table 3.1: Technical data and experimental parameters for the CTA system

Hot-film anemometry

Bridge Dantec 56C17 DISA55M10
Probe Dantec 55R15 boundary-

layer type
Sensor Nickel-fiber, ∅70 µm with

2 µm quartz coating
Warm-up time Twu 2 h
Overheat ratio a 5 %

Signal conditioning

Low-pass filter fg,LP 5.0 Hz
High-pass filter fg,HP 0.1 Hz
Settling time τ 100 s
Amplifier factor V 50 ∼ 150

Data acquisition
Duration T 100 s
Points N 1024 pts
Sampling rate fs 10.24 Hz
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Figure 3.9: Schematic of experimental setup and flow chart of analog signal pro-
cessing. Swing wire for external disturbance input locates in front of the leading
edge

rate and the number of data points are

fs = 2 · fNy = 10.24 Hz (3.6)

N = 2 · fsT = 1024 pts. (3.7)

A settling time of 100 s was also inserted for every measurement. All parameters

above are summarized in Table 3.1.

Varicose and sinuous signal As will be explained in Chapter 5, the two most

unstable eigenfunctions obtained by the bi-global LST behave themselves sym-

metrically and asymmetrically in respect to spanwise coordinate, so named vari-

cose and sinuous, respectively. To find these eigenmode experimentally, two hot-

film probes connected with two different bridges were located on opposite sides

equidistantly in spanwise direction relative to the centre (cf. Figure 3.9) and ac-

quired signals simultaneously. The measured disturbances were separated into

their varicose and sinuous component by

u′vari =
u′1 + u′2

2
, u′sinu =

u′1 − u′2
2

(3.8)
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where u′1 and u′2 are the streamwise perturbation components from respective

probe. Positions of the probes were z = ±0.0095 m in spanwise direction, where

the amplitude of the sinuous eigenmode is maximal (cf. Section 5.2). To illustrate

the experimental mode shape on a two-dimensional (y, z)-plane (cf. Figure 5.9),

additional measurements in five spanwise positions z = ±0.0, 0.0045, 0.0095, 0.02,

0.035 m were done at x = 2.7 m by changing the distance ∆z between the probes.

3.4.2 Particle image velocimetry

Figure 3.10 (a) shows the installation of the mono-PIV measurement system at the

LWK. Fluorescence particles (Toray SP-500) seeded in the flow are illuminated by

a dual pulsed Nd:YAG Laser (Quantel, Brillant Twins). The pulsed laser beams are

introduced by a light-guiding arm and widened by the light sheet optics perpen-

dicular to the flat plate (green triangle in Figure 3.10 (a)). A time-interval between

the two pulsed laser lights ∆t = 8.0 ms was selected for the free-stream veloc-

ity ue = 0.08 m/s by which an averaged particle-offset of ca. 8 px between two

scattered light pictures was obtained (cf. Raffel et al. (2007)). The scattered light

was pictured by a so-called cross-correlation CCD camera (PCO SensiCam) with

a zoom objective (Nikkor f = 50 mm) and sent to a PC through an optical fiber.

All independent components of the PIV-system above had been synchronized by

a sequencer of the German Aerospace Center (DLR, Deutsches Zentrum für Luft-

und Raumfahrt) generating a programmable TTL (Transistor-to-Transistor Logic)

pulse train. Finally, the velocity field was obtained by calculations of cross-corre-

lation between the first (32x32 px) and second (64x64 px) interrogation window of

the scattered light pictures. Detailed technical data of the devices are summarized

in Appendix A.

Reflection and refraction of light Difficulties of PIV measurements, as an op-

tical measurement method, especially at the LWK, occurred owing to the reflec-

tion and refraction of the laser light. First, unwanted reflection on the glass wall
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(a)

(b)

Figure 3.10: (a) Experimental setup of 2D mono-PIV system at the LWK (b) Black
spraying on the roughness element and the glass plate area illuminated by the
laser
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A

A

Figure 3.11: Refraction of light beam at the boundary between water and air. dW ,
dA: spanwise moving length of laser sheet plane and focal plane of objective,
respectively θW , θA: angle of refraction (indices W and A indicate water and air,
respectively)

and the roughness element model made of plexiglas hides the light scattered

by the particles. To prevent this, the measurement section of the glass plate and

the roughness element were painted black, as shown in Figure 3.10 (b). Second,

when the light penetrates from water into air, a refraction of the light beam at

the boundary between water and air occurs, owing to different phase velocities

of light in air and water, as seen in Figure 3.11. To depict an equal length scale

on the focal plane of objectives, a moving distance of the CCD-camera must be

corrected by a ratio to Snell’s law

dW

dA
≈ sinθW

sinθA
=

nA

nW
=

1
1.33

(3.9)

where nA and nW are refraction indices of air and water, respectively. For instance,

if a light sheet plane moves 10 cm in the spanwise direction, the CCD-camera must

be shifted 7.52 cm. For spanwise scanning of the flow field, the light sheet optics

and the CCD-camera are arranged on two separate traversing mechanisms.
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3.5 Asymmetrical external forcing

As will be shown in Chapter 5, two distinguished unstable varicose and sinuous

eigenmodes are identified in a laminar streaky layer induced by the roughness

element. The experimental amplitudes of the varicose mode are quite larger than

the sinuous ones and it seemed that the smaller sinuous amplitudes are somehow

hidden by either the dominant varicose mode or a lower signal-to-noise ratio. For

this reason, an amplification of the sinuous mode had been attempted by forcing

initial asymmetric amplitudes in the free-stream.

In fact, a symmetric forcing is comparatively easy. Classical forcing technique

using a vibrating ribbon stretched in spanwise direction within the boundary-

layer (Klebanoff et al. (1962); Lang et al. (2004)) excites TS- and shear layer in-

stabilities in the high shear layer above and behind the roughness element, such

that the varicose mode would gain in amplitude and periodicity. On the contrary,

an asymmetrical forcing is much more challenging. In practice, there has been no

simple method for asymmetric forcing in the wake of the roughness element up to

now. Pulsed jets directly through the wall can force asymmetry in flows, but these

might have detrimental side effects because they are injecting mass. For these rea-

sons, a method using a vertical single wire operating by a computer controlled

traversing system was carried out in the present work. As will be seen in Section

5.3, this method is also very difficult to perfectly accomplish in practice. So, these

results should be considered just preliminary and interpreted cautiously. Nev-

ertheless, checking out predictable problems would be valuable to pursue such

further investigations for developing a new exact method to elaborate measure-

ments.

As sketched in Figure 3.9, a thin wire of diameter dw = 1.0 mm was placed

upstream of the plate’s leading edge in a distance xw = 0.012 m. The upper end of

the wire was fixed to a traversing device and traversed back and forth in spanwise

direction, by which a sinuous perturbation with respect to the spanwise centre
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was introduced. As the lower end was let free, this might generate uncontrolled

chaotic disturbances. However, these disturbances flow underneath the plate,

therefore, no influences are ingested into the boundary-layer above the plate. A

periodic frequency of 0.225 Hz which is close to the theoretical frequency of the

sinuous mode at x = 2.7 m (angular frequency ωr = 16.7 in Figure 5.3 (b)) had

been imposed. The wire had been translated in a range z = −0.0095 ∼ 0.0095 m

which is the interval between the two hot-film probes (cf. Figure 3.9). Triggering

signals were generated when the wire reaches the end of the spanwise position

z = −0.0095 m and signal acquisition of the probe was started by these signals.

A waiting time after every start of the wire translation was set t = 100 s, so

that forced disturbances can reach up to the maximum measurement position

xmax = 3.1 m. The measuring duration and settling time as well as all the other

parameters for the measurements were set identical to the natural case without

external forcing.



Chapter 4

Streaky Boundary-layer Flow

This chapter deals with the steady streaky boundary-layer induced by the cos3-

shaped roughness element. This includes two major flow phenomena: a sepa-

ration behind the roughness element and streamwise elongated high- and low-

speed streaks. These flow features are separately analyzed by the streamwise

velocity distributions in both wall-normal and spanwise direction and by the ve-

locity gradients. The numerically calculated gradients are compared with experi-

mental unsteady disturbances in terms of flow instability.

The comparison of numerical and experimental velocity distributions in both

y- and z- direction show a good agreement between them. Particularly, fast chang-

ing shear inflection of velocity profiles and their gradual recovery in a down-

stream direction are well described. From that, an acceptability of the experimen-

tal setup and a validation of the numerical results are achieved.

4.1 Wall-normal shear and separation

Figure 4.1 shows experimental and numerical velocities in the vicinity of the

roughness element. In front of the roughness elements, the flow goes smoothly

over the roughness element without any stagnation (Figure 4.1 (a)). On the back

side, streamwise velocities are reduced by an adverse pressure gradient. Finally,
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Figure 4.1: (a) Velocity profiles in the vicinity of the roughness element obtained
by PIV measurement (circle) and CFD calculation (solid line). Separation (dashed
line) at z = 0.0 m behind the roughness element obtained by (b) CFD calculation
and (c) PIV measurements

negative velocities occur and constitute a separation, which ranges from about

x = 2.37 to 2.475 m as can be seen in Figure 4.1 (b) and (c).

