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Abstract 
Linear H 00 control theory is a popular controller 

design tool in engineering practice. The notion of the 
H 00 norm of a linear I/O-system can be extended to the 
nonlinear case, allowing the formulation of the nonlinear 
analog of the H 00 standard problem. 
The intension of this paper is threefold: 

• we want to give a brief tutorial introduction to the 
basics of nonlinear H 00 control theory. 

• we want to critically discuss the applicability and 
usefulness of nonlinear Hoo theory for practical non­
linear controller design. 

• we want to show how nonlinear H 00 theory can 
be applied to the problem of synthesizing approxi­
mately I/O-linearizing controllers. 

The focus is on the question whether meaningful prac­
tical control problems for nonlinear systems can be ex­
pressed and solved in the nonlinear Hoo framework. Ap­
proximate I/O-linearization of a realistic chemical reac­
tor, that cannot be I/O-linearized exactly, is given. 

1 Introduction 
Since several years linear Hoo control theory ex­

periences remarkable popularity in engineering applica­
tions. The main reasons for this are the possibility to in­
clude robustness considerations explicitly in the design 
and the fact that meaningful physical performance ob­
jectives can be expressed as H 00 design specifications. 
During the last couple of years a theory for nonlinear 
H 00 minimization has been developed as an extension 
to the linear theory (e.g. [5, 13, 24, 14]). 
The goal of nonlinear Hoo control is to find a feedback K 
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with external input d, external output e, measured 
output y and control input U (Fig. 1) such that 
(a) the closed loop system is asymptotically stable and 
(b) the L2-gain from external input d to external out-
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Figure 1: Hoo standard problem 

put e for the closed loop Eel is smaller than some pre­
scribed number -y: 

Vd(t), T. (3) 

By an abuse of notation we will shortly express the L 2-

gain condition (3) as II II Eel 00 :s: -y. (4) 

This problem is called the standard problem of (nonlin­
ear) Hoo control theory. The setup in linear Hoo con­
trol is the same as discussed, with the restriction that 
feedback K and system E are both linear. Equation (3) 
means illustratively that the "gain" between the energy 
of the L2-input-signal d(t) and the energy of the L 2-

output-signal e(t) is smaller or equal to -y for all possible 
input-signals d(t). Thus this holds also for the worst­
case input d'(t). In the linear setup the smallest -y for 
which eq.(3) holds is the Hoo norm ofthe linear transfer 
matrix Eel, which gives this method its name. 

Most practical control problems are of nonlinear na­
ture. Therefore the obvious advantage of nonlinear Hoo 
theory over linear H 00 theory is that system nonlineari­
ties can be taken into account and thus stability and per­
formance can be achieved over a larger operating region. 

Virtually all papers dealing with nonlinear Hoo con­
trol start out with a problem description in standard 
form. However control problems arising in engineering 
practice are almost never in this form. In practical appli­
cations the physical system and desired control objective 
have to be brought into this form first. Thus every linear 
or nonlinear H 00 controller design for a practical control 
problem consists of three design steps: (i) formulation 
of the physical control objectives as Hoo design spec­
ification, (ii) transformation of this Hoo problem into 
standard form, and (iii) solution of the resulting Hoo 
standard problem. For many interesting linear control 
problems there exists good knowledge and rich expe­
rience on how to perform the first step. For nonlinear 
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problems a simple and systematic approach is however 
not known. If the problem formulation is done properly, 
then the transformation to standard form is in most 
cases not problematic. The third step involves solution 
of two uncoupled Riccati equations in the linear case, 
for which reliable numerical tools exist. This third step 
is however much more involved in the nonlinear case, 
where nonlinear partial differential equations have to be 
solved. 

The paper is structured as follows: In Section 2 
open problems in connection with the solution of the 
suboptimal Hoo standard problem are briefly discussed. 
Section 3 gives reasons, why linear Hoo is so popular 
in engineering applications and contrasts this with the 
nonlinear case. Areas are pointed out where, from an 
engineering point of view, there are still deficiencies in 
the applicability of this method. In Section 4 we demon­
strate an interesting application of nonlinear Hoo theory 
to the synthesis of approximately I/O-linearizing con­
trollers. For this problem a systematic formulation of 
the Hoo standard problem is given. 

