

Berichte aus dem Institut für Maschinenelemente Antriebstechnik • CAD • Dichtungen • Zuverlässigkeit

Peter Schuler

Einfluss von Grenzflächeneffekten auf den Dichtmechanismus der Radial-Wellendichtung

Bericht Nr. 153

D 93 ISBN 978-3-936100-54-9

Institut für Maschinenelemente

Antriebstechnik • CAD • Dichtungen • Zuverlässigkeit

Universität Stuttgart Pfaffenwaldring 9 70569 Stuttgart Tel. (0711) 685 – 66170

Prof. Dr.-Ing. B. Bertsche, Ordinarius und Direktor

Einfluss von Grenzflächeneffekten auf den Dichtmechanismus der Radial-Wellendichtung

Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Dipl.-Ing. Peter Schuler

aus Göppingen

Hauptberichter:	Prof. DrIng. habil. Werner Haas
Mitberichter:	Prof. Dr. rer. nat. Thomas Hirth

Tag der Einreichung:18. Dezember 2013Tag der mündlichen Prüfung:31. März 2014

Institut für Maschinenelemente der Universität Stuttgart

2014

Meiner Familie

Vorwort

Diese Arbeit entstand während meiner Tätigkeit als akademischer Mitarbeiter am Institut für Maschinenelemente (IMA) der Universität Stuttgart.

Ich danke dem Institutsleiter, Herrn Prof. Dr.-Ing. Bernd Bertsche für die Möglichkeit zur Promotion und für das von ihm geförderte, familiäre Arbeitsklima am IMA.

Mein ganz besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. habil. Werner Haas, Leiter des Bereichs Dichtungstechnik am IMA. Durch sein Vertrauen und seine Unterstützung wurde diese Arbeit erst möglich.

Herrn Prof. Dr. rer. nat. Thomas Hirth, dem Leiter des Instituts für Grenzflächenverfahrenstechnik und Plasmatechnologie und des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik, danke ich für die Übernahme des Mitberichts.

Die Durchführung der umfangreichen Messungen dieser Arbeit wäre nicht ohne die Mitarbeit studentischer Hilfskräfte möglich gewesen. Für ihre Mithilfe danke ich Herrn Dipl.-Ing. Holger Niebel, Herrn Dipl.-Ing. Sumbat Bekgulyan, Frau Xin Liu, Herrn Gerold Kratzig und Herrn Roman Reinhardt.

Meinen Kollegen Herrn Dr.-Ing. Steffen Jung und Herrn Dipl.-Ing. Stefan Schmuker danke ich für die fruchtbare, gemeinsam verbrachte Arbeitszeit.

Großer Dank gebührt meiner Familie. Die Unterstützung meiner Mutter war Voraussetzung für ein Studium ohne Nebenverpflichtungen. In der Promotionszeit konnte ich mich voll auf die wissenschaftliche Arbeit konzentrieren.

Meine Ehefrau Ulrike und meine Kinder David und Ylvi gaben mir in anstrengenden Phasen die nötige Aufmunterung. Die Rücksicht und Liebe, die sie mir entgegenbrachten ist durch nichts zu ersetzen.

Süßen im April 2014

Peter Schuler

Inhaltsverzeichnis

Ał	Abstract I				
Sy	mbo	lverzei	chnis	Α	
1	Einl	eitung	; und Zielsetzung	1	
2	Star	nd der	Wissenschaft	5	
	2.1	Kompo	onenten der Radial-Wellendichtung	5	
		2.1.1	Radial-Wellendichtring	6	
		2.1.2	Gegenlauffläche	21	
		2.1.3	Schmierstoff	23	
	2.2	Dichtn	nechanismus	25	
		2.2.1	Allgemeines	25	
		2.2.2	Makroskopische Betrachtung	26	
		2.2.3	Mikroskopische Betrachtung	35	
		2.2.4	Betriebseinflüsse auf die Förderwirkung	41	
	2.3	Grenzf	flächenphysik	43	
		2.3.1	Bindungskräfte	43	
		2.3.2	Benetzung	46	
		2.3.3	Benetzungseffekte	53	
	2.4	Benetz	zung bei Dichtungen	58	
		2.4.1	Meniskushypothese	58	
		2.4.2	Kapillarwirkung	59	
		2.4.3	Benetzungsmessungen	59	
3	Stof	fwerte		62	
	3.1	Versuc	hsdurchführung	62	
		3.1.1	Messgeräte	62	
		3.1.2	Versuchsteile	65	
		3.1.3	Vorgehen	67	