Using the CTA method, the streamwise velocities can be measured in a large

range from x = 2.0 m to x = 3.5 m. Figure 4.2 (a) illustrates the numerical and

experimental velocity distributions in y-direction at several streamwise positions

in the symmetry plane z = 0.0 m. At x = 2.0 m, where influences of the roughness

element are not yet perceptible, both numerical and experimental velocity profiles

are consistent with the Blasius flow. Behind the roughness element at x = 2.5 m,

a rapid velocity change in wall-normal direction and an inflection point are ob-

served. As seen above, this originates from the separation behind the roughness

element. These reduced velocities are gradually recovered further downstream at

x = 2.8 and 3.5 m (Figure 4.2 (a)). Velocity profiles at x = 3.5 m still show a good

agreement between experiments and the steady laminar simulation. This means
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Figure 4.2: (a) Comparison of numerical (solid line) and experimental (circle) ve-
locity profiles and (b) experimental disturbances (solid line with circle) and nu-
merical wall-normal velocity gradient (dashed line) and (c) distribution of spec-
tral amplitudes in front of roughness element (x = 2.0 m) and downstream
(x = 2.5, 2.8, 3.5 m) on the symmetry plane z = 0.0 m

that the flow has not yet evolved into turbulence.

Figure 4.2 (b) shows experimentally measured disturbances in comparison
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with numerically calculated velocity gradients. According to Rayleigh’s inflection

theorem, as mentioned in Chapter 2, an inflection point on velocity profiles is a

sufficient condition for unstable flow. A high shear layer normally presents inflec-

tion points; therefore, a study of velocity gradients of velocity profiles compared

with disturbances allows an origin of flow instability to be estimated. First, the

magnitude of disturbances at x = 2.0 m is about u′rms/ue = 0.002 both in- and out-

side of the boundary layer. This means that neither fundamental instability nor lo-

calized disturbances due to the roughness element occurred. Spectral amplitudes

illustrated by contour lines with an increment 0.005 in Figure 4.2 (c) also show

nothing at x = 2.0 m. Second, a distinct appearance of disturbances is observed at

x = 2.5 m. The distribution of the disturbances looks like the wall-normal veloc-

ity gradient of the numerical calculation. This means that the disturbances in the

middle (z = 0.0 m) originate from the wall-normal shear. Their spectral ampli-

tudes in Figure 4.2 (c) are characterized by a shedding motion with frequencies

0.07 and 0.17 Hz. Third, the growth of the disturbances at 2.8 m also follows the

wall-normal velocity gradient. The wall-normal position of the peak rises slightly

upward. The distribution of the spectral amplitude also widens in the center of

the two frequencies 0.07 and 0.17 Hz. Last, at x = 3.5 m (Rex = 2.8× 105), the

disturbances spread out widely and their profile changes into a zig-zag pattern.

Spectral amplitudes in Figure 4.2 (c) are concentrated on the lowest frequency

area. This means that unstable secondary instability has begun at this position,

but a transition to turbulence has not yet started as previously demonstrated by

the steady streamwise velocity profiles in Figure 4.2 (a).

4.2 Streamwise elongated streaks

Another important physical phenomenon of the streaky boundary layer induced

by a three-dimensional roughness element can be found in the spanwise velocity

distribution (Figure 4.3 (a)). First, a reduced velocity area due to the separation
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Figure 4.3: (a) Comparison of numerical (solid line) and experimental (circle) ve-
locity profiles; (b) experimental disturbances (solid line and circle) and numerical
spanwise velocity gradient (dashed line); (c) distribution of spectral amplitudes in
front of roughness element (x = 2.0 m) and downstream (x = 2.5, 2.8, 3.5 m) at
y = 7 mm

is observed as seen in the previous section in the middle z = 0.0 m and recov-

ered gradually in a downstream direction. On both left and right sides, velocity
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increases are seen at x = 2.5 m, z = ±0.025 m in the spanwise direction. The ve-

locities grow up to x = 2.8 m and then decrease slowly to x = 3.5 m. A noticeable

feature of this spanwise velocity variation can be captured by the distribution of

streamwise velocity difference up = u(z)− u(zmax) seen in Figure 4.4, in which

the undisturbed boundary-layer part u(zmax) is subtracted from the entire veloc-

ity distribution with streaks u(z). In this figure, streamwise elongated high- (on

both flanks) and low- (at the middle) speed streaks are clearly recognized on both

the results of CFD simulation and experiment. The low-speed streak is stretched

from the separation into a downstream direction and the high-speed streaks on

the left and right sides are formed from about x = 2.55 m. (cf. the next para-

graph ‘Generation of streamwise streaks’). One should notice here again that the

experimental spanwise velocity distribution has a small asymmetry. Figure 4.3 (a)

shows a consistent deviation of spanwise velocity profiles between CFD simula-
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Figure 4.4: Velocity difference distribution up (Positive (solid) and negative (dashed
line) value with ∆up = 0.042) of (a) CFD simulation and (b) CTA measurements
at y = 0.007 m
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tions and experiments at z = 0.025 m, and this is also observed in Figure 4.4 (b).

In Section 3.1, an improvement of the non-uniformity of the spanwise velocity

distribution in the LWK was tried. However, it was difficult to control perfectly

and it still appears here.

As in the previous section, experimental disturbances in the spanwise direc-

tion are compared with spanwise velocity gradients in Figure 4.3 (b), and their

spectral amplitudes are shown in Figure 4.3 (c). The experimental disturbances

at x = 2.5 m grow only in the middle, in spite of the distribution of spanwise

velocity gradients concentrated on around z = ±0.015 m. This implies that the

disturbances at this streamwise position were produced mainly by the wall-nor-

mal shear seen in Figure 4.2 (b) of the previous section and are less affected by the

spanwise shear. Spectral amplitudes in Figure 4.3 (c) appear as two groups, one

is at about 0.07 and the other at about 0.17 Hz. This is consistent with the spec-

tral amplitude distribution in wall-normal direction in Figure 4.2 (c). Although

the spectral amplitudes at x = 2.5 m are too small because the wall-normal mea-

suring position is y = 7 mm (cf. Figure 4.2 (c)), there is no doubt that these

amplitudes are produced by wall-normal shear when comparing spectral posi-

tions of both 0.07 and 0.17 Hz with wall-normal distribution seen in Figure 4.2

(c). At x = 2.8 m, the disturbances in the middle were reduced and outer dis-

turbances were increased on the left and right sides where the spanwise velocity

gradient is maximum. It is also seen in Figure 4.4 (b) that these disturbances grow

between high- and low-speed streaks. Disturbances at x = 2.8 m are evenly dis-

tributed in a range from 0.04 Hz to about 0.2 Hz. This shows that, in contrast to

the distribution by wall-normal shear in x = 2.5 m, streamwise disturbances that

are generated by spanwise shear are steady or quasi-steady. Consequently, these

disturbances are originating from spanwise shear based on streamwise streaks.

Finally, the disturbances become more irregular further downstream (x = 3.5 m)

and spread out in both left and right directions. Their spectral amplitudes are also

concentrated in a low frequency area, like the wall-normal distribution shown in
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Figure 4.2 (c).

Generation of streamwise streaks As introduced in Chapter 1, the streamwise

streaks are induced by quasi-steady streamwise vortices generated around the

roughness elements based on the lift-up mechanism. Thus, their formation can

be identified by investigating the streamwise vorticity, although the steady CFD

results do not contain perturbating components. Figure 4.5 shows the stream-

wise vorticity structures ωx around the roughness element and the high- and

low-speed streaks illustrated by velocity differences up = u(z) − u(zmax) in the

downstream direction. At y = 2.0 mm, a pair of counter-rotating vorticities is

generated at the front and back side of the roughness element symmetrically in

the spanwise direction. In higher positions, the vorticity structures in front of

the roughness element are elongated by higher boundary-layer velocities in the

streamwise direction and reach the farthest downstream at y = 6.0 m. At this

height, high-speed streaks are also strengthened most significantly. As they reach

the top of the roughness element, the vorticity structures steadily disappear (low-

est picture at y = 8.0 mm).

These streamwise elongated vorticity structures and their influences on the

flow field are illustrated in streamwise (y, z)-planes in Figure 4.6. At x = 2.4 m,

two pairs of counter-rotating vorticity structures are seen on the upper and lower

part of the roughness element (cf. (x, z)-planes at y = 2.0 and 6.0 mm in Figure

4.5). A swirling motion of vectors having negative streamwise velocities, i.e., a

separation, is observed in the middle behind the roughness element. The vor-

ticity structures gather towards the center at x = 2.5 m while decreasing the

separation. High-speed flow from the upper boundary-layer is drawn into the

area between positive and negative vorticities (lift-up effect). The vorticities then

decay gradually in the downstream direction and high-speed streaks, which are

visualized by the velocity difference up in the lowest picture of Figure 4.6, are

distinctly formed at x = 2.6 m as a result of the lift-up mechanism between the
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two counter-rotating streamwise vorticity structures. The low-speed streak arose

mainly from a velocity deficiency caused by the separation (also see Figure 4.5).

