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Abstract. An approach combining the method of moment equations and the statistical linearization technique
is proposed for analysis of the response of non-linear mechanical systems to random excitation. The adaptive
statistical linearization procedure is developed for obtaining a more accurate mean square of responses. For these,
a Duffing oscillator and an oscillator with cubic non-linear damping subject to white noise excitation are considered.
It is shown that the adaptive statistical linearization proposed yields good accurate results for both weak and strong
non-linear stochastic systems.

Sommario. Si propone un procedimento per I’analisi della risposta di sistemi meccanici non lineari ad eccitazioni
stocastiche, che combina il metodo delle equazioni dei momenti e la tecnica di linearizzazione statistica. Si sviluppa
un procedimento di linearizzazione statistica adattativa, che permette di ottenere pili accurati valori medi quadratici
della risposta. Per illustrazione, si prende in esame un oscillatore di Duffing e un oscillatore con smorzamento
cubico, soggetti a un’eccitazione tipo “rumore bianco™; e si mostra che la proposta linearizzazione statistica
adattativa fornisce buoni risultati per sistemi sia debolmente che fortemente non lineari,

Key words: Stationary processes, statistical linearization, Duffing oscillator, random vibration, stochastic
mechanics.

1. Introduction

Interest in the investigation of random phenomena has increased considerably over the recent
years, due to various problems encountered in engineering applications. It is well known that
all real engineering systems are, more or less, non-linear and for those systems an exact solution
exists only for very few special cases of limited practical value. Consequently, it is a logical
approach to develop approximate methods for the analysis of non-linear stochastic systems. As
mentioned by Wu and Lin [1], an approximate technique should meet three criteria: accuracy,
simplicity and versatility. The general idea of the approximate methods available is to replace
equations that are non-linear by equations that are easier to solve, using a certain sense of
equivalence. If the latter equations are linear one is dealing with statistical linearization.
Furthermore, if the coefficients of the linearized equations are evaluated by an assumption
about the Gaussianity of the system response the statistical linearization used is known as
Gaussian or normal. It is shown by many authors (see e.g. [2]), that this kind of linearization
is the simplest and most useful tool for analysis of non-linear statistical problems. However,
this technique is limited by two restrictions. First, the accuracy of the Gaussian statistical
linearization decreases as the non-linearity increases. Second, it only yields estimates of the
first and second moments of the response.

An alternative approach to non-linear problems is the method of moment equations, which
can give estimates of all the moments of the response. However, the difficulty with this
approach is that one is led to the well-known problem of closure, (see [3], [4]). There is a
method of combining these two approaches, namely the first and the second moments are
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determined by statistical linearization, and the other higher moments are found from the
moment equations. In this paper. such a ‘middle’ approach will be presented.

2. Problem of Closure

Consider, as an example, the Duffing oscillator
& 4 2hi + wir + ya2? = of(t) (1)

with the displacement variable z(¢). In this equation, a dot denotes time differentiation, h and
wy are the damping constant and the natural frequency, respectively. The constant y quantifies
the non-linearity of the stiffness. The excitation £(1) is a zero mean Gaussian white noise with
autocorrelation

Re(r) = (€()§(t + 7)) = é(7). (2)

where ( ) denotes the expectation, and é(7) is Dirac’s delta function. It is well known that, for
stationary responses, the velocity () is a Gaussian random variable, which is independent
of the displacement z(¢). Furthermore, the second moment of velocity is

(22) = o2 /4h. 3)

Since the velocity &(#) is a Gaussian random variable, all its odd moments vanish, while the
even ones are

(&) = (20— 1)} {&%)" 4)
where
(2n— 1)1 =135.(2n-1).

Dealing with the displacement statistics, the following moment equation can be obtained using
the Fokker—Planck equation approach
dy(z 4h 3
(2@ _ 2 ipie)a) +1(0()e) ©
where (2 ) is an arbitrary function with continuous derivative. Assuming firstly ¢(z) =
225+ | =0,1,2,...,in (5), one obtains the even moments of the displacement (z%*) as