	3.2	Ergebi	nisse
		3.2.1	Schmierstoffe $\ldots \ldots \ldots$
		3.2.2	Elastomere
		3.2.3	Wellenwerkstoffe
4	Dicl	htsyste	em 84
	4.1	Versuo	chsdurchführung
		4.1.1	Prüfeinrichtungen
		4.1.2	Gegenlaufflächen
		4.1.3	Dichtringe
		4.1.4	Schmierstoffe
		4.1.5	Vorgehen
	4.2	Ergebi	nisse
		4.2.1	Thermographie
		4.2.2	Reibung
		4.2.3	Förderwert
		4.2.4	Leckage
		4.2.5	Verschleiß
		4.2.6	Schmierfilmhöhe
			110
5	Aus	wertui	110
5	Aus 5.1	Benetz	ng 110 zung
5	Aus 5.1	Benetz 5.1.1	zung
5	Aus 5.1	Benetz 5.1.1 5.1.2	zung
5	Aus 5.1	Benetz 5.1.1 5.1.2 5.1.3	ng 110 zung
5	Aus 5.1 5.2	Benetz 5.1.1 5.1.2 5.1.3 Förder	ng 110 zung
5	Aus 5.1 5.2	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1	ng 110 zung
5	Aus 5.1 5.2	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2	ng 110 zung
5	Aus 5.1 5.2	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3	ng 110 zung
5	Aus 5.1 5.2 5.3	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor	ng 110 zung
5	Aus 5.1 5.2 5.3	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor 5.3.1	Ing 110 zung
5	Aus 5.1 5.2 5.3	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor 5.3.1 5.3.2	ng 110 zung
5	Aus 5.1 5.2 5.3 5.4	Wertun Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor 5.3.1 5.3.2 Reibun	ng110zung
5	Aus 5.1 5.2 5.3 5.4	Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor 5.3.1 5.3.2 Reibun 5.4.1	ng110zung
5	Aus 5.1 5.2 5.3 5.4	Wertun Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor 5.3.1 5.3.2 Reibun 5.4.1 5.4.2	ng110zung110Spreitungskoeffizient110Adhäsionsarbeit112Kapillardruck und Penetrativität112Kapillardruck und Penetrativität113rwert117Korrelation mit Benetzungsgrößen117Vergleich mit Leckage und Verschleiß118Modellvorstellung120-Görtler-Wirbel125Arbeiten anderer Forscher125Eigene Arbeiten126ng131Knick der Gümbelzahlkurve131
5	Aus 5.1 5.2 5.3 5.4	Wertun Benetz 5.1.1 5.1.2 5.1.3 Förder 5.2.1 5.2.2 5.2.3 Taylor 5.3.1 5.3.2 Reibun 5.4.1 5.4.2 5.4.3	ng110zung