2 Comments on the computation of nonlinear 
H 00 controllers 

As in the linear case the following simplifying 
assumptions ("standard assumption") are usually as­
sumed to hold for system (2) in order to allow a simple 
solution of the nonlinear Hoo problem: 

kll(z) 0 

hi(z)k12(Z) = 0 (5a) 

kT2 k 12(Z) I 

k21 (z )gi( z) 0 

k21 (z)kIl(Z) = I (5b) 

k22(Z) o. 
We first consider the state-feedback HOC) control problem 
for which (Sa) is assumed to hold. The optimal state­
feedback law that achieves closed loop stability and L 2-

gain less than '"Y is then given by [24]: 
1 

u(z) = -2gi(z)V",T(z) (6) 

where V", is a solution of the Hamilton-Jacobi inequality 

Vd(z) + hT(z)h1(z)+ (7) 

V", (4~2g1(Z)9i(Z) - ~92(Z)9nZ») V",T ~ o. 

The solution thus implies to solve the nonlinear par­
tial differential equation (7). A global analytical !!olu­
tion is of course not feasible except for simple problems. 
In principle most approaches can be applied, that were 
developed in the sixties and seventies in connection with 
the analytical and numerical solution of the optimal reg­
ulator problem for nonlinear systems (e.g. [4, 23]). Most 
schemes are nevertheless very involved, except for spe­
cial cases. Therefore often, a practical application will 

be prevented due to the lack of a feasible computa­
tional procedure. We want to mention one particular ap­
proach, that is mostly used in connection with nonlinear 
HOC) control, namely Lukes' method [16]. This method is 
based on a series expansion ofthe problem and leads to a 
local approximate solution. For problems with less than 
ten states an approximate solution up to terms of order 
ten can be calculated using this method if the linearized 
problem is not degenerated. The obvious disadvantage 
is the exclusively local character. A promising new ap­
proach is based on integral manifold theory [8]. 

In the output-feedback case even the character of 
the solution is not yet fully understood. Necessary con­
ditions [12] as well as sufficient conditions under cer­
tain assumptions [25] for the existence of controllers 
are known. In [14] necessary and sufficient conditions 
are given (when only smooth solutions are considered), 
that lead to a pair of partial differential equations of 
Hamilton-Jacobi type. One of the partial differential 
equations also contains derivatives with respect to time 
thus leading to an infinite dimensional controller that 
needs to be computed on-line. 

The state-feedback problem is well understood, but 
very few meaningful practical control problems can be 
formulated in an Hoo state-feedback framework. With 
the few remarks on the solution of the output-feedback 
case above, we wanted to indicate the difficulties related 
to the solution of the much more important output­
feedback case. 

In addition to the computational difficulties the 
stringent assumptions (5) on the generalized plant (2) 
lead to serious problems. It turns out that the so-called 
'standard' assumptions (5) are in no way standard in 
real life applications. In the linear setup assumptions (5) 
can always be satisfied for example by various 'loop­
shifting' transformations [22]. Assumption k22 = 0 can 
be assured simply by applying the change of variables 

Y new = Y - k 22 U (8) 

to the original plant. The other transformations, espe­
cially the one to assure kll = 0 are more involved, but 
nevertheless there are numerically stable algorithms to 
perform them. In the nonlinear setup there is yet no 
simple equivalent to the linear 'loop-shifting' transfor­
mations. Some assumptions (e.g. ki2k12 = I) can be 
satisfied by a simple input transformation. Also kll i= 0 
constitutes no severe problem as a general solution can 
still be written down. However the case k n i= 0 is as 
yet unsolved. The trivial change of variables (8), used in 
the linear case, fails because k22 is state-dependent in 
the nonlinear case. 

3 Formulation of practical control problems 
as Hoo standard problems 

In this section we examine whether meaningful non­
linear control problems can be formulated in the Hoo 
framework and compare the linear and the nonlinear 
case. 
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Two important design objectives can be expressed 
as Hoo specifications in the linear case: robust stability 
with respect to unstructured uncertainties and nominal 
performance with respect to a certain performance def­
inition. The possibility to express conditions for robust 
stability as a bound on the Hoo norm of certain transfer 
matrices is the main reason for choosing the H 00 frame­
work for linear control problems. 
A typical and often used unstructured uncertainty defi­
nition for linear problems is the following: The real plant 
G r is assumed to consist of a series connection of a linear 
nominal plant Gn and a linear uncertain part (Figure 2): 

Transfer matrix .6.m in eq.(9) can be an arbitrary lin-

c .•.......................•.•••• JJr.J 

Figure 2: Multiplicative output uncertainty as example 
for an unstructured uncertainty description. 

ear dynamical system of appropriate dimension, with 
the only assumption that its Hoo norm is bounded. 
Knowledge about the frequency dependent size of the 
uncertainty can be embodied in the so-called uncertainty 
weight Wu. This special type of unstructured uncer­
tainty is called linear multiplicative output uncertainty. 
The term "unstructured" refers to the fact, that only one 
perturbation .6. is assumed at one location in the control 
loop, and that this perturbation .6. may be an arbitrary 
norm bounded dynamical system. Necessary and suffi­
cient conditions for robust stability of the closed loop 
are given in the following theorem [7]: 

Figure 3: Closed loop with uncertain real plant G r and 
controller K. 