Fransson et al. (2004) raised a hypothesis that the suboptimal transient growth

can be led when a wall-normal position of initial streamwise vortices is lower than

optimal disturbances. As seen from the vorticity structures at x = 2.4 m in Fig-

ure 4.6, the initial vortices generated by a roughness element depend strongly on

the height of the roughness element. Moreover, a development of the streamwise

vortices seems to be disturbed somehow by the separation behind the roughness

element. Consequently, the roughness element and its separation could be a rea-

son for the suboptimality by itself.
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Figure 4.5: Velocity difference up (color) and vorticity distribution ωx = ±0.5, 1.1,
2.0 (solid and dashed lines)
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Figure 4.6: Velocity vectors and distribution of velocity difference up (color) and
vorticity distribution ωx = ±0.3, 0.5 in x = 2.4 m, ωx = ±0.2, 0.3 in x = 2.5 m,
ωx = ±0.11, 0.15 in x = 2.6 m (solid and dashed lines)
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Chapter 5

Linear Stability Analysis

This chapter shows the results of a stability analysis of the streaky base flow

described in the previous chapter and comparisons of calculated eigenmodes with

experimental measurements. First, an eigenmode spectrum and its streamwise

evolution are considered in Section 5.1. Eigenfunctions of relatively stable TS-

modes and their spanwise higher harmonics are also introduced. The main part of

this chapter is Section 5.2, in which comparisons of theoretical and experimental

eigenfunctions of the most unstable eigenmodes and an analysis of streamwise

evolution are performed. A preliminary test for an artificial forcing of a specific

eigenmode is dealt with in Section 5.3.

5.1 Eigenmode spectrum

An eigenmode spectrum with a streamwise wave number α = 2π/λ = 33 at

x = 2.5 m is shown in Figure 5.1 (a). At first, a grid convergence study was con-

ducted with various grid points from 30× 30 to 130× 130 on a 2D (y, z)-cross-cut

domain, as seen in Figure 2.1. Some high-resolution results in Figure 5.1 (a) show

that most eigenvalues converged with 130× 130 resolution. Thus, this resolution

has been used for all calculations that follow below. Two distinguishable unstable

modes, which exhibit symmetrical and asymmetrical eigenfunctions with respect
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Figure 5.1: (a) Eigenmode spectrum in terms of growth rate Im(ω) with varying
angular frequency Re(ω) at x = 2.5 m. Streamwise wave number is α = 33 and
Ny and Nz are the number of grid points in wall-normal and spanwise direction,
respectively. I, II, and III mean first, second, and third harmonic and subscript
sinu and vari indicate sinuous and varicose mode. (b) Growth rate of varicose
(4), sinuous (2), and TS (©) mode with varying streamwise wave number α

to the spanwise coordinate and are the so-called varicose and sinuous mode, are

found in the highly unstable region, and their eigenfunctions will be explained

in detail in Section 5.2. As described by Andersson et al. (2001), who investigated

the breakdown of boundary-layer streaks, the sinuous eigenmode is the most un-

stable mode. So, the present study focuses on the sinuous mode. The streamwise

wave number α = 33, in which the sinuous mode has the maximum growth rate

(see Figure 5.1 (b)), was selected for a temporal stability calculation.

TS mode and spanwise higher harmonic An unstable mode indicated as TS-

mode in Figure 5.1 (b) is seen slightly above the neutral line Im(ω) = 0 and

followed by pairs of higher harmonic modes in the spanwise direction, which

also occur in varicose and sinuous patterns. The eigenfunctions of the TS modes

are shown in Figure 5.2. Figure 5.2 (a) shows an amplitude concentration in the

middle, which occurred by a provocation of the roughness element, and undis-

turbed TS wave amplitudes are observed outward. The growth rate and angular
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Figure 5.2: Streamwise amplitude û/ûmax (solid lines with 0.1 increment) and
phase (color) distribution of (a) TS and its (b) 1st and (c) 2nd harmonic mode
(TS mode, TS I, and TS II in Figure 5.1, respectively)

frequency of the mode is ω = 12.6 + 0.11i, and this is consistent with a classical

TS wave of ω = 12.5 + 0.18i in a 2D boundary-layer without roughness element

under the same flow conditions in this study, although its calculation is not de-

scribed here. Moreover, the amplitude distribution in y-direction on the outside,

where the influences of the roughness element are non-existent or sufficiently

weak, is very similar to the classical TS wave, especially with respect to a double

peak with a phase difference π. For these reasons, this was named TS mode. The

phase differences between the middle where the amplitudes are generated by the

roughness element and the outside also have opposite signs. Spanwise high har-

monics of the TS mode are illustrated in Figure 5.2 (b) and (c). The amplitude
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concentration in the middle has hardly changed, whereas the amplitudes outside

of the center are divided into standing wave patterns, which oscillate oppositely.

The growth rates Im(ω) of these modes are mostly found in the negative area,

which means they decay gradually.

Streamwise evolution To compare with experimentally measured disturbances,

which are growing spatially in a laboratory test section (cf. subsection 5.2.3), spa-

tial growth rates αi are required, and these can be calculated by the LST with

a spatial approach. However, spatial stability calculations, in which the govern-

ing equations are formulated as a non-linear eigenvalue problem, need maximal

twice the working memory. For this reason, the Gaster transformation according

to Koch et al. (2000)

ωr,s = ωr,t

αr,s = αr,t

q̂s(y, z) = q̂t(y, z)

αi,s = −
ωi,t

cgr,t
, cgr,t =

∂ωr,t

∂αr,t
≈ ωr,t

αr,t
= cph,t

(5.1)

where cgr and cph are group and phase velocity and indices s and t indicate spa-

tial and temporal approach, respectively, is a very efficient way of converting the

temporal growth rates (ωi) into spatial ones (αi). Figure 5.3 (a) shows a compari-

son of the spatial growth rates calculated by the Gaster transformation with those

obtained by directly applying the spatial approach. The temporal stability cal-

culation was performed with a streamwise wave number αr = 33, as explained

above, and then their temporal growth rates were transformed into spatial ones

by the Gaster transformation. The spatial stability calculations were done with

two constant frequencies ωr = 12.33 and 14.08, which are the frequencies of the

sinuous and varicose eigenmode calculated by the temporal calculation. Although

the temporal calculations were performed with a grid resolution 130× 130, a grid

resolution 120 × 120 was used for the spatial calculation owing to a limitation
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Figure 5.3: (a) Comparisons of spatial growth rates αi calculated by the Gaster
transformation (2) and by spatial approach (©) at x = 2.5 m (b) Streamwise
evolution of growth rate Im(ω) according to angular frequency Re(ω) of varicose
(4) and sinuous (2, O) mode from x = 2.5 to 3.1 m. All eigenvalues connected
by a solid line are obtained for the constant α = 33. Those connected by a dashed
line are obtained for ωr ≈ const.

of working memory. Nonetheless, the results are reasonably close to each other.

Also, Groskopf et al. (2010), who used the same computer code as in the present

study, showed an excellent agreement of directly computed spatial growth rates

with temporal growth rates after applying Gaster’s transformation. Moreover, as

will be seen in Section 5.2, the mode shape is less dependent on the streamwise

spatial evolution. Therefore, for an efficient computation, the temporal stability

calculations with the Gaster transformation were carried out in the present study

for comparison with the experimental results.

The streamwise evolution of the two most unstable varicose and sinuous

modes can be analyzed by observing several successive eigenmodes in the stream-

wise direction (Figure 5.3 (b)). Amplitudes of the varicose and sinuous mode in-

crease up to x = 2.9 m and x = 2.7 m, respectively, and then decrease gradually in

the downstream direction. The temporal growth rate Im(ω) of the sinuous mode

is higher than of the varicose case near the roughness element at x = 2.5 m, but

also falls off faster in the downstream direction. As the growth rates of the vari-
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cose mode are gathered close to the neutral line Im(ω) = 0, amplitudes of the

varicose mode are reduced far more slowly. The angular frequency of the sinuous

mode rises steadily in a wide range between Re(ω) = 14 and 19 with a constant

α. However, the frequency of the sinuous mode may be physically conserved

in experiments. To approximate this assumption, the most unstable frequency

Re(ω) = 14 of the sinuous mode at x = 2.5 m was tracked by adjusting α (see

dashed line in Fig. 5.3 (b)). As a result, the amplification rates for this path are

somewhat larger than for the case with fixed streamwise wave number α = 33.

The corresponding streamwise wave numbers vary from α = 30 at x = 2.6 m to

α = 25 at x = 3.1 m. In comparisons with experiments later, these eigenvalues

will be considered. In contrast, the frequency and the streamwise wave number

of the varicose mode are maintained at about Re(ω) = 13 and α = 33, which are

very similar to the angular frequency of the TS-mode.