6	Pra	risbedeutung 13	39
	6.1	Kapillarkräfte	39
		6.1.1 Auftreten	39
		6.1.2 Bedeutung $\ldots \ldots \ldots$	40
		6.1.3 Abschätzung $\ldots \ldots \ldots$	40
		6.1.4 Anwendung	41
	6.2	Bindungsenergie	42
		6.2.1 Auftreten $\ldots \ldots \ldots$	42
		6.2.2 Bedeutung $\ldots \ldots \ldots$	42
		6.2.3 Abschätzung $\ldots \ldots \ldots$	43
		6.2.4 Anwendung $\ldots \ldots 14$	44
	6.3	Sekundärströmungen	44
		6.3.1 Auftreten $\ldots \ldots \ldots$	44
		6.3.2 Bedeutung $\ldots \ldots \ldots$	44
		6.3.3 Abschätzung $\ldots \ldots \ldots$	45
		6.3.4 Anwendung $\ldots \ldots \ldots$	45
7	Zus	mmenfassung und Ausblick 14	46
Li	terat	urverzeichnis 14	49
Li	terat	urverzeichnis 14	19
Li A	terat Mes	urverzeichnis 14 sungen 16	49 61
Li A	terat Mes A.1	vorgehen	49 61
Li A	terat Mes A.1 A.2	urverzeichnis 14 sungen 16 Vorgehen	49 61 62
Li A	terat Mes A.1 A.2	urverzeichnis 14 sungen 16 Vorgehen 10 Oberflächenenergie von Festkörpern 10 A.2.1 Kontaktwinkelmessung 10	49 61 62 62
Li A	terat Mes A.1 A.2	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Ole Güchenenergie 16	49 61 62 62 65
Li A	terat Mes A.1 A.2 A.3	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16	49 61 62 62 65 66
Li A	Mes A.1 A.2 A.3	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16	49 61 62 62 65 66 67
Li A	terat Mes A.1 A.2 A.3	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16 A.3.2 Kontaktwinkelmessung 16	49 61 62 62 65 66 67 67
Li A	terat Mes A.1 A.2 A.3	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16 A.3.2 Kontaktwinkelmessung 16 A.3.3 Berechnung der Oberflächenenergie 16 A.3.3 Berechnung der Oberflächenenergie 16	49 61 62 62 65 66 67 67 68 68
Li A	Mes A.1 A.2 A.3	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16 A.3.2 Kontaktwinkelmessung 16 A.3.3 Berechnung der Oberflächenenergie 16 Berechnung der Oberflächenenergie 16 M.3.3 Berechnung der Oberflächenenergie 16 M.3.4 Hereichnung der Oberflächenenergie 16	49 61 62 62 65 66 67 67 68 68 68
Li	Mes A.1 A.2 A.3 A.3	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16 A.3.2 Kontaktwinkelmessung 16 A.3.3 Berechnung der Oberflächenenergie 16 A.3.3 Berechnung der Oberflächenenergie 16 Kontaktwinkelmessung 16 16 Kontaktwinkelmessung 16 16	49 61 62 62 65 66 67 68 68 68 69
Li A B	Mes A.1 A.2 A.3 A.4 A.5 Mes	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16 A.3.2 Kontaktwinkelmessung 16 A.3.3 Berechnung der Oberflächenenergie 16 Berechnung der Adhäsionsarbeit 16 Kontaktwinkelmessung mit Schmierstoffen 16 sdaten 17	 49 61 62 62 65 66 67 68 68 69 71
Li A B	terat Mes A.1 A.2 A.3 A.3 A.4 A.5 Mes B.1	urverzeichnis 14 sungen 16 Vorgehen 16 Oberflächenenergie von Festkörpern 16 A.2.1 Kontaktwinkelmessung 16 A.2.2 Berechnung der Oberflächenenergie 16 Oberflächenenergie von Flüssigkeiten 16 A.3.1 Blasendrucktensiometrie 16 A.3.2 Kontaktwinkelmessung 16 A.3.3 Berechnung der Oberflächenenergie 16 Berechnung der Adhäsionsarbeit 16 Kontaktwinkelmessung mit Schmierstoffen 16 Sdaten 17 Rauheitswerte der Gegenlaufflächen 17	 49 61 62 62 65 66 67 68 69 71 71

Abstract

The sealing performance of rotary shaft lip seals (below referred as »seal«) was investigated with view to interfacial phenomena.

Biodegradeable lubricants often cause higher wear than mineral based oils, and hence leakage. The root cause for this behaviour was supposed to be of interfacial nature. This lead to the approach of investigating surface tension properties of the seals components. Ten lubricants (polyglycols, poly- α -olefins, mineral based oils, silicone oils and esters), three elastomers (fluorocarbon rubber, nitrile butadiene rubber and acrylate rubber) and three shaft materials (steel, brass and glass) were investigated.

For all specimen the surface tension was measured. The surface tension was assumed to be splitted into a polar and a non-polar fraction. For the combination of each lubricant and each solid, the work of adhesion was calculated. This gave detailed information about the wetting behaviour of the lubricants.

For the lubricants some material values were measured: The dynamic viscosity, the specific density, the thermal conductivity and the specific heat capacity. These values were used to calculate dimensionless numbers of fluid motion. The onset of Taylor-Görtler vortices and thermocapillary instability could be estimated. For the onset of vortices, not only mechanical forces but also buoyancy forces (Bénard instability) were taken into account.

In numerous bench test runs, the following properties were investigated: The pumping rate and the frictional behaviour of elastomeric seals. In long term bench test runs, the wear behaviour was tested. For polytetrafluoroethylene-seals, leakage tests were done. The bench test runs were evaluated in terms of interfacial phenomena. The main results are:

- The work of adhesion between shaft and lubricant seems to be the main reason for the level of the seals pumping rate. Polyglycols with a high work of adhesion produced the highest pumping rates.
- The work of adhesion between elastomer and lubricant plays a role as well. If this work of adhesion is smaller than the lubricants work of cohesion, the elastomer is not completely wetted. This results in high pumping rates and poor wearing behaviour.
- At a critical duty parameter the seals lubrication condition changes. This change is attributed to thermocapillary instability at the border of the sealing zone.
- Thermocapillary instability influences the seals pumping rate as well. This is due to temperature gradients from the sealing zone to its surrounding. For a high thermal conductivity of the shaft, this effect can be neglected.

