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List of symbols and abbreviations

No special notation for vectors is employed throughout the thesis. Column matrices

are denoted in bold lower case letters, general matrices in bold capitals.

For a systematic listing, the used symbols and abbreviation are presented according

to their field of major application.

Boundary element method

Ω bounded domain

Ωe exterior domain

Γ = ∂Ω boundary to Ω

n unit normal vector, pointing outwards from Ω

x field point

y load point

r = |x− y| Euclidean distance between field and load point

p(x) acoustic pressure

q(x) = ∂p(x)/∂nx acoustic flux on boundary

p̄(x), q̄(x) prescribed boundary conditions

P ∗(x, y) fundamental solution for acoustic pressure

V single layer potential

K double layer potential

K ′ adjoint double layer potential

I identity operator

D hyper-singular operator

C Calderon projector

ph boundary element approximation of acoustic pressure

p column matrix of nodal pressure values

qh boundary element approximation of acoustic flux

q column matrix of element flux values

ϕp,ϕq shape functions
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Multipole algorithm

D distance vector between expansion centers

d distance vector between source/field point and expansion center

s direction unit vector

F (s) far-field signature

N(s) near-field signature

ML(s,D) diagonal translation operator with expansion length L

Iterative solvers

xk solution at iteration step k

rk residual at iteration step k

A system matrix

M−1 preconditioning matrix

S smoothing operator

R
(l−1)
(l) restriction matrix from grid l to l − 1

P
(l)
(l−1) prolongation matrix from grid l − 1 to l

Structure-acoustic field interaction

(·)s item for structure

(·)f item for acoustic fluid

Γint coupling interface

w out-of-plane plate displacement

f normal load on plate

λ Lagrange multiplier
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Abstract

The goal of the thesis is to provide an efficient simulation tool for the prediction of

sound radiation from vibrating structures. Acoustic simulations are an important

step to optimize the properties of a new product early in the design phase rather than

curing mistakes afterwards. The boundary element method (BEM) is widely used

in acoustics, since it allows the simulation of fields in unbounded domains. Only the

surface of the sound radiating structure must be discretized with a very low cost for

mesh generation and preprocessing. The limiting factor for the application of the

BEM to large-scale simulations is its fully populated system matrix. It implies that

computing time and memory requirements increase quadratically with the number

of elements which cannot be handled even for moderately sized problems.

The fast multipole BEM allows the computation of the BEM matrix-vector products

at a quasi-linear numerical cost. The reduction is achieved by multilevel clustering

of the boundary elements and the use of the multipole series expansion for the

evaluation of the fundamental solution. In combination with an efficient iterative

solver, multipole BEM simulations can be performed on large models consisting of

more than 100,000 boundary elements. The generalized minimal residual method

(GMRES) and multigrid solvers are most suitable for the solution of the BEM

systems of equations. An approximate inverse preconditioner is developed for both

approaches that restricts the number of required iterations and thus allows efficient

multipole BEM simulations on fine discretizations and high frequencies.

For the simulation of structure-acoustic field interaction problems, the coupled field

equations must be solved. The structure is commonly discretized using finite ele-

ments, whereas for the acoustic field the BEM is favorable. A mortar FEM-BEM

coupling algorithm is developed that allows the combination of non-conforming

meshes. The high flexibility for the choice of discretizations offers a high efficiency,

since specialized shape functions and adaptive mesh refinement can be used in the

subdomains. The mortar coupling algorithm yields a saddle point problem that is

solved using an inexact Uzawa algorithm. The iterative solver enables the use of the

multipole BEM and thus coupled simulations on large boundary element models.
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Kurzfassung

Die akustischen Eigenschaften von Produkten spielen heute eine wichtige Rolle für

ihre Qualitätsanmutung. Die Entscheidung für den Kauf eines Staubsaugers wird we-

sentlich auf Grund der auditiven Wahrnehmung getroffen und auch bei der Beschaf-

fung eines Großraumflugzeugs stellt das Geräuschniveau ein wichtiges Kriterium

dar. Durch den Einsatz von Akustik-Simulationen lassen sich viele Lärm-Probleme

schon früh im Entwicklungsprozess erkennen und die Klangeigenschaften gezielt be-

einflussen. Teure Modifikationen an Prototypen können dadurch auf ein Minimum

reduziert werden. Herkömmliche Simulationsverfahren erfordern jedoch einen sehr

hohen Rechenaufwand und können nur für stark vereinfachte Modelle verwendet wer-

den. Ziel dieser Arbeit ist die Entwicklung eines effizienten Simulationswerkzeugs,

dass die Vorhersage der Schallabstrahlung von komplexen schwingenden Strukturen

ermöglicht.

Die Randelementmethode (BEM) ist ein Diskretisierungsverfahren für die nähe-

rungsweise Lösung von Randintegralgleichungen. Für die Akustik werden diese über

die schwache Form der Helmholtz-Gleichung mit der Fundamentallösung als Wich-

tungsfunktion hergeleitet. Die Randelementmethode ist besonders geeignet für die

Simulation von Akustik-Feldern, da nur die Oberfläche der schallabstrahlenden Struk-

tur diskretisiert werden muss und Außenraumprobleme keinen zusätzlichen Aufwand

erfordern. Die Anwendung der Randelementmethode wird jedoch durch die vollbe-

setzten Systemmatrizen erschwert: die Rechenzeit und der Speicherbedarf steigen

quadratisch mit der Anzahl der Randelemente an. Dieser numerische Aufwand kann

für komplexe industrielle Anwendungen nicht beherrscht werden. In praktischen Be-

rechnungen wird die Elementgröße der Randelementdiskretisierung nach der Faust-

regel
”
sechs bis zehn lineare Elemente pro Wellenlänge“ bestimmt, die einen nähe-

rungsweise gleichbleibenden Diskretisierungsfehler gewährleistet. Verfeinert man das

Randelementnetz, wie von der Faustregel vorgegeben, werden für eine Simulation

bei doppelter Frequenz viermal so viele Randelemente benötigt. Durch den qua-

dratischen Aufwand der Randelementmethode ergeben sich also eine 16 mal höhere

Rechenzeit und ein 16 mal höherer Speicherbedarf. Dieses Beispiel zeigt deutlich,

dass die herkömmliche Randelementmethode nur für kleine Modelle im niederen

Frequenzbereich eingesetzt werden kann.

Der Multipol-Algorithmus ermöglicht die Auswertung der BEM-Matrix-Vektor-Pro-

dukte mit einem numerischen Aufwand, der quasi-linear mit der Anzahl der Frei-
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heitsgrade ansteigt. Für große Randelementmodelle ergibt sich so eine starke Reduk-

tion der Rechenzeit und des Speicherbedarfs. Die Randintegraloperatoren werden

für den Multipol-Algorithmus in einen Nahfeld- und einen Fernfeldanteil aufgespal-

ten. Der Nahfeldanteil wird durch eine herkömmliche Auswertung der Fundamen-

tallösung bestimmt. Für den Fernfeldanteil werden die Randelemente in Cluster

eingeteilt und in einer Baumstruktur organisiert. Über die Cluster wird die Inter-

aktion der Randelemente im Fernfeld durch eine Multipol-Darstellung der Funda-

mentallösung berücksichtigt. Die Verwendung von Fern- und Nahfeldrepräsentanten

sowie diagonaler Transferoperatoren stellt sich dabei als besonders vorteilhaft her-

aus.

Auf jeder Ebene des Clusterbaums wird der Nahbereich (N) definiert, für den der

Abstand der Cluster unterhalb einer wählbaren Grenze liegt. Cluster, die nicht im

Nahbereich selbst, aber im Nahbereich des übergeordneten Clusters liegen, bilden die

Interaktionsliste (I). Diese Einteilung ist in Abbildung 1 für eine zweidimensionale

Schematisierung des Clusterbaums dargestellt. Den Beitrag eines Randelements im

schraffierten Cluster auf der untersten Ebene wird durch die folgenden Schritte des

Multipol-Algorithmus berücksichtigt:

1. Auf der untersten Ebene wird der Fernfeldrepräsentant aller Elemente im

schraffierten Cluster berechnet.

2. Der Fernfeldrepräsentant wird in Nahfeldrepräsentanten für die Interaktions-

liste umgewandelt.

3. Der Fernfeldrepräsentant wird in das Zentrum des übergeordneten Clusters

verschoben.

4. Die beiden vorherigen Schritte werden beim Aufwärtsdurchgang im Cluster-

baum wiederholt, bis die Interaktionsliste leer ist.

5. Im Abwärtsdurchgang werden die berechneten Nahfeldrepräsentanten in die

untergeordneten Cluster verschoben.

6. Auf der untersten Ebene wird der Nahfeldrepräsentant für jedes Randelement

ausgewertet und die Nahfeldbeiträge durch eine direkte Auswertung der Fun-

damentallösung addiert.

Die benötigte Entwicklungslänge für die Multipol-Repräsentanten hängt sowohl von

der Frequenz als auch von den Cluster-Durchmessern ab. Für geeignet gewählte

Parameter ist die Rechenzeit und der Speicherbedarf für die Berechnung der Schall-

abstrahlung von einem L-Gebiet mit neun Elementen pro Wellenlänge in Abbil-

dung 2 dargestellt. Man beobachtet den quasi-linearen Anstieg und die deutliche
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Abbildung 1: Informationsaustausch im Clusterbaum.

Reduktion des numerischen Aufwands bei der Multipol-BEM für Modelle mit vielen

Freiheitsgraden. Über das akademische Beispiel des L-Gebiets hinausgehend wird

die Multipol-BEM zur Berechnung der Schallabstrahlung von einer schwingenden

Bremsscheibe eingesetzt. Die Randbedingungen für das Akustikgebiet werden dabei

von einer instabilen Struktureigenform vorgegeben, die maßgeblich für das Brem-

senquietschen verantwortlich ist. Die Multipol-BEM führt für diesen praktischen

Anwendungsfall zu einer deutlichen Effizienzsteigerung und einer Halbierung der

benötigten Rechenzeit im Vergleich zur herkömmlichen Randelementmethode.
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Abbildung 2: Rechenzeit und Speicherbedarf über der Anzahl der Freiheitsgrade N

für die Berechnung der Schallabstrahlung von einem L-Gebiet mit neun Elementen

pro Wellenlänge.

Für die Berechnung von Randelementmodellen mit vielen Freiheitsgraden müssen

iterative Gleichungslöser eingesetzt werden. Die bei der Akustik-BEM entstehenden

Gleichungssysteme stellen dabei hohe Anforderungen an die Lösungsverfahren: sie

sind nicht symmetrisch und nicht positiv definit. In der vorliegenden Arbeit wird
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die Effizienz der vorkonditionierten generalized minimal residual (GMRES) Methode

und eines Mehrgitterlösers verglichen. Für die Vorkonditionierung beziehungsweise

als Glätter für den Mehrgitterlöser wird ein Approximate-Inverse-Ansatz verwendet.

Durch Operator-Splitting wird eine dünn besetzte Näherung des Randintegralope-

rators berechnet, dessen Inverse direkt approximiert und als Vorkonditionierungs-

matrix eingesetzt wird. Durch die Approximate-Inverse-Vorkonditionierung stellen

sowohl GMRES als auch der Mehrgitterlöser attraktive Alternativen dar. Für den

praktischen Einsatz empfiehlt sich GMRES, da im Gegensatz zum Mehrgitterlöser

keine Gitterhierarchie benötigt wird.

In vielen Anwendungen kann die Rückwirkung des akustischen Felds auf die Struk-

turschwingung vernachlässigt werden. Für sehr dünne, flexible Strukturen ist dies

jedoch nicht zulässig, weil die Impedanzunterschiede geringer werden und daher die

gekoppelten Feldgleichungen gelöst werden müssen. Zur Simulation der Struktur-

schwingung wird die Finite-Element-Methode (FEM) für eine Kirchhoff-Platte ver-

wendet. Die Kopplung zwischen der FEM für die Strukturschwingung und der BEM

für das Akustik-Feld wird durch einen Mortar-Algorithmus realisiert. Der Druck auf

der Plattenoberfläche wird dabei als Lagrange-Multiplikator interpoliert, was die

Kopplung von nicht-konformen Diskretisierungen erlaubt. Dadurch können spezielle

Ansatz-Funktionen und eine adaptive Netzverfeinerung in den Teilgebieten verwen-

det werden. Zur Lösung des entstehenden Sattelpunktproblems wird ein Uzawa-

Algorithmus eingesetzt. Die reduzierte Gleichung für den Lagrange-Multiplikator

wird durch GMRES-Iterationen gelöst, wobei in jedem äußeren Iterationsschritt das

innere BEM-System durch eine relaxierte GMRES-Methode mit Vorkonditionierung

angenähert wird. Dieses Lösungsverfahren ermöglicht den Einsatz der Multipol-BEM

für gekoppelte Berechnungen und damit die Simulation von großen Randelement-

modellen.

Die Leistungsfähigkeit des Mortar-Algorithmus wird am Beispiel einer elastischen

Platte, die mit einem akustischen Innenraumproblem gekoppelt ist, demonstriert.

Für dieses Problem wird eine Reihenlösung entwickelt, die als Referenz für die nu-

merischen Ergebnisse dient. In Abbildung 3 ist der berechnete Frequenzgang für

die Plattenverschiebung dargestellt. Man erkennt deutlich die gute Übereinstim-

mung zwischen numerischer und analytischer Lösung. Das Konvergenzverhalten des

FEM-BEM-Verfahrens wird bei einer Frequenz von 180 Hz untersucht. Für eine

unabhängige Verfeinerung der FEM- und BEM-Netze werden die Fehler der berech-

neten Felder diskutiert. Als weiteres Beispiel werden Versuche zur aktiven Akustik-

Struktur-Regelung simuliert, die im Hydroakustik-Labor des Instituts A für Mecha-

nik durchgeführt werden.
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Abbildung 3: Elastische Platte gekoppelt mit akustischem Innenraum. (a) Plat-

tenverschiebung w in Abhängigkeit der Frequenz f , Anregung der Platte durch

Einzelkraft an Position (0, 2; 0, 3) m. (b) Oberflächenverteilung des akustischen

Drucks und davor der Plattenverschiebung bei 180 Hz.

Für eine effiziente Simulation von Akustikfeldern und Akustik-Struktur-Interaktions-

effekten müssen hochentwickelte numerische Verfahren eingesetzt werden. In der

vorgestellten Arbeit wird die Randelementmethode mit einem Multipol-Algorithmus

kombiniert, der eine schnelle Auswertung der Matrix-Vektor-Produkte ermöglicht.

In Zusammenspiel mit iterativen Lösungsverfahren und geeigneter Vorkonditionie-

rung können Modelle mit mehr als 100.000 Randelementen berechnet werden. Zur

Simulation der Akustik-Struktur-Interaktion wird die Multipol-BEM mit der FEM

für Kirchhoff-Platten über einen Mortar-Algorithmus gekoppelt. Die hohe Flexibi-

lität bei der Diskretisierung der Teilgebiete ermöglicht auch hier die Berechnung von

komplexen technischen Strukturen auf sehr detaillierten Modellen.
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Chapter 1

Introduction

1.1 Motivation

The acoustic behavior is a major concern in product development, since noise level

and sound quality strongly influence the customers’ buying decision. Structural-

acoustic simulations are an important tool to predict the acoustic properties of the

new product early in the design phase. The simulation results help to optimize the

product, yielding a superior quality and saving time and money.

The acoustic field is computed by the solution of boundary value problems for the

Helmholtz equation. At low frequencies, discretization methods provide very ac-

curate simulation results. Most widely used are the finite element method (FEM)

(Ihlenburg, 1998) and the boundary element method (BEM) (Gaul et al., 2003). A

wast amount of engineering experience is available for the FEM because of its ap-

plication in structural mechanics. However, the FEM is only applicable to bounded

domains. For exterior acoustic problems, special schemes—e.g. artificial absorbing

boundary conditions, perfectly matched layers, or infinite elements—must be ap-

plied that quickly reduce the efficiency of the method. In contrast, when using the

BEM, the Sommerfeld radiation condition is implicitly fulfilled. A further advan-

tage of the BEM is the reduction of the problem dimension: only the boundary of

the sound-radiating structure must be discretized. The cost of preprocessing and

mesh generation is thus greatly reduced. The main disadvantage of the BEM are

its fully populated system matrices and the arising computing cost and memory

requirements of order N2 in the number of unknowns.

With increasing frequency, the mesh used for the FEM or BEM simulations must

be refined to resolve the oscillations of the acoustic field. In engineering practice,
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six to ten linear elements per wavelength are used as a rule of thumb to yield

an accuracy of the approximated solution of a few percent. One notices that the

computing cost increases quickly: doubling the frequency for a three-dimensional

problem would require eightfold finite elements or fourfold boundary elements. Thus,

the application of the two methods is limited to the low frequency range. For high

frequencies, statistical methods like the statistical energy analysis (SEA) (Lyon and

DeJong, 1995) yield valuable simulation results. In between, i.e. for frequencies

of typically a few hundred Hertz, the cost of discretization methods is too high

whereas the accuracy of statistical methods is too low. A problem known as the

mid-frequency gap.

To close this mid-frequency gap, the BEM offers greater potential than the FEM due

to the reduced problem dimension. However, the limiting factor for the application

of the BEM are the fully populated system matrices. The numerical cost cannot be

handled—even for a moderate number of unknowns—by standard implementations.

Significant research effort has been spent in recent years to tackle this disadvantage

and to develop a fast BEM. The proposed algorithms can be divided into two major

groups: matrix compression algorithms and techniques for the fast evaluation of the

matrix-vector products. Wavelet bases (Schneider, 1998), H-matrices (Hackbusch,

1999), and adaptive cross approximation (Bebendorf and Rjasanow, 2003) are the

most prominent examples of the first group. Panel clustering and multipole BEM are

examples of the second group that are compared in the dissertation of Giebermann

(1997).

The application of fast BEM to acoustics is not straight-forward, since the oscillating

behavior of the solution poses additional difficulties. In this thesis, the fast multipole

BEM is chosen and adapted to the Helmholtz equation. The developed algorithm has

a complexity of order N log2N for simulations with a constant number of elements

per wavelength. The fast multipole BEM is thus much faster than the traditional

BEM for large-scale problems and allows to extend the application limit to higher

frequencies. For large-scale computations, the system of equations cannot be solved

directly, but iterative methods must be applied. However, high frequencies and fine

discretizations yield a poor conditioning and require a large number of iterations.

Thus, the construction of a preconditioner that limits the influence of frequency and

mesh size h on the iteration count is required.

Very often one can perform structural-acoustic simulations neglecting the influence

of the acoustic field on the vibration behavior of the structure. However, this is

not acceptable for thin and flexible structures that are easily excited by the acoustic

pressure. This situation is encountered e.g. for payloads in aerospace vehicles, parti-

tioning walls, or piping systems. In such applications, the acoustic field must be fully
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coupled to the vibrating structure. For the simulation of structural vibrations, the

FEM is the method of choice in engineering practice. Thus, a FEM-BEM coupling

algorithm is required for the simulation of the structure-acoustic field interaction.

