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Abstract 
There are many experimental evidence on the existence of size effect in concrete 
structures. The problem has two aspects - statistical and deterministic. Althougb 
the statistical aspects are not negligible, in the present paper it is demonstrated 
that the scaling law is controlled by the structural energy release due to cracking. 
If a stable crack growth before reaching peak load is possible strong size effect 
may be expected. For infinitely large structures of these type scaling law based 
on the linear elastic fracture mechanics must be used. On the contrary, concrete 
structures fail at crack initiation without any size effect i.e. scaling law based on 
the strength criteria apply. Duc to the finite size of the concrete fracture process 
zonc, size effect for any small structure must exist. Recent numerical investi· 
gations using sophisticated numerical tools show that there are many practical 
examples which exhibit extensive cracking in smaller size range and almost no 
cracking in larger size range i.e. by increasing size failure mechanism is changing. 
Practical implication of this is that the size effect may disappear in the case of 
many large concrete structures. Although this has a strong mechanical back· 
ground it can also be interpreted from the multifractal damage point of view. 
Keywords: Scaling law I concrete, cracking, size effect, fracture stiffening. 

1 Introduction 

The size effect in quasibrittle materials such as concrete is a well known phe· 
nomenon and there are a number of experimental and theoretical studies [1- 6] 
which confirm existence of it. There arc two aspects of size effect: (1) Statistical 
and (2) Deterministic, based on fracture mechanics. In the past, the size effect 
bas been mainly treated from the statistical point of view [7). 
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Currently, two major completely opposite groups of deterministic scaling laws 
exist which in a simple close form define the size effect phenomenon for different 
problems. 

The first group of scaling laws is based on a multifradal aspects of damage 
[8). The fundamental assumption in multifractal damage concept is perfect ho­
mogeneity of the material when structure size d -+ 00 and scaling law is of the 
form: 

UN = (A+ e)l" 
d 

(1) 

were UN is nominal strength (failure load divided by characteristic area), d is a 
measure of structure size, A and C are two constants obtained by fitting test or 
calculated data. Eq. (1) is schematically plotted in Fig. lao As can be seen, if 
d -+ 00 the nominal strength UN yields to a constant value different than zero. On 
the contrary when d --+ 0, UN --+ 00. This means that the size effect is strong only 
in limited size range which may be larger or smaller, depending on the problem 
type. As will be discussed in the present paper I these kinds of scaling laws have 
also a clear mechanical background. 

a) b) 
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Fig. 1 Scaling laws: (a) Multifractal damage approach. 
(b) Energy approach - BaZant size effect law. 

log (d) 

The second group of scaling laws are in the form of the BaZant size effect law 
[31 which finds its physical background in balance between released and consumed 
fracture energy and has a form: 

UN = BJt(l + {>r"'; {J = dIdo (2) 

were II = tensile strength of concrete, B and do are two constants, to be de· 
termined either experimentally or by a more sophisticated analysis. Eq. (2) is 
schematically plotted if Fig. lb. According to Eq. (2) for d -+ 00 nominal 
strength ON -to O. However, for small structures (d -to 0) size effect disappear and 
scaling law based on the strength criteria must be used. Derivation of the BaZant 
size effect law is based on a hypotheses that the concrete fracture energy (G F) 
is constant and size independent and that the stable crack propagation before 
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.reaching peak load is possible i.e. the critical crack length (peak load) must be 
proportional with a structure size. 

In a number of recent experimental and theoretical studies there are clear 
indications that both of the above two approaches have only a limited range of 
applicability. The reason is due to the fact that the fundamental assumptions of 
these approaches are not always fulfilled. For example, the homogeneity conditi­
ons, assumed in multifractal size effect law (MFSL), can not be fulfilled in a cases 
where a nature of the problem is such that even for infinity small load singularity 
of stresses must exist Le. localization of strains in a small volume of material. 
On the other hand, the Baiant size effect law relay on the assumption of critical 
crack length proportionality. It is easy to demonstrate that this assumption is 
not fulfilled in many practical applications. Therefore, in the present study some 
major deterministic aspects which control crack growth will be considered and 
supported with a couple of numerical examples. 

2 Crack propagation and size effect in concrete structures 

It has been generally agreed that the main reason for size effect lie in concrete 
cracking. In elasticity or plasticity, were no cracking takes place, scaling law is 
based on strength criteria. i.e. the nominal strength (O'N) must be proportional to 
the structure size. Therefore, let us consider what are a major criteria for crack 
initiation and its propagation under the assumptions that the tensile strength 
(J,) and the concrete fracture energy (GF) are material constants. 