The achieved progress is an explanation of lubricant influence on the sealing performance of rotary shaft lip seals.

Symbolverzeichnis

Formelzeichen

Symbol	Einheit	Bezeichnung
α	$W \cdot m^{-2} \cdot K^{-1}$	Wärmeübergangskoeffizient
α_{KW}	0	stirnseitiger Kontaktflächenwinkel
β	K^{-1}	thermischer Ausdehnungskoeffizient
β_{KW}	0	bodenseitiger Kontaktflächenwinkel
Ϋ́	s^{-1}	Scherrate
Ŷ	s^{-1}	maximale Scherrate
γ_B	0	bodenseitiger Verzerrungswinkel
γs	0	stirnseitiger Verzerrungswinkel
δ	m	Grenzschichtdicke
$\delta_{\!i\!i}$	m	Überdeckung
Δ	_	Differenz
ε	0	Verkippungswinkel
\mathcal{E}_{IR}	_	Emissionskoeffizient
η	$N \cdot s \cdot m^{-2}$	dynamische Viskosität
η_0	$N \cdot s \cdot m^{-2}$	dynamische Viskosität bei $\dot{\gamma} \rightarrow 0$
θ	0	Kontaktwinkel
heta'	0	Kontaktwinkel auf rauer Oberfläche
θ_r	0	Rückzugwinkel
θ_{v}	0	Vordrückwinkel
θ'_{v}	0	Vordrückwinkel auf rauer Oberfläche
θ	$^{\circ}\mathrm{C}$	Relativtemperatur (Celsius-Skala)
θ	m	Impulsverlustdicke
λ	$W \cdot m^{-1} \cdot K^{-1}$	Wärmeleitfähigkeit
λ	m	Wellenlänge
λ_c	m	Grenzwellenlänge (cut-off)
v	$\mathrm{m}^2 \cdot \mathrm{s}^{-1}$	kinematische Viskosität

Symbol	Einheit	Bezeichnung
_		
Ξ	_	Verhältnis von Oberflächenenergien
π	- 1	Kreiszahl $(3, 1415926)$
π_e	$N \cdot m^{-1}$	Filmdruck
П	- 2	Polarität eines Festkörpers
ρ	kg·m ^{−3}	Dichte
σ	$N \cdot m^{-1}$	Oberflächenenergie
σ_a	$N \cdot m^{-1}$	Oberflächenenergie eines Stoffs a
σ_{b}	$N \cdot m^{-1}$	Oberflächenenergie eines Stoffs b
$\sigma_{\!ab}$	$N \cdot m^{-1}$	Grenzflächenspannung zwischen a und b
σ_l	$ m N{\cdot}m^{-1}$	Oberflächenenergie, Flüssigkeit
$\sigma_l{}^d$	$ m N{\cdot}m^{-1}$	Oberflächenenergie Flüssigkeit, disperser Anteil
$\sigma_l{}^p$	$ m N{\cdot}m^{-1}$	Oberflächenenergie Flüssigkeit, polarer Anteil
σ_{sl}	$ m N{\cdot}m^{-1}$	Grenzflächenspannung fest-flüssig
σ_{lv}	$N \cdot m^{-1}$	Grenzflächenspannung flüssig-Dampf
σ_{s}	$N \cdot m^{-1}$	Oberflächenenergie, Festkörper
$\sigma_{s}{}^{d}$	$N \cdot m^{-1}$	Oberflächenenergie Festkörper, disperser Anteil
$\sigma_{s}{}^{p}$	$N \cdot m^{-1}$	Oberflächenenergie Festkörper, polarer Anteil
τ	_	dimensionslose Zeit
φ	0	Winkel
ϕ_{rel}	_	relative Luftfeuchte
Φ	_	Wechselwirkungsparameter
Φ_{reib}	_	Reibparameter nach HIRANO
$\Phi_{reib,c}$	_	kritischer Reibparameter
χ	$m^2 \cdot s^{-1}$	thermische Diffusivität
ψ	${ m m}{\cdot}{ m s}^{-1}$	Penetrativität
Ψ	_	Polarität einer Flüssigkeit
ω	$\rm rad \cdot s^{-1}$	Winkelgeschwindigkeit
а	_	Flächenverhältnis
Α	m^2	Fläche
A_1	m^2	Teilfläche
A_{aa}	_	Anziehungskonstante ähnlicher Stoffe
A_{ab}	_	Anziehungskonstante unterschiedlicher Stoffe
Ages	m^2	Gesamtfläche
A_{p}^{a}	m^2	projizierte Fläche
A_r^r	m^2	reale Fläche
A_{v}	m^2	Verschleißfläche
b	m	Berührbreite
Bodyn	_	dynamische Bondzahl