The mortar method proposed by Bernardi et al. (1994) can be adapted to FEM-

BEM coupling to yield a high flexibility in the choice of discretizations. The coupling

algorithm allows the combination of non-conforming meshes what permits the use

of specialized ansatz functions and adaptive mesh refinement in the subdomains.

The goal of this thesis is to provide a complete package for efficient structural-

acoustic simulations that can be applied to industrial-scale problems. The building

blocks are an efficient Galerkin boundary element formulation for the simulation of

the acoustic field, a fast evaluation of the BEM matrix-vector products using the

multipole algorithm, an efficient solution of the system of equations by precondi-

tioned iterative solvers, and a mortar coupling algorithm for structure-acoustic field

interaction problems.

The development and implementation of the presented algorithms could not have

succeeded without the close collaboration within the SFB 404 “Multifield Problems

in Solid and Fluid Mechanics” and without the help of motivated Master students.

I would like to take the opportunity and refer exemplarily to the multipole article

by Of et al. (2002) and to the contributions of Gauger (2002), Sidhu (2002), and

Perfahl (2003; 2004).

1.2 Literature overview

1.2.1 Boundary element methods in acoustics

Boundary element methods are well established in various fields of engineering.

From a wide range of textbooks, it is referred to the books of Gaul et al. (2003)

and Steinbach (2003a) for an introduction to the method. Acoustics is a major field

of application for the BEM because exterior acoustic problems can be dealt with

easily. An up-to-date overview is given in the collections edited by Wu (2000) and

von Estorff (2000).

The BEM was first used to predict the sound radiation from a vibrating body in

a paper by Chen and Schweikert (1963). Soon the problem of critical frequencies

appeared: the boundary integral equation does not allow a unique solution for the

exterior domain at resonance frequencies of the associated interior problem. Schenck

(1968) proposed the CHIEF method that requires additional collocation points in
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the domain. An alternative that proved to perform more reliable was introduced by

Burton and Miller (1971).

The Burton-Miller approach uses a linear combination of the standard and the

hyper-singular boundary integral equation. For the evaluation of the hyper-singular

operator, it is advantageous to use a Galerkin formulation as introduced for the

BEM by Sirtori (1979). An overview on Galerkin BEM is compiled by Bonnet et al.

(1998) whereas for Galerkin BEM in acoustics, it is referred to Chen et al. (1997).

Special attention has to be paid to the numerical integration of singular integrals

in the Galerkin BEM. Transformation schemes are derived in the dissertation of

Sauter (1992) and a follow-up paper (Sauter and Krapp, 1996) provides a detailed

discussion of quadrature errors.

In recent years, the focus of research in boundary element acoustics is on improved

efficiency. Some aspects are the choice of ansatz functions (Marburg and Schneider,

2003a), frequency-band analysis (von Estorff and Zaleski, 2003), and the implemen-

tation of iterative solvers (Marburg and Schneider, 2003b; Ochmann et al., 2003).

These are important improvements for the every-day use of the BEM, however, they

cannot remedy the principal limitation of the fully populated matrices.

1.2.2 Fast multipole boundary element method

The fast multipole method (FMM) was originally developed by Greengard and

Rokhlin (1987) for the simulation of large particle fields in physics. Since then,

it has been applied in many areas of simulation sciences and is considered by some

authors as one of the top ten algorithms of the 20th century (Board and Schulten,

2000). The application of the multipole algorithm to accelerate the BEM is triggered

by the similarity between the potential in particle simulations and the fundamen-

tal solution in the kernels of the boundary integral operators. The key idea is to

approximate the fundamental solution at some distance from the source point by a

multipole series expansion. A multilevel scheme, then, allows the efficient evalua-

tion of the matrix-vector product. A state of the art review on multipole boundary

integral methods for various applications is presented by Nishimura (2002). The de-

velopment of the multipole BEM for the Helmholtz equation is closely connected to

research on the Maxwell equation for electro-magnetic fields. For a detailed survey

on the fast solution of integral equations for the Maxwell equation, it is referred to

the review article by Chew et al. (2003).

For acoustic simulations at higher frequencies, a large expansion length is required

for the multipole method. This leads to a prohibitive computing cost for the stan-
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dard multipole expansion which is comparable to the traditional BEM. A diago-

nal form of the multipole expansion that is developed by Rokhlin (1990) shows a

much improved numerical behavior. The theory for diagonal translation operators

in three-dimensional acoustics is developed as well by Rokhlin (1993) and presented

for “pedestrians” in the paper by Coifman et al. (1993). This paper also includes

empirical rules for the choice of the required expansion length that is very critical

for the efficiency of the multipole BEM. The error committed when truncating the

diagonal expansion is discussed in more detail by Rahola (1996) and Koc et al.

(1999) or from a mathematical point of view by Darve (2000). Several groups pro-

vide valuable work on some details of the method. Exemplarily the papers by Epton

and Dembart (1995) and Gyure and Stalzer (1998) are worth to be mentioned.

The application of the multipole method to engineering BEM simulations in acous-

tics has emerged lately as documented in the papers by Schneider (2003a) and

Fischer et al. (2004).

1.2.3 Structure-acoustic field interaction

The introductory paper by Junger (1997) to a special issue on structure-acoustic field

interaction gives an overview on traditional simulation approaches: asymptotic so-

lutions, modal and wavenumber concepts. More lately, discretization methods have

become popular for the simulation of coupled structural-acoustic systems. Pure

FEM formulations are already widely used. The performance for interior acoustic

problems in automotive industry is documented for example in the paper by Kropp

and Heiserer (2003). The first FEM–BEM coupling algorithm is developed by Ev-

erstine and Henderson (1990). Chen et al. (1998) propose a variational coupling

scheme for Galerkin methods. Further developments and application of FEM–BEM

methods for structural–acoustic simulations is a broad area of research. Moosrainer

(2000) examines several approximation techniques for the BEM in coupling schemes.

Gaul and Wenzel (2002) use a hybrid boundary element formulation. Non-linear ef-

fects are considered by Czygan and von Estorff (2002) and the important application

of sound transmission through windows is covered by Langer and Antes (2003).

In recent years, the mathematical theory for domain decomposition methods has

quickly advanced. The extended theoretical insight can give valuable motivation

for the engineering application of coupling schemes. In particular the mortar ele-

ment method that is originally introduced by Bernardi et al. (1994) offers various

advantages for the simulation of structure-acoustic field interaction. Stability esti-

mates of the mortar element method for three-dimensional problems are derived by

Braess and Dahmen (1998) and a mortar formulation with Lagrange multipliers is
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proposed by Ben Belgacem (1999). The efficient choice of the ansatz space for the

Lagrange multiplier is discussed by Wohlmuth (2000). The use of boundary integral

formulations in hybrid domain decomposition methods is covered in the monograph

by Steinbach (2003b).

1.3 Outline of contents

In Chapter 2, a short introduction to the Galerkin boundary element method for

acoustics is presented. A symmetric formulation for mixed boundary value prob-

lems and a formulation based on the Burton-Miller approach for exterior acoustic

Neumann problems are developed. Numerical integration techniques for the evalua-

tion of the singular boundary integrals are derived in Appendix A, a regularization

technique for the hyper-singular operator is presented in Appendix B. Chapter 3

focuses on the efficient evaluation of the BEM matrix-vector products using the fast

multipole method. The implementation of the diagonal translation operators for

the Helmholtz equation in a multilevel scheme is presented and the influence of the

expansion length on accuracy and efficiency of the method is discussed. Numerical

examples demonstrate the quasi-linear complexity of the fast multipole BEM and

the largely reduced computing cost compared to standard boundary element formu-

lations. The iterative solution of the BEM system is covered in Chapter 4. The gen-

eralized minimal residual method (GMRES) is compared to a multigrid solver. For

both, an approximate inverse approach is employed as preconditioner and smoother,

respectively, that restricts the growth of required iterations with mesh refinement

and increasing frequencies. In Chapter 5, a mortar FEM-BEM coupling algorithm

for the simulation of structure-acoustic field interaction is developed. For the solu-

tion of the arising saddle point problem, an inexact Uzawa algorithm is employed.

The inner FEM and BEM systems are approximated using conjugate gradient and

GMRES iterations, respectively. For the outer iterations on the reduced equation for

the Lagrange multiplier, GMRES is applied. The flexibility of the mortar coupling

scheme is demonstrated for a plate backed by an acoustic cavity for that a series

solution is derived in Appendix C.
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Chapter 2

Galerkin BEM for acoustics

2.1 Boundary integral formulation

for the Helmholtz equation

For time harmonic behavior e−iωt, the pressure p in an acoustic field is governed by

the Helmholtz equation (Fahy, 2001; Cremer and Möser, 2003)

∇2p(x) + κ2p(x) = 0 , (2.1)

where κ = ω/c is the acoustic circular wavenumber. The relation to the wavelength

λ is given by κ = 2π/λ. Here, the Helmholtz equation is solved in an exterior domain

Ωe which is the complement to the open set Ω ⊂ R
3 with boundary ∂Ω = Γ = ΓN∪ΓD

as depicted in Fig. 2.1. The acoustic flux is defined as q = ∂p/∂n where the unit

normal n to Γ is defined to point outwards from Ω. On the Dirichlet boundary ΓD

the acoustic pressure is prescribed as

p(x) = p̄(x) , x ∈ ΓD , (2.2)

on the Neumann boundary ΓN the acoustic flux is prescribed as

∂p(x)

∂n
= q̄(x) , x ∈ ΓN , (2.3)

corresponding to the surface velocity of a vibrating structure. Furthermore, the

Sommerfeld radiation condition has to be fulfilled, i.e.,∣∣∣∣∂p∂r − iκp

∣∣∣∣ ≤ c

r2
at r → ∞ . (2.4)

A given boundary impedance corresponds to Robin boundary conditions, a lin-

ear combination of Dirichlet and Neumann data. Although of practical relevance,

impedance boundary conditions are neglected throughout this thesis.
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Ω

Ωe

ΓN

ΓD

n

Figure 2.1: Exterior acoustic domain

The derivation of boundary integral formulations starts with the weak form of the

Helmholtz equation (2.1) (Gaul et al., 2003)∫
Ωe

P ∗(x, y)
(∇2p(x) + κ2p(x)

)
dx = 0 . (2.5)

The fundamental solution P ∗(x, y) is chosen as weighting function. For the Helmholtz

equation in three-dimensional space, it is given by

P ∗(x, y) =
1

4π

eiκr

r
, (2.6)

where r =| x − y | is the Euclidean distance between the field or receiver point x

and the source or load point y. Applying Green’s second theorem on (2.5) yields

the representation formula

p(x) = −
∫
Γ

P ∗(x, y) q(y) dsy +

∫
Γ

∂P ∗(x, y)
∂ny

p(y) dsy , x ∈ Ωe . (2.7)

Taking the limit of (2.7) on the smooth boundary Ωe � x → Γ, one obtains the

boundary integral equation

p(x) =
1

2
p(x)−

∫
Γ

P ∗(x, y) q(y) dsy︸ ︷︷ ︸
(V q)(x)

+

∫
Γ

∂P ∗(x, y)
∂ny

p(y) dsy︸ ︷︷ ︸
(Kp)(x)

, x ∈ Γ , (2.8)

where (V q)(x) and (Kp)(x) are the single and double layer potential, respectively.

The hyper-singular boundary integral equation is obtained by taking the normal

derivative of (2.7) on the smooth boundary Ωe � x → Γ

q(x) =
1

2
q(x)−

∫
Γ

∂P ∗(x, y)
∂nx

q(y) dsy︸ ︷︷ ︸
(K ′q)(x)

+

∫
Γ

∂2P ∗(x, y)
∂nx∂ny

p(y) dsy︸ ︷︷ ︸
−(Dp)(x)

, x ∈ Γ , (2.9)
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where (K ′q)(x) and (Dp)(x) are the adjoint double layer potential and the hyper-

singular operator, respectively. Combining the two boundary integral equations, one

obtains the system(
p

q

)
=

(
1
2
I +K −V

−D 1
2
I −K ′

)
︸ ︷︷ ︸

C

(
p

q

)
, (2.10)

which defines the Calderón operator C that projects the Cauchy data on themselves.

A very detailed discussion of the properties of the boundary integral operators for

the Helmholtz equation is found in Nédélec (2001).

2.2 Symmetric Galerkin formulation

To obtain a symmetric Galerkin formulation for mixed boundary value problems, the

acoustic pressure and flux are decomposed as p = p̃+ p̄ and q = q̃ + q̄, respectively.

For the new fields, it holds p̃ = 0 on ΓD and q̃ = 0 on ΓN.

On the Dirichlet boundary, the standard boundary integral equation (2.8) is weighted

with test functions vq∫
ΓD

vq(V q̃)(x) dsx −
∫
ΓD

vq(Kp̃)(x) dsx

= −
∫
ΓD

vq(V q̄)(x) dsx +

∫
ΓD

vq
(
−1

2
I +K

)
p̄(x) dsx . (2.11)

On the Neumann boundary, the hyper-singular integral equation (2.9) is weighted

with test functions vp∫
ΓN

vp(K ′q̃)(x) dsx +
∫
ΓN

vp(Dp̃)(x) dsx

= −
∫
ΓN

vp(Dp̄)(x) dsx +

∫
ΓN

vp
(
−1

2
I −K ′

)
q̄(x) dsx . (2.12)

For the approximate solution of (2.11) and (2.12) a triangulation of the boundary is

introduced. The acoustic pressure is discretized using linear shape functions ϕp(x)

on the boundary triangulation

p̃h = ϕp(x)Tp , (2.13)

where p contains the nodal pressure values. For the acoustic flux, constant shape

functions ϕq(x) are chosen since they allow a discontinuous discretization which
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proves to perform more efficiently (Marburg and Schneider, 2003a)

q̃h = ϕq(x)Tq . (2.14)

Using an isoparametric concept, i.e. a constant approximation for vq and a linear

approximation for vp, yields the block skew symmetric BEM system of equations(
V −K

KT D

)(
p

q

)
=

(
fD

fN

)
, (2.15)

with the right hand side column matrices

fD = −
∫
ΓD

ϕq(x)(V q̄)(x) dsx +

∫
ΓD

ϕq(x)

(
−1

2
I +K

)
p̄(x) dsx , (2.16)

fN = −
∫
ΓN

ϕp(x)(Dp̄)(x) dsx +

∫
ΓN

ϕp(x)

(
−1

2
I −K ′

)
q̄(x) dsx . (2.17)

The computation of the boundary element system matrices requires the evaluation

of singular integrals for x → y. Transformation rules for the Galerkin BEM are

derived in Appendix A that allow an efficient numerical quadrature. The hyper-

singular operator exhibits a strong singularity 1/|x−y|3 and is thus not an integrable

function. Applying Stokes’ theorem, the entry τ, σ of matrix D is computed as

D[τ, σ] =
∑

ν∈E(τ)

∫
ν

∑
µ∈E(σ)

∫
µ

ϕp
τ |ν(x) ϕp

σ|µ(y)
∂2P ∗(x, y)
∂nx∂ny

dsy dsx

=
∑

ν∈E(τ)

∫
ν

∑
µ∈E(σ)

∫
µ

κ2nx · ny ϕ
p
τ |ν(x) ϕp

σ|µ(y)P ∗(x, y) dsy dsx

−
∑

ν∈E(τ)

∫
ν

∑
µ∈E(σ)

∫
µ

(nx ×∇xϕ
p
τ |ν(x))︸ ︷︷ ︸

curlΓ(ϕp
τ |ν(x))

(ny ×∇yϕ
p
σ|µ(y))P ∗(x, y) dsy dsx ,

(2.18)

where ν ∈ E(τ) denotes all elements ν connected to node τ and ϕp
τ |ν(x) is the linear

shape function corresponding to node τ restricted to element ν. The expressions

are defined analogous for the element µ and node σ. curlΓ(ϕ
p
τ |ν(x)) is constant on

linear elements, thus, computing the hyper-singular operator requires the evaluation

of the single layer potential for linear and constant shape functions. More details

on the regularization—in particular for the situation using the multipole BEM—are

presented in Appendix B.

2.3 Burton-Miller formulation

For exterior acoustic simulations of Neumann problems, critical frequencies occur

due to the properties of the boundary integral formulation. The operator (−1
2
I +
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K)p(x) is not invertible when κ corresponds to an eigenfrequency of the associated

interior Dirichlet problem for the Laplacian, whereas (Dp)(x) is not invertible when

κ corresponds to an eigenfrequency of the associated interior Neumann problem. A

linear combination of (2.8) and (2.9)—the Burton-Miller approach—has a unique

solution for all frequencies. This procedure can be traced back to the work by

Brakhage and Werner (1965) and is applied to the BEM by Burton and Miller

(1971). The coupling parameter for the two integral equations is chosen to yield a

favorable condition number for the combined operator. Motivated by the behavior

of the eigenvalues for the Helmholtz equation on a unit sphere, Kress (1985) shows

the quasi-optimality of the factor i/κ by numerical studies. Multiplying (2.9) by i/κ

and inserting the given Neumann boundary conditions q̄, one obtains the combined

equation

(−1

2
I +K)p(x) +

i

κ
(Dp)(x) = (V q̄)(x)− i

κ
(
1

2
I +K ′)q̄(x) . (2.19)

A Galerkin formulation is obtained by weighting (2.19) with test functions v

∫
Γ

v(x)(−1

2
I +K)p(x) dsx +

i

κ

∫
Γ

v(x)(Dp)(x) dsx

=

∫
Γ

v(x)(V q̄)(x) dsx − i

κ

∫
Γ

v(x)(
1

2
I +K ′)q̄(x) dsx . (2.20)

Triangulation of the boundary Γ yields an approximate solution ph on the boundary

element space of piecewise linear shape functions ϕp(x). The Neumann data is

interpolated using constant shape functions ϕq(x).

ph(x) = ϕp(x)Tp , q̄h(x) = ϕq(x)Tq̄ . (2.21)

Testing with isoparametric, linear shape functions yields the system of equations(
−1

2
I+K+

i

κ
D

)
p =

(
V − i

2κ
I′ − i

κ
K′

)
q̄ . (2.22)

2.4 Numerical examples

Two different geometries are employed for testing the BEM formulations for exterior

acoustic Neumann problems: an L-shaped domain and a brake disk. The examples

are scattered throughout the thesis to demonstrate the properties of the developed

algorithms. In Chapter 5 on structure-acoustic field interaction, different examples

are employed that are presented on the spot.
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The algorithms are implemented in C++ using the Microsoft Visual C++ com-

piler. The GNU scientific library is employed for the evaluation of special functions,

whereas the BLAS is provided by the Intel Math Kernel library. Floating point op-

erations are performed in double precision. For the development of the algorithms,

two side conditions are set: first, large-scale structural-acoustic computations should

be possible “over night”, and second, they should run on common hardware. The

first requirement is important for the engineering application of the methods in

product development, the second allows the parallel computation of a frequency re-

sponse function if a PC cluster is available. All simulations presented in the thesis

run on a Pentium 4 personal computer at 2.4 GHz with a memory of 1.5 GBytes.