5.2 Varicose and sinuous mode

5.2.1 Eigenfunctions

Amplitude and phase distributions of the varicose and the sinuous mode at

x = 2.7 m where the sinuous mode is most developed (cf. Figure 5.3 (b)) are

illustrated in Figure 5.4 from (c) to (h). The streamwise amplitudes û/ûmax of the

varicose mode in Figure 5.4 (c) are intensively concentrated in the middle of the

roughness element z = 0.0 m, and this is comparable with the largest velocity

gradient in wall-normal direction in Figure 5.4 (a). These strong wall-normal ve-

locity gradients originate from the low-speed streak generated behind the rough-

ness element. Relatively weaker amplitudes at both opposite sides z = ±0.035

and ±0.075 m in Figure 5.4 (c) can be compared with wall-normal velocity gra-

dients of the high- and low-speed streaks illustrated by the velocity difference up

in Figure 5.4 (a). Hence, the varicose mode depends on the wall-normal velocity



5.2 Varicose and sinuous mode 63

z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.005

0.003

0.001

0.001

0.003

0.004

0.006

0.008

0.010

0.012

0.014

(a)
z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.005

0.003

0.001

0.001

0.003

0.004

0.006

0.008

0.010

0.012

0.014

(b)

z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

3.14

2.83

2.51

2.20

1.88

1.57

1.26

0.94

0.63

0.31

0.00

(c)
z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

3.14

2.83

2.51

2.20

1.88

1.57

1.26

0.94

0.63

0.31

0.00

(d)

z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

3.14

2.83

2.51

2.20

1.88

1.57

1.26

0.94

0.63

0.31

0.00

(e)
z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

3.14

2.83

2.51

2.20

1.88

1.57

1.26

0.94

0.63

0.31

0.00

(f)

z [m]

y
 [

m
]

-0.1-0.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

3.14

2.83

2.51

2.20

1.88

1.57

1.26

0.94

0.63

0.31

0.00

(g)
z [m]

y
 [

m
]

0.10.0500.050.1
0

0.005

0.01

0.015

0.02

0.025

0.03

3.14

2.83

2.51

2.20

1.88

1.57

1.26

0.94

0.63

0.31

0.00

(h)

Figure 5.4: (a) Wall-normal and (b) spanwise velocity gradient (solid and dashed
line with 10 increment for (a) and 5 increment for (b)) and velocity difference up
(color) at x = 2.7 m. Eigenfunction of varicose mode (c) û/ûmax (e) v̂/v̂max (g)
ŵ/ŵmax and sinuous mode (d) û/ûmax (f) v̂/v̂max (h) ŵ/ŵmax. Solid lines illustrate
amplitudes with 0.167 increment, color absolute phase distribution

gradients of the streaky base flow. In combination with a dragging up of wall-

normal v̂/v̂max (Figure 5.4 (e)) amplitudes and a centering of spanwise ŵ/ŵmax

(Figure 5.4 (g)) amplitudes, the streamwise amplitudes oscillate symmetrically

with respect to the spanwise coordinate.

The sinuous eigenmode can be understood by correlating with a spanwise ve-



64 5 Linear Stability Analysis

locity gradient of the streaky base flow in Figure 5.4 (b). This velocity gradient

is based on velocity differences between the high- and low-speed streaks in the

spanwise direction and the maximum gradients are located between them. The

streamwise amplitudes of the sinuous mode in Figure 5.4 (d) are also split into

two parts with respect to the middle at z = 0.0 m, like the spanwise velocity

gradient, and concentrated on the position where the velocity gradient is max-

imum. Furthermore, the opposite sign of the velocity gradient on left and right

side matches well with the phase difference of about π shown in Figure 5.4(d).

With an intersecting up- and downward movement of the wall-normal ampli-

tudes (Figure 5.4 (f)) and a translating left and right side of spanwise amplitudes

(Figure 5.4 (h), respectively, left and right halves of the streamwise amplitudes os-

cillate alternatively forward and backward. Consequently, it can be assumed that

the sinuous mode belongs to the spanwise velocity gradient of the streamwise

streaks.

Temporal evolution The behaviour of the eigenfunctions and quasi-steady flows

distorted by them can be intuitively observed in a temporal evolution. A sinu-

soidal expansion can be used for the evolution

u′ = û · sin(αrx−ωrt + Φ) (5.2)

where αr and ωr are the streamwise wave number and frequency, respectively,

and Φ is the phase distribution. These variables are taken from the eigenmodes

and -functions. Moderate amplitudes, 7% of the external velocity ue for the vari-

cose and 10% of ue for the sinuous mode, are applied to the steady base flow.

Figure 5.5 illustrates the results.

The upper part of Figure 5.5 (a) illustrates the perturbation structure of the

varicose mode. As expected from the analysis of the eigenfunctions above, the

streamwise amplitudes oscillate symmetrically, and a varicose flow pattern is
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formed in combination with steady velocity components (upper part of Figure

5.5 (b)). The perturbation structure of the sinuous mode (lower part of Figure

5.5 (a)) consists of a pair of streamwise amplitudes oscillating in the opposite di-

rection. By this perturbation’s behavior, the steady flow is modified into a wavy

flow pattern (lower part of Figure 5.5 (b)). These two flow patterns are the typical

fundamental varicose and sinuous mode of streamwise streaks (Andersson et al.,

2001).

5.2.2 Experimental measurements

In the LST, whose governing equations are formulated as an eigenvalue problem

as shown in Chapter 2, each eigenmode is calculated independently. However,

in practical flows, the eigenmodes occur concurrently and might influence each

other. Thus, to find an experimental existence of each eigenmode and to inves-

tigate interactions between the modes is valuable for a physical understanding

of flow instability. Experimental measurements of the present work have been

performed under a natural condition, i.e. without any spectral control. Therefore,
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Figure 5.5: Temporal evolution of (a) streamwise perturbation and (b) superposi-
tion with steady base flow u = ū + u′ of varicose (upper part) and sinuous (lower
part) mode at x = 2.7 m. Dashed lines indicate negative values and superscript *
means dimensional value
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a careful acquisition and evaluation of signals is required to correctly identify

each instability mode. The signal processing for acquiring high-resolved signals

was already explained in Section 3.4, and evaluation of the acquired signals and

comparisons with the theoretical eigenmodes are introduced in this subsection.

Signal evaluation As seen in the previous subsection, the varicose and sinuous

eigenmode behave symmetrically and asymmetrically with respect to the span-

wise coordinate. To separate experimentally the velocity signals into symmetri-

cal (varicose) and asymmetrical (sinuous) parts, as explained in Section 3.4, two

identical hot-film probes were installed at the same spanwise distance from the

symmetry plane at z = 0.0 m which simultaneously acquired the signals. Figure

5.6 (a) shows an example of the signals. The signals from both probes correlate

strongly with each other. It means that a symmetrical instability is dominant. At
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Figure 5.6: (a) Experimental signal of the streamwise amplitude component at
z = 9.5 mm (solid) and z = −9.5 mm (dashed line) (x = 2.7 m, y = 9.25 mm) (b)
simulation of their difference
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a closer look to the peak of the signals, however, an alternating occurrence of am-

plitude peaks of each signal (red-solid and blue-dashed line in the figure) on the

opposite side is observed due to the asymmetric sinuous mode.

This can be inferred from the simulated signal in Figure 5.6 (b). Theoretical

eigenfunctions selected from the varicose and the sinuous eigenmode at the same

positions where the experimental signals are collected are expanded temporally

by Equation (5.2) with their own frequencies (hence the initial phase difference

was not considered). The amplitudes of the sinuous mode are normalized by its

maximum value and new amplitudes corrected by the maximum varicose ampli-

tude with an amplitude ratio εvari/εsinu = 5 are applied like,

u′LST,R = u′LST,vari +
u′LST,sinu

|u′LST,sinu|max
·
|u′LST,vari|max

εvari/εsinu

u′LST,L = u′LST,vari −
u′LST,sinu

|u′LST,sinu|max
·
|u′LST,vari|max

εvari/εsinu

(5.3)

where the subscripts R and L mean the position z = 9.5 and −9.5 mm, respec-

tively, where the hot-film probes are located, so the corrected sinuous amplitudes

were added and subtracted, respectively. Amplitudes were not scaled between the

experimental and simulated signals due to an intention for qualitative compar-

isons only. A behaviour very similar to the experimental signals is observed also

in the theoretical ones in Figure 5.6 (b), but due to the fact that the present study

had been performed under a natural condition without external disturbance con-

trol as mentioned previously, the streamwise disturbance signals versus time in

the experiment are less harmonic.

Figure 5.7 shows the Fourier transformed spectra of the acquired signals from

each probe. First of all, both magnitudes and shape of the amplitudes are quite

similar to each other, as expected from the direct comparisons of the time traces

above in Figure 5.6. Particularly, the distribution of absolute phase differences

between these two amplitudes in Figure 5.7 (b) is almost |∆Φ| = 0 at y = 0.012 m

where the amplitudes are mostly developed. This implies that the symmetrical
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Figure 5.7: (a) Disturbance amplitude at x = 2.7 m in frequency domain from
probe 1 and 2. (b) Absolute phase difference (|∆Φ|). Red dashed line indicates the
area where large amplitudes are mostly located

property is a dominant factor characterizing the flow instability of the streaky

layer in this study. In other words, the varicose mode is the dominant mode,

although the sinuous mode grows maximally up to x = 2.7 m according to the

theoretical growth rates in Figure 5.3 (b).