Symbol	Einheit	Bezeichnung
$Bo_{dyn,c}$	—	kritische dynamische Bondzahl
С	-	Achsenabschnitt
c_p	$J \cdot kg^{-1} \cdot K^{-1}$	spezifische Wärmekapazität
C_X	${ m mol} \cdot { m m}^{-3}$	Stoffmengenkonzentration
d	m	Durchmesser, Spaltweite
d_{kap}	m	Kapillarendurchmesser
е	m	statische Exzentrizität
e_{dyn}	m	dynamische Exzentrizität
Ε	V	elektrisches Potential
f	_	Reibbeiwert
f_F	-	Reibbeiwert für Flüssigkeitsreibung
f_G	-	Reibbeiwert für Grenzreibung
f_M	_	Reibbeiwert für Mischreibung
f_1, f_2	_	prozentuale Flächenanteile
F	Ν	Kraft
F_n	Ν	Normalkraft
F_r	Ν	Radialkraft
Freib	Ν	Reibkraft
FW	$\mathrm{m}^3 \cdot \mathrm{m}^{-1}$	Förderwert
FW_{dl}	_	dimensionsloser Förderwert
g	${ m m}{\cdot}{ m s}^{-2}$	Erdbeschleunigung
G	J	freie Enthalpie
G _{Brink}	_	dimensionslose Kennzahl nach BRINK
G _{Hirano}	_	dimensionslose Kennzahl nach HIRANO
G_{hyd}	_	hydrodynamische Kennzahl (Gümbelzahl)
$G_{hyd,c}$	_	kritische hydrodyn. Kennzahl
Ga	_	Galileozahl
Gö	_	Görtlerzahl
$G\ddot{o}_c$	_	kritische Görtlerzahl
Gr	_	Grashofzahl
Gr_c	_	kritische Grashofzahl
h	m	Dichtspalthöhe
\bar{h}	m	mittlere Dichtspalthöhe
h_a	m	Schmierfilmhöhe beim Ausfahren
h_e	m	Schmierfilmhöhe beim Einfahren
h_t	m	Eintauchtiefe
h_v	m	Verschleißtiefe
l	m	Laufspurbreite
l_B	m	bodenseitige Verzerrungslänge

Symbol	Einheit	Bezeichnung
l_e	m	Eindringlänge
l_S	m	stirnseitige Verzerrungslänge
l_{v}	m	Verschleißbreite
L_{50}	S	Nominelle Lebensdauer (50%)
т	_	Geradensteigung
т	kg	Masse
M_r	$N \cdot m$	Reibmoment
Mg	_	Marangonizahl
Mg_c	_	kritische Marangonizahl
n	s^{-1}	Drehzahl
n_c	s^{-1}	kritische Drehzahl
Ν	$ m N{\cdot}m^{-2}$	Normalspannung
р	$ m N{\cdot}m^{-2}$	Druck, Pressung
\bar{p}	$ m N{\cdot}m^{-2}$	mittlere(r) Druck, Pressung
\hat{p}	$ m N{\cdot}m^{-2}$	maximale(r) Druck, Pressung
p_0	$ m N{\cdot}m^{-2}$	Dampfdruck (ebene Oberfläche)
$p_{0,k}$	$N \cdot m^{-2}$	Dampfdruck (gekrümmte Oberfläche)
p_{dyn}	$N \cdot m^{-2}$	dynamischer Druck nach OTT
p_k	$N \cdot m^{-2}$	Krümmungsdruck
p_l	$N \cdot m^{-1}$	Linienpressung
p_{Luft}	$ m N{\cdot}m^{-2}$	Luftdruck
p_{TK}	$N \cdot m^{-2}$	Thermokapillardruck
P	W	Leistung
Pr	_	Prandtlzahl
Preib	W	Reibleistung
Q	_	dimensionsloser Spreitungskoeffizient
Q_{reib}	W	Reibwärme
r	m	Radius
R	$J \cdot mol^{-1} \cdot K^{-1}$	allgemeine Gaskonstante (8,3143 $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$)
R_a	m	arithmetischer Mittenrauwert
Ra	_	Rayleighzahl
Ra_c	_	kritische Rayleighzahl
Re	_	Reynoldszahl
Re_c	_	kritische Reynoldszahl
R_{max}	m	maximale Rautiefe
R_{pm}	m	gemittelte Glättungstiefe
$\dot{R_t}$	m	Rautiefe
R_z	m	mittlere Rautiefe
S	m	Weg