Computing times and memory requirements are taken from the system log files. It

is well understood that computing time measured in this way scatters significantly.

The presented numbers are an average of several simulation runs and it was paid

attention that no other jobs run on the machine concurrently.

The choice of a suitable quadrature scheme has a dominating influence on the com-

puting time. For the set up of the BEM matrices, the boundary integral operators

must be evaluated by a double integration over all elements. For the singular in-

tegrals, i.e. if the pair of elements is identical or adjacent, the transformations

presented in Appendix A are employed that provide an efficient evaluation at a high

accuracy. For the regular integrals, special Gauss quadrature rules for triangles are

used. In a two-step scheme, seven Gauss points are chosen if the two elements are

at a close distance, three Gauss points are chosen if their distance is larger than

five element diameters. The applied quadrature rule gives a very precise evaluation

of the boundary integrals and integration errors can be neglected throughout the

numerical examples. In engineering practice, one would typically allow a quadrature

error in the same order of magnitude as the discretization error, i.e. a few per cent,

which cuts the computing time typically by a factor of three. One Gauss point per

element is sufficient for the majority of element pairs which means that the double

surface integration in the Galerkin BEM is performed at the same cost as the simple

surface integration and collocation in the collocation BEM.

2.4.1 Sound radiation from an L-shaped domain

An L-shaped geometry with an edge length of a = 1m is chosen as a standard test

case. Corners and edges of the L-shape make high demands on the numerical meth-

ods, thus, allowing to transfer the findings to practical applications. The Neumann

boundary conditions on the L-shape are generated by applying monopole sources

inside and computing the acoustic flux q̄ on the surface. The advantage of this
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Table 2.1: BEM discretizations of L-shape.

nodes elements fmax κmaxa

L4 90 176 150 Hz 2.77

L8 354 704 300 Hz 5.54

L16 1410 2816 600 Hz 11.09

L32 5634 11264 1200 Hz 22.18

L64 22530 45056 2400 Hz 44.35

L96 50690 101376 3600 Hz 66.53

procedure is that the exact boundary pressure pΓ is known and can be used as a

reference for the BEM solution pΓBEM. For the L2 Dirichlet error on the surface of

the L-shape, the pressure fields are evaluated on the nodes of the boundary element

discretization

eΓ2 =
‖pΓ

BEM − pΓ‖2
‖pΓ‖2 . (2.23)

A family of BEM meshes is generated for the L-shape that allows the study of the

convergence behavior of the proposed methods. In Tab. 2.1, the number of boundary

nodes and elements of the discretizations are listed. The finest model consists of

more than 100, 000 triangular boundary elements. The naming convention of the

models corresponds to the number of elements per meter that is essential for the

engineering rule of thumb of simulations with six to ten elements per wavelength.

For orientation, the frequency fmax gives a ratio of λ/h = 9 for computations in air

(c = 340m/s; ρ = 1.225 kg/m3) that result in typical precisions of a few per cent.

The dimensionless factor κmaxa is listed for classification of the frequency range

covered by the example.

The symmetric approach and the Burton-Miller approach are compared for the L8

model in the frequency range 150Hz ≤ f ≤ 300Hz which is the typical frequency

range covered by that model. Fig. 2.2 shows the BEM discretization with applied

Neumann boundary conditions at a frequency of 300Hz due to a monopole source

located at (0.2, 0.3, 0.3)m. The error eΓ2 of the simulations is plotted in Fig. 2.3.

For the symmetric approach, one notices clearly the non-uniqueness problem at the

critical frequencies. The error for the simulations using the Burton-Miller approach

increases evenly with frequency as expected. The BEM systems are solved itera-

tively using the GMRES algorithm (Saad, 2003) and the required iterations are also

plotted in Fig. 2.3. The Burton-Miller approach yields a significant better condi-
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tioning of the system and requires less iterations. Due to the two advantages—no

critical frequencies and good conditioning—it is recommended to use the Burton-

Miller approach for exterior Neumann problems. A drawback of the Burton-Miller

approach is that symmetry cannot be exploited, thus taking twice the memory for

handling the system matrix. Using the fast multipole BEM, this disadvantage will

prove not to be too costly.

x
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Figure 2.2: Neumann boundary conditons on L8 model. Displayed is the real part

of the acoustic flux at 300 Hz.
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Figure 2.3: Influence of critical frequencies for exterior acoustic problems. Dirichlet

error eΓ2 and required iterations plotted against frequency f .
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Table 2.2: BEM simulations for L-shape at κh = const.

f memory tmatrix iterations tsolve eΓ2

L8 300 Hz 3.6 MB 39 sec 37 <<1 sec 0.0210

L16 600 Hz 34.7 MB 339 sec 35 1.0 sec 0.0142

L32 1200 Hz 519.4 MB 4310 sec 34 13.6 sec 0.0121

The computing cost and results of Burton-Miller simulations on the L-shape at

κh = const. are documented in Tab. 2.2. For the models L8 to L32 at frequencies

between 300 Hz and 1200 Hz, the error of the computed Dirichlet data is 1% to 2%

as expected for acoustic simulations at nine elements per wavelength. The memory

requirements and computing time for the set up of the system matrix tmatrix and

the solution using GMRES tsolve increase somewhat below quadratic, since the cost

for the administration of the BEM model and the evaluation of singular integrals

contributes linearly.

2.4.2 Sound radiation from a vibrating brake disk

The second example is the sound radiation from a vibrating brake disk. This real-

life application is motivated by brake squealing analysis. Brake squealing causes

major warranty costs for automotive companies and is thus in the focus of industrial

research. After identifying unstable eigenmodes of the brake disk that are excited

by the friction conditions between brake pad and brake disk, a boundary element

simulation allows the evaluation of the acoustic field.

The FEM brake disk model and the mode shape at 3720 Hz as depicted in Fig. 2.4

are provided by the Robert Bosch GmbH, Corporate Research and Development,

Applied Physics. For the acoustic BEM simulation, a boundary triangulation with

4422 degrees of freedom is employed with the normal surface velocity of the dis-

played structural eigenmode applied as Neumann boundary condition. The com-

puted “squealing” sound pressure field is plotted in Fig. 2.5.
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Figure 2.4: Mode shape of brake disk at 3720 Hz.

Figure 2.5: Sound field of vibrating brake disk. Displayed is the real part of

the acoustic pressure computed from the mass normalized structural eigenmode

at 3720 Hz.
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Chapter 3

Fast multipole BEM

3.1 Preliminaries

The fully populated system matrices arising from the boundary integral operators

are the major limitation of the BEM that bar the method from its application for

large-scale simulations. Computing and storing the matrices involves a numerical

cost of order O(N2) that cannot be handled on current hardware. The multipole

BEM is one example of fast BEM that reduce the asymptotic complexity of the

method. The key idea of the multipole algorithm is to combine the effect of sources

far away from a field point in a far-field term using the multipole expansion whereas

for nearby sources standard BEM evaluations are used. In this way, the fast mul-

tilevel multipole (FMM) algorithm realizes the matrix-vector products of the BEM

with a numerical cost that depends quasi-linearly on the number of unknowns.

The post office scenario is a popular example to explain the basics of the multipole

algorithm. Instead of transporting letters directly from the sender to the receiver,

they are dropped in a mailbox. From there they pass through a level hierarchy—post

office, distribution center, post office, postman—to finally arrive at their destination

in a much more efficient way.

The advantages of a series expansion approach become clear by a look at the princi-

pal computing task of the BEM. In the BEM for the Helmholtz equation, one must

evaluate potentials of the type

Φ(xb) =
A∑

a=1

eiκ|xb−ya|

|xb − ya| qa , b = 1, 2, ..., B . (3.1)

The conventional evaluation of (3.1) clearly involves a numerical cost of order
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Figure 3.1: Computation of BEM potential with translation operator.

O(AB). If the source points ya and field points xb are well separated as depicted in

Fig. 3.1, the multipole approach computes the action of the sources on the expan-

sion center za, translates it to the center zb, and evaluates the potential at the field

points xb. The numerical cost is of order O(A+B) and thus much cheaper for large

A and B.

The multipole representation of the sources with respect to the expansion center is

obtained by the solution of the Helmholtz equation in spherical coordinates. The

field of the sources qa can be expressed at some distance from za as

Φ(x− za) =

∞∑
l=0

l∑
m=−l

Flmh
(1)
l (κ|x− za|)Y m

l

(
x− za
|x− za|

)
, (3.2)

where Y m
l (·) are the spherical harmonics and h

(1)
l (·) are the Hankel functions of first

kind that fulfill the Sommerfeld radiation condition at infinity. The expansion (3.2)

is referred to as exterior or h-expansion. The solution can be expressed close to the

center zb by the interior or j-expansion

Φ(x− zb) =
∞∑
l=0

l∑
m=−l

Nlmjl (κ|x− zb|)Y m
l

(
x− zb
|x− zb|

)
, (3.3)

where j
(1)
l (·) are the spherical Bessel functions. The translation of the coefficients Flm

of the far-field representation to the coefficients Nlm of the near-field representation

is the key to an efficient multipole method.
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3.2 Multipole expansion for the fundamental

solution of the Helmholtz equation

The series expansions (3.2) and (3.3) are not yet usable in an efficient numerical

scheme, since each Nlm depends on all Flm when translating the coefficients. This

convolution implies a quadratic numerical cost in the number of series terms which is

too expensive for practical computations. Rokhlin (1993) develops a diagonal form of

the translation operators that allows the translation of each coefficient independently

of the others. Starting point for the derivation of the diagonal form is Gegenbauer’s

addition theorem (Abramowitz and Stegun, 1974) that allows the combination of

(3.2) and (3.3) in a more compact form. The fundamental solution of the Helmholtz

equation is expressed as a function of the vectors d = x−zb+za−y and D = zb−za.

eiκ|x−y|

|x− y| =
eiκ|D+d|

|D + d| = 4πiκ

∞∑
l=0

l∑
m=−l

(−1)l jl(κ|d|) h(1)
l (κ|D|) Y m∗

l (D̂)Y m
l (d̂)

= iκ

∞∑
l=0

(2l + 1)(−1)ljl(κ|d|) h(1)
l (κ|D|)Pl(D̂ · d̂), |D| > |d| . (3.4)

jl(·) again denotes spherical Bessel functions, hl(·) Hankel functions and Pl(·) the

Legendre polynomials. Normalized vectors are indicated by (̂·) = (·)/| · |.

The separation of D and d succeeds by using the orthonormality of the Legendre

polynomials on the unit sphere S
2 and the expansion of spherical waves. Using

4πiljl(κ|d|)Pl(D̂ · d̂) =
∫
S
2
eiκd·sPl(s · D̂) ds , (3.5)

one obtains a diagonal form of the multipole expansion

eiκ|D+d|

|D + d| =
iκ

4π

∞∑
l=0

(2l + 1)ilh
(1)
l (κ|D|)

∫
S
2
eiκd·sPl(s · D̂) ds . (3.6)

In a numerical implementation, the sum over l is truncated at l = L. The choice of L

depends on the required precision of the multipole expansion and other parameters

that are discussed in Section 3.5. It must be pointed out that L cannot be chosen

arbitrarily large, since the series diverges for l → ∞.

The integration on the unit sphere S
2 is approximated by Gauss point quadrature

with discrete values of the far field directions s. According to Rokhlin (1993) the

integral of a function f(s) on the unit sphere is evaluated by the quadrature rule∫
S
2
f(s) ds =

2p−1∑
i=0

p−1∑
j=0

ωj
π

p
f(si,j) , (3.7)
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with si,j = (cosϕi cos θj , sinϕi sin θj , cos θj)
T and ϕi = (iπ)/p, cos θj = xj . xj and

ωj are abscissae and weights of the p point Gauss-Legendre rule, respectively. The

error committed by the numerical quadrature must be restricted depending on the

expansion length L. Rahola (1996) shows that the choice p = L, i.e. 2L2 quadrature

points, is suitable.

For the truncated series, summation l = 0, . . . , L and integration can be interchanged

and one defines the diagonal translation operators ML

ML(s,D) =

L∑
l=0

(2l + 1)ilh
(1)
l (κ|D|)Pl(s · D̂) . (3.8)

For the actual implementation of the multipole scheme, the vector d is decomposed

to the original contributions xb−zb and za−ya. Using the translation operators ML,

the wave function at a point xb induced by sources qa (a = 1, . . . , A) at ya inside the

sphere around za can be computed as

Φ(xb) =
iκ

4π

∫
S
2
eiκ(xb−zb)·sML(s, zb − za)

A∑
a=1

eiκ(za−ya)·sqa ds . (3.9)

The field of the sources qa is represented in zb by the translation operatorsML(s, zb−
za) and translated to the field point xb close to zb by simple multiplication with

eiκ(xb−zb)·s. The translation operators do not depend on the location of the sin-

gle sources, but only on the distance vector between the expansion centers of the

clusters. Thus, leading to favorable numerical complexity for the FMM BEM as

discussed in Section 3.7.

For simplicity of later references, the far-field signature F (s) and near-field signature

N(s) are defined as follows

F (s) =

A∑
a=1

eiκ(za−ya)·sqa , (3.10)

N(s) = ML(s, zb − za)F (s) . (3.11)

3.3 Multilevel multipole algorithm

When adapting the multipole scheme to the BEM, a source refers to an integra-

tion point of a boundary element. To take advantage of the fast evaluation of the

fundamental solution by the translation operators ML, it is required to cluster the

boundary elements in groups. This can either be done on one level resulting in a
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single-level computational scheme or, as in the present algorithm, on several levels of

clusters resulting in a multi-level scheme. A hierarchic tree with levels � = 0, . . . , �max

containing clusters of elements is introduced. The first cluster on the highest level

� = 0 is a parallelepiped containing all elements. Child clusters are created by bi-

section of the parent cluster’s parallelepiped and elements as a whole are assigned

to a child. Clusters that contain no elements are deleted from the cluster tree. The

clusters are split until the number of elements in the respective cluster falls below

a set maximum. As a consequence, the cluster tree has a variable depth and is

adapted to refinement of the boundary element mesh.

In contrast to many publications on multipole algorithms where oct-trees (one clus-

ter is split into eight child clusters) are employed, binary trees (one cluster is split

into two child clusters) are chosen for the level hierarchy. This approach yields a

higher efficiency for domains where the original parallelepiped does not represent a

cube as often encountered in practical applications. Both methods—binary and oct

trees—use regular dissection of the clusters, i.e. the distance of cluster centers D

is equal for many pairs. This offers the advantage that translation operators—that

depend only on the distance D—can be reused, saving considerably computing time

and memory requirements when setting up the multipole BEM.

Due to the variable depth of the cluster tree, the final leaves—the “lowest level”

of the cluster tree—are found on different levels �. As illustration, the lowest level

of a cluster tree for a two-dimensional boundary element discretization is shown in

Fig. 3.2. The clusters are denoted by Cγ
� where 1 ≤ γ ≤ 2� and the center of each

element that controls the cluster affiliation is represented by a dot in the figure.

The original rectangular root cluster is split until at most three elements are located

in each cluster on the lowest level. For the numerical examples in Section 3.8, the

three-dimensional cluster tree is refined until at most 12 triangular elements are

located in each cluster.

Attributes of a cluster are its center zγ� and diameter dγ� which is the maximum dis-

tance between two boundary element nodes in the cluster Cγ
� . The cluster diameter

d� on level � is chosen as the largest of the cluster diameters dγ� . Furthermore, a

cluster possesses a list of clusters in the near-field and clusters in the interaction set.

The clusters in the near-field (N) are all those clusters whose distance D between

their centers fulfills the condition

D < c
d�
2
, (3.12)

where c is a suitable constant. The choice c ≥ 3 guarantees a near-field buffer of at

least one cluster. For the definition of the near-field relations on the lowest level of

the cluster tree, each pair of leaves is checked for the near-field condition (3.12) with
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Figure 3.2: Two-dimensional boundary element discretization with lowest level of

cluster tree.

the larger of the two cluster diameters to preserve the symmetry of the multipole

algorithm. For boundary element models with a varying element size as e.g. in

Fig. 3.2, this procedure yields varying near-field diameters. However, the increased

efficiency of the adaptive multipole algorithm makes up for the increased memory

requirements.

Clusters, whose parent clusters fulfill the near-field condition, but themselves are

not in each others near-field, form the interaction list (I). The information transfer

in the multilevel scheme is displayed in Fig. 3.3. The contribution of a source in

the hatched cluster on the lowest level is distributed in the multilevel multipole

algorithm by the following steps:

(i) Compute the far-field signature on the lowest level.

(ii) Translate the far-field signature to the interaction list.

(iii) Shift the far-field signature to the center of the parent cluster.

(iv) Repeat the last two steps upwards until the interaction list is empty.

(v) In the downward pass, shift the near-field signatures to the child clusters.

(vi) Recover solution and evaluate near-field on the lowest level.
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Figure 3.3: Information transfer in cluster tree.

3.4 Evaluation of boundary integral operators

The FMM BEM algorithm does not assemble the complete BEM matrices, but

performs a fast evaluation of the matrix-vector products. That allows the solution

using an iterative solver for the linear system of equations as discussed in Chapter 4.

In the following sections, the FMM evaluation for the matrix-vector products of the

discrete single layer potential and the hyper-singular operator is discussed. The

single layer potential is evaluated for constant shape functions, the hyper-singular

operator for linear shape functions. The transfer of the FMM to the other boundary

integral operators of the symmetric Galerkin BEM and the Burton-Miller approach

is straight forward.

Single layer potential

The multipole algorithm is formulated for the ν-th component of the matrix-vector

product vν = (Vu)ν of the single layer potential evaluated for constant shape func-

tions. For convenience, µ and ν are used as indices for the element vectors as well

as to denote the elements µ and ν, respectively. The near-field part of the boundary

integral operator is evaluated directly—i.e. the matrix entries are computed and

stored when field and load point are close to each other—whereas for the far-field

part, the multipole method is applied. The double surface integral is substituted by
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Gauss quadrature on the elements

vν = (Vnearfieldu)ν +

∫
ν

∑
µ∈farfield

uµ

∫
µ

P ∗(x, y) dsy dsx

≈ (Vnearfieldu)ν +

Gν∑
j=1

ων,j∆ν

∑
µ∈farfield

uµ

Gµ∑
i=1

ωµ,i∆µP
∗(xν,j, yµ,i) , (3.13)

where ∆µ, ωµ,i, and yµ,i are the Jacobi determinant, Gauss weight, and integration

point for element µ, respectively. The terms are defined analogous for the element

ν. The expression

Φ(xν,j) =
∑

µ∈farfield
uµ

Gµ∑
i=1

ωµ,i∆µP
∗(xν,j , yµ,i) (3.14)

can be evaluated efficiently using the multipole method, whereas the remaining

operations in (3.13) are local at element ν. The multipole algorithm consists of the

following steps:

(i) Compute the far-field signature F γ
� (s) for all clusters on the lowest level

F γ
� (s) =

∑
µ∈Cγ

�

uµ∆µ

Gµ∑
i=1

ωµ,i e
iκ(yµ,i−zγ� )·s . (3.15)

(ii) Translate F γ
� (s) to the interaction list using the translation operators ML

Nγ
� (s) =

∑
interaction list

ML(s,D) F γ
� (s) , (3.16)

where D is the distance between zγ� and the center of the respective interaction

list cluster.