1= 2242 +7(a")),

o2
3(2?) = 2 (uda) + 7@
(2k + 1)) = T@R(a™42) +7(2H)), ©

Assuming secondly ¥(z) = z%*,k = 0,1,2,..., in (5) it is found that all odd moments
of the displacement (2>**!) vanish. The system of even moment equations (6) is an infinite
hierachy in the sense that the equation for the second moment (%) contains the fourth moment
(z*) and the equation for (z*) contains the sixth moment (2°), etc. Thus one is led to the well
known ‘problem of closure’” which is how to truncate the system of moment equations (6). In
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the recent years some closure schemes have been presented; for example, the Gaussian closure,
the equivalent linearization [2], the non-Gaussian closure using a truncated Gram—Charlier
expansion [4,5,6], the comulant-neglect closure [1] using the technique of an equivalent non-
linear equation [7,8]. Before selecting a closure scheme, it should be noted that, if the lower
even moment of the displacement, i.e. the second moment (z2), is approximately known, from
the system (6), all the higher even moments will be approximately found, respectively,

et = 2 - w(a?),
b _E 2\ 2. 4
7o) = 2 - o).,
2
'}((:E%-H) — (Zk Ihl)a (.‘I!?'k) _w%(m2k+2)' (7)

Therefore, the next question is reduced to the determination of the second moment (z2), which
can be found by using statistical linearization.

3. Gaussian Statistical Linearization (GSL)

To describe the basic idea of statistical linearization we consider the non-linear stochastic
equation

i + 2hi 4 Wiz + 122 = f(2) 8)

where h, w,, v, are positive constants, » = 1,2, 3, ..., and the excitation f(?) is a zero mean
Gaussian stationary process with the correlation function given by

Ry(r) = ((f()f(t+ 7)) 9

Following the statistical linearization method, the non-linear Equation (8) is replaced by a
linear equation

&+ 2hid +wlz = f(1) (10)
where
w2 = w§ + Ynrn. (11)

To find the linearized coefficient 4, A,, it is necessary to minimize the expected value of the
difference between (8) and (10)

€ = (e — Apz) (12)

in a least mean square sense. Thus, from

d 2 _
Dole)=0 2
it follows
2n42
An = £ ) (14)

(22)
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Introducing the quantity

R = %i—;:%, (15)
Equation (14) can be rewritten as

An = Kola?) (16)
and then, from (11), one gets

W = wh + TnKn(z?)", (17)

In the general case, the expectations indicated in (14) and (15) are evaluated for the statistics
of the original non-linear system (8), and therefore, the value of K’,, depends upon the system
parameters

K, = Ku(h, 98, Y, 0) (18)

where o is the intensity of the random excitation f(#). For Gaussian statistical linearization
(GSL) the response process (1) is assumed to be Gaussian, thus one gets

K,=(2n+1)!! (19)
using the definition from (4) again. Substituting (19) into (17), the Gaussian expression for
the equivalent frequency w? is obtained:

w? = wE + 7n(2n + 1) Yz?)™ (20)

e —

Hence, the GSL method replaces the function (18) by the constant value (2n+ 1)! !, assuming
the Gaussianity of the response. In this sense, the GSL is insufficient and that is why, generally
speaking, it can give an accurate quantitative result only for weak non-linear systems [9,10].

4. Adaptive Statistical Linearization (ASL)

Statistical linearization, in which the value K, of (18) is considered to be a function of the
system parameters, will be called here adaptive. Evidently, ASL should yield more accurate
results than GSL. However, the exact evaluation of the function K,,(k, w3, 7., o) requires
a knowledge of the unknown probability density function of the response process z(%). A
question then arises: how can the function K, (%, w%, Yn, 0 ) be constructed? First of all, it is
seen from (8) that the degree of system non-linearity can be defined as the ratio ,, /w?2. Then
the function K, can be expanded in the form of the powers 7, /w:

2
2n+2 In In e
(z2n+2) (zg"™) [1 L i Alnw{;,; + Azy (wg) + ]

($2)n+l o

K, = 1)

2
(23)ntl [1 + Blnz&% + By, (z%) X ]

where (z2"*?), (23) denote the moments of response of the corresponding linear system
"o =), 18,

Eo + 2hio + wizo = f(1) (22)
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¥a
Fig. I. Function K over nonlinearity v,.
and A, . = 1, 2,..., are the coefficients depending . , one s
d A, Big, B =3, Ly th fficients depending on %, o. Hence reads
immediately
(3
— I 2
o = Gt 1 @)

Substituting (23) into (21) and neglecting the terms of the powers of (7,,/w3) higher then 1,
it remains

(:L.Zn-I-Z) wf)" ¥ AIR’Y‘R
K, = =2n+ 1) =—. 24
<$2)n+l ( o J w% re Bln']’n ( )
Denote
) ) . <$2n+2>
Koon(h, o) = 'Tnflul.%n—roo Ky, = 'vﬂ,f{i:z,lloo W (25)
Substituting (24) into (25) gives
Ain _ .
(2n+ 1)1 Bi = Koon- (26)
Eliminating Ay, from (24) using (26) yields
2n + 1)! lwd + BinKoonvn
kg, = Gt ULl + BiRosn @7

w§+BinTn

The value B\, indicates the velocity of departure of the value K, from the value (2n + 1)! .
Indeed one gets
01(?1 N B]n( Koon = (271- + 1)' ')w%

n (wE + Bin7n)?