Symbol	Einheit	Bezeichnung
		0
S	$N \cdot m^{-1}$	Spreitungskoeffizient
S^*	$N \cdot m^{-1}$	Spreitungskoeffizient nach WU
S_{mr}	_	Materialanteil
t	S	Zeit
t _{Blase}	S	Blasenlebensdauer
t_f	S	Förderdauer
\check{T}	Κ	Absoluttemperatur (Kelvin-Skala)
T	_	normierte Temperatur
Ta	_	Taylorzahl
Ta_c	_	kritische Taylorzahl
и	${ m m}{\cdot}{ m s}^{-1}$	Umfangsgeschwindigkeit
u_{∞}	${ m m}{\cdot}{ m s}^{-1}$	Strömungsgeschwindigkeit
U	J	Innere Energie
v	${ m m}{ m \cdot s}^{-1}$	Geschwindigkeit
V	m^3	Volumen
\dot{V}	$\mathrm{m}^3\cdot\mathrm{s}^{-1}$	Volumenstrom
$\overline{\dot{V}}$	$\mathrm{m}^3\cdot\mathrm{s}^{-1}$	mittlerer Volumenstrom
V_m	$m^3 \cdot mol^{-1}$	molares Volumen
W	J	Arbeit
W_a	$ m N{\cdot}m^{-1}$	Adhäsionsarbeit
W_a^*	$ m N{\cdot}m^{-1}$	idealisierte Adhäsionsarbeit
W_c	$N \cdot m^{-1}$	Kohäsionsarbeit
x	m	Länge, Weg in Bewegungsrichtung
у	m	Länge, Weg quer zur Bewegungsrichtung
z	m	Länge, Weg auf der Hochachse

Abkürzungen

Abkürzung	Bezeichnung	
1000-6	Wähler metahl mit 1 % Kahlengtoff und 1 5 % Churry	
ACM	Conclumon and Ethylacowlet and cinem dia Vullenica	
ACM	Copolymer aus Ethylacrylat und einem, die Vulkanisa-	
	Kenterheit [27]	
A	Kautschuk [25]	
Anm. D	Anmerkung	
Br	Brom	
bzw.	bezienungsweise	
C C 4F	Konlenstoff	
C45 CADMENI	unlegierter Vergutungsstahl mit 0,45 % Kohlenstoff	
CARMEN	Computer Aided Roughness Measurement and Evaluati-	
CCD	on $[17]$	
CCD	Charge Coupled Device (Kamera-Sensor)	
CD	Compact Disc	
Cl	Chlor	
const.	Konstante (Angabe in Gleichungen)	
CuZn39Pb3	Automaten-Messing mit 39 % Zink und 3 % Blei	
DIN	Deutsches Institut für Normung e.V.	
DMS	Dehnungsmessstreifen	
dto.	dito, dasselbe	
EN	Europäische Norm	
F	Fluor	
FKM	Fluor-Kautschuk mit Fluor, Perfluoralkyl- oder	
	Perfluoralkoxy-Gruppen [25]	
\mathbf{FFKM}	Perfluor-Kautschuk	
Н	Wasserstoff	
HRC	Härtewert nach ROCKWELL, Skala C, Eindringkörper:	
	Diamantkegel	
IMA	Institut für Maschinenelemente, Universität	
	Stuttgart	
IR	Infrarot	
ISO	INTERNATIONAL ORGANIZATION FOR STANDARIZATION	
NBR	Acrylnitril-Butadien-Kautschuk [25]	
Ν	Stickstoff	
0	Sauerstoff	
OWRK	Owens, Wendt, Rabel, Kaelble	
p.a.	pro analysi (Reinheitsklasse)	
PAO	Poly- <i>a</i> -Olefin	

Abkürzung	Bezeichnung	
PAMA	Polyalkylmethacrylat	
PEEK	Polyetheretherketon	
PDMS	Polydimethylsiloxan	
PFPE	Perfluorpolyether	
\mathbf{PG}	Polyglykol	
Pt100	Platin-Widerstand, 100Ω bei $\vartheta = 0 ^{\circ} C$	
PTFE	Polytetrafluorethylen	
Sh A	Härtewert nach SHORE, Skala A	
Si	Silizium	
R	nicht definierter Molekülrest	
RT	Raumtemperatur	
RMA	RUBBER MANUFACTURERS ASSOCIATION	
RWDR	Radial-Wellendichtring [24]	
UV	Ultraviolett	
V2A	nichtrostender Stahl	
vgl.	vergleiche	
VMQ Silikonkautschuk mit Methyl- und Vinyl-Gruppen ar		
	Polymerkette [25]	
Х	funktionaler Molekülrest	
ZW.	zwischen	

Kapitel 1 Einleitung und Zielsetzung

Der Radial-Wellendichtring (RWDR) nach DIN 3760 [24] ist ein Maschinenelement zur Abdichtung drucklos überfluteter oder bespritzter Wellendurchtrittsstellen an Gehäusen.