(iii) Shift F γ
� (s) to the center of the parent cluster.

(iv) Repeat last two steps upwards until the interaction list is empty.

(v) In the downward pass, shift the near-field signatures Nγ
� (s) in interaction lists

to the child clusters.

(vi) On the lowest level, recover solution in the integration points xν,j

Φ(xν,j) =
iκ

4π

∫
S
2
eiκ(z

γ
� −xν,j)·sNγ

� (s) ds . (3.17)

Finally, the matrix-vector product (3.13) is evaluated by summation of the element

contributions Φ(xν,j) and addition of the near-field contribution which is calculated

directly using the standard BEM.
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Hyper-singular operator

Similarly to the single layer potential, the multipole algorithm is formulated for

the τ -th component of the matrix-vector product vτ = (Du)τ of the hyper-singular

operator evaluated for linear shape functions. For convenience, σ and τ are used

as indices of the nodal vectors as well as to denote the nodes σ and τ , respec-

tively. In the near-field, regularization techniques must be employed to compute

the hyper-singular operator. However, in the far-field, i.e. in the multipole share,

the direct computation proves more efficient since it requires only one call of the

multipole algorithm. Even better for the Burton-Miller approach, where the di-

rect evaluation of the hyper-singular operator and the double layer potential can be

performed simultaneously except for the recovering of the solution. In contrast, a

multipole evaluation of the regularized hyper-singular operator according to (2.18)

would require six calls of the multipole algorithm with different source strengths.

The reduced number of multipole cycles when combining regularization in the near-

field and direct evaluation in the far-field makes up for the special attention that

must be paid to the cluster edges and near-field edges as presented in Appendix B.

For the linear shape functions, ϕp
τ |ν(x) denotes the nodal basis function of node τ

constricted to the element ν. The set E(τ) contains all elements attached to node

τ , whereas N (ν) contains all incident nodes of element ν. Using these expressions

the matrix-vector product for the hyper-singular operator is expressed as

vτ = (Dnearfieldu)τ+∑
ν∈E(τ)

∫
ν

∑
µ∈farfield

∑
σ∈N (µ)

uσ

∫
µ

ϕp
τ |ν(x) ϕp

σ|µ(y)
∂2P ∗(x, y)
∂nx∂ny

dsy dsx

≈ (Dnearfieldu)τ +
∑

ν∈E(τ)

Gν∑
j=1

ων,j∆νϕ
p
τ |ν(xν,j) nxν,j

· ∇xν,j⎧⎨
⎩ ∑

µ∈farfield

∑
σ∈N (µ)

uσ

Gµ∑
i=1

ωµ,i∆µϕ
p
σ|µ(yµ,i) nyµ,i · ∇yµ,i P

∗(xν,j , yµ,i)

⎫⎬
⎭ .

(3.18)

As for the single layer potential, the expression in curly brackets can be evaluated

efficiently using the multipole method, whereas the remaining operations in (3.18)

are local at node τ . The multipole algorithm for the hyper-singular operator consists

of the following steps:

(i) Compute the far-field signature F
′γ
� (s) for all clusters on the lowest level. The

normal derivative at the source point must be considered when computing the
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far-field signature. Thus, Eq. (3.10) is replaced by its normal derivative

F
′γ
� (s) = iκ

∑
µ∈Cγ

�

∑
σ∈N (µ)

uσ

Gµ∑
i=1

ωµ,i∆µϕ
p
σ|µ(yµ,i) nyµ,i · s eiκ(yµ,i−zγ� )·s . (3.19)

(ii) Translate F
′γ
� (s) to the interaction list using the translation operators ML

N
′γ
� (s) =

∑
interaction list

ML(s,D) F
′γ
� (s) , (3.20)

where D is the distance between zγ� and the center of the respective interaction

list cluster.

(iii) Shift F
′γ
� (s) to the center of the parent cluster.

(iv) Repeat last two steps upwards until the interaction list is empty.

(v) In the downward pass, shift the near-field signatures N
′γ
� (s) in interaction lists

to the child clusters.

(vi) On the lowest level, the normal derivative is evaluated when recovering the

solution in the integration points xν,j

nxν,j
· ∇xν,j

Φ′(xν,j) =
κ2

4π

∫
S
2
nxν,j

· s eiκ(zγ� −xν,j)·sN
′γ
� (s) ds . (3.21)

Finally, the matrix-vector product (3.18) is evaluated by summation of the element

contributions nxν,j
·∇xν,j

Φ′(xν,j) and addition of the near-field contribution which is

calculated directly using the standard BEM.

3.5 Truncation error

Convergence of the truncated multipole expansion

iκ

L∑
l=0

(2l + 1) jl(κ|d|) h(1)
l (κ|D|)Pl(D̂ · d̂) (3.22)

to the partial wave equation is guaranteed for an expansion length of L > κ|d|.
However, the exact choice of the expansion length L is crucial for the multipole

algorithm: L must chosen large enough to yield the required accuracy and short

enough for a favorable computing cost. Increasing the expansion length, a problem
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arises besides the increased computing cost, since the Hankel function h
(1)
l (κ|D|)

grows to infinity for large l. For exact arithmetic, this growth is balanced out by

the decay of jl(κ|d|)Pl(D̂ · d̂) which is not true for a numerical implementation due

to the machine precision.

When truncating the multipole expansion of the fundamental solution (3.4) at l = L,

the truncation error is defined by

εL = iκ

∞∑
l=L+1

(2l + 1) jl(κ|d|) h(1)
l (κ|D|)Pl(D̂ · d̂). (3.23)

The classical error analysis for the multipole expansion is motivated by the conver-

gence behavior of the spherical Bessel functions jl(κ|d|). Following the extensive

presentation in the paper by Koc et al. (1999), its derivation is briefly discussed.

The Legendre polynomials in the error representation (3.23) take their maximum

value of one for collinear vectors D̂ and d̂. Using the large-argument asymptotic

form of the Hankel functions for κ|D| → ∞, i.e. a sufficiently large near-field, the

error can then be approximated

|εL| ≤ iκ

κ|D|
∞∑

l=L+1

(2l + 1) |jl(κ|d|)| . (3.24)

For the spherical Bessel functions, the ascending series expansion

jl(κ|d|) = (κ|d|)l
1 · 3 · 5 ... (2l + 1)

{
1−

1
2
(κ|d|)2

1!(2l + 3)
+

(1
2
(κ|d|)2)2

2!(2l + 3)(2l + 5)
− ...

}
(3.25)

holds (Abramowitz and Stegun, 1974) which is used to obtain the error bound

|εL| ≤ iκ

κ|D|
(κ|d|)L+1

1 · 3 · 5 ... (2L+ 1)
. (3.26)

According to (3.26), the truncation error decreases faster than exponential as the

expansion length is increased. A drawback of this estimate is that it is only valid

when L is large compared to κ|d| whereas in practical applications κ|d| ≈ L. Fur-

thermore, (3.26) does not take into account the behavior of the Hankel function

h
(1)
l (κ|D|). A detailed discussion of this aspect is given in the papers by Koc et al.

(1999) and Ohnuki and Chew (2003).

A different approach for the error analysis is taken by Darve (2000). Darve shows

that the truncation error εL is bounded by ε̄, for the choice

L = C1 + C2κ|d|+ C ′
2 log(κ|d|) + C3 log

1

ε̄
, (3.27)
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where the constants are independent of the distance κ|D|.

In the presented algorithm, the expansion length is chosen according to the well-

established semi-empirical rule that is used by Coifman et al. (1993), Gyure and

Stalzer (1998), Schneider (2003b), and many others. The rule is based on the esti-

mate (3.26) and gives the expansion length L depending on the cluster diameter d�
and the wavenumber κ

L(κd�) = κd� + p log(κd� + π) , (3.28)

where p specifies the required precision. The parameter p does not translate directly

to the number of accurate digits, since the effects of κ|D| are not considered. This

influence will be discussed at hand of the numerical examples.

3.6 Interpolation and filtering of the multipole

expansion

Since the expansion length depends on the cluster diameter, it changes from level to

level. In the upward-cycle the far-field signatures F (s) are shifted to the center of the

parent clusters. To retain the accuracy of the expansion for the larger cluster, further

terms must be added to the series expansion. Increasing the expansion length for the

diagonal form of the multipole expansion means adding far-field directions s on the

unit-sphere, from there the name—interpolation. However, correct interpolation can

only be performed on the original multipole expansion (3.4), thus, the interpolation

algorithm consists of the following steps:

(i) Transform the far-field signature to the original multipole expansion.

(ii) Add zeros for the required expansion length.

(iii) Compute the far-field signature for the new far-field directions.

In the downward-cycle, filtering is defined equivalently. The near-field signatures are

transformed to the original expansion, redundant terms for the new cluster diameter

are cut, and the new near-field signatures are computed.

A proper handling of interpolating and filtering is mandatory for an efficient imple-

mentation of the fast multipole algorithm for the Helmholtz equation. An algorithm

based on fast Fourier transforms (FFT) is proposed by Gyure and Stalzer (1998)

which is adapted to the current scheme. So far, the transform from the multipole
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expansion to the far-field signature and its inverse have not been given explicitly.

According to Rokhlin (1993), the pair of far-field transforms is defined by

F (s) =

L∑
l=0

l∑
m=−l

ilY m
l (s)Flm , (3.29)

Flm =

∫
S
2
i−lY m∗

l (s)F (s) ds , (3.30)

where (·)∗ denotes the complex conjugate. Using the definition of the normalized

Legendre polynomials P̂
|m|
l (cos θ)

Y m
l (s) = P̂

|m|
l (cos θ)eimϕ , (3.31)

the spherical harmonics transform is rewritten

Flm =

∫
S
2
i−lY m∗

l (s)F (s) ds

=

∫
θ

i−lP̂
|m|
l (cos θ)

(∫
ϕ

e−imϕF (s) dϕ

)
d(cos θ)

=

∫
θ

i−lP̂
|m|
l (cos θ)Φm(cos θ) d(cos θ) . (3.32)

The coefficients Φm(cos θ) can be efficiently evaluated using the fast Fourier trans-

form. It is recalled that the far-field signature is represented at the equally spaced

sampling points ϕi = (iπ)/L, i = 0, ... , 2L− 1 and the inner integral in (3.32) can

be replaced by

Φm(cos θ) =
1

2L

2L−1∑
i=0

F (s)e−imϕi =
1

2L

2L−1∑
i=0

F (s)e
−2πimi

2L , (3.33)

which has clearly the form of a discrete Fourier transform and, thus, all coefficients

Φm(cos θ) can be computed by a FFT with a numerical cost of O(L logL) if 2L = 2n.

The outer integration in (3.32) is evaluated using numerical quadrature

Flm =

L−1∑
j=0

ωj i
−lP̂

|m|
l (xj)Φm(xj) , (3.34)

where xj and ωj are sampling points and integration weights of the L point Gauss

quadrature rule, respectively. The result are the multipole coefficients of the h-

expansion. In this form the series expansion can be extended to the new required

expansion length L′ by adding Flm = 0 for L < l ≤ L′. The new coefficients of the

far-field signature are then computed as

F (s′) =
L′∑

m=−L′
ileimϕ(s′)

L′∑
l=0

FlmP̂
|m|
l (cos θ(s′)) . (3.35)
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3.7 Estimate of the numerical complexity

For the estimate of the numerical complexity, a cluster tree with branches of equal

depth is assumed, i.e. the adaptive clustering as described in Section 3.3 is neglected.

The goal of the multilevel multipole scheme is to achieve a numerical complexity

of O(N log2N) in the number of unknowns. Thus, on the lowest level �max, the

number of elements in the near-field of each cluster can be proportional to log2N .

This results in n�max ∼ N/log2N clusters with diameter d�max ∼ logN/
√
N . On the

higher levels, number and diameter of the clusters behave as n� ∼ n�max4
�−�max

3 and

d� ∼ d�max/2
�−�max

3 , respectively. The total number of levels is clearly of the order

O(logN).

Due to the dependence on the wavenumber, the computational cost of the FMM is

discussed for keeping the ratio κh ∼ κ/
√
N constant. This situation corresponds to

the engineering rule of thumb that a constant number of elements per wavelength

results in a constant discretization error. Choosing the expansion length according

to (3.28) and assuming κ/
√
N = const yields the following estimates:

- On the lowest level of the cluster tree, the sources are combined to the far-field

signature of the clusters using (3.10). The numerical complexity isO(NL2
�max

) =

O(N(κd�max)
2) = O(N log2N), as each element has to be considered in each

of the 2L2
�max

discrete far-field directions.

- Transformation of far-field signature of each cluster to its interaction list by

applying the translation operators ML.

O(L2
�n� logN) = O((κd�)

2n� logN) = O(κ2 logN) = O(N logN) .

- Translation of the far-field signature to the center of the parent cluster, inter-

polation if necessary.

O(L2
� logL�n� logN) = O(N log2N)

- In the downward cycle, translation and filtering of the near-field signatures.

O(L2
� logL�n� logN) = O(N log2N)

- On the lowest level, translation of the near-field signature to each quadrature

point and recovering the solution.

O(NL2
�max

) = O(N log2N).

- The near-field of a cluster contains at most O(log2N) elements, so that the

evaluation of all near-field entries scales as O(N log2N).

The FMM algorithm accomplishes the targeted numerical complexity ofO(N log2N)

for computations on refined meshes for increasing frequencies.
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3.8 Numerical examples

The focus of the presented examples in this section is to demonstrate the accu-

racy and the favorable numerical complexity of the multipole BEM matrix-vector

product. The model problems used in the examples are defined in Section 2.4.

Accuracy of multipole matrix-vector product

First, the accuracy of the truncated multipole expansion is studied. As an example,

the matrix-vector product of the Burton-Miller approach (2.22)

v =

(
−1

2
I+K+

i

κ
D

)
1 (3.36)

is evaluated on the L16 model for the vector 1 containing ones in each coordinate. It

is recalled that two parameters must be chosen in the multipole algorithm: the near-

field size parameter c according to (3.12) as well as the expansion length parameter

p according to (3.28). The sensitivity of the error of the multipole matrix-vector

product on these two parameters is plotted in Fig. 3.4. Thereby, the error of the

matrix-vector product eMV
2 is defined as

eMV
2 =

‖vmultipole − vBEM‖2
‖vBEM‖2 , (3.37)

and relates the result of the multipole matrix-vector product to the matrix-vector

product of the full BEM matrix. Both plots in Fig. 3.4, for 300 Hz and 600 Hz,
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Figure 3.4: Error of multipole matrix-vector product on L16 model plotted against

the expansion length parameter p.
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show the same behavior. The error eMV
2 decreases exponentially with the increase

of the expansion length as predicted by (3.26) until the smallest achievable error is

obtained. The value of this limit is influenced by factors that are not directly linked

to the multipole algorithm. Most dominant in the presented case is the evaluation

of the hyper-singular operator by direct evaluation in the far-field for the multipole

method whereas it is completely evaluated using the regularization technique for the

standard BEM (see Appendix B). Increasing the expansion length further, the error

tends to diverge due to the behavior of the Hankel functions for a large expansion

length. The influence of the near-field size is negligible for engineering precisions of

a few per cent. The smallest possible near-field parameter c = 3 that guarantees a

one box near-field buffer yields good results. The situation is different when high

accuracies are required: the convergence with increasing expansion length is faster

for larger near-fields.

The same behavior is found for the brake disk model. In Fig. 3.5 the sensitivity of

the error of the matrix-vector product eMV
2 is plotted as described before. For the

real-life model, too, the small near-field and a very short expansion length yield a

sufficient precision for engineering applications.
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Figure 3.5: Error of multipole matrix-vector product for brake disk model.

Summarizing the results, the choice of the near-field parameter c = 3 and the

expansion length parameter p = 2 is recommended for engineering simulations.

This combination is found to yield reliably an error of the matrix-vector product

of around 1 % which is sufficient for most applications. So the multipole algorithm

can be used as a black-box tool in a software package. The user does not need

to choose any parameters in addition to those of a standard BEM simulation. For

higher precisions, the suitable choice of near-field and expansion length parameter
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can have significant impact on the efficiency of the multipole BEM computation.

Computing cost of multipole matrix-vector product

The critical aspect of computing cost to achieve a required precision is discussed

next. The computing time for the matrix-vector product on the L16 model is plotted

in Fig. 3.6 against the error eMV
2 for the near-field parameters c = 3 and c = 4 at

frequencies of f = 300 Hz and f = 600 Hz. As expected, the computing time

increases logarithmic with the achieved precision over a wide range. Only for very

high precisions a deviation from the logarithmic behavior is noticed. The findings

support the prediction that fast multipole BEM simulations require a quasi-linear

numerical cost.
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Figure 3.6: Error of multipole matrix-vector product plotted against computing time

tMV on L16 model.

The results of BEM simulations on refined meshes for the L-shape at a frequency of

f = 600 Hz are documented in Tab. 3.1. The near-field size is set to c = 4, whereas

the expansion length is varied. The computations are performed on the models

L8, L16, L32, and L64 with a characteristic element size h = 0.125, . . . , 0.016 m

what corresponds to simulations with 5 to 36 elements per wavelength. Neumann

boundary conditions are applied corresponding to a monopole source inside the L-

shape and the Burton-Miller BEM system is solved with a residual of 10−5 using

un-preconditioned GMRES. The total simulation error eΓ2 (see (2.23)) consists of the

discretization and integration errors of the BEM model, the multipole truncation

error, and the true residual error of the solver. For BEM simulations of Neumann

boundary value problems, one can expect an h2 convergence of the Dirichlet bound-
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ary datum in the L2 norm. The results in Tab. 3.1 match this convergence rate,

and for the chosen example a minimal total error of below 10−3 confirms the correct

implementation of the BEM package.