Quantitative comparisons To obtain the unstable eigenmodes for the experi-

ment, signal separation into varicose and sinuous components was performed by

Equation (3.8), and the results at x = 2.7 m are shown in Figure 5.8. The spectral

amplitude distributions of the varicose mode in Figure 5.8 (a) are quite similar

to the amplitudes from a single probe in Figure 5.7 (a) in shape and magnitude.

On the contrary, the amplitudes of the sinuous part are rather faint and are ap-

proximately five times smaller than the varicose part (also see x-axis on Figure

5.8 (b)).

For comparisons with experimental results, the theoretical angular frequencies

ωr can be transformed into dimensional frequencies by

f =
ωr

2π

ue

L
(5.4)
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Figure 5.8: Numerically separated varicose (left) and sinuous (right) signal (a) in
the frequency domain and (b) rms-values in comparison with LST. Arrows indi-
cate wall-normal positions where the reference values ûre f and u′re f are selected

where the reference length is L = 1 m. First, the ωr = 12.8 of the varicose mode

in Figure 5.3 (b) leads to a frequency f = 0.16 Hz. The experimental amplitudes

of the varicose component in Figure 5.8 (a) are distributed around f = 0.18 Hz,

which is satisfactorily close to the theoretically predicted frequency f = 0.16 Hz.

Second, the theoretical angular frequencies of the sinuous mode ωr ≈ 14 corre-

sponds to f ≈ 0.18Hz. The experimental sinuous amplitudes in Figure 5.8 (a)

lie between f = 0.13 and 0.21 Hz. This spans the theoretical prediction well, but

essentially the experimental sinuous amplitudes were unsatisfactory. To compare

the magnitude and mode shape of the experimental results with the theoretical

ones, the normalized theoretical eigenfunctions û/ûre f were adjusted by non-di-

mensional experimental amplitudes of streamwise disturbances u′re f /ue

u′LST =
û

ûre f
·

u′re f

ue
(5.5)

where the theoretical and experimental reference amplitudes ûre f and u′re f are

taken at the maximum value in wall-normal direction. The theoretical amplitudes

were extracted at z = 9.5 mm, where the hot-film probe was located, and com-

pared with rms-valued experimental streamwise disturbances in Figure 5.8 (b).
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Figure 5.9: Comparison of experimental amplitude u′/u′max (left side) with the
theory û/ûmax (right side) in a 2D plane at x = 2.7 m. (a) varicose and (b) sinuous
mode

The amplitude profile of the varicose mode shows a good agreement between

theoretical and experimental results. Peaks at both y = 0.002 and 0.01 m are ad-

equately reproduced. The sinuous mode exhibits, however, two-point oscillations

near y = 0.01 m, where the amplitude is maximum. Some experimental noise is

also observed in the upper boundary layer above y = 0.0158 m. In summary, the

instability of the streaky flow generated by the roughness element is dominated

by the varicose mode, while the sinuous mode in aspects of both magnitude and

spectrum is somehow hidden by the larger varicose mode and/or some other

disturbances, as well as experimental noise.

Qualitative comparison As mentioned in Subsection 3.4.1, experimental ampli-

tudes were measured at several spanwise positions at x = 2.7 m by widening

the distance between the two probes at the same intervals. After a normalization

by their maximum value, the results are depicted on a two-dimensional plane

perpendicular to the flow direction and compared with the theoretical results in

Figure 5.9. Despite the weakness of the experimental sinuous mode, the mode

shape agrees well with the theoretical eigenfunction; see Figure 5.9 (b). On the

other side, the maximum amplitude of the experimental varicose mode in the
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middle z = 0.0 m (Figure 5.9 (a)) is located a little higher than the theoretical

one and has a shaper peak. The works of White (2002) and Fransson et al. (2004)

also found that the experimental streaks slightly move upward in a downstream

direction, but the numerical simulation in the present study did not catch that.

The differences of amplitude concentration may be caused by the technical limi-

tation that a simultaneous signal acquisition of two hot-film probes is impossible

at z = 0.0 m, i.e. interval ∆z = 0.0 m. So, for the varicose amplitudes, only sig-

nals from a single probe at z = 0.0 m were inserted, and the sinuous amplitudes

were assumed to be zero. Nevertheless, it is notable that the presence of both the

varicose and sinuous modes has experimentally been identified in an uncontrolled

practical flow.

5.2.3 Streamwise development of disturbances

Theoretical eigenfunction The theoretical eigenfunctions which are calculated

independently at selected streamwise positions could be interlinked with each

other in streamwise order by applying eN-factors

ũ(X, y, z) =
ûX(y, z)

ûX,max(y, z)
· eN(X), N =

∫
−αidX (5.6)

where X is the streamwise position where stability calculations were performed.

As explained in section 5.1, the spatial growth rates αi were obtained by the Gaster

transformation from temporal growth rates ωi and integrations were carried out

by a trapezoidal rule at every streamwise position X. Figure 5.10 illustrates the

results. The varicose amplitudes (Figure 5.10 (a)) develop initially with distur-

bances from a high shear layer detached from the top of the roughness element in

the middle at x = 2.5 m and streamwise streaks here are not fully developed yet.

From x = 2.7 m, additional local maxima based on wall-normal velocity gradients

of the streaks as explained in the previous section, begin to appear apart from the

centre. Further downstream, the outside amplitudes at z = ±0.08 m grow grad-
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(a)

(b)

Figure 5.10: Development of streamwise velocity perturbation of (a) varicose and
(b) sinuous mode. Both color and solid line indicate amplitudes ũ corrected by the
eN-factor

ually according to the increasing of the streaks, while the amplitude along the

center line decrease in accordance with the lower growth rates in Figure 5.3 (b).

In contrast, the streamwise evolution of the sinuous mode in Figure 5.10 (b) does

not show considerable changes in both mode shape and distribution in the mid-

dle of z = ±9.5 mm. Amplitudes reach their maximum at x = 2.8 m. These results
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Figure 5.11: Amplitude development of streamwise velocity perturbation. (a) vari-
cose and (b) sinuous mode

are also observed in the study of Denissen and White (2013) who investigated a

secondary instability based on roughness-induced transient growth.

Experimental disturbance The evolution of the experimental varicose and sin-

uous mode in the downstream direction is illustrated in Figure 5.11. According

to the eigenmodes in Figure 5.3 (b), amplitudes of the varicose mode grow up

to x = 2.9 m and then decrease gradually. The experimentally measured ampli-

tudes in Figure 5.11 (a) follow this theoretical prediction. Their frequency is also

constantly maintained between f = 0.1 and 0.2 Hz well. Even though a smaller

contour level than for the varicose mode has been used for depicting the sinuous

amplitudes in Figure 5.11 (b), no contour lines are seen at x = 2.5 m. These sin-
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uous amplitudes grow without cease in the downstream direction, in contrast to

the theoretical result, in which the disturbances grow up to x = 2.7 m and then

decrease. The spectral distribution of the experimental amplitudes widens in the

downstream direction. However, the center of the distribution is maintained at

about f = 0.18 Hz, as assumed in the previous section 5.1.

Comparisons of theory and experiment To compare the theoretical and exper-

imental streamwise development of disturbances, the theoretical eigenfunctions

were corrected once again in the same manner as Equation (5.5)

ũ′LST =
ũ

ũre f
·

u′re f

ue
(5.7)

where experimental (u′re f ) and theoretical (ũre f ) reference amplitudes were se-

lected from the maximum values in wall-normal direction at 2.7 m, as indicated

in Figure 5.12. The superscript tilde indicates that the independently calculated

eigenfunctions are arranged in a streamwise direction by the eN-method, as in

Equation (5.6). Generally, because experimental disturbances evolve in a test fa-

cility, i.e., develop spatially, the spatial stability analysis should be performed

for comparison with experimental results. However, as mentioned in Section 5.1,

transforming the temporal growth rates into spatial ones using Gaster’s trans-

formation is acceptable for the present study. Moreover, the streaky layer in the

present study is quasi-parallel to the streamwise direction (cf. Section 4.2) and the

mode shapes of the theoretical eigenfunctions gradually evolve in a streamwise

direction. This means that the mode shapes are less dependent on streamwise

station. The eN method is then used only to predict the streamwise growth of

the theoretical eigenfunctions, but not for scaling of the experimental results. The

experimental amplitudes have been measured using hot-film probes and compar-

isons in Figure 5.12 show how the measured amplitudes evolve compared to the

theoretical predictions. Therefore, the temporal stability calculation with the eN
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Figure 5.12: Theoretical (solid line) and experimental (circle on dashed line) distur-
bance amplitude profiles of (a) varicose and (b) sinuous mode. Arrows indicate
positions in y-direction of theoretical and experimental reference amplitudes

method is appropriate for investigating the streamwise development of distur-

bances on the present streaky layer.