Theorem 1 Under certain (nonrestricting) assump­
tions [7J the closed loop system in Figure 3 is asymp­
totically stable for all stable perturbations .6.m satisfying 
II.6.mll oo < 1 if and only if the nominal closed loop is 
asymptotically stable and 

Obviously, condition (10) can be brought in the form 
of the linear Hoo standard problem easily. The same 
type of theorem can be given for other "locations" of 
the uncertainty .6., like for instance multiplicative input 
uncertainty or additive uncertainty [7]. We refer to dif­
ferent definitions of the uncertainty description (i.e. def­
initions where the assumed location of perturbation .6. 
is at different places in the system) as different "types" 
of unstructured uncertainty. 

In practical applications it is usually not known 
which type of unstructured uncertainty is present in the 
system. For linear systems it is however possible to ex­
press stability with respect to one type of uncertainty 
by a robustness condition on another type. This is po­
tentially very conservative, meaning that for example 
robustness with respect to a large uncertainty at the 
system input is needed in order to achieve robustness 
with respect to a small uncertainty at the system out­
put. The larger the condition number of system G n , the 
more conservative the robust stability condition will be. 
For practical applications this is usually still a sensitive 
thing to do: You can make your best guess where the 
main uncertainty has to be expected. If, by a robustness 
condition oftype (10), robust stability is assured for the 
assumed uncertainties, the closed loop also exhibits ro­
bustness with respect to other possible locations. 

Based on the small gain theorem similar results can 
be shown for the nonlinear case. Nonlinear unstructured 
uncertainties can be defined in an analogous way as 
in the linear case with G n , Wu being nonlinear 1/0-
operators and .6.m being an arbitrary nonlinear 1/0-
system with (nonlinear) L2-gain smaller than one. A 
sufficient, but not necessary condition for robust stabil­
ity can also be given (e.g. [2]): 

Theorem 2 Under certain assumptions [2J the nonlin­
ear closed loop system as in Figure 3 with nonlinear 1/0-
operators Gn , K, Wu and .6.m , is asymptotically stable 
for all stable nonlinear perturbations .6.m satisfying the 
L2 -gain condition II.6.mll oo < 1 if the nominal closed loop 
is asymptotically stable and 

IIWu . Gn K(1 + GnK)-llloo ::; 1. (11) 

The same type of robustness theorem can also be proven 
for nonlinear additive uncertainties, nonlinear multi­
plicative input uncertainties, etc. Like for linear con­
trol problems, in practical applications the actual un­
certainty will not be of the type described. But for non­
linear systems different locations of the unstructured un­
certainty cannot be shifted to other locations in general. 

EXaIIlple: We consider the simple nonlinear nom-
inal system y = sin z 

-z+u 
(12) 

and its linearization around the steady state z, = 0 
y = z (13) 
:i: -z+u. 

Both the linear as well as the nonlinear system have an 
L2-gain of one. If we assume a multiplicative uncertainty 
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with Wu = I and II~mlloo < 1 for linear system (13), 
then it is easy to show that robustness w.r.t. this mul­
tiplicative uncertainty also guarantees robustness w.r.t. 
additive uncertainties satisfying II~alloo < 1. For the 
nonlinear system robustness w.r.t. multiplicative out­
put uncertainty lI~mlloo < 1 does not give rise to any 
robustness to additive uncertainties. This can be seen 
immediately by the following argument: The output of 
nominal system (12) is always constrained to lie between 
minus one and plus one. A multiplicative output uncer­
tainty can never lead to a change of sign between the 
real and nominal output y. If we consider additive un­
certainties with II~alloo < E, then for any E > 0 there 
exists always an input function u(t) large enough and 
an uncertainty ~: satisfying 1I~:1100 < E such that the 
sign of the nominal and real output differ. Therefore this 
system cannot tolerate any additive uncertainty. <l 

This example demonstrates that a robustness guar­
antee with respect to one unstructured uncertainty does 
not permit any statements about the amount of robust­
ness concerning other possible types of uncertainties in 
the nonlinear case. Moreover condition (11) by itself can 
be arbitrary conservative as it is only a sufficient condi­
tion in the nonlinear case, whereas it is also necessary 
in the linear case. 