Table 3.1: Computing time for simulations on L-shape at f = 600 Hz.

p tnear-field iterations tMV/iteration error eΓ2

L8 1 38 sec 28 0.5 sec 6.36 · 10−2

2 38 sec 28 0.8 sec 6.20 · 10−2

3 38 sec 28 1.5 sec 6.20 · 10−2

L16 1 162 sec 35 1.0 sec 2.27 · 10−2

2 162 sec 35 1.8 sec 1.42 · 10−2

3 162 sec 35 3.4 sec 1.42 · 10−2

L32 2 620 sec 51 4.1 sec 8.51 · 10−3

3 620 sec 51 7.8 sec 3.76 · 10−3

4 620 sec 51 13.6 sec 3.63 · 10−3

L64 3 2470 sec 83 19.2 sec 6.62 · 10−3

4 2470 sec 83 30.7 sec 1.37 · 10−3

5 2470 sec 83 49.2 sec 0.98 · 10−3

The computing time on the refined meshes increases quasi-linearly as predicted. The

number of unknowns increases by a factor of four between the meshes, as does the

computing time tnear-field for the calculation of the near-field matrix entries as well as

the time tMV required for the evaluation of one matrix-vector product. The number

of required iterations for the solution of the system of equations increases with mesh

refinement. Up to 83 iterations for the L64 model are required what represents a

significant numerical cost and calls for efficient solvers and preconditioning that are

discussed in Chapter 4.

For engineering acoustics simulations, usually the factor κh is kept constant to

obtain an approximately consistent accuracy for increasing frequencies. Typically

six to ten elements are chosen to yield an discretization error of a few per cent. In

Tab. 3.2 the results of simulations on the models L8 to L96 are listed. The frequency

increases from 300 Hz to 3600 Hz corresponding to nine elements per wavelength on

each model. The multipole parameters are set c = 3 and p = 2 to account for the

expected error of around 1%. The computing time for the near-field matrices tnear-field
increases quasi-linearly as before, the computing time for the setup of the translation

operators increases sub-linearly since many operators can be reused in the regular
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cluster tree. The residual for the solution with un-preconditioned GMRES is set to

10−5. One notices that the number of required iterations for the solution does not

increase with mesh refinement and increasing frequency which is due to the choice of

the coupling parameter in the Burton-Miller approach. Thus, the total simulation

time ttotal does increase quasi-linearly with the number of unknowns as predicted

for the multipole BEM.

Table 3.2: Computing time for simulations on L-shape at κh = const.

f tnear-field tsetup iterations tsolve ttotal error eΓ2

L8 300 Hz 31 sec 0.3 sec 37 11 sec 0.7 min 2.19 · 10−2

L16 600 Hz 125 sec 1.6 sec 35 62 sec 3 min 1.44 · 10−2

L32 1200 Hz 444 sec 11 sec 34 325 sec 13 min 1.22 · 10−2

L64 2400 Hz 1743 sec 33 sec 36 1892 sec 61 min 1.13 · 10−2

L96 3600 Hz 5163 sec 95 sec 45 5152 sec 174 min 1.24 · 10−2

The computing time ttotal as documented in Tab. 3.2 is plotted in Fig. 3.7 against

the number of unknowns of the BEM models to underline the quasi-linear behavior.

In the second graph, the memory requirement is plotted against the number of

unknowns. The memory requirement increases even slower than linear which is due

to the reuse of translation operators in the regular cluster tree. For comparison,

the computing cost of the standard BEM simulations (see Tab. 2.2) is plotted, too.

For models with more than a few thousand unknowns, one obtains a significant

advantage using the fast multipole BEM. The simulations are performed faster and

at a much reduced memory requirement.

The advantage of fast multipole BEM against standard BEM simulations is also

pointed out in Tab. 3.3 on the example of the brake disk model. For the solution of

the model with 4422 unknowns at a frequency of 3720 Hz, 108 GMRES iterations

are required for a residual of 10−4. The computation of the full BEM matrices takes

49 min. Using the multipole BEM with very coarse parameters, the solution is

obtained in 16 min which is a significant speed-up for the rather small model. The

error eBD
2 for the brake disk model is defined as

eBD
2 =

‖pmultipole − pBEM‖2
‖pBEM‖2 . (3.38)

For the coarse multipole parameters one obtains an error of the solution eBD
2 = 3.0%

in reference to the standard BEM solution. For an increased expansion length, the

multipole error is 0.2% at a computing time of just 19 min which is half of the

computing time required for the standard BEM.
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Figure 3.7: Computing time and memory requirement plotted against number of

unknowns N for computations at κh = const.

Table 3.3: Multipole BEM simulations on brake disk model.

c p tnear-field tsetup tsolve ttotal error

BEM 49 min – 29 sec 50 min ref

3 1 13 min 12 sec 3 min 16 min 3.04 · 10−2

2 13 min 18 sec 6 min 19 min 2.33 · 10−3

3 13 min 37 sec 12 min 26 min 7.59 · 10−4

4 1 18 min 53 sec 3 min 22 min 2.04 · 10−2

2 18 min 74 sec 7 min 26 min 1.17 · 10−3

3 18 min 77 sec 13 min 32 min 1.44 · 10−4

5 1 24 min 94 sec 3 min 28 min 1.79 · 10−2

2 24 min 115 sec 7 min 33 min 1.17 · 10−3

3 24 min 164 sec 13 min 40 min 1.36 · 10−4
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Chapter 4

Iterative solution of BEM systems

The solution of boundary element systems poses several difficulties: the matrices

are typically fully populated, non-hermitian, and in acoustics mostly indefinite. The

direct solution of the BEM system

Ax = b (4.1)

is not feasible for large matrices A, since it scales as O(N3) in the number of

unknowns. Furthermore, using the fast multipole BEM as discussed in the previous

chapter, A is not set up explicitly and thus not available for an LU decomposition.

Instead of solving the BEM system (4.1) directly, it can be rewritten in residual

form

x = xk +A−1rk , (4.2)

where xk is an approximation of the exact solution x and rk = b − Axk is the

residual. Computing the inverse of the system matrix A−1 clearly is not feasible. If

one replaces A−1 by the inverse of a preconditioning matrix M−1, one obtains an

iterative scheme

xk+1 = xk +M−1rk . (4.3)

There are two aspects for a good choice of M−1: first, its application on a vector

should be inexpensive and second, it should be a good approximation of A−1. The

simplest choice M−1
Jacobi = [diag(A)]−1 represents the Jacobi iteration. A better

approximation of A−1 is found by the approximate inverse approach presented in

Section 4.2. Unfortunately, simple iterations like (4.3) converge very poorly or not

at all for typical BEM systems. However, they can be used as preconditioners for

Krylov subspace methods or as smoothers for multigrid methods.
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4.1 Krylov subspace methods

Krylov subspace methods are iterative techniques that extract the approximate so-

lution from a subspace Kk(A, r0)

Kk(A, r0) = span
{
r0,Ar0,A

2r0, ... , A
k−1r0

}
. (4.4)

The obvious choice of basis vectors as in (4.4) is not suitable for an efficient numer-

ical scheme, since for increasing powers of the matrix A, they get more and more

collinear. The construction of an adequate Krylov basis and the way of extracting

the approximate solution are two distinct aspects of the various Krylov subspace

methods. For an extensive introduction, it is referred to the text books by Saad

(2003) and van der Vorst (2003).

Krylov subspace methods are the most suitable black-box iterative solvers for BEM

systems currently available. Their performance is systematically examined in the

paper by Marburg and Schneider (2003b). The authors compare the restarted

bi-conjugate gradient stabilized algorithm (BICGSTAB), the conjugate gradient

method applied to the normal equations (CGNR), the generalized minimal residual

method (GMRES), and the transpose free quasi minimal residual method (TFQMR)

for interior acoustic problems as well as for exterior problems using the Burton-Miller

approach. The efficiency of the solvers is found to depend on the wave number and

the smoothness of the surface of the BEM model. GMRES works very efficiently

for most of the examples presented by Marburg and Schneider (2003b) and—even

more important—GMRES proves to be the most robust of the compared methods.

Ochmann et al. (2003) as well propose a variant of GMRES for BEM simulations in

acoustics. Thus, in the following, the discussion is concentrated on GMRES which is

implemented according to the algorithm presented in the templates for the solution

of linear systems (Barrett et al., 1994).

GMRES is based on Arnoldi’s procedure for building an orthogonal basis for the

Krylov subspace Kk(A, r0). Each Arnoldi vector vj (j = 2, . . . , k) is built by mul-

tiplying vj−1 with A and performing a standard Gram-Schmidt orthogonalization

against all previous Arnoldi vectors v1,v2, . . . ,vj−1. The Arnoldi algorithm yields

the (k + 1)× k Hessenberg matrix Hk for which holds the relation

AVk = Vk+1Hk , (4.5)

with Vk = (v1,v2, . . . ,vk). The Arnoldi Krylov basis is used in the GMRES algo-

rithm to compute the iterate xk as

xk = x0 +Vky , (4.6)
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where the coefficients y are determined to minimize the residual

b−Axk = b−A(x0 +Vky) = Vk+1 (βe1 −Hky) , (4.7)

with β = ||r0||2 and the starting vector for the Arnoldi algorithm v1 = r0/β. Since

the column vectors of Vk+1 are orthonormal, minimizing the residual (4.7) is equiv-

alent to the least squares problem of finding the minimum of ||βe1 −Hky||2 which

is solved by subsequently applying plane rotations Qk to transform the upper Hes-

senberg matrix Hk into the upper triangular form Rk. Applying the rotation, the

coefficients y can be computed as

y = R−1
k QT

k (βe1) . (4.8)

As a big advantage, this procedure allows to monitor the residual at each iteration

step without actually computing the approximate solution xk. It can be shown

that for exact arithmetic the last entry of the vector QT
k (βe1) = (γ1, γ2, . . . , γk+1)

T

corresponds to the residual of the approximate solution xk

||b−Axk||2 = |γk+1| . (4.9)

When using the multipole BEM, the matix-vector product is evaluated commiting

a truncation error eMV
2 . Equation (4.9) is only valid as long eMV

2 < |γk+1|, otherwise
there is a residual gap between the true residual ||b−Axk||2 and the residual |γk+1|
computed in the GMRES algorithm. A more detailed discusssion of the residual

gap is given in Section 5.3 for the solution of saddle point formulations arising from

structural-acoustic interaction problems.

The computing cost for generating the Krylov basis (4.4) in the GMRES algorithm

increases significantly when a high number of iterations is required. Usually, restarts

are employed to restrict the size of the Krylov basis: the solution after n steps is

used as new initial guess for the next n-step GMRES. However, for acoustic BEM

simulations, the convergence of GMRES can deteriorate quickly when restarts are

used. Thus, throughout the thesis, GMRES is employed without restarts. It is noted

that in contrast to very sparse systems of equations, arising for example from FEM,

the evaluation of the matrix-vector products represents the dominating computing

cost in BEM simulations, not so much storing and orthogonalizing the Krylov basis.

Nevertheless, preconditioning of the BEM system to reduce the number of required

iterations is essential for an efficient solution.
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4.2 Approximate inverse preconditioner

A popular approach for the preconditioning of FEM systems is incomplete LU de-

composition (ILU). ILU can be applied successfully to BEM systems for acoustics as

shown by Schneider and Marburg (2003). However, ILU is also known to often show

poor performance for indefinite and highly non-symmetric systems—typical proper-

ties of the BEM systems. An alternative is the direct approximation of the inverse

of the system matrix (Saad, 2003). The application of the approximate inverse ap-

proach to BEM systems for acoustics is presented by Chen and Harris (2001). The

basic idea of their approach is operator splitting. The integral operator A is divided

into a bounded contribution A0 and the remaining Ã

A = A0 + Ã . (4.10)

It can be shown that the eigenvalues of A−1
0 A = I +A−1

0 Ã cluster around one which

yields an improved convergence of the iterative solver.

The application of the operator splitting on the boundary integral operators is

straight forward. For the double layer potential, the boundary integral is parti-

tioned

(Kp)(x) =

∫
Γ0

∂P ∗(x, y)
∂ny

p(y) dsy +

∫
Γ̃

∂P ∗(x, y)
∂ny

p(y) dsy , (4.11)

where Γ = Γ0∪ Γ̃, defining K0 and K̃, respectively. For the hyper-singular operator,

the procedure is equivalent and the Burton-Miller operator is set up according to

(2.19). Γ0 is chosen locally as an element layer around the load point under consid-

eration. As an example a two-element layer is depicted in Fig. 4.1. The operator A0

is sparse, however, the exact application of A−1
0 would still be too expensive. Thus,

an approximate inverse of A0 is computed.

The computation of the preconditioner matrix M−1
AI is demonstrated on the N ×N

system matrix A which stems from the discretization of A using linear nodal basis

functions ϕp. The choice of Γ0 defines the sparsity pattern sj of the preconditioner.

For every load point corresponding to the index j, sj = {j1, j2, . . . , jn} contains all

nodes within the chosen element layer. By this definition, Γ0 is extended to the sup-

port of the basis functions ϕp
sj
. For the ordering of sj , it is assumed that j1 = j. The

preconditioner matrix is now looked for in the space of N ×N matrices Gs with the

same sparsity pattern as defined by s1, s2, . . . , sN . The right preconditioner matrix

M−1
AI = (m1,m2, . . . ,mN ) is found by the solution of the least squares problem

min
M−1

AI ∈Gs

||AM−1
AI − I||2 =

N∑
j=1

min
mj∈Gsj

||Amj − ej||22 , (4.12)
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Γ0

Γ̃

y

Figure 4.1: Two-element layer around load point.

where Gsj contains all vectors that have entries specified by sj. The computation

of the approximate inverse involves the solution of N least squares problems. Chen

(2001) proves that solving the least squares problem⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1j1 a1j2 · · · a1jn
...

...
...

...

aj1j1 aj1j2 · · · aj1jn
aj2j1 aj2j2 · · · aj2jn
...

...
...

...

ajnj1 ajnj2 · · · ajnjn
...

...
...

...

aNj1 aNj2 · · · aNjn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
mjj1

mjj2
...

mjjn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1

0
...

0

⎞
⎟⎟⎟⎠ (4.13)

is equivalent in a least squares sense to solving the system⎛
⎜⎜⎜⎝
aj1j1 aj1j2 · · · aj1jn
aj2j1 aj2j2 · · · aj2jn
...

...
. . .

...

ajnj1 ajnj2 · · · ajnjn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
mjj1

mjj2
...

mjjn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1

0
...

0

⎞
⎟⎟⎟⎠ . (4.14)

The solution vectors mj = (0, · · · , mjj1, mjj2, . . . , mjjn, · · · , 0)T of the N systems of

equations (4.14) set up the preconditioner matrix M−1
AI . For approximate inverse

preconditioning of GMRES, the system (4.1) is simply replaced by

AM−1
AI x̃ = b , x = M−1

AI x̃ . (4.15)

In the implementation of GMRES, the new variable x̃ is never invoked explic-

itly. The corrections of the initial guess are approximated in the Krylov subspace

Kk(AM−1
AI , r

0) and simply multiplied by M−1
AI when composing the solution.
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The choice of the size of Γ0 is a trade-off between effect and numerical cost of the

preconditioner. The convergence rates of the approximate inverse preconditioned

GMRES for a one-element and a two-element layer around the element containing

the load point are depicted in Fig. 4.2 for the simulation of the L16 model at 600 Hz.

For comparison the convergence rate of un-preconditioned GMRES is plotted, too.

One notices the improved convergence of the approximate inverse preconditioned
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Figure 4.2: Convergence of GMRES with approximate inverse preconditioning.

GMRES. The one- and two-element layer approach show a similar performance

with a small advantage of the two-element layer. The additional computing cost

for the preconditioning is negligible for large BEM models. A larger choice of Γ0

is not feasible in combination with the multipole BEM, since not enough matrix

entries are available when choosing a small near-field size. A two-element layer is

thus employed throughout the numerical examples in Section 4.4.

4.3 Multigrid solver

As an alternative to GMRES, multigrid solvers can be used for the solution of the

BEM systems. Ochmann and Wellner (1991) and Tröndle (1995) discussed the ap-

plication of multigrid solvers to BEM for acoustics very early. However, the number

of unknowns is limited when using standard BEM and the advantages of the multi-

grid solvers do not pay off. The situation is different when using a fast BEM which

allows some hundreds of thousands unknowns. However, one constraint remains:

geometric multigrids require a hierarchy of discretizations—the coarse grids—which

is typically difficult to construct in engineering applications. Algebraic multigrids

as proposed by Langer et al. (2003) resolve this problem but are beyond the scope
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of the thesis.

A detailed introduction to multigrid methods can be found in the books by Hack-

busch (1985) and Briggs et al. (2000). Following their presentations, a short overview

on the algorithm is given. Multigrid solvers are based on the property of classical

iteration schemes (Jacobi, SOR, ...) to quickly reduce the high-frequency part of

the residual (“smoothing”). For the low-frequency part, the classical schemes show

a very poor convergence behavior. The idea of the multigrid solvers is to treat this

share by a coarse grid correction. A multigrid cycle for the approximate solution

x
(l)
k on level l at the iteration step k includes the following steps:

(i) ν
(l)
1 presmoothing iterations

x
(l)
k, 1 = Sν

(l)
1 x

(l)
k , (4.16)

(ii) computation of the residual

r(l) = b(l) −A(l)x
(l)
k, 1 , (4.17)

(iii) restriction of the residuum to the grid l − 1

b(l−1) = R
(l−1)
(l) r(l) , (4.18)

(iv) computation of the coarse grid correction

A(l−1)y(l−1) = b(l−1) , (4.19)

– (4.19) is solved directly on the lowest level l − 1 = 0

– for higher levels, an approximation of y(l−1) is computed by

executing multigrid cycles

(v) prolongation of the coarse grid correction

x
(l)
k, 2 = x

(l)
k, 1 +P

(l)
(l−1)y

(l−1) , (4.20)

(vi) ν
(l)
2 postsmoothing iterations

x
(l)
k+1 = Sν

(l)
2 x

(l)
k, 2 . (4.21)

This cycle is repeated until convergence is attained. If in step (iv) the multigrid

algorithm is recursively accessed once at each level, one obtains a V-cycle multigrid

scheme as depicted in Fig. 4.3. The grids are traversed once from the finest grid to

the coarsest grid and back in each multigrid iteration.
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Figure 4.3: V-cycle multigrid scheme.

4.3.1 Restriction and prolongation operators

For setting up the restriction matrices R
(l−1)
(l) from grid l to l− 1 and the prolonga-

tion matrices P
(l)
(l−1) from grid l − 1 to l various definitions exist. In the presented

algorithm, the standard choice for linear nodal basis functions on the boundary tri-

angulation is employed as it is commonly used in 2-D FEM. The prolongation matrix

corresponds to the discretized identity mapping. For mesh refinement as depicted

in Fig. 4.4, the prolongation matrix can be given explicitly⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
5

x
(l)
6

x
(l)
7

x
(l)
8

x
(l)
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0.5 0.5 0 0

0 0.5 0.5 0

0 0 0.5 0.5

0.5 0 0 0.5

0.5 0 0.5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Pl

l−1

⎛
⎜⎜⎜⎝
x
(l−1)
1

x
(l−1)
2

x
(l−1)
3

x
(l−1)
4

⎞
⎟⎟⎟⎠ . (4.22)

The restriction matrix is then chosen as the transpose of the prolongation matrix,

R
(l−1)
(l) =

(
P

(l)
(l−1)

)T

. It is noted that this definition of the restriction and prolonga-

tion operators would allow Galerkin assembling of the system matrices on the lower

levels

A(l−1) = R
(l−1)
(l) A(l)P

(l)
(l−1) . (4.23)

However, in the current implementation, the BEM is set up on every level indepen-

dently, since the system matrix is not available explicitly when using the multipole

BEM.
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Figure 4.4: Mesh hierarchy of boundary triangulation.