In any concrete structure crack in a critical cross section starts when the 
tensile stress become larger than tensile strength (u > I,). This is necessary 
condition for crack initiation. Once the crack initiated, its further propagation 
is controlled by energy balance between structural energy release rate (dU/da) 
and concrete energy consumption limit (GF ), with U= energy accumulated in the 
structure and a= crack length. Only two crack propagation possibilities exist: (1) 
dU/da;:: GF - unstable crack propagation and (2) dU/da < GF - stable crack 
propagation. If unstable crack propagation is taking place, the energy which is 
released at unit crack propagation can not be consumed by concrete. Therefore, 
the load must decrease after crack initiation. This means that the maximal load 
is reached when the concrete tensile strength is reached i.e. there is no size effect. 
On the contrary, if stable crack propagation is possible, the structural energy 
release rate caused by cracking can be consumed by concrete. As a consequence, 
after crack initiation the load increases and peak load is controlled by cracking 
process rather than by tensile strength. Therefore, the size effect must be strong. 

The structural energy release rate, and therefore cracking, is generally a func­
tion of geometry, loading type (problem type) and size. With this respect, two 
typical structure geometries exist: (1) Positive geometries, where after crack in­
itiation unstable crack propagation is taking place and (2) Negative geometries, 
where the crack after initiation grows in a stable manner. In the case of positive 
geometry no crack propaga.tion is possible and, therefore, there is no reason for 
size effect i.e. scaling law based. on strength criteria must be employed. However, 
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in the case of negative geometry stable crack propagation before reaching peak 
load is possible. As a consequence, size effect must be strong. 

The above mentioned geometries are two extreme cases, however , one has to 
account for two additional aspects: (1) The size of the concrete fracture process 
zone (FPZ) is a function of aggregate size and it has a finite dimension. Therefore, 
if the size of the FPZ is relatively to the structure size large (d -+ 0), the lower 
scaling law boundary conditions must account for this effect. (2) Due to the 
nonlinearity, the failure mode may be changed i.e. in certain size range structure 
may act as a structure of positive geometry and in another as a structure of 
negative geometry. 

3 Unstable crack propagation - positive concrete geometry 

According to definition, positive geometries in a seance of LEFM are those for 
which the stress intensity fador (Kl) is increasing when the crack grows at con­
stant nominal stress. This means that the load decreases immediately after crack 
initiation with no size effect. However, since the concrete FPZ has a finite size, 
different then zero, for relatively small structure sizes formation of a stable sof­
tening zone or, in a sense of LEFM, formation of a stable equivalent crack must 
be possible. 

Let us define a critical cross section as a section in which a possibility for a 
small defect in material exist (statistical aspect) or, because of the nature of the 
problem, a nonuniform strain distribution (deterministic aspect) is possible. It 
can be shown that for d -+ 0 strain gradients (d</d%) in tbe critical cross sec­
tion will tend to infinity i.e. strong strain localization is possible. In the same 
time U -+ 0 and dU/da -+ O. Assuming GI' to be a constant different than zero 
GF/(dU/da) -+ 00 and therefore, theoretically, UN -+ 00. Practically, however, 
d = 0 has no physical meaning and therefore UNd_O :;::: UNpla.ticit". The phencr 
men a may be interpreted as a fracture stiffening effect [9]. This nonlinear effect 
disappear when size of the fracture process zone become negligible in comparison 
to the structure size (d -+ 00). For such a case in critical cross section df/dx --+ 0 
and, therefore, at crack initiation GF/(dU/da) -to O. This means failure at crack 
initiation and no size effect . 

Having in mind both limit cases, scaling law for positive concrete geometry 
may be approximately of a form: 

UN = BI,(I + a)'/' , a = do/d (3) 

where B and do are two constants which depend on the problem type and material 
fracture properties , similar as in the case of Baiant size effect law. Note, that 
in contrast to the BaZant size effect law for d > do size effect is small and for 
d < do it is maximal. For each particular problem B and do must be obtained 
from experiments or sophisticated analysis. General shape of a curve from Eq. 
(3) is essentially the same as predicted by MFSL (see Fig. la). 

Comparing Eq. (3) with Eq. (I) (MSFL) the same shape of a scaling law, 
although with different physical background, can be observed. According to mu}· 
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tifradal damage concept the size effed is strong in limited size range, however, 
when d .-.. 00 it disappear. For positive concrete geometries nonmechanical ar­
guments, exploited in multifradal damage theory, coincide with mechanical ar­
guments discussed above. In contrast to this, Eq. (3) is in contradiction with 
BaZant size effect law which relay on the assumption that the crack length at 
peak load growth proportionally with the structure size. This basic hypothesis 
can not hold for positive concrete geometries were no stable crack propagation 
before reaching peak load is possible. 