(28)

In principle, the value By, could be estimated using the perturbation method [11]; however,
it might be complicated. Hence, for practical applications the following consideration is
proposed. As shown in Figure 1, in the case of GSL the curve K,(7y,) becomes a horizontal
line through B. From (19) one gets 8K ,, /07y, = 0.
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On the other hand, as has been observed by many authors, the response process of the
system (8) is closed to the Gaussian one for very small non-linearities 7,, = 0. So for ASL
the following requirement is met, K, /07,|7» = 0 = 0. This condition together with (28)
results in

Bin(Koon — (2n+ 1)) = 0. (29)
For the further analysis it is assumed
-1 =tan (—%) < Bip(Keon —(2n+ 1)!1) < tan (-Z—) =L (30)

The inequalities (30) assures that the curve K, (-y,) is kept in triangle ABC when 7, = 0
(Figure 1). Thus, in the case of ASL, By, is given by any value satisfying (30). It is seen from
(27), when the non-linearity is small vy, = 0, one gets K, ~ (2n + 1)! |. Thus in this case
ASL involves GSL. In the general case, the adaptive expression for the equivalent frequency
wg‘ depends on Bj, and can be obtained, substituting (27) into (17),

(2n + 1)! 1w + BinKoonTn
w(z) + Blﬂ‘yn

w2 =wi+ ™ (=)™ (31)

5. Approximate Estimate for K,

As seen from (31) and (30), a knowledge of the value K, leads to a suitable equivalent
frequency w?. To find, approximately, the value K., we consider the two limited cases of
(8). First, choosing 7, = 0 in (8) yields to the linear equation (22) and then one gets

K%, =Q2n+ 1)

Suppose then (8) has very strong nonlinearity, v, > 1+ 2h + wf;, then the linear terms in
(8) can be neglected. As a result, one gets

Tzt = f(8). (32)

Equation (32) represents a transformation of the random variables z(¢) and f(t). Therefore,
the statistic of the variable () can be calculated easily (see Appendix). Then, it follows

(@242) = T((4n+3)/(4n+2))

@A = VT T (20 + 3) /(40 + 2)) )
Consider now (8) for the general case with a linear and a non-linear part. The following
expression for K, could be proposed

_ 114 /L0 +3)/(4n +2)
Koon = dn ((272 + 1)1+ \/‘—Fn+l((2n+ 3)/(4n + 2)))

where d,, is a constant coefficient. In the linear case, n = 0, the coefficient is dp = % For the
non-linear case, n > 0, the coefficient d,, will also be a function of the damping constant 2 and
the excitation intensity o [see (25) and (34)] d,, = d,,(h, o), and needs further investigations.
In this paper, however, the value d,, = % is taken. So one has

y ¥ e = I'((4n+3)/(4n + 2))
ﬁm_z((z H)!!+‘[_rn+l((2n+3)/(4n+z)))‘ (35)

Substituting (35) into (31) shows that the equivalent frequency w? is readily determined.

Kl =

(34)
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6. Oscillator with Non-Linear Stiffness

The result just obtained can be easily extended to a single degree of freedom system with
linear damping and non-linear spring. The equation of motion of such a system is given by

N
& + 2hi + wiz + Z Taz2tl = f(1). (36)
n=1

Here «,, are positive constants, f(%) is a random excitation as in (8). Using the ASL method,
the non-linear equation (36) is replaced by a linear equation

i+ 2hi + Wiz = f(1) (37)

where according to (31) it yields

N
2n+1)”w + BinKoon?y .
imuf 4 3 7 I PRt ay, &

The values of K ., are given in (35) and B}, are chosen from (30). The next step is to evaluate
(2%} using the linearized equation (37),

T Sy(w)dw
= /_oo (w? — w?)? + 4h2w? 9

where Sf(w) is the spectral density of the random excitation f(t). Equations (38) and (39)
yield a relationship for the mean square response (z2). Further, {¢%) can be found from

sax ., SO0 §p(w)wdw
v = /_ (@2 = W?)2 + 4h2u? )

In the case of white noise excitation

2

Si(w) = 3, (1)

(39) gives simply

2

2y a
oy = dhw? (42)
Substituting (42) into (38) yields the following algebraic equation
Noo(@n+1) !w{, + BinK st o2
wo+Z Tn (@) =7 =0 (43)

wo + Binvn 4h

which finally determines the mean square response (z2).