Entstehung Im Jahr 1929 [21] kam der RWDR erstmals, als Dichtring mit federbelasteter Ledermanschette, auf den Markt¹. Mitte der 1930er Jahre [21] wurde das Leder durch synthetischen Acrylnitril-Butadien-Kautschuk (NBR) ersetzt. Fortschritte in der Verarbeitung von Elastomeren und der Weiterentwicklungen zur heutigen Bauform führten 1962 zur Normung des RWDRs in DIN 3760:1962-02. Bild 1.1 zeigt einen RWDR in typischer Einbaulage.

Erforschung Im Gegensatz zu Manschettendichtungen hat der RWDR, bei rotierender Welle, einen aktiven Dichtmechanismus. Bodenseitig angebotenes Fluid² wird zur Stirnseite gefördert. Ende des 20. Jahrhunderts untersuchten mehrere Forscher den Dichtmechanismus der Radial-Wellendichtung [10, 45, 56, 61, 84, 86, 91, 92, 118]. Sie fanden Strömungsvorgänge, die in unmittelbarer Dichtkantennähe und unter der Dichtkante stattfinden. Die daraus entwickelten Hypothesen [56, 61, 84, 91, 92] beschreiben den Dichtmechanismus jedoch nicht vollständig.

Problemstellung Bei der Abdichtung synthetischer und biologisch abbaubarer Schmierstoffe kann Verschleiß und unerwartete Leckage auftreten. Che-

¹Entwicklung durch WALTHER SIMMER (*1888 +1986). Markenname SIMMERRING®.

 $^{^2 \}mathrm{Neben}$ Flüssigkeiten können RWDR auch Gase unter der Dichtkante hindurch fördern.

Bild 1.1 RWDR nach DIN 3760 in typischer Bild 1.2 Migrationsgeschwindigkeit che-Einbaulage misch unterschiedlicher Schmierstoffe [68]

mische Schädigung des Elastomers erklärt nur Leckage nach längerer Betriebsdauer der Dichtung. Eine Leckage nach kurzer Betriebsdauer kann durch die bisherigen Hypothesen zum Dichtmechanismus nicht erklärt werden.

LEIN³ stellte in einer der ersten wissenschaftlichen Veröffentlichungen zum RWDR fest: "Wann Flüssigkeitsreibung und wann Grenzreibung auftritt, ist allerdings anscheinend nicht nur von der Schmierspaltdicke abhängig, sondern auch noch von der makro- und mikrogeometrischen Beschaffenheit der Reibkörper, den molekularen Kräften zwischen den Reibkörpern und dem Schmiermittel und nicht zuletzt von der Art der Zuführung des Schmiermittels."

Alle genannten Parameter wurden in vielen Arbeiten weitgehend erforscht. Die molekularen Kräfte hingegen wurden, von wenigen Ausnahmen abgesehen ([8, 30, 52, 54, 67, 100, 112]), auf die Viskosität des Schmierstoffs beschränkt.

Grenzflächeneffekte Sämtliche Stoffe haben eine Oberflächenenergie⁴. Sie ist ein Maß für den Widerstand einer Substanz gegen die Vergrößerung ihrer Oberfläche⁵. Die Oberflächenenergie ist zudem temperaturabhängig. Temperaturgradienten über einem betrachteten Flüssigkeitsvolumen erzeugen in diesem Volumen Oberflächenenergiegradienten. Dies führt letztlich zu einer

 $^{^3}$ Johann Lein $\star 1916$

 $^{^4{\}rm F}$ ür Flüssigkeiten wird meist der Begriff »Oberflächenspannung« verwendet. Er ist mit »Oberflächenenergie« gleichbedeutend.

⁵Benetzende Flüssigkeiten, wie Silikonöle, haben eine geringe Oberflächenenergie

 $^{(\}sigma \approx 20 \cdot 10^{-3} \text{ N} \cdot \text{m}^{-1}$ bei Raumtemperatur). Entnetzende Flüssigkeiten, wie Quecksilber, haben hingegen eine hohe Oberflächenenergie $(\sigma \approx 485 \cdot 10^{-3} \text{ N} \cdot \text{m}^{-1}$ bei RT [14]).