In the above discussion statistical aspects play important role in a sense that 
they may influence the position of the critical cross section, when for example 
uniform strain field exists (uniaxial tension), or in a seance that they influence 
concrete tensile strength or concrete fracture energy. However, essentially, the 
scaling law is controned by equilibrium between energy release rate and concrete 
fracture energy. 

a) b) 
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Fig. 2 Size effect in three-point bending: (a) Geometry and 
material properties. (b) Calculated data, test data and size effcct law. 

The size effect for positive concrete geometry is demonstratcd on the plain 
concrete beam loaded in three-point bending. Numerical analysis for five different 
sizes with a constant span-depth ratio L/d= 5 is carried out. The depths of the 
beams are d= 100, 200, 800, 1600 and 3200 mm with a constant width of b= 
38 nun. The geometry and material properties are shown in Fig. 2a. The 
nonlinear nonlocal finite element analysis is performed using microplane material 
model and nonlocal microcrack interaction approach ([10), Ill)). In Fig. 2b the 
nominal strength is plotted versus beam depth. For comparison the experimental 
results are also plotted. The experimental results have been extrapolated up to 
a beam depth of 2 m using equation proposed by Malkov and Karavaev 112). 
The numerical results agree sufficiently well with experimental observations. For 
beams smaller th~n approximately 500 mm size effect is strong, however, for 
larger beam sizes it disappear i.e. UN -+ f,. 
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4 Stable crack propagation - negative concrete geometry 

According to definition, negative geometries are those for which stable crack 
growth before reaching peak load is possible, or in terms of LEFM, geometries 
for which the stress intensity factor (Kr) decreases when the crack length increases 
at constant nominal stress (aN)' This means that because of strain localizatioD, 
caused by a nature of the problem or by initial damage, after reaching tensile 
strength stable crack propagation is possible for any geometry size under the 
assumption that the failure mode is not changing when the structure size is 
increasing. 

For extremely large structures (d -+ 00) relative size of the fracture process 
zone yields to zero. It can be demonstrated that for ,uch a case crack length at 
peak load increases proportionally with ,tructure ,ize [13]. Therefore, the size 
effect must be maximal and equal to the size effect predicted by LEFM. For 
smaller concrete structures of these geometries, the size of the fracture process 
zone is relatively to the structure size large. In the limit case (d -+ 0), following 
the same arguments as in the case of positive geometries, theoretically UN --+ 00 

however, practically aN --+ UNl'lluticitr' 
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Fig. 3 Size effect in pull·out of headed stud: (a) Geometry and material 
properties. (b) Calculated data, test data and BaZant size effect law. 

The BaZant size effect law (Eq. 2) fits above limit cases and it may be used. 
However, if the failure mode is changing when the structure size is increasing it 
does not apply. Principally, for such a cases scaling laws in a form of Eq. (3) 
have to be used. In order to recognize these cases, the problem is currently under 
intensive numerical investigation. 

To demonstrate size effect for typical negative concrete geometry, numerical 
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analysis for pull-out of headed stud from a plain concrete block bas been carried 
out. The specimen geometry and the material properties used in the analysis 
are sbown in Fig_ 3a_ The analysis has been carried out for embedment depths 
in range d= 50 to 3200 mm using above mentioned nonlocal axisymmetric finite 
element code_ In Fig_ 3b calculated and experimentally obtained failure loads 
are plotted and compared with Baiant size effect law_ As can be seen, numerical 
results are in good agreement with BaZant size effect law and with experimental 
results_ The proportionality of the crack length at peak load is approximately 
fulfilled and, therefore, the size effect is strong in broad size range_ The ratio 
between the crack length increment and the load increment (dafdP) is increasing 
with structure size i.e. when d -+ 00, da/ dP -+ 00. Therefore, for larger structu· 
res dynamical effects become important. This partly explains sensitivity of the 
size effect on the loading rate_ 

5 Conclusions 

1. Scaling law in concrete strudures is controlled by cracking. If extensive 
cracking for any structure size before reaching peak load is possible the size 
effect must be stroDg in broad size range. 

2_ With respect to crack growth two typical structure geometries exist: (1) 
Positive, with no stable crack propagation possibility and (2) Negative, with 
stable crack growth before reaching peak load_ Generally, when d ---+ 00 size 
effect disappear in the case of positive geometries and it is maximal in the 
case of negative geometries . 

3. For smaller concrete structures of any geometry size effect is always present. 
This is due to a relatively large ratio between the size of the concrete FPZ 
and the structure size i.e. for such cases stable crack growth before reaching 
peak load is always possible. 

4. In practice maoy concrete structures exhibit extensive cracking capacity in 
smaller size range and limited or almost no cracking in larger size range 
i.e. in the smaller size range the structure acts as the structure of negative 
geometry and later, with increasing size. it acts as the structure with po­
sitive geometry. This is a consequence of the change in failure mechanism 
caused by nonlinearity and it is currently under intensive research, for each 
particular case, using a sophisticated numerical tools. 
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