4.3.2 Smoothing scheme

The design of suitable smoothers S is essential for an efficient multigrid solver. When

applying the multigrid solver to acoustics, usually the oscillation of the solution

cannot be resolved on the coarser grids. Brandt and Livshits (1997) propose a wave-

ray scheme to eliminate this term and show that convergence results can be obtained

that are similar to multigrids for elliptic problems. The implementation of the wave-

ray method is very involved, a simpler approach that is used in the presented thesis

is proposed by Elman et al. (2001). They employ standard smoothers on the fine

grids and GMRES iterations as smoothers on the coarser grids.

A common choice for the smoothers in multigrid solvers are damped Jacobi relax-

ations, defined as

Sx(l)
k := x

(l)
k + ηM−1

Jacobi

(
b(l) −A(l)x

(l)
k

)
, (4.24)

where the damping factor η < 1 can be tuned for good convergence. The popular

damped Gauss-Seidel relaxation cannot be applied to the multipole BEM, since the

matrix-vector product A(l)x
(l)
k is evaluated in one step in the multipole algorithm.

The smoothing effect of damped Jacobi relaxations is demonstrated in Fig. 4.5. The

relaxations are applied to the Burton-Miller BEM for the L16 model at 600 Hz.

The start vector x0 is chosen to yield a random distribution of the initial residual.

One notices clearly that the Jacobi iterations quickly smoothen the residual. On

the other hand, the value of the residual increases, i.e. the Jacobi scheme diverges

and cannot be used as a stand-alone solver without the coarse grid correction.

Standard relaxed Jacobi smoothers are found to work inefficiently for BEM in acous-
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Figure 4.5: Smoothing by relaxed Jacobi iterations.

tics. The approximate inverse preconditioner presented in Section 4.2 proves to be

a more efficient smoother. It is defined as

Sx(l)
k := x

(l)
k +M−1

AI

(
b(l) −A(l)x

(l)
k

)
. (4.25)

The approximate inverse smoother and—to some extent—the Jacobi smoother work

reasonably well for the Helmholtz equation if the grid is fine enough. For coarse

grids, the simple relaxation schemes amplify low-frequency modes inadmissibly. El-

man et al. (2001) show that using GMRES iterations as smoother on coarse grids

accelerates the solver even if the grids are so coarse that the oscillation of the solution

cannot be reproduced. They propose to set the limit at h(l)κ = 0.5. The engineering

rule of thumb of simulations with six to ten elements per wavelength corresponds

to a factor of h(lmax)κ = 1 ... 0.6 on the finest grid. That means that for applica-
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tions with “high” engineering accuracies, cheap standard smoothers can be used on

the finest grid, whereas GMRES must be used on all coarser grids. The number

of required GMRES iterations is rather high, typically up to 30 iterations on the

finest GMRES grid. When using the standard BEM, this smoothing scheme proves

efficient, since for each grid refinement the numerical cost per iteration increases by

a factor of 16. However, when using the fast multipole BEM, the numerical cost per

iteration increases only by a factor of four. Thus, the smoothing scheme must be

designed to require only a moderate increase of iterations on the coarser grids.

The following choice of parameters for the multigrid algorithm yields good results

for engineering application when used in combination with the multipole BEM:

Jacobi or approximate inverse smoothing steps are performed on the two finest

levels. On the finest grid, ν(lmax) = 1 smoothing step is applied. On the second

grid ν(lmax−1) = 2 ... 4 smoothing steps are applied in agreement with the reduced

numerical cost. For the coarser grids, ν
(l)
1 = 1 GMRES presmoothing and ν

(l)
2 = 7

postsmoothing steps are used.

4.4 Comparison of preconditioned GMRES and

multigrid solver

The family of BEM meshes for the L-shape (Tab. 2.1) is used for the comparison of

the preconditioned GMRES method and the multigrid solver. First, the convergence

behavior of the solvers is studied on the BEM discretization L16 at a frequency

f = 600 Hz. In Fig. 4.6, a 3-grid solver with Jacobi smoothing on the two finest

levels is examined. On the finest grid ν(lmax) = 1 smoothing iteration is used, on

the second grid the number of smoothing steps is varied ν(lmax−1) = 2 ... 4. As

expected, the convergence improves with the increase of smoothing steps. The gain

obtained by the fourth smoothing step is rather small, thus, ν(lmax−1) = 3 is fixed

for the following studies. The choice of the damping factor η turns out critical:

e.g. a residual of 10−5 is obtained after 17 and 8 iterations for η = 0.7 and η =

0.5, respectively. This strong influence of parameters is a major limitation for the

practical application of the multigrid solver with Jacobi smoother. The performance

of the Jacobi multigrid is rather disappointing, even with well tuned parameters

η = 0.7 and ν(lmax−1) = 3. In Fig. 4.6 the convergence of the Jacobi multigrid

(MG Jacobi) is compared to the approximate inverse multigrid (MG AI) and the

solution with GMRES. Smoothing with the approximate inverse approach performs

far superior to the Jacobi smoothers. GMRES is also accelerated significantly by

the approximate inverse preconditioning. The preconditioned GMRES requires only
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few iterations more than the Jacobi multigrid and is much cheaper per iteration.
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Figure 4.6: Convergence of multigrid and GMRES solvers.

Both, GMRES and multigrid solver in combination with approximate inverse pre-

conditioning show little influence of the frequency for simulations on the same BEM

discretization. The achieved residual after 20 and 5 iterations, respectively, is plot-

ted in Fig. 4.7 for 300 Hz < f < 600 Hz, the frequency range where the model L16

would be typically used in engineering applications. The residual stays in the range

10−5 − 10−6 and there is no sign of instabilities at critical frequencies.
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Figure 4.7: Frequency dependency of solvers.

As it is seen in the discussion of the multipole BEM, the required iterations increase

with mesh refinement when the frequency is kept constant. In Fig. 4.8 the required

iterations for the solution with a residual of 10−5 are plotted for the models L8 to L64

at f = 600 Hz. One notices that approximate inverse preconditioning of GMRES
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decreases the number of iterations but still shows a significant increase with mesh

refinement. The multigrid solver with approximate inverse smoother yields a drastic

reduction of iterations and also restricts the increase with mesh refinement.
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Figure 4.8: Required iterations for solution at f = 600 Hz.

For assessment of the numerical cost, the computing time is listed in Table 4.1 for

simulations at κh = const. The simulations are performed on the L16, L32 and L64

model (Table 2.1). The chosen frequencies correspond to the respective frequency

fmax, i.e. nine elements per wavelength. The multipole BEM is employed for the

grids L32 and L64 with a nearfield size c = 4 and an expansion length p = 4, a

parameter combination that yields multipole errors for the matrix-vector product

of well below 10−4. The high accuracy for the multipole algorithm is chosen to

restrict the residual gap of GMRES as discussed in Section 5.3. The coarsest grid

for all multigrid solvers is L4, i.e. a 3-grid, 4-grid, and 5-grid solver is used for the

simulations on L16, L32 and L64, respectively.

For the simulations on L16 at 600 Hz using the conventional BEM, the computing

time for setup of the BEM on the finest level tFL is dominant. The time for setup

of the lower levels tLL, setup of the approximate inverse preconditioner tAI and the

solution tsolve is negligible. For the simulation on L32 at 1200 Hz, the multipole

method is employed on the finest grid. One notices that tFL per degree of freedom

is greatly reduced, whereas tsolve becomes important now. The solution step is

performed fastest by the multigrid solver. However, due to the setup on the lower

levels, the simulation using the preconditioned GMRES requires the lowest total

computing time ttotal. For the simulation on L64 at 2400 Hz, preconditioned GMRES

performs best for solution time and total time. The high solution time for the

multigrid solver is due to the multipole iterations on the second finest grid.
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Table 4.1: Computing time for simulations at κh = const.

f solver iters. tLL tFL tAI tsolve ttotal

L16 600 Hz GMRES 35 – 6 min – << 1 min 6 min

GMRES AI 16 – 6 min << 1 min << 1 min 6 min

MG 3 grids 4 1 min 6 min << 1 min << 1 min 7 min

L32 1200 Hz GMRES 34 – 12 min – 16 min 28 min

GMRES AI 18 – 12 min 1 min 9 min 22 min

MG 4 grids 4 7 min 12 min 1 min 6 min 25 min

L64 2400 Hz GMRES 36 – 42 min – 76 min 118 min

GMRES AI 18 – 42 min 2 min 42 min 86 min

MG 5 grids 5 17 min 42 min 2 min 77 min 138 min

The example shows that the multigrid solver with approximate inverse smoother

requires a very low number of iterations. However, the computing cost is not reduced

compared to preconditioned GMRES. For practical applications the preconditioned

GMRES is the recommended solution strategy, since it does not rely on well-chosen

parameters and does not require a hierarchy of boundary triangulations.

As a second example, the influence of approximate inverse preconditioning is demon-

strated on the boundary element model of the brake disk. The achieved residual

for solution with GMRES and preconditioned GMRES is plotted in Fig. 4.9. As

for the L-shape, the preconditioning yields a much improved convergence rate. The

multigrid is not applied to the solver, since a grid hierarchy is not available.
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Figure 4.9: Convergence of GMRES for brake disk model.
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Chapter 5

BEM-FEM coupling for

structure-acoustic field interaction

In the preceding chapters, the efficient application of BEM for structural-acoustic

computations is discussed. The effect of the acoustic field on the vibrating struc-

ture is neglected so far. For many applications this is not acceptable, for example,

when flexible structures are excited by high sound pressure levels. In this situation,

the simulation of the acoustic field must be fully coupled to the simulation of the

structural vibrations.

Classical BEM-FEM coupling schemes imply a strong coupling between the nodal

variables which requires conforming discretizations in the acoustic and structural

subdomains. More flexibility is obtained by using a mortar coupling algorithm that

allows the combination of non-conforming discretizations. A Lagrange multiplier

is discretized on the coupling interface as mortar to glue together the subdomains.

Using the mortar algorithm, different element sizes and shape functions can be used

in the subdomains what can increase the efficiency of the simulation significantly.

Furthermore, independent adaptive mesh refinement is possible in the subdomains.

The aim of this chapter is to derive a mortar algorithm for BEM-FEM coupling that

allows the use of the fast multipole BEM. In particular the solution strategy must

be adopted to the situation that only matrix-vector products of the BEM system

can be evaluated. The fast multipole BEM is combined in the mortar scheme with

a FEM formulation for plate vibrations to yield an efficient tool for the simulation

of structure-acoustic field interaction problems.



66 5 BEM-FEM coupling for structure-acoustic field interaction

5.1 Structure-acoustic field interaction

Before developing the mortar coupling scheme, the physical problem of acoustic-

structure interaction is shortly reviewed. A structure is assumed to be fully sub-

merged in an acoustic fluid as displayed in Fig. 5.1. The structure is modeled as

a thin Kirchhoff plate on the interaction boundary Γint. The out-of-plane displace-

ment is denoted by w and the loading f = f f + f e consists of surface forces due to

the acoustic field f f and externally applied forces f e. The time-harmonic pressure

p in the acoustic field Ωf is governed by the Helmholtz equation �p+ κ2p = 0 with

the circular wavenumber κ = ω/cf. The acoustic flux on the boundary is defined

as q = ∂p/∂nf. The boundary ∂Ωf = Γ = Γint ∪ ΓD ∪ ΓN is composed of acoustic-

structure interface, Dirichlet boundary, and Neumann boundary. The Sommerfeld

radiation condition is inherently fulfilled by the BEM for computations on exterior

domains. On the acoustic-structure interface Γint the coupling conditions enforce

equilibrium p = f f and continuity q = −ρfω2w where the different orientation of the

normal vectors in the structure and fluid subdomains is considered.

ΩsΩf

Γint

ΓN

ΓD

ns

nf

Figure 5.1: Acoustic-structure interaction model problem.

5.2 Mortar coupling algorithm

The choice of the Lagrange multiplier is the essential step for the formulation of

the mortar coupling algorithm. In the presented approach, the pressure on the

acoustic-structure interface is employed as Lagrange multiplier, i.e. λ = pint = f f.

For the simulation of the Kirchhoff plate, a finite element formulation is chosen. For
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time-harmonic vibration, the bilinear form for a plate of thickness t is given by

a(w, v) =

∫
Γint

[
D(1− ν)

(
∂2v

∂x2
1

∂2w

∂x2
1

+ 2
∂2v

∂x1∂x2

∂2w

∂x1∂x2
+

∂2v

∂x2
2

∂2w

∂x2
2

)

+Dν�v�w − ρstω2wv

]
dsx . (5.1)

with the bending stiffness D = Et3/ [12(1− ν2)], Young’s modulus E, Poisson’s

ratio ν and density ρs. The displacement field of the fluid-loaded plate is obtained

by the solution of

a(w, vw)−
∫
Γint

vwλ dsx =

∫
Γint

vwf e dsx . (5.2)

For the acoustic domain a BEM is derived. Since in contrast to Chapter 2, an

interior acoustics problem is considered, the representation formula is restated

p(x) =

∫
Γ

P ∗(x, y) q(y) dsy −
∫
Γ

∂P ∗(x, y)
∂ny

p(y) dsy , x ∈ Ωf . (5.3)

Taking the limit on the smooth boundary Ωf � x → Γ, one obtains the boundary

integral equation

p(x) =
1

2
p(x) +

∫
Γ

P ∗(x, y) q(y) dsy︸ ︷︷ ︸
(V q)(x)

−
∫
Γ

∂P ∗(x, y)
∂ny

p(y) dsy︸ ︷︷ ︸
(Kp)(x)

, x ∈ Γ , (5.4)

where as before (V q)(x) and (Kp)(x) are the single and double layer potential,

respectively. The hyper-singular boundary integral equation is obtained by taking

the normal derivative of (2.7)

q(x) =
1

2
q(x) +

∫
Γ

∂P ∗(x, y)
∂nx

q(y) dsy︸ ︷︷ ︸
(K ′q)(x)

−
∫
Γ

∂2P ∗(x, y)
∂nx∂ny

p(y) dsy︸ ︷︷ ︸
−(Dp)(x)

, x ∈ Γ , (5.5)

where (K ′q)(x) and (Dp)(x) are the adjoint double layer potential and the hyper-

singular operator, respectively.

The pressure and flux fields on the boundary are decomposed to yield a symmetric

formulation: p = pint + p̃+ p̄ and q = qint + q̃ + q̄, where p̄ and q̄ are the prescribed

Dirichlet and Neumann boundary conditions, respectively. The extensions are p̃ = 0

on Γint ∪ ΓD and q̃ = 0 on Γint ∪ ΓN.

On the structure-acoustic field interface Γint, the boundary integral equation (5.4)

is weighted with test functions vq and the term pint − λ is added to enforce the
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equilibrium coupling condition∫
Γint

vq(V qint)(x) dsx +

∫
Γint

vq(V q̃)(x) dsx +

∫
Γint

vq
(
−1

2
I −K

)
pint(x) dsx

−
∫
Γint

vq(Kp̃)(x) dsx +

∫
Γint

vq(pint − λ)(x) dsx

= −
∫
Γint

vq(V q̄)(x) dsx +

∫
Γint

vq
(
1

2
I +K

)
p̄(x) dsx . (5.6)

Likewise, on the Dirichlet boundary∫
ΓD

vq(V qint)(x) dsx +

∫
ΓD

vq(V q̃)(x) dsx −
∫
ΓD

vq(Kpint)(x) dsx

−
∫
ΓD

vq(Kp̃)(x) dsx = −
∫
ΓD

vq(V q̄)(x) dsx +

∫
ΓD

vq
(
1

2
I +K

)
p̄(x) dsx .

(5.7)

The hyper-singular boundary integral equation (5.5) is tested on the interface Γint

∫
Γint

vp(Dpint)(x) dsx +

∫
Γint

vp(Dp̃)(x) dsx +

∫
Γint

vp
(
−1

2
I +K ′

)
qint(x) dsx

+

∫
Γint

vp(K ′q̃)(x) dsx = −
∫
Γint

vp (Dp̄) (x) dsx+

∫
Γint

vp
(
1

2
I −K ′

)
q̄(x) dsx ,

(5.8)

as well as on the Neumann boundary ΓN

∫
ΓN

vp(Dpint)(x) dsx +

∫
ΓN

vp(Dp̃)(x) dsx +

∫
ΓN

vp(K ′qint)(x) dsx

+

∫
ΓN

vp(K ′q̃)(x) dsx = −
∫
ΓN

vp (Dp̄) (x) dsx +

∫
ΓN

vp
(
1

2
I −K ′

)
q̄(x) dsx .

(5.9)

The continuity condition is enforced by∫
Γint

vλ
(
ρfω2w + qint

)
dsx = 0 . (5.10)

Special attention has to be paid to the discretization of the saddle point prob-

lem consisting of Eqs. (5.2) and (5.6)–(5.10). For a unique solution, a stability

requirement—the discrete Babuška-Brezzi or inf-sup condition—has to be estab-

lished (Brezzi and Fortin, 1991). A strict mathematical proof is beyond the scope of
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the thesis, however, some aspects of the stability estimates and definition of the mor-

tar spaces for three-dimensional problems that are derived by Braess and Dahmen

(1998) are adopted to the current problem.

For the discretization of the Kirchhoff plate, the ansatz functions must provide C1

continuity. A four-node finite plate element proposed by Zienkiewicz and Taylor

(2000) is chosen. On each node, it possesses three degrees of freedom: the out-of-

plane displacement and two rotations. Incomplete bi-cubic ansatz functions ϕw are

used for interpolation. They do not guarantee continuity of the slope normal to the

element edges, however, convergence is well established for rectangular elements.

wh(x) = ϕw(x)Tw . (5.11)

A consistent discretization of distributed pressure loads on the plate would induce

nodal forces on the rotational degrees of freedom. For the load vector in the coupling

algorithm, thus, simplified shape functions ϕ̃w(x) are used where the contribution

of the rotational degrees of freedom is set to zero.

The acoustic pressure and flux are interpolated on the boundary element triangula-

tion using linear ansatz functions ϕp and constant ansatz functions ϕq, respectively.

ph(x) = ϕp(x)Tp , qh(x) = ϕq(x)Tq . (5.12)

To fulfill the Babuška-Brezzi condition, the ansatz space for the Lagrange multiplier

must be rich enough. This can be complied with by choosing the boundary element

mesh as the slave or mortar triangulation and using linear ansatz functions for the

Lagrange multiplier. At the edges of the coupling interface, the linear ansatz space

must be restricted, since the Lagrange multiplier, i.e. the fluid load on the plate,

is not unique where structural Dirichlet boundary conditions are applied. A one-

dimensional illustration of the modified ansatz functions ϕλ is shown in Fig. 5.2.