As a result, both mode shapes and magnitude of amplitudes of the experi-

mental varicose mode show a good agreement with the theory at the first two

streamwise positions closer to the roughness element x = 2.5 and 2.7 m (see

Figure 5.12 (a)). The growth rate between these two streamwise positions is also

reasonable. The decrease of the experimental amplitudes further downstream at

x = 2.9 and 3.1 m is faster than theoretically predicted. The slight upward move-

ment of the peak amplitude in wall-normal direction has already been observed

in Figure 5.9 (a). In the upper part of the boundary-layer y > 0.02 m, the experi-
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mental profiles remain constant at about u′vari,rms/ue = 0.0015, while the theoret-

ical eigenfunctions are changing in the downstream direction. These values may

imply experimental noise, rather than describing eigenfunctions, although they

show a good agreement at x = 2.9 m.

Figure 5.12 (b) shows the sinuous mode. The experimental amplitude profile

at 2.5 m is smaller, particularly at y = 0.01 m where the varicose mode becomes

quickly dominant owing to a strong wall-normal shear. After that, the sinuous

mode grows faster than the varicose mode and fills up the deficiency at x =

2.7 m. However, a zig-zag pattern appears on the amplitude profile, which seems

to imply that larger noise than modal amplitudes exists. It should be noticed

once again that the present measurements were implemented in a natural manner

without any spectral control and their amplitude versus time is less harmonic

and includes irregular phase jumping, as already illustrated in Figure 5.6 (a).

Further downstream at x = 2.9 and 3.1 m, the experimental amplitudes grow

continuously, in contrast to the gradual decaying of the theoretical amplitudes

according to the eigenvalues as seen in Figure 5.3 (b). Deviation from the linear

theoretical profiles may occur by experimental nonlinear growth, as mentioned in

Chapter 4; the nonlinear behavior will be explored in the next chapter.

5.3 Asymmetric external forcing

As shown in the previous section, the varicose mode is dominant. Thus, the sin-

uous disturbances are much smaller than the varicose ones and their agreement

with the theoretical results is less good in both mode shape and frequency. In

addition, unavoidable experimental noise seems to interfere with clarification of

the sinuous mode. To overcome these difficulties, an increase of the relative mag-

nitudes of the sinuous amplitude was tried by forcing asymmetrical external dis-

turbances. The experimental setup and operations were already introduced in

Section 3.5, and the initially forced asymmetrical disturbances and comparisons
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of forced eigenmodes with unforced natural ones are described in this section.

Forced initial disturbance The wake of the wire placed upstream of the leading

edge (cf. Figure 3.9) is steady (ReD ≈ 80) such that the initial disturbances con-

sist of a small streamwise velocity defect which is periodically moving back and

forth in spanwise direction. Before reaching the leading edge, these disturbances

are constant in wall-normal direction to the flat plate. When they enter the bound-

ary-layer, they are stretched in streamwise direction. Thus, the initial disturbances

contain a wide spectrum of streamwise and spanwise wave numbers due to their

small spanwise extent compared to the amplitude of its displacement at the be-

ginning. Moreover, some mechanical uncertainties with the traversing device can

also lead to an unintended fuller frequency spectrum.

However, farther downstream the forcing signal develops into a quasi-har-

monic signal with a dominant fundamental frequency ( f = 0.225 Hz) and some

higher-harmonic ( f = 0.46 Hz) disturbances as seen in Figure 5.13 (a). It con-

firms that the forced signals are in true anti-phase as intended. Besides, Figure

5.13 (b) clearly shows a distinct growth of disturbances in the sinuous mode by

asymmetric forcing in the free-stream flow. On the other hand, the figures concur-
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Figure 5.13: (a) Spectral distribution and (b) rms-value of varicose and sinuous
forced disturbances at x = 1.0 m. δ99 is the boundary-layer thickness of the Blasius
flow
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rently reveal that the forced disturbances do not penetrate into the boundary-layer

(shear-sheltering effect). Moreover, disturbances ingested into the boundary-layer

are damped upstream according to the LST. This should be considered carefully

to interpret results farther downstream behind the roughness element.

Additionally, some noise is amplified in both the varicose and sinuous mode

at around f = 0.15 Hz. Interestingly, this frequency is close to that of the most

unstable TS wave for a Blasius boundary layer at x = 1.0 m. Thus, it could be sup-

posed that a non-negligible varicose part in the wide spectrum of wave numbers

is introduced by unavoidable mechanical difficulties of the external forcing for in-

creasing the turbulence intensity in the free-stream. And some irregularity could

also appear in the boundary-layer when the periodically forced disturbances en-

counter the leading edge of the flat plate. However, such agreement is coincidental

because TS waves should excite varicose disturbances rather than sinuous ones.

Thus, the reason for this unexpected additional frequency maximum is not yet

clear.

Spectral comparison with unforced case In Figure 5.14, spectral distributions of

the forced amplitudes are compared with the natural case, i.e., with and without

the external forcing disturbances. Although the asymmetrical excitation only was

forced, amplitudes of both varicose and sinuous mode in the boundary-layer are

amplified concurrently. An increase of the varicose amplitudes can be observed

in Figure 5.14 (a). At the first streamwise position near the element roughness

x = 2.5 m, the forced amplitudes seem very similar to the natural case. Further

downstream, a larger growth of the amplitudes than in the natural case is ob-

served. However, it is not as amplified as the sinuous mode, which needs higher

contour levels than the natural case in Figure 5.14 (b). It should be emphasized

that the amplitudes of the forced sinuous mode are centered around f = 0.16 Hz,

as in the natural case, despite the external input frequency of f = 0.225 Hz. As

seen previously, the external forcing disturbances are prevented by shear-shelter-
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Figure 5.14: Comparison of forced amplitude (black line) by external disturbance
input with natural case of (a) varicose (red line) and (b) sinuous (blue line) mode

ing from penetrating into the boundary-layer. Thus, the unstable eigenmode is

dominated by flow-inherent characteristics.

Comparison of forced amplitudes with LST Comparisons of the forced dis-

turbances with the theoretical eigenfunctions were performed in the same way

as in the previous section. The forced disturbances were separated into varicose

and sinuous parts, according to Equation (3.8), and their rms-valued amplitude

profiles are depicted in Figure 5.15. Theoretical eigenfunctions were scaled by eN-

factors (cf. Equation (5.6)) once again to apply streamwise development of am-

plitudes and dimensionalized (cf. Equation (5.7)) by reference amplitudes, which

are the maximum amplitudes in the boundary-layer at x = 2.5 m, indicated in
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Figure 5.15: Comparisons of theoretical (solid line) and forced experimental (circle
on dashed line) amplitude profiles of (a) varicose and (b) sinuous mode. Arrows
indicate position in y-direction of theoretical and experimental reference ampli-
tudes

Figure 5.15, for direct comparison with experimental results.

The varicose amplitudes are not considerably increased relative to the un-

forced case in Figure 5.12 (a), but amplitudes outside of the boundary-layer reach

from about u′sym,rms = 0.001 in the unforced mode up to about u′sym,rms = 0.003. It

seems that unexpected extra noise is added by the forcing mechanism. In compar-

ison with the unforced case, the wall-normal peak of the forced amplitude profile

starts at about y = 0.01 m at x = 2.5 m and moves further up and away from

the eigenfunction’s maximum in the downstream direction. More ruffled profiles

than in the unforced case also imply an increased instability of the varicose mode
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induced by the external asymmetric forcing.

The amplitudes of the forced sinuous mode are increased by a factor of about

three in comparison to the unforced one in Figure 5.12 (b). In particular, a lack

of amplitudes near y = 0.01 m at x = 2.5 m where the eigenfunctions are maxi-

mum is fully developed, as seen in Figure 5.15 (b). This implies that the sinuous

mode can be artificially forced by an external disturbance input. In Figure 5.15 (b)

the strong disturbance amplitudes in the free-stream, i.e., outside of the bound-

ary-layer, are also seen, as like in Figure 5.14 (b). These large outer disturbances

may become superposed with the inner-layer sinuous disturbances. Thus, the dif-

ference between theoretical and experimental profiles increases gradually in the

downstream direction.
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Chapter 6

Nonlinear Instability

6.1 Nonlinear secondary growth

Deviations of experimental disturbance profiles from the results of linear theory

in the far-wake zone x = 3.1 m in Figure 5.12 raise the possibility of nonlinear

growth of disturbances. Traces of the nonlinear secondary growth were also ob-

served in Chapter 4 by ragged velocity profiles (see at x = 3.5 m in Figures 4.2

and 4.3), with disturbances concentrated in the lower frequency area (see Figures

4.2 (c) and 4.3 (c)). Such a lower-frequency unstable behavior can be observed

in the perturbation velocity signal in Figure 6.1. In comparison with the signal

at x = 2.7 m in Figure 5.6 (a), the disturbances in the far-wake zone x = 3.1 m

oscillate with distinctly larger amplitude in a longer time duration.
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Figure 6.1: Time signal of streamwise disturbance containing nonlinear instability
in the far-wake zone
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z

x

Figure 6.2: Successive (∆t = 1 s) video shots of nonlinear evolution of streaks.
Cathode wire at y = h = 8.3 mm and x = 3.0 m. There is no relation with the
velocity signal in Figure 6.1