116  Nguyen Dong Anh and Werner Schiehlen

7. Oscillator with Non-Linear Damping

It will be shown herein how the ASL method can be used for the oscillators with non-linear
damping. Consider the equation

n
E+2hi+ ) Bt + wiz = f(2) (44)
n=1

where h, [3,, wy are positive constants, and the random excitation, f(¢), as in (8). Following
the ASL method, the non-linear equation is replaced by a linear equation

F + heit + Wiz = f(1). (45)

The equivalent damping coefficient A, is defined, as usual, as

N
he =2h+ ) BuHa (&%) (46)
n=1
where
(i2n+2>
Hn = W- (47)

The procedure for obtaining H,(h, w3, B,, o) follows that for K,(h, w3, 7., o) in
Sections 4 and 5, except that the non-linearity degree is indicated by the ratio

B

2h°
Thus, instead of the value v, /w3 one can use f3,/2h and for H,, one obtains an expression
corresponding to (27),

(2n+ 1)! 12h 4+ By KoonfBn
2h + Binfn '
where K ., 1s given by (35) and By, is chosen from (30).

Substituting (48) into (46) yields the following expression for the equivalent damping
coefficient

H, = (48)

N z
(2R 1) 2B+ BiKosnDiii v
h. = 2h ¥; 49
S Y B ) “
Using now the linearized equation (45) gives
T S 2dw

—oo (W§ — w?)? + A2w?

Equation (50), (49), (35) and condition (30) form a relationship for determining the velocity
mean square (2?). The mean square of displacement (z*) can be found later by the formula

@)= [ s (51)

oo (WE — w?)? 4 h2w?"
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In the case of white noise excitation (41), (50) yields
(%) = 0%/2h,. (52)
Substituting (49) into (52) gives the following algebraic equation

(2?’5-{-1)1 $2h+Banmn}3ﬂ 02
——=0 53
2h«+Bln/3n ( ) 2 ( )

{8 %+Zm

where the values K, are given by (35) and By, are chosen from (30). Thus, the mean square
velocity response (:1:2) is available from (53).

8. Duffing Oscillator

As an illustration the application of the ASL method will now be given for the Duffing
oscillator and, then, for an oscillator with cubic non-linear damping. Firstly, consider the
Duffing oscillator

z + 2ha + w% + 2 = f(?) (54)

where the symbols have the same meanings as in (1); however, the excitation f(¢) is not
restricted to white noise. By setting » = 1 in (35) one has

Kool = = |3+ /7 ngs//ﬁﬁ)) — 2.147. (55)

Substituting (55) into (30) and noting n = 1, one gets
-1 < —-B1;0.853 < 1.
Thus, By, can be taken as
Ba=1 (56)

Substituting (55) into (31), and noting (56), yields the following expression for the equivalent
frequency of the Duffing oscillator

2
Wz = wg 4 Tw($2)° (57)
wy + 7
Thus, there are two equations (39), (57) for two unknowns wg, and (:1,2) A detailed investi-
gation of this system will be given later. On the other hand, a probability density function for
the response can be found from the calculated moments. It is well known that the estimation
of the system’s reliability is particularly sensitive to the character of the extreme ‘tails’ of the
probability distribution of the response. From this point of view, in contrast to GSL, the ASL
method can lead to a prediction concerning the influence of non-linearity on the distribution
of the response. Thus, it can be used for the problems concerning system reliability analysis.
To illustrate the approach proposed, consider the expansion of the probability density function
(2,12]

xr

2 1 b
W)= |1+ Y G :;}iﬂz;c (gi)] Wel(z) (58)
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where W¢(z) is the Gaussian density function
= 22

\2w0o, P 20 % g

by are quasi-moments and H;x are Hermite polynomials. In particular, one has

by = (z*) — 3(z%)?, Hy(z) = z* — 627 + 3. (59)

We(z) =

Using the expansion (58) up to fourth order and introducing the non-dimensional displacement
y = & /o, One gets

2
W) = <= (1+ g57amle ~ 6 +3)) exp (—%) . (60)

On the other hand one obtains from (57)
(%) 3wi+2.147y
(@) wgtr

Thus, one obtains

Ky =

_ —0.8537(x?)?

by = (z*) - 3(e*)? = P (61)
0

Substituting (61) into (60) yields the following non-Gaussian expression for the distribution
of the response

_o L _0-8537(y4—6y2+3)) s
W(y) = ﬁ;(l e e g L (62)

As seen from (62), the distribution W(y) depends on the non-linearity -, and becomes a
Gaussian distribution for y = 0. By setting y = 0 in (62) the extreme ‘tail’ of the distribution
is obtained as

_ 1 (. 0853y
W(O);\/E(l ——8(w3+7)). (63)

Consider now the Duffing oscillator (54) with a special random excitation.

8.1. White Noise Excitation

Let f(%) be white noise again with

(f(1)) =0, Sy(w) = o?/2r. (64)
In this case, (39) yields
(22) = o2 /4hw?. (65)

Substituting (57) into (65) yields a quadratic equation for (z?) :

3ywi + 2.147+2 o?
o |2 0 1 [ 66
(@) | + =) | - =0 (66)




Closure in Non-Linear Stochastic Mechanics 119

Table 1. Exact and approximate mean
squares of displacement ([69])

N Value Error (%)

(z%)e 0.6760\/d/a 0O
(z%g 0.5774+/d[a 14.59%
(zHa 0.6825\/d/a  0.96%

which results in

\/h2wd + o2h\ — hw}
(z2) = ° ) 67)

2hA

where

_ 3qwh + 2,147

A
wg-i-‘y

(68)
The accuracy of the solution (67) will be checked by some examples. The following notations
are used:

(z?). — exact solution,

(z*), — solution obtained by ASL,

22), — solution obtained by GSL.
g

EXAMPLE 1 [9]. Consider the Duffing oscillator with white noise excitation

i+ B2 + az® = f(1),
(F@)f(t+a)) = 2dB6(0). (69)

In this case it yields

h=p8/2w=0,7=a, o =2dp. (70)
Thus, one gets, from (68),

A=2147a

and then from (67)

N . L
( )aum\/;_o.eszs\/; (71)

As seen from Table I, the error of the solution obtained by ASL, (:1:2),,,, is 0.96% while the
solution obtained by GLS, (z?),, has an error of 14.59%.
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Table 2. Exact and approximate mean squares of displacement ([72])

N ¢ {z%)e {z%)g Eror  {z%)a Error
(%) (%)

0.01 09721436 09716754 —0.48 09717508 —0.40
0.1 0.8175612 0.8053996 —1.49 0.8088173 —1.07
1.0 04679198 04342586  —7.19 0.4586467 —1.98
10.0  0.1889024 0.1666667 —11.8  0.1907328 0.97
100.0  0.0649582 0.0560924 —13.6  0.0658330 1.35

o W —

EXAMPLE 2 [13], [5]. Consider the Duffing oscillator

i+2nz+z+ex® = f1),
(f(1)f(t+a)) = 4né(a). (72)

Comparing (72) with (54) shows

h=n,w=1,7=¢ 0*=4n. (73)
Substituting (73) into (68), (67) yields
_ 3e+2147¢ 50 J1+4N-1
A= ife =T (74)

The response mean square (.1:2), for different values of ¢, is given in Table II, which shows,
as expected, that the ASL method gives good accurate solutions for both weak and strong
non-linear systems. Furthermore, while the derivation of (z2), from the exact solution (z2).
becomes large, as the non-linearity increases, up to 13.6%, the corresponding error of (),
is less than 1.36%.

9. Oscillator with Cubic Non-Linear Damping

Consider finally an oscillator with non-linear damping, the equation of motion of which reads
as

i+ 2hi + B33 + ke = f(1). (75)
The equivalent linear equation, corresponding to (75), takes the form

&+ het +wiz = f(t) (76)
where h,. follows from (46) and (48) as
6h + BiiKes15, .5

h. = 2h + 8 2ht B i2). (77)
Substituting (55) and (56) into (77) yields
h. = 2h + ﬁw(:&z). (78)

2h+ 3
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Equations (50) and (78) form a relationship to determine (#2). In the case of white noise
excitation (64), (50) gives

(%) = a?/2h.. (79)
Substituting (78) into (79) yields a quadratic equation

123h + 4.2943*

-2 P
il (i} - =0 (80)

(22) |4h +

with the solution

V4h? 4 o) — 2h

22\ 1
(@) ; Q)
where
128h + 4.294(3%
= : 2
A 2h + &%)
The mean square of the displacement (z2) is determined by the formula
(a%) = (&%) (83)

EXAMPLE 3 ([2]). Consider the following oscillator with cubic non-linear damping and
white noise excitation

&+ 203 + 2(us’ + = = VACf(2),

(f(&)f(t+ 7)) =6(7). (84)
As is known, exact solutions for this oscillator do not exist, even in the case of white noise
excitation. Thus, the oscillator (84) has been investigated in [2] by the method of non-Gaussian
closure, missing the equivalent non-linear equation (ENLE), Gaussian statistical linearization,
and by the simulation. It is shown in [2], that the ENLE result, denoted as <T2> ENLE, 18 nearly
exact at ¢ = 0.05 and can be used as a reference solution. This approach will be used herein

for checking the accuracy of the adaptive statistical linearization solution. Thus, comparing
(75) and (84) gives

h=(8=2p, wo=1, 0% =4( (85)
Substituting (85) into (82), (81) and (83) yields
_ 120n + 8.588( u?

A 1% g : (86)
and
2 2 24 (A
o= WEFD-0) -

In the case of { = 0.05, one gets

\ o O06p+ 0.4294 4>
B 14+ pu

2. 2(+/0.0025+0.05X — 0.05
(27)a = by 04 5 ) (88)
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Table 3. Approximate mean squares of displacement ([84])

o (= (z%)g  Emor (%) (2%)a  Emor (%)
1 0.4603 04342 -5.67 0.4586 —0.37
2 0.3584 0.3333 -7.00 0.3632 1.06
3  0.3058 0.2824 -—7.65 03128 2.29
4 02720 0.2500 —8.09 0.2789 2.54
5 0.2476 0.2270 —8.43 0.2551 2.90
6 0.2294 0.2006 —8.63 0.2368 3.23
7 02147 0.1957 —8.85 0.2221 345
8 0.2025 0.1844 —8.94 0.2099 3.65
9 0.1923 0.1748 —=9.10 0.1996 3.80

10 0.1835 0.1667 -=9.16 0.1907 3.92

The accuracy of the ASL solution, (:1:2)“, given by (88), is shown in Table III for different
values of y where the solution {z*)gNig, and (z?),, are taken from Table 9.3 in [2]. Obviously,
the solution obtained by the ASL method, (22),,, is much closer to the solution (2?)gny g, than
the solution obtained by the GSL method, (z2),.

10. Conclusions

The main question inherent in statistical linearization is how the equivalent coefficients of
the linearized equation are found. Gaussian statistical linearization (GSL) proposes these
coefficients to be constant values, while the adaptive statistical linearization (ASL) considers
those as the adaptive functions of the system parameters. In the examples investigated the ASL
method yields better results for both weak and strong non-linear stochastic systems. Thus,
adaptive statistical linearization seems to be a more sophisticated approach for non-linear
stochastic systems.
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Appendix
Let f(1) be zero-mean Gaussian process with the probability density function

W(f) = (V2ra)~ 1exp(—f*(20%)). 1)
Consider the transformation

X2+(1) = f(t), k=0,1,2,..., )
or

= fEK+Y, 3)
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Then one gets
+00 a4z
(227+2) = f FERW(S) df.

Using Gamma Function

: i T YO
r'()) =/0 A =1et i, A)0 (3)
one has
(#¥+2) = (Varo) " o)) (L (24 225, s)
In particular, n = 0,
2\ _ —1 9, 2E43 2k -4 3)
(z°) = (V2mo)™ ' (20°) %+2T (4—k+2 : (6)
For the transformation
2>t (1) = f(1) (7
by setting k = n in (5), (6) one gets
42y _ Apa, 2\id3 (4“"'3)
(2™*?) = (V2ro) ™! (20%)m+2T s (8)
2 =1 2 ?lr:il 2n+3)
(2%) = (V270) "} (20 )4+2F(4n+2 : ©9)

It follows

(z2nt2) = T((4n+3/(4n+2))
{g2yn \/W_I‘“”' ((2n+3)/(4n +2))

(10)
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