λh(x) = ϕλ(x)Tλλλ . (5.13)

Linear ansatz functions Modified ansatz functions

Figure 5.2: Modification of the ansatz space for the Lagrange multiplier
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Using the shape functions Eqs. (5.11)–(5.13) and isoparametric test functions, one

obtains the block skew-symmetric system of equations⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρfω2A 0 0 0 0 −CFEM

0 Vi,i Vi,D
1
2
I−Ki,i −Ki,N −CBEM

0 VD,i VD,D −KD,i −KD,N 0

0 −1
2
IT +KT

i,i KT
i,D Di,i Di,N 0

0 KT
i,N KT

D,N DN,i DN,N 0

CT
FEM CT

BEM 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w

qint

q̃

pint

p̃

λλλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρfω2
∫
Γint ϕ̃

wf e dsx
− ∫

Γint ϕ
q(V q̄)(x) dsx +

∫
Γint ϕ

q
(
1
2
I +K

)
p̄(x) dsx

− ∫
ΓD ϕq(V q̄)(x) dsx +

∫
ΓD ϕq

(
1
2
I +K

)
p̄(x) dsx

− ∫
Γint ϕ

p (Dp̄) (x) dsx +
∫
Γint ϕ

p
(
1
2
I −K ′) q̄(x) dsx

− ∫
ΓN ϕp (Dp̄) (x) dsx +

∫
ΓN ϕp

(
1
2
I −K ′) q̄(x) dsx

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.14)

where A is the dynamic FEM stiffness matrix and V,K, andD are the BEM system

matrices evaluated on the boundary sections corresponding to their subscripts. The

coupling matrices CFEM and CBEM are defined by integration of the respective shape

functions over the coupling interface

CFEM = ρfω2

∫
Γint

ϕ̃w(x)ϕλ(x)T dsx , CBEM =

∫
Γint

ϕq(x)ϕλ(x)T dsx . (5.15)

5.3 Iterative solution of the mortar saddle point

problem

Direct iterations on the system (5.14) converge very poorly, thus, an Uzawa type

algorithm is employed. For an introduction to iterative methods for saddle point

problems, it is referred to Saad (2003).

In the Uzawa algorithm, the system (5.14) is solved for λλλ and iterations are applied

on the reduced equation

(
CT

FEM CT
BEM

)((ρfω2A)−1 0

0 B−1

)(
CFEM

CBEM

)
︸ ︷︷ ︸

S

λλλ =

(
ρfω2fFEM
fBEM

)
︸ ︷︷ ︸

f

, (5.16)

where the BEM matrix B was introduced to simplify the notation of (5.14). The

matrix inverses in (5.16) are not evaluated explicitly, but conjugate gradient and

GMRES iterations are applied on the FEM and BEM subsystems, respectively.
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Instead of evaluating the exact matrix-vector product Sλλλk at each outer iteration

step k, an approximation with a relative precision ηk is computed as

S̃kλλλk = Sλλλk + gk (5.17)

with ||gk||2 ≤ ηk||Sλλλk||2. For most applications of inexact Uzawa algorithms, i.e.

nested inner-outer iterations, Newton type schemes are employed for the outer itera-

tions. They offer the advantage that for the inner iterations a coarse approximation

is sufficient in the beginning. Only with shrinking outer residual, the approximation

of the inner systems must be improved. For the analysis of Newton type inexact

Uzawa algorithms, it is referred to Elman and Golub (1994) and Bramble et al.

(1997).

For the structure-acoustic field interaction system (5.16), standard Newton meth-

ods show a very poor convergence behavior and GMRES is thus employed for the

outer iterations. GMRES offers quick convergence, however, the intuitive scheme—

improving the precision of the inner approximation when the outer residual becomes

small—breaks down. On the contrary, the precision of the inner approximation must

be high in the beginning and can be relaxed subsequently.

An empirical relaxation strategy for a wide range of application is developed by

Bouras and Frayssé (2000). Their procedure is supported by the analyses of Si-

moncini and Szyld (2003) and van den Eshof and Sleijpen (2004). For the inexact

evaluation of the matrix-vector product (5.17), the Arnoldi algorithm on (5.16) cre-

ates an orthogonal basis that does not correspond to the Krylov space Kk(S, r0),

and the value |γk+1| which is used to check the convergence of GMRES according

to (4.9) does not correspond to the true residual rk = f − Sλλλk. This residual gap

can be controlled by the proposed relaxation scheme.

For the solution of (5.16) with a target residual ||f − Sλλλk||2 ≤ εouter, a relative

precision of

ηk =
εouter

|γk| (5.18)

is required for the evaluation of the approximate matrix-vector product S̃kλλλk accord-

ing to the analysis of van den Eshof and Sleijpen (2004). Thus, the inner systems

(ρfω2A)−1CFEMλkλkλk and B−1CBEMλkλkλk must be solved with a relative residual of

εinnerk =

∣∣∣∣∣∣S̃kλkλkλk

∣∣∣∣∣∣
2∣∣∣∣

∣∣∣∣
(
CFEM

CBEM

)
λkλkλk

∣∣∣∣
∣∣∣∣
2︸ ︷︷ ︸

ck

εouter

|γk| . (5.19)
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The value of the first ratio ck in (5.19) is not known prior to actually computing the

approximations of the inner systems. Numerical experiments show that the value

of the ratio usually does not change significantly from one outer iteration to the

next. Thus, the ratio of the previous step can be used as a first guess to determine

the required precision of the current approximation. Using the computed result,

the true ratio is calculated and compared to the previous one. Only if there is a

significant deviation, i.e. if the true ratio is significantly smaller than the guess, the

approximation must be computed again up to the correct precision.

Preconditioning of the subsystems is essential for the efficiency of the solver. As

an advantage of the presented approach, standard preconditioners for the FEM

and BEM parts can be used. In the numerical examples, diagonal scaling and the

approximate inverse approach presented in Chapter 4 are used which prove to work

reasonably well for the BEM system. For the FEM part, i.e. for the solution of

the plate system, specialized solution schemes—e.g. advanced direct methods or

multigrid solvers—should be used due to the poor conditioning of the biharmonic

equation. However, since the focus of this work is on the BEM, the issue is not

further addressed.

It should be noticed that the Uzawa algorithm provides a good scaling of the exterior

iterations. In contrast to the coupling formulation of Wagner (2000) where the

conditioning of the system strongly depends on the choice of the field variable, this

influence is canceled out in (5.16) by the multiplication with the coupling matrices.

5.4 Numerical examples

The proposed coupling algorithm is demonstrated on two examples. First, the re-

sponse of an elastic plate backed by a closed acoustic cavity is examined. For this

simple model problem, an analytic series solution is developed by Pretlove (1966)

that is outlined in Appendix C and used as a reference solution. The second example

is the simulation of the sound field emitted from a submerged plate in a water basin.

The numerical results are compared to experiments conducted in the hydro-acoustic

lab at the Institut A für Mechanik.

5.4.1 Plate backed by a closed acoustic cavity

The elastic plate considered in the first example has the dimensions 1m× 1m and

a thickness of t = 0.01m. It is made from steel (E = 2.1 × 1011N/m2, ν = 0.3,
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Figure 5.3: Frequency response of cavity backed panel. Plate displacement w at

position (0.2, 0.3)m.

ρs = 7900 kg/m3) and is simply supported on all edges. The panel is coupled to a

closed acoustic cavity with dimensions 1m× 1m× 1m. The remaining surfaces of

the cavity are reverberant walls, i.e. homogeneous Neumann boundary conditions

(q̄ = 0) are applied. The acoustic fluid is water (cf = 1481m/s, ρf = 1000 kg/m3).

For the simulation of the frequency response of the cavity backed panel, a boundary

element mesh with 316 elements on the interface and a 20× 20 finite plate element

mesh is used. The computed frequency response function at the point (0.2, 0.3)m

on the plate due to a force of F = 1N at the same position is plotted in Fig. 5.3. For

comparison, the analytical series solution is plotted as dashed line. The BEM-FEM

results agree completely with the analytic series solution in the lower frequency

regime and one notices increasing deviation for higher frequencies.

The vibration modes of the plate close to the resonance frequencies are shown in

Fig. 5.4. Comparing the vibration modes to the eigenmodes of an uncoupled plate,

the effect of the acoustic cavity is particularly noticeable for mode shapes that have

a non-zero average flux over the interface. Then, the stiffness effect of the cavity

plays a dominant role. For example, the first uncoupled eigenfrequency of the plate

is at 49Hz whereas its mode shape can be identified at a frequency of 132Hz for

the coupled system. Mode shapes with zero average flux are found at frequencies

slightly below their uncoupled counterparts due to the added mass effect of the

acoustic fluid.

The convergence of the mortar coupling algorithm is studied at a frequency of 180 Hz.

The acoustic pressure on the surface of the cavity and the plate displacement ob-
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Figure 5.4: Vibration modes of cavity backed plate.
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Figure 5.5: Surface pressure distribution and plate displacement at 180 Hz.

tained for a simulation using the boundary element mesh with 316 elements on the

interface and 20× 20 finite plate elements are displayed in Fig. 5.5. By inspection,

one finds the discretization to resolve the fields sufficiently and a typical engineering

error of a few per cent is expected.

The flexibility of the mortar coupling algorithm allows an independent refinement

of the FEM and BEM meshes. The convergence behavior of the structure error es2
and the fluid error ef2 is documented in Tab. 5.1 and Fig. 5.6. The errors are defined

as

es2 =
||wFEM −wseries||2

||wseries||2 and ef2 =
||pint

BEM − pint
series||2

||pint
series||2

. (5.20)

The simulation on the finest BEM grid, i.e. with 2936 boundary elements on the

interface and a total of 11,680 boundary elements, is computed using the fast mul-

tipole BEM to take advantage of the largely reduced memory requirements. A
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coupled simulation of this large model using the standard BEM is not possible on

the available hardware. For the multipole algorithm, a nearfield parameter of c = 4

and an expansion parameter of p = 5 are employed according to Chapter 3. This

parameter combination is chosen to yield a very accurate multipole evaluation of

the inner BEM matrix-vector products to satisfy the requirements of the inexact

Uzawa algorithm for a true residual of the Lagrange multiplier of 10−4.

The fluid error, that corresponds to the error of the Lagrange multiplier which is

discretized on the BEM mesh, decreases with refinement of the FEM mesh until it

approaches a value that corresponds to the discretization error of the chosen BEM

mesh. The behavior of the structure error also depends on the accuracy of the acous-

tic model. For the finest BEM mesh, one observes the quadratic convergence rate

that is expected for the FEM plate formulation. The acoustic field is approximated

well enough for plate discretizations up to 80× 80 elements. For the coarser BEM

meshes, the convergence of the structure error is affected by the fluid errors.

Table 5.1: Error of displacement and pressure field on the interface at 180Hz.

outer
iterations

BEM matrix-
vector products

es2 ef2

box 12 plate 20× 20 28 1678 6.28 · 10−2 8.19 · 10−2

(316 interface plate 30× 30 28 1689 5.54 · 10−2 7.48 · 10−2

elements) plate 40× 40 28 1629 4.05 · 10−2 6.71 · 10−2

plate 60× 60 28 1628 3.54 · 10−2 6.54 · 10−2

plate 80× 80 28 1638 3.40 · 10−2 6.50 · 10−2

box 16 plate 20× 20 36 2440 4.79 · 10−2 5.79 · 10−2

(572 interface plate 30× 30 36 2448 2.72 · 10−2 4.17 · 10−2

elements) plate 40× 40 36 2367 2.85 · 10−3 4.16 · 10−2

plate 60× 60 36 2371 1.82 · 10−2 3.76 · 10−2

plate 80× 80 36 2370 1.66 · 10−2 3.72 · 10−2

box 24 plate 20× 20 42 3732 3.93 · 10−2 4.54 · 10−2

(1274 interface plate 30× 30 43 3683 1.87 · 10−2 2.35 · 10−2

elements) plate 40× 40 43 3687 1.24 · 10−2 1.83 · 10−2

plate 60× 60 43 3686 8.57 · 10−3 1.62 · 10−2

plate 80× 80 43 3688 6.54 · 10−3 1.56 · 10−2

box 36 plate 20× 20 49 5860 3.65 · 10−2 4.22 · 10−2

(2936 interface plate 30× 30 50 5919 1.71 · 10−2 1.94 · 10−2

elements) plate 40× 40 50 5922 9.74 · 10−3 1.12 · 10−2

plate 60× 60 50 5921 5.14 · 10−3 7.00 · 10−3

plate 80× 80 50 5921 1.95 · 10−3 6.25 · 10−3
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Figure 5.6: Convergence of fluid ef2 and structure es2 error.

In the simulations presented in Tab. 5.1, a threshold residual of 10−4 is chosen for

the outer GMRES iterations. For the approximation of the inner FEM system, the

residual of the conjugate gradient solver is set to 10−7. At this precision, the ef-

fect of inexact evaluation of the FEM part can be neglected. For the inner BEM

system, GMRES is applied with a relaxation strategy according to (5.19) and diag-

onal preconditioning. The required number of outer iterations does not depend on

the discretization of the finite element model, but only on the discretization of the

boundary element model, i.e. the discretization of the Lagrange multiplier. With

mesh refinement, a moderate increase of outer iterations can be observed. The total

number of required BEM matrix-vector products increases significantly, since the

conditioning of the inner systems deteriorates with boundary element mesh refine-

ment. The influence of the relaxation strategy and preconditioning of the inner

system on the efficiency of the solver is discussed in the following.

In Tab. 5.2 the numerical cost and the true residual are documented for the solution

of the system arising from the simulation at 180 Hz using the boundary element

mesh with 316 elements on the interface and 20 × 20 finite plate elements. The

target residual of the outer GMRES is set to 10−4. Using the relaxation scheme,

the numerical cost is reduced from 2018 BEM matrix-vector products to 1678 BEM

matrix-vector products, i.e. the computing time is reduced by more than 15%.

The relation (5.19) is found to be a sharp limit for restricting the residual gap of

GMRES. As shown in Tab. 5.2, reducing the required precision for the inner BEM

systems by a factor of two and four, respectively, the true residual increases to

1.29 · 10−4 and 3.22 · 10−4. The number of required BEM matrix-vector products

is reduced accordingly, when allowing a residual gap. However, this scheme is not

recommended, since it is usually more efficient to set a higher outer residual and to
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Table 5.2: Choice of residual εinnerk for solution of BEM system. Target residual for

inexact Uzawa algorithm εouter = 10−4.

εinnerk
outer

iterations
BEM matrix-
vector products

GMRES residual true residual

fixed strategy

ckε
outer 28 2018 9.06 · 10−5 1.03 · 10−4

relaxation strategy

ckε
outer/|γk| 28 1678 9.06 · 10−5 1.01 · 10−4

2ckε
outer/|γk| 28 1604 9.09 · 10−5 1.29 · 10−4

4ckε
outer/|γk| 28 1520 9.09 · 10−5 3.22 · 10−4

εouter = 3 · 10−4

ckε
outer/|γk| 26 1487 2.09 · 10−4 2.92 · 10−4
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Figure 5.7: Convergence and BEM matrix-vector products of inexact Uzawa solver.

restrict the residual gap.

The convergence of the outer GMRES iterations for the fixed and the relaxation

strategy are compared in Fig. 5.7. The achieved residuals are identical for the two

strategies approving the relaxation according to (5.19). The reduction of required

matrix-vector products for the relaxation strategy takes place as the outer residual

decreases. The overall saving is moderate, since GMRES shows the typical superlin-

ear convergence behavior, i.e. the majority of outer GMRES iterations is required

while the residual is not yet reduced significantly.

The acceleration of the solution of the inner BEM systems by preconditioning is



78 5 BEM-FEM coupling for structure-acoustic field interaction

0
0

500

1000

1500

2000

5 10 15 20 25 30
iteration

B
E
M

m
a
tr
ix
-v
ec
to
r
p
ro
d
u
ct
s

without preconditioning
diagonal preconditioning
AI preconditioning

Figure 5.8: Preconditioning of inner BEM system for inexact Uzawa algorithm with

relaxed GMRES iterations.

essential for the efficiency of the proposed solver. The required number of matrix-

vector products for approximating the inner BEM system with GMRES without,

with diagonal, and with approximate inverse preconditioning is plotted in Fig. 5.8.

Without preconditioning, a very high number of matrix-vector products is observed,

which is prohibitive for a practical applications. Diagonal preconditioning and ap-

proximate inverse preconditioning, both yield a significant improvement. The ap-

proximate inverse approach performs superior and is recommended for the solution

of coupled BEM systems.

The importance of the modification of the Lagrange multiplier ansatz space as il-

lustrated in Fig. 5.2 can be demonstrated very clearly for simulations on a regular

grid. In Fig. 5.9, the pressure on the interface at 180 Hz is plotted for computa-

tions using a linear ansatz space for the Lagrange multiplier on the left and using

the modified ansatz space on the right. The original Lagrange multipliers yield a

rotated checkerboard pattern that is typical for a violated inf-sup condition.
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Figure 5.9: Lagrange multiplier on coupling interface.

5.4.2 Sound radiation by a submerged plate

A practical application of the mortar FEM-BEM coupling algorithm is the simula-

tion of experiments on active structural-acoustic control in the hydro-acoustic lab

at the Institut A für Mechanik (Fein and Gaul, 2002). For the chosen example, a

rectangular plate (0.475m× 0.48m, t = 1.5mm) is mounted on the box depicted in

Fig. 5.10 and submerged in the water pool. Plate vibrations are excited by a shaker

inside the box, and the acceleration on the plate as well as the acoustic pressure in

the pool are recorded.

For the simulations, a BEM mesh of the pool and the box is set up that consists

of 4726 triangular elements and that is shown without the top-surface elements

in Fig. 5.11. The lower right hand corner of the plate is chosen as origin for the

displayed coordinate system. Homogeneous Dirichlet boundary conditions are ap-

plied on the pressure-free surface of the pool, whereas the pool walls are modeled

as rigid, i.e. homogeneous Neumann boundary conditions are applied. The plate

is discretized using 16× 16 finite elements and is assumed to be clamped onto the

rigid box.
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Figure 5.10: Hydro-acoustic lab and submergeable box.
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Figure 5.11: BEM model of pool and hydro-acoustic box.