The flow behavior in the far-wake zone was visualized by timelines using

the hydrogen-bubble method (cf. Section 3.3), as depicted in Figure 6.2. A newly

formed high-speed streak is observed in the middle of the first picture. Initially,

a low-speed streak from separation was located here, as seen in Section 4.2. A

continuous velocity increase by spanwise vorticity associated with the wall-nor-

mal high shear layer, which pulls down upper high-speed fluid and pushes up

low-speed fluid, forms the high-speed streak in the downstream direction. In

the far-wake zone, the spanwise vorticity becomes stronger, and a low-speed

bulging lump, which appears as collapsed timelines on the second picture in Fig-

ure 6.2, occurs periodically. An instantaneous velocity field describing the low-
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Figure 6.3: (a) An instantaneous velocity field of PIV measurements with a veloc-
ity increment (solid lines) ∆u = 0.01 m/s from u = 0.02 to 0.06 m/s (b) velocity
deviation u′ = u− uavg (color) and positive (solid) and negative (dashed line) ver-
tical velocity component v′ = v− vavg with an increment ∆v′ = 0.008 m/s from
v′ = −0.003 to 0.013 m/s

speed bulging lump was captured by PIV measurements in Figure 6.3 (a). In

order to obtain unsteady fluctuations, the velocity field is subtracted by an aver-

aged velocity field with 50 successive captures in a time interval ∆t = 1.0 s, as

shown in Figure 6.3 (b). As a result of spanwise vorticity, the bulging lump con-

sists of lifted-up negative perturbations following brought-down positive ones.

This nonlinear behavior is consistent with the fundamental varicose mode (cf.

Figure 5.5). A wavy motion, which is a typical behavior of secondary instability

of streamwise streaks induced by either suctions or high free-stream turbulence

(Schmid and Henningson, 2000) is not observed. This means that the secondary

instability of the streaky flow induced by a three-dimensional roughness element
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is dominated by the fundamental varicose mode.

6.2 Breakdown

The breakdown of the streaky flow induced by a three-dimensional roughness

element was triggered by increasing the free-stream velocity to ue = 0.1 m/s, i.e.,

an over-critical Reynolds number Reh = 456. For depicting the three-dimensional

flow structures in the breakdown process, a hydrogen-bubble carpet was adopted

and illuminated by both a DPSS laser and a halogen lamp. Detailed setup and

operation can be found in Section 3.3.

Temporal changes in a period of the vortical structures are analyzed in four

time steps illustrated on (y, z)-planes (left side of Figure 6.4). At first, at t = 0.0 s, a

straight line is bent by strongly rotating vortices. It seems that high- (lower part)

and low-speed streaks (upper part) are tipped downward and upward, respec-

Figure 6.4: Decomposition of a three-dimensional vortical structure ((x, z)-plane
on right side) at x = 2.6 m and y = 8.3 mm into four time steps ((y, z)-planes on
left side)
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tively. The upper parts (low-speed streaks) are shifted into the middle (t = 0.32 s),

and such two parts from left and right side collide against each other in the mid-

dle (t = 1.12 s) and finally break down at t = 1.52 s. A two-dimensional cross-cut

on a (x, z)-plane at y = 8.3 mm (on the right side of Figure 6.4) describes these

whole processes as a butterfly-like structure, which flows periodically in a down-

stream direction.

Figure 6.5 shows a spatial development of these vortical structures further

downstream. Three-dimensional structures in a longer distance can be illumi-

nated by a halogen lamp. In Figure 6.5 (a), the butterfly-like vortex structure is

also found and followed successively by a hairpin vortex. This transformation of

vortex structures was decomposed in three time steps in Figure 6.5(b). At first,

at t = 0.0 s, the low-speed velocity parts that are rolled and lifted up from both

left and right side, meet in the middle, as explained in Figure 6.4. They are facing

upstream higher velocity components and then rolling with respect to the span-

wise coordinate (t = 0.32 s). This part forms into the head of the hairpin vortex

and a following streamwise elongation of the rotating head of the vortex becomes

the feet of the hairpin vortex (t = 0.76 s). The feet of the vortices spread out in

a spanwise direction and enlarge the turbulent flow area further downstream.

In this way, successively formed hairpin vortices flow in a downstream direction

(Figure 6.6), and a laminar-turbulent transition is finally triggered (not shown

here).
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(a)

(b)

Figure 6.5: (a) Evolution from butter-fly-like structure to hairpin vortex (b) time
steps to hairpin vortex



6.2 Breakdown 89

Figure 6.6: Side view of successively following hairpin vortices visualized by hy-
drogen-bubble carpet
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Chapter 7

Summary and Conclusions

In the present study, the stability of a streaky boundary-layer induced by a cos3-

shaped roughness element has been investigated. For the underlying base flow, a

numerical CFD calculation with a laminar solver and time-averaged experimen-

tal measurements using a hot-film method were performed in the laminar water

channel (LWK) at the Institut für Aerodynamik und Gasdynamik (IAG), Univer-

sity of Stuttgart. Negative velocity components resulting from separation were

measured by a mono-PIV system. As a result, a steady streaky layer consisting

of high- and low-speed streaks in its wake was found. The high-speed streaks

were generated by the lift-up mechanism based on streamwise counter-rotating

vortices that arise on both flanks of the roughness element. The low-speed streak

that appeared in the plane of symmetry originates from a flow separation behind

the element.

Such a three-dimensional streaky boundary-layer generated by a roughness

element gives rise to many unstable eigenmodes according to bi-global LST.

Two highly unstable eigenmodes, which respectively oscillate symmetrically and

asymmetrically with respect to the symmetric plane in the middle, were identi-

fied and accordingly termed the varicose and sinuous modes. The varicose am-

plitudes are perturbed by wall-normal velocity gradients of the streaky layer. The

asymmetrical nature of the sinuous amplitudes is caused by opposite signs of the
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spanwise velocity gradient and is responsible for a wavy motion of the streaks.

In other words, these two most unstable modes belong to each shear layer in

wall-normal and spanwise directions.

The present study mostly focused on experimental investigations for confirm-

ing the existence of these unstable modes in practical flow and for analysing

their instability. Experimental disturbances, which consist of mixed disturbances,

originated in two different ways, i.e., by wall-normal and spanwise shear lay-

ers, respectively, were acquired by two simultaneously operating hot-film probes,

and separated into a varicose and a sinuous part. Comparisons with theoretical

eigenfunctions showed a good agreement in general. The varicose mode based on

a high shear layer first dominates the sinuous one, after which a continuous in-

crease of the sinuous mode is observed in the far-wake zone, whereas the varicose

amplitudes gradually decrease.

Owing to a relatively low signal-to-noise ratio, the sinuous mode is more sus-

ceptible to measurement errors. For this reason, forcing asymmetrical amplitudes

in the free-stream were tried in order to amplify the sinuous mode. The sinuous

mode was enhanced about three times compared to the unforced case and re-

vealed amplitude profiles closer to the eigenfunction predicted by linear stability

theory. However, shear sheltering prevents the external disturbances from enter-

ing the boundary layer. Hence, only amplitudes of the eigenmode were amplified

in the boundary-layer, but an unintentional mismatch of forcing frequency occurs.

Consequently, a separate forcing for a specific eigenmode has been achieved by

external disturbances, confirming that the sinuous disturbances for the present

experimental set-up are an eigenfunction of the streaky laminar base flow. How-

ever, this has been only a preliminary test, and a new careful method for forcing

the sinuous mode is required to control directly inner boundary-layers and to

amplify the sinuous mode at an exact frequency.

Farther downstream, the streaky layer started nonlinear secondary growth

and exhibited a motion like the fundamental varicose mode. This indicates that
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fundamental instability of the streaky boundary-layer induced by a roughness

element is dominated by the varicose mode. A breakdown process under an over-

critical condition Reh = 456 was explored by observing the vortical structures of

the nonlinear streaky layer that evolve into hairpin vortices.
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Appendix A

Technical Data

Table A.1: Laminar water channel

Channel type Closed return channel

Construction Fiberglass-sandwich construction

Flow medium Water (softened)

Water conditioning Ion exchanger; Chlorination; Bypass filtration

with filter 10, 2.5, 1.2, 0.2 µm

Power section 2 counter-rotating axial pumps with asymmetrical

blade; Power transmission pro flywheel (400 kg)

and drive belt; RPM-regulated motor (2.3 kW)

Rectifier 2 honeycomb rectifiers at diffuser entrance

Diffuser 10 m long diffuser with angle change 5.9◦ → 5.0◦

Nozzle Three-dimensional contraction (7.7 : 1) by free wa-

ter surface

Calming section 3 10x textile screens (crosswise) and 1 precision

screen (steel single wire, ∅ 0.1/mm)

Test section 1.2 × 0.5 × 10 m, 3 glass walls and a free water

surface

Vibration isolation Air sleeve footing. Rubber sleeve for transmission

components and drive belt for motor
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Thermal isolation Room on basement with heat-insulating walling.