A certain robustness can however always be ex­
pected. Any linear or nonlinear Hoo state-feedback law 
guarantees an "infinite gain margin and 50% gain re­
duction tolerance" to static input uncertainties [9]. Fur­
thermore iffeedback (6) renders the nominal closed loop 
exponentially stable, then solution V of eq. (7) is a 
Lyapunov-function for the closed loop and thus guaran­
tees stability also for the closed loop with I = In + ~I 
and g = gn + f:jg etc. where f:jg, ~I have to satisfy some 
Lipschitz condition. 

We now turn our attention briefly to the formula­
tion of performance specifications in the Hoo framework. 
In the linear case two different approaches to accomplish 
satisfying performance are used in practice. Although 
both are somewhat similar, a clear distinction can be 
made from an application point of view. The most com­
mon approach is the so-called loop-shaping design. In 
loop shaping design important characteristic quantities 
of the closed loop, reflecting major closed loop proper­
ties, are iteratively formed in order to achieve the de­
sired performance. There is usually a very limited num­
ber of those characteristic quantities that are of prime 
importance in a specific practical application. This is es­
pecially the case for single-input/single-output systems. 
An often used special case is the shaping of the singular 
values of the sensitivity and complementary sensitivity 
function [7] over frequency. With some experience it is 
most often possible to "form" the singular values ofthese 
linear transfer matrices in few iterations so as to satisfy 
the performance specifications. Finding a compromise 
between conflicting specifications is transparently possi­
ble. 

In the nonlinear case equivalent characteristic quan­
tities reflecting the main properties of the closed loop, 
are not so easy to define. Due to the nonlinear nature, 
restriction to a limited number of quantities, that are 
meaningful for many problems, is not realistic. There­
fore it is not so easy for the design engineer to gain ex­
perience in how certain "shapes" can be achieved, and 
to understand the connection between those "shapes" 
and the closed loop behavior. Furthermore in the linear 
case the frequency dependency of these quantities allows 
a clear physical interpretation. This is not the case any 
more for nonlinear systems. Therefore a straightforward 
extension of linear loop-shaping for nonlinear systems is 
not easily possible. 

It is however possible to extend the second approach 
to linear Hoo control [6] to nonlinear systems. In contrast 
to loop-shaping designs, the performance to be achieved 
is quantified by an H 00 criterion in this approach. Be­
cause oflack of space we do not want to give any further 
details here. Applications of this design approach are for 
example given in [3, 1]. 

In this section we tried to show that nonlinear H 00 
is not the sum of all the advantageous properties of lin­
ear Hoo theory plus the possibility to consider nonlin­
earities. At least at present nonlinear H 00 is not an "all 
purpose" design tool as linear H 00. For each practical 
control problem a sensitive setup considering robustness 
and performance has to be found. This is not always 
possible, but for many meaningful practical problems a 
solution can be found. 

Exemplary we describe a systematic approach to 
the control of a large class of nonlinear systems in the 
next section. 

4 Application of nonlinear Hoo theory to approxi­
mate I/O-linearization of nonlinear systems 

In this section we briefly consider the problem of 
approximately linearizing the I/O-behavior of a nonlin­
ear system. This problem has attracted considerable at­
tention in the engineering community during the last 
years. We will show that this problem can be solved by 
considering an appropriate nonlinear H ao control prob­
lem. In this context a systematic formulation of the H ao 

standard problem can be given. 
The underlying idea is to formulate the approxi­

mate I/O-linearization problem as the (almost) distur­
bance decoupling problem shown in Figure 4: We want 
to find a compensator K such that the compensated 
nonlinear system has the same I/O-behavior as the lin­
ear reference system G, i.e. the output % has to be small 
for all possible inputs w. The problem of exact distur­
bance decoupling is by now well understood [11, 21]. 
For the almost disturbance decoupling problem several 
approaches are known [18, 19]. Here we consider the 
Hoo almost disturbance decoupling problem [20] where 
a feedback is sought that attenuates the effect of L 2 -

inputs w on the output e to an arbitrary degree of ac-
2540 
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Figure 4: Configuration for approximate I/O-lineari­
zation 

curacy. We make two further simplifications in order to 
be able to apply standard nonlinear H 00 theory: We only 
require that the L2-induced norm be smaller than some 
bound 'Y, plus we include a term related to the control 
effort in the criterion. The problem we want to solve is 
thus: Find a state-feedback law 

u = a(as, e, w) (14) 
so that the following inequality is satisfied for all wet) E 
L 2 : 

IT(''z''2 + «:lluIl2)dt ::; 'Y21TllwIl2dt, 'Iw(t) , T. (15) 

Through inclusion of the term fllul1 2 we try to find a 
compromise between linearity and control effort. From 
a practical point of view this is a very sensible and nec­
essary thing to do because we do not want to pay an 
increasing linearity by excessive input moves. The case 
f = 0 gives rise to a singular Hoo problem for which 
only preliminary results are known [17]. A further ad­
vantage of considering the case f i- 0 is that systems 
can be approximately linearized for which an exact 1/0-
linearization is not possible. This is also demonstrated 
with the example below. For systems that can be ex­
actly I/O-linearized, the almost disturbance decoupling 
problem can be solved up to an arbitrary degree of ac­
curacy. In connection with nonlinear model matching a 
similar approach was also followed in [10]. 