Bewegung (»Migration«) der Flüssigkeit⁶. Klien [68] zeigte für chemisch unterschiedliche Schmierstoffe (Bild 1.2) eine Abhängigkeit der Migrationsgeschwindigkeit vom untersuchten Schmierstoff. Silikonöle migrierten in seinen Versuchen am schnellsten, gefolgt von Poly- α -Olefinen. Der biologisch abbaubare Ester und das synthetische Polyglykol migrierten um den Faktor 3...5 langsamer. Auffällige Unterschiede im temperaturaktivierten Verhalten der betreffenden Schmierstoffe gegenüber dem herkömmlichen Schmierstoff (Mineralöl) lassen auf den Einfluss von Grenzflächeneffekten schließen.

Motivation und Zielsetzung Die Geometrie der Dichtzone⁷ und die, durch reibungsinduzierte Wärme erzeugten, hohen Temperaturgradienten⁸ legen einen Einfluss von Grenzflächeneffekten auf den Dichtmechanismus der Radial-Wellendichtung nahe. Zwischen der geringen Migrationsgeschwindigkeit von Ester und Polyglykol und den Problemen beim Abdichten dieser Schmierstoffe herrscht möglicherweise ein Zusammenhang. Das Ziel dieser Arbeit ist die Erforschung des Einflusses von Grenzflächeneffekten auf den Dichtmechanismus der Radial-Wellendichtung.

Vorgehen Zehn unterschiedliche Schmierstoffe, drei gängige Elastomere und drei Wellenwerkstoffe wurden untersucht. Benetzungs- und strömungsrelevante Stoffwerte wie die »dynamische Viskosität« und die »Oberflächenenergie« der Schmierstoffe wurden einheitlich bestimmt. In Prüfstandsversuchen erfolgten Förderwert- und Reibungsmessungen mit den Schmierstoffen an einer Radial-Wellendichtung. Verschleißuntersuchungen an Radial-Wellendichtungen und Stichversuche mit anderen Dichtsystemen ergänzten die Experimente.

Gliederung Die Gliederung der Arbeit ist in Bild 1.3 umrissen. Zuerst wird in Kapitel 2 der Stand der Wissenschaft zu Radial-Wellendichtungen dargestellt. Das Hauptaugenmerk liegt dabei auf dem Dichtmechanismus. Es folgen die Grundlagen zur Grenzflächenphysik. Abschließend werden bisherige dichtungstechnische Arbeiten mit Bezug zu Grenzflächeneffekten genannt.

In Kapitel 3 werden die Messungen der benetzungs- und strömungsrelevanten Stoffwerte behandelt. Neben der Versuchsdurchführung werden die Ergebnisse besprochen, rechnerische Größen abgeleitet und insbesondere auf die Benetzungseigenschaften der Schmierstoffe eingegangen.

 $^{^{6}\}mathrm{An}$ freien Oberflächen wird diese Bewegung als »Marangoni-Effekt« und allgemein als »Thermokapillareffekt« bezeichnet.

 $^{^7\}text{Bei einer mittleren Dichtspalthöhe}\ \bar{h}\approx 10^{-6}\,\text{m}$ ist das Verhältnis von Oberfläche zu umschlossenem Volumen groß.

 $^{^8}$ Temperaturg
radient in axialer Richtung vom heißesten Punkt der Dichtzone zur Stirnseit
e $\partial T\cdot\partial x^{-1}\approx 10^5\,{\rm K\cdot m^{-1}}$

Die Untersuchung von Dichtsystemen - der zentrale Teil dieser Arbeit steht in Kapitel 4. Das Kapitel ist in zwei Teile gegliedert: Erstens, die Beschreibung der Versuchsdurchführung. Zweitens, die knappe Darstellung der Messergebnisse.

Die Auswertung in Kapitel 5 verbindet die Ergebnisse aus Kapitel 3 (Stoffwerte) und Kapitel 4 (Dichtsystem). Zusammenhänge zwischen Grenzflächeneffekten und dem Dichtmechanismus werden erörtert. Ein Modell für den Schmierstoffeinfluss auf den Dichtmechanismus der Radial-Wellendichtung wird vorgestellt.

Die Bedeutung der gewonnenen Erkenntnisse für die Praxis wird in Kapitel 6 aufgezeigt. Folgerungen für die Anwendung und Handlungshinweise sollen die Erkenntnisse unmittelbar nutzbar machen.

In Kapitel 7 ist die Arbeit in wenigen Absätