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Abstract

Model predictive control (MPC) is a modern control method based on the repeated online
solution of a finite horizon optimal control problem. It is particularly attractive due to
its ability to take hard constraints and performance criteria directly into account. The
objective of this thesis is the development of novel MPC schemes for nonlinear continuous-
time systems with and without time-delays in the states which guarantee asymptotic
stability of the closed-loop. The most well-studied MPC approaches with guaranteed
stability use a control Lyapunov function as terminal cost. Since the actual calculation
of such a function can be difficult, it is desirable to replace this assumption by a less
restrictive controllability assumption. For discrete-time systems, the latter assumption has
been used in the literature for the stability analysis of so-called unconstrained MPC, i.e.,
MPC without terminal cost and terminal constraints.
The contributions of this thesis are twofold. In the first part, we propose novel MPC

schemes with guaranteed stability based on a controllability assumption, whereas we extend
different MPC schemes with guaranteed stability to nonlinear time-delay systems in the
second part.
In the first part of this thesis, we derive for the first time explicit stability conditions

on the prediction horizon as well as performance guarantees for unconstrained MPC for
continuous-time systems. Starting from this result, we propose novel alternative MPC
formulations based on combinations of the controllability assumption with terminal cost
and terminal constraints. Thereby, we show connections of our results to previous MPC
schemes and highlight advantages. One of the main contributions is the development of a
unifying MPC framework which allows to consider both MPC schemes with terminal cost
and terminal constraints as well as unconstrained MPC as limit cases of our framework.
In the second part of this thesis, we show that several MPC schemes with and with-

out terminal constraints can be extended to nonlinear time-delay systems. Due to the
infinite-dimensional nature of these systems, the problem is more involved and additional
assumptions are required in the controller design. For MPC schemes with terminal con-
straints, we prove that stability conditions similar to the delay-free case are sufficient
for closed-loop stability. However, the calculation of suitable terminal cost functionals
and terminal regions based on the Jacobi linearization about the origin is more difficult.
We propose and investigate different procedures to overcome these difficulties. For MPC
schemes without terminal constraints, we discuss MPC schemes with and without terminal
cost functionals. If the terminal region is defined as a sublevel set of the terminal cost,
we show that the terminal constraint can be omitted from the optimal control problem
while maintaining asymptotic stability. Similar to the results in the first part of the thesis,
explicit stability conditions on the prediction horizon are derived based on a modified
controllability assumption suitable for time-delay systems.
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Deutsche Kurzfassung

Modellprädiktive Regelung nichtlinearer
zeitkontinuierlicher Systeme mit und
ohne Totzeiten

Motivation und grundsätzliche Fragestellungen

Die modellprädiktive Regelung, im Englischen als model predictive control (MPC), moving
horizon control oder receding horizon control bezeichnet, ist ein modernes modellbasiertes
Regelungsverfahren und erfährt sowohl in der Grundlagenforschung und Literatur als auch
in praktischen Anwendungen erhebliche Beachtung.

Ein wesentlicher Grund für den Erfolg von MPC ist die intuitive zugrunde liegende Idee.
Im Gegensatz zu den meisten anderen Regelungsverfahren wird in MPC keine explizite
Abbildung der gemessenen Systemzustände auf den Eingang berechnet. Stattdessen ist
diese implizit gegeben durch die Lösung eines Optimalsteuerungsproblems basierend auf
dem gemessenen Systemzustand und einem Modell des zu regelnden Systems. Hierbei
wird zu jedem Abtastzeitpunkt ti ein Optimalsteuerungsproblem auf einem endlichen
Prädiktionshorizont T gelöst und die dabei berechnete optimale Eingangstrajektorie bis
zum nächsten Abtastzeitpunkt ti+1 = ti + δ auf das System angewendet. Durch die
wiederholte Anwendung dieses Prinzips über jeweils verschobene Prädiktionshorizonte wird
ein geschlossener Regelkreis erreicht. Die Grundidee der modellprädiktiven Regelung ist in
Abbildung 1 veranschaulicht.

Die weiteren Vorteile der modellprädiktiven Regelung gegenüber herkömmlichen Rege-
lungsverfahren sind vielfältig. So kann die Einhaltung harter Eingangs- und Zustandsbe-
schränkungen garantiert werden, es ist prinzipiell möglich nichtlineare Mehrgrößensysteme
zu betrachten und gewünschte Kriterien für eine hohe Regelgüte können explizit im Regler-
entwurf berücksichtigt werden.
Für eine weitergehende Einführung in MPC und einen umfassenden Überblick über

die theoretischen Ergebnisse in diesem Bereich verweisen wir auf die Übersichtsartikel
(Findeisen et al., 2003; Magni and Scattolini, 2004; Mayne et al., 2000) und die Bücher
(Camacho and Bordons, 2004; Goodwin et al., 2005; Grüne and Pannek, 2011; Maciejowski,
2002; Rawlings and Mayne, 2009).

Die vorliegende Arbeit beschäftigt sich im Wesentlichen mit einer der grundlegenden
Fragestellungen in der Regelungstheorie: Unter welchen Bedingungen ist die nominelle
asymptotische Stabilität des geschlossenen Regelkreises gewährleistet? Die optimale Rege-
lung auf einem unendlichen Horizont garantiert unter schwachen Annahmen asymptotische
Stabilität des geschlossenen Kreises. Im Gegensatz hierzu ist dies für MPC mit endlichem
Prädiktionshorizont im Allgemeinen nicht gewährleistet. Dieser Effekt wurde von Raff
et al. (2006) an einem praktischen Beispiel verdeutlicht. Während MPC-Schemata mit
Endkosten und Endbeschränkungen, sowie die zugehörigen Stabilitätsbedingungen, als
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Berechnungszeitpunkt ti

Prädiktionshorizont

t

ti ti + T

ZukunftVergangenheit

Zustand

Eingang

Berechnungszeitpunkt ti+1 = ti + δ

t

ti ti+1 ti+1 + T

ZukunftVerg.

Zustand

Eingang

Abbildung 1: Grundidee der modellprädiktiven Regelung.

sehr gut verstanden angesehen werden können (Chen and Allgöwer, 1998; Mayne et al.,
2000), so ist dies für das sogenannte unbeschränkte MPC (engl.: unconstrained MPC), d.h.
MPC ohne Endkosten und Endbeschränkungen, bisher nur für zeitdiskrete Systeme der
Fall (Grüne et al., 2010a). Dieses Regelungsverfahren ist insbesondere bedeutsam durch die
weitverbreitete Anwendung in der industriellen Praxis und die einfache Formulierung.

Die vorliegende Arbeit leistet wissenschaftliche Beiträge in zwei Bereichen der modell-
prädiktiven Regelung. Zum einen betrachten wir nichtlineare zeitkontinuierliche Systeme
und präsentieren neue MPC-Schemata, für die rigoros Stabilität gewährleistet werden kann.
Hierbei stehen Stabilitätsbedingungen basierend auf einer sogenannten Kontrollierbarkeits-
annahme (engl.: controllability assumption) im Vordergrund. Zum anderen untersuchen wir
die Anwendbarkeit von MPC auf nichtlineare Totzeit-Systeme, d.h. Systeme mit verzögerten
Zuständen, welche eine wichtige spezielle Klasse unendlich-dimensionaler Systeme darstellen.
Hierbei betrachten wir MPC-Schemata sowohl mit als auch ohne Endbeschränkungen und
Endkosten. Im Folgenden erläutern wir die Forschungsbeiträge genauer.

Modellprädiktive Regelung für nichtlineare zeitkontinuierliche
Systeme

In dem ersten Teil der vorliegenden Arbeit beschäftigen wir uns mit nichtlinearen zeitkonti-
nuierlichen Systemen beschrieben durch gewöhnliche Differentialgleichungen. Die klassischen
Stabilitätsbeweise in MPC beruhen auf der Verwendung einer lokalen Kontroll-Lyapunov-
Funktion (engl.: control Lyapunov function (CLF)) als Endkostenfunktion (Chen and
Allgöwer, 1998; Mayne et al., 2000). Die Existenz einer solchen Funktion ist zwar eine
gerechtfertigte Annahme, die tatsächliche Berechnung stellt sich allerdings für nichtlineare
Systeme im Allgemeinen als sehr schwere oder sogar unlösbare Aufgabe heraus. Daher wer-
den in praktischen Anwendungen oftmals unbeschränkte MPC-Verfahren, d.h. MPC ohne
Endbeschränkungen und ohne Endkosten, verwendet. Es ist bekannt, dass diese Verfahren
für einen „hinreichend langen“ Prädiktionshorizont die Stabilität des geschlossenen Kreises
gewährleisten (Jadbabaie and Hauser, 2005). Für zeitdiskrete Systeme existieren darüber
hinaus Ergebnisse für die explizite Berechnung eines solchen Prädiktionshorizonts basierend
auf einer Kontrollierbarkeitsannahme (Grimm et al., 2005; Grüne, 2009; Grüne et al., 2010a).
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Diese Kontrollierbarkeitsannahme verlangt nur eine obere Schranke an die optimalen Kosten
des zu lösenden Optimalsteuerungsproblems und ist somit weniger einschränkend als die
Kenntnis einer geeigneten CLF. Für zeitkontinuierliche Systeme sind solche expliziten
Bedingungen allerdings bisher nicht bekannt.

Ein erster Forschungsbeitrag dieser Arbeit ist die Formulierung geeigneter Stabilitätsbe-
dingungen für unbeschränktes MPC für nichtlineare zeitkontinuierliche Systeme. Darüber
hinaus stellen sich unmittelbar weitere Fragen, die bisher in der Literatur nicht beantwortet
wurden: Können die bei der Analyse von unbeschränktem MPC angewandten Hilfsmittel
auch dazu beitragen, neue Einsichten in die klassischen MPC-Schemata mit Endkosten und
Endbeschränkungen zu erlangen? Inwiefern bestehen Verbindungen zwischen den verschie-
denen Klassen von modellprädiktiven Regelungsverfahren und lassen sich beide Klassen in
einem vereinheitlichten Rahmen betrachten? Unter welchen Bedingungen ist es vorteilhaft,
die Annahmen aus beiden Klassen gleichzeitig zu berücksichtigen, d.h. eine Kombination
der Kontrollierbarkeitsannahme mit Endkosten und/oder Endbeschränkungen? Im ersten
Teil dieser Arbeit beantworten wir diese Fragestellungen.

Modellprädiktive Regelung für nichtlineare Totzeit-Systeme

In dem zweiten Teil dieser Arbeit betrachten wir die Anwendung der modellprädiktiven
Regelung auf nichtlineare Totzeit-Systeme beschrieben durch funktionelle Differentialglei-
chungen. Diese Systeme bilden eine wichtige Klasse unendlich-dimensionaler Systeme und
treten in der Modellierung vieler technischer, biologischer und gesellschaftlicher Systeme
auf, bei denen die zukünftige Entwicklung nicht nur vom aktuellen Systemzustand ab-
hängt, sondern auch von vergangenen Zuständen. Wichtige Beispiele für solche Systeme
beschreiben den Transport von Material und Information, hierbei lassen sich u.a. Rühr-
kesselreaktoren mit Rückführung und die Datenübertragung in geschlossenen Regelkreisen
nennen. Nichttechnische Beispiele sind die Glukose-Insulin-Regulierung, die Übertragung
von Krankheiten und Preisschwankungen. Für weitere Details und eine umfassende Liste
an weiteren Beispielen verweisen wir auf (Kolmanovskii and Myshkis, 1999, Kapitel 2).
Durch die unendliche Dimension des Zustands sind sowohl die Stabilitätsanalyse als auch
der Reglerentwurf erheblich aufwendiger als für Systeme ohne Totzeiten. Insbesondere
gibt es nur wenige Verfahren für den Reglerentwurf, die es erlauben harte Beschränkun-
gen zu berücksichtigen. Dies motiviert die genauere Untersuchung von MPC für diese
Systemklasse. Während für lineare Totzeit-Systeme bereits zahlreiche Ergebnisse in der
Literatur vorhanden sind, gibt es für nichtlineare Totzeit-Systeme nur sehr eingeschränkte
Resultate, die entweder ein globales Kontroll-Lyapunov-Funktional als Endkostenfunktional
(Kwon et al., 2001a,b; Mahboobi Esfanjani and Nikravesh, 2009a) oder eine erweiterte
Gleichheits-Endbeschränkung (Raff et al., 2007) voraussetzen. Beide genannten Ansätze
sind für die praktische Anwendung im Allgemeinen ungeeignet.
Aus diesem Grund betrachten wir alternative MPC-Schemata und leiten Bedingun-

gen her, die asymptotische Stabilität des geschlossenen Kreises rigoros garantieren. Zum
einen erweitern wir das klassische Stabilitätsresultat für MPC mit lokalen Endkosten und
Ungleichungs-Endbeschränkungen auf nichtlineare Totzeit-Systeme und schlagen Verfahren
zur Berechnung geeigneter stabilisierender Reglerparameter vor. Zum anderen berücksichti-
gen wir MPC-Schemata ohne Endbeschränkungen, sowohl mit Endkosten als auch ohne
Endkosten. Die genauere Betrachtung der genannten Fragestellungen bildet den zweiten
Teil dieser Arbeit.
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Forschungsbeiträge und Gliederung der Arbeit
Die nachfolgende Übersicht zeigt die Gliederung der Dissertation und erläutert die wich-
tigsten Forschungsbeiträge der einzelnen Kapitel.

Kapitel 2 — Background (Grundlagen) In diesem Kapitel fassen wir die Grundlagen
zusammen, die im Zusammenhang mit den Ergebnissen dieser Arbeit stehen. In Abschnitt 2.1
erläutern wir die Grundidee und bestehende Ergebnisse im Bereich der modellprädiktiven
Regelung. In Abschnitt 2.2 beschäftigen wir uns mit den Grundlagen nichtlinearer Totzeit-
Systeme, eine spezielle Klasse unendlich-dimensionaler Systeme.

Kapitel 3 —Model Predictive Control for Nonlinear Continuous-Time Systems
(Modellprädiktive Regelung für nichtlineare zeitkontinuierliche Systeme) In
diesem Kapitel behandeln wir die modellprädiktive Regelung für nichtlineare zeitkontinu-
ierliche Systeme. Es werden Stabilitätsbedingungen für fünf verschiedene MPC-Schemata
hergeleitet, jeweils basierend auf einer Kontrollierbarkeitsannahme. Diese Annahme ist
weniger einschränkend als die Kenntnis einer CLF vorauszusetzen und erlaubt explizi-
te Bedingungen an einen stabilisierenden Prädiktionshorizont für unbeschränktes MPC,
siehe Abschnitt 3.2. Hiervon ausgehend untersuchen wir Vorteile durch die Verwendung
zusätzlicher Gewichtungsterme in den Abschnitten 3.3 und 3.4. Wir zeigen, dass Stabi-
lität für kürzere Prädiktionshorizonte gewährleistet werden kann durch die Verwendung
einer Endkostenfunktion, die keine CLF ist, sondern eine ähnliche, aber erheblich abge-
schwächte Bedingung erfüllt. Dasselbe Ziel kann durch eine exponentielle Gewichtung der
laufenden Kosten erreicht werden. Außerdem betrachten wir mögliche Verknüpfungen der
Kontrollierbarkeitsannahme mit Endbeschränkungen in den Abschnitten 3.5 und 3.6. Wir
zeigen, dass für geeignet umformulierte Optimalsteuerungsprobleme mit zusätzlichen neuen
Gewichtungstermen eine nur lokal vorausgesetzte Kontrollierbarkeitsannahme ausreicht,
um Stabilität zu gewährleisten. Darüber hinaus lassen sich sowohl unbeschränktes MPC
sowie das klassische MPC-Verfahren mit Endkosten und Endbeschränkungen als Grenzfälle
aus dem von uns vorgeschlagenen MPC-Verfahren mit Integral-Endkosten herleiten, wie
in Abschnitt 3.5 beschrieben. Dies ist insbesondere von Bedeutung, da beide bestehenden
MPC-Verfahren bisher stets getrennt in der Literatur untersucht wurden.

Die wichtigsten Forschungsbeiträge dieses Kapitels sind:

• Wir leiten Stabilitätsbedingungen und Abschätzungen der Regelgüte für unbeschränk-
tes MPC für nichtlineare zeitkontinuierliche Systeme her. Diese basieren auf einer Kon-
trollierbarkeitsannahme und der Lösung eines zugehörigen unendlich-dimensionalen
Optimierungsproblems.

• Wir geben Stabilitätsbedingungen für unbeschränktes MPC mit zusätzlicher positiv
semi-definiter Endkostenfunktion, die keine CLF sein muss, an.

• Für den Sonderfall einer exponentiellen Kontrollierbarkeitsannahme und der Verwen-
dung eines zusätzlichen exponentiellen Gewichtes werden analytische Ausdrücke für
die Stabilitätsbedingungen berechnet.

• Wir schlagen zwei MPC-Schemata mit Endbeschränkungen vor, bei denen Stabilität
auch gewährleistet werden kann, falls die Kontrollierbarkeitsannahme nur in einer
lokalen Umgebung der Ruhelage erfüllt ist.
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• Wir zeigen anhand der in dieser Arbeit untersuchten MPC-Schemata Verbindungen
zwischen unbeschränktem MPC und MPC mit Endkosten und Endbeschränkungen
auf.

Teile dieses Kapitels basieren auf Reble and Allgöwer (2011, 2012b); Reble et al. (2012a,b).

Kapitel 4 — Model Predictive Control for Nonlinear Time-Delay Systems (Mo-
dellprädiktive Regelung für nichtlineare Totzeit-Systeme) In diesem Kapitel be-
trachten wir verschiedene MPC-Schemata für nichtlineare Totzeit-Systeme mit garantierter
Stabilität des geschlossenen Regelkreises. Hierbei werden MPC-Schemata sowohl mit als
auch ohne Endkosten und Endbeschränkungen untersucht. Die Stabilitätsbedingungen für
MPC mit Endkosten und Endbeschränkungen in Abschnitt 4.2 sind konzeptionell den be-
kannten Ergebnissen für Systeme ohne Totzeiten sehr ähnlich, die tatsächliche Berechnung
der Reglerparameter stellt sich allerdings bedingt durch die unendliche Dimension des
Zustandsraums als erheblich schwieriger heraus. Vier Verfahren zur Berechnung geeigneter
Endkosten und Endregionen basierend auf der Jacobi-Linearisierung um den Ursprung wer-
den in Abschnitt 4.3 vorgestellt. Wir beweisen Stabilitätsbedingungen für MPC-Verfahren
ohne Endbeschränkungen in Abschnitt 4.4 mit Endkosten und in Abschnitt 4.5 ohne
Endkosten. Hierbei wird im ersten Fall ein Endkostenfunktional und eine Endregion, die
als Unterniveaumenge der Endkosten definiert ist, verwendet. Das Optimalsteuerungspro-
blem umfasst jedoch keine Endbeschränkung, da die Endregion nur zur Stabilitätsanalyse
verwendet wird, jedoch nicht im eigentlichen Regler. Im zweiten Fall wird eine Kontrollier-
barkeitsannahme angewendet ähnlich zu der Annahme, die in Kapitel 3 für Systeme ohne
Totzeiten betrachtet wurde.

Die wichtigsten Forschungsbeiträge dieses Kapitels sind:

• Wir erweitern die klassischen Stabilitätsbedingungen für MPC mit Endkosten und
Endbeschränkungen auf den Fall von nichtlinearen Totzeit-Systemen.

• Wir entwickeln vier Verfahren zur Berechnung des Endkostenfunktionals und der
Endregion basierend auf der Jacobi-Linearisierung um den Ursprung und formulieren
jeweils hinreichende Bedingungen in Form von linearen Matrixungleichungen (engl.:
linear matrix inequalities (LMIs)). Die Eigenschaften sowie Vor- und Nachteile der
Verfahren werden erläutert.

• Wir geben zwei MPC-Schemata ohne Endbeschränkungen sowie zugehörige Stabili-
tätsbedingungen an.

• Wir vergleichen die in diesem Kapitel vorgeschlagenen MPC-Verfahren anhand zweier
numerischer Beispiele: ein akademisches Beispiel, welches im gesamten Kapitel mehr-
mals zur Verdeutlichung herangezogen wird, sowie das Modell eines kontinuierlich
betriebenen Rührkesselreaktors mit Rückführung.

Die Ergebnisse zu MPC mit Endbeschränkungen innerhalb dieses Kapitels basieren auf
Mahboobi Esfanjani et al. (2009); Reble and Allgöwer (2010a,b, 2012a); Reble et al. (2011b),
während die Resultate zu MPC ohne Endbeschränkungen teilweise auf Reble et al. (2011a,c)
basieren.
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Kapitel 5 — Conclusions (Fazit) In diesem Kapitel fassen wir die in dieser Arbeit
erzielten Ergebnisse zusammen und setzen diese in einen größeren Zusammenhang. Des
Weiteren zeigen wir mögliche Fragestellungen für zukünftige Forschungsarbeiten auf.

xviii



Chapter 1

Introduction

1.1 Motivation and Focus of the Thesis

Model predictive control (MPC) is a modern model-based control method relying on
the repeated online solution of a finite horizon optimal control problem. It has received
remarkable attention in academic research and is widely used in practical applications. The
reasons for its great success are manifold: MPC is able to guarantee the satisfaction of hard
input and/or state constraints, it can deal with nonlinear systems with multiple inputs,
and a performance criterion can be directly taken into account in the control setup. In
the last decades, significant progress has been made regarding practical implementation –
starting from early applications to rather slow systems in the process industry and going to
considerably faster dynamics such as in the area of automotive engineering. Furthermore, a
solid theoretical foundation is available with rigorous and well-understood stability proofs
for MPC schemes which use a local control Lyapunov function and terminal constraints.
However, these theoretically well-founded MPC schemes are typically not used in practical
applications. Hence, there is still an even more substantial gap between theory and practice
than for most other modern control disciplines. This motivates the research on rigorous
stability conditions for practically relevant MPC schemes as well as novel alternative MPC
formulations for different classes of system.

While the existence of a local control Lyapunov function is a reasonable assumption, the
actual calculation of this function is in general a challenging task for nonlinear systems.
For this reason, the so-called unconstrained MPC scheme, i.e., MPC without terminal cost
function and without terminal constraint, enjoys widespread use in industrial applications.
Hence, the investigation of unconstrained MPC is of particular interest in order to bridge
the gap between theory and practice. For this MPC scheme, it is well-known that closed-
loop stability is not guaranteed in general, but only for a prediction horizon chosen “large
enough”. For discrete-time systems, explicit conditions on the length of the prediction
horizon are available in the literature based on a so-called controllability assumption. The
aforementioned controllability assumption only requires an upper bound on the optimal cost.
This assumption and concepts from relaxed dynamic programming allow to remove the
more restrictive assumption of a local control Lyapunov function in the proof of closed-loop
stability. For continuous-time systems, however, similar explicit stability conditions in
terms of the prediction horizon are not available in the literature. Moreover, several other
questions are still without answer. For instance, can the analysis tools used in the stability
proof of unconstrained MPC give new insight into the classical MPC schemes with terminal
cost and terminal constraints? What are the connections between the different MPC
schemes with seemingly different stability analysis and is there some kind of “unifying
framework”? Moreover, is it beneficial to combine the controllability assumption from
unconstrained MPC with terminal cost terms and/or terminal constraints, and if yes, in
which way should this combination be made? In the first part of this thesis, we give answers
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to these questions.
In the second part of this thesis, we are concerned with a slightly different set of questions.

Instead of deriving novel MPC schemes, we are interested in extending existing stability
conditions for different MPC schemes to more general classes of systems. More specifically,
we consider nonlinear time-delay systems (TDS) in this thesis, i.e., systems with a time-delay
in the states, a special class of infinite-dimensional systems. Time-delay systems, also called
differential-difference equations or systems with aftereffect or dead-time, describe many
practically relevant processes, for instance when the transport of material and/or data is
considered. Due to their infinite-dimensional nature, stability analysis and controller design
becomes more difficult even for linear time-delay systems. Unsurprisingly, most available
control methods for this class of systems do not allow to take hard input constraints into
account. For this reason, we investigate different MPC schemes with and without terminal
constraints and/or terminal cost terms and derive novel stability conditions. Furthermore,
we pay particular attention to the calculation of the involved control design parameters.

In conclusion, the objective of this thesis is twofold. First, we derive novel stability
conditions based on a so-called controllability assumption for MPC schemes for finite-
dimensional nonlinear continuous-time systems. Second, we investigate the use of model
predictive control for nonlinear time-delay systems. In the following section, we explain the
results obtained in this thesis in more detail.

1.2 Outline and Contributions of the Thesis

The outline and the contributions of the thesis are as follows.

Chapter 2 — Background In this chapter, we give a brief overview of the most
important existing results related to the work in this thesis. In Section 2.1, we summarize
previous results on model predictive control for finite-dimensional continuous-time systems.
Section 2.2 introduces time-delay systems, a particular class of infinite-dimensional systems,
and recalls important properties as well as previous work.

Chapter 3 — Model Predictive Control for Nonlinear Continuous-Time Sys-
tems In this chapter, we consider model predictive control for continuous-time systems.
We present novel stability conditions for five MPC schemes based on a controllability
assumption, which is less restrictive than the assumption of a local control Lyapunov
function. Starting from unconstrained MPC in Section 3.2, we investigate possible benefits
of additional weighting terms in Sections 3.3 and 3.4. We can guarantee stability for shorter
prediction horizons by using a terminal cost function, which does not need to be a CLF,
but satisfies a relaxed similar condition. Similarly, an exponential weighting on the stage
cost also allows to reduce the stabilizing prediction horizon. Moreover, we investigate for
the first time the combination of the controllability assumption with terminal constraints
in Sections 3.5 and 3.6. For an appropriately defined new optimal control problem, a local
controllability assumption is sufficient for stability and we recover both unconstrained MPC
and classical MPC with terminal cost and terminal constraints as limit cases of our MPC
setup with integral terminal cost in Section 3.5.

The main contributions of this chapter are:
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• We derive stability conditions and performance estimates for unconstrained MPC
for nonlinear continuous-time systems based on a controllability assumption and a
corresponding infinite-dimensional optimization problem.

• We derive stability conditions for unconstrained MPC with an additional positive
semi-definite terminal cost, which does not need to be a control Lyapunov function.

• We provide stability conditions for the special case of an exponential controllability
assumption and the use of an additional exponential weighting on the stage cost.

• We propose two novel MPC setups with guaranteed stability based on only local
controllability assumptions in combination with terminal constraints.

• We discuss the connection of these results to previous results on MPC with terminal
constraints.

In this chapter, we do not present a separate example section. Instead, we rather use
several illustrating examples throughout the different sections. Parts of this chapter are
based on Reble and Allgöwer (2011, 2012b); Reble et al. (2012a,b).

Chapter 4 — Model Predictive Control for Nonlinear Time-Delay Systems In
this chapter, we propose different MPC schemes for nonlinear time-delay systems with
guaranteed asymptotic stability. The results include MPC schemes with and without
terminal cost terms and/or terminal constraints. While the stability conditions for MPC
with terminal cost terms and terminal constraints in Section 4.2 are conceptually very
similar to the well-known results for delay-free systems, the actual calculation of an
appropriate terminal cost functional and a controlled invariant terminal region turns out
to be significantly more difficult. Four procedures for calculating the terminal cost and
terminal constraints based on the Jacobi linearization about the origin are derived in
Section 4.3. Stability conditions for unconstrained MPC schemes with and without terminal
cost are derived in Sections 4.4 and 4.5, respectively. The first scheme uses a terminal
cost functional and a terminal region defined as sublevel set of the terminal cost. The
terminal constraint is omitted from the optimal control problem and only used in the
stability analysis. The second scheme uses a controllability assumption similar to the one
used in Chapter 3 for delay-free systems.

The main contributions of this chapter are:

• We extend classical stability conditions for MPC schemes with terminal cost terms
and terminal constraints to nonlinear time-delay systems.

• We provide four different schemes to calculate the terminal cost and terminal region
based on the Jacobi linearization about the origin and formulate exemplary conditions
in terms of linear matrix inequalities (LMIs) for each scheme. We discuss properties
of each scheme and compare the advantages and disadvantages.

• We propose two MPC schemes without terminal constraints for nonlinear time-delay
systems with guaranteed stability.
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• We compare the presented MPC schemes by evaluating two numerical examples. The
first one is a simple academic example used throughout the chapter, the second is the
model of a continuous stirred tank reactor with recycle stream.

The results on MPC with terminal constraints presented in this chapter are based on
Mahboobi Esfanjani et al. (2009); Reble and Allgöwer (2010a,b, 2012a); Reble et al. (2011b).
Parts of the results on MPC without terminal constraints in this chapter are based on
Reble et al. (2011a,c).

Chapter 5 — Conclusions In this chapter, we summarize the main results of the thesis
and indicate possible directions for future research.
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Chapter 2

Background

In this chapter, we provide a brief overview of the most important existing results related to
the work in this thesis. In more detail, we present the basic idea of model predictive control
and summarize existing results on guaranteed nominal stability in Section 2.1. Section 2.2
gives an introduction to time-delay systems with a particular focus on the definition of
stability, stability conditions, and control.

2.1 Model Predictive Control
Model predictive control (MPC) is one of the most successful modern control methods and
is based on the repeated solution of an open-loop finite horizon optimal control problem.
Compared to classical control methods, it offers several advantages such as the guaranteed
satisfaction of hard constraints and the possibility to take performance specifications directly
into account. Due to these advantages, it has received much attention in academic research
and finds its way into an ever-growing number of practical application areas, assisted by the
development of dedicated numerical optimization methods and increasing computing power.
In this section, we provide the necessary background of MPC for the remainder of this thesis.
After explaining the basic idea of MPC in Section 2.1.1, Section 2.1.2 gives an overview
of the existing literature in the field of MPC with a particular focus on nominal stability.
Section 2.1.3 presents a well-established general design framework for MPC schemes with
guaranteed nominal stability using terminal cost functions and terminal constraints.

2.1.1 Basic Principle of Model Predictive Control

The basic principle underlying model predictive control is rather simple and intuitive. Pre-
dictions based on a nominal model of the system and the most recent available measurement
of the state of the system are employed to determine the “best” possible control action over
a finite time horizon. This optimal control input is applied until new measurement data
becomes available. At this time, the procedure is repeated using the new measurement and
over a shifted prediction horizon.

Slightly more formally, the principle of MPC can be summarized in the following algorithm,
see also Figure 2.1. For a rigorous setup, we refer to Section 2.1.3 and the respective sections
in the subsequent chapters.

Algorithm 2.1 (Basic Idea of Model Predictive Control). For given constant prediction
horizon T and sampling time δ, at each sampling instant ti = iδ, i ∈ N0,

1. measure the state x(ti),

2. solve an open-loop finite horizon optimal control problem over the time interval
[ti, ti + T ], and
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Figure 2.1: Basic principle of model predictive control.

3. apply the optimal open-loop input to the system until new measurement is available at
the next sampling instant ti+1 = ti + δ.

It is well-known that under weak assumptions optimal control over an infinite prediction
horizon guarantees asymptotic stability of the closed-loop. In contrast, MPC with a finite
prediction horizon does not ensure stability in general. A simple practical example for
instability of the closed-loop is presented by Raff et al. (2006). It is shown that MPC
without additional stabilizing constraints can destabilize an open-loop stable four tank
system when the prediction horizon is chosen “too short”. The question which additional
ingredients are necessary in order to guarantee stability received remarkable attention
in academic research over the last decades. In the following section, we provide a short
overview of the literature in the area of MPC with a particular focus on stability conditions.

2.1.2 Review on Model Predictive Control

In this section, we give a brief overview of several important results in MPC. For a more
detailed introduction to MPC and a comprehensive survey of academic research in MPC,
we refer to the overview papers (Findeisen et al., 2003; Magni and Scattolini, 2004; Mayne
et al., 2000) and books (Camacho and Bordons, 2004; Goodwin et al., 2005; Grüne and
Pannek, 2011; Maciejowski, 2002; Rawlings and Mayne, 2009). Different aspects of practical
applications of MPC and several examples are reported in (Darby and Nikolaou, 2012; Del
Re et al., 2010; Kano and Ogawa, 2010; Qin and Badgwell, 2000, 2003).
The basic idea of using a combination of online optimization and a moving horizon for

control was first developed in the 1960s and early 1970s (Lee and Markus, 1967; Nour Eldin,
1971; Propoi, 1963; Rafal and Stevens, 1968; Zadeh and Whalen, 1962). First industrial
applications in the process industry are reported in the late 1970s (Cutler and Ramaker,
1980; Richalet et al., 1978). The success of MPC in practical applications led to a significant
interest in academic research and the development of a thorough theoretical foundation
and rigorous stability guarantees.

The first stability results on MPC with a finite prediction horizon make use of a zero state
terminal equality constraint (Alamir and Bornard, 1994; Chen and Shaw, 1982; Keerthi
and Gilbert, 1988; Mayne and Michalska, 1989, 1990; Michalska and Mayne, 1991). These
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results have then been extended towards a terminal inequality constraint, first within the
framework of dual-mode nonlinear MPC (Chisci et al., 1996; Michalska and Mayne, 1993;
Scokaert et al., 1999) and later towards MPC using control Lyapunov functions (CLF) as
terminal cost (Chen, 1997; Chen and Allgöwer, 1998; De Nicolao et al., 1998; Fontes, 2001,
2003; Magni and Scattolini, 2004; Magni et al., 2001; Mayne et al., 2000). These results
can be considered as the currently most well-established framework for stability in MPC
(Rawlings and Mayne, 2009). For more details, we refer also to Section 2.1.3.

In order to simplify the online computations, several researchers have proposed MPC
schemes without additional terminal constraints. One of the earliest works in this direction
considers MPC with a finite prediction horizon for linear systems without constraints
(Nevistić and Primbs, 1997; Shamma and Xiong, 1997). Another approach is to omit the
terminal constraint from the optimal control problem, but to nevertheless guarantee its
satisfaction for a defined set of initial states as in (Graichen and Kugi, 2010; Graichen et al.,
2010; Hu and Linnemann, 2002; Limon et al., 2003, 2006; Rawlings and Mayne, 2009).
By using an appropriate terminal cost, but no terminal constraint, stability conditions
are derived in (Alamir and Bornard, 1995; Jadbabaie, 2000; Jadbabaie et al., 1999, 2001b;
Parisini and Zoppoli, 1995). These schemes still rely on the use of a control Lyapunov
function as terminal cost. In contrast, stability for MPC schemes without terminal cost is
shown in (Jadbabaie and Hauser, 2005; Jadbabaie et al., 2001a) for a “sufficiently large”
prediction horizon, albeit no explicit bounds on a stabilizing prediction horizon are provided.
Such bounds can be derived based on certain controllability assumptions such as the earlier
results in (Costa and do Val, 2003; Grimm et al., 2005; Messina, 2006; Tuna et al., 2006).
Significantly improved estimates on a minimal stabilizing prediction horizon can be derived
by solving a so-called abstract linear program (Giselsson, 2010; Grüne, 2007, 2009; Grüne
and Pannek, 2008, 2009, 2010; Grüne and Rantzer, 2006; Grüne et al., 2009a,b, 2010a,b,c;
Pannek, 2009; Worthmann, 2012a,b).
The aforementioned references are the foundation for the new results derived in this

thesis. It is interesting that, despite the fact that different MPC setups and distinct analysis
methods are used, the stability analyses of all these previous and newly developed schemes
have one feature in common: The optimal cost function of the finite horizon optimal control
problem is used as Lyapunov function for the closed-loop.
However, there also exist several stability results which are not directly related to the

well-established framework recalled in Section 2.1.3 and the other results in this thesis. For
instance, a substantially different approach was proposed by Michalska (1996), in which the
cost function is the sum of the prediction horizon – which is also a decision variable in the
optimization problem at each sampling time – and a terminal cost term depending only on
the state at the end of the prediction horizon. Another alternative framework for stability
is the so-called contractive MPC (Kothare and Morari, 2000; Mejía and Stipanović, 2009;
Polak and Yang, 1993a,b; Yang and Polak, 1993). In contrast to using a CLF as terminal
cost, several MPC schemes rely on a CLF in a different fashion in order to guarantee stability
of the closed-loop. For instance, a global CLF can be applied to design an additional
stabilizing constraint in the optimization problem (Mhaskar et al., 2006; Muñoz de la Peña
and Christofides, 2008). Similarly, it is possible to consider stabilizing controllers based
on a common CLF and to select free design parameters of these controllers employing an
optimization over a receding horizon (He et al., 2011; He and Han, 2010). Finally, in the
scheme proposed in (Chen, 2010; Chen and Cao, 2012), the stage cost itself is assumed to
be a CLF. This allows to guarantee stability for any non-zero prediction horizon. However,
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these results can be interpreted as a restrictive special case of the aforementioned MPC
schemes based on a controllability assumption.

An alternative to the online solution of optimal control problems is given by the so-called
explicit MPC schemes. Using parametric programming methods, an explicit optimal control
law can be obtained for the case of linear systems (Bemporad et al., 2002a,b; Jones et al.,
2007). Approximate solutions with guaranteed properties such as stability have been derived
for linear systems (Domahidi et al., 2011; Jones and Morari, 2010; Kvasnica et al., 2011)
as well as nonlinear systems (Johansen, 2004; Raimondo et al., 2011; Schulze Darup and
Mönnigmann, 2011; Summers et al., 2010), and possible advantages of a combination of
explicit MPC and online optimization have been investigated (Zeilinger, 2011; Zeilinger
et al., 2011).
There exist several results on MPC for infinite-dimensional systems, although results

almost exclusively consider models described by partial differential equations. These results
can be distinguished into MPC schemes with terminal cost terms (Dubljevic et al., 2005,
2006a,b; Georges, 2009; Igreja et al., 2011; Ito and Kunisch, 2002; Mohammadi et al., 2010;
Ohsumi and Ohtsuka, 2010, 2011; Ou and Schuster, 2010; Pham et al., 2010a,b,c, 2011, 2012;
Shang et al., 2007; Tröltzsch and Wachsmuth, 2004; Utz, 2012; Utz et al., 2010) and MPC
schemes without terminal constraints and terminal cost terms (Altmüller et al., 2010a,b,
2012; Grüne, 2009). For an overview of MPC for time-delay systems, see Section 2.2.3.

Today, MPC is a thriving field of academic research, highlighted by the large number of
publications in journals and international conferences. Current research is dedicated to a
huge variety of different areas. One example are new stability results for special system
classes such as periodic systems (Böhm et al., 2009; Freuer et al., 2010; Gondhalekar and
Jones, 2011; Reble et al., 2009), hybrid systems (Lazar, 2006), and distributed systems
(Dunbar and Murray, 2006; Ferrari-Trecate et al., 2009; Keviczky et al., 2006; Müller et al.,
2011, 2012; Scattolini, 2009). Other areas are practically motivated control problems such as
networked control systems with unreliable communication channels (Findeisen and Varutti,
2009; Grüne et al., 2012; Pin and Parisini, 2011; Quevedo et al., 2011; Reble et al., 2011d,
2012c; Tang and De Silva, 2007) and MPC with economic objectives (Amrit, 2011; Angeli
et al., 2012; Diehl et al., 2011; Grüne, 2013). Besides nominal stability of a set-point, other
properties are also of interest, such as inherent robustness (Pannocchia et al., 2011; Yu
et al., 2011, 2012), tracking (Ferramosca et al., 2009; Limon et al., 2008), and path-following
problems (Faulwasser, 2012; Faulwasser and Findeisen, 2009a,b).

2.1.3 Stability in Model Predictive Control

In this section, we recall a well-established general design framework for MPC schemes
with guaranteed nominal stability. Similar results can be found in (Chen, 1997; Chen
and Allgöwer, 1998; Findeisen et al., 2003; Fontes, 2001; Magni and Scattolini, 2004) for
continuous-time systems and in (Magni et al., 2001; Mayne et al., 2000; Rawlings and
Mayne, 2009) for discrete-time systems. We consider nonlinear continuous-time systems
described by the ordinary differential equation (ODE)

ẋ(t) = f(x(t), u(t)) , x(0) = x0 , (2.1)

in which x(t) ∈ Rn is the state at time t, x0 ∈ Rn is the initial condition, and u(t) ∈ Rm is
the control input subject to input constraints u(t) ∈ U ⊂ Rm.

The following standard assumptions are used in the following.
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Assumption 2.1. The vector field f : Rn × Rm → Rn is continuously differentiable and
f(0, 0) = 0, i.e., xs = 0 is an equilibrium of system (2.1) for us = 0.

Assumption 2.2. System (2.1) has a unique solution for all t ∈ R≥0 for any initial
condition x0 ∈ Rn and any piecewise- and right-continuous input function u : R≥0 → U.

Assumption 2.3. The input constraint set U ⊂ Rm is compact and contains the origin in
its interior.

We use the following standard definitions for stability and asymptotic stability, see for
example Khalil (2002); Vidyasagar (1993).

Definition 2.2 (Stability). The equilibrium xs = 0 of system (2.1) is called stable if for
any ε ∈ R>0 there exists a δε ∈ R>0 such that |x0| ≤ δε implies that |x(t)| ≤ ε for all
t ≥ 0. It is called asymptotically stable if it is stable and there exists a δ0 ∈ R>0 such that
|x0| ≤ δ0 implies that lim

t→∞
|x(t)| = 0.

Remark 2.3. In this work, we sometimes refer to (asymptotic) stability of a system
meaning (asymptotic) stability of the equilibrium at the origin.

The MPC controller is based on the repeated online solution of the following open-loop
finite horizon optimal control problem at each sampling time ti given the measured state
x(ti).

Problem 2.4.

minimize
ū∈PC([ti,ti+T ],Rm)

JT (x(ti), ū) (2.2a)

subject to

˙̄x(t′;x(ti), ti) = f(x̄(t′;x(ti), ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (2.2b)
x̄(ti;x(ti), ti) = x(ti) , (2.2c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (2.2d)
x̄(ti + T ;x(ti), ti) ∈ Ω , (2.2e)

in which

JT (x(ti), ū) =

ti+T∫
ti

F (x̄(t′;x(ti), ti), ū(t′)) dt′ + E(x̄(ti + T ;x(ti), ti)) .

In this problem, x̄ denotes the state predicted over the prediction horizon T ∈ R>0 based
on the model of the system. We assume that the optimal open-loop control which solves
Problem 2.4 is given by u∗T (t′;x(ti), ti) for all t′ ∈ [ti, ti + T ]. For a given sampling time
δ ∈ R>0, the control input to the system is defined by the following algorithm in the usual
receding horizon fashion.

Algorithm 2.5 (Model Predictive Control for Continuous-Time Systems). At each sampling
instant ti = iδ, i ∈ N0, measure the state x(ti) and solve Problem 2.4. Apply the input

uMPC(t) = u∗T (t;x(ti), ti) , ti ≤ t < ti + δ . (2.3)

to the nonlinear system (2.1) until the next sampling instant ti+1 = ti + δ.
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Chapter 2 Background

In order to guarantee stability we require the following assumptions on our design
parameters, i.e., the stage cost F , the terminal cost E, and the terminal region Ω.

Assumption 2.4. The stage cost F : Rn × U → R≥0 is continuous, F (0, 0) = 0, and
there exists a class K∞ function αF : R≥0 → R≥0 such that F (x, u) ≥ αF (|x|) for all
x ∈ Rn , u ∈ U. The terminal region Ω is a closed set and contains 0 ∈ Rn in its interior.
The terminal cost function E : Rn → R≥0 is continuously differentiable and positive
definite.

Assumption 2.5. For the nonlinear system (2.1), there exists a locally asymptotically
stabilizing controller u = k(x) such that

a) the terminal region Ω is controlled positively invariant under the control u = k(x),

b) k(x) ∈ U for all x ∈ Ω, and

c) the extended Lyapunov inequality Ė(x) ≤ −F (x, k(x)) is satisfied for all x ∈ Ω.

If the design conditions above are satisfied, asymptotic stability of the closed-loop can be
established as stated in the following theorem.

Theorem 2.6 (Stability of MPC). Consider the nonlinear system (2.1) and suppose
that Assumptions 2.1–2.5 are satisfied. Then, the closed-loop system resulting from the
application of the model predictive controller according to Algorithm 2.5 to system (2.1) is
asymptotically stable. The region of attraction is the set of all initial conditions for which
Problem 2.4 is initially feasible at ti = 0.

The proof can be found, e.g., in (Chen, 1997; Chen and Allgöwer, 1998; Findeisen et al.,
2003; Fontes, 2001), see also the discrete-time versions in (Grüne and Pannek, 2011; Mayne
et al., 2000; Rawlings and Mayne, 2009).

The first goal of this thesis is to provide alternative MPC formulations with guaranteed
stability which complement the framework presented in this section, see Chapter 3. The
second goal is to extend the available stability results to the class of nonlinear time-
delay systems and, in particular, overcome the difficulties introduced due to their infinite-
dimensional nature, see Chapter 4. In the subsequent section, we provide the necessary
background of time-delay systems and associated stability conditions.

2.2 Time-Delay Systems
Nonlinear time-delay systems, also commonly referred to as differential-difference equations
or systems with aftereffect or dead-time (Richard, 2003), naturally arise in the modelling
of many technical, biological and social systems, for which the future evolution of the
states does not only depend on the current state, but also on its past history. Technical
systems with time-delays appear, e.g., when communication and computational delays
are present in control loops or when transportation of material is considered such as in
a continuous stirred tank reactor with recycle stream. Examples in the area of physics
include polymer crystallization, laser models, and relativistic dynamics. Other examples
from biology and social sciences are disease transmission models, glucose-insulin regulation,
population dynamics, and price fluctuations. More details on the aforementioned examples
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and a comprehensive list of other examples can be found in (Kolmanovskii and Myshkis,
1999, Chapter 2).

In Section 2.2.1, we introduce retarded functional differential equations as the mathemat-
ical tool to describe continuous-time nonlinear time-delay systems considered in this thesis.
The stability analysis of such systems is considered in Section 2.2.2, while Section 2.2.3
provides a brief overview of corresponding control methods available in the literature. For
more details, we refer to the books (Gu et al., 2003; Hale, 1977; Hale and Lunel, 1993;
Kolmanovskii and Myshkis, 1999).

2.2.1 Retarded Functional Differential Equations

Given τ ∈ R>0, let Cτ = C([−τ, 0],Rn) denote the Banach space of continuous functions
mapping the interval [−τ, 0] ⊂ R into Rn. A segment xt ∈ Cτ is defined by xt(θ) =
x(t + θ), θ ∈ [−τ, 0]. The norm on Cτ is defined as ‖xt‖τ = supθ∈[−τ,0] |x(t + θ)|. An
autonomous retarded functional differential equation (RFDE) with initial function ϕ ∈ Cτ
can then be written in the general form

ẋ(t) = f(xt) , (2.4a)
x(θ) = ϕ(θ) , ∀θ ∈ [−τ, 0] . (2.4b)

Note that these systems are infinite-dimensional in contrast to the finite-dimensional
system (2.1) described by an ODE. As an important special case, we particularly consider
systems with one constant discrete delay, which can be described by the RFDE

ẋ = f(x(t), x(t− τ))

with time-delay τ ∈ R>0. There are several results available regarding the existence and
uniqueness of solutions of system (2.4), mostly relying on Lipschitz continuity assumptions
on f . For more details, we refer to (Kolmanovskii and Myshkis, 1999, Chapter 3).

2.2.2 Stability

Stability and asymptotic stability of an RFDE is defined using an ε-δ condition analogously
to the finite-dimensional case, see Definition 2.2 and Khalil (2002); Vidyasagar (1993), with
the finite-dimensional norm replaced by ‖ · ‖τ in the definition (Kolmanovskii and Myshkis,
1999). Without loss of generality, we can assume that the equilibrium of system (2.4) is
given by xt,s = 0 ∈ Cτ , i.e., f(0) = 0.

Definition 2.7 (Stability). The equilibrium xt,s = 0 of system (2.4) is called stable if for
any ε ∈ R>0 there exists a δε ∈ R>0 such that ‖ϕ‖τ ≤ δε implies that |x(t)| ≤ ε for all
t ≥ 0. It is called asymptotically stable if it is stable and there exists a δ0 ∈ R>0 such that
‖ϕ‖τ ≤ δ0 implies that lim

t→∞
|x(t)| = 0.

Remark 2.8. As in the finite-dimensional case, we sometimes refer to (asymptotic) stability
of a system meaning (asymptotic) stability of the equilibrium at the origin.

There are two types of Lyapunov theorems for time-delay systems, namely theorems based
on Lyapunov-Krasovskii functionals and theorems using Lyapunov-Razumikhin functions.
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Lyapunov-Krasovskii theory is the natural extension of Lyapunov’s theorem towards
systems with time-delays and is based on non-increasing Lyapunov-Krasovskii-functionals.
In contrast, Lyapunov-Razumikhin uses continuous functions instead of functionals. For
the sake of self-containedness, we repeat both theorems in the following. The interested
reader is referred to Gu et al. (2003); Hale and Lunel (1993) and Kolmanovskii and Myshkis
(1999) for further details and the corresponding proofs.

In order to state the stability theorems, we require the following definitions. The upper
right-hand Dini derivative of the functional E : Cτ → R≥0 along the solutions of (2.4) is
defined by

Ė(xt) = lim sup
δ→0+

E(xt+δ)− E(xt)

δ
.

The upper right-hand Dini derivative of the function V : Rn → R≥0 with respect to (2.4)
is defined by

V̇ (xt) = lim sup
δ→0+

V (x(t) + δf(xt))− V (x(t))

δ
.

With these definitions, we can repeat the following well-known results (Gu et al., 2003;
Hale and Lunel, 1993; Kolmanovskii and Myshkis, 1999).

Theorem 2.9 (Lyapunov-Krasovskii). Suppose that f maps bounded sets C ⊂ Cτ into
bounded sets in Rn, and α1, α2, α3 : R≥0 → R≥0 are continuous, non-decreasing functions
with α1(0) = α2(0) = α3(0) = 0 and α1(s) > 0, α2(s) > 0 for s > 0. If there exists a
continuous functional E : Cτ → R≥0 such that

α1(|x(t)|) ≤ E(xt) ≤ α2(‖xt‖τ ) ,
Ė(xt) ≤ −α3(|x(t)|) ,

then the equilibrium xt,s = 0 of (2.4) is stable. If, in addition, α3(s) > 0 for s > 0, then
it is asymptotically stable. Furthermore, if additionally α1(s)→∞ as s→∞, then it is
globally asymptotically stable.

Theorem 2.10 (Lyapunov-Razumikhin). Suppose that f maps bounded sets C ⊂ Cτ into
bounded sets in Rn, and α1, α2 : R≥0 → R≥0 are continuous, non-decreasing functions
with α1(0) = α2(0) = 0 and α1(s) > 0 for s > 0. If there exists a continuous function
V : Rn → R≥0 such that

α1(|x(t)|) ≤ V (x(t)) ,

V̇ (xt) ≤ −α2(|x(t)|) whenever ∀θ ∈ [−τ, 0] : V (x(t+ θ)) ≤ V (x(t)) ,

then the equilibrium xt,s = 0 of (2.4) is stable. If, in addition, α2(s) > 0 for s > 0 and
there exists ρ ∈ R>1 such that

V̇ (xt) ≤ −α2(|x(t)|) whenever ∀θ ∈ [−τ, 0] : V (x(t+ θ)) ≤ ρ V (x(t)) ,

then it is asymptotically stable. Furthermore, if additionally α1(s)→∞ as s→∞, then it
is globally asymptotically stable.
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2.2.3 Control of Nonlinear Time-Delay Systems

Due to the infinite-dimensional nature of time-delay systems, even the stability analysis of
linear time-delay systems is already a challenging problem. Consequently, for the control
of nonlinear time-delay systems only methods considering special cases can be expected.
Several methods known from nonlinear control theory have been extended towards time-
delay systems, including feedback linearization (Germani et al., 2000; Márquez-Martínez
and Moog, 2004; Oguchi et al., 2002), backstepping (Mazenc and Bliman, 2006), flatness
based control (Küchler and Sawodny, 2010; Rudolph, 2005; Rudolph and Winkler, 2003),
control Lyapunov function approaches (Hua et al., 2008; Jankovic, 2001, 2003, 2005), and
sum of squares techniques (Papachristodoulou, 2004, 2005). In all of the aforementioned
control methods, it is not trivial to guarantee satisfaction of hard input and/or state
constraints. For problems with such requirements, MPC is an attractive and natural choice.
In that respect, it is interesting to note that there exists a significant amount of literature
considering MPC for linear time-delay systems, e.g., Han et al. (2008); Hu and Chen (2004);
Jeong and Park (2005); Kwon et al. (2003, 2004); Lee et al. (2011); Li and Xi (2011);
Mahboobi Esfanjani and Nikravesh (2009b, 2010); Shi et al. (2009); Zhilin et al. (2003), to
mention only a few. On the contrary, only a significantly smaller number of publications
is available in the area of MPC for nonlinear time-delay systems. Besides our previous
publications summarized in Chapter 4, this problem has only been considered in (Angrick,
2007; Kwon et al., 2001a,b; Lu, 2011; Mahboobi Esfanjani and Nikravesh, 2009a, 2011; Raff
et al., 2007).

2.3 Summary
In this chapter, we have recalled the background necessary for the remaining chapters of
this thesis.
First, we have started in Section 2.1 by introducing the basic idea of MPC, giving a

brief literature overview of MPC schemes, and recalling the currently most well-established
framework for MPC with guaranteed nominal stability. Alternatives to this framework
are presented in Chapter 3, in which we propose five novel MPC schemes with guaranteed
nominal stability for nonlinear continuous-time systems. We begin with the simplest MPC
setup, i.e., unconstrained MPC without terminal cost and without terminal constraints.
We derive explicit bounds for a minimal stabilizing prediction horizon for continuous-
time systems and thereby extend existing results for discrete-time systems. Due to the
conservative nature of these bounds, we investigate the use of additional weighting terms in
order to obtain better stability conditions. Furthermore, we are interested in connections
between these MPC schemes based on a controllability assumption and the classical MPC
setup with terminal cost terms and terminal constraints, which have so far been treated
separately in the literature.
Second, we have discussed time-delay systems in Section 2.2 with a particular focus on

stability and control. Since there are only very few results on the control of nonlinear
time-delay systems with hard constraints, we investigate the use of MPC for this class of
systems in Chapter 4.
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Chapter 3

Model Predictive Control for Nonlinear
Continuous-Time Systems

In this chapter, we consider model predictive control for nonlinear continuous-time systems
which are described by first-order ordinary differential equations. When considering the
currently available MPC literature as reviewed in Section 2.1.2, one can distinguish two
main existing classes of MPC schemes with guaranteed stability, see Figure 3.1. The
first class of schemes uses a combination of terminal cost terms and terminal constraints.
Roughly speaking, a control Lyapunov function (CLF), or functional in the case of infinite-
dimensional systems, employed as additional terminal cost term ensures the cost of the finite
horizon optimal control problem to be an upper bound on the infinite horizon cost. In most
cases, the control Lyapunov function is only defined in some terminal set around the origin
and, hence, additional terminal constraints are added to the optimization problem. For more
details, we refer to Section 2.1.3 and the references therein. The second class of schemes
uses a controllability assumption in terms of the stage cost instead. This controllability
assumption is a less restrictive assumption compared to the use of a control Lyapunov
function. However, in the existing literature the controllability assumption has to be valid
at least in an invariant region containing the initial condition. Explicit conditions on the
length of the prediction horizon for guaranteed stability can be derived, e.g., by solving
a so-called abstract linear program. For more details, see Section 3.2 and the references
therein. In the following, we refer to the first class of schemes as CLF-MPC and we use
the notion of unconstrained MPC for the second class as common in the literature (due to
the lack of stabilizing terminal constraints and regardless of the presence of input and/or
state constraints).

While CLF-MPC can be considered well-understood for both discrete-time and continuous-
time systems, for unconstrained MPC explicit bounds on a stabilizing prediction horizon are
only available for discrete-time systems. For continuous-time systems, the abstract linear
program becomes infinite-dimensional, but can nevertheless be solved due to its particular
structure as will be proven in Section 3.2. We also show that several results for discrete-time
systems, such as suboptimality estimates and benefits of a growth condition, can be extended
to continuous-time systems. Furthermore, we are interested in connections between CLF-
MPC and unconstrained MPC. In the literature, these two classes have almost exclusively
been considered separately. In Sections 3.3 and 3.4, we show that additional weighting
terms in the MPC setup can yield improved stability conditions for unconstrained MPC.
In Sections 3.5 and 3.6, we investigate the use of only local controllability assumptions in
combination with terminal constraints and additional weighting terms in order to guarantee
stability. See Figure 3.1 for a schematic overview of the different MPC schemes with
guaranteed stability.

The remainder of this chapter is organized as follows. The problem setup and necessary
assumptions on the system are described in detail in Section 3.1. In the subsequent
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sections, we introduce five different MPC setups and provide novel conditions for each setup,
which guarantee asymptotic stability of the closed-loop. In Section 3.2, we consider the
simplest MPC setup without terminal cost and without terminal constraints. This setup is
particularly interesting due to its simplicity, the frequent use in practical applications, and
the simple calculation of performance estimates of the closed-loop. In Section 3.3, stability
conditions for unconstrained MPC with a positive semi-definite terminal cost function are
derived. We show that if the terminal cost is in a particular sense “similar” to a control
Lyapunov function, stability can be guaranteed for shorter prediction horizons. For the
same goal, Section 3.4 introduces an exponential weighting on the stage cost for improved
stability conditions. In Sections 3.5 and 3.6, additional weighting terms are presented which
guarantee stability with only local controllability assumptions in combination with terminal
constraints. Furthermore, the integral terminal cost term considered in Section 3.5 allows
to consider both previous classes of MPC schemes (CLF-MPC and unconstrained MPC) in
a unified way. Finally, we summarize the results of this chapter in Section 3.7.

Parts of this chapter are based on Reble and Allgöwer (2011, 2012b); Reble et al. (2012a,b).

3.1 Problem Setup
In this chapter, we consider nonlinear continuous-time systems described by the ordinary
differential equation (ODE)

ẋ(t) = f(x(t), u(t)) , (3.1a)
x(0) = x0 , (3.1b)

in which x(t) ∈ Rn is the state at time t, x0 ∈ Rn is the initial condition, and u(t) ∈ Rm is
the control input subject to input constraints u(t) ∈ U ⊂ Rm.
We will use the following three standard assumptions throughout the remainder of this

chapter.

Assumption 3.1. The vector field f : Rn × Rm → Rn is continuously differentiable and
f(0, 0) = 0, i.e., xs = 0 is an equilibrium of system (3.1) for us = 0.

Assumption 3.2. System (3.1) has a unique solution for any initial condition x0 ∈ Rn

and any piecewise- and right-continuous input function u : R≥0 → U.

Assumption 3.3. The input constraint set U ⊂ Rm is compact and contains the origin.

The problem of interest is to stabilize the steady state xs = 0 and to achieve some optimal
performance via model predictive control. A classical, well-established result on MPC for
nonlinear systems with guaranteed stability was recalled in Theorem 2.6. In this chapter,
we provide alternative MPC formulations which guarantee stability of the closed-loop and
discuss advantages and disadvantages of these schemes.

Remark 3.1. In Assumption 3.1, we require the origin to be a steady state of the system,
i.e., f(0, 0) = 0. This is without loss of generality because for any other steady state
(xs, us) ∈ Rn ×Rm of the system, i.e., f(xs, us) = 0, this case can be recovered by using the
simple coordinate transformation x̃ = x− xs, ũ = u− us, see (Khalil, 2002, Section 4.1)
for more details.
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Figure 3.1: Schematic overview of stability conditions in MPC.
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Remark 3.2. For the sake of a concise presentation, we restrict ourselves to finite-
dimensional continuous-time systems in this chapter although the results also hold – mutatis
mutandis – if the state and input are elements of arbitrary metric spaces, in particular
also infinite-dimensional spaces. The main change necessary is to replace the norm | · |
on Rn by an appropriate norm of the corresponding space. However, in some cases other
setups are desirable. In particular in MPC for nonlinear time-delay systems, as considered
in Chapter 4, several assumptions cannot be satisfied in general, see also Remark 4.28 in
Section 4.5.

Remark 3.3. In the MPC literature it is often assumed that the input constraint set U
contains the origin in its interior. For instance, this is necessary when calculating a terminal
cost function based on the Jacobi linearization of the system (Chen and Allgöwer, 1998).
However, it is not required for the results in this chapter.

3.2 Unconstrained MPC and Suboptimality Estimates

In this section, we consider the simplest MPC setup for nonlinear systems, namely, MPC
without terminal cost terms and terminal constraints, which is commonly referred to
as unconstrained MPC (Grüne, 2009; Grüne et al., 2010a). This scheme is particularly
crucial due to its widespread use in practical applications. It is well known that the
closed-loop is asymptotically stable under mild assumptions if the prediction horizon is
chosen large enough (Jadbabaie and Hauser, 2005). However, no explicit bounds on a
minimal stabilizing prediction horizon have been given for continuous-time systems in the
literature. We extend the results for discrete-time systems presented in (Grüne, 2009;
Grüne et al., 2010a) and derive explicit conditions on the prediction horizon based on a
controllability assumption of the system and two corresponding infinite-dimensional linear
programs. Here, the infinite-dimensionality represents the main difficulty compared to
the discrete-time setup. However, the particular structures of both linear programs allow
solutions involving only a single integration of a scalar variable related to the controllability
assumption. Furthermore, the unconstrained MPC setup allows to give guaranteed bounds
on the performance compared to an infinite horizon optimal control law. For the special
case of an exponential controllability assumption, we can explicitly solve the integrals and
give analytic expressions of the suboptimality estimate in terms of the prediction horizon
and the sampling time. Finally, we compare our results to the results of Grüne et al.
(2010b,c), in which the methods for discrete-time systems are applied to continuous-time
systems in a sampled-data context. A more thorough discussion of connections between
the results in this section and the previous results in discrete-time (Grüne, 2009; Grüne
et al., 2010a) can be found in (Worthmann, Reble, Grüne, and Allgöwer, 2012).

3.2.1 Unconstrained MPC Setup

One main advantage of unconstrained MPC schemes without terminal cost is the possibility
to directly conclude performance guarantees in terms of a suboptimality estimate. With
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respect to performance, we want to minimize the infinite horizon cost functional J∞(x0, u)

minimize
u∈PC(R≥0,U)

J∞(x0, u) , in which J∞(x0, u) =

∞∫
0

F (x(t), u(t)) dt ,

subject to the system dynamics (3.1). The associated optimal cost of this infinite horizon
optimal control problem is denoted by J∗∞(x0) = min

u∈PC(R≥0,U)
J∞(x0, u) in this section and

we use the following standard condition concerning the stage cost F .

Assumption 3.4. The stage cost F : Rn×U→ R≥0 is continuous, F (0, 0) = 0, and there
exists a class K∞ function αF : R≥0 → R≥0 such that

F (x, u) ≥ F (x, 0) ≥ αF (|x|) for all x ∈ Rn , u ∈ U . (3.2)

Remark 3.4. Assumption 3.4 can be relaxed to a positive semi-definite stage cost F in
combination with a suitable detectability condition (Grimm et al., 2005). For a concise
presentation, we use the stricter assumption of a positive definite stage cost.

Since infinite horizon problems are often computationally intractable, finite horizon cost
functionals combined with a receding horizon strategy are often used instead. The finite
horizon cost functional used in this section is given by

JT (x0, u) =

T∫
0

F (x(t), u(t)) dt ,

in which T is the prediction horizon. The open-loop finite horizon optimal control problem
at sampling instant ti given the measured state x(ti) is now formulated as follows.

Problem 3.5.

minimize
ū∈PC([ti,ti+T ],Rm)

JT (x(ti), ū) (3.3a)

subject to

˙̄x(t′;x(ti), ti) = f(x̄(t′;x(ti), ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (3.3b)
x̄(ti;x(ti), ti) = x(ti) , (3.3c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (3.3d)

in which

JT (x(ti), ū) =

ti+T∫
ti

F (x̄(t′;x(ti), ti), ū(t′)) dt′ . (3.3e)

In Problem 3.5, x̄(t′;x(ti), ti) denotes the predicted trajectory starting from initial
condition x̄(ti;x(ti), ti) = x(ti) and driven by ū(t′) for t′ ∈ [ti, ti + T ]. We assume that the
optimal open-loop control which minimizes JT (x(ti), ū) is given by u∗T (t′;x(ti), ti) for all
t′ ∈ [ti, ti + T ]. The associated optimal cost is denoted by J∗T (x(ti)) and the associated
predicted trajectory is x∗(t′;x(ti), ti), t′ ∈ [ti, ti + T ]. For given sampling time δ with
0 < δ ≤ T , the control input to the system is defined by the following algorithm in the
usual receding horizon fashion.
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Algorithm 3.6 (Unconstrained Model Predictive Control). At each sampling instant
ti = iδ, i ∈ N0, measure the state x(ti) and solve Problem 3.5. Apply the input

uMPC(t) = u∗T (t;x(ti), ti) , ti ≤ t < ti + δ (3.4)

to the system until the next sampling instant ti+1 = ti + δ.

Remark 3.7. For the sake of simplicity, we consider a constant sampling time δ throughout
the thesis. In contrast to the classical MPC setup, see Theorem 2.6, the conditions for
convergence and asymptotic stability derived in this chapter depend explicitly on the sampling
time. However, analogue results can be obtained for time-varying sampling times as in
Grüne et al. (2010a), in which it is referred to as “time-varying control horizon”.

It is well known that such a definition of the control law is not guaranteed to yield an
asymptotically stable closed-loop in general. A practical example for this fact is given
in Raff et al. (2006). Besides guaranteed nominal stability, we are also interested in an
evaluation of the performance of the resulting MPC controller. To this end, let

JMPC
∞ (x0) = J∞(x0, uMPC)

denote the infinite horizon cost resulting from application of the MPC control law defined
by Algorithm 3.6 to the nonlinear system (3.1). We define the suboptimality estimate α of
the closed-loop as in Grüne (2009); Grüne et al. (2010a).

Definition 3.8 (Suboptimality Estimate). If for a constant α ∈ R and for all x0 ∈ Rn

αJMPC
∞ (x0) ≤ J∗∞(x0) ,

then we call α a suboptimality estimate of the closed-loop.

From this definition, it is clear that α ≤ 1 because JMPC
∞ (x0) ≥ J∗∞(x0). Moreover, α = 1

corresponds to infinite horizon optimality and, if α > 0, then stability of the closed-loop is
guaranteed as will be shown later. In the following section, we derive stability conditions
and a suboptimality estimate for the closed-loop using the unconstrained MPC scheme
presented in this section.

3.2.2 Asymptotic Stability and Suboptimality Estimate

In order to derive the suboptimality estimate α and to give stability conditions, we will use a
result from relaxed dynamic programming and a suitable controllability assumption, which
gives an upper bound on the optimal cost in terms of the stage cost. With this assumption,
we can derive several properties of the optimal trajectories and, in particular, compare the
optimal cost at two consecutive sampling instants. Loosely speaking, a decrease of the
optimal cost guarantees stability and the desired suboptimality estimate.
In the subsequent analysis, we consider the two consecutive sampling instants t0 = 0

and t1 = δ without loss of generality. Since system (3.1) is time-invariant, all results hold
analogously for any other two consecutive sampling instants ti and ti+1. Furthermore, we
use the following abbreviation

F ∗(t; ti) = F (x∗(t;x(ti), ti), u
∗
T (t;x(ti), ti)) (3.5)
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for ti ∈ {0, δ} and for all t ∈ [ti, ti + T ]. Note that from this definition, it directly follows
that J∗T (x(ti)) =

∫ ti+T
ti

F ∗(t′; ti) dt
′. In order to derive the suboptimality estimate α, we

first recall a crucial result from relaxed dynamic programming, see Grüne and Rantzer
(2008); Lincoln and Rantzer (2006).

Proposition 3.9 (Relaxed Dynamic Programming). Suppose that

J∗T (x∗(δ;x0, 0))− J∗T (x0) ≤ −α
δ∫

0

F (x∗(t′;x0, 0), uMPC(t′)) dt′ , (3.6)

holds for all x0 ∈ Rn and for some constant α ∈ [0, 1], then the estimates

αJ∗∞(x0) ≤ αJMPC
∞ (x0) ≤ J∗T (x0) ≤ J∗∞(x0)

hold for all x0 ∈ Rn.

Proof. The result is a slightly modified version of (Grüne and Rantzer, 2008, Proposition
2.2) and (Grüne, 2009, Proposition 2.4). The first and third inequalities follow directly
from optimality of J∗∞(x0) and J∗T (x0), respectively. The second inequality is obtained by
invoking (3.6) for states along the trajectory of the closed-loop at the sampling instants,
i.e., x(ti) = x(iδ) for i ∈ N0 and by summing up from i = 0 to i = ∞. Here, we can
exploit the telescoping series property since the series J∗T (x(iδ)) is convergent because it is
non-increasing and bounded from below.

In order to derive α such that (3.6) holds, we use a controllability assumption of the system
in terms of the stage cost similar to the controllability assumption used in discrete-time by
Grüne (2009); Grüne et al. (2010a).

Assumption 3.5 (Controllability Assumption). For all T ′ ∈ R≥0 and x0 ∈ Rn, there exists
a piece-wise continuous input trajectory û(·;x0, 0) with û(t;x0, 0) ∈ U for all t ∈ [0, T ′] and

J∗T ′(x0) ≤ JT ′(x0, û) ≤ B(T ′)F (x0, 0) , (3.7)

in which B : R≥0 → R>0 is a continuous, non-decreasing, and bounded function.

Assumption 3.5 is directly related to the assumption used in (Grimm et al., 2005, Corollary
3) for discrete-time systems and is slightly more general than the controllability assumption
used in (Grüne, 2009; Grüne et al., 2010a), in which an upper bound on the stage cost was
considered in contrast to an upper bound on the optimal cost J∗T ′ . The results based on
this more general assumption allow to directly obtain better suboptimality estimates when
using a growth condition in addition to the assumption of exponential controllability, see
also Assumption 3.6 in Section 3.2.3 and the following discussion. Furthermore, it has been
shown by Worthmann (2012a) that this more general assumption is indeed also sufficient
for the discrete-time results obtained by (Grüne, 2009; Grüne et al., 2010a) despite being
less restrictive.

Remark 3.10. We do not consider state constraints throughout this chapter and use “global”
controllability assumptions for all x ∈ Rn for a concise presentation in this section as
well as Sections 3.3 and 3.4. Modifications and “regional” versions using invariant sets
containing the initial state x0 can be obtained in a straightforward manner. For semiglobal
stability results in a discrete-time setting, see, e.g., (Grüne and Pannek, 2011, Section 6.7).
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Remark 3.11. There exist several possibilities to verify the controllability assumption.
Several examples are considered in Grüne and Pannek (2011) and the application of
unconstrained MPC to a fixed-wing UAV was investigated in Halter (2012). Other approaches
are given by suboptimal explicit off-line controller design methods (Johansen, 2004) or
interval arithmetic methods (Schulze Darup and Mönnigmann, 2011; Summers et al., 2010).

The following lemma gives a direct consequence of Controllability Assumption 3.5.

Lemma 3.12 (Implications of Controllability Assumption 3.5). Suppose that Assump-
tions 3.1–3.4 and Controllability Assumption 3.5 are satisfied. Then,

J∗T (x(δ)) ≤
t∗∫
δ

F ∗(t′; 0)dt′ +B(T + δ − t∗)F ∗(t∗; 0) (3.8a)

holds for all t∗ ∈ [δ, T ] and
T∫

t∗

F ∗(t′; 0)dt′ ≤ B(T − t∗)F ∗(t∗; 0) (3.8b)

holds for all t∗ ∈ [0, T ].

Proof. For any t∗ ∈ [δ, T ] define the control trajectory ũt∗ by

ũt∗(t) =

{
u∗T (t;x(0), 0), t ∈ [δ, t∗[
û(t− t∗;x∗(t∗;x(0), 0)), t ∈ [t∗, T + δ[

in which û is the input trajectory from Assumption 3.5 for initial state x∗(t∗;x(0), 0). Since
ũt∗ is a feasible, but not necessarily optimal, solution to the finite horizon optimal control
problem 3.5 for initial state x(δ), we obtain

J∗T (x(δ)) ≤ JT (x(δ), ũt∗) ≤
t∗∫
δ

F ∗(t′; 0)dt′ + JT+δ−t∗(x
∗(t∗;x(0), 0), û)

(3.7)
≤

t∗∫
δ

F ∗(t′; 0)dt′ +B(T + δ − t∗)F ∗(t∗; 0) ,

which proves (3.8a). The proof of (3.8b) follows directly from optimality of J∗T (x(0)), the
principle of optimality (endpieces of optimal trajectories are optimal), see (Bellman, 1957,
Chapter III, §3), and Controllability Assumption 3.5. For a similar result, see, e.g., (Reble
and Allgöwer, 2011, Lemma 3).

In order to obtain a suboptimality estimate α, we will use the following fact.

Proposition 3.13. Suppose that Assumptions 3.1–3.4 and Controllability Assumption 3.5
are satisfied. If α is a lower bound (or ideally equal) to the minimum value of the infinite-
dimensional linear program

min
F ∗(·;0),J∗T (x(δ))

∫ T
0
F ∗(t′; 0)dt′ − J∗T (x(δ))∫ δ

0
F ∗(t′; 0)dt′

subject to (3.8) , J∗T (x(δ)) > 0 ,

then (3.6) in Proposition 3.9 holds.
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t′

0 δ T T + δ

F ∗(t′; 0)

F ∗(t′; δ) J∗T (x(δ)) ≤ Ξ
T∫
δ

F ∗(t′; 0)dt′

T∫
δ

F ∗(t′; 0)dt′ ≤ γ
δ∫

0

F ∗(t′; 0) dt′

Figure 3.2: Sketch for Lemmata 3.14 and 3.15. The optimal trajectory calculated at time 0
is depicted by the (green and red) dashed line, the optimal trajectory calculated
at δ is depicted by the (blue) dotted line.

Proof. The constraints J∗T (x(δ)) > 0 and (3.8) ensure that F ∗(t′; 0) > 0 for all t′ ∈ [0, δ].
Hence,

∫ δ
0
F ∗(t′; 0)dt′ > 0 and the result follows immediately.

The infinite-dimensional program corresponds to the linear program in (Grüne, 2009,
Problem 4.4) concerning unconstrained MPC for discrete-time systems. We will derive a
lower bound and conditions, for which this lower bound is indeed the minimum value. To
this end, we now state two intermediate results in Lemmata 3.14 and 3.15 based upon the
controllability assumption. Lemma 3.14 uses the optimality of J∗T (x(δ)) in addition to the
controllability assumption in order to derive an upper bound on J∗T (x(δ)) in terms of the
endpiece of the predicted trajectory calculated at time t0 = 0. In Figure 3.2, this can be
interpreted as giving an upper bound on the integral cost of the blue dotted line in terms
of the red loosely dashed line. Lemma 3.15 applies the principle of optimality (Bellman,
1957, Chapter III, §3), which states that the trajectory F ∗(t; 0) calculated at time t0 = 0 is
an optimal endpiece on the interval [δ, T ]. Hence, it is possible to derive a similar upper
bound based on the controllability assumption. In Figure 3.2, the result can be interpreted
as giving an upper bound on the cost of the red loosely dashed line in terms of the green
dashed line.

Lemma 3.14 (Calculation of Ξ). Suppose that Assumptions 3.1–3.4 and Controllability
Assumption 3.5 are satisfied. Then,

J∗T (x(δ)) =

δ+T∫
δ

F ∗(t′; δ) dt′ ≤ Ξ

T∫
δ

F ∗(t′; 0)dt′ , (3.9)

in which

1

Ξ
= 1− exp

− T∫
δ

1

B(T + δ − t∗)
dt∗

 . (3.10)

Proof. Due to Lemma 3.12, we know that (3.8a) holds. Consider any piece-wise continuous
function F ∗(t; 0) : [δ, T ]→ R≥0 satisfying (3.8a) for a given arbitrary, but fixed, J∗T (x(δ)) ≥
0 and define the function F̂ ∗(t) : [δ, T ]→ R≥0 by

F̂ ∗(t) =
J∗T (x(δ))

B(T + δ − t)
e
−

t∫
δ

1
B(T+δ−t′) dt

′

. (3.11)
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In the next step, we show that for all piece-wise continuous functions F ∗(t; 0) satisfy-
ing (3.8a), the following holds

T∫
δ

F̂ ∗(t′)dt′ ≤
T∫
δ

F ∗(t′; 0)dt′ . (3.12)

To this end, note that F̂ ∗(t) satisfies (3.8a) with equality (instead of inequality) for all
t∗ ∈ [δ, T ], i.e.,

J∗T (x(δ)) =

t∗∫
δ

F̂ ∗(t′)dt′ +B(T + δ − t∗)F̂ ∗(t∗) . (3.13)

This can be shown by direct evaluation taking into account the anti-derivative of F̂ ∗

t∫
F̂ ∗(t′)dt′ = −J∗T (x(δ)) e

−
t∫
δ

1
B(T+δ−t′) dt

′

+ C

with C ∈ R. For the sake of contradiction, assume now
T∫
δ

F̂ ∗(t′)dt′ >
T∫
δ

F ∗(t′; 0)dt′. But

then there exists a t ∈ [δ, T ] for which
t∫

δ

F̂ ∗(t′)dt′ ≥
t∫

δ

F ∗(t′; 0)dt′ and F̂ ∗(t) > F ∗(t; 0) ,

and, consequently, due to (3.13) and B(T + δ − t) > 0

J∗T (x(δ)) =

t∫
δ

F̂ ∗(t′)dt′ +B(T + δ − t)F̂ ∗(t∗) >
t∫

δ

F ∗(t′; 0)dt′ +B(T + δ − t)F ∗(t; 0).

But this contradicts (3.8a), which shows that (3.12) holds. On the other hand, direct
calculations using the anti-derivative of F̂ ∗ reveal that

T∫
δ

F̂ ∗(t′)dt′ =
1

Ξ
J∗T (x(δ)) . (3.14)

Combining (3.12) and (3.14) yields (3.9). This completes the proof.

Lemma 3.15 (Calculation of γ). Suppose that Assumptions 3.1–3.4 and Controllability
Assumption 3.5 are satisfied. Then,

T∫
δ

F ∗(t′; 0)dt′ ≤ γ

δ∫
0

F ∗(t′; 0) dt′ , (3.15)

in which

1

γ
= exp

 δ∫
0

1

B(T − t∗)
dt∗

− 1 . (3.16)
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Proof. Due to Lemma 3.12, we know that (3.8b) holds. Consider any piece-wise contin-
uous function F ∗(t; 0) : [0, T ] → R≥0 satisfying (3.8b) for a given arbitrary, but fixed,∫ T
δ
F ∗(t′; 0)dt′ ≥ 0 and define the function F̂ ∗(t) : [0, δ]→ R≥0 by

F̂ ∗(t) =

T∫
δ

F ∗(t′; 0)dt′

B(T − t)
e
−

t∫
δ

1
B(T−t′) dt

′

. (3.17)

In the next step, we show that for all piece-wise continuous functions F ∗(t; 0) satisfy-
ing (3.8b), the following holds

δ∫
0

F̂ ∗(t′)dt′ ≤
δ∫

0

F ∗(t′; 0)dt′ . (3.18)

To this end, note that the anti-derivative of F̂ ∗ is

t∫
F̂ ∗(t′)dt′ = −

T∫
δ

F ∗(t′; 0)dt′ e
−

t∫
δ

1
B(T−t′) dt

′

+ C

with C ∈ R. Hence, F̂ ∗ satisfies (3.8b) with equality for all t∗ ∈ [0, δ] in the sense of

δ∫
t∗

F̂ ∗(t′)dt′ +

T∫
δ

F ∗(t′; 0)dt′ = B(T − t∗) F̂ ∗(t∗) .

For any F ∗(t; 0) satisfying (3.8b), we know that F ∗(δ; 0)− F̂ ∗(δ) ≥ 0 and

δ∫
t∗

(
F ∗(t′; 0)− F̂ ∗(t′)

)
dt′ ≤ B(T − t∗)

(
F ∗(t∗; 0)− F̂ ∗(t∗)

)

holds for all t∗ ∈ [0, δ]. Define F(t∗) = F ∗(δ − t∗; 0)− F̂ ∗(δ − t∗), for which F(0) ≥ 0 and∫ t∗
0

F(t′)dt′ ≤ B(T − δ + t∗)F(t∗). Due to the comparison lemma (Khalil, 2002), it follows
that F(t∗) ≥ 0 for all t∗ ∈ [0, δ]. Consequently, Equation (3.18) holds. On the other hand,
direct calculations using the anti-derivative of F̂ ∗ show that

δ∫
0

F̂ ∗(t′) dt′ =
1

γ

T∫
δ

F ∗(t′; 0)dt′ , (3.19)

with γ defined by (3.16). Hence, using (3.18) and (3.19) implies (3.15). This completes the
proof.

The previous results allow us to state the main result of this section concerning the
stability and suboptimality of the closed-loop.
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Theorem 3.16 (Stability of Unconstrained MPC for Continuous-Time Systems). Suppose
that Assumptions 3.1–3.4 and Controllability Assumption 3.5 are satisfied for the nonlinear
system (3.1). Furthermore, suppose that

α = 1− γ (Ξ− 1) > 0 , (3.20)

with Ξ and γ defined in Lemmata 3.14 and 3.15, respectively. Then, the closed-loop system
resulting from the application of the model predictive controller according to Algorithm 3.6
to system (3.1) is asymptotically stable and the suboptimality estimate

αJMPC
∞ (x0) = αJ∞(x0, uMPC) ≤ J∗∞(x0) (3.21)

holds for all x0 ∈ Rn.

Proof. First, we note that Ξ > 1 in view of Equations (3.9) and (3.10). By using the results
of Lemmata 3.14 and 3.15, respectively, we obtain

J∗T (x(δ))− J∗T (x(0)) = J∗T (x(δ))−
T∫

0

F ∗(t′; 0) dt′

(3.9)
≤ (Ξ− 1)

T∫
δ

F ∗(t′; 0) dt′ −
δ∫

0

F ∗(t′; 0) dt′

(3.15)
≤ (γ (Ξ− 1)− 1)︸ ︷︷ ︸

=−α

δ∫
0

F ∗(t′; 0)dt′. (3.22)

The suboptimality estimate (3.21) follows from Proposition 3.9. Asymptotic stability
follows using similar arguments as in (Chen, 1997, Theorem 3.1). The optimal cost J∗T (x)
is continuous in x at the origin, which can be shown analogously to (Chen, 1997, Lemma
A.1). The solution of the open-loop system

˙̄x(t′) = f(x̄(t′), 0) , x(0) = x0

depends continuously on the initial condition x0 (Khalil, 2002, Theorem 3.5) and J∗T (x) is
non-increasing along trajectories of the closed-loop after the first sampling instant. This
implies stability of the origin. Furthermore, stability implies existence of a δ0 ∈ R>0 such
that x(t) is bounded for all times if |x0| ≤ δ0. Since the input constraint set U is compact
and f continuous, it follows that f(x(t), u(t)) is bounded for all t ∈ R>0. Hence, x(t)
and αF (|x(t)|) are uniformly continuous in t. On the other hand, JMPC

∞ (x0) is finite due
to (3.21). Thus, the lower bound on the stage cost (3.2) implies∫ ∞

0

αF (|x(t′)|)dt′ ≤ JMPC
∞ (x0) <∞ .

This implies |x(t)| → 0 for t→∞ according to Barbalat’s Lemma (Barbalat, 1959; Khalil,
2002). This completes the proof of asymptotic stability.
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For α as in (3.20), α > 0, and thereby asymptotic stability, can always be guaranteed for
a prediction horizon chosen large enough, which is a well-known result, see, e.g., Jadbabaie
and Hauser (2005). Moreover, we have Ξ→ 1 for T →∞ and, consequently, α→ 1. This
means that performance arbitrarily close to infinite horizon optimal performance can be
achieved for a large enough (finite) prediction horizon. This observation is formally stated
in the following proposition.

Proposition 3.17. Suppose that Controllability Assumption 3.5 is satisfied. Then, there
exists a T ∗ ∈ R>0 such that α > 0 holds for all T > T ∗ with α defined in Theorem 3.16.
Furthermore, α→ 1 for T →∞.

Proof. Since B(T ) is bounded, i.e., there exists B∞ ∈ R>0 such that B(T ) ≤ B∞ for all
T ∈ R>0, we have for all T ∈ R>0

γ ≤ 1

eδ/B∞ − 1
= γ∞ and Ξ− 1 ≤ 1

e
T−δ
B∞ − 1

.

For T > δ + B∞ ln (γ∞ + 1), it directly follows that α = 1− γ (Ξ− 1) > 0. Furthermore,
for any ε ∈ R>0, we can define Tε = δ +B∞ ln

(
γ∞
ε

+ 1
)
, which guarantees |α− 1| < ε for

all T > Tε. This completes the proof.

Our estimate α in Theorem 3.16 is the qualitatively best possible estimate, based on
only the controllability assumption without any further information, in the following sense.

Theorem 3.18 (Connection of Suboptimality Estimate to Linear Program). The subopti-
mality estimate α defined by (3.20) in Theorem 3.16 is the optimal value of the following
infinite-dimensional program for any J∗T (x(δ)) > 0

min
F ∗(·;0)

∫ T
0
F ∗(t′; 0)dt′ − J∗T (x(δ))∫ δ

0
F ∗(t′; 0)dt′

(3.23)

subject to

J∗T (x(δ)) ≤
t∫

δ

F ∗(t′; 0)dt′ +B(T + δ − t)F ∗(t; 0) , ∀t ∈ [δ, T ] , (3.24a)

T∫
t

F ∗(t′; 0)dt′ ≤ B(T − t)F ∗(t; 0) , ∀t ∈ [0, δ] . (3.24b)

If, in addition, B satisfies

B(T + δ − t) e−
∫ T
t

1
B(T+δ−t′) dt

′
≥ B(T − t) , (3.25)

for all t ∈ [δ, T ], then the same holds true when replacing t ∈ [0, δ] by t ∈ [0, T ] in (3.24b).

Proof. From (3.22), it is clear that α is a lower bound to the minimum value in (3.23). But
F ∗(·; 0) = F̂ ∗(·), as defined in (3.11) and (3.17), satisfies both constraints (3.24) and yields
α as the value for the expression in (3.23). Hence, α is the minimum value and not only a
lower bound. Furthermore, standard manipulations show that F̂ satisfies (3.24b) for all
t ∈ [0, T ] if (3.25) holds.
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Remark 3.19. Direct calculations reveal that Condition (3.25) holds for the exponential
controllability assumption as introduced in Assumption 3.6 in Section 3.2.3.

Other suboptimality estimates similar to Theorem 3.16 can be obtained using different
techniques and without solving an infinite-dimensional program. For instance, simpler
techniques are used in Reble and Allgöwer (2011) for calculating γ such that (3.15) holds.
These techniques are similar to the ones employed by Grimm et al. (2005) for discrete-time
systems. In the following, we briefly summarize results for continuous-time systems obtained
without solving the infinite-dimensional program, but instead using techniques similar to
Grimm et al. (2005).

Lemma 3.20 (Calculation of Ξ†). Suppose that Assumptions 3.1–3.4 and Controllability
Assumption 3.5 are satisfied. Then, J∗T (x(δ)) ≤ Ξ†

∫ T
δ
F ∗(t′; 0)dt′, in which Ξ† = 1 + B(T )

T−δ .

Proof. Using (3.8a) in Lemma 3.12, we obtain

J∗T (x(δ)) ≤ min
t∗∈[δ,T ]

t∗∫
δ

F ∗(t′; 0)dt′ +B(T + δ − t∗)F ∗(t∗; 0)

≤
T∫
δ

F ∗(t′; 0)dt′ +B(T ) min
t∗∈[δ,T ]

F ∗(t∗; 0)

≤
T∫
δ

F ∗(t′; 0)dt′ +B(T )
1

T − δ

T∫
δ

F ∗(t′; 0)dt′ .

Here, we used that F ∗(t′; 0) ≥ 0 and the non-decreasing property of B.

Lemma 3.21 (Calculation of γ†). Suppose that Assumptions 3.1–3.4 and Controllability

Assumption 3.5 are satisfied. Then,
T∫
δ

F ∗(t′; 0)dt′ ≤ γ†
∫ δ

0
F ∗(t′; 0) dt′, in which γ† = B(T )

δ
.

Proof. Because of (3.8b) in Lemma 3.12, we obtain

T∫
δ

F ∗(t′; 0)dt′ ≤ min
t∗∈[0,δ]

T∫
t∗

F ∗(t′; 0)dt′ ≤ min
t∗∈[0,δ]

B(T − t∗)F ∗(t∗; 0)

≤ B(T ) min
t∗∈[0,δ]

F ∗(t∗; 0) ≤ B(T )

δ

δ∫
0

F ∗(t′; 0) dt′ .

Here, we used again that F ∗(t′; 0) ≥ 0 and the non-decreasing property of B.

It is straightforward to see that the results on stability and suboptimality of Theorem 3.16
still hold when replacing Ξ and γ with Ξ† and γ†, respectively, in (3.20).
Due to the non-decreasing property of B, it is simple to show that Ξ < Ξ† and γ < γ†.

Thus, the suboptimality estimate obtained in Theorem 3.16 is indeed qualitatively better
than an estimate based on Ξ† and γ†, i.e.,

α† = 1− γ† (Ξ† − 1) ≤ 1− γ (Ξ− 1) = α .
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However, the simple techniques used to obtain “worse” estimates can be useful in some
cases for which solving the corresponding infinite-dimensional program is not possible. One
example is the extension towards time-delay systems in Section 4.5, for which a modified
controllability assumption, which takes the time-delay into account, is required. In this case
the techniques from Lemmata 3.14 and 3.15 cannot be used to obtain suitable estimates,
but the techniques from Lemmata 3.20 and 3.21 are applicable.

A similar result concerning the suboptimality estimates for discrete-time systems is proven
in Worthmann (2012a,b). It is shown that the suboptimality estimate obtained in Grüne
(2009); Grüne et al. (2010a) is tighter than its counterpart in Tuna et al. (2006), which
has improved the results of Grimm et al. (2005). This result together with the connection
reported in (Worthmann, Reble, Grüne, and Allgöwer, 2012) between our continuous-time
results and the discrete-time results underpins our previous observation. Furthermore, it
suggests that a continuous-time version of Tuna et al. (2006) would also yield less accurate
suboptimality estimates than Theorem 3.16.

3.2.3 Special Case: Exponential Controllability

In this section, we give analytical expressions of the suboptimality estimate α for the special
case of the following exponential controllability assumption, which was also considered for
discrete-time systems in Grüne and Pannek (2011); Grüne et al. (2010a).

Assumption 3.6 (Exponential Controllability). For all x0 ∈ Rn, there exists a piece-wise
continuous input trajectory û(·;x0, 0) with û(t;x0, 0) ∈ U for all t ∈ R≥0 and corresponding
state trajectory x̄û such that

F (x̄û(t;x0, 0), û(t;x0, 0)) ≤ C e−λ t F (x0, 0) , ∀t ∈ R≥0

with overshoot constant C ≥ 1 and decay rate λ > 0.

Assumption 3.6 directly implies that Assumption 3.5 holds with B(T ) = C
λ

(1− e−λT ).
This observation enables us to derive an analytical expression for the suboptimality estimate
α.

Calculation of the Suboptimality Estimate α

Using B(T ) = C
λ

(1−e−λT ) for the exponential controllability assumption, direct calculations
reveal that

∫ T 1
B(t∗)

dt∗ = 1
C

ln
(
eλT − 1

)
+ C with C ∈ R. Hence, we can calculate Ξ and γ,

see Lemmata 3.14 and 3.15, as follows

1

Ξ
= 1−

(
eλ δ − 1

eλT − 1

) 1
C

and
1

γ
=

(
1− e−λT

e−λ δ − e−λT

) 1
C

− 1.

It is interesting to note the influence of the different parameters C, λ, δ, and T on the
suboptimality estimate α = 1− γ (Ξ− 1). First, it is directly clear that γ > 0 and Ξ > 1
and, consequently, α < 1 for any finite prediction horizon. Second, if T →∞, then Ξ→ 1
and α→ 1, which means that the performance of the MPC controller is arbitrarily close to
the infinite horizon optimal performance if the prediction horizon T is chosen large enough.
This again confirms the result of Proposition 3.17. Third, if δ → 0, then α→ −∞, which
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means that asymptotic stability of the closed-loop cannot be guaranteed for arbitrarily
small sampling times. This result is counterintuitive, however, it is in good agreement with
the results for sampled-data continuous-time systems of Grüne et al. (2010b,c). In order to
obtain better stability estimates for small sampling times, we use a growth condition in the
following paragraph in order to obtain better estimates, in particular for small sampling
times.

Implications of the Growth Condition

In this section, we use a growth condition analogue to the discrete-time results in Grüne
et al. (2010b,c) in order to obtain better suboptimality estimates and, hence, stability
guarantees for shorter prediction horizons.

Assumption 3.7 (Growth Condition). For all x0 ∈ Rn, there exists a piece-wise continuous
input trajectory û(·;x0, 0) with û(t;x0, 0) ∈ U for all t ∈ [0, T ′] and corresponding state
trajectory x̄û such that

F (x̄û(t;x0, 0), û(t;x0, 0)) ≤ eλgt F (x0, 0) ∀t ∈ R≥0 ,

in which λg ∈ R is a constant growth rate.

Comparing the growth condition with the exponential controllability assumption, several
differences can be observed. First, λg can be positive. In this case, the optimal cost need
not be bounded and asymptotic stability of the closed-loop with MPC cannot be guaranteed
by taking only the growth condition into account. On the other hand, the growth condition
gives better information for small times because no overshoot is considered. Hence, using
the growth condition, we can replace B(T ) used in the previous paragraph by

B(T ) = min

{
C

λ
(1− e−λT ) ,

1

λg
(eλg T − 1)

}
.

Unfortunately, it is not possible to give (simple) analytic solutions as in the previous
paragraph. However, numerical solutions can be easily obtained as only integration of
scalar variables is necessary for the calculation of γ and Ξ.

Comparison of different Suboptimality Estimates and Connection to
Discrete-Time Results

In Figure 3.3, the suboptimality estimate α is depicted in dependence on the parameters
C, λ, T , and δ. In each subfigure, the value of only one parameter is varied and the
other parameters are kept constant at their default value. The default values are chosen
as C = λ = 2, λg = 0.2, δ = 0.01, and T = 3. As expected, α is strictly monotonically
increasing in both T and λ and strictly monotonically decreasing in C. Furthermore, all
estimates are improved by using the growth condition. The most significant change is for
the case of δ → 0. Whereas the estimates for α tend to −∞ without growth condition, the
estimates with growth condition show that the closed-loop is indeed asymptotically stable
for arbitrarily small sampling times.
The estimates for continuous-time systems derived in this work are in all cases better

than the result of (Grüne et al., 2010c, Theorem 2) based on a sampled-data approach.
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Figure 3.3: Suboptimality estimate α for the exponential controllability assumption. Solid
lines: estimates from (Grüne et al., 2010c, Theorem 2); dashed lines: estimates
without growth condition; dotted lines: improved estimates using the growth
condition, dash-dotted lines: estimate α† using simpler techniques.

This indicates a gap between our continuous-time results and the discrete-time results
despite the similarity of the assumptions used in the different results. A more detailed
comparison of the results obtained in this section with the sampled-data implementation
is given in Worthmann, Reble, Grüne, and Allgöwer (2012). The key ingredient used in
this reference is to decouple the sampling time and the discretization time. This approach
requires the concept of multistep feedback laws as introduced, e.g., in Grüne (2009). It is
proven that the continuous-time performance estimate is always an upper bound on the
performance estimate for the discrete-time results applied in a sampled-data context, but
can be obtained as a limiting case for the discretization time tending to zero. For a more
thorough discussion of these aspects, we refer to Worthmann, Reble, Grüne, and Allgöwer
(2012).

Additionally, it can be seen that the suboptimality estimate α† based on Lemmata 3.20
and 3.21 is significantly worse than the other estimates. This underpins the statement of
Theorem 3.18 and Remark 3.19.
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3.2.4 Numerical Example

Consider the nonlinear system

ẋ1(t) = u1(t) , ẋ2(t) = u2(t) , ẋ3(t) = x1(t)u2(t)− x2(t)u1(t) , (3.26)

which is called nonholonomic integrator or Brockett integrator (Brockett, 1983). The
system is not asymptotically stabilizable by continuous time-invariant state feedback and,
in particular, the Jacobi linearization of the system is not asymptotically stabilizable.
Therefore, the design of a corresponding control Lyapunov function is a difficult task and,
indeed, there does not exist a continuously differentiable control Lyapunov function. In
contrast, it is rather simple to construct an open-loop control which steers the system from
any initial condition to the origin in finite time. Straightforward calculations show that the
open-loop control input û defined as

û(t) =

(
−x1(0)/t1
−x2(0)/t1

)
, for 0 ≤ t < t1

û(t) =

 sign(x3(0))

√
2π|x3(0)|
t2

sin(2πt/t2)√
2π|x3(0)|
t2

cos(2πt/t2)

 , for t1 ≤ t ≤ t1 + t2

steers the system to x1(t1) = x2(t1) = 0, x3(t1) = x3(0) and to x(t1 + t2) = 0. When
choosing the stage cost F (x, u) = x2

1 + x2
2 + ν3|x3|+ u2

1 + u2
2, ν3 ∈ R>0, it is also possible

to show that the smallest cost for such a control input û is achieved for t∗1 =
√

3 and
t∗2 =

√
12π2+3πν3

2π+3ν3
and

J∗T ′(x0) ≤ JT ′(x0, û) ≤
(
t∗1 +

3 + 2πν3

6πν3

t∗2 +
4π + ν3

2ν3t∗2
+

1

π

)
F (x0, 0)

for all T ′ ∈ R>0. This implies that stability can be guaranteed for shorter prediction
horizons if a larger ν3 is chosen. Assumption 3.5 is satisfied with B(T ′) ≡ 5.71 for ν3 = 1
and with B(T ′) ≡ 4.09 for ν3 = 3, respectively. With this information, we can guarantee
asymptotic stability of the closed-loop with sampling time δ = 0.1 for T ≥ 23.3 and
T ≥ 15.4, respectively. However, it is clear that this is an overly conservative choice for
B(T ′), particularly for small T ′. A better result can be obtained by taking into account
that every state is an equilibrium for us = 0. Hence, we can use B(T ′) = min{T ′, 5.71}
and B(T ′) = min{T ′, 4.09} to guarantee stability for T ≥ 5.71 and T ≥ 4.09, respectively.
Furthermore, less conservative estimates on a stabilizing prediction horizon can be made
by taking additional information on the controllability of the system into account.
Figure 3.4 shows simulation results for initial condition x(0) = [3, 1, 1]T and different

choices of the prediction horizon T and the weight ν3. The simulation results confirm that
the closed-loop is not asymptotically stable for T = 0.7 and ν3 = 3 because the state x3

does not converge to zero. On the contrary, simulation studies suggest that the closed-loop
is asymptotically stable for T = 0.8, which reveals the conservatism of the estimates of the
minimal stabilizing prediction horizon of T ≈ 4.09. But it is interesting to note that the
simulation results support the theoretical result that a larger ν3, i.e., a larger weight on
the state x3, is beneficial for stability. This is exemplarily demonstrated in Figure 3.4 by
the case of T = 0.8 and ν3 = 1, for which the closed-loop is not asymptotically stable, in
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Figure 3.4: Simulation results for system (3.26) in Section 3.2.4 and unconstrained MPC
for different prediction horizons T and weights ν3.

contrast to the case of T = 0.8 and ν3 = 3. This shows that despite giving conservative
estimates on the minimal stabilizing prediction horizon, the conditions in this chapter
might give design guidelines for a suitable stage cost such stability is achieved with short
prediction horizons. Similar remarks have been made for the discrete-time formulation of
unconstrained MPC in (Grüne, 2009, Section 7).

3.2.5 Summary

In this section, we extended the results on model predictive control without terminal
constraints and without terminal cost functions from the discrete-time case to continuous-
time systems. Performance estimates and stability conditions in terms of the prediction
horizon and the sampling time have been derived using an asymptotic controllability
assumption and the special case of an exponential controllability assumption. These
estimates, based on the solution of an infinite-dimensional program, have then been
compared to other estimates. Connections of the results in this section to the previous
results in discrete-time (Grüne, 2009; Grüne et al., 2010a) are thoroughly discussed in
(Worthmann, Reble, Grüne, and Allgöwer, 2012).

In the following sections, we derive stability conditions for alternative MPC schemes with
the goal to relax assumptions and/or guarantee stability with a shorter prediction horizon.
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3.3 Unconstrained MPC with General Terminal Cost
Functions

In this section, we consider a more general MPC setup without terminal constraints,
allowing for a general terminal cost function. More precisely, we derive sufficient stability
conditions for unconstrained MPC with a positive semi-definite terminal cost function. This
result is related to the discrete-time results in Tuna et al. (2006), which takes properties
of the terminal cost function into account in order to improve the stability conditions
obtained in Grimm et al. (2005). However, the results reported in this section exhibit two
distinguishing features in comparison to these previous results: Better estimates for the
stabilizing prediction horizon are obtained and our analysis allows to recover the results for
unconstrained MPC without terminal cost derived in the preceding section. In contrast,
setting the terminal cost equal to zero in the result of Tuna et al. (2006) does not allow
to guarantee asymptotic stability even for an arbitrarily large prediction horizon. More
precisely, our result contains two previous results as special cases: First, if the terminal
cost function is chosen as zero, we recover the conditions of Section 3.2 on the length of the
prediction horizon such that asymptotic stability is guaranteed. Second, if the terminal cost
is a control Lyapunov function conform to the stage cost, stability follows independent of
the length of the prediction horizon. If the terminal cost is not a control Lyapunov function,
but satisfies a significantly relaxed condition, then our results yield improved estimates for
the necessary prediction horizon. Hence, the analysis in this section allows to bridge the
gap between two MPC approaches, namely MPC using global control Lyapunov functions
as terminal cost (Jadbabaie et al., 2001b) and unconstrained MPC without terminal cost
(Grüne, 2009), which have been mostly considered separately in the literature so far, see
also Figure 3.1.

3.3.1 Unconstrained MPC Setup with General Terminal Cost

We consider an MPC setup similar to the one presented in Section 3.2 with an additional
positive semi-definite terminal cost function E. Therefore, the open-loop finite horizon
optimal control problem to be solved at sampling instant ti given measured state x(ti) is
formulated as follows.

Problem 3.22.

minimize
ū∈PC([ti,ti+T ],Rm)

JT,E(x(ti), ū) (3.27a)

subject to

˙̄x(t′;x(ti), ti) = f(x̄(t′;x(ti), ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (3.27b)
x̄(ti;x(ti), ti) = x(ti) , (3.27c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (3.27d)

in which

JT,E(x(ti), ū) =

ti+T∫
ti

F (x̄(t′;x(ti), ti), ū(t′)) dt′ + E(x̄(ti + T ;x(ti), ti), ū(t′)) . (3.27e)
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3.3 Unconstrained MPC with General Terminal Cost Functions

In analogy to the notation in the previous section, we denote the optimal control input and
the associated predicted state trajectory by u∗T (t′;x(ti), ti) and x∗(t′;x(ti), ti), t′ ∈ [ti, ti+T ],
respectively. The optimal cost is denoted by J∗T,E(x(ti)). For a given sampling time δ with
0 < δ ≤ T , the control input to the system is defined in the usual continuous-time receding
horizon fashion.

Algorithm 3.23 (Unconstrained Model Predictive Control with General Terminal Cost).
At each sampling instant ti = iδ, i ∈ N0, measure the state x(ti) and solve Problem 3.22.
Apply the input

uMPC(t) = u∗T (t;x(ti), ti) , ti ≤ t < ti + δ (3.28)

to the system until the next sampling instant ti+1 = ti + δ.

Remark 3.24. A slightly different approach for unconstrained MPC with terminal weights
is considered in (Grüne and Pannek, 2011, Section 7.2), in which a scalar terminal weighting
on the stage cost is introduced for discrete-time MPC.

3.3.2 Asymptotic Stability

We use the following assumption regarding the stage cost F and the terminal cost E.

Assumption 3.8. The stage cost F : Rn × U → R≥0 and the terminal cost function
E : Rn → R≥0 are continuous, F (0, 0) = E(0) = 0, and there is a class K∞ function
αF : R≥0 → R≥0 such that for all x ∈ Rn and for all u ∈ U

F (x, u) ≥ F (x, 0) ≥ αF (|x|) (3.29a)
and E(x) ≥ 0 . (3.29b)

Note that the terminal cost E is not necessarily positive definite, but only positive semi-
definite, which allows to consider the unconstrained MPC setup presented in Section 3.2
as a special case of the current setup for E ≡ 0. This is in contrast to the classical MPC
framework with guaranteed stability, which was recalled in Section 2.1.3. In particular,
the extended Lyapunov inequality in Assumption 2.5 can only be satisfied for all states
x ∈ Rn (which is necessary because we do not consider terminal state constraints) if the
terminal cost E is positive definite or with some minor modifications for the trivial case
of an open-loop stable system with a stage cost which does not depend on the state, i.e.,
F (x, u) = F (0, u) for all x ∈ Rn. The extended Lyapunov inequality in Assumption 2.5 is
in the following replaced by a significantly less restrictive controllability assumption, see
Assumption 3.10. This assumption can also be satisfied in the case of E ≡ 0, but possibly
improves the estimates on a minimal stabilizing prediction horizon.
In the following analysis, similar to Section 3.2.2, we consider the two consecutive

sampling instants t0 = 0 and t1 = δ without loss of generality. With slight abuse of notation,
we use the following abbreviations

F ∗(t; ti) = F (x∗(t;x(ti), ti), u
∗
T (t;x(ti), ti)) , (3.30a)

E∗(t; ti) = E(x∗(t;x(ti), ti)) , (3.30b)
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for t ∈ [ti, ti + T ] and ti ∈ {0, δ}. From this definition, it directly follows that

J∗T,E(x(ti)) =

ti+T∫
ti

F ∗(t′; ti)dt
′ + E∗(ti + T ; ti) . (3.31)

In order to guarantee stability, we use the following two assumptions.

Assumption 3.9 (Controllability Assumption based on F ). For all T ′ ∈ R≥0 and x0 ∈ Rn,
there exists a piece-wise continuous input trajectory û(·;x0, 0) with û(t;x0, 0) ∈ U for all
t ∈ [0, T ′] and

J∗T ′,E(x0) ≤ JT ′,E(x0, û) ≤ BE(T ′)F (x0, 0) ,

in which BE : R≥0 → R>0 is a continuous and bounded function.

Assumption 3.10 (Controllability Assumption based on E). For all x0 ∈ Rn, there exists
a piece-wise continuous input trajectory û(·;x0, 0) with û(t;x0, 0) ∈ U for all t ∈ [0, δ] and
such that

ΓE

 δ∫
0

F (x̄(t′;x0, 0), û(t′;x0, 0))dt′ + E(x̄(δ;x0, 0))

 ≤ E(x0) , (3.32)

in which ΓE ∈ [0, 1].

Assumption 3.9 is a standard assumption in unconstrained MPC, see also Assumption 3.5
in Section 3.2 and (Grimm et al., 2005; Grüne, 2009; Grüne et al., 2010a). However, note
that BE in Assumption 3.9 depends explicitly on the terminal cost E due to the definition
of JT,E. Hence, it might be only satisfied for larger values of BE compared to B used in
Assumption 3.5 in Section 3.2.

Assumption 3.10 is always satisfied for ΓE = 0. On the other hand, if no terminal cost
term is considered, i.e., E(x) = 0 as in (Grüne, 2009; Grüne and Pannek, 2011; Grüne et al.,
2010a) and Section 3.2, Assumption 3.10 can only be satisfied for ΓE = 0. For 0 < ΓE < 1,
Assumption 3.10 can be interpreted as the terminal cost E(x) being “similar” to a CLF,
however, in a significantly weaker sense as shown in the following proposition.

Proposition 3.25 (CLF-like Condition for Assumption 3.10). Suppose that there exists
ν ∈ R≥0 and a control law k : R→ U such that the derivative of E along trajectories of the
closed-loop consisting of system (3.1) with control input u = k(x) satisfies for all x ∈ Rn

Ė(x) ≤ −F (x, k(x)) + ν E(x) . (3.33)

Then, Assumption 3.10 is satisfied for ΓE = e−νδ.

Proof. Integrating Inequality (3.33) from t = 0 to t = δ yields

δ∫
0

F (x̄(t′;x0, 0), k(x̄(t′;x0, 0)))dt′ + E(x̄(δ;x0, 0)) ≤ E(x0) + ν

δ∫
0

E(x̄(t′;x0, 0)) dt′ .
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By taking F (x, u) ≥ 0 into account, we can immediately see that Inequality (3.33) implies
that E(x̄(t′;x0, 0)) ≤ eνt

′
E(x0). Combining these two findings allows to deduce

δ∫
0

F (x̄(t′;x0, 0), k(x̄(t′;x0, 0)))dt′ + E(x̄(δ;x0, 0)) ≤ E(x0) + ν

δ∫
0

eνt
′
E(x0) dt′

= eνδ E(x0) .

Hence, Inequality (3.32) is satisfied for ΓE = e−νδ, which completes the proof.

For the special case ν = 0, Condition (3.33) in Proposition 3.25 corresponds to E being
an F -conform control Lyapunov function (CLF), which is a common assumption in MPC
in order to guarantee stability of the closed-loop, see, e.g., the well-established general
framework recalled in Section 2.1.3 and (Chen and Allgöwer, 1998; Fontes, 2001; Jadbabaie
et al., 2001b; Mayne et al., 2000). In this case, we obtain ΓE = 1 and Assumption 3.10 is an
integrated, slightly more general, version of the the extended Lyapunov inequality Ė(x) ≤
−F (x, k(x)), see Assumption 2.5 in Section 2.1.3. Note the similarity to Condition (4.29)
in Assumption 4.8 used for the Razumikhin-based design of a terminal cost for nonlinear
time-delay systems in Section 4.3.3.
For the general case ν > 0, this Lyapunov condition is relaxed and, consequently,

additional arguments are required in order to guarantee stability. In this section, a
prediction horizon chosen “sufficiently large” is considered with explicit conditions on the
prediction horizon. Note that these conditions are closely related to the results of Section 3.2
and are based on Assumption 3.9. To this end, we can show three intermediate results
proven in the following using the two assumptions above. The main result of this section is
then summarized in Theorem 3.29.

Lemma 3.26 (Calculation of ΞE). Suppose that Assumptions 3.1–3.3, Assumption 3.8,
and Controllability Assumption 3.9 are satisfied. Then,

J∗T,E(x(δ)) ≤ ΞE

T∫
δ

F ∗(t′; 0)dt′ , (3.34)

in which

1

ΞE

= 1− exp

− T∫
δ

1

BE(T + δ − t∗)
dt∗

 . (3.35)

Proof. The proof is similar to the proof of Lemma 3.14 for unconstrained MPC without
terminal cost. Controllability Assumption 3.9 implies that

J∗T,E(x(δ)) ≤
t∗∫
δ

F ∗(t′; 0)dt′ +BE(T + δ − t∗)F ∗(t∗; 0) (3.36)

holds for all t∗ ∈ [δ, T ]. Consider any piece-wise continuous function F ∗(t; 0) : [δ, T ]→ R≥0

satisfying (3.36) and define the function F̂ ∗(t) : [δ, T ]→ R≥0 by

F̂ ∗(t) =
J∗T,E(x(δ))

BE(T + δ − t)
e
−

t∫
δ

1
BE(T+δ−t′) dt

′

. (3.37)
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In the next step, we show that for all piece-wise continuous functions F ∗(t; 0) satisfy-
ing (3.36), the following holds

T∫
δ

F̂ ∗(t′)dt′ ≤
T∫
δ

F ∗(t′; 0)dt′ . (3.38)

To this end, note that F̂ ∗(t) satisfies (3.36) with equality (instead of inequality) for all
t∗ ∈ [δ, T ], which can be shown by direct evaluation. For the sake of contradiction, assume
T∫
δ

F̂ ∗(t′)dt′ >
T∫
δ

F ∗(t′; 0)dt′. But then there exists a t ∈ [δ, T ] for which

t∫
δ

F̂ ∗(t′)dt′ ≥
t∫

δ

F ∗(t′; 0)dt′ and F̂ ∗(t) > F ∗(t; 0) .

But this contradicts (3.36), which shows that (3.38) holds. On the other hand, direct
calculations reveal

J∗T,E(x(δ)) = ΞE

T∫
δ

F̂ ∗(t′)dt′ (3.39)

for ΞE defined in (3.35). Combining (3.38) and (3.39) yields (3.34).

Lemma 3.27 (Calculation of γE). Suppose that Assumptions 3.1–3.3, Assumption 3.8,
and Controllability Assumption 3.9 are satisfied. Then,

T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0) ≤ γE

δ∫
0

F ∗(t′; 0) dt′ , (3.40)

in which

1

γE
= exp

 δ∫
0

1

BE(T − t∗)
dt∗

− 1 . (3.41)

Proof. The proof mirrors the proof of Lemma 3.15 for unconstrained MPC without terminal
cost. Controllability Assumption 3.9 and the principle of optimality imply that

T∫
t∗

F ∗(t′; 0)dt′ + E∗(T ; 0) ≤ BE(T − t∗)F ∗(t∗; 0) (3.42)

holds for all t∗ ∈ [0, T ]. Consider any piece-wise continuous function F ∗(t; 0) : [0, T ]→ R≥0

satisfying (3.42) and define the function F̂ ∗(t) : [0, δ]→ R≥0 by

F̂ ∗(t) =

T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0)

BE(T − t)
e
−

t∫
δ

1
BE(T−t′) dt

′

. (3.43)
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In the next step, we show that for all piece-wise continuous functions F ∗(t; 0) satisfy-
ing (3.42), the following holds

δ∫
0

F̂ ∗(t′)dt′ ≤
δ∫

0

F ∗(t′; 0)dt′ . (3.44)

To this end, note that the anti-derivative of F̂ ∗ is

t∫
F̂ ∗(t′)dt′ = −

 T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0)

 e
−

t∫
δ

1
BE(T−t′) dt

′

+ C

with C ∈ R. Hence, F̂ ∗ satisfies (3.42) with equality for all t∗ ∈ [0, δ] in the sense of

δ∫
t∗

F̂ ∗(t′)dt′ +

T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0) = BE(T − t∗) F̂ ∗(t∗) .

For any F ∗(t; 0) satisfying (3.42), we know that F ∗(δ; 0)− F̂ ∗(δ) ≥ 0 and

δ∫
t∗

(
F ∗(t′; 0)− F̂ ∗(t′)

)
dt′ ≤ BE(T − t∗)

(
F ∗(t∗; 0)− F̂ ∗(t∗)

)

holds for all t∗ ∈ [0, δ]. Define F(t∗) = F ∗(δ − t∗; 0)− F̂ ∗(δ − t∗), for which F(0) ≥ 0 and∫ t∗
0

F(t′)dt′ ≤ BE(T − δ + t∗)F(t∗). Due to the comparison lemma (Khalil, 2002), it follows
that F(t∗) ≥ 0 for all t∗ ∈ [0, δ]. Consequently, Equation (3.44) holds. On the other hand,
direct calculations show that

δ∫
0

F̂ ∗(t′) dt′ =
1

γE

 T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0)

 , (3.45)

with γE defined by (3.41). Finally, the combination of (3.44) and (3.45) implies (3.40).
This completes the proof.

Lemma 3.28 (Direct Consequence of Controllability Assumption 3.10). Suppose that
Assumptions 3.1–3.3, Assumption 3.8, and Controllability Assumption 3.10 are satisfied.
Then,

ΓE J
∗
T,E(x(δ)) ≤ ΓE

T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0) . (3.46)

Proof. The proof follows directly from optimality of J∗T,E(x(δ)) and using Assumption 3.10
for x0 = x∗(T ;x(0), 0), which provides an upper bound on the cost on the interval [T, T +
δ].
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We are now able to state our main result on stability of unconstrained MPC with general
positive semi-definite terminal cost functions.

Theorem 3.29 (Stability of Unconstrained MPC with General Terminal Cost Function).
Suppose that Assumptions 3.1–3.3, Assumption 3.8, and Controllability Assumptions 3.9
and 3.10 are satisfied for system (3.1) and consider

αE = 1− γE
(

ΞE

1 + (ΞE − 1)ΓE
− 1

)
, (3.47)

with γE and ΞE defined in Lemmata 3.26 and 3.27, respectively. If αE > 0, the closed-
loop system resulting from the application of the model predictive controller according to
Algorithm 3.23 to system (3.1) is asymptotically stable.

Proof. Multiplying Inequality (3.34) in Lemma 3.26 with 1− ΓE and multiplying Inequal-
ity (3.46) in Lemma 3.28 with ΞE, and adding the two resulting inequalities yields

J∗T,E(x(δ)) ≤ ΞE

1 + (ΞE − 1)ΓE

 T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0)

 .

Following the proof of Theorem 3.16, using (3.31), and Lemma 3.27, we obtain

J∗T,E(x(δ))− J∗T,E(x(0))

≤
(

ΞE

1 + (ΞE − 1)ΓE
− 1

)  T∫
δ

F ∗(t′; 0)dt′ + E∗(T ; 0)

− δ∫
0

F ∗(t′; 0) dt′

(3.40)
≤
(
γE

(
ΞE

1 + (ΞE − 1)ΓE
− 1

)
− 1

)
︸ ︷︷ ︸

=−αE

δ∫
0

F ∗(t′; 0)dt′ . (3.48)

In analogy to the proof of Theorem 3.16, asymptotic stability follows directly from standard
arguments in optimal control, the lower bounds on the stage cost and the terminal cost (3.29),
and application of Barbalat’s Lemma (Barbalat, 1959; Khalil, 2002).

Remark 3.30. In contrast to the unconstrained MPC schemes without terminal cost,
see, e.g., Grüne (2009); Grüne et al. (2010a) and Section 3.2, J∗T,E is not necessarily
monotonically increasing in T . Hence, αE does not give a suboptimality estimate of
the closed-loop compared to the infinite horizon optimal controller in contrast to α in
Theorem 3.16.

Remark 3.31. As in Proposition 3.17, αE > 0, and thereby also asymptotic stability, can
always be guaranteed for a prediction horizon chosen large enough because ΞE → 1 and
αE → 1 for T →∞.

For ΓE = 0, for which Assumption 3.10 is trivially satisfied, we recover the stability
condition from Theorem 3.16 and consequently the results for unconstrained MPC without
terminal cost. These results have been shown to be the “best possible” stability conditions
based only on the Controllability Assumption 3.9, see Theorem 3.18. Here, “best possible”
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3.3 Unconstrained MPC with General Terminal Cost Functions

refers to the largest αE for which (3.48) holds. Loosely speaking, this can be seen because
F̂ ∗, defined in the proofs of Lemmata 3.26 and 3.27, satisfies all conditions implied by
Controllability Assumption 3.9 and yields αE = 1− γE(ΞE − 1) for (3.48). Hence, one can
only guarantee (3.48) for a larger αE by taking into account additional information, e.g.,
about the system or the optimal cost function.
If Assumption 3.9 is satisfied for ΓE = 1, for instance if E is a global F -conform

control Lyapunov function, then asymptotic stability is guaranteed independently of the
Controllability Assumption 3.9. Thus, we recover the previous stability result using global
control Lyapunov functions (Jadbabaie et al., 2001b).

Summarizing, Theorem 3.29 allows in some sense to bridge the gap between the stability
results for MPC schemes using control Lyapunov functions as terminal cost and the more
recently developed MPC schemes based on controllability assumptions. However, the case
of Assumption 3.10 only being satisfied in a terminal region around the origin has not been
treated so far. An additional terminal constraint makes the verification of Assumption 3.9
significantly harder, which underpins the need for a different MPC formulation in this
case. Two possible MPC formulations relying only on local controllability assumptions are
introduced in Sections 3.5 and 3.6.

3.3.3 Numerical Example

Consider the nonlinear system

ẋ1(t) = u(t) , ẋ2(t) = u(t)3 , (3.49)

which is called cubic integrator (Grimm et al., 2005). Similar to the Brockett integrator (3.26)
in Section 3.2.4, system (3.49) is not asymptotically stabilizable by continuous time-invariant
state feedback and, in particular, the Jacobi linearization of the system is not asymptotically
stabilizable. Therefore, the design of a corresponding control Lyapunov function is a difficult
task and, indeed, there does not exist a continuously differentiable control Lyapunov function.
In contrast, it is rather simple to construct an open-loop control which steers the system
from any initial condition to the origin in finite time. Straightforward calculations show
that the open-loop control input û defined below steers the system to x(4) = 0, see also
(Grimm et al., 2005),

û(t) = −x1(0) for 0 ≤ t < 1 , û(t) = aΨ for 1 ≤ t < 2 ,

û(t) = bΨ for 2 ≤ t < 3 , û(t) = Ψ for 3 ≤ t < 4 ,

in which a = −1
2

+
√

7
12
, b = −1

2
−
√

7
12
, and Ψ = (x2(0) − x1(0)3)1/3. Moreover, every

state is an equilibrium for us = 0. When choosing the stage cost F (x, u) = x6
1 + x2

2 + u6,
the terminal cost E(x) = ν(x6

1 + x2
2) with ν ∈ R≥0, and the sampling time δ = 0.1, we can

show that Assumption 3.9 is satisfied for

BE(T ′) = min
{

15.36 + ν(1− T ′/4)2, T ′ + ν
}

and Assumption 3.10 is satisfied for ΓE = ν
BE(δ)

. For ν = 0, i.e., unconstrained MPC
without terminal cost as considered in Section 3.2, we have ΓE = 0 and Theorems 3.16
and 3.29 guarantee stability for a prediction horizon T ≥ 15.4. In contrast when choosing
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Figure 3.5: Simulation results for system (3.49) in Section 3.3.3 and unconstrained MPC
with terminal cost. Left: no terminal cost ν = 0; right: terminal cost with
ν = 10.

ν = 5, we have ΓE = 0.980 and Theorem 3.29 guarantees stability for a prediction horizon
T ≥ 10.9. The choice of ν = 10 yields ΓE = 0.9901 and guaranteed stability for T ≥ 8.0.

In Figure 3.5, we demonstrate these findings with simulation results. We have chosen the
initial condition x0 = [4, 1]T and the very short prediction horizon T = 0.3. The closed-loop
resulting from unconstrained MPC without terminal cost, i.e., ν = 0, does not converge
to the origin as shown on the left hand side in Figure 3.5. In contrast, ν = 10 ensures
convergence of the closed-loop as displayed on the right hand side.

3.3.4 Summary

In this section, we derived stability conditions for unconstrained MPC with a general
positive semi-definite terminal cost. We have shown that a terminal cost satisfying a
relaxed Lyapunov condition can lead to stability guarantees for shorter prediction horizons.
Moreover, the results bridge the gap between MPC schemes using control Lyapunov
functions as terminal cost and unconstrained MPC schemes without terminal cost. The
results have been illustrated for the simple example of the cubic integrator.

3.4 Unconstrained MPC with Exponential Weighting

In this section, we propose an alternative additional weighting in the cost function, which
possibly allows to guarantee stability for shorter prediction horizons. In contrast to an
additional terminal cost, we consider an exponential weighting on the stage cost in the
following.

3.4.1 Unconstrained MPC Setup with Exponential Weighting

The open-loop finite horizon optimal control problem with exponential weighting to be
solved at sampling instant ti given measured state x(ti) is formulated as follows.
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Problem 3.32.

minimize
ū∈PC([ti,ti+T ],Rm)

JT,µ(x(ti), ū) (3.50a)

subject to

˙̄x(t′;x(ti), ti) = f(x̄(t′;x(ti), ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (3.50b)
x̄(ti;x(ti), ti) = x(ti) , (3.50c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (3.50d)

in which

JT,µ(x(ti), ū) =

ti+T∫
ti

β(t′ − ti)F (x̄(t′;x(ti), ti), ū(t′)) dt′ (3.50e)

with β(t) = eµt for some constant µ ∈ R≥0 being an exponential weighting on the stage cost
and no terminal cost terms are considered.

Remark 3.33. The exponential weighting introduced in (3.50e) is inspired by a loosely
related exponential weighting used in Reble et al. (2011a) for the definition of terminal
cost terms for nonlinear time-delay systems, see also Section 4.3.4. A negative exponential
weighting µ ∈ R<0 is sometimes used as a discount factor in the framework of economic
MPC, see, e.g., Huang et al. (2011); Würth et al. (2009).

The minimizer of Problem 3.32 and the associated optimal cost are again denoted by
u∗T (t′;x(ti), ti) for all t′ ∈ [ti, ti + T ] and J∗T (x(ti)), respectively. The control input to the
system is defined in the usual continuous-time receding horizon fashion.

Algorithm 3.34 (Unconstrained Model Predictive Control with Exponential Weighting).
At each sampling instant ti = iδ, i ∈ N0, measure the state x(ti) and solve Problem 3.32.
Apply the input

uMPC(t) = u∗T (t;x(ti), ti) , ti ≤ t < ti + δ (3.51)

to the system until the next sampling instant ti+1 = ti + δ.

3.4.2 Asymptotic Stability

Following the analysis of Section 3.2, we consider the two consecutive sampling instants
t0 = 0 and t1 = δ and we will use the abbreviation F ∗(t; ti) introduced in (3.5). The optimal
cost is denoted by J∗T,µ(x(ti)) and we have by definition

J∗T,µ(x(ti)) =

ti+T∫
ti

β(t′ − ti)F ∗(t′; ti)dt′ . (3.52)

In contrast to Sections 3.2 and 3.3, we restrict ourselves to the exponential controllability
assumption with a minor addition as follows.
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Assumption 3.11 (Exponential Controllability). Assumption 3.6 in Section 3.2.3 is
satisfied for a decay rate λ > µ ≥ 0.

As already mentioned, exponential controllability is a common assumption in uncon-
strained MPC (Grüne, 2009; Grüne and Pannek, 2011; Grüne et al., 2010a) and a special case
of Assumption 3.5, which is satisfied with B(T ) = C

λ
(1− e−λT ) whenever the exponential

controllability assumption holds.
Similar to the results of Lemmata 3.14 and 3.15, the exponential controllability assumption

allows to give upper bounds on the optimal cost over certain intervals as stated in the
following lemma.

Lemma 3.35 (Calculation of Ξµ and γµ). Suppose that Assumptions 3.1–3.4 and the
Exponential Controllability Assumption 3.11 are satisfied. Then,

J∗T,µ(x(δ)) ≤ Ξµ

T∫
δ

β(t′)F ∗(t′; 0)dt′ , (3.53a)

T∫
δ

β(t′)F ∗(t′; 0)dt′ ≤ γµ

δ∫
0

β(t′)F ∗(t′; 0) dt′ , (3.53b)

in which Ξµ and γµ are defined by

e−µδ

Ξµ

= 1−
(
e(λ−µ) δ − 1

e(λ−µ)T − 1

) 1
C

, (3.54a)

1

γµ
=

(
1− e−(λ−µ)T

e−(λ−µ) δ − e−(λ−µ)T

) 1
C

− 1 . (3.54b)

Proof. Due to (3.52) and the definition of β(t), we have

J∗T,µ(x(δ)) =

δ+T∫
δ

β(t′ − δ)F ∗(t′; δ)dt′ = e−µδ
δ+T∫
δ

β(t′)F ∗(t′; δ)dt′ .

The Exponential Controllability Assumption 3.11 and optimality of J∗T,µ(x(δ)) then imply
that

eµδJ∗T,µ(x(δ)) ≤
t∗∫
δ

β(t′)F ∗(t′; 0)dt′ +Bµ(T + δ − t∗)β(t∗)F ∗(t∗; 0) (3.55)

holds for all t∗ ∈ [δ, T ] with Bµ(T ) = C
λ−µ (1 − e−(λ−µ)T ). Noting the similarity of (3.8a)

and (3.55) allows to follow the proof of Lemma 3.14. Defining F̂ ∗(t) : [δ, T ]→ R≥0 by

F̂ ∗(t) = e−µ(t−δ) J∗T,µ(x(δ))

Bµ(T + δ − t)
e
−

t∫
δ

1
Bµ(T+δ−t′) dt

′
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allows to show
∫ T
δ
β(t′)F̂ ∗(t′)dt′ ≤

∫ T
δ
β(t′)F ∗(t′; 0)dt′ using (3.55). Since J∗T,µ(x(δ)) =

Ξµ

T∫
δ

β(t′)F̂ ∗(t′)dt′, we have proved (3.53a) and (3.54a).

The proof of (3.53b) and (3.54b) follows exactly the lines of the proof of Lemma 3.15 and
replacing F ∗(t′; 0) and F̂ ∗(t) by β(t′)F ∗(t′; 0) and β(t′)F̂ ∗(t), respectively, in all expressions.

Comparing these results to Section 3.2.3, or equivalently by substitution of B(T ) =
C
λ

(1 − e−λT ) in the results of Lemmata 3.14 and 3.15, we note two differences. First,
the decay rate λ is replaced by λ − µ in all expressions. Second, the expression for Ξ is
multiplied by an additional term e−µδ. This additional factor is directly caused by shifting
the prediction horizon when using an exponential weighting in the stage cost and beneficial
for achieving α > 0, and, hence, for stability guarantees.

Theorem 3.36 (Stability of Unconstrained MPC with Exponential Weighting). Suppose
that Assumptions 3.1–3.4 and Exponential Controllability Assumption 3.11 are satisfied for
the nonlinear system (3.1). Furthermore, suppose that

αµ = 1− γµ (Ξµ − 1) > 0 , (3.56)

with Ξµ and γµ defined in (3.54). Then, the closed-loop system resulting from the appli-
cation of the model predictive controller according to Algorithm 3.34 to system (3.1) is
asymptotically stable.

Proof. The proof follows closely the proofs of Theorems 3.16 and 3.29. By noting that
Ξµ > 1, we obtain

J∗T,µ(x(δ))− J∗T,µ(x(0))
(3.52)
= J∗T,µ(x(δ))−

T∫
0

β(t′)F ∗(t′; 0) dt′

(3.53a)
≤ (Ξµ − 1)

T∫
δ

β(t′)F ∗(t′; 0) dt′ −
δ∫

0

β(t′)F ∗(t′; 0) dt′

(3.53b)
≤ (γµ (Ξµ − 1)− 1)︸ ︷︷ ︸

=−αµ

δ∫
0

β(t′)F ∗(t′; 0)dt′ . (3.57)

For αµ > 0, asymptotic stability follows analogue to the proof of Theorem 3.16 when
replacing J∗T by J∗T,µ.

The stability condition in the preceding theorem can be improved if a growth condition
on the system is taken into account, see Assumption 3.7 in Section 3.2.3 and Grüne et al.
(2010b). In particular, this additional information will allow to guarantee stability for
shorter prediction horizons if a small sampling time is chosen.

Theorem 3.37. Suppose that Assumptions 3.1–3.4, the Exponential Controllability As-
sumption 3.11 and Assumption 3.7 are satisfied for the nonlinear system (3.1). Then,
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Equation (3.53a) and the assertion of Theorem 3.36 also hold for Ξµ replaced by

e−µδ

Ξµ

= 1− exp

− T∫
δ

1

Bµ,λg(T + δ − t∗)
dt∗

 .

in which

Bµ,λg(T ) = min
{
Bµ(T ) , Bλg(T )

}
, Bλg(T ) =

1

λg + µ
(e(λg+µ)T − 1) .

Proof. Assumption 3.7, i.e., the growth condition, implies that (3.55) is also satisfied when
Bµ(T ) is replaced by Bλg(T ). Hence, Bµ(T ) can be replaced by Bµ,λg(T ) in the remaining
parts of the proof of Lemma 3.35. This allows to follow the proof of Lemma 3.14 in order
to complete the proof.

3.4.3 Numerical Example

In order to briefly illustrate the effect of the newly introduced exponential weighting, we
consider the following case:

C = 2.5 , λ = 4 , and δ = 0.15 .

On the left hand side of Figure 3.6, the values for α given by Theorem 3.36 are shown as
a function of the prediction horizon T and the parameter of the exponential weighting µ.
On the right hand side of Figure 3.6, the smallest prediction horizon is shown for which
asymptotic stability is guaranteed by virtue of Theorem 3.36, i.e.,

T ∗ = inf
T∈R≥0

T , s.t. α > 0.

In this example, we see the benefits of the additional exponential weighting with respect to
the minimal prediction horizon with guaranteed stability. However, we also note that T ∗
does not necessarily decrease monotonically in µ. Unfortunately, the opposite can also be
the case, i.e., the use of exponential weighting might require longer prediction horizons for
satisfaction of the sufficient stability conditions established in the present work.

3.4.4 Summary

In this section, we presented an unconstrained MPC scheme using an additional exponential
weighting term on the stage cost along the entire prediction horizon. Although only the first
part of the optimal open-loop input trajectory calculated at each sampling instant is actually
applied in MPC, the last part of the prediction horizon plays a crucial role with respect
to stability. Similar to the use of a terminal cost function, stability guarantees for shorter
prediction horizons are possible when using the exponential weighting proposed in this
section. Another advantage is that this weighting allows to consider a local controllability
assumption in combination with a generalized terminal constraint in order to guarantee
stability, see Section 3.6 for more details.
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Figure 3.6: Left: αµ from (3.56) in Theorem 3.36 as a function of the prediction horizon T
and the exponential weighting parameter µ. The red line depicts the stability
limit αµ = 0. Right: Shortest prediction horizon T ∗ which guarantees αµ > 0
and, therefore, closed-loop stability.

3.5 A Unifying Framework using Integral Terminal Cost
Terms

As discussed in the introduction of this chapter, one can distinguish two classes of MPC
schemes with guaranteed stability, CLF-MPC and unconstrained MPC. In the literature,
both classes have mostly been considered separately. The results in this section provide a
first step towards a unifying view on both classes of schemes. In contrast to Section 3.3, in
which we have investigated the use of assumptions from both MPC schemes, we propose
the use of one generalized assumption in this section. In our general framework, we identify
three main ingredients for stability guarantees:

• a generalized terminal cost term,

• a generalized terminal constraint, and

• a generalized controllability assumption.

This allows to consider both classes in a unified way and to find new stabilizing MPC
schemes, which can be regarded as in-between of both classes. The potential advantages of
these in-between schemes can be characterized as follows: In contrast to CLF-MPC, no
control Lyapunov function is required, but only an upper bound on the optimal cost has to
be known. In contrast to the previous results on unconstrained MPC, this upper bound
does not have to hold globally, but is sufficient locally in a (possibly small) region around
the origin, provided this region can be reached in finite time and an additional terminal
constraint is added to the optimization problem.

3.5.1 MPC Setup with Integral Terminal Cost

The open-loop finite horizon optimal control problem at sampling instant ti given measured
state x(ti) is formulated as follows.
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Problem 3.38.

minimize
ū∈PC([ti,ti+T ],Rm)

JT,τ (x(ti), ū) (3.58a)

subject to

˙̄x(t′;x(ti), ti) = f(x̄(t′;x(ti), ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (3.58b)
x̄(ti;x(ti), ti) = x(ti) , (3.58c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (3.58d)
x̄(t′′;x(ti), ti) ∈ Ω , t′′ ∈ [ti + T − τ, ti + T ] , (3.58e)

in which

JT,τ (x(ti), ū) =

ti+T∫
ti

F (x̄(t′;x(ti), ti), ū(t′)) dt′ +

ti+T∫
ti+T−τ

G(x̄(t′;x(ti), ti), ū(t′)) dt′ , (3.58f)

and τ ∈ (0, T ] is a constant design parameter.

We use an integral term, defined on an interval of length τ as terminal cost functional
in the definition of the finite horizon cost functional JT,τ . This is in contrast to the use
of only one single terminal cost term evaluated at the end of the prediction horizon T as
common in the literature. Consequently, we do not only impose the terminal constraint on
the “last” state, i.e., x̄(ti + T ;x(ti), ti) ∈ Ω, but actually require all states after a certain
time ti + T − τ to lie within Ω. The design parameter τ gives us flexibility in our MPC
setup and allows to recover both, unconstrained MPC results and CLF-MPC. For more
details on connections to previous MPC schemes, we refer to Section 3.5.3.
For a given sampling time δ with 0 < δ ≤ T , the control input to the system is again

defined in the usual continuous-time receding horizon fashion.

Algorithm 3.39 (Model Predictive Control with Integral Terminal Cost). At each sampling
instant ti = iδ, i ∈ N0, measure the state x(ti) and solve Problem 3.38. Apply the input

uMPC(t) = u∗T (t;x(ti), ti) , ti ≤ t < ti + δ (3.59)

to the system until the next sampling instant ti+1 = ti + δ.

3.5.2 Asymptotic Stability

We make the following assumptions on the weighting functions F and G and on the terminal
region Ω.

Assumption 3.12. The stage cost F : Rn × U → R≥0 and the terminal cost function
G : Rn×U→ R≥0 are continuous, F (0, 0) = G(0, 0) = 0 and there are class K∞ functions
αF , αG : R≥0 → R≥0 such that for all x ∈ Rn and u ∈ U

F (x, u) ≥ F (x, 0) ≥ αF (|x|) (3.60a)
and G(x, u) ≥ G(x, 0) ≥ αG(|x|) . (3.60b)

The terminal region Ω ⊆ Rn is a closed set and contains 0 ∈ Rn in its interior.
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In order to simplify the subsequent analysis, we also make the following technical
assumption throughout the remainder of this section.

Assumption 3.13. The sampling time δ and the prediction horizon T are chosen such
that

δ < T/2 .

In most practical cases, a small sampling time is desirable in any case due to robustness
considerations. Moreover, similar results to the ones presented in this section can also be
derived for δ ≥ T/2 as well, but are omitted for a concise presentation.

In the following analysis, similar to the previous sections, we consider the two consecutive
sampling instants t0 = 0 and t1 = δ without loss of generality. Since system (3.1) is
time-invariant, all results hold analogously for any other two consecutive sampling instants
ti and ti+1. With slight abuse of notation, we use the following abbreviations

F ∗(t; ti) = F (x∗(t;x(ti), ti), u
∗
T (t;x(ti), ti)) , (3.61a)

G∗(t; ti) = G(x∗(t;x(ti), ti), u
∗
T (t;x(ti), ti)) , (3.61b)

for t ∈ [ti, ti + T ] and ti ∈ {0, δ}. From this definition, it directly follows that

J∗T,τ (x(ti)) =

ti+T∫
ti

F ∗(t′; ti)dt
′ +

ti+T∫
ti+T−τ

G∗(t′; ti)dt
′ .

We will use the following general result on asymptotic stability to derive our main results.
Also note the close relation to Proposition 3.9.

Lemma 3.40 (General Condition for Asymptotic Stability). Suppose the relation

J∗T,τ (x(δ)) ≤
T∫
δ

F ∗(t′; 0)dt′ +

T∫
T−τ

G∗(t′; 0)dt′ . (3.62)

holds for all functions F ∗(·; 0) : [0, T ] → R≥0 and G∗(·; 0) : [0, T ] → R≥0 resulting from
the optimization problem 3.38. Then, the closed-loop using MPC is asymptotically stable.

Proof. Similar to the result in Chen (1997) and the proof of Theorem 3.16, it can be shown
that J∗T,τ (x) is continuous in x at the origin. Condition (3.62) directly guarantees that

J∗T,τ (x(δ))− J∗T,τ (x(0)) ≤ −
δ∫

0

F ∗(t′; 0)dt′ .

Hence, J∗T,τ is non-increasing along trajectories of the closed-loop and stability directly

follows. Asymptotic stability follows from
∞∫
0

F (x(t′), u(t′))dt′ ≤ J∗T,τ (x(0)), the lower

bound (3.60), and Barbalat’s Lemma (Barbalat, 1959; Khalil, 2002). The uniform continuity
of the integrand is hereby guaranteed because of the continuity of f and compactness of
U.
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In order to guarantee asymptotic stability for our MPC scheme with integral terminal
cost, we use the following generalized controllability assumption, which is closely related to
(Grüne, 2009, Assumption 3.1), (Grüne et al., 2010a, Assumption 3.1) and Assumptions 3.5
and 3.9.

Assumption 3.14 (Generalized Controllability Assumption). For all T ′ ∈ [0, T ] and
x0 ∈ Ω, there exists a piece-wise continuous input trajectory û(·;x0) with û(t;x0) ∈ U for
all t ∈ [0, T ′] such that

a) the corresponding state trajectory satisfies x̄û(t) ∈ Ω for all t ∈ [0, T ′] (positive
invariance of Ω) and

b) the corresponding cost is bounded by

JT ′,τ ′(x0, û) ≤ BG(T ′)G(x0, 0) , (3.63)

in which BG : R≥0 → R≥0 is a continuous and positive function and τ ′ = min{T ′, τ}.
The following lemma gives a direct consequence of the generalized controllability assump-

tion.

Lemma 3.41 (Direct Consequence of Controllability Assumption 3.14). Suppose that
Assumptions 3.1–3.3, 3.12 and 3.13, and the Generalized Controllability Assumption 3.14
are satisfied for system (3.1) and let t = max{δ, T − τ}. Then the following holds for all
t∗ ∈ [t, T ]

J∗T,τ (x(δ)) ≤
t∗∫
δ

F ∗(t′; 0)dt′ +

max{T+δ−τ,t∗}∫
T+δ−τ

G∗(t′; 0)dt′ +BG(T + δ − t∗)G∗(t∗; 0) , (3.64a)

and the following holds for all t∗ ∈ [T − τ, T ]

T∫
t∗

F ∗(t′; 0) +G∗(t′; 0)dt′ ≤ BG(T − t∗)G∗(t∗; 0) . (3.64b)

Proof. For any t∗ ∈ [t, T ] define the control trajectory ũt∗ by

ũt∗(t) =

{
u∗T (t;x(0), 0), t ∈ [δ, t∗[
û(t− t∗;x∗(t∗;x(0), 0)), t ∈ [t∗, T + δ]

in which û is the input trajectory from Assumption 3.14 for initial state x∗(t∗;x(0), 0).
Since ũt∗ is a feasible, but not necessarily optimal, solution to the finite horizon optimal
control problem 3.38 for initial state x(δ), we obtain

J∗T,τ (x(δ)) ≤ JT,τ (x(δ), ũt∗)

≤
t∗∫
δ

F ∗(t′; 0)dt′ +

max{T+δ−τ,t∗}∫
T+δ−τ

G∗(t′; 0)dt′ + JT+δ−t∗,min{T+δ−t∗,τ}(x
∗(t∗;x(0), 0), û)

(3.63)
≤

t∗∫
δ

F ∗(t′; 0)dt′ +

max{T+δ−τ,t∗}∫
T+δ−τ

G∗(t′; 0)dt′ +BG(T + δ − t∗)G∗(t∗; 0) ,
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which proves (3.64a). In order to prove Inequality (3.64b), note that the principle of
optimality guarantees optimality of u∗T (t;x(0), 0) when considering the end-piece of the
optimal cost J∗T,τ (x(0)) on any interval [t∗, T ]. For t∗ ∈ [T − τ, T ], we can use (3.63)
and (3.64b) directly follows.

Another intermediate result based on the Generalized Controllability Assumption can be
stated as follows.

Lemma 3.42 (Calculation of γτ ). Suppose that Assumptions 3.1–3.3, 3.12, 3.13, and the
Generalized Controllability Assumption 3.14 are satisfied for system (3.1) and τ > δ. Then,

T∫
T+δ−τ

G∗(t′; 0)dt′ ≤ γτ

T+δ−τ∫
T−τ

G∗(t′; 0) dt′ , (3.65)

in which

1

γτ
= exp

 T+δ−τ∫
T−τ

1

BG(T − t∗)
dt∗

− 1 . (3.66)

Proof. Equation (3.64b) in Lemma 3.41 yields for all t∗ ∈ [T − τ, T ]

T∫
t∗

G∗(t′; 0)dt′ ≤ BG(T − t∗)G∗(t∗; 0) . (3.67)

Consider any piece-wise continuous function G∗(t; 0) : [T − τ, T ]→ R≥0 satisfying (3.67)
and define the function Ĝ∗(t) : [T − τ, T + δ − τ ]→ R≥0 by

Ĝ∗(t) =

T∫
T+δ−τ

G∗(t′; 0)dt′

BG(T − t)
e
−

t∫
T+δ−τ

1
BG(T−t′) dt

′

. (3.68)

In the next step, we show that for all piece-wise continuous functions G∗(t; 0) satisfy-
ing (3.67), the following holds

T+δ−τ∫
T−τ

Ĝ∗(t′)dt′ ≤
T+δ−τ∫
T−τ

G∗(t′; 0)dt′ . (3.69)

To this end, note that the anti-derivative of Ĝ∗ is
t∫
Ĝ∗(t′)dt′ = −

T∫
T+δ−τ

G∗(t′; 0)dt′e
−

t∫
T+δ−τ

1
BG(T−t′) dt

′

+ C

with C ∈ R. Hence, Ĝ∗ satisfies (3.67) with equality for all t∗ ∈ [T − τ, T + δ − τ ] in the
sense of

T+δ−τ∫
t∗

Ĝ∗(t′)dt′ +

T∫
T+δ−τ

G∗(t′; 0)dt′ = BG(T − t∗) Ĝ∗(t∗) .
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For any G∗(t; 0) satisfying (3.67), we know that G∗(δ; 0)− Ĝ∗(δ) ≥ 0 and
T+δ−τ∫
t∗

(
G∗(t′; 0)− Ĝ∗(t′)

)
dt′ ≤ BG(T − t∗)

(
G∗(t∗; 0)− Ĝ∗(t∗)

)
holds for all t∗ ∈ [T − τ, T +δ− τ ]. Define G(t∗) = G∗(T +δ− τ − t∗; 0)− Ĝ∗(T +δ− τ − t∗),
for which G(0) ≥ 0 and

∫ t∗
0

G(t′)dt′ ≤ BG(τ − δ + t∗)G(t∗) for all t∗ ∈ [0, δ]. Due to the
comparison lemma (Khalil, 2002), it follows that G(t∗) ≥ 0. Consequently, Equation (3.69)
holds. On the other hand, direct calculations show that

T+δ−τ∫
T−τ

Ĝ∗(t′) dt′ =
1

γτ

T∫
T+δ−τ

G∗(t′; 0)dt′ , (3.70)

with γτ defined by (3.66). Hence, using (3.69) and (3.70) implies (3.65). This completes
the proof.

Using the previous intermediate results, we can finally state the main result of this section
in the following theorem.

Theorem 3.43 (Stability of MPC with Integral Terminal Cost). Suppose that Assump-
tions 3.1–3.3, 3.12, 3.13, and the Generalized Controllability Assumption 3.14 are satisfied
for system (3.1) and

δ+τ∫
δ

1
BG(t′)

dt′ ≥ 1 , if τ ≤ δ

(Ξτ − 1) γτ ≤ 1 , if τ > δ

(3.71)

with γτ defined in Lemma 3.42 and

1

Ξτ

= 1− exp

− T∫
T+δ−τ

1

BG(T + δ − t∗)
dt∗

 . (3.72)

Then, the closed-loop system resulting from the application of the model predictive controller
according to Algorithm 3.39 to system (3.1) is asymptotically stable. The region of attraction
is the set of all initial conditions for which Problem 3.38 is initially feasible.

Proof. We can distinguish three different cases A, B, and C for τ as shown in Figure 3.7,
of which cases B and C can be treated in the same way if Assumption 3.13 holds.
Case A (τ ≤ δ): Due to Lemma 3.41, Equation (3.64a), and t = T − τ , we obtain

J∗T,τ (x(δ)) ≤ min
t∗∈[T−τ,T ]

( t∗∫
δ

F ∗(t′; 0)dt′ +BG(T + δ − t∗)G∗(t∗; 0)
)

≤
T∫
δ

F ∗(t′; 0)dt′ + min
t∗∈[T−τ,T ]

(
BG(T + δ − t∗)G∗(t∗; 0)

)

≤
T∫
δ

F ∗(t′; 0)dt′ +
1

T∫
T−τ

1
BG(T+δ−t∗)dt

∗

T∫
T−τ

G∗(t′; 0)dt′ .
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Hence, if

1
T∫

T−τ

1
BG(T+δ−t∗)dt

∗

≤ 1 or, equivalently,
δ+τ∫
δ

1

BG(t′)
dt′ ≥ 1 , (3.73)

then (3.62) holds and asymptotic stability follows from Lemma 3.40.
Cases B and C (τ > δ): We distinguish two subcases in the first step. In the first case, if

J∗T,τ (x(δ)) ≤
T∫
δ

F ∗(t′; 0)dt′, then (3.62) is satisfied and asymptotic stability follows directly

from Lemma 3.40. Hence, we will only consider the second case J∗T,τ (x(δ)) >
T∫
δ

F ∗(t′; 0)dt′

in the following. Equation (3.64a) in Lemma 3.41 and F ∗ ≥ 0 then provide

J∗T,τ (x(δ))−
T∫
δ

F ∗(t′; 0)dt′ ≤
t∗∫

T+δ−τ

G∗(t′; 0)dt′ +BG(T + δ − t∗)G∗(t∗; 0) (3.74)

for all t∗ ∈ [T + δ − τ, T ]. Consider any piece-wise continuous function G∗(t; 0) : [T + δ −
τ, T ]→ R≥0 satisfying (3.74) and define the function Ĝ∗(t) : [T + δ − τ, T ]→ R≥0 by

Ĝ∗(t) =

J∗T,τ (x(δ))−
T∫
δ

F ∗(t′; 0)dt′

BG(T + δ − t)
e
−

t∫
T+δ−τ

1
BG(T+δ−t′) dt

′

. (3.75)

In the next step, we show that for all piece-wise continuous functions G∗(t; 0) satisfy-
ing (3.74), the following holds

T∫
T+δ−τ

Ĝ∗(t′)dt′ ≤
T∫

T+δ−τ

G∗(t′; 0)dt′ . (3.76)

To this end, note that Ĝ∗(t) satisfies (3.74) with equality (instead of inequality) for all t∗ ∈
[T+δ−τ, T ], which can be shown by direct evaluation of (3.74) for t∗ = T+δ−τ and taking
the derivative with respect to t∗ on both sides of (3.74). This step is similar to the proof

of Lemma 3.14. For the sake of contradiction, assume
T∫

T+δ−τ
Ĝ∗(t′)dt′ >

T∫
T+δ−τ

G∗(t′; 0)dt′.

But then there exists a t ∈ [T + δ − τ, T ] for which

t∫
T+δ−τ

Ĝ∗(t′)dt′ ≥
t∫

T+δ−τ

G∗(t′; 0)dt′ and Ĝ∗(t) > G∗(t; 0) .

But this contradicts (3.74), which shows that (3.76) holds. On the other hand, direct
calculations reveal

J∗T,τ (x(δ))−
T∫
δ

F ∗(t′; 0)dt′ = Ξτ

T∫
T+δ−τ

Ĝ∗(t′)dt′ , (3.77)
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Case A: τ ≤ δ

t

0 δ T T + δ

F ∗(·; 0) G∗(·; 0)

T − τ = t

F ∗(·; δ) G∗(·; δ)

Case B: δ < τ ≤ T − δ

t

0 δ T T + δ

F ∗(·; 0) G∗(·; 0)

T − τ = t

F ∗(·; δ) G∗(·; δ)

Case C: T − δ < τ

t

0 δ = t T T + δ

F ∗(·; 0) G∗(·; 0)

F ∗(·; δ) G∗(·; δ)

Figure 3.7: Sketch of the Generalized Terminal Cost and possible different cases depending
on τ .

in which Ξτ is defined in (3.72). Combining (3.76) and (3.77) yields

J∗T,τ (x(δ))−
T∫
δ

F ∗(t′; 0)dt′ ≤ Ξτ

T∫
T+δ−τ

G∗(t′; 0)dt′

(3.65)
≤ (Ξτ − 1) γτ

T+δ−τ∫
T−τ

G∗(t′; 0)dt′ +

T∫
T+δ−τ

G∗(t′; 0)dt′ .

Thus, if (Ξτ − 1) γτ ≤ 1, then Inequality (3.62) holds and asymptotic stability follows from
Lemma 3.40.

3.5.3 Connection to Previous Results and Special Cases

In this section, we discuss the connections of the proposed unifying scheme to previous
MPC schemes, namely CLF-MPC and unconstrained MPC.

CLF-MPC

In this paragraph, we investigate the connections of our proposed scheme to the classical
results on CLF-MPC, see, e.g., Chen and Allgöwer (1998); Fontes (2001); Mayne et al.
(2000) and Section 2.1.3.

Following the references cited, we assume the existence of a terminal cost function
E : Rn → R≥0 satisfying the following assumptions.
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Assumption 3.15. E is continuously differentiable, E(0) = 0, and there is class K∞
function αE : R≥0 → R≥0 such that for all x ∈ Rn

E(x) ≥ αE(|x|) .

Furthermore, the terminal region Ω ⊆ Rn is a closed set, contains 0 ∈ Rn in its interior,
and there is a local feedback law k : Ω→ U such that for all x ∈ Ω

∂E

∂x
f(x, k(x)) ≤ −F (x, k(x))− εE(x) . (3.78)

We can choose G(x, u) = 1
τ
E(x) in our setup with integral terminal cost in order to

approximate the terminal cost function E. The following stability result is a consequence
of our main result stated in Theorem 3.43.

Proposition 3.44. Suppose that Assumptions 3.1–3.3, 3.12, 3.13, and 3.15 are satisfied
for system (3.1) and G(x, u) = 1

τ
E(x). Then, for all ε > 0, there exists a τ > 0 sufficiently

small such that the closed-loop system resulting from the application of the model predictive
controller according to Algorithm 3.39 to system (3.1) is asymptotically stable.

Proof. Since we only need to find a τ sufficiently small, we can assume τ < δ in the
following. Consider any x0 ∈ Ω and denote the closed-loop trajectory resulting from the
local feedback k by x̄(t;x0) for t ∈ R≥0, i.e.,

˙̄x(t;x0) = f(x̄(t;x0), k(x̄(t;x0))) , x̄(0;x0) = x0 .

Furthermore, define the following abbreviations

û(t;x0) = k(x̄(t;x0)) , F̄k(t) = F (x̄(t;x0), k(x̄(t;x0))) , and Ēk(t) = E(x̄(t;x0)) .

Due to (3.78), the following holds for all T ∈ R≥0

T∫
0

(
F̄k(t

′) + εĒk(t
′)
)
dt′ + Ēk(T ) ≤ Ēk(0) ,

and consequently

JT,τ (x0, û) =

T∫
0

F̄k(t
′)dt′ +

T∫
T−τ

Ēk(t
′)

τ
dt′ =

1

τ

T∫
T−τ

 T∫
0

F̄k(t
′′)dt′′ + Ēk(t

′)

 dt′

≤ 1

τ

T∫
T−τ

Ēk(0)− Ēk(T )− ε
t′∫

0

Ēk(t
′′)dt′′ + Ēk(t

′)

 dt′

= Ēk(0) +
1

τ

T∫
T−τ

Ēk(t′)− Ēk(T )− ε
t′∫

0

Ēk(t
′′)dt′′

 dt′.

Moreover, we know that Ēk(t) ≤ e−ε(t−(T−τ))Ēk(T − τ) for t ≥ T − τ in account of (3.78).

Hence,
T∫

T−τ
Ēk(t

′)dt′ ≤ 1−e−ετ
ε

Ēk(T − τ). On the other hand,
T∫

T−τ
ε
t′∫
0

Ēk(t
′′)dt′′dt′ ≥ ε(T −
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τ)Ēk(T −τ). If τ > 0 is chosen small enough such that 1−e−ετ ≤ ε2(T −τ) or, equivalently,
τ ≤ − ln(1− ε2(T − τ))/ε, then

JT,τ (x0, û) ≤ Ēk(0) = τ G(x0, 0) .

Therefore, Assumption 3.14 is satisfied with BG(T ) = τ and the result follows from
Theorem 3.43.

Remark 3.45. In the limit case τ → 0, ε in (3.78) can be chosen arbitrarily close
to zero and the integral terminal cost term

∫ T
T−τ G(x, u)dt′ becomes E(x(T )). Hence,

Proposition 3.44 recovers the stability result of the classical CLF-MPC, see Theorem 2.6
and (Chen and Allgöwer, 1998; Fontes, 2001; Mayne et al., 2000). It is evident that the
proof of this result via the limit case of an integral terminal cost term is more complicated
and less attractive than the direct proofs given in the references (Chen and Allgöwer, 1998;
Fontes, 2001; Mayne et al., 2000; Rawlings and Mayne, 2009). However, it demonstrates
the connection between our proposed framework and classical results.

Unconstrained MPC

In this paragraph, we discuss the connection of our proposed scheme to existing uncon-
strained MPC schemes, see, e.g., the results in discrete-time by (Grimm et al., 2005; Grüne,
2009; Grüne et al., 2010a) and the results for continuous-time systems in Section 3.2.

The choice of τ = T , Ω = Rn, and G(x, u) = λF (x, u) with some constant λ ∈ R>0

directly recovers the unconstrained MPC setup without additional terminal cost terms.
Furthermore, Assumption 3.14 is satisfied for BG(t) = 1+λ

λ
B(t), in which B was defined in

Assumption 3.5. Comparing the results of Theorem 3.43 to the main result of Section 3.2
stated in Theorem 3.16 reveals that we recover the stability results of the unconstrained
MPC scheme for λ→∞.
It can be shown that this estimate is optimal in the sense of being a solution to an

infinite-dimensional optimization problem based on the controllability assumption, see
Section 3.2 and, in particular, Theorem 3.18 for more details.

3.5.4 Improved Stability Conditions

As discussed in Section 3.5.3, the conditions for asymptotic stability presented in Theo-
rem 3.43 do not fully recover the results of Theorem 3.16 if a finite λ is chosen. Indeed,
the conditions are more conservative in some sense. One reason for the conservativeness is
that we have not made any assumptions so far about a connection between F and G in
Section 3.5, respectively. Hence, we will use the following assumption in the following.

Assumption 3.16 (Compatibility of F and G). There exist positive constants 0 < λ ≤ λ
such that for all x ∈ Rn, u ∈ Rm

λF (x, u) ≤ G(x, u) ≤ λF (x, u) . (3.79)

For the investigation of an unconstrained MPC setup as in Theorem 3.16, it is clear that
an even stronger condition holds, namely G(x, u) = λF (x, u) with λ = λ = λ. Furthermore,
Assumption 3.16 is always satisfied when considering quadratic cost terms.
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Close inspection reveals that Cases A and B do not change when using Assumption 3.16
in the proof of Theorem 3.43. Indeed, Case C is the interesting part with the connection
to (Reble and Allgöwer, 2011, Theorem 6). Combining (3.64b) and (3.79) yields for all
t∗ ∈ [T − τ, T ]

T∫
t∗

G∗(t′; 0)dt′ ≤ Bλ(T − t∗)G∗(t∗; 0) , (3.80)

in which Bλ(T
′) = λ

λ+1
BG(T ′). Careful inspection reveals that the result of Lemma 3.42

then holds with B(t) replaced by Bλ(t) in (3.66). Since Bλ(t) ≤ B(t), this results in better
estimates of the prediction horizon required to guarantee asymptotic stability.
These results in combination with BG(t) = 1+λ

λ
B(t) as discussed in Section 3.5.3 allow

to recover the results on unconstrained MPC of Theorem 3.16.

3.5.5 Illustrative Example

Consider the unstable nonlinear system

ẋ1(t) = x1(t) + u(t) , (3.81a)
ẋ2(t) = (x1(t) + u(t))3 , (3.81b)

with input constraint U = [−3, 3]. By a simple input transformation, the system can
be transformed into the cubic integrator, which was considered in Section 3.3.3 and in
Grimm et al. (2005) formulated in a discrete-time version. Similar to the cubic integrator,
the system is not stabilizable by continuous state feedback and, in particular, the Jacobi
linearization of the system is not asymptotically stabilizable. Therefore, the design of a
corresponding control Lyapunov function is a difficult task, which makes CLF-MPC with
any non-trivial terminal region Ω 6= {0} unattractive for this problem. Although it is
difficult to design a stabilizing state feedback for this problem, an open-loop control is much
more simple to obtain. To this end, we consider the input transformation v(t) = u(t) +x1(t)
and the open-loop control given by four piece-wise constant transformed input values
v(t) = vi for t ∈ [i− 1, i[ and i ∈ {1, . . . , 4}. Choosing vi as{

−x1(0),
(
−0.5 +

√
7/12

)
Ψ,
(
−0.5−

√
7/12

)
Ψ,Ψ

}
,

in which Ψ = (x2(0) − x1(0)3)1/3, drives the system to the origin at time t = 4, see
Section 3.3.3 and Grimm et al. (2005). Due to the input constraints, it is clear that this
open-loop control is only feasible in some region around the origin. Hence, we will consider
only the region

Ω = {x : x1 ∈ [−1, 1], x2 ∈ [−1 + x3
1, 1 + x3

1]} (3.82)

for our controllability assumption. Figure 3.8 shows a sketch of Ω and note that |Ψ| ≤ 1
for all x(0) ∈ Ω, which guarantees that the input constraints are satisfied for the open-loop
control given above. One can show that Ω is invariant under the open-loop control defined
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x1

x2

−1 1−0.5 0.5

−2

2

−1

1

Ω

Figure 3.8: Sketch of the terminal region Ω defined in (3.82) for system (3.81).

above. For example, calculation of the state trajectory generated by the open-loop input
yields

x(1) =

(
0

Ψ3

)
, x(2) =

 (
−0.5 +

√
7/12

)
Ψ(

1 + (−0.5 +
√

7/12)3
)

Ψ3

 , x(3) =

(
−Ψ
−Ψ3

)
, x(4) = 0.

If we choose F (x, u) = G(x, u) = x6
1 + x2

2 + u6, straightforward calculations show for all
T ≥ τ > 0 and all x0 ∈ Ω

J∗T,τ (x0) ≤ 144G(x0, 0) .

Asymptotic stability is then guaranteed by Theorem 3.43 for τ > 718 and δ = 1. The
estimate of the minimal prediction horizon can be improved by using u(t) = −x1(0) as
another simple choice of an open-loop input, which shows J∗T,τ (x0) ≤ 2(T + τ)G(x0, 0) and
guarantees asymptotic stability for τ > 484.
The region of attraction contains all initial conditions, for which the system can be

steered to Ω in finite time T − τ . In contrast, an “unconstrained” MPC scheme without
additional integral terminal cost (G(x, u) = 0) would only guarantee asymptotic stability
for all initial conditions x0 ∈ Ω and would also require invariance of Ω as an additional
constraint. This underpins the advantages of our MPC scheme with integral terminal cost.

Note that the results on the prediction horizon are still conservative and can be further
improved by using additional information.

3.5.6 Summary

In this section, we presented a first step towards a unifying view on unconstrained MPC
schemes and MPC schemes using terminal constraints and control Lyapunov functions
as terminal weight. A novel MPC scheme using an integral terminal cost term has been
proposed and conditions for asymptotic stability have been derived. Both classes of previous
MPC schemes can be obtained as limit cases of this proposed framework. Furthermore, the
possible advantages of our novel MPC scheme were illustrated in a brief example.
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3.6 MPC with Exponential Weighting and Terminal
Constraints

Besides guaranteeing asymptotic stability for a possibly shorter prediction horizon, the
exponential weighting introduced in Section 3.4 has another advantage: If the exponential
controllability assumption is only satisfied locally in a (terminal) region Ω around the origin
and appropriately defined terminal constraints are added to the finite horizon optimal
control problem, we are still able to show stability of the closed-loop. Note that this is
not possible for the MPC schemes proposed in Sections 3.2 and 3.3 unless Γ = 1, see also
Remark 3.49 after Theorem 3.48 in Section 3.6.2. However, a similar result was presented
in Section 3.5 by considering a generalized integral cost. In this section, the exponential
weighting provides a similar additional weighting term as the generalized integral cost in
Section 3.5.

3.6.1 MPC Setup with Exponential Weighting and Terminal
Constraints

In this section, we consider a terminal region Ω ⊂ Rn which is closed and contains the
origin in its interior. The open-loop finite horizon optimal control problem at sampling
instant ti given measured state x(ti) is formulated as follows.

Problem 3.46.

minimize
ū∈PC([ti,ti+T ],Rm)

JT,µ,τ (x(ti), ū) (3.83a)

subject to

˙̄x(t′;x(ti), ti) = f(x̄(t′;x(ti), ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (3.83b)
x̄(ti;x(ti), ti) = x(ti) , (3.83c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (3.83d)
x̄(t′′;x(ti), ti) ∈ Ω , t′′ ∈ [ti + T − τ, ti + T ] , (3.83e)

in which

JT,µ,τ (x(ti), ū) =

ti+T∫
ti

β(t′ − ti)F (x̄(t′;x(ti), ti), ū(t′)) dt′ (3.83f)

in which β(t) = eµt for some constant µ ∈ R≥0 is an exponential weighting on the stage
cost and τ ∈ (0, T − δ] is a constant design parameter.

Note that we do not only impose the terminal constraint on the “last” state, i.e., x̄(ti +
T ;x(ti), ti) ∈ Ω, but actually require all states after a certain time ti + T − τ to lie within
Ω, which is similar to the generalized terminal constraint considered in Section 3.5.
For a given sampling time δ with 0 < δ ≤ T , the control input to the system is again

defined in the usual continuous-time receding horizon fashion.
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Algorithm 3.47 (Model Predictive Control with Local Exponential Controllability). At
each sampling instant ti = iδ, i ∈ N0, measure the state x(ti) and solve Problem 3.46.
Apply the input

uMPC(t) = u∗T (t;x(ti), ti) , ti ≤ t < ti + δ (3.84)

to the system until the next sampling instant ti+1 = ti + δ.

3.6.2 Asymptotic Stability

First, we make the following standard assumption regarding the terminal region.

Assumption 3.17. The terminal region Ω is a closed set and contains 0 ∈ Rn in its
interior.

Additionally, we modify Assumption 3.11 as follows.

Assumption 3.18 (Local Exponential Controllability). For all x0 ∈ Ω, there exists a
piece-wise continuous input trajectory û(·;x0, 0) with û(t;x0, 0) ∈ U for all t ∈ R≥0 such
that the corresponding state trajectory x̄û satisfies for all t ∈ R≥0

F (x̄û(t;x0, 0), û(t;x0, 0)) ≤ C e−λ t F (x0, 0) and x̄û(t;x0, 0) ∈ Ω ,

with overshoot constant C ≥ 1 and decay rate λ > µ > 0.

There are two main differences compared to Assumption 3.11. On the one hand, we now
only require the exponential controllability assumption to be satisfied locally in a (terminal)
region Ω around the origin. On the other hand, we additionally assume that this region is
controlled positively invariant.

We can summarize the main result of this section as follows.

Theorem 3.48 (Stability of MPC with Exponential Weighting and Terminal Constraints).
Suppose that Assumptions 3.1–3.4, 3.17, and Exponential Controllability Assumption 3.18
are satisfied for the system (3.1). Furthermore, assume that Ξµ,τ ≤ 1 for Ξµ,τ defined by

e−µδ

Ξµ,τ

= 1−
(
e(λ−µ) δ − 1

e(λ−µ) τ − 1

) 1
C

. (3.85)

Then, the closed-loop system resulting from the application of the model predictive controller
according to Algorithm 3.47 to system (3.1) is asymptotically stable. The region of attraction
is the set of all initial conditions for which Problem 3.46 is initially feasible.

Proof. We can distinguish two cases:

(i) J∗T,µ,τ (x(δ)) ≤
T∫
δ

β(t′)F ∗(t′; 0)dt′ and (ii) J∗T,µ,τ (x(δ)) >

T∫
δ

β(t′)F ∗(t′; 0)dt′ .

For case (i), Inequality (3.86) below is directly satisfied. For case (ii), we can follow the
proof of Lemma 3.35. Due to the definitions made and the local exponential controllability

60



3.6 MPC with Exponential Weighting and Terminal Constraints

assumption, we can show that (3.55) holds for all t∗ ∈ [T −τ, T ]. Hence,
∫ T
δ
β(t′)F̂ ∗(t′)dt′ ≤∫ T

δ
β(t′)F ∗(t′; 0)dt′ with F̂ ∗(t) : [δ, T ]→ R≥0 defined by

F̂ ∗(t) =


F ∗(t′; 0) , δ ≤ t < T − τ ,

e−µ(t−δ) J
∗
T,µ,τ (x(δ))−

∫ T−τ
δ β(t′)F̂ ∗(t′)dt′

Bµ(T+δ−t) e
−

t∫
T−τ

1
Bµ(T+δ−t′) dt

′

, T − τ ≤ t ≤ T .

Direct calculations show that

J∗T,µ,τ (x(δ)) =

∫ T−τ

δ

β(t′)F̂ ∗(t′)dt′ + Ξµ,τ

T∫
δ

β(t′)F̂ ∗(t′)dt′ .

Thus, similar to (3.53a) and (3.54a), we obtain

J∗T,µ,τ (x(δ)) ≤ max{Ξµ,τ , 1} ·
T∫
δ

β(t′)F ∗(t′; 0)dt′ . (3.86)

Hence, Inequality (3.86) is satisfied for both cases (i) and (ii). For Ξµ,τ ≤ 1, it directly
follows that

J∗T,µ,τ (x(δ)) ≤ J∗T,µ,τ (x(0))−
δ∫

0

β(t′)F ∗(t′; 0)dt′

and, consequently, asymptotic stability is guaranteed by analogue arguments to the proof
of Theorem 3.16 when replacing J∗T by J∗T,µ,τ .

Remark 3.49. The stability guarantee relies on the fact that µ > 0. Using only a local
controllability assumption does not allow to conclude (3.40) in Lemma 3.27 or (3.53b).
Hence, in order to show that αµ > 0 in (3.57), we require ΞE ≤ 1 in (3.34) or Ξµ,τ ≤ 1
in (3.53a), respectively. However, this is not possible for any finite horizon unless an
additional weighting is employed.

The result in this section can be regarded as in-between those established in (Chen
and Allgöwer, 1998; Fontes, 2001; Mayne et al., 2000) for MPC schemes using a terminal
constraint and a terminal cost, and the stability results for unconstrained MPC schemes
based on a controllability assumption, see (Grimm et al., 2005; Grüne, 2009; Grüne and
Pannek, 2011; Grüne et al., 2010a) and Sections 3.2 and 3.3. The advantages of this
in-between scheme can be summarized as follows: In contrast to (Chen and Allgöwer, 1998;
Fontes, 2001; Mayne et al., 2000), no control Lyapunov function is required. In contrast to
(Grimm et al., 2005; Grüne, 2009; Grüne and Pannek, 2011; Grüne et al., 2010a; Reble and
Allgöwer, 2012b), the controllability assumption does not have to be satisfied globally, but
is only required locally in a (possibly small) region around the origin. A possible drawback
of the current approach is that the region Ω has to be reachable in finite time and an
additional terminal constraint is added to the optimization problem. The latter does not
only confine the terminal state at the end of the prediction horizon, but all predicted states
in some interval of length τ .
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3.6.3 Summary

In this section, we have shown that an additional exponential weighting on the stage
cost allows to guarantee stability when only using a local controllability assumption in
combination with appropriate terminal constraints. This result is similar to the results
when using an integral terminal cost as introduced in Section 3.5.

3.7 Summary
In this chapter, we proposed five novel MPC schemes with explicit conditions on the length
of the prediction horizon in order to guarantee asymptotic stability of the closed-loop, see
also Figure 3.1 for a schematic overview. The cornerstone of the stability analysis of all
five schemes is an asymptotic controllability assumption, which requires the knowledge of
an appropriate upper bound on the optimal cost function in terms of the stage cost. Hence,
this assumption is less restrictive than the knowledge of a control Lyapunov function as
classically assumed in order to guarantee stability with MPC.
The main properties of the different schemes are summarized in Table 3.1. As already

mentioned, all five schemes allow stability guarantees without the knowledge of a local
control Lyapunov function. However, the schemes with exponential weighting proposed in
Sections 3.4 and 3.6 require the more restrictive exponential controllability assumption in
contrast to the asymptotic controllability assumption sufficient for the other approaches. The
three schemes proposed in Sections 3.2–3.4 each rely on a global controllability assumption,
more precisely a global upper bound on the optimal cost. In contrast, local information
is sufficient for the schemes in Sections 3.5 and 3.6, albeit additional terminal constraints
have to be added to the optimal control problem. Finally, the simplest MPC setup, i.e.,
MPC without terminal cost and without terminal constraints, has one advantage compared
to all other setups in providing a guaranteed performance estimate of the closed-loop.
The development of these novel MPC schemes also brings several new possible future

research directions, for which we refer to Section 5.2 at the end of this thesis.
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3.7 Summary

Table 3.1: Comparison of the different MPC schemes for nonlinear continuous-time systems
considered in Chapter 3.
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Unconstrained MPC
(Section 3.2)

X X X – X

Unconstrained MPC with
general terminal cost
(Section 3.3)

X/– X X – –

Unconstrained MPC with
exponential weighting
(Section 3.4)

X – X – –

MPC with integral terminal cost
(Section 3.5)

X X – X –

MPC with exponential weighting and
terminal constraints
(Section 3.6)

X – – X –
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Chapter 4

Model Predictive Control for Nonlinear
Time-Delay Systems

As discussed in Section 2.2.3, several methods for the stabilizing control of nonlinear
time-delay systems have been proposed in the literature, but most of these methods do
not allow to take hard constraints into account. For systems with constraints, model
predictive control (MPC) is an attractive choice as control method in general. While
there exists a significant number of publications on MPC for systems without delays in
the states, see Section 2.1.2, only few results are available concerning MPC for nonlinear
time-delay systems. In these results, stability of the closed-loop is guaranteed either by
using a global control Lyapunov functional (CLF) as terminal cost (Kwon et al., 2001a,b;
Lu, 2011; Mahboobi Esfanjani and Nikravesh, 2009a) or by an extended zero terminal
state constraint (Angrick, 2007; Raff et al., 2007). Both approaches are less attractive for
different reasons. The construction of a global CLF or a globally stabilizing controller is
particularly difficult in the presence of input constraints and can only be expected to be
feasible in rare special cases. Furthermore, the extended zero terminal state constraint is
particularly problematic from a computational point of view. The exact satisfaction of the
constraint does require an infinite number of iterations in the numerical optimization and
feasibility problems may occur for short prediction horizons. To overcome these difficulties,
we investigate the use of alternative MPC schemes for nonlinear time-delay systems in this
chapter. For a schematic overview of these schemes, see Figure 4.1.

First, we extend the well-known stability results for MPC with terminal cost and terminal
constraints, see Section 2.1.3 and the references therein, to nonlinear time-delay systems.
Our results contain the previous results for time-delay systems (using a global CLF or
an extended zero terminal state constraint) as special cases and are very similar to the
results for finite-dimensional systems. The main difference is the use of an appropriate
terminal cost functional instead of a terminal cost function and minor additional technical
details in the proof. Due to the infinite-dimensional nature of nonlinear time-delay systems,
more significant difficulties are encountered for the calculation of the terminal cost and
terminal constraints based on the Jacobi linearization following the well-known procedure
presented by Chen and Allgöwer (1998). We propose four different procedures in order to
overcome these difficulties. Although each procedure has different additional assumptions
and properties, each one contains the results for systems without delays as special case.

Second, two complementary unconstrained MPC schemes for nonlinear time-delay systems
are presented. In the first scheme, a local control Lyapunov functional is employed as in
the MPC scheme with terminal constraints. Despite removing the terminal constraint from
the optimal control problem, its satisfaction is nevertheless guaranteed for a defined set of
initial states, thereby extending previous results for finite-dimensional systems presented
by Limon et al. (2006). In the second scheme, we extend the results of Section 3.2 and
show stability without terminal cost terms. A stabilizing minimal prediction horizon is
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calculated based on a controllability assumption.
The remainder of this chapter is organized as follows. We present the problem setup

considered in this chapter in Section 4.1. In Section 4.2, we give stability conditions for
MPC with terminal cost and terminal constraints for nonlinear time-delay systems. In
Section 4.3, we propose four procedures for calculating the terminal cost and terminal
constraints based on the Jacobi linearization and discuss their properties. In Sections 4.4
and 4.5, we derive stability conditions for unconstrained MPC with and without terminal
cost, respectively. In Section 4.6, we illustrate and compare the results of this chapter with
two numerical examples: an academic example and a continuous stirred tank reactor with
recycle stream. Last, the results of this chapter are summarized in Section 4.7.

Parts of this chapter are based on Mahboobi Esfanjani et al. (2009); Reble and Allgöwer
(2010a,b, 2012a); Reble et al. (2011a,b,c).

4.1 Problem Setup

In this chapter, we consider nonlinear time-delay systems in continuous-time described by
the functional differential equation (FDE)

ẋ(t) = f(x(t), x(t− τ), u(t)) , (4.1a)
x(θ) = ϕ(θ) , ∀θ ∈ [−τ, 0] , (4.1b)

in which x(t) ∈ Rn is the instantaneous state at time t, x(t− τ) ∈ Rn is the delayed state,
and u(t) ∈ Rm is the control input subject to input constraints u(t) ∈ U ⊂ Rm. The
time-delay τ ∈ R>0 is constant and assumed to be known. The initial function is given
by ϕ ∈ Cτ , in which Cτ = C([−τ, 0],Rn) denotes the Banach space of continuous functions
mapping the interval [−τ, 0] ⊂ R into Rn.

We will use the following assumptions throughout this chapter.

Assumption 4.1. The function f : Rn × Rn × Rm → Rn is continuously differentiable
and f(0, 0, 0) = 0, i.e., xt,s = 0 is an equilibrium of system (4.1) for us = 0.

Assumption 4.2. System (4.1) has a unique solution for any initial function ϕ ∈ Cτ and
any piecewise- and right-continuous input function u : R≥0 → U.

Assumption 4.3. The input constraint set U ⊂ Rm is compact and contains the origin in
its interior.

The problem of interest is to stabilize the steady state xt,s = 0 via model predictive
control.

Remark 4.1. We do not consider systems with input or measurement delays in this thesis.
For these systems, stabilizing MPC schemes can be designed in a straightforward manner
by using a forward prediction of the state (Findeisen, 2004, Section 4.5).

Remark 4.2. In this chapter, we assume that the full state xt can be measured. Since the
segment xt ∈ Cτ is infinite-dimensional, this can be restrictive for practical applications.

66



4.1 Problem Setup

Stability
in NMPC
for TDS

Terminal
Constraints

(Raff et al., 2007)

Terminal Cost
(Global CLF)

(Kwon et al., 2001a)

Controllability
Assumption
(Section 4.5)

Local CLF and
Constraints
(Sections 4.2

and 4.3)

Unconstrained MPC
with Terminal Cost

(Section 4.4)

Figure 4.1: Schematic overview of MPC schemes for nonlinear time-delay systems.
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4.2 MPC Setup with Terminal Constraints and
Asymptotic Stability

The MPC setup considered in this chapter is closely related to the classical schemes
for delay-free systems which employ a terminal constraint and a terminal cost, see also
Theorem 2.6 and, e.g., the results of Chen and Allgöwer (1998); Mayne et al. (2000). A
locally asymptotically stabilizing control law is designed in some neighborhood Ω ⊆ Cτ of
the equilibrium. With this locally stabilizing controller, an upper bound on the infinite
horizon cost is computed and used as a terminal cost. Furthermore, a constraint is added
to the open-loop optimal control problem that requires the final state xt to lie within the
terminal region Ω.
The open-loop finite horizon optimal control problem at sampling instant ti given the

measured state xti is formulated as follows.

Problem 4.3.

minimize
ū∈PC([ti,ti+T ],Rm)

JT (xti , ū) (4.2a)

subject to

˙̄x(t′;xti , ti) = f(x̄(t′;xti , ti), x̄(t′ − τ ;xti , ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (4.2b)
x̄(ti + θ;xti , ti) = xti(θ) , θ ∈ [−τ, 0] , (4.2c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (4.2d)
x̄ti+T ∈ Ω , (4.2e)

in which

JT (xti , ū) =

ti+T∫
ti

F (x̄(t′;x(ti), ti), ū(t′)) dt′ + E(x̄ti+T ) .

In Problem 4.3, x̄(t′;xti , ti) is the predicted trajectory starting from initial condition xti
and driven by ū(t′) for t′ ∈ [ti, ti + T ]. The main difference to Problem 2.4 is that the
terminal cost E is a functional, and not only a function.
In order to guarantee asymptotic stability in the subsequent analysis, we require the

following technical assumption.

Assumption 4.4. The terminal region Ω ⊆ Cτ is a closed set and contains 0 ∈ Cτ in its
interior. The terminal cost functional E : Cτ → R≥0 is continuously differentiable, positive
definite, and there exists a class K∞ function αE : R≥0 → R≥0 such that E(xt) ≥ αE(|x(t)|).
The stage cost F : Rn × U → R≥0 is continuous, F (0, 0) = 0, and there is a class K∞
function αF : R≥0 → R≥0 such that

F (x, u) ≥ αF (|x|) for all x ∈ Rn , u ∈ U . (4.3)

We assume that the optimal open-loop control which minimizes JT (xti , ū) is given by
u∗T (t′;xti , ti) for all t′ ∈ [ti, ti + T ]. The associated optimal cost is denoted by J∗T (xti) and
the associated predicted trajectory is x∗T (t′;xti , ti), t′ ∈ [ti, ti + T ]. For given sampling time
δ with 0 < δ ≤ T , the control input to the system is defined by the following algorithm in
the usual receding horizon fashion.
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Algorithm 4.4 (Model Predictive Control for Nonlinear Time-Delay Systems). At each
sampling instant ti = iδ, i ∈ N0, measure the state xti and solve Problem 4.3. Apply the
input

uMPC(t) = u∗T (t;xti , ti) , ti ≤ t < ti + δ . (4.4)

to the system until the next sampling instant ti+1 = ti + δ.

The two main assumptions necessary for asymptotic stability of the closed-loop are given
in the following.

Assumption 4.5. The open-loop finite horizon problem 4.3 admits a feasible solution at
the initial time t = 0.

Assumption 4.6. For the nonlinear time-delay system (4.1), there exists a locally asymp-
totically stabilizing controller u(t) = k(xt) ∈ U such that the terminal region Ω is controlled
positively invariant and

∀xt ∈ Ω : Ė(xt) ≤ −F (x(t), k(xt)) . (4.5)

We can summarize the main result regarding asymptotic stability of the closed-loop
system as follows.

Theorem 4.5 (Stability of MPC for Nonlinear Time-Delay Systems). Consider the nonlin-
ear time-delay system (4.1) and suppose that Assumptions 4.1–4.6 are satisfied. Then, the
closed-loop system resulting from the application of the model predictive controller according
to Algorithm 4.4 to system (4.1) is asymptotically stable. The region of attraction is the set
of all initial conditions for which Problem 4.3 is initially feasible.

Proof. The proof is given in Appendix A.1.

Note that the previously existing MPC schemes for nonlinear time-delay systems, which
either use a global control Lyapunov functional (Kwon et al., 2001a,b; Mahboobi Esfanjani
and Nikravesh, 2009a) or an extended zero terminal state constraint (Angrick, 2007; Raff
et al., 2007), can be viewed as special cases of this general result. A similar result for
instantaneous MPC, i.e., for the limit δ → 0, has been reported in (Mahboobi Esfanjani,
Reble, Münz, Nikravesh, and Allgöwer, 2009). An extension of this result to systems with
distributed delay was presented in (Mahboobi Esfanjani and Nikravesh, 2011).
Furthermore note the similarity of Theorem 4.5 for nonlinear time-delay systems to

Theorem 2.6 for finite-dimensional continuous-time systems. The main difference is the
use of a terminal cost functional instead of a function and the definition of the terminal
region Ω. However, the infinite-dimensional nature makes the design of suitable stabilizing
design parameters significantly more difficult. Examples for suitable terminal regions and
terminal cost functionals will be derived in the following Section 4.3.

4.3 Calculation of the Terminal Region and Terminal
Cost

The key element in the stabilizing model predictive control scheme presented in Section 4.2
is a suitable choice of the terminal cost E and the terminal region Ω. The goal of this
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section is to derive conditions for E and Ω in order to guarantee closed-loop stability under
the presented MPC scheme. In this section, we will focus our attention on finding a suitable
terminal region Ω and a terminal cost function E such that Assumption 4.6 is satisfied.
Two special cases can be detected for which Assumption 4.6 is directly satisfied. First,

the works of Angrick (2007); Raff et al. (2007) consider an extended zero terminal state
constraint. Hence, the terminal region only consists of the steady state at the origin, i.e.,
one single point in the infinite-dimensional space Cτ . This approach is unattractive from a
computational point of view for two reasons. Feasibility problems may occur especially for
short prediction horizons because the system has to be steered to the steady state in finite
time. In addition, an exact satisfaction of a zero terminal state constraint does require an
infinite number of iterations in the numerical optimization. Second, the work of Kwon et al.
(2001a,b) uses the whole state space as terminal region and requires the knowledge of a
globally stabilizing controller, which might be difficult particularly in the presence of input
constraints. In both cases, the invariance of the terminal region is trivially satisfied.

Since it is already a difficult task to calculate a stabilizing control law for linear-time delay
systems, we cannot expect to develop a method for general nonlinear time-delay systems,
even locally. In this section, we follow the ideas of Chen (1997); Chen and Allgöwer
(1998), which have proposed – in the context of MPC for finite-dimensional nonlinear
continuous-time systems – to design a linear locally stabilizing control law based on the
Jacobi linearization of the nonlinear system. In the second step, a bound on the nonlinearity
can be taken into account in order to find a positively invariant region for the nonlinear
system, in which Condition (4.5) holds.

The Jacobi linearization of system (4.1) is given by

˙̃x(t) = f̃(x̃(t), x̃(t− τ), u(t)) = Ax̃(t) + Aτ x̃(t− τ) +Bu(t) , (4.6)

in which the matrices are defined by

A =
∂f

∂x(t)

∣∣∣∣
xt=0,u=0

, Aτ =
∂f

∂x(t− τ)

∣∣∣∣
xt=0,u=0

, and B =
∂f

∂u(t)

∣∣∣∣
xt=0,u=0

.

The difference between the nonlinear system (4.1) and its Jacobi linearization (4.6) will be
denoted by Φ in this chapter, i.e.,

Φ(xt, u(t)) = f(x(t), x(t− τ), u(t))− Ax(t)− Aτx(t− τ)−Bu(t) . (4.7)

Since f is continuously differentiable and Φ only consists of higher order terms, i.e., it does
not contain any linear terms, for any γ ∈ R>0 there exists a δγ ∈ R>0 such that for all
‖xt‖τ ≤ δγ and |u(t)| < δγ

|Φ(xt, u(t))| < γ (|x(t)|+ |x(t− τ)|+ |u(t)|) . (4.8)

In order to design a control law for the Jacobi linearization (4.6), we consider a general
linear local control law

u(t) = k(xt) = Kx(t) +

∫ 0

−τ
Kτ (θ)x(t+ θ)dθ (4.9)

with constant matrix K ∈ Rm×n and matrix function Kτ (θ) ∈ Rm×n, together with a
quadratic stage cost

F (x(t), u(t)) = x(t)TQx(t) + u(t)TRu(t) , (4.10)
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in which Q and R are symmetric positive definite matrices.
Unfortunately, for nonlinear time-delay systems it is not possible to design the terminal

region by exactly following the lines of Chen and Allgöwer (1998) for finite-dimensional
systems. The reason for this is as follows. In the delay-free case, it is possible to determine
a sufficiently small level set of the positive definite Lyapunov function of the linearized
system such that this set is positively invariant also for the nonlinear system. However,
for the infinite-dimensional case, even an arbitrarily small level set of a positive definite
Lyapunov-Krasovskii functional of the linearized system might not be positively invariant
for the nonlinear system. Roughly speaking, this is the case because even for small values
of a positive definite functional, the norm of its argument might be arbitrarily large. This
is similar to the well-known fact that there is no equivalence between different norms in
infinite-dimensional spaces. We illustrate this in the following brief example.

Example 4.6. Consider the simple scalar nonlinear time-delay system

ẋ(t) = x(t− τ)4 + u(t) (4.11)

with constant time-delay τ = 1. The Jacobi linearization of system (4.11) about the origin
is ẋ(t) = u(t) and the closed-loop resulting from the application of the simple linear control
law u(t) = k(xt) = −2x(t) to the Jacobi linearization is asymptotically stable. For instance,
this can be shown by using Theorem 2.9 and the following Lyapunov-Krasovskii functional
and its derivative along trajectories of the linearized closed-loop

E(xt) = x(t)2 +

0∫
−τ

x(t+ θ)2 dθ , (4.12a)

Ė(xt) = 2x(t)u(t) + x(t)2 − x(t− τ)2 = −3x(t)2 − x(t− τ)2 . (4.12b)

Since the Jacobi linearization is asymptotically stable, we know that the closed-loop consisting
of the original nonlinear system (4.11) and the linear control law is also locally asymptotically
stable (Kolmanovskii and Myshkis, 1999). Following the lines of the scheme presented in
Chen and Allgöwer (1998) for delay-free systems, a natural choice for the terminal region
would be

Ω = {xt ∈ Cτ : E(xt) ≤ α} , α ∈ R>0 .

In the delay-free case, choosing α ∈ R>0 sufficiently small allows to guarantee positive
invariance of Ω and satisfaction of (4.5) for the original nonlinear system (Chen and
Allgöwer, 1998). However, this is not possible in the current example. For a given α ∈ R>0,
define ξ = min{

√
α/2, 2/3} and t = min{αξ/2, τ/2} and consider x̂t ∈ Ω given by

x̂t(θ) = max

{
−1

ξt
(θ + τ − t), ξ

}
=

{ −1
ξt

(θ + τ − t), θ ≤ −τ + t

ξ, θ > −τ + t
.

See Figure 4.2 for a sketch of x̂t and note that direct calculations reveal that indeed E(x̂t) ≤ α.
By taking ξ ≤ 2/3 into account, we obtain for the derivative of (4.12a) along trajectories
of the nonlinear closed-loop

Ė(x̂t) = 2x̂(t)
(
x̂(t− τ)4 + u(t)

)
+ x̂(t)2 − x̂(t− τ)2 = −3ξ2 − 1

ξ2

(
1− 2

ξ

)
> 0 .

Hence, Condition (4.5) in Assumption 4.6 cannot be guaranteed by choosing α small enough.
Similarly, positive invariance of Ω is not necessarily given.
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θ

x̂t(θ)

−τ −τ + t 0

ξ

1
ξ

Figure 4.2: Sketch of x̂t ∈ Ω used in Example 4.6.

In the following sections, we present different design schemes in order to obtain a suitable
terminal cost functional E and terminal region Ω using the Jacobi linearization about
the origin. The first scheme presented in Section 4.3.1 only requires a locally stabilizing
linear control law, but results in a complicated terminal region. The second scheme uses an
additional Razumikhin condition, which allows the calculation of a more simple terminal
region as shown in Section 4.3.2. When considering a terminal cost functional motivated
by the use of the Razumikhin condition and an additional condition on the sampling time,
the terminal region can be defined as a sublevel set of this terminal cost as derived in
Section 4.3.3. In Section 4.3.4, we show that the condition on the sampling time can be
removed by including an additional exponential weighting term in the terminal cost. The
four different schemes are compared in Section 4.3.5.

4.3.1 General Linearization-based Design

In this section, we consider the least restrictive possible design scheme based on the Jacobi
linearization. Similar to the results for delay-free systems presented in Chen and Allgöwer
(1998), it is shown that each nonlinear time-delay system, which possesses a stabilizable
Jacobi linearization about the origin, can be stabilized by MPC with a quadratic terminal
cost functional and a finite terminal region. In contrast to the delay-free case, the terminal
region is not defined as a sublevel set of the terminal cost, but instead as the intersection of
such a sublevel set with a sphere in the infinite-dimensional space Cτ defined by the norm
‖ · ‖τ .
Using the definitions given so far, we can summarize the main result of this section as

follows.

Theorem 4.7 (Design for Time-Delay Systems with Stabilizable Linearization). Consider
the nonlinear time-delay system (4.1) and the quadratic stage cost (4.10). Suppose that
Assumptions 4.1–4.3 are satisfied and that there exists a linear local control law (4.9) such
that the linearized system (4.6) is asymptotically stable. Then, there exists a terminal cost
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functional

E(xt) = x(t)TP0x(t) +

∫ 0

−τ

∫ 0

−τ
x(t+ θ1)TP3(θ1, θ2)x(t+ θ2)dθ1dθ2

+ 2x(t)T
∫ 0

−τ
P1(θ)x(t+ θ)dθ +

∫ 0

−τ
x(t+ θ)TP2(θ)x(t+ θ)dθ (4.13)

with symmetric positive definite matrix P0 = P T
0 ∈ Rn×n and matrix functions P1(θ) ∈ Rn×n,

P2(θ) = P2(θ)T ∈ Rn×n, P3(θ1, θ2) = P3(θ2, θ1)T ∈ Rn×n, and there exists a terminal region

Ω =

{
xt ∈ Cτ : E(xt) ≤ µ

α2

4
, ‖xt‖τ ≤

α

2

}
(4.14)

in which α ∈ R>0 and µ ∈ R>0, such that Assumptions 4.4 and 4.6 are satisfied. Fur-
thermore, the closed-loop resulting from the application of the model predictive controller
according to Algorithm 4.4 to system (4.1) is asymptotically stable.

Proof. Since the closed-loop consisting of the Jacobi linearization (4.6) in combination with
the linear control law u(t) = k(xt), i.e.,

˙̃x(t) = Ãx̃(t) + Aτ x̃(t− τ) +Bk(x̃t) , (4.15)

is asymptotically stable, there exists a quadratic Lyapunov-Krasovskii functional Ẽ(xt) of
the form (4.13) whose derivative along trajectories of (4.15) satisfies

˙̃E(xt) ≤ −ε1|x(t)|2 − ε2|x(t− τ)|2 − ε3

0∫
−τ

|x(t+ θ)|2dθ

with constants ε1, ε2, ε3 ∈ R>0, see Kharitonov and Zhabko (2003). The derivative of Ẽ
along trajectories of the nonlinear system (4.1) satisfies

˙̃E(xt) ≤ −ε1 |x(t)|2 − ε2 |x(t− τ)|2 − ε3

0∫
−τ

|x(t+ θ)|2dθ

+ 2Φ(xt, u(t))T
(
P0x(t) +

∫ 0

−τ
P1(θ)x(t+ θ)dθ

)
.

Due to Inequality (4.8) and since 2ab ≤ a2 + b2 for all a, b ∈ R,

2Φ(xt, u(t))TP0x(t) ≤ γ ‖P0‖
(
4|x(t)|2 + |x(t− τ)|2 + |u(t)|2

)
holds for all ‖xt‖τ ≤ δγ and |u(t)| ≤ δγ. Similarly, using the Cauchy-Schwarz inequality
(Bronstein et al., 2000) the following inequalities hold

2Φ(xt, u(t))T
∫ 0

−τ
P1(θ)x(t+ θ)dθ

≤ γ
(
|x(t)|2 + |x(t− τ)|2 + |u(t)|2

)
+ 3γ

∣∣∣∣∫ 0

−τ
P1(θ)x(t+ θ)dθ

∣∣∣∣2
≤ γ

(
|x(t)|2 + |x(t− τ)|2 + |u(t)|2

)
+ 3γτ‖P1‖2

τ

∫ 0

−τ
|x(t+ θ)|2dθ

73



Chapter 4 Model Predictive Control for Nonlinear Time-Delay Systems

for ‖xt‖τ < δγ and |u(t)| < δγ with ‖P1‖τ = supθ∈[−τ,0] ‖P1(θ)‖. Combining these findings
yields

˙̃E(xt) ≤ −(ε1 − 4γ‖P0‖ − γ) |x(t)|2 − (ε2 − γ ‖P0‖ − γ) |x(t− τ)|2

− (ε3 − 3γτ ‖P1‖2
τ )

∫ 0

−τ
|x(t+ θ)|2dθ + γ(‖P0‖+ 1) |u(t)|2 .

Furthermore, we obtain for the linear control law u(t) = k(xt)

|u(t)|2 = |k(xt)|2 ≤ 2‖KTK‖ |x(t)|2 + 2τ ‖Kτ‖2
τ

∫ 0

−τ
|x(t+ θ)|2dθ (4.16)

with ‖Kτ‖τ = supθ∈[−τ,0] ‖Kτ (θ)‖ and, hence,

˙̃E(xt) ≤ −(ε1 − 4γ‖P0‖ − γ − 2γ(‖P0‖+ 1)‖KTK‖) |x(t)|2

− (ε2 − γ ‖P0‖ − γ) |x(t− τ)|2

− (ε3 − 3γτ ‖P1‖2
τ − 2τ γ(‖P0‖+ 1)‖Kτ‖2

τ )

∫ 0

−τ
|x(t+ θ)|2dθ

for |k(xt)|2 < δγ. It is clearly possible to choose γ, β ∈ R>0 such that the following three
inequalities are satisfied

β (ε1 − 4γ‖P0‖ − γ − 2γ(‖P0‖+ 1)‖KTK‖) > ‖Q+ 2KTRK‖ ,
(ε2 − γ ‖P0‖ − γ) > 0 ,

β (ε3 − 3γτ ‖P1‖2
τ − 2τ γ(‖P0‖+ 1)‖Kτ‖2

τ ) > 2τ‖R‖ ‖Kτ‖2
τ .

Now define the terminal region Ω as in (4.14) with α > 0 chosen such that α ≤ 2 δγ and
such that xt ∈ Ω implies k(xt) ∈ U and |k(xt)|2 < δγ . The satisfaction of both conditions is
always possible for some small enough α > 0. Moreover, define the terminal cost functional
E(xt) = β Ẽ(xt). Then, clearly all xt with ‖xt‖τ ≤ α and, consequently, all xt ∈ Ω satisfy

Ė(xt) ≤ −x(t)TQx(t)− u(t)TRu(t) (4.17)

when using the local control law u(t) = k(xt). Furthermore, the terminal region Ω is
positively invariant for the choice of µ = β λmin(P0). This can be shown, similar to the
proofs in (Melchor-Aguilar and Niculescu, 2007; Reble and Allgöwer, 2010a), by contradiction
using ∀xt ∈ Ω : Ė(xt) ≤ 0 and by noting that E(xt) ≥ β λmin(P0)|x(t)|2. Without loss
of generality assume that xt0 ∈ Ω. For the sake of contradiction, assume that Ω is not
positively invariant. Since x(t) is a continuous function of time, there exists a t1 > t0 for
which xt1 /∈ Ω and ‖xt‖τ < 3α

4
for all t ≤ t1. Note that Ė(xt) < 0 for all xt with ‖xt‖τ < 3α

4

as shown in the first part of this proof. Thus, E(xt1) ≤ E(xt0). However, this implies
‖xt1‖τ > α

2
because we assume xt1 /∈ Ω. It follows that there is a time t2 with t0 < t2 ≤ t1

for which |x(t2)| > α
2
, and E(xt2) ≤ E(xt0) because of Ė < 0. Using the aforementioned

lower bound on E, we directly obtain

E(xt2) ≥ β λmin(P0)|x(t2)|2 > β λmin(P0)
α2

4
.
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But this implies E(xt0) > µ α2

4
, which contradicts the assumption xt0 ∈ Ω. Hence, the

terminal region Ω is positively invariant.
Combining (4.17) and the positive invariance shows that Assumption 4.6 is satisfied.

The satisfaction of Assumption 4.4 is straightforward due to the definitions of F , E, and
Ω, respectively. Asymptotic stability follows directly by use of Theorem 4.5, for which all
necessary assumptions are satisfied.

Remark 4.8. The standard converse Lyapunov Theorem for linear time-delay systems (Gu
et al., 2003, Proposition 7.4) only guarantees the existence of a complete quadratic functional
E(xt) with Ė(xt) ≤ −ε1|x(t)|2, which is not sufficient to ensure Ė(xt) ≤ −F (x(t), k(xt)) for
a general linear control law of the form (4.9). Thus, the more general result of Kharitonov
and Zhabko (2003) is needed in the proof of Theorem 4.7.

The result is based on rather mild assumptions since only a stabilizable Jacobi linearization
is required. However, the resulting terminal region as defined in (4.14) is quite complicated.

Example 4.9. We consider again Example 4.6. We choose the stage cost F (x, u) =
x2 + 0.5u2 and use the terminal cost functional E(xt) as defined in (4.12a) together with the
locally stabilizing linear control law u(t) = k(xt) = −2x(t). Straightforward manipulations
show that the derivative along trajectories of the nonlinear closed-loop satisfies

Ė(xt) = −3x(t)2 − x(t− τ)2 + 2x(t)x(t− τ)4 ≤ −3x(t)2 = −F (x(t), k(xt))

for all xt ∈ Cτ which satisfy ‖xt‖τ ≤ α
2
with α = 1. For µ = 1, the terminal region Ω

defined in (4.14) is positively invariant, which can be shown along the lines of the proof of
Theorem 4.7. Hence, MPC according to Algorithm 4.4 with design parameters E and Ω
asymptotically stabilizes the origin of the closed-loop.

Design using LMIs

In this section, we provide exemplary conditions for the local linear control law u(t) = k(xt)
in terms of linear matrix inequalities (LMIs).

Theorem 4.10 (LMI Condition for Local Control Law). Consider the nonlinear time-delay
system (4.1) and the quadratic stage cost (4.10). Suppose that Assumptions 4.1–4.3 are
satisfied. If there exist symmetric matrices Λ � 0, Υ � 0, a matrix Γ and a constant
positive scalar ε ∈ R>0 solving the following LMI

Ξ2 + Υ + εI AτΛ ΛQ1/2 ΓTR1/2

? −Υ + εI 0 0
? ? −I 0
? ? ? −I

 ≺ 0 (4.18)

in which Ξ2 = ΛAT +AΛ + ΓTBT +BΓ, then the control law u(t) = Kx(t) with K = Γ Λ−1

locally asymptotically stabilizes the nonlinear time-delay system (4.1). Furthermore, consider
the cost functional E given by

E(xt) = x(t)TPx(t) +

0∫
−τ

xT (t+ θ)Sx(t+ θ)dθ (4.19)
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with parameters P = Λ−1 and S = Λ−1ΥΛ−1 and the terminal region defined by

Ω =

{
xt : E(xt) ≤

λmin(P ) δ2
γ

4
, ‖xt‖τ ≤

δγ
2

}
, (4.20)

with γ ∈ R>0 chosen small enough such that

γ ≤ ε
λmin(P )2

2λmax(P )
(4.21)

and small enough such that |x| < δγ
2
⇒ u = Kx ∈ U . Then, Assumption 4.6 is satisfied.

Proof. The proof is given in Appendix A.2.

4.3.2 Combination of Lyapunov-Krasovskii and
Lyapunov-Razumikhin

In this section, we use additional assumptions on the local stabilizing control law in order
to obtain a simpler terminal region. To this end, we do not only require the existence of a
locally stabilizing linear control law as in Section 4.3.1, but assume this local control law to
satisfy a Lyapunov-Razumikhin condition as stated in the following assumption.

Assumption 4.7 (Razumikhin Condition). There exists a linear local control law u(t) =

k(xt) = Kx(t) +
∫ 0

−τ Kτ (θ)x(t + θ)dθ and constants ε ∈ R>0, ρ ∈ R>1 such that the
derivative of the Lyapunov-Razumikhin function V (x(t)) = x(t)TPx(t) along trajectories of
the linearized system (4.6) satisfies V̇ (x(t)) ≤ −ε |x(t)|2 whenever

∀θ ∈ [−τ, 0] : V (x(t+ θ)) ≤ ρ V (x(t)) . (4.22)

With this assumption, we can design a terminal region and terminal cost as summarized
in the following theorem.

Theorem 4.11 (Design using Lyapunov-Krasovskii and Lyapunov-Razumikhin Arguments).
Consider the nonlinear time-delay system (4.1) and the quadratic stage cost (4.10). Suppose
that Assumptions 4.1–4.3 are satisfied and that Assumption 4.7 holds. Then, there exist a
terminal cost functional of the form (4.13) and a terminal region

Ω =

{
xt ∈ Cτ : max

θ∈[−τ,0]
V (x(t+ θ)) ≤ α

}
, (4.23)

in which α ∈ R>0, such that Assumptions 4.4 and 4.6 are satisfied. Furthermore, the
closed-loop resulting from the application of the model predictive controller according to
Algorithm 4.4 to system (4.1) is asymptotically stable.

Proof. In the first part of the proof, it is shown that there is a sufficiently small α ∈ R>0

such that for all xt ∈ Ω the derivative of the Lyapunov-Razumikhin function V along
trajectories of the nonlinear system (4.1) satisfies

V̇ (x(t)) ≤ −ε
2
|x(t)|2 whenever ∀θ ∈ [−τ, 0] : V (x(t+ θ)) ≤ ρ V (x(t)) . (4.24)
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To this end, note that if ‖xt‖τ ≤ δγ , |u(t)| < δγ , and ∀θ ∈ [−τ, 0] : V (x(t+ θ)) ≤ ρ V (x(t)),
then

V̇ (x(t)) ≤ −ε|x(t)|2 + 2x(t)TPΦ(xt, u(t))

≤ −ε|x(t)|2 + 2γ|x(t)| ‖P‖ (|x(t)|+ |x(t− τ)|+ |u(t)|)
≤ −(ε− 4γ ‖P‖) |x(t)|2 + γ ‖P‖ |x(t− τ)|2 + γ ‖P‖ |u(t)|2

(4.16)
≤ −(ε− 4γ ‖P‖ − 2γ ‖P‖ ‖KTK‖) |x(t)|2

+ γ ‖P‖ |x(t− τ)|2 + 2τ γ ‖P‖ ‖Kτ‖2
τ

∫ 0

−τ
|x(t+ θ)|2dθ

≤
(
−ε+ γ ‖P‖

(
4 + 2 ‖KTK‖+ (1 + 2τ 2 ‖Kτ‖2

τ ) ρ
λmax(P )

λmin(P )

))
|x(t)|2 .

In the last inequality, we explicitly used that V (x(t + θ)) ≤ ρ V (x(t)) for all θ ∈ [−τ, 0].
Now choose γ ∈ R>0 such that

γ‖P‖
(

4 + 2 ‖KTK‖+ (1 + 2τ 2 ‖Kτ‖2
τ ) ρ

λmax(P )

λmin(P )

)
≤ ε

2
,

and α ∈ R>0 such that (i) α < λmin(P ) δγ , and (ii) xt ∈ Ω implies k(xt) ∈ U and |k(xt)|2 <
δγ , which is always possible for α small enough. Then, the condition V̇ (x(t)) ≤ −ε/2 |x(t)|2
holds for all xt ∈ Ω whenever V (x(t+ θ)) ≤ ρ V (x(t)) for all θ ∈ [−τ, 0]. Furthermore, the
terminal region Ω is controlled positively invariant when applying the local control law
k(xt).
Assumption 4.7 directly implies that V is a Lyapunov-Razumikhin function for the

linearized system with control law u(t) = k(xt). Hence, the linearized system is asymp-
totically stable when using this local control law. Consequently, as shown in the proof of
Theorem 4.7, there exist a quadratic cost functional of the form (4.13) and an α ∈ R>0

small enough such that Ė(xt) ≤ −x(t)TQx(t)−u(t)TRu(t) for all xt ∈ Ω by using the local
control law u(t) = k(xt), see (4.17).
Therefore, the local control law k(xt) satisfies Condition (4.5) in Assumption 4.6. Fur-

thermore, the terminal region Ω is positively invariant when applying k(xt) as shown in
the first part of the proof. Assumption 4.4 is directly satisfied due to the definitions of F ,
E, and Ω, respectively. With this, all assumptions necessary for Theorem 4.5 are satisfied.
Hence, asymptotic stability is guaranteed.

The Razumikhin condition in Assumption 4.7 is more restrictive than the existence of a
locally stabilizing linear control law as required in Theorem 4.7. However, the terminal
region (4.23) is of simpler form than the terminal region for the general design (4.14).

Example 4.12. We consider again Example 4.6 with the stage cost F (x, u) = x2 + 0.5u2.
It is simple to show that Assumption 4.7 is satisfied for the locally stabilizing control
law u(t) = k(xt) = −2x(t) and the Lyapunov-Razumikhin function V (x) = x2. The
derivative of V along trajectories of the closed-loop consisting of the local control law
u(t) = k(xt) = −2x(t) and the nonlinear time-delay system (4.11) satisfies the Razumikhin-
type condition

V̇ (x(t)) ≤ −3 |x(t)|2 whenever ∀θ ∈ [−τ, 0] : V (x(t+ θ)) ≤ 2V (x(t)) (4.25)
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for all xt which satisfy ‖xt‖τ ≤ 1
2
. Furthermore, the terminal cost functional E(xt) given

in (4.12a) satisfies Ė(xt) ≤ −F (x(t), k(xt)) for these xt as shown in Example 4.9. Hence,

the terminal region Ω =

{
xt ∈ Cτ : max

θ∈[−τ,0]
V (x(t+ θ)) ≤ 1

4

}
and the terminal cost E satisfy

Assumption 4.6. Hence, MPC according to Algorithm 4.4 with design parameters E and Ω
asymptotically stabilizes the origin.

Design using LMIs

In this section, we provide exemplary conditions in terms of LMIs for the local linear control
law u(t) = k(xt) used in Theorem 4.11. In contrast to Section 4.3.1, the LMIs used to
ensure satisfaction of Assumption 4.6 can be separated into two parts: the first set of LMIs
guarantees invariance of the terminal region, see Lemma 4.13, and the second set ensures
the Lyapunov condition (4.5), see Lemma 4.14.
The following lemma provides LMI conditions for the controlled invariance of a certain

terminal region Ω.

Lemma 4.13 (LMI Condition for Invariance of Ω). Consider the nonlinear time-delay
system (4.1) and the quadratic stage cost (4.10). Suppose that Assumptions 4.1–4.3 are
satisfied. If there exist symmetric matrices Λ � 0, Λi � 0, i = 1, 2, 3 and a matrix Γ of
appropriate dimensions solving the following LMIs

Ξ1 + 2τΛ τAτ (AΛ +BΓ) τA2
τΛ τAτΛ

? −τΛ1 0 0
? ? −τΛ2 0
? ? ? −τΛ3

 ≺ 0 (4.26a)

Λi − Λ ≺ 0 , i = 1, 2 , (4.26b)

in which Ξ1 = Λ(A+Aτ )
T + (A+Aτ )Λ + ΓTBT +BΓ, then there exists α ∈ R>0 such that

the local control law u(t) = Kx(t) with K = Γ Λ−1 renders the terminal region

Ω =

{
xt : max

θ∈[−τ,0]
x(t+ θ)TPx(t+ θ) ≤ α

}
(4.27)

positively invariant for P = Λ−1.

Proof. The proof is given in Appendix A.3 and contains an implicit formula for α given
by (A.22).

In the next lemma, we derive LMI conditions for the terminal cost functional E.

Lemma 4.14 (LMI Condition for Terminal Cost Functional). Consider the nonlinear time-
delay system (4.1) and the quadratic stage cost (4.10). Suppose that Assumptions 4.1–4.3
are satisfied. If there exist symmetric matrices Λ � 0, Υ � 0, a matrix Γ and a constant
positive scalar ε ∈ R>0 solving the following LMI

Ξ2 + Υ + εI AτΛ ΛQ1/2 ΓTR1/2

? −Υ + εI 0 0
? ? −I 0
? ? ? −I

 ≺ 0 (4.28)
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in which Ξ2 = ΛAT + AΛ + ΓTBT + BΓ, then there exists α ∈ R>0 such that the local
control law u(t) = Kx(t) with K = Γ Λ−1 ensures Ė(xt) ≤ −F (x(t), Kx(t)) for all xt ∈ Ω.
Herein, Ω is defined in (4.27) and the terminal cost functional E is defined in (4.19) with
parameters P = Λ−1 and S = Λ−1ΥΛ−1.

Proof. The proof is given in Appendix A.4 and contains an implicit condition on α given
by (A.23).

Combining the previous results from this section, we directly obtain the following theorem.

Theorem 4.15 (LMI Condition for Local Control Law). Consider the nonlinear time-
delay system (4.1) and the quadratic stage cost (4.10). Suppose that Assumptions 4.1–4.3
are satisfied. If there exist symmetric positive definite matrices Λ,Λ1,Λ2,Λ3,Υ, and a
matrix Γ such that LMIs (4.26) and (4.28) admit a feasible solution, then there exists
α ∈ R>0 small enough such that terminal region Ω and terminal cost functional E defined
in (4.27) and (4.19), respectively, with parameters P = Λ−1 and S = Λ−1ΥΛ−1, satisfy
Assumption 4.6.

Proof. The input constraint set U contains the origin in its interior. Therefore, the proof
of the theorem directly follows from Lemmata 4.13 and 4.14 because it is always possible
to choose α small enough such that the input constraints are satisfied by the local control
law u(t) = Kx(t) for all xt ∈ Ω.

LMI (4.18) in Theorem 4.10 is less conservative than the LMI condition in Theorem 4.15
in Section 4.3.2 in the sense that if there is a solution to the conditions in Theorem 4.15,
then the assumptions in Theorem 4.10 are satisfied. This can be easily seen because
LMI (4.18) directly relates to the Lyapunov-Krasovskii condition (4.28) for the terminal
cost functional in Lemma 4.14 and an additional LMI (4.26) is required in Theorem 4.15.
However, the terminal region (4.20) is more complicated and might make the numerical
solution of the open-loop optimal control problem more difficult.

4.3.3 Design by Lyapunov-Razumikhin Arguments

The terminal regions defined in the preceding Sections 4.3.1 and 4.3.2 are not defined as
sublevel sets of the quadratic terminal cost functional, which is in contrast to most literature
concerning the delay-free case, in particular all schemes based on the early results of Chen
and Allgöwer (1998). Indeed, such a sublevel set is not necessarily positively invariant along
trajectories of the closed-loop. However, several results from nonlinear delay-free systems
heavily rely on the definition of the terminal region as a sublevel set of the terminal cost,
such as unconstrained MPC schemes (Graichen and Kugi, 2010; Hu and Linnemann, 2002;
Limon et al., 2006). For this reason, an alternative scheme is presented in this section
which allows such a definition under additional assumptions.

In Section 4.3.2 a terminal region of the form (4.23) has been used. Using this region
with the respective parameter α chosen properly, positive invariance and satisfaction of
Condition (4.5) in Assumption 4.6 can be shown for the nonlinear time-delay system. An
obvious choice for the terminal cost functional is to consider E(xt) = max

θ∈[−τ,0]
V (x(t+ θ)).

However, it is clear that E(xt) is constant on certain intervals and a decrease of E can only
be guaranteed after the time-delay τ . See Figure 4.3 for an illustrating sketch. Hence, (4.5)
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t
τ

τ

E(xt) = max
θ∈[−τ,0]

V (x(t+ θ))
V (x(t))

Figure 4.3: Sketch on the necessity of Assumption 4.9 for the design based on Lyapunov-
Razumikhin arguments in Section 4.3.3. In general, the terminal cost functional
E(xt) = max

θ∈[−τ,0]
V (x(t+ θ)) is constant on certain intervals.

cannot be satisfied. For this reason, we replace Assumption 4.6 by Assumption 4.8. We
can show that this slightly less restrictive assumption is still sufficient for the assertion of
Theorem 4.5 as stated in Theorem 4.16.

Assumption 4.8. Assumption 4.6 is satisfied with (4.5) replaced by the less restrictive
condition

∀xt ∈ Ω : E(xt+δ)− E(xt) ≤ −
t+δ∫
t

F (x(t′), k(xt′)) dt
′ . (4.29)

Note that Assumption 4.6 implies Assumption 4.8, but not vice versa. Theorem 4.5 can
be generalized as follows.

Theorem 4.16 (Stability of MPC for Nonlinear Time-Delay Systems). Consider the
nonlinear time-delay system (4.1) and suppose that Assumptions 4.1–4.5 and 4.8 are
satisfied. Then, the closed-loop system resulting from the application of the model predictive
controller according to Algorithm 4.4 to system (4.1) is asymptotically stable. The region
of attraction is the set of all initial conditions for which Problem 4.3 is initially feasible.

Proof. The proof is exactly the same as the proof of Theorem 4.5 given in Section A.1.
Careful inspection of the proof reveals that (4.5) is only used to show (4.29), which is used
in the remainder of the proof.

A decrease of E can only be guaranteed after the time-delay τ , which motivates to use
the following additional assumption.

Assumption 4.9. The sampling time of the MPC algorithm 4.4 is strictly larger than the
time-delay, i.e., δ > τ .

In the following, the goal is to find conditions on the terminal cost functional E and the
terminal region Ω, defined as a sublevel set of E, such that Ω is positively invariant and
Condition (4.29) is satisfied. To this end, we consider a local linear control law satisfying
the Razumikhin-type condition given in Assumption 4.7, which has also been used in
Section 4.3.2.
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4.3 Calculation of the Terminal Region and Terminal Cost

Theorem 4.17 (Design using Lyapunov-Razumikhin Arguments). Consider the nonlinear
time-delay system (4.1) and the quadratic stage cost (4.10). Suppose that Assumptions 4.1–
4.3 are satisfied and that Assumptions 4.7 and 4.9 hold. Then, there exist a terminal cost
functional of the form

E(xt) = β max
θ∈[−τ,0]

V (x(t+ θ)) (4.30)

and a terminal region

Ω =

{
xt : max

θ∈[−τ,0]
V (x(t+ θ)) ≤ α

}
, (4.31)

in which α, β ∈ R>0, such that Assumptions 4.4 and 4.8 are satisfied. Furthermore, the
closed-loop resulting from the application of the model predictive controller according to
Algorithm 4.4 to system (4.1) is asymptotically stable.

Proof. In the first part of the proof, it is shown that there is a sufficiently small α ∈ R>0

such that for all xt ∈ Ω the derivative of V along trajectories of the nonlinear system (4.1)
satisfies V̇ (x(t)) ≤ −ε/2 |x(t)|2 whenever Condition (4.22) holds. To this end, we can follow
the first part of the proof of Theorem 4.11 to show

V̇ (x(t)) ≤
(
−ε+ γ ‖P‖

(
4 + 2 ‖KTK‖+ (1 + 2τ 2 ‖Kτ‖2

τ ) ρ
λmax(P )

λmin(P )

))
|x(t)|2 .

It is now possible to choose γ ∈ R>0 such that

γ‖P‖
(

4 + 2 ‖KTK‖+ (1 + 2τ 2 ‖Kτ‖2
τ ) ρ

λmax(P )

λmin(P )

)
≤ ε

2
,

and to choose α ∈ R>0 small enough such that α < λmin(P ) δγ and such that xt ∈ Ω implies
k(xt) ∈ U and |k(xt)|2 < δγ . Then, the condition V̇ (x(t)) ≤ −ε/2 |x(t)|2 holds for all xt ∈ Ω
whenever V (x(t + θ)) ≤ ρ V (x(t)) for all θ ∈ [−τ, 0]. Furthermore, the terminal region
Ω, which was chosen as a sublevel set of the terminal cost functional E(xt), is positively
invariant when applying the local control law k(xt).

In the second part, the functional

Ẽ(xt) = max
θ∈[−τ,0]

V (x(t+ θ)) (4.32)

is considered for states xt ∈ Ω inside the terminal region. Two cases can be distinguished:

(i) V (x(t)) <
1

ρ
Ẽ(xt) and (ii) V (x(t)) ≥ 1

ρ
Ẽ(xt) ,

see also Figure 4.4.
For case (i), note that V (x(t)) < 1

ρ
Ẽ(xt) directly implies V (x(t′)) < 1

ρ
Ẽ(xt) for all t′ ≥ t

because the Razumikhin-type condition is satisfied, i.e., V̇ ≤ 0 whenever Condition (4.22)
holds. Using

u(t′)TRu(t′) ≤ 2x(t′)KTRKx(t′) + 2λmax(R) τ 2‖Kτ‖2
τ‖xt′‖2

τ
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in which ‖Kτ‖τ = supθ∈[−τ,0] ‖Kτ (θ)‖, it results that
t+δ∫
t

F (x(t′), k(xt′)) dt
′ ≤ δΨ Ẽ(xt) with Ψ =

λmax(Q+ 2KTRK) + 2ρτ 2‖Kτ‖2
τλmax(R)

ρ λmin(P )
.

On the other hand, Ẽ(xt+δ) < 1
ρ
Ẽ(xt), which can be directly rewritten in the form

Ẽ(xt+δ) − Ẽ(xt) ≤ −ρ−1
ρ
Ẽ(xt). Choosing E(xt) = β Ẽ(xt) with β > β(i) = δΨ ρ

ρ−1

guarantees that

E(xt+δ)− E(xt) ≤ −
t+δ∫
t

F (x(t′), k(xt′)) dt
′ . (4.33)

For case (ii), it is assumed that V (x(t)) ≥ 1
ρ
Ẽ(xt). For this case, again two subcases

can be distinguished:

(iia) V (x(t+ δ − τ)) <
1

ρ
Ẽ(xt) and (iib) V (x(t+ δ − τ)) ≥ 1

ρ
Ẽ(xt) .

If V (x(t+ δ − τ)) < 1
ρ
Ẽ(xt), then Ẽ(xt+δ) <

1
ρ
Ẽ(xt). Using arguments analogue to case

(i) with replacing V (x(t′)) < 1
ρ
Ẽ(xt) by V (x(t′)) < Ẽ(xt) for all t′ ≥ t shows that (4.33)

holds for

β > β(iia) = ρ β(i) = ρ δΨ
ρ

ρ− 1
> β(i) .

The last case to be considered is (iib), see also Figure 4.4. By the definition of Ẽ it is clear
that Ẽ(xt+δ) ≥ V (x(t+ δ− τ)). Combining this observation with V (x(t+ δ− τ)) ≥ 1

ρ
Ẽ(xt)

and the fact that V̇ ≤ 0 whenever V (x(t′)) ≥ 1
ρ
Ẽ(xt′), we can directly obtain that

Ẽ(xt+δ) = V (x(t+ δ − τ)), see Figure 4.4. Note further that 1
ρ
Ẽ(xt) ≤ V (x(t′)) ≤ Ẽ(xt)

and |x(t′)|2 ≥ 1
ρ λmax(P )

Ẽ(xt) for all t′ ∈ [t, t+ δ− τ ]. Hence, V̇ (x(t′)) ≤ −ε/2 |x(t′)|2 for all
t′ ∈ [t, t+ δ − τ ] and

Ẽ(xt+δ)− Ẽ(xt) = V (x(t+ δ − τ))− Ẽ(xt) ≤ −
ε

2

δ − τ
ρ λmax(P )

Ẽ(xt) .

Choosing E(xt) = β Ẽ(xt) with

β > β(iib) = Ψ
δ

δ − τ
2

ε
ρ λmax(P )

in which Ψ is defined as in case (i) guarantees again that (4.33) holds.
Hence, combining the results of cases (i), (iia) and (iib) implies that choosing E(xt) =

β Ẽ(xt) with

β > max
{
β(i), β(iia), β(iib)

}
= max

{
β(iia), β(iib)

}
guarantees that Condition (4.33) is satisfied.
Therefore, the local control law k(xt) satisfies Condition (4.29) in Assumption 4.8.

Furthermore, the terminal region Ω is positively invariant when applying k(xt) as shown in
the first part of the proof. Assumption 4.4 is directly satisfied due to the definitions of F ,
E, and Ω, respectively. Finally, all assumptions necessary for Theorem 4.16 are satisfied.
Hence, asymptotic stability is guaranteed.

82



4.3 Calculation of the Terminal Region and Terminal Cost

Case (i)

t

V (x(t))

t− τ t+ θmax t t+ δ − τ t+ δ

1
ρ
Ẽ(xt)

Ẽ(xt)

Case (iib)

t

V (x(t))

t− τ t t+ δ − τ t+ δ

1
ρ
Ẽ(xt)

Ẽ(xt)
Ẽ(xt+δ)

Figure 4.4: Sketch for proof of Theorem 4.17.

83



Chapter 4 Model Predictive Control for Nonlinear Time-Delay Systems

Example 4.18. We consider again Example 4.6. As shown in Example 4.12, Assump-
tion 4.7 is satisfied for the stage cost F (x, u) = x2 + 0.5u2, the Lyapunov-Razumikhin
function V (x) = x2, and the locally stabilizing control law u(t) = k(xt) = −2x(t). Further-
more, the nonlinear time-delay system (4.11) satisfies the Razumikhin-type condition (4.25)
for all xt inside the terminal region (4.31) with α = 1/4. For cases (i) and (iia), we can use
Ẽ(xt+δ)−Ẽ(xt) ≤ −1

2
E(xt), whereas in case (ii) we obtain Ẽ(xt+δ)−Ẽ(xt) ≤ −3(δ−τ)

2
E(xt).

In all cases,

t+δ∫
t

F (x(t′), k(xt′)) dt
′ =

t+δ∫
t

3x(t′)2 dt′ ≤ 3δ

2
Ẽ(xt) .

Hence, the terminal cost functional E(xt) defined in (4.30) satisfies Condition (4.29) for
β > max

{
3δ, δ

δ−τ

}
. Furthermore, the terminal region Ω and the terminal cost E satisfy

Assumption 4.6. Hence, MPC according to Algorithm 4.4 with design parameters E and Ω
asymptotically stabilizes the origin.

The scheme presented in this section allows to define the terminal region as a sublevel
set of the terminal cost functional. However, two drawbacks have to be mentioned. First,
the result requires the existence of a Lyapunov-Razumikhin function for the linearized
closed-loop using the auxiliary local control law. This condition is more restrictive than only
requiring stability as in Section 4.3.1, but similar to the conditions used in Section 4.3.2.
The second, more severe drawback is that the sampling time of the MPC controller has to
be chosen larger than the time-delay of the system. Clearly, this is problematic for systems
which are open-loop unstable and/or exhibit large time-delays.

Design using LMIs

Similar to the results in the previous sections, we can also state an exemplary LMI condition
for the design using Lyapunov-Razumikhin arguments.

Lemma 4.19 (LMI Condition for Assumption 4.7). Consider the nonlinear time-delay
system (4.1) and suppose that Assumptions 4.1–4.3 are satisfied. If there exist a symmetric
matrix Λ � 0, a matrix Γ, and a constant positive scalar ε̃ ∈ R>0 solving the following LMI[

Ξ2 + Λ + ε̃I AτΛ
? −1

ρ
Λ

]
≺ 0 (4.34)

in which Ξ2 = ΛAT +AΛ+ΓTBT +BΓ, then Assumption 4.7 is satisfied with the Lyapunov-
Razumikhin function V (x) = xTPx with P = Λ−1, the local control law u(t) = k(xt) = Kx(t)
with K = Γ Λ−1, and ε = ε̃λmin(P 2).

Proof. The proof is given in Appendix A.5.

Remark 4.20. The application of LMIs similar to the ones used in Lemma 4.13 in order
to obtain delay-dependent conditions is possible in principle. However, the proof is slightly
more involved due to the model transformation to ξ coordinates, see the proof of Lemma 4.13
in Appendix A.3.
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4.3 Calculation of the Terminal Region and Terminal Cost

4.3.4 Design with Lyapunov-Razumikhin and Exponential
Weighting

In this section, we use Lyapunov-Razumikhin arguments in order to derive a novel terminal
cost and a terminal region defined as a sublevel set of this terminal cost. In contrast to
the previous result in Section 4.3.3, the assumption δ > τ on the sampling time can be
dropped due to an additional exponential weighting term in the terminal cost functional.
This weighting term is similar to the one used in Sections 3.4 and 3.6. In contrast to the
results presented previously, the weighting in this section is only used for the definition of
the terminal cost.

The result can be summarized as follows.

Theorem 4.21 (Design using Lyapunov-Razumikhin and Exponential Weighting). Con-
sider the nonlinear time-delay system (4.1) and the quadratic stage cost (4.10). Suppose
that Assumptions 4.1–4.3, and 4.7 are satisfied. Then, there exist a terminal cost functional
of the form

E(xt) = max
θ∈[−τ,0]

β(θ) · V (x(t+ θ)) (4.35)

in which β : [−τ, 0]→ R>0 is defined by

β(θ) = β0 e
µ θ
τ , µ = min

{
ln(ρ),

τ ε

2λmax(P )

}
∈ R>0 , β0 ∈ R>0 ,

and a terminal region

Ω = {xt : E(xt) ≤ α} , (4.36)

in which α ∈ R>0, such that Assumptions 4.4 and 4.6 are satisfied. Furthermore, the
closed-loop resulting from the application of the model predictive controller according to
Algorithm 4.4 to system (4.1) is asymptotically stable.

Proof. For γ ∈ R>0 chosen such that

γ‖P‖
(

4 + 2 ‖KTK‖+ (1 + 2τ 2 ‖Kτ‖2
τ ) ρ

λmax(P )

λmin(P )

)
≤ ε

2
,

we choose α ∈ R>0 such that α < β0 λmin(P ) δγ e
−µ and such that xt ∈ Ω implies k(xt) ∈ U

for all θ ∈ [−τ, 0], which is always possible for small enough α. For this α, it was shown in
Theorem 4.17 in Section 4.3.3 that the derivative of V along trajectories of the nonlinear
system (3.1) satisfies the condition V̇ (x(t)) ≤ −ε/2 |x(t)|2 for all xt ∈ Ω satisfying (4.22).

Define the auxiliary function V̄t(θ) = 1
β(θ)

E(xt), see Figure 4.5. Then it directly follows
from the definition of E that V (x(t+ θ)) ≤ V̄t(θ) for all θ ∈ [−τ, 0]. Moreover, due to the
definition of µ, V̄t(0) ≥ 1

ρ
V̄t(θ) ≥ 1

ρ
V (x(t+ θ)) for all θ ∈ [−τ, 0] and

˙̄Vt(θ) ≥ −
ε

2λmax(P )
V̄t(θ) ≥ −

ε

2
|x(t+ θ)|2 ≥ V̇ (x(t+ θ))
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θ

V̄t(θ)

−τ 0

E(xt)

V̄t(θ) = 1
β(θ)

E(xt) = 1
β0
e−µ

θ
τ E(xt)

Figure 4.5: Upper bound V̄t(θ) on V (x(t+ θ)) used in the proof of Theorem 4.21.

whenever V (x(t + θ)) ≥ V̄t(θ). Hence, V (x(t + θ)) ≤ V̄t(θ) for all θ > −τ . Then, for all
δ > 0

E(xt+δ) = max
θ∈[−τ,0]

β(θ) · V (x(t+ δ + θ)) ≤ max
θ∈[−τ,0]

β(θ) · V̄t(δ + θ)

= max
θ∈[−τ,0]

β(θ)

β(δ + θ)
E(xt) = e−µ

δ
τ E(xt) .

Hence, by investigating δ → 0, we obtain

Ė(xt) ≤ −
µ

τ
E(xt) . (4.37)

In the next step, we show that F (x(t), k(xt)) ≤ ψ
β0
E(xt) for some constant ψ ∈ R>0.

Using similar steps as in the proof of Theorem 4.17 in Section 4.3.3 with ‖Kτ‖τ =
supθ∈[−τ,0] ‖Kτ (θ)‖, we obtain

F (x(t), k(xt)) ≤ λmax(Q+ 2KTRK)|x(t)|2 + 2λmax(R)τ 2‖Kτ‖2
τ ‖xt‖2

τ ≤
ψ

β0

E(xt)

with ψ = eµ

λmin(P )
ψ̄ and ψ̄ = λmax(Q+2KTRK)+2λmax(R)τ 2‖Kτ‖2

τ . By choosing β0 >
τ ψ
µ
, it

follows from (4.37) that Ė(xt) ≤ −F (x(t), k(xt)). By taking the definition of Ω as a sublevel
set of E into account, positive invariance is ensured and, consequently, Assumption 4.6 is
satisfied. The satisfaction of Assumption 4.4 is straightforward due to the definitions of F ,
E, and Ω, respectively. Asymptotic stability follows directly by use of Theorem 4.5, for
which all necessary assumptions are satisfied.

Example 4.22. We consider again Example 4.6. As shown in Example 4.18, Assump-
tion 4.7 is satisfied for the stage cost F (x, u) = x2 + 0.5u2, the Lyapunov-Razumikhin
function V (x) = x2, and the locally stabilizing control law u(t) = k(xt) = −2x(t). More-
over, it was shown that the nonlinear time-delay system (4.11) satisfies the Razumikhin-
type condition (4.25) for all xt inside the terminal region (4.31) with α = 1/4. With
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µ = min{ln(2), 3/2} = ln(2) and (4.37), we directly obtain Ė(xt) ≤ − ln(2)E(xt) for
the terminal cost functional E defined in (4.35). Furthermore, it is easy to see that
β0F (x(t), k(xt)) ≤ 3E(xt). Hence, Ė(xt) ≤ −F (x(t), k(xt)) holds when β0 is chosen such
that β0 > 3/ ln(2). In this case, Assumption 4.6 is satisfied and MPC based on Algorithm 4.4
with terminal cost E and terminal region Ω asymptotically stabilizes the origin.

As we will show in Section 4.4, it is possible to extend existing results on unconstrained
MPC schemes, which rely on Ω defined as a sublevel set of E, to nonlinear time-delay
systems using the design parameters E and Ω in Theorem 4.21.

4.3.5 Comparison of Different Approaches

We have presented four different design procedures for calculating the terminal cost func-
tional and terminal region based on the Jacobi linearization. It is interesting to note that
all four schemes contain the results of Chen and Allgöwer (1998) for delay-free systems as
special case although the schemes rely on different assumptions and yield different results.

The main properties are summarized in Table 4.1. The first scheme in Section 4.3.1 can be
considered as the most general scheme because it only requires the existence of a stabilizing
linear control law and, in particular, does not require any Razumikhin-type condition. This
can be beneficial because there does not exist any converse theorems regarding Lyapunov-
Razumikhin functions, rendering Razumikhin-based approaches more restrictive (Gu et al.,
2003). The main advantage of the three schemes using Lyapunov-Razumikhin arguments
is that a simpler terminal region is obtained. As shown in Sections 4.3.3 and 4.3.4, it is
also possible to define the terminal region as a sublevel set of the terminal cost with either
a sampling time larger than the time-delay or an additional exponential weighting. This
definition of the terminal region is not possible without the Razumikhin-type condition and
is useful for the design of unconstrained MPC schemes as will be discussed in Section 4.4.
In Table 4.2, we summarize the results of the different design schemes for the system

in Example 4.6, which was used throughout this section to illustrate the different results.
Simulation results for this example will be given in Section 4.6.1.

4.4 Unconstrained MPC with Terminal Cost Functional
In this section, we consider an MPC setup in which the terminal constraint is omitted from
the optimal control problem. However, the stability analysis still relies on such a terminal
region and it is shown that for a defined set of initial states it is nevertheless possible to
guarantee satisfaction of the terminal constraints without explicitly stating them in the
optimization problem.
The results in this section extend the results derived by Limon et al. (2003, 2006)

for discrete-time systems and by Graichen and Kugi (2010); Graichen et al. (2010) for
continuous-time systems. A similar result using a modified terminal cost is reported by Hu
and Linnemann (2002).

4.4.1 MPC Setup

We replace Problem 4.3 by the following optimization problem without terminal constraint,
which has to be solved at each sampling time ti given the measured state xti .
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Table 4.1: Comparison of the different design schemes based on the Jacobi linearization
for calculating a suitable terminal region and terminal cost for model predictive
control of nonlinear time-delay systems.

Design scheme P
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e

General linearization-based design
(Section 4.3.1)

X – – X

Combination of Lyapunov-Krasovskii and
Lyapunov-Razumikhin
(Section 4.3.2)

– X – X

Design by Lyapunov-Razumikhin arguments
without additional weighting
(Section 4.3.3)

– X X –

Design by Lyapunov-Razumikhin arguments
with additional weighting
(Section 4.3.4)

– X X X

Problem 4.23.

minimize
ū∈PC([ti,ti+T ],Rm)

JT (xti , ū) (4.38a)

subject to

˙̄x(t′;xti , ti) = f(x̄(t′;xti , ti), x̄(t′ − τ ;xti , ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (4.38b)
x̄(ti + θ;xti , ti) = xti(θ) , θ ∈ [−τ, 0] , (4.38c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (4.38d)

in which

JT (xti , ū) =

ti+T∫
ti

F (x̄(t′;xti , ti), ū(t′)) dt′ + E(x̄ti+T ) .

We denote the optimal open-loop input trajectory by u∗T (t′;xti , ti) for all t′ ∈ [ti, ti + T ].
The associated optimal cost is denoted by J∗T (xti) and the associated predicted state
trajectory is x∗t′ , t′ ∈ [ti, ti + T ].
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Table 4.2: Comparison of terminal cost and the terminal region based on the different
design schemes for Example 4.6.

design scheme terminal cost E(xt) terminal region
Ω = {xt ∈ Cτ : . . .}

Section 4.3.1
(Example 4.9, page 75)

x(t)2 +
0∫
−τ
x(t+ θ)2 dθ E(xt) ≤ 1

4
, ‖xt‖τ ≤ 1

2

Section 4.3.2
(Example 4.12, page 77)

x(t)2 +
0∫
−τ
x(t+ θ)2 dθ max

θ∈[−τ,0]
x(t+ θ)2 ≤ 1

4

Section 4.3.3
(Example 4.18, page 84)

β max
θ∈[−τ,0]

x(t+ θ)2 max
θ∈[−τ,0]

x(t+ θ)2 ≤ 1
4

Section 4.3.4
(Example 4.22, page 86)

max
θ∈[−τ,0]

3
ln(2)

2θ x(t+ θ)2 E(xt) ≤ 3
4 ln(2)

In comparison to Problem 4.3, only the terminal constraint (4.2e) is removed from the
finite horizon optimal control problem. However, our analysis relies on the fact that for a
defined set of initial states the terminal constraint is nevertheless guaranteed to be satisfied.
More precisely, a sublevel set of the optimal cost belongs to the region of attraction of the
origin of the closed-loop even if no terminal constraint is included in the optimal control
problem. These results extends the results by Graichen and Kugi (2010); Limon et al.
(2006) to nonlinear time-delay systems.

As before, the control input to the system is defined in the usual receding horizon fashion
as stated in the following algorithm.

Algorithm 4.24 (Model Predictive Control for Nonlinear Time-Delay Systems without
Terminal Constraint). At each sampling instant ti = iδ, i ∈ N0, measure the state xti and
solve Problem 4.23. Apply the input

uMPC(t) = u∗T (t;xti , ti) , ti ≤ t < ti + δ . (4.39)

to the system until the next sampling instant ti+1 = ti + δ.

4.4.2 Asymptotic Stability

For the stability analysis of this MPC scheme, we require the following assumptions, which
are essentially identical to Assumptions 4.4 and 4.6.

Assumption 4.10. The terminal cost functional E : Cτ → R≥0 is continuously differ-
entiable, positive definite, and there exist class K∞ functions αE, αE : R≥0 → R≥0 such
that αE(|x(t)|) ≤ E(xt) ≤ αE(‖xt‖τ ). The stage cost F : Rn × U → R≥0 is continuous,
F (0, 0) = 0, and there is a class K∞ function αF : R≥0 → R≥0 such that

F (x, u) ≥ αF (|x|) for all x ∈ Rn , u ∈ U . (4.40)
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Assumption 4.11. There is a constant α ∈ R>0 defining the set

Ω = {xt : E(xt) ≤ α} ⊆ Cτ

and there exists a locally asymptotically stabilizing controller u(t) = k(xt) ∈ U for the
nonlinear time-delay system (4.1) such that the set Ω is controlled positively invariant and

∀xt ∈ Ω : Ė(xt) ≤ −F (x(t), k(xt)) . (4.41)

In order to obtain a suitable lower bound on the cost for states outside the terminal
region, see Lemma 4.26, we require in addition the following assumptions.

Assumption 4.12. The prediction horizon is chosen such that T > 2τ . There exists a
quadratic lower bound on the stage cost, i.e., there is λF ∈ R>0 such that F (x, u) ≥ λF |x|2
for all x ∈ Rn, u ∈ U. Furthermore, the function f : Rn × Rn × Rm → Rn is globally
Lipschitz continuous.

For our stability analysis, we first state two intermediate results in the following lemmata.
The first lemma is based on (Limon et al., 2006, Lemma 1) and states that if the predicted
terminal state is not contained in the terminal region Ω, then every state along the predicted
trajectory within the prediction horizon is outside of Ω.

Lemma 4.25. Consider the optimal control problem 4.23 and suppose that Assumption 4.11
is satisfied. If x∗ti+T /∈ Ω, then x∗t′ /∈ Ω for all t′ ∈ [ti, ti + T ].

Proof. For the sake of contradiction, assume that there exists a t† ∈ [0, T ] such that
x∗
ti+t†

∈ Ω and that x∗ti+T /∈ Ω or, equivalently, E(x∗ti+T ) > α. By the principle of
optimality (Bellman, 1957, Chapter III, §3), we know that x∗t′ is an optimal endpiece on
the interval t′ ∈ [ti + t†, ti + T ]. Moreover, J∗

T−t†(xt) ≤ E(xt) holds for all xt ∈ Ω because
of Condition (4.41), see also Mayne et al. (2000) for the equivalent result in discrete-time.
Hence, we know that

E(x∗ti+t†) ≥ J∗T−t†(x
∗
ti+t†

) ≥ E(x∗ti+T ) > α .

Therefore, it follows that E(x∗
ti+t†

) > α and x∗
ti+t†

/∈ Ω, which contradicts the assumption.
The proof of the lemma is complete.

Note that the proof of Lemma 4.25 requires Ω to be defined as a sublevel set of the
terminal cost E. This allows the use of the terminal cost and terminal region as defined in
Sections 4.3.3 and 4.3.4. However, it is not possible to use the results from Sections 4.3.1
and 4.3.2.
In (Limon et al., 2006, Assumption 2), it was required that there exists d ∈ R>0 such

that F (x, u) > d holds for all x /∈ Ω and all u ∈ U. While this is a reasonable assumption
for delay-free systems, this clearly does not hold true for the problem setup considered in
this chapter and almost all other results on MPC for time-delay systems in the literature,
with a notable exception presented by Brunner (2010). Note that the stage cost F only
penalizes the instantaneous state x(t) and not the full state xt of the system. However, a
weaker property is sufficient for our stability analysis. Instead of each single time instant,
we can consider the whole prediction horizon in order to derive an appropriate lower bound.
By the definition of the terminal region as a sublevel set, the bound E(xt′) > α holds for
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4.4 Unconstrained MPC with Terminal Cost Functional

all xt′ /∈ Ω. From this, a lower bound on the integral
∫ t′
t′−2τ
|x(t)|2dt can be derived, which

implies the existence of d̂ ∈ R>0 such that
∫ t′
t′−2τ

F (x, u)(t)dt ≥ d̂ for all t′ ∈ [t + 2τ, T ].
From this, the inequality∫ t+T

t

F (x(θ), u(θ))dθ ≥ d̂ floor(T/(2τ)) ≥ d̂ (T/(2τ)− 1)

follows. These results are summarized in Lemma 4.26.

Lemma 4.26. Consider the cost functional defined in Problem 4.23 and suppose that
Assumptions 4.1–4.3 and 4.10–4.12 are satisfied. Furthermore, suppose that x∗t′ /∈ Ω for all
t′ ∈ [ti, ti + T ] in which Ω = {xt : E(xt) ≤ α}. Then, there exists a d̂ ∈ R>0 such that

ti+T∫
ti

F (x(t′), u(t′)) dt′ > d̂ (T/(2τ)− 1) .

Proof. Define two auxiliary functions y, z : [−τ, 0] → R≥0 by y(θ) = |x(t′ + θ − τ)|
and z(θ) = |x(t′ + θ)|, which describe |x(t)| in the intervals t ∈ [t′ − 2τ, t′ − τ ] and
t ∈ [t′− τ, t′], respectively. In the following, we consider an arbitrary, but fixed, time instant
t′ ∈ [ti + τ, ti + T ] and derive a lower bound on

∫ t′
t′−2τ

F (x(t), u(t)) dt. The assumption
x∗t′ /∈ Ω is equivalent to E(xt′) > α and, consequently,

‖xt′‖τ > α1 , in which α1 = α−1
E (α) .

The integral
∫ t′
t′−τ F (x(t), u(t))dt will be minimal if z(θ) reaches its maximum

max
θ∈[−τ,0]

z(θ) = ‖xt′‖τ > α1

at some time θ̃ = arg max
θ∈[−τ,0]

z(θ) ∈ [−τ, 0] and descends in both positive and negative time

direction with the largest possible gradient. Note that we do not make any assumptions
on a particular shape of the function y(θ). Without loss of generality, it can be assumed
that θ̃ = −τ . In the following, a rectangle of maximum width τ/2 will be used in order to
obtain a lower bound for the integral

∫ t′
t′−τ F (x(t), u(t))dt. Therefore, analogue arguments

also hold if the maximum is not attained at θ̃ = −τ , but at another time, see Figure 4.6.
Two cases can now be distinguished:

(i)

∫ t′

t′−2τ

|x(t)|2 dt > α2
1τ/8 and (ii)

∫ t′

t′−2τ

|x(t)|2 dt ≤ α2
1τ/8 .

For case (i), we can directly use the lower bound∫ t′

t′−2τ

F (x(t), u(t)) dt > λF α
2
1τ/8 .

For case (ii), we derive a lower bound on z(θ), which in turn gives a time θ∗ such that
z(θ) ≥ α1/2 for all θ ∈ [θ̃, θ∗], see Figure 4.6. To this end, note that due to Assumptions 4.3
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and 4.12, the function f is globally Lipschitz continuous and u is bounded. Hence, there
exist constants L0, L1, L2 ∈ R>0 such that

∀x(t), x(t− τ) ∈ Rn, u ∈ U : |f(x(t), x(t− τ), u(t))| ≤ L0 + L1|x(t)|+ L2|x(t− τ)| .

Hence, we have the following lower bound on z(θ)

z(θ) ≥ z̄(θ) = max

0, α1 − (L0 + L1α1)︸ ︷︷ ︸
=L

(θ + τ)− L2 ·
∫ θ

−τ
y(θ′) dθ′

 .

Note that z̄(θ) is strictly monotonically decreasing as long as z̄(θ) > 0. Thus, θ∗ satisfying

α1/2− L (θ∗ + τ)− L2 ·
∫ θ∗

−τ
y(θ′) dθ′ ≥ 0 (4.42)

guarantees that z(θ) ≥ α1/2 for all θ ∈ [0, θ∗] as desired. The well-known relation 1

θ2 − θ1

θ2∫
θ1

y(θ′) dθ′

2

≤ 1

θ2 − θ1

θ2∫
θ1

y2(θ′) dθ′ ,

which follows from the Cauchy-Schwarz Inequality (Bronstein et al., 2000), and the fact
that

∫ t′
t′−2τ
|x(t+ θ)|2 dt ≤ α2

1τ/8 finally imply

θ∗∫
−τ

y(θ′) dθ′ ≤
√

(θ∗ + τ)α2
1τ/8 .

Hence, the solution of

α1/2− L (θ∗ + τ)− L2

√
(θ∗ + τ)α2

1τ/8 = 0 ,

which can be directly calculated as

θ∗ + τ = θ∗ − θ̃ = ∆θ = L2
2/(4L

2)

(
−
√
τ/8α1 +

√
α2

1τ/8 + 2Lα1/L2
2

)2

,

satisfies (4.42). Consequently, it is possible to establish the following lower bound∫ t′

t′−2τ

F (x(t), u(t)) dt > λF min
{
α2

1τ/8, α
2
1∆θ/4

}
= d̂ > 0 ,

which covers both cases (i) and (ii). Also note that ∆θ ≤ τ/2 is implicitly included. It
follows that if x∗t′ /∈ Ω for all t′ ∈ [ti, ti + T ], then

ti+T∫
ti

F (x(t′), u(t′)) dt′ > d̂ floor(T/(2τ)) ≥ d̂ (T/(2τ)− 1) .

This completes the proof.
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t

|x(t)|

t′ − 2τ t′ − τ t′ + θ̃ t′ + θ∗ t′

α1/2

α1

y(θ) = |x(t′ + θ − τ)|
z(θ) = |x(t′ + θ)|

∆θ = θ∗ − θ̃

Figure 4.6: Sketch for proof of Lemma 4.26.

Using the lower bound derived in the previous lemma, we can formulate the main result
of this section as stated in the following theorem.

Theorem 4.27 (Stability of Unconstrained MPC with Terminal Cost Functional for
Nonlinear Time-Delay Systems). Consider the nonlinear time-delay system (4.1) and
suppose that Assumptions 4.1–4.3 and 4.10–4.12 are satisfied and that the prediction
horizon satisfies T > 2τ . Then, the closed-loop system resulting from the application of the
model predictive controller according to Algorithm 4.24 to system (4.1) is asymptotically
stable. A subset of the region of attraction is given by

ΓT =
{
xt ∈ Cτ : J∗T (xt) ≤ d̂ (T/(2τ)− 1) + α

}
. (4.43)

Proof. The proof is similar to the proof of (Limon et al., 2006, Theorem 1). Note that
the region Ω is contained in ΓT because J∗T (xt) ≤ E(xt) ≤ α < d̂ (T/(2τ)− 1) + α for all
xt ∈ Ω.
First, it is proven by contradiction that for any xti ∈ ΓT , the optimal solution satisfies

the terminal constraint. For the sake of contradiction, assume xti ∈ ΓT and that the
terminal constraint is not satisfied. From Lemma 4.25, it can be inferred that if the optimal
trajectory is such that the terminal region is not reached at the end of the prediction
horizon, then all states along this trajectory are outside of Ω. Hence, by Lemma 4.26,

J∗T (xti) > d̂ (T/(2τ)− 1) + α

whenever T > 2τ . But this contradicts the assumption xti ∈ ΓT with ΓT defined in (4.43).
Therefore, we have shown that for all xti ∈ ΓT the optimal solution of Problem 4.23 satisfies
the terminal constraint x̄ti+T ∈ Ω although it is not explicitly included in the optimization
problem.
Second, it is proven that ΓT is a positively invariant set for the closed-loop system

resulting from the application of the model predictive controller according to Algorithm 4.24
to system (4.1). Suppose that xti ∈ ΓT . Since the terminal constraint is satisfied and
Assumption 4.11 holds, the assertion of Lemma A.5 in Appendix A.1 holds. By using (A.4)
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and the non-negativity of the stage cost F , it is directly clear that for all t∗ ∈ [ti, ti + δ]

J∗T (xt∗) ≤ J∗T (xti)−
t∗∫
ti

F (x(t′), u(t′)) dt′ ≤ d̂ (T/(2τ)− 1) + α , (4.44)

which implies that xt∗ ∈ ΓT and, in particular, xti+1
∈ ΓT . Iterative application of these

arguments shows positive invariance of ΓT for all times.
Equation (4.44) shows that the optimal cost is non-increasing along trajectories of the

closed-loop and that the only trajectory for which the optimal cost is not decreasing is the
steady state xt,s = 0. Therefore, stability and asymptotic stability can be proven along the
lines of the proof of Theorem 4.5 in Appendix A.1.

4.4.3 Summary

In this section, we have presented stability conditions for an MPC scheme without terminal
constraints for nonlinear time-delay systems. The omission of the terminal constraints
makes the approach computationally more attractive than other schemes with terminal
constraints. However, the region of attraction might be smaller than for MPC with terminal
constraints, but in most cases significantly larger than the estimate (4.43), which is based
on a general, yet conservative analysis. Further results and extensions can be found in
Brunner (2010), which proposes different alternative MPC formulations, e.g., similar to the
result of Hu and Linnemann (2002) for delay-free systems.

4.5 Unconstrained MPC without Terminal Cost
Functional

There exist several MPC schemes for nonlinear time-delay systems which guarantee closed-
loop stability. These schemes can be roughly categorized into schemes with terminal
constraints, see (Angrick, 2007; Raff et al., 2007) and Section 4.2, and unconstrained MPC
schemes which use additional terminal weighting functionals, see (Brunner, 2010; Kwon
et al., 2001a,b; Lu, 2011; Mahboobi Esfanjani and Nikravesh, 2009a, 2011) and Section 4.4.
All of these schemes require a positively invariant terminal region. Furthermore, with the
exception of Angrick (2007); Raff et al. (2007) who use an extended zero terminal state
constraint, a control Lyapunov-Krasovskii functional is used as a terminal cost functional
in the MPC setup. Calculating a control Lyapunov-Krasovskii functional for nonlinear
time-delay systems is in general a difficult task. Even if a control Lyapunov-Krasovskii
functional is known for the Jacobi linearization of the system about the origin, which
by itself is not simple, it is a non-trivial problem to obtain an appropriate terminal cost
functional and invariant terminal region for the nonlinear system, see Section 4.3. All
schemes for calculating these stabilizing design parameters, see the schemes derived in
Section 4.3 and the other aforementioned references, either require restrictive Razumikhin
conditions or yield complicated terminal regions and/or terminal cost functionals, which
are unattractive for an online implementation.

In order to overcome these difficulties, we consider MPC with finite horizon cost functionals
containing neither terminal constraints nor terminal penalty terms in this section. The
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results extend the results on unconstrained MPC for continuous-time systems in Section 3.2
and the results concerning discrete-time systems (Grimm et al., 2005; Grüne, 2009; Grüne
et al., 2010a). Note that the latter results hold, at least in principle, also for infinite-
dimensional systems. For instance, the aforementioned results have been exemplarily
applied to certain classes of partial differential equations, see Altmüller et al. (2010a,b,
2012). However, these results cannot be directly transferred to the MPC setup for time-delay
systems considered in this chapter, as well as the other existing MPC schemes for time-delay
systems, see the references in Section 2.2.3. The main reason is that the stage cost is not
positive definite in the full state, but only penalizes the instantaneous state of the system.
Hence, additional arguments are required in order to guarantee closed-loop stability. First,
we introduce a modified controllability assumption which extends Assumption 3.5 in a
suitable way towards time-delay systems. Based on this assumption, we derive conditions on
the prediction horizon to guarantee stability of the closed-loop. It is particularly interesting
to note that in contrast to essentially all other MPC schemes with guaranteed stability, the
optimal cost is not used as Lyapunov function(al) of the closed-loop, and indeed the optimal
cost can increase along trajectories of the closed-loop due to the influence of the delayed
states. However, stability is guaranteed because the infinite horizon cost is bounded by a
function of the initial state and the finite horizon optimal cost at initial time. Furthermore,
the unconstrained MPC setup allows to make statements concerning performance of the
closed-loop.

4.5.1 MPC Setup

With respect to performance, the goal is to minimize the infinite horizon cost functional
J∞(ϕ, u)

minimize
ū∈PC(R≥0,U)

J∞(ϕ, u) , with J∞(ϕ, u) =

∞∫
0

F (x(t), u(t)) dt ,

subject to the system dynamics (4.1). The associated optimal cost of this infinite horizon
optimal control problem is denoted by J∗∞(ϕ) = min

ū∈PC(R≥0,U)
J∞(ϕ, u) in this section and

we use the following condition concerning the stage cost F analogue to Assumptions 3.4
and 4.4.

Assumption 4.13. The stage cost F : Rn × U → R≥0 is continuous, F (0, 0) = 0, and
there exists a class K∞ function αF : R≥0 → R≥0 such that

F (x, u) ≥ F (x, 0) ≥ αF (|x|) for all x ∈ Rn , u ∈ U . (4.45)

In addition, we require the following assumption.

Assumption 4.14. The prediction horizon T is chosen such that T > τ + δ.

Assumption 4.14 is essentially only needed due to technical reasons in the proof of
Lemma 4.32. In general, this assumption is not restrictive, in particular when considering
small sampling times. In most cases, it is desirable to choose the prediction horizon larger
than the time-delay or this might even be required in the case of using terminal constraints.
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Remark 4.28. The results of Section 3.2 on unconstrained MPC for nonlinear systems are
not applicable in the setup presented in this section because the stage cost F is not positive
definite in the full state xt. Thus, (3.2) in Assumption 3.4 is not satisfied and we cannot
expect that Assumption 3.5 is satisfied for a nonlinear time-delay system.

Since infinite horizon problems are often computationally intractable, we use the finite
horizon cost functional

JT (ϕ, u) =

T∫
0

F (x(t), u(t)) dt ,

in which T is the prediction horizon, analogue to Section 3.2. The open-loop finite horizon
optimal control problem at sampling time ti given the measured state xti is now formulated
as follows.

Problem 4.29.

minimize
ū∈PC([ti,ti+T ],Rm)

JT (xti , ū) (4.46a)

subject to

˙̄x(t′;xti , ti) = f(x̄(t′;xti , ti), x̄(t′ − τ ;xti , ti), ū(t′)) , t′ ∈ [ti, ti + T ] , (4.46b)
x̄(ti + θ;xti , ti) = x(ti + θ) , θ ∈ [−τ, 0] , (4.46c)

ū(t′) ∈ U , t′ ∈ [ti, ti + T ] , (4.46d)

in which

JT (xti , ū) =

ti+T∫
ti

F (x̄(t′;xti , ti), ū(t′)) dt′ .

In Problem 4.29, x̄(t′;xti , ti) denotes the predicted trajectory starting from initial condi-
tion x̄(ti+θ;xti , ti) = x(ti+θ), θ ∈ [−τ, 0] and driven by ū(t′) for t′ ∈ [ti, ti+T ]. We assume
that the optimal open-loop control which minimizes JT (xti , ū) is given by u∗T (t′;xti , ti) for
all t′ ∈ [ti, ti +T ]. The associated optimal cost is denoted by J∗T (xti) and the associated pre-
dicted trajectory is x∗T (t′;xti , ti), t′ ∈ [ti, ti + T ]. For given sampling time δ with 0 < δ ≤ T ,
the control input to the system is defined by the following algorithm in the usual receding
horizon fashion analogue to Algorithm 3.6.

Algorithm 4.30 (Unconstrained Model Predictive Control for Nonlinear Time-Delay
Systems). At each sampling instant ti = iδ, i ∈ N0, measure the state xti and solve
Problem 4.29. Apply the input

uMPC(t) = u∗T (t;xti , ti) , ti ≤ t < ti + δ . (4.47)

to the system until the next sampling instant ti+1 = ti + δ.
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Note that in this section we consider MPC with a finite horizon optimal control problem
containing neither terminal constraints nor terminal penalty terms in the cost functional.
Thus, we do not require to calculate a local control Lyapunov-Krasovskii functional for
the system in a region around the origin. This is in contrast to most of the previous
work on MPC for nonlinear time-delay systems, see (Angrick, 2007; Kwon et al., 2001a,b;
Mahboobi Esfanjani and Nikravesh, 2009a; Raff et al., 2007) and Section 4.2. Instead, we
use a less restrictive controllability assumption along the lines of the work presented by
Grimm et al. (2005); Grüne (2009); Grüne et al. (2010a) for discrete-time systems, which
we also discussed in Chapter 3 for continuous-time delay-free systems.

4.5.2 Controllability Assumption and Implications

In the following, we introduce an extended version of the Controllability Assumption 3.5
which is appropriate for the nonlinear time-delay systems considered in this chapter.

Assumption 4.15 (Controllability Assumption for Time-Delay Systems). For all T ′ ∈ R≥0

and for all ϕ ∈ Cτ = C([−τ, 0],Rn), there exists a piece-wise continuous input trajectory
û(·;ϕ, 0) with û(t;ϕ, 0) ∈ U for all t ∈ [0, T ′] and

J∗T ′(ϕ) ≤ JT ′(ϕ, û) ≤ B(T ′)

F (ϕ(0), 0) +

0∫
−τ

F (ϕ(t′), 0)dt′

 , (4.48)

in which B : R≥0 → R>0 is a continuous, non-decreasing, and bounded function.

Note that Assumption 4.15 is a natural extension of Assumption 3.5, which is directly
recovered for τ = 0. Also note that the candidate input trajectory û has to be feasible in
the sense that it satisfies the input constraints, but it is not required to be optimal.

Without loss of generality, we consider the two consecutive sampling instants t0 = 0 and
t1 = δ in the following. Since system (4.1) is time-invariant, all results hold analogously for
any other two consecutive sampling instants ti and ti+1. Furthermore, we use the following
abbreviations

F ∗(t; ti) =

{
F (x∗T (t;xti , ti), u

∗
T (t;xti , ti)) , t ∈ [ti, ti + T ]

F (x(t), u(t)) , t ∈ [ti − τ, ti[

for ti ∈ {0, δ}. From this definition, it directly follows that J∗T (xti) =
∫ ti+T
ti

F ∗(t′; ti) dt
′.

In the following, we state two intermediate results in Lemmata 4.32 and 4.33, which are
based upon the Controllability Assumption 4.15 and the auxiliary result of Lemma 4.31.
Lemma 4.32 uses the optimality of J∗T (xti+δ) in addition to the controllability assumption
in order to derive an upper bound on J∗T (xti+δ) in terms of the endpiece of the predicted
trajectory calculated at time ti. In Figure 4.7, this can be interpreted as giving an upper
bound on the cost of the blue dotted line in terms of the red loosely dashed line. Lemma 4.33
applies the principle of optimality (Bellman, 1957, Chapter III, §3), i.e., the trajectory
F ∗(t; ti) calculated at time ti is an optimal endpiece on the interval [ti + δ, ti + T ]. Hence,
it is also possible to derive an upper bound based on the controllability assumption. In
Figure 4.7, the result can be interpreted as giving an upper bound on the cost of the red
loosely dashed line in terms of the green dashed line and the black solid line, which accounts
for the influences of the delayed states due to the time-delay τ . Also note the similarity of
these results to the results of Lemmata 3.20 and 3.21 for delay-free systems.

97



Chapter 4 Model Predictive Control for Nonlinear Time-Delay Systems

t′

ti − τ ti ti + δ ti + T ti + T + δ

F̂ (|x(t′)|)

F ∗(t′; ti)

F ∗(t′; ti + δ)
J∗T (xδ) ≤ Ξ

T∫
δ

F ∗(t′; 0)dt′

T∫
δ

F ∗(t′; 0)dt′ ≤ γ
δ∫
−τ
F ∗(t′; 0) dt′

Figure 4.7: Sketch for Lemmata 4.32 and 4.33. The optimal trajectory calculated at time ti
is depicted by the (green and red) dashed line, the optimal trajectory calculated
at ti + δ is depicted by the (blue) dotted line.

Lemma 4.31 (Auxiliary Result for the Proofs of Lemmata 4.32 and 4.33). For all t1, t2 ∈ R
with t1 < t2, τ ∈ R>0, and for any positive integrable function F : [t1 − τ, t2]→ R≥0, the
following holds

min
t∈[t1,t2]

(
F (t) +

∫ t

t−τ
F (t′) dt′

)
≤ 1 + τ

t2 − t1

∫ t2

t1−τ
F (t′) dt′ .

Proof. The proof is given in Appendix A.6.

Lemma 4.32 (Calculation of Ξ). Suppose that Assumptions 4.1–4.3, 4.13, 4.14, and
Controllability Assumption 4.15 are satisfied for the nonlinear time-delay system (4.1).
Then,

J∗T (xδ) ≤ Ξ

T∫
δ

F ∗(t′; 0)dt′ (4.49)

with Ξ = 1 +B(T ) 1+τ
T−τ−δ .

Proof. Due to Controllability Assumption 4.15

J∗T (xδ) ≤
t∫

δ

F ∗(t′; 0) dt′ +B(T + δ − t)

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′

 (4.50)

holds for all t ∈ [δ, T ]. Furthermore, we directly obtain the following relations

t∫
δ

F ∗(t′; 0) dt′ ≤
T∫
δ

F ∗(t′; 0) dt′ and B(T + δ − t) ≤ B(T )

for all t ∈ [δ, T ] due to non-negativity of F ∗ and the non-decreasing property of B.
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Since (4.50) holds for all t ∈ [δ, T ], it results

J∗T (xδ) ≤ min
t∈[δ,T ]

 t∫
δ

F ∗(t′; 0) dt′ +B(T + δ − t)

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′


≤

T∫
δ

F ∗(t′; 0) dt′ +B(T ) min
t∈[δ,T ]

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′

 .

Using the auxiliary result stated in Lemma 4.31 yields

min
t∈[δ,T ]

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′

 ≤ min
t∈[δ+τ,T ]

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′


≤ 1 + τ

T − τ − δ

T∫
δ

F ∗(t′; 0) dt′ ,

and we finally arrive at

J∗T (xδ) ≤
(

1 +B(T )
1 + τ

T − τ − δ

)
︸ ︷︷ ︸

=Ξ

T∫
δ

F ∗(t′; ti) dt
′ .

This completes the proof.

Note that Ξ→ 1 for T →∞ since B(T ) is bounded. This property will later be useful
to show that, given Assumption 4.15, there always exists a finite prediction horizon T large
enough such that the closed-loop using the MPC controller given by Algorithm 4.30 is
asymptotically stable.

Lemma 4.33 (Calculation of γ). Suppose that Assumptions 4.1–4.3, 4.13, and Controlla-
bility Assumption 4.15 are satisfied for the nonlinear time-delay system (4.1). Then,

T∫
δ

F ∗(t′; 0)dt′ ≤ γ

δ∫
−τ

F ∗(t′; 0) dt′ (4.51)

with γ = B(T ) 1+τ
δ
.

Proof. Let Assumption 4.15 be satisfied. Then, the inequality
T∫
t

F ∗(t′; 0)dt′ ≤ B(T − t)

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′


holds for all t ∈ [0, T ]. This result is a direct consequence of the principle of optimality
(endpieces of optimal trajectories are optimal), see (Bellman, 1957, Chapter III, §3).
Furthermore,

T∫
δ

F ∗(t′; 0)dt′ ≤
T∫

t1

F ∗(t′; 0)dt′ and B(T − t2) ≤ B(T )
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hold for all t1 ∈ [0, δ] and t2 ∈ [0, T ] due to non-negativity of F ∗ and the non-decreasing
property of B. By combining all of these intermediate results, we obtain

T∫
δ

F ∗(t′; 0)dt′ ≤ B(T ) min
t∈[0,δ]

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′

 .

Using Lemma 4.31, it follows that

min
t∈[0,δ]

F ∗(t; 0) +

t∫
t−τ

F ∗(t′; 0) dt′

 ≤ 1 + τ

δ

δ∫
−τ

F ∗(t′; 0) dt′ ,

and we finally arrive at

T∫
δ

F ∗(t′; 0)dt′ ≤ B(T )
1 + τ

δ︸ ︷︷ ︸
=γ

∫ δ

−τ
F ∗(t′; ti) dt

′ .

This completes the proof.

It is interesting to note that the results in Lemmata 4.32 and 4.33 are more closely related
to Lemmata 3.20 and 3.21 than to Lemmata 3.14 and 3.15. The techniques applied in the
proofs of the latter lemmata are not suitable in the setup considered in this section. Thus,
the more conservative estimates have to be used instead.

4.5.3 Asymptotic Stability and Suboptimality Estimate

Based on the results of the previous section, we can now state our main result regarding
asymptotic stability of the closed-loop using the unconstrained MPC scheme for nonlinear
time-delay systems as follows.

Theorem 4.34 (Stability of Unconstrained MPC for Nonlinear Time-Delay Systems).
Suppose that Assumptions 4.1–4.3, 4.13, 4.14, and Controllability Assumption 4.15 are
satisfied for the nonlinear time-delay system (4.1). Furthermore, suppose that

α = 1− (N + 1) (Ξ− 1) γ > 0 , (4.52)

in which N = ceil
(
τ
δ

)
and with Ξ and γ defined in Lemmata 4.32 and 4.33, respectively.

Then, the closed-loop system resulting from the application of the model predictive controller
according to Algorithm 4.30 to system (4.1) is asymptotically stable.

Proof. Consider the optimal cost J∗T at two arbitrary sampling instants ti and t0 with
ti > t0. Adding zero and reordering terms directly yields

J∗T (xti)− J∗T (xt0) = J∗T (xti)− J∗T (xt0) +
i−1∑
j=1

J∗T (xtj)− J∗T (xtj)︸ ︷︷ ︸
=0

=
i−1∑
j=0

J∗T (xtj+1
)− J∗T (xtj) . (4.53)
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Using Lemma 4.32, we obtain

J∗T (xtj+1
)− J∗T (xtj) = J∗T (xtj+δ)− J∗T (xtj)

(4.49)
≤ (Ξ− 1)

∫ tj+T

tj+δ

F ∗(t′; tj)dt
′ −
∫ tj+δ

tj

F ∗(t′; tj)dt
′ .

Moreover, it follows from Lemma 4.33 that

J∗T (xtj+1
)− J∗T (xtj)

(4.51)
≤ ((Ξ− 1)γ − 1)

tj+δ∫
tj

F ∗(t′; tj)dt
′ + (Ξ− 1)γ

tj∫
tj−τ

F ∗(t′; tj)dt
′ .

(4.54)

Since we consider no model plant mismatch, the predicted trajectories and the actual
trajectories of the closed-loop system coincide until the next sampling instant. Thus,
F ∗(t′; tj) = F (x(t′), uMPC(t′)) for t′ ∈ [tj, tj + δ]. Careful inspection of the sum in (4.53) in
combination with (4.54) then yields

J∗T (xti)− J∗T (xt0)

≤ ((Ξ− 1)γ − 1)

ti∫
t0

F (x(t′), uMPC(t′)) dt′

+N (Ξ− 1)γ

ti∫
t0

F (x(t′), uMPC(t′)) dt′ +N (Ξ− 1)γ

t0∫
t0−τ

F ∗(t′; t0) dt′

= ((N + 1)(Ξ− 1)γ − 1)︸ ︷︷ ︸
=−α

ti∫
t0

F (x(t′), uMPC(t′))dt′ +N (Ξ− 1)γ

t0∫
t0−τ

F ∗(t′; t0) dt′ .

Since J∗T (xti) > 0 and J∗T (xt0) are finite, it follows for any arbitrary ti > t0

ti∫
t0

F (x(t′), uMPC(t′)) dt′ ≤ 1

α
J∗T (xt0) +N (Ξ− 1)

γ

α

t0∫
t0−τ

F ∗(t′; t0) dt′ <∞ . (4.55)

Asymptotic stability follows directly from standard arguments in optimal control and
Barbalat’s Lemma (Barbalat, 1959; Khalil, 2002). This completes the proof.

Note that Ξ→ 1 for T →∞, which directly implies α→ 1 for T →∞ as in the delay-free
case, see Proposition 3.17. Hence, there always exists a finite prediction horizon T chosen
suitably large such that the closed-loop using the MPC controller is asymptotically stable.

Regarding suboptimality estimates, we can make the following comments. Equation (4.55)
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and J∗T (ϕ) ≤ J∗∞(ϕ) yield for initial condition ϕ

J∗∞(ϕ) ≤ JMPC
∞ (ϕ) =

∞∫
0

F (x(t′), uMPC(t′)) dt′

≤ 1

α
J∗T (ϕ) +N (Ξ− 1)

γ

α

0∫
−τ

F (ϕ(t′), 0) dt′ (4.56a)

≤ 1

α
J∗∞(ϕ) +N (Ξ− 1)

γ

α

0∫
−τ

F (ϕ(t′), 0) dt′ . (4.56b)

Thus, an upper bound on the infinite horizon performance of the MPC controller can be
given in terms of the finite horizon optimal cost at initial time J∗T (ϕ) and on an additional
term depending on the initial state ϕ. This second term is not necessary in the case of
delay-free systems as can be directly seen for τ = 0. Furthermore, Equation (4.56) shows
that JMPC

∞ (ϕ)→ J∗∞(ϕ) for T →∞, i.e., infinite horizon optimal performance is recovered
for large enough prediction horizon and the influence of the second term in (4.56b), which
depends on the initial condition ϕ, vanishes.
Moreover, we obtain N = 0 and α = 1− γ(Ξ− 1) for τ = 0. This directly recovers the

stability condition of Theorem 3.16 for delay-free continuous-time systems, albeit with the
“worse” estimates Ξ† and γ† from Lemmata 3.20 and 3.21. Furthermore, Equation (4.55)
becomes

∞∫
t0

F (x(t′), uMPC(t′)) dt′ ≤ 1

α
J∗T (xt0) ≤

1

α
J∗∞(xt0) ,

which recovers the suboptimality estimate of the infinite horizon performance of the MPC
controller without additional terms depending on the initial condition, see also Theorem 3.16.
Note that α → −∞ for δ → 0, i.e., asymptotic stability of the closed-loop cannot be

guaranteed for arbitrarily small sampling times, which is to a certain extent counterintuitive.
However, it was shown in Grüne et al. (2010b,c) and Section 3.2.3 that with an additional
condition, the so-called growth condition, this effect can be avoided for discrete-time and
continuous-time delay-free systems. The estimate obtained in Section 3.2.3 satisfies Ξ→ 1
for δ → 0, which allows to cancel the effect of γ → ∞ for δ → 0 when using the growth
condition. Unfortunately, this is not possible for the results presented in this section. It is
simple to see in Lemma 4.32, that Ξ 9 1 for δ → 0, independently of B(T ). Hence, the
growth condition is not applicable to avoid the poor estimates for small sampling times.

It is also interesting to note that stability is not proven by a decrease of the optimal cost
function from one sampling instant to the next one, but only by a decrease in the long run.
The optimal cost can indeed increase along trajectories of the closed-loop due to the effect
of the delayed states.

4.5.4 Summary

In this section, we considered model predictive control for nonlinear time-delay systems
using neither terminal constraints nor control Lyapunov-Krasovskii functionals as terminal
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weighting terms. First, we proposed an extended asymptotic controllability assumption,
which was necessary because the stage cost only penalizes the instantaneous state instead
of the full delayed state. Based on this assumption, we provided conditions on the length
of the prediction horizon to guarantee nominal asymptotic stability of the closed-loop. In
contrast to most other results on stability of MPC (regardless whether systems with or
without time-delay are considered), the optimal cost is not used as Lyapunov function or
Lyapunov-Krasovskii functional. The optimal cost can indeed increase along trajectories of
the closed-loop due to the effect of the delayed states, but has to decrease in the long run.
However, poor estimates for small sampling times are obtained and a growth condition
similar to Section 3.2.3 cannot be used for improving these estimates due to the techniques
required by the presence of time-delays.

4.6 Numerical Examples

In this section, we compare the MPC schemes for nonlinear time-delay systems presented
in this chapter by using two numerical examples. In Section 4.6.1, we show simulation
results for the simple scalar nonlinear time-delay system (4.11), which was already used in
several examples in Section 4.3. In Section 4.6.2, we investigate a more realistic example by
considering the stabilization of an unstable equilibrium of a continuous stirred tank reactor
with recycle stream.

4.6.1 Simple Scalar Example

In this section, we consider the simple scalar nonlinear time-delay system (4.11), i.e.,
ẋ(t) = x(t− τ)4 + u(t) with time-delay τ = 1. This system was introduced in Example 4.6
and also considered in Examples 4.9, 4.12, 4.18, and 4.22. We show simulation results for
six different MPC setups. First, we apply MPC with terminal cost and terminal constraints,
as described in Section 4.2, with the design parameters calculated by the four procedures
introduced in Section 4.3. The terminal cost and terminal region for each procedure are
also summarized in Table 4.2 in Section 4.3.5. Second, we consider the two MPC schemes
without terminal constraints which were derived in Sections 4.4 and 4.5, respectively. The
terminal cost for the unconstrained MPC scheme in Section 4.4 is chosen based on the
design by Lyapunov-Razumikhin arguments with additional exponential weighting, see
Section 4.3.4 and further explanations below.
For our simulations, we choose the initial condition ϕ(θ) = 1.5 + 3θ for θ ∈ [−τ, 0] and

input constraints U = [−4, 4]. Moreover, we choose the prediction horizon T = 2 and the
sampling time δ = 0.1. For the design with Lyapunov-Razumikhin arguments without
additional weighting in Section 4.3.3, we require δ > τ , see Assumption 4.9, hence, choosing
δ = 1.1 for this scheme and, consequently, the parameter β = 11 in the terminal cost E(xt),
see Table 4.2.