Example: Approximate I/O-Linearization of a 
nonlinear CSTR by nonlinear Hoo minimization 

As an application of approximate I/O-linearization 
we consider the production of cyclopentenol from 
cyclopentadiene in a CSTR with cooling jacket. The 

r 

q.A. B.C. D I 
Figure 5: Nonlinear CSTR 

The mathematical model 

reaction mechanism is 
described by 

(16) 
with A denoting the 
initial reactant (cyclo­
pentadiene), B the de­
sired product (cyclo­
pentenol) and C, D 
unwanted by-products. 

(four nonlinear differential 

equations) used to describe the process stems from the 
mass balances of A and B and from the energy balances 
ofreactor and cooling jacket [15]. The reactor inlet flow 
q is the control input u. The output y is the product 
concentration CB. The corresponding I/O-behaviour dis­
plays strong nonlinearity as can be seen from the step 
responses in Figure 6: 

.3 

.2 

., 
,(' 

. :v .. 
.5 

0.2 0.6 0.8 
' .... {hl 

tL = 130 

tL = 32.5 

tL = -32.5 

tL = -130 

Figure 6: Step responses with different step sizes of the 
uncompensated system 

Quadrupling the input step size does not lead to 
an output of four times the size; a step with oppo­
site sign leads to a qualitatively different output func­
tion. This system has unstable zero dynamics at the 
operating point considered [15]. Therefore an exact 
I/O-linearization with internal stability is not possible. 
Following the procedure proposed above, we calculate 
a feedback that approximately linearizes the reactor. 
Choosing the Jacobian linearization ofthe reactor model 
as reference system, and solving the Hamilton-Jacobi 
equation connected with the resulting nonlinear state 
feedback Hoo problem (with 'Y = 0.01 and f = 10-5

) 

up to fourth order terms by Lukes' method [16], yields 
an (approximate) solution to the proposed linearization 
problem. Indeed the step responses of the compensated 
system to the new input w display a significantly more 
linear behavior than the uncompensated system (Fig. 
7). Especially the different qualitative behavior for in­
put steps with opposite sign displayed by the uncom­
pensated reactor is suppressed quite well. Nevertheless 
the compensated system still remains nonlinear. This is 
due to the unstable zero dynamics, that prohibits an 
exact I/O-linearization. A linear controller design based 
on the compensated system leads to a much improved 
performance as compared to a linear controller design 
for the uncompensated system [1]. 

5 Conclusions 
In this paper we tried to give an engineering per­

spective on the applicability of nonlinear H 00 theory to 
practical control problems. Three areas can be made 
out at present, where there are still major deficien­
cies as compared to the popular linear case. The first 
area concerns important open problems in the theoret-
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Figure 7: Step responses with different step sizes of the 
compensated system 

ical development. From an application point of view, 
especially open problems in connection with the output­
feedback case, the restrictive standard assumptions, the 
problem at optimality, and the singular problem are of 
main interest. The second area is related to the compu­
tational solution of the standard problem. At the mo­
ment few practical solutions are known. Because of the 
rapid development of computing power, there is how­
ever the hope that a numerical (on-line) solution of the 
Hamilton-J acobi equations is feasible. The third prob­
lem area concerns the formulation of meaningful nonlin­
ear H 00 problems. For linear systems there is a wealth 
of practical problems that can be formulated in the 
Hoo framework. For nonlinear systems this is not the 
case any more. We tried to point this out by exemplary 
discussing issues related to robustness towards unstruc­
tured uncertainty. It is clear that for nonlinear systems 
a generally valid design procedure cannot be expected. 
However for specific practical problems, nonlinear Hoo 
theory can be useful with respect to achieving robust­
ness and desired performance. We tried to demonstrate 
this with an application of nonlinear Hoo theory to the 
problem of approximately linearizing the I/O-behavior 
of nonlinear systems. With this approach systems can be 
approximately I/O-linearized that cannot be linearized 
exactly. 
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