All components are constructed by heat-insulat-

ing sandwich-material

Temperature stability < 0.05 ◦C/day

Velocity range 0.05 ∼ 0.2 m/s

Turbulent intensity

Tu =
√

ū′2

< 0.05 % (0.10 ∼ 10 Hz) and < 0.15 % (0.01 ∼

10 Hz) by free-stream velocity ue = 0.15 m/s

Table A.2: PIV system

Seeding

particle

Type Nylon-Particle (Toray SP-500)

Specific weight ρ = 1.02 g/cm3

Diameter 5 µm

Laser

sheet

Laser type Double pulse Nd:YAG (Quantel Bril-

lant Twins)

Energy 150 mJ/pulse

Wave length 532 nm

Pulse duration 4 nm

Repetition rate 10 Hz

Camera

type CCD, SVGA sensor (0.12 mm/px)

Resolution 1280× 1024 px

Pixel size 6.7µm

Discretization 12 bit

Lens focal length 50 mm

Objective Nikkor 1 : 1.4

min. time duration 1 µs
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Installation of the Flat Plate in the

Test Section

The entire length of the flat plate in the test section of the LWK is 8 m and consists

of six glass plates whose length is respectively either 1.0 or 1.5 m with a thickness

8 mm. The first plate has an elliptical nose with a ratio 10 : 1 by which the excess

velocity near the leading edge is kept as low as possible. Figure B.1 (a) shows

a streamline flowing over the leading edge with no detachment at the installed

nose plate.

The edges of the glass plates are chamfered to prevent a chipping off (see

(a)

Glass plate

Chamfer

Tape
Silicon

Channel bottom

Flow direction

Support

(b)

Figure B.1: (a) Streamline flowing over the elliptic leading edge (b) packing junc-
tion between two plates with chamfers
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Figure B.1 (b)). This results in a wedge-shaped slot at the joint on both upper

and lower part of the plates. These slots were filled up with silicon and sealed by

adhesive tape with a 0.05 mm thickness. The tape is useful for compensating the

unevenness of the soft silicone. The influence of 0.05 mm thickness of the tape can

be neglected in view of the boundary-layer thickness which is at least 2 orders

thicker. In the same manner, the roughness element model was mounted on the

middle of the glass plate.

Because of the flexibility of the glass plates, they are bending on the supports.

By a careful controlling of the height of each support, the six glass plates could be

aligned in parallel with each other. The slope angle of the whole connected plate

was calculated by measuring the heights from the bottom of the plate up to the

water surface at every 1 m in streamwise direction. The maximum tilt angle was

0.029 ◦.

Flow visualization The installation of the glass flat plates was validated qual-

itatively by a flow visualization method using the dye-streak technique of Hoyt

and Sellin (1995). To retain the dye-streak over a long running track, a liquid mix-

ture having attributes of shear thickening and high extensional viscosity has been

used. Its recipe is

2 % C16TASal 50 ml

0.5 % PEG 25 ml

Tap water 100 ml

White Paint 1 ml.

The surfactant solution (2 % C16TASal) for the shear thickening consists of the

same amount of hexadecyltrimethylammonium bromide (C19H42B2N) and sodium

salicylate (C7H5NaO3). PEG (polyethylene glycol, HO(C2H4O)n) is known as

a drag reducing additive. Because the solutions are initially colorless, a small

amount of conventional white emulsion paint was added as a dye.
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x = 5.0 m

x = 5.5 m

x = 6.0 m

(a)

x = 6.5 m
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Figure B.2: Flow visualizations of laminar-turbulent transition on the flat plate by
dye-streaks observed in (a) spanwise direction (b) wall-normal direction. (a) and
(b) were captured independently

Figure B.2 shows the visualized laminar-turbulent transition on the newly

installed flat plate as explained above. Up to x = 4.0 m, the flow remained stable.

At the streamwise position x = 4.5 m from the leading edge, the dye-streak is

swinging slightly in the spanwise direction, and at x = 5.0 m the oscillation

is seen clearly. It is notable that the flow is swinging earlier in the spanwise

direction than in the wall-normal direction. The flow is still laminar up to here.

At x = 5.5 m, a deflection of the flow can be seen and the flow becomes fully
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turbulent at x = 6.0 and 6.5 m.

The free-stream velocity was measured by an optical method. A little white

ball was dropped on the water surface and filmed by a digital camera. 6 succes-

sive images of the flowing ball were captured and measured each moved distance

using an image-editing software. A time duration was obtained from a fixed film-

ing frequency of the camera. Calculation of the free-stream velocity was repeated

9 times and the averaged velocity was ue = 0.133 m/s. So, the corresponding

Reynolds number at x = 5.5 m is

Rex =
xue

ν
≈ 700000 (B.1)

where, ν = 1.0× 10−6 m2/s is a kinematic viscosity of water at 20 ◦C. In previous

measurements of Wiegand (1996) conducted in the same LWK, a distinct kink

in the velocity profile that resulted from a strong growth of the displacement

thickness of a developed turbulent boundary layer was found at x = 5 m (Rex =

725000 with a free-stream velocity ue = 0.145 m/s). Therefore, it can be concluded

from the comparison of the critical Reynolds numbers that a required quality for

a laminar boundary-layer flow was achieved on the current installation of the

glass flat plate.
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Calibration of the CTA System with

Hot-film Probe

Setup and calibration of the CTA system using hot-film probes for the present

study were principally performed by following the manufacturer’s instruction

manual (Dantec, 1983). This appendix introduces some specifics at the LWK

during the calibration procedure. Other experimental parameters were selected

mostly from the previous work of Wiegand (1996) who studied the stability of

TS waves in the same way as in the present study by the CTA method using a

hot-film.

Probe resistance and overheat adjustment To sensitively catch the changes of

temperature inside the flow, an over-heating temperature of the hot-film sensor

is applied by an overheat adjustment which is calculated based on the resistance

of the sensor. To measure the resistance, first of all, the entire circuit resistance

RTOT and the cable resistance RC are measured by a measuring function on the

Dantec 15C17 CTA bridge component. A probe lead resistance RL is indicated

on the probe container by the manufacturer. Accordingly, the sensor resistance is
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calculated as R0 = RTOT − (RC + RL). An overheat ratio a = 5 % is applied

R = (1 + a)R0 (C.1)

and a new total resistance is obtained

RTOT(HOT) = R + (RC + RL). (C.2)

This resistance is inserted into the CTA bridge again and the sensor is now heated.

By the overheat ratio a = 5 %, the temperature of the sensor

Tsensor = T0 +
R− R20

α20R20
(C.3)

R20 = Sensor resistance at T0 = 20 ◦C [Ω]

α20 = Temperature coe f f icient o f sensor at T0 = 20 ◦C [%/ ◦C]

reaches between Tsensor = 30 ∼ 35 ◦C for an operating temperature and a bub-

ble formation around the probe that occurs when the temperature exceeds 60 ◦C

(Wiegand, 1996) could be prevented.

Calibration curve The CTA bridge outputs continuous temperature changes on

the heated sensor as an electric signal of voltages. To transform the magnitude of

voltage into velocity, a calibration curve obtained as below has been used. Firstly,

a hot-film probe combined with a probe support was located at x = 1.0 m from the

leading edge and in the spanwise middle at z = 0.0 m. The location of the probe

was selected y = 7.5 cm which is the middle from the bottom plate to free water

surface. Then, free-stream velocities in the test section were controlled by stepwise

increasing the pump frequency of the LWK from f = 0.0 Hz for an initial zero

velocity until f = 19.0 Hz with increments either ∆ f = 1 or 2 Hz. This increasing
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Figure C.1: Calibration curve fitted by 5th order polynomial

order from lower to higher velocity enables to regulate the velocity changes in

the whole channel faster and stabler than contrariwise (cf. Wiegand (1996)). Ad-

ditionally, a sufficient waiting time is needed for a uniformity of the flow after

every velocity increase. The velocities for comparing with output voltages from

the CTA bridges were measured by a hydrogen-bubble method (cf. Section 3.3).

Successive time lines consisting of hydrogen bubbles were captured by a digital

camera. Distances between the bubble lines (∆x) obtained by a graphic software

were calculated for velocities with a pulse duration time (∆t) of the time lines.

A single particle method had been also used to measure the free-stream velocity.

A small particle is laid on the free-water surface in the channel and its moving

distance and time are taken by an USB digital camera in perpendicular direction.

Finally, a calibration curve was fitted by 5th order polynomial as illustrated in

Figure C.1.

Unless either the measuring equipments are replaced or water temperature

changes in a large range, the calibration curve can be used continuously. To reflect

a small changes of water temperature after the calibration, the probe resistance

R0 has been measured every day before the measurements and a new circuit
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resistance RTOT(HOT) with the over heat 5 % was inserted. For a thermal stability

of the CTA bridge, a warming time was set 2 hours after switch-on of the devices

on every day.
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