The simulation results are shown in Figure 4.8. For this comparatively simple system, only
negligible differences are visible in the evolution of the states and all schemes asymptotically
stabilize the system and satisfy the input constraints. The most significant difference
compared to the other schemes can be seen for the MPC scheme based on Section 4.3.3,
which is mainly due to the use of a different sampling time δ = 1.1 in contrast to δ = 0.1 in
all other schemes. As could be expected, unconstrained MPC without terminal constraints
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needs the least computation time with about 30% less computation time compared to
the MPC schemes with terminal constraints. Out of the MPC schemes with terminal
constraints, the design with Lyapunov-Razumikhin and exponential weighting required
about 14% less computation time than the schemes with terminal cost functionals based
on Lyapunov-Krasovskii arguments. While this indicates advantages of using Razumikhin-
arguments if possible, a more thorough investigation of numerical and implementation
aspects for different examples would be necessary for stronger statements. However, this is
beyond the scope of this thesis.

The possible robustness problems of the MPC scheme based on Section 4.3.3 are briefly
illustrated in Figure 4.9. We compare the MPC scheme based on Section 4.3.1 with sampling
time δ = 0.1 and the MPC scheme based on Section 4.3.3 with sampling time δ = 1.1
for the initial condition ϕ(θ) = 1.3 for θ ∈ [−τ, 0]. We consider a model plant mismatch,
the nominal model used for the predictions in both MPC schemes is given by (4.11), i.e.,
ẋ(t) = x(t−τ)4+u(t), and the actual system is described by ẋ(t) = x(t−τ)4+0.2x(t)2+u(t).
For the sampling time δ = 0.1, the inherent robustness of the MPC suffices to asymptotically
stabilize the system. However, for δ = 1.1 the closed-loop does not converge to the origin.

4.6.2 Continuous Stirred Tank Reactor with Recycle Stream

In this section, we consider the model of a continuous stirred tank reactor with recycle
stream and the stabilization of an unstable steady state subject to input constraints. Model
and parameters are taken from the example of Findeisen and Allgöwer (2000) and the
model is extended with a recycle stream, see Figure 4.10. The equations of the reactor
following from the mass and energy balance are given by

ċ(t) = a1 (cin(t)− c(t))− 2K(T(t)) c(t)2 (4.57a)

Ṫ(t) = a1 (Tin(t)− T(t)) + a2 (Tk(t)− T(t)) + a3K(T(t)) c(t)2 (4.57b)

in which

cin(t) = (1− ν) cf + ν c(t− τ) and Tin(t) = (1− ν)Tf + ν T(t− τ) .

The temperature and concentration of the reactant inside the reactor are denoted by T
and c, respectively. Tf and cf are the temperature and concentration of the inflow and
both are assumed to be constant. The manipulated input is the heating jacket temperature
Tk. The coefficient ν ∈ [0, 1] is the recirculation coefficient and τ the recycle time. The
rate of reaction K(T) is given by the Arrhenius law K(T) = k0 e

−a4
T . The other model

parameters are

a1 =
q

V
, a2 =

kwFk
ρcpV

, a3 =
−∆hr
ρcp

, a4 =
EA
R

.

For our simulations, we use the following numerical values of the parameters:

ν = 0.5 , τ = 20 s , q = 0.1
l

min
, V = 1000 cm3 = 1 l ,

kw = 0.1
cal

cm2 minK
, Fk = 250 cm2 , ρcp = 0.659

cal
cm3 K

,

∆hr = −20000
cal
mol

, EA = −∆hr , R = 1.9864
cal

molK
, k0 = 33 · 109 l

molmin
.
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Figure 4.8: Simulation results for the simple scalar nonlinear time-delay system (4.11)
discussed in Section 4.6.1. From top left to bottom right: MPC with terminal
constraints based on four different design schemes (see Sections 4.3.1–4.3.4),
unconstrained MPC with terminal cost (Section 4.4) and unconstrained MPC
without terminal cost (Section 4.5).
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Figure 4.9: Simulation results for the simple scalar nonlinear time-delay system (4.11) with
uncertainty. Left: MPC scheme based on Section 4.3.1 with δ = 0.1. Right:
MPC scheme based on Section 4.3.3 with δ = 1.1.

The goal is to stabilize the unstable steady state Ts = 345 K, cs = 4.24 mol/l for constant
inflow parameters Tf = 290 K, cf = 6.67 mol/l, and heating jacket temperature Tk,s = 389
K. Hence, we define

x1 = c(t)− cs , x2 = T(t)− Ts, and u = Tk − Tk,s .

The input Tk is constrained between 349 K and 429 K, i.e., |u| = |Tk − Tk,s| ≤ 40 K and
U = [−40 K, 40 K].
In order to apply the results of Sections 4.3.1–4.3.4 the Jacobi linearization about the

steady state is calculated and the resulting LMIs are solved in MATLAB using YALMIP
(Löfberg, 2004). The weighting matrices are chosen as Q = 100 I and R = I. The resulting
local control law is u(t) = Tk(xt)− Tk,s with

Tk(xt)− Tk,s = Kx(t) = [−49.18
K l
mol

, −26.41]

[
c(t)− cs
T(t)− Ts

]
.

The solutions of the LMIs then give conditions on a sufficiently small γ in (4.8), see,
e.g., Equations (4.21) and (A.22). For γ determined this way, it remains to calculate δγ
such that Property (4.8) holds for all ‖xt‖τ ≤ δγ and |u(t)| < δγ. Once δγ is obtained,
the terminal region Ω can be calculated in order to ensure ‖xt‖τ ≤ δγ, |Kx(t))| < δγ,
and Kx(t) ∈ U for all xt ∈ Ω. One possible approach for the calculation of δγ and Ω is
described in the following. Φ only consists of higher order terms and does not contain any
delayed terms for the model of the CSTR (4.57). Hence, we can define a function Φ̃(x)
such that Φ(xt, Kx(t)) = Φ̃(x(t)). Due to the residual of the Taylor series expansion, we
know that Φ̃(x) = 1

2!
(ξx)T HΦ̃(ξx) (ξx) for some ξ ∈ [0, 1] (Bronstein et al., 2000). Here,
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reactants
cf , Tf

products, c(t), T(t)

recycle stream

c(t− τ), T(t− τ)
time-delay τ
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MPC
T

cooling
water

2A→ B

Figure 4.10: Continuous stirred tank reactor with recycle stream (source: Hasenauer (2012)).

HΦ̃(ξx) denotes the Hessian matrix of Φ̃ with respect to x evaluated at ξx. By using an
upper bound Ĥ on the Hessian matrix Ĥ in some region Ω̄ around the origin, we obtain
|Φ̃(x)| ≤ 1

2
Ĥ |x|2 in this origin. Now by choosing α and δγ small enough, it is possible

to guarantee that |x(t)| ≤ 2γ

Ĥ
for all states xt inside the terminal region Ω ∈ Ω̄. Thus,

|Φ̃(x)| ≤ γ|x| and consequently Property (4.8) is satisfied for all states inside the terminal
region for the desired γ. If a smaller upper bound Ĥ can be calculated in Ω, we can repeat
this procedure starting from a smaller region Ω̄. A smaller upper bound Ĥ calculated for
this newly chosen Ω̄ then yields a larger terminal set Ω. This can be repeated iteratively
until Ω̄ = Ω. Using this approach, the terminal region can be calculated for each of the
procedures of Sections 4.3.1–4.3.4.

The simulation results for a prediction horizon of T = 35 minutes are shown in Figure 4.11.
As can be expected the model predictive controller stabilizes the unstable steady state Ts,
cs while satisfying the input constraints. In this example, the terminal region is relatively
small for the procedures which explains the similar behavior of the different controllers and
shows the still existing conservatism in the proposed schemes.

One reason for this is that results based on the Jacobi linearization also lead to conservative
results in the delay-free case. This is due to the fact that often only conservative bounds
on the nonlinearity have to be used such as (4.8), as well as the restriction to quadratic
Lyapunov functions which might not be appropriate for nonlinear systems. Furthermore,
we have only used the simplest quadratic Lyapunov-Krasovskii functional with constant
matrices P and S in order to calculate the local control law as a first step. However, it is
possible to generalize the principle ideas of using a local control law and either an additional
Razumikhin condition or the terminal region defined by the intersection of a sublevel set
and a norm bounded region in Cτ . For instance, one future step can be the consideration of
more complicated functionals, e.g., calculated by means of sum-of-squares techniques as in
Papachristodoulou (2005); Papachristodoulou et al. (2005).

In Figure 4.12, we show simulation results for MPC schemes without terminal constraints.
We choose the terminal cost again based on the design by Lyapunov-Razumikhin arguments
with additional exponential weighting. In this example, both unconstrained MPC schemes
stabilize the system and exhibit similar performance of the closed-loop compared to the
results with terminal constraints.
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4.7 Summary
In this chapter, we proposed different MPC schemes for nonlinear time-delay systems with
guaranteed stability of the closed-loop.

First, we extended the classical well-known MPC scheme using a terminal cost functional
and terminal constraints to the problem setup with time-delays. While the stability condi-
tions are very similar to the delay-free case, the calculation of suitable design parameters
based on the Jacobi linearization about the origin was shown to be more difficult due to
the infinite-dimensional nature of the state space. We proposed four different schemes
to overcome these difficulties, each of which contains the delay-free case as special case,
and discussed the properties of each of these schemes. Second, we presented two MPC
schemes without terminal constraints. Last, we compared the different MPC schemes for
two numerical examples. For these examples, similar performance was observed for all
MPC schemes. The general analysis carried out in this chapter yields rather conservative
stability conditions and, in particular, the computation time seems to be still prohibitive
for practical applications. However, we see our results as a useful contribution towards
a better fundamental understanding of MPC for time-delay systems and as a theoretical
basis for future developments in this area.
For open questions and possible directions of future research, we refer to Section 5.2 at

the end of this thesis.
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MPC scheme based on Section 4.3.2
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MPC scheme based on Section 4.3.3
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MPC scheme based on Section 4.3.4
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Figure 4.11: Simulation results for the CSTR (4.57) using MPC with terminal constraints.
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MPC scheme based on Section 4.4
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MPC scheme based on Section 4.5
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Figure 4.12: Simulation results for the CSTR (4.57) using MPC without terminal
constraints.
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Chapter 5

Conclusions

In this chapter, we summarize the main results of the thesis and indicate possible directions
for future research.

5.1 Summary and Discussion

In this thesis, we derived novel stability conditions for model predictive control for nonlinear
continuous-time systems with and without time-delays.

In Chapter 3, we considered different MPC schemes based on a controllability assumption
for finite-dimensional nonlinear continuous-time systems. This controllability assumption is
less restrictive than the usual assumption in MPC of knowing a local control Lyapunov
function. Hence, these MPC schemes are attractive alternative control methods especially for
systems for which no local control Lyapunov function is known and/or without stabilizable
Jacobi linearization such as the nonholonomic or the cubic integrator. We derived explicit
conditions on the prediction horizon such that closed-loop stability is guaranteed for the
different MPC schemes, in particular for unconstrained MPC without terminal cost. This
simplest possible MPC setup is important due to its widespread application in industry,
and also has the advantage of giving guaranteed performance bounds for the closed-loop.
Starting from this MPC scheme, we have shown that additional weighting terms can be
used in order to guarantee stability for shorter prediction horizons. Similarly, additional
weighting terms allow to guarantee stability if only a local controllability assumption is
satisfied in combination with appropriate terminal cost terms. It is interesting to note that
these MPC schemes show connections between unconstrained MPC and the classical MPC
schemes with terminal cost and terminal constraint, two classes of MPC schemes which
have been considered separately in the literature so far. More specifically, both classes
of MPC schemes can be recovered as a limit case of the unifying framework presented
in Section 3.5, which uses an integral terminal cost and extended terminal constraints.
Furthermore, this setup allows more flexibility and can be useful in some cases for which
both of the previous MPC schemes are not applicable.
In Chapter 4, we examined MPC for nonlinear time-delay systems. We have derived

rigorous stability conditions for several MPC setups with and without terminal cost terms
and/or terminal constraints for this class of systems. While the stability conditions are
similar to those for delay-free systems, the actual calculation of stabilizing design parameters
requires additional arguments. For the examples studied in this chapter, namely an academic
example and a continuous stirred tank reactor with recycle stream, similar performance was
observed for all MPC schemes. Our analysis yields rather general results with relatively
few assumptions on the system, which can result in conservative stability conditions.
In particular, a rather small terminal region might be obtained which requires a large
computation time and might be prohibitive for direct application in practical examples.
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Chapter 5 Conclusions

In all MPC schemes considered in this thesis, the optimal cost is used as a Lyapunov
function of the closed-loop – with the notable exception of the results on unconstrained
MPC for time-delay systems in Section 4.5.

5.2 Outlook

Only nominal stability of a known steady state has been addressed in this thesis. Therefore,
other properties of the closed-loop and the applicability in different areas are natural future
research directions for the MPC schemes based on a controllability assumption discussed in
Chapter 3. For some special cases, first results are available such as unconstrained MPC
for networked control systems (Grüne et al., 2012; Reble et al., 2012c), for distributed
systems (Grüne and Worthmann, 2012), for economic MPC (Grüne, 2011, 2012), and for
path following problems (Faulwasser, 2012). Other topics have not been investigated so far,
such as robustness properties, the design of robust MPC schemes, and extensions towards
stochastic MPC.

Another particularly challenging, yet crucial, problem is the rigorous analysis of efficient
suboptimal MPC schemes. For the classical MPC schemes using a local CLF and terminal
constraints, it is well-known that “feasibility implies stability” to a certain extent (Scokaert
et al., 1999). A feasible candidate solution to the open-loop optimal control problem is
easily constructed by appending control values based on the local control law to the solution
at the previous sampling time. Stability is then guaranteed for all feasible, not necessarily
optimal, solutions which yield a smaller cost than this candidate solution. Close inspection
reveals that similar arguments do not work for the stability analysis in unconstrained MPC.
For instance, the calculation of the suboptimality estimate in Theorem 3.16 relies on the
fact that the optimal cost is smaller than the cost associated to each of infinitely many
feasible candidate solutions provided by the controllability assumption. Hence, it is more
difficult to find a feasible solution which guarantees a decrease of the optimal cost and
thereby stability of the closed-loop. For a more detailed analysis of suboptimal MPC, see,
e.g., Diehl et al. (2004); Graichen and Kugi (2010).
Furthermore, it would be interesting to investigate computational aspects more closely.

For standard MPC problems, there now exists a huge variety of specifically tailored numerical
methods, e.g., (Diehl et al., 2004; Graichen, 2012; Ohtsuka, 2004; Sideris and Bobrow,
2005) to name only a few. However, several different non-standard finite horizon optimal
control problems have been proposed for use in MPC schemes in Chapter 3, e.g., the setup
using a generalized integral cost and a generalized terminal constraint in Section 3.5. The
formulation and performance of numerical methods for these non-standard problems is an
open question so far.

A problem related to MPC for nonlinear time-delay systems is the control of other classes
of infinite-dimensional systems, see Section 2.1.2 for several references on MPC for PDEs.
In most of the literature, a rigorous stability analysis is only carried out for linear PDEs
or MPC with a global control Lyapunov functional as terminal cost. However, terminal
inequality constraints have rarely been used for PDEs. The design of these constraints based
on the Jacobi linearization about the steady state would be subject to similar difficulties
as for nonlinear time-delay systems due to the infinite-dimensional nature of the system.
Hence, the procedures proposed in Section 4.3 would be a good starting point in order to
overcome these difficulties.
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5.2 Outlook

Furthermore, it would be desirable to have better stability conditions regarding uncon-
strained MPC for nonlinear time-delay systems, in particular for small sampling times. The
results presented in Section 4.5 cannot be directly improved by a growth condition as in
Section 3.2 for delay-free systems. Hence, different analysis techniques are necessary. In
this respect, note that other MPC setups for time-delay systems are also possible which do
not belong to the framework presented in Chapter 4. For instance, an MPC setup in which
the delayed states are taken into account in the definition of the stage cost is presented in
Brunner (2010).

Another very interesting field of future research is robust MPC for nonlinear time-delay
systems. Due to the high computational demand even for nominal MPC, min-max MPC
(Raimondo et al., 2009) is not an appropriate choice for a robust MPC design. Tube-based
MPC (Langson et al., 2004; Mayne et al., 2005) appears to be a more suitable starting
point for research in this area.
Finally, it would be worthwhile to investigate output feedback for nonlinear time-delay

systems. While there are several results available concerning the state estimation and
observer design for nonlinear time-delay systems (Boutayeb, 2001; Germani et al., 1998,
1999, 2001; Koshkouei and Burnham, 2009; Raff and Allgöwer, 2006; Zemouche et al.,
2007), there exist only very few results on separation principles with one exception for
a particular setup given by Germani et al. (2010). A good starting point would be to
consider the results on nonlinear separation principles for finite-dimensional systems, see,
e.g., the results of Arcak (2002); Atassi and Khalil (1999, 2000, 2001); Teel and Praly
(1994), and the results on output feedback using MPC, see, e.g., the results of Findeisen
(2004); Findeisen et al. (2003); Roset et al. (2006). In order to overcome the problems
raised by the infinite-dimensional state space, the techniques used in Section 4.3 seem to
be promising.
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Appendix A

Technical Proofs

A.1 Proof of Theorem 4.5
The proof of Theorem 4.5 follows the lines of Chen (1997), however, the infinite-dimensional
nature of the state space requires proof of additional properties of the optimal value
functional, see Lemma A.3, which are directly implied by continuity and positive definiteness
in the finite-dimensional case.
First, we address feasibility of the open-loop optimal control problem in Lemma A.1.

To establish asymptotic stability, it will be then shown in Lemma A.2 that the optimal
cost J∗T (xti) of Problem 4.3 is continuous in the state xt and is locally lower bounded as
shown in Lemma A.3. Continuity of the optimal cost is required for the proof of asymptotic
stability as opposed to only convergence. Furthermore, the optimal value functional is
non-increasing along trajectories of the closed-loop as proven in Lemma A.5. In the last
step, asymptotic stability is shown using these intermediate results.

Lemma A.1. Suppose that Assumptions 4.1–4.6 are satisfied. Then, the open-loop finite
horizon optimal control problem 4.3 admits a feasible solution for all times t ∈ R>0, if it is
initially feasible at time ti = 0.

Proof. Suppose that at time ti, a feasible solution of Problem 4.3 exists and denote this
solution by u(t′;xti , ti), t

′ ∈ [ti, ti +T ]. At time t∗ ∈]ti, ti + δ], a feasible, but not necessarily
optimal, control input û can be constructed by appending control values based on the local
controller k(xt) to the solution at the previous sampling time ti. Formally, û is defined by

û(t′;xti , ti) =

{
u(t′;xti , ti), for t′ ∈ [t∗, ti + T [
k(x̄t′), for t′ ∈ [ti + T, t∗ + T ]

(A.1)

in which x̄t′ is defined by the prediction of the closed-loop

˙̄x(t′) = f(x̄(t′), x̄(t′ − τ), u(t′;xti , ti)) for t′ ∈ [t∗, ti + T [ ,

˙̄x(t′) = f(x̄(t′), x̄(t′ − τ), k(x̄t′)) for t′ ∈ [ti + T, t∗ + T ] ,

x̄ti = xti .

Hence, û consists of two parts: The first part is the feasible control calculated at time ti,
which steers the system from xt∗ to xti+T ∈ Ω inside the terminal region and the second part
uses the local controller k(xt), which keeps the system trajectory in Ω for ti+T ≤ t′ ≤ t∗+T
while respecting the input constraints. Hence, the feasibility of Problem 4.3 at time ti
implies feasibility at time t∗ and in particular also at the next sampling instant ti+1 = ti + δ.
By induction, Problem 4.3 is feasible for every t > 0 if it is feasible at initial time t = 0.

Lemma A.2. Suppose that Assumptions 4.1–4.6 are satisfied. Then, the optimal cost
J∗T (xt) of the open-loop finite horizon optimal control problem 4.3 is continuous in xt at
xt = 0.
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Proof. Let ϕ ∈ Cτ belong to some neighborhood C ⊆ Cτ of the origin and ϕ 6= 0. Choose
ū = 0 as a candidate solution to the finite horizon optimal control problem 4.3. Now,
consider the following system for t′ ∈ [t, t+ T ]

˙̄x(t′) = f(x̄(t′), x̄(t′ − τ), 0) , xt = ϕ .

If the neighborhood C is chosen sufficiently small, a unique solution x̄(t) exists on the
interval [t, t+ T ] because f is a continuously differentiable function of its arguments. This
solution depends continuously on the initial condition ϕ, see, e.g., (Hale and Lunel, 1993,
Theorem 2.2) and (Kolmanovskii and Myshkis, 1999). Furthermore, we can choose C
sufficiently small such that x̄t+T is inside the terminal region because 0 is in the interior of
Ω. Now, let the associated cost functional be denoted by

J̄∗T (ϕ) =

∫ t+T

t

F (x̄(t′), 0)dt′ + E(x̄t+T ) . (A.2)

Since F and E are continuous and x(t) depends continuously on ϕ in a neighborhood of
xt = 0, J̄∗T (ϕ) is continuous with respect to ϕ in this neighborhood. Thus, for any ε > 0,
there exists δε such that ‖ϕ‖τ < δε implies

∣∣J̄∗T (ϕ)
∣∣ < ε. On the other hand, the optimal

input u∗T (t′;xti , ti) will yield no larger cost than the selected candidate solution ū = 0 and
J∗T ≥ 0. Hence, for ‖ϕ‖τ < δε, we have

|J∗T (ϕ)| ≤
∣∣J̄∗T (ϕ)

∣∣ < ε .

Thus, J∗T (ϕ) is continuous at the origin xt = 0.

Lemma A.3. The optimal value functional J∗T (xt) of the open-loop finite horizon optimal
control problem 4.3 satisfies

J∗T (xt) ≥ αJ(|x(t)|) (A.3)

in a neighborhood of the origin, in which αJ : R≥0 → R≥0 is a class K∞ function.

Proof. For α ∈ R>0, consider two regions around the origin defined by

Ω1 = {xt : ‖xt‖τ ≤ α} and Ω2 = {xt : ‖xt‖τ ≤ 2α} .

Since f is continuous and U is compact, there exists a positive constant M ∈ R>0 such that
f is bounded by |f | < M for all xt in Ω1 and Ω2. Now let xt ∈ Ω1 ⊂ Ω2. Then, clearly
|x(t)| ≤ α by definition of Ω1 and

|x(t)|
2
≤ |x(t′)| ≤ 3|x(t)|

2
≤ 2α , ∀t′ ∈ [t, t+ TM ]

holds for TM = |x(t)|/2M . On account of (4.3) and since E ≥ 0, it directly follows that

J∗T (xt) ≥
∫ min{TM ,T}

t

αF (|x(t′)|) dt′ ≥ αF

(
|x(t)|

2

)
·min

{
|x(t)|
2M

, T

}
.

Hence, (A.3) is satisfied for

αJ = αF

(
|x(t)|

2

)
·min

{
|x(t)|
2M

, T

}
,

which completes the proof.
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A.1 Proof of Theorem 4.5

Remark A.4. Lemma A.3 is the main difference of this proof of Theorem 4.5 compared
to the results in Chen (1997) for finite-dimensional systems, for which (A.3) is directly
satisfied.

Lemma A.5. Suppose that Assumptions 4.1–4.6 are satisfied. For any sampling instant
ti = i δ and any t∗ ∈ [ti, ti + δ], the optimal value functional satisfies

J∗T (xt∗) ≤ J∗T (xti)−
t∗∫
ti

F (x(t′), u(t′)) dt′ . (A.4)

Proof. Feasibility of the optimization problem is guaranteed by Lemma A.1. Let x∗(t′) =
x∗T (t′;xti , ti) denote the state resulting from application of the optimal input u∗T (t′) =
u∗T (t′;xti , ti) starting from xti at time ti. The value of the objective functional at time ti is

J∗T (xti) =

∫ t∗

ti

F (x∗(t′), u∗T (t′)) dt′ +

∫ ti+T

t∗
F (x∗(t′), u∗T (t′)) dt′ + E(x∗ti+T ) . (A.5)

Let x̂(t′) denote the state resulting from application of the feasible, but not necessarily
optimal, input (A.1) starting at x∗t∗ at time t∗. The value of the objective functional at
time t∗ for this suboptimal input reads

JT (xt∗ , û) =

∫ t∗+T

t∗
F (x̂(t′), û(t′)) dt′ + E(x̂t∗+T )

=

∫ ti+T

t∗
F (x∗(t′), u∗T (t′)) dt′ +

∫ t∗+T

ti+T

F (x̂(t′), k(x̂(t′))) dt′ + E(x̂t∗+T ) . (A.6)

Combining (A.5), (A.6) and integrating (4.5) from ti + T to t∗ + T yields

JT (xt∗ , û) ≤ J∗T (xti)−
t∗∫
ti

F (x∗(t′), u∗T (t′)) dt′ . (A.7)

Since û is a feasible, but not necessarily optimal, solution

J∗T (xt∗) ≤ JT (xt∗ , û) ≤ J∗T (xti)−
t∗∫
ti

F (x∗(t′), u∗T (t′)) dt′ .

This completes the proof of the lemma.

Using these results, asymptotic stability as stated in Theorem 4.5 can now be proven
similar to (Chen, 1997, Theorem 3.1).

Proof of Theorem 4.5. In the following, first stability of the closed-loop is proven. Given
ε > 0, assume without loss of generality that (A.3) in Lemma A.3 holds for all states in
the neighborhood of the origin defined by ‖xt‖τ < ε and define β = αJ(ε). Because of
the continuity of J∗T (xt) at xt = 0, it is possible to find a δε > 0 such that J∗T (xt) < β

117



Appendix A Technical Proofs

for all ‖xt‖τ < δε. Due to Lemma A.5, the optimal value functional J∗T (xt) satisfies along
trajectories of the closed-loop for all t∗ > t

J∗T (xt∗) ≤ J∗T (xt)−
t∗∫
t

αF (|x(t′)|) dt′ . (A.8)

Hence, it is non-increasing along trajectories of the closed-loop and, therefore, for all t∗ > t

‖xt‖τ < δε ⇒ J∗T (xt) < β ⇒ J∗T (xt∗) < β ⇒ ‖xt∗‖τ < ε .

Thus, xt = 0 is stable. In order to show asymptotic stability, use (A.8) iteratively to obtain

J∗T (x∞) ≤ J∗T (xt)−
∞∫
t

αF (|x(t′)|) dt′ .

Since J∗T (xt) is finite and J∗T (x∞) ≥ 0, the integral exists and is bounded, i.e.,

∞∫
t

αF (|x(t′)|) dt′ <∞ . (A.9)

Moreover, ‖xt‖τ is bounded for all time because the closed-loop is stable. With the input
constraint set U compact and f continuous, it follows that f(x(t), x(t− τ), u(t)) is bounded
for all t ∈ R>0. Hence, x(t) is uniformly continuous in t, which implies |x(t)| → 0 for
t→∞ according to Barbalat’s Lemma (Barbalat, 1959; Khalil, 2002).

A.2 Proof of Theorem 4.10
The proof consists of two parts. In the first part, we show that the Lyapunov Inequality (4.5)
in Assumption 4.6 holds. In the second part, we use this result in order to prove controlled
positive invariance of Ω defined in (4.20).

Lyapunov Inequality (4.5)

Applying the Schur complement to the lower right block in (4.18), and pre- and post-

multiplying by P =

[
P 0
0 P

]
, in which P = Λ−1, one obtains

[
ATkP + PAk + S +Q+KTRK PAτ

ATτ P −S

]
+ εP2 ≺ 0 . (A.10)

The derivative of the cost functional E (4.19) along solutions of the closed-loop consisting
of system (4.1) in combination with controller u(t) = Kx(t) is

Ė(xt) = xT (t)
[
ATkP + PAk

]
x(t) + 2xT (t)PAτx(t− τ)

+ xT (t)Sx(t)− xT (t− τ)Sx(t− τ) + 2xT (t)PΦ(xt, Kx(t)) , (A.11)
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A.2 Proof of Theorem 4.10

in which Ak = A + BK. Comparing the results of (A.10) and (A.11), it is clear that
Ė(xt) ≤ −F (x(t), Kx(t)) holds if

2xT (t)PΦ(xt, Kx(t)) ≤ ε λ2
min(P )

∣∣(xT (t), xT (t− τ))T
∣∣2 .

In order to show that this relation holds in the terminal region Ω defined by (4.20), note
that property (4.8) is satisfied for all ‖xt‖τ ≤ δγ with γ in (4.21). Therefore, the following
holds

2xT (t)PΦ(xt, Kx(t)) ≤ 2λmax(P ) |x(t)| |Φ(xt, Kx(t))|
(4.8)
≤ 2λmax(P ) |x(t)| γ

∣∣(xT (t), xT (t− τ))T
∣∣

(4.21)
≤ 2λmax(P ) |x(t)| ε λ2

min(P )

2λmax(P )

∣∣(xT (t), xT (t− τ))T
∣∣

≤ ε λ2
min(P )

∣∣(xT (t), xT (t− τ))T
∣∣2 .

Hence, Ė(xt) ≤ −F (x(t), Kx(t)) for all xt for which ‖xt‖τ ≤ δγ and, consequently, for all
xt in the terminal region Ω.

Controlled positive invariance of Ω

In this part, the positive invariance of Ω is shown analogue to the proof of Theorem 4.7.
Without loss of generality assume that xt0 ∈ Ω for an arbitrary time instant t0. For the
sake of contradiction, assume that Ω is not positively invariant. Since x(t) is a continuous
function of time, there exists a t1 > t0 for which xt1 /∈ Ω and ‖xt‖τ < 3δγ

4
for all t ≤ t1.

Note that Ė(xt) ≤ 0 for all xt with ‖xt‖τ ≤ δγ as shown in the first part of this proof.
Hence, E(xt1) ≤ E(xt0) and ‖xt1‖τ > δγ/2 because we assume xt1 /∈ Ω. It follows that
there is a time t2 with t0 < t2 ≤ t1 for which

|x(t2)| > δγ
2
, (A.12)

and due to Ė < 0

E(xt2) ≤ E(xt0) . (A.13)

On the other hand, closer inspection of the definition of the terminal cost functional in (4.19)
reveals E(xt) ≥ λmin(P ) |x(t)|2. Therefore,

E(xt2) ≥ λmin(P ) |x(t2)|2
(A.12)
> λmin(P )

δ2
γ

4
.

Using this result and (A.13), it directly follows that E(xt0) > λmin(P )
δ2γ
4
, which contradicts

the assumption that xt0 ∈ Ω. Hence, the terminal region Ω is positively invariant.
Furthermore, because of the invariance of Ω and Ė(xt) ≤ −F (x(t), Kx(t)), it directly

follows that the control law u(t) = Kx(t) locally asymptotically stabilizes the nonlinear
time-delay system (4.1).
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A.3 Proof of Lemma 4.13

The proof uses ideas given in De Souza and Li (1995). Since

x(t− τ) = x(t)−
∫ 0

−τ
ẋ(t+ θ)dθ

= x(t)−
∫ 0

−τ
f̃(x(t+ θ), x(t− τ + θ), Kx(t+ θ)) + Φ(xt+θ, Kx(t+ θ)) dθ ,

(A.14)

in which f̃ and Φ are defined in (4.7) and (4.6), any solution of system (4.1) is also a
solution of the system

ξ̇ = (Ak + Aτ )ξ(t) + Φ(ξt, Kξ(t))

− Aτ
∫ 0

−τ
[Akξ(t+ θ) + Aτξ(t− τ + θ) + Φ(ξt+θ, Kξ(t+ θ))] dθ (A.15a)

ξ(θ) = ψ(θ) ,∀θ ∈ [−2τ, 0] (A.15b)

in which the short hand Ak = A+BK is used. Hence, if Ω is positively invariant for the
latter system (A.15), then it is also positively invariant for the original system (4.1).
Define a Razumikhin function candidate V1(ξ(t)) = ξT (t)Pξ(t) with the symmetric

positive definite matrix P = Λ−1 � 0. The time derivative of V1 along trajectories of (A.15)
is

V̇1(ξ) = ξT (t)
[
(Ak + Aτ )

TP + P (Ak + Aτ )
]
ξ(t) + 2ξT (t)PΦ(ξt, Kξ(t)) +

3∑
i=1

ηi(ξ, t)

(A.16)

in which

η1(ξ, t) = −2

∫ 0

−τ
ξT (t)PAτAkξ(t+ θ) dθ , (A.17a)

η2(ξ, t) = −2

∫ 0

−τ
ξT (t)PA2

τξ(t− τ + θ) dθ , (A.17b)

η3(ξ, t) = −2

∫ 0

−τ
ξT (t)PAτΦ(ξt+θ, Kξ(t+ θ)) dθ . (A.17c)

For the symmetric matrices Pi = Λ−1ΛiΛ
−1 � 0, i ∈ {1, 2, 3}, Inequality (4.26b) yields

Pi−P ≤ 0, i ∈ {1, 2}. Furthermore, we know that for any v, w ∈ Rn and for any symmetric
positive definite matrix Pi ∈ Rn×n

−2vTw ≤ vTP−1
i v + wTPiw .

Motivated by Razumikhin-type arguments assume that

V1(ξ(t+ θ)) ≤ V1(ξ(t)) ,∀θ ∈ [−2τ, 0] . (A.18)
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Thus, it follows from using (A.17)–(A.18)

η1(ξ, t) ≤ τξT (t)PAτAkP
−1
1 ATkA

T
τ Pξ(t) + τξT (t)Pξ(t) ,

η2(ξ, t) ≤ τξT (t)PA2
τP
−1
2 (A2

τ )
TPξ(t) + τξT (t)Pξ(t) ,

η3(ξ, t) ≤ τξT (t)PAτP
−1
3 ATτ Pξ(t) +

∫ 0

−τ
Φ(ξt+θ, Kξ(t+ θ))TP3Φ(ξt+θ, Kξ(t+ θ))dθ .

Substituting the result in (A.16) yields

V̇1(ξ) < ξT (t)Θξ(t) + 2ξT (t)PΦ(ξt, Kξ(t))

+

∫ 0

−τ
Φ(ξt+θ, Kξ(t+ θ))TP3Φ(ξt+θ, Kξ(t+ θ))dθ , (A.19)

in which

Θ = τPAτ (AkP
−1
1 ATk + AτP

−1
2 ATτ + P−1

3 )ATτ P + 2τP + (Ak + Aτ )
TP + P (Ak + Aτ ).

By using Equation (A.18), we know that |ξ(t + θ)| < ν|ξ(t)| for all θ ∈ [−2τ, 0] with
ν2 = λmax(P )/λmin(P ). Using (4.8), we obtain

2ξT (t)PΦ(ξt, Kξ(t)) ≤ 2‖P‖ γ (1 + ν)︸ ︷︷ ︸
Σ1(γ)

|ξ(t)|2 (A.20)

and ∫ 0

−τ
Φ(ξt+θ, Kξ(t+ θ)T )P3Φ(ξt+θ, Kξ(t+ θ))dθ ≤ 4 τγ2ν2 ‖P3‖︸ ︷︷ ︸

Σ2(γ)

|ξ(t)|2. (A.21)

Applying the Schur complement to (4.26a), using the substitutions Λ = P−1, Λi = P−1PiP
−1

for i ∈ {1, 2, 3}, and K = Γ Λ−1 and pre- and post-multiplying by P yields Θ = −W1 ≺ 0.
Now choose α in (4.23) small enough such that for all states xt ∈ Ω the local control law
satisfies the input constraints u(t) = Kx(t) ∈ U and Property (4.8) holds with γ small
enough such that

Σ1(γ) + Σ2(γ) < λmin(W1)/2 . (A.22)

Using Equations (A.20)–(A.22) in combination with Equation (A.19), it can be ensured that
V̇1 < −λmin(W1)

2
|ξ(t)|2 whenever (A.18) holds. Note that (A.22) always holds for sufficiently

small α because P is positive definite and (4.8). Thus, by Razumikhin-type arguments it
follows that Ω is positively invariant, see Hale and Lunel (1993). This completes the proof.

A.4 Proof of Lemma 4.14
As shown in the first part of Appendix A.2, Ė(xt) ≤ −F (x(t), Kx(t)) for all xt with
‖xt‖τ ≤ δγ if γ ≤ ε

λ2min(P )

2λmax(P )
, compare (4.21) in Theorem 4.10. Hence, if α in the definition

of Ω (4.27) is chosen small enough such that

α < λmin(P ) δ2
γ , (A.23)

then Ė(xt) ≤ −F (x(t), Kx(t)) for all xt ∈ Ω.
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A.5 Proof of Lemma 4.19

Pre- and post-multiplying the LMI (4.34) by P =

[
P 0
0 P

]
yields

[
ATkP + PAk + P + ε̃P 2 PAτ

ATτ P −1
ρ
P

]
≺ 0 , (A.24)

in which Ak = A+BK. Whenever (4.22) holds, i.e., ∀θ ∈ [−τ, 0] : V (x(t+θ)) ≤ ρ V (x(t)),
we obtain for the derivative of V along trajectories of the linear system (4.6)

V̇ (x(t)) = x(t)T (PAk + AkP )x(t) + 2x(t)TPAτx(t− τ)

(4.22)
≤ x(t)T (PAk + AkP )x(t) + 2x(t)TPAτx(t− τ)

+ x(t)TPx(t)− 1

ρ
x(t− τ)TPx(t− τ)︸ ︷︷ ︸
≥0

(A.24)
≤ −ε̃x(t)TP 2x(t) ≤ −ε̃λmin(P 2)|x(t)|2 .

This completes the proof.

A.6 Proof of Lemma 4.31
Due to fundamental properties of integrals and non-negativity of F , it follows that

min
t∈[t1,t2]

(
F (t) +

∫ t

t−τ
F (t′) dt′

)
≤ 1

t2 − t1

∫ t2

t1

(
F (t) +

∫ t

t−τ
F (t′) dt′

)
dt

≤ 1

t2 − t1

t2∫
t1−τ

F (t′) dt′ +
1

t2 − t1

t2∫
t1

t∫
t−τ

F (t′) dt′dt

(∗)
≤ 1

t2 − t1

t2∫
t1−τ

F (t′)dt′ +
1

t2 − t1

t2∫
t1−τ

t′+τ∫
t′

F (t′)dtdt′

=
1

t2 − t1

∫ t2

t1−τ
F (t′) dt′ +

τ

t2 − t1

∫ t2

t1−τ
F (t′)dt′ .

For the interchange of the order of integration and the enlarged domain of integration in
inequality (∗), see Figure A.1. The term

∫ t2
t1

∫ t
t−τ F (t′) dt′dt results from integration over

the domain within the black solid line, whereas
∫ t2
t1−τ

∫ t′+τ
t′

F (t′)dtdt′ corresponds to the
larger domain additionally including the areas given by the gray dashed lines.
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t

t′

t1 − τ

t1 − τ

t1

t1

t2

t2

t2 + τ

∫ t2
t1

∫ t
t−τ F (t′) dt′dt

∫ t2
t1−τ

∫ t′+τ
t′

F (t′)dtdt′

Figure A.1: Sketch for interchange of the order of integration in the proof of Lemma 4.31.
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