In Fig. 5.12 the simulated and experimental frequency response functions for the

plate displacement at position (0.42, 0.32)m and the acoustic pressure in the pool

at position (0.15, −0.50, 0.51)m are plotted. The shaker is mounted at the po-

sition (0.20, 0.11)m on the plate and the forcing amplitude is used to normalize

the plotted values. One notices that the principal behavior of simulation and ex-

periment correlates. The differences can be traced back to various sources. The

peaks in the experimental frequency response functions at 55 Hz, 71 Hz, and 113 Hz
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Figure 5.12: Experimental and computed frequency response of submerged plate.

are due to resonance frequencies of the pool’s front wall that is modeled as rigid

in the FEM-BEM simulation. The influence of mounting the plate onto the box

plays a dominant role as well: sealing material and fixing screws introduce a vast

amount of model uncertainties. Finally, the acoustic boundary conditions of the

pool walls must be determined in more detail. In this context, the simulation re-

sults are satisfying, however, more effort should be placed on the modeling of the

system pool-box-plate.
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Chapter 6

Conclusions

The goal of the thesis is to provide an efficient simulation tool for the prediction of

sound radiation from technical structures. The boundary element method is used as

the basic numerical technique since it allows the simulation in unbounded domains.

Only the surface of the sound radiating structure must be discretized which implies

a very low cost for mesh generation and preprocessing. For the chosen Galerkin

formulation, a numerical quadrature scheme is developed that allows the efficient

numerical evaluation of the singular integrals. To avoid critical frequencies when

computing exterior Neumann problems, the Burton-Miller approach is employed.

The hyper-singular operator that is required in the formulation is regularized and

reduced to the evaluation of the single layer potential.

The numerical cost of the BEM is significantly reduced by the fast multipole al-

gorithm. Instead of setting up the fully populated BEM matrices, the matrix-

vector product is evaluated by a multilevel series expansion scheme. The numer-

ical complexity—computing time and memory requirement—is thus reduced from

O(N2) to O(N log2N) in the number of unknowns which allows the application of

the BEM for large-scale simulations. Essential for the multipole algorithm is the

use of diagonal translation operators derived from the multipole expansion of the

fundamental solution. Asymptotic estimates of the truncation error give guidelines

for the proper choice of the expansion length. An academic example as well as

the engineering application of sound radiation from a brake disk demonstrate the

efficiency of the developed multipole BEM.

For the solution of large BEM systems, iterative methods must be employed. Two

different techniques are developed in the thesis: GMRES with preconditioning by

an approximate inverse approach and a multigrid solver. The comparison of the two

methods shows that the multigrid solver provides a superior convergence. However,
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the cost per iteration is higher for the multigrid, so that no major reduction of

computing time is achieved. Since the multigrid solver requires a grid hierarchy and

is thus difficult to implement in practical applications, the preconditioned GMRES

is recommended as solution technique.

For the simulation of structure-acoustic field interaction, a mortar BEM-FEM cou-

pling algorithm is derived. The mortar scheme is based on Lagrange multipliers

and allows the coupling of non-conforming discretizations. This can improve the

efficiency of the coupled simulation, since specialized ansatz functions and adapted

element sizes can be used in the subdomains. For the solution of the mortar saddle

point problem, a modified Uzawa algorithm is implemented. A relaxed GMRES

method is employed for the outer iterations on the reduced system for the Lagrange

multiplier whereas the inner FEM and BEM systems are approximated by con-

jugate gradient and preconditioned GMRES iterations, respectively. The solution

technique allows the use of the multipole BEM for coupled problems which reduces

the memory requirements significantly. However, due to the nested iteration scheme,

the iteration time can be rather long. Further work should thus be devoted to the

development of suitable solvers for the coupled system that reduce the number of

required matrix-vector products.

The presented work is seen as a contribution to promote fast BEM for industrial

applications. It is shown that the use of advanced numerical algorithms can signif-

icantly improve the efficiency of structural-acoustic simulations. However, besides

the crucial point of computing cost, reliability and simplicity of use must also be

kept in mind for a successful application. It is reminded that even the standard BEM

is not a black-box simulation tool which yields results on a simple click, but a fair

amount of insight into the method is required to apply it to engineering problems.

So the additional complexity when employing the fast multipole BEM is assessed

small compared to the savings offered by the method and its practical application

can be encouraged.
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Appendix A

Quadrature of singular integrals

In the Galerkin BEM integrals of the type∫
ν

ϕν(x)

∫
µ

k(x− y)ϕµ(y) dsy dsx (A.1)

must be evaluated, where ν and µ are elements of the boundary triangulation and

the kernel functions k(x− y) are the fundamental solution

P ∗(x, y) =
eiκ|x−y|

4π|x− y| (A.2)

or its normal derivative

∂P ∗(x, y)
∂ny

= (iκ|x− y| − 1)
(x− y) · ny

|x− y|3
eiκ|x−y|

4π
. (A.3)

The shape functions ϕν(x) and ϕµ(y) on elements ν and µ are polynomial in x and

y, respectively. For elements at some distance, the integral (A.1) can be approxi-

mated by standard Gauss quadrature, for identical or adjacent elements the singular

integrals have to be treated with special care. The integration schemes described

below follow the transformations proposed by Sauter (1992).

A.1 Identical panels

For the case of identical panels ν = µ, only the fundamental solution (A.2) must

be considered as integration kernel, since the term (x − y) · ny in (A.3) vanishes

identically. The parameterization of the triangle is chosen as shown in Fig. A.1.
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x1

x2

ν

A = [0, 0]

B = [B1, B2]

C = [C1, C2] 0 ≤x1 ≤ B1

m1x1 ≤x2 ≤ m2x1

0 ≤y1 ≤ B1

m1y1 ≤y2 ≤ m2y1

m1 =
B2

B1

m2 =
C2

B1

Figure A.1: Parameterization of triangle.

Applying the transformation

u1 = x1 − y1 , u2 = x2 − y2 , (A.4)

defines the integration kernel

H(u, y) = ϕν(u− y)ϕµ(y)
eiκ|u|

4π|u| . (A.5)

The integration domain is split into six subdomains and a second transformation

reverts the outer integration to the original triangle ν. One obtains∫
ν

{∫ B1−û1

0

∫ m2ŷ1

m1ŷ1

(H(û, ŷ) +H(−û, ŷ + û)) dŷ2 dŷ1

+

∫ û1

m1û1−û2
m1−m2

∫ m2ŷ1

m1(ŷ1−û1)+û2

(H(B − û, ŷ) +H(û− B, ŷ +B − û)) dŷ2 dŷ1

+

∫ û1

m2û1−û2
m2−m1

∫ m2(ŷ1−û1)+û2

m1ŷ1

(H(C − û, ŷ) +H(û− C, ŷ + C − û)) dŷ2 dŷ1

}
dû ,

(A.6)

where the integration kernels are polynomial in û. Thus, the inner integrations can

be performed analytically, leaving the integral∫
ν

{HA(û) +HB(û) +HC(û)} dû (A.7)

for numerical quadrature. The kernels in (A.7) possess weak singularities in the

respective corners of the panel. This singularity is removed by standard Duffy

coordinates. For example, the transformation û = χB(ǔ) maps the element ν onto

the reference triangle ν0 := ∆

[(
0

0

)
,

(
1

0

)
,

(
1

1

)]
with χB

(
0

0

)
= B and one can

use the transformation ǔ1 = ξ, ǔ2 = ξη to yield the regular integral

2∆ν

∫ 1

ξ=0

∫ 1

η=0

HB(χB

(
ξ

ξη

)
) ξ dη dξ , (A.8)
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that can be evaluated using standard Gauss quadrature rules.

A.2 Panels with common edge

For the case that the two panels ν and µ share a common edge as depicted in

Fig. A.2, the transformations

χµ(u) = Aν
1 + [Aν

2 − Aν
1, A

µ
2 − Aν

2] u ,

χν(w) = Aν
1 + [Aν

2 − Aν
1, A

ν
3 −Aν

2 ]w , (A.9)

map the elements ν and µ to the reference triangle. The integral (A.1) becomes

4∆ν∆µ︸ ︷︷ ︸
∆νµ

∫ 1

0

∫ u1

0

∫ 1

0

∫ w1

0

ϕν(χν(u))ϕµ(χµ(w))︸ ︷︷ ︸
q(u,w)

k(χν(w)− χµ(u)) dw du

= ∆νµ

∫ 1

0

∫ u1

0

∫ u1

0

∫ w1

0

q(u, w) k(χν(w)− χµ(u)) dw du

+∆νµ

∫ 1

0

∫ w1

0

∫ w1

0

∫ u1

0

q(u, w) k(χν(w)− χµ(u)) du dw , (A.10)

where the two terms of the sum are of the same type and can be treated equivalently.

x1

x2

ν

µ
Aν

1
Aν

2

Aν
3

Aµ
2

Figure A.2: Panels with common edge.

Applying the transformation w̃1 = u1 − w1 defines the kernel

k̃(u2, w̃1, w2) := k (−Aν
2w̃1 + [Aν

2 − Aµ
2 ]u2 + [Aν

3 − Aν
2]w2) . (A.11)

Rewriting the first term of (A.10) and splitting the integration domain, one obtains
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the integral

∆νµ

∫ 1

0

∫ u2

0

∫ u2−w̃1

0

∫ 1

u2

q(u, u1 − w̃1, w2)k̃(u2, w̃1, w2) du1 dw2 dw̃1 du2

+∆νµ

∫ 1

0

∫ u2

0

∫ 1−w̃1

u2−w̃1

∫ 1

w̃1+w2

q(u, u1 − w̃1, w2)k̃(u2, w̃1, w2) du1 dw2 dw̃1 du2

+∆νµ

∫ 1

0

∫ 1

u2

∫ 1−w̃1

0

∫ 1

w̃1+w2

q(u, u1 − w̃1, w2)k̃(u2, w̃1, w2) du1 dw2 dw̃1 du2 .

(A.12)

Here again, the inner integration is polynomial in u1 and thus can be evaluated

analytically, yielding the kernels K̃1(u2, w̃1, w2) and K̃2(u2, w̃1, w2). Before applying

numerical quadrature to the outer integrals, the second and third term are combined

using appropriate transformations. One obtains the integral

∆νµ

∫ 1

0

∫ û2

0

∫ ŵ1

0

K̃1(û2, ŵ1 − ŵ2, ŵ2) dŵ2 dŵ1 dû2

+∆νµ

∫ 1

0

∫ û2

0

∫ û2

0

K̃2(û2 − ŵ2, û2 − ŵ1, ŵ1) dŵ1 dŵ2 dû2 , (A.13)

on which three-dimensional Duffy coordinates

û2 = ξ , ŵ1 = ξη , ŵ2 = ξηθ , (A.14)

for the first term and

û2 = ξ , ŵ1 = ξη , ŵ2 = ξθ , (A.15)

for the second term yield regular integrals on the unit-cube that can be approximated

by tensorial Gauss quadrature.

A.3 Panels with common vertex

The first steps for the case that the two elements ν and µ share a common vertex

as depicted in Fig. A.3 are equivalent as for the case with a common edge. The

transformations

χµ(u) = Aν
1 + [Aµ

3 − Aν
1, A

µ
2 −Aµ

3 ] u ,

χν(w) = Aν
1 + [Aν

2 − Aν
1, A

ν
3 −Aν

2 ]w , (A.16)
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map the elements ν and µ to the reference triangle and the integral (A.1) becomes

4∆ν∆µ︸ ︷︷ ︸
∆νµ

∫ 1

0

∫ u1

0

∫ 1

0

∫ w1

0

ϕν(χν(u))ϕµ(χµ(w))︸ ︷︷ ︸
q(u,w)

k(χν(w)− χµ(u)) dw du

= ∆νµ

∫ 1

0

∫ u1

0

∫ u1

0

∫ w1

0

q(u, w) k(χν(w)− χµ(u)) dw du

+∆νµ

∫ 1

0

∫ w1

0

∫ w1

0

∫ u1

0

q(u, w) k(χν(w)− χµ(u)) du dw , (A.17)

where the two terms are of the same type and can be treated equivalently.

x1

x2

ν

µ

Aν
1

Aν
2

Aν
3

Aµ
2 Aµ

3

Figure A.3: Panels with common vertex.

For the first term in (A.17), Duffy coordinates

w1 = ξ , w2 = ξφ1 , u1 = ξφ2 , u2 = ξφ2φ3 , (A.18)

remove the singularity and yield the integral

∆νµ

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

q(ξ, φ) ξ3 k(ξ, φ) dξ dφ3 dφ2 dφ1 , (A.19)

with the kernel

k(ξ, φ) = k (ξ {Aν
2 − Aµ

3φ2 + [Aν
3 − Aν

2]φ1 − [Aν
2 − Aµ

3 ]φ2φ3}) . (A.20)

The most inner integral is not polynomial for this case, however for the kernels (A.2)

and (A.3) of the Helmholtz equation, it can be evaluated analytically.



89

Appendix B

Regularization of the

hyper-singular operator

The regularization of the hyper-singular operator according to (2.18) goes back

to Maue (1949) and is proposed for the Helmholtz equation by Nédélec (1982).

However, in this simple form, it is only valid for closed boundaries or a prescribed

zero pressure jump on the edges of the boundary. This requirement is not fulfilled for

the multipole BEM where the hyper-singular operator is regularized in the near-field

only. Instead of integrals over the entire boundary Γ, one has to evaluate integrals

over the elements ν in the current Cluster (Cl) and the elements µ in its near-field

(NF) of the type

DCl =
∑
ν∈Cl

∫
ν

∑
µ∈NF

∫
µ

ϕp
τ |ν(x) ϕp

σ|µ(y)
∂2P ∗(x, y)
∂nx∂ny

dsy dsx , (B.1)

where τ and σ correspond to node numbers and specify the position of the computed

matrix entry. Applying basic relations of vector algebra, one obtains

DCl = D1 −D2 =
∑
ν∈Cl

∫
ν

∑
µ∈NF

∫
µ

κ2nx · ny ϕ
p
τ |ν(x) ϕp

σ|µ(y) P ∗(x, y) dsy dsx

−
∑
ν∈Cl

∫
ν

ϕp
τ |ν(x)

∑
µ∈NF

∫
µ

ϕp
σ|µ(y)ny · [∇y × (nx ×∇xP

∗(x, y))] dsy dsx .

(B.2)
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Stokes’ theorem is applied on the second term twice to yield

D2 =
∑

∂µ∈∂NF

∫
∂µ

ϕp
σ|µ(y)

∑
∂ν∈∂Cl

∫
∂ν

ϕp
τ |ν(x)P ∗(x, y) dx dy

−
∑

∂µ∈∂NF

∫
∂µ

ϕp
σ|µ(y)

∑
ν∈Cl

∫
ν

(nx ×∇xϕ
p
τ |ν(x))P ∗(x, y) dsx dy

−
∑
µ∈NF

∫
µ

(ny ×∇yϕ
p
σ|µ(y))

∑
∂ν∈∂Cl

∫
∂ν

ϕp
τ |ν(x)P ∗(x, y) dx dsy

+
∑
µ∈NF

∫
µ

(ny ×∇yϕ
p
σ|µ(y))

∑
ν∈Cl

∫
ν

(nx ×∇xϕ
p
τ |ν(x))P ∗(x, y) dsx dsy ,

(B.3)

where ∂µ ∈ ∂NF denotes the element edges that build the boundary of the nearfield,

whereas ∂ν ∈ ∂Cl denotes the element edges on the boundary of the cluster. The

numerical cost for the additional evaluation of the edge integrals is small compared

to the cost for the standard boundary integrals. Special care must be paid to the

third term in (B.3) since it becomes weakly singular for the near-field elements that

touch the cluster edge: a simple increase of Gauss points for these few elements has

proven to be sufficiently accurate and efficient.
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Appendix C

Plate backed by acoustic cavity

A Kirchhoff plate backed by an acoustic cavity is used as model problem to study

the FEM-BEM mortar coupling algorithm in Chapter 5. Pretlove (1966) develops

an analytic series solution for this problem which is shortly reviewed here. The

harmonic time dependency e−iωt is omitted from the plate displacement w and the

acoustic pressure p throughout the presentation.

The cavity has the dimension a × b × c as depicted in Fig. C.1 and the walls are

rigid except for the surface z = c which is coupled to a thin Kirchhoff plate. The

continuity condition is written as

∂p

∂z

∣∣∣∣
z=c

= ρfω2w . (C.1)

x

y

z a

b

c

flexible
plate

Figure C.1: Rectangular acoustic cavity with one flexible wall.
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The plate is simply supported on its edges which yields the expansion

w =

∞∑
r=1

∞∑
s=1

wrs sin
(rπx

a

)
sin

(sπy
b

)
, (C.2)

and the equation of motion(
Krs − ω2Mrs

)
wrs = Frs , (C.3)

where Krs and Mrs are the known stiffness and mass coefficients of the plate, re-

spectively. The forcing coefficients Frs = F extern
rs +F f

rs consist of external forcing and

the unknown back pressure of the acoustic field.

The pressure field in the acoustic cavity is expanded as

p =
∞∑
n=0

∞∑
m=0

cos
(nπx

a

)
cos

(mπy

b

)
Lnm cosh (µnmz) , (C.4)

with the coefficients Lnm and

µ2
nm = π2

[(n
a

)2

+
(m
b

)2
]
−

(ω
cf

)2

. (C.5)

To fulfill the continuity condition (C.1), the plate displacement must be represented

in the form

w =
1

ρfω2

∞∑
n=0

∞∑
m=0

cos
(nπx

a

)
cos

(mπy

b

)
Lnm µnm sinh (µnmc) . (C.6)

A double cosine Fourier analysis is applied to the (r′s′) mode of plate vibration and

one obtains the coefficients α
(r′s′)
nm so that

w(r′s′) sin
(rπx

a

)
sin

(sπy
b

)
= w(r′s′)

∞∑
n=0

∞∑
m=0

α(r′s′)
nm cos

(nπx
a

)
cos

(mπy

b

)
. (C.7)

Comparing the coefficients in (C.6) and (C.7) allows to compute the acoustic back

pressure p
(r′s′)
back from the (r′s′) plate mode as

p
(r′s′)
back = ρfω2w(r′s′)

∞∑
n=0

∞∑
m=0

α
(r′s′)
nm

µnm
coth(µnmc) cos

(nπx
a

)
cos

(mπy

b

)
. (C.8)

The coefficients F
f (r′s′)
rs are obtained by integrating over the coupling interface

F f (r′s′)
rs =

∫ a

x=0

∫ b

y=0

p
(r′s′)
back sin

(rπx
a

)
sin

(sπy
b

)
dy dx . (C.9)
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Substituting (C.7) and (C.8) into (C.9), one obtains the acoustic stiffness coefficients

for the plate

K(r′s′)
rs = ρfω2

∞∑
n=0

∞∑
m=0

α
(r′s′)
nm α

(rs)
nm

µnm
coth(µnmc)∫ a

x=0

cos2
(nπx

a

)
dx

∫ b

y=0

cos2
(mπy

b

)
dy , (C.10)

and the equation of motion (C.3) is written as(
Krs − ω2Mrs

)
wrs −

∑
(r′s′)

K(r′s′)
rs w(r′s′) = F extern

rs . (C.11)

The coefficients for the coupled plate vibration can now simply be computed by

solving (C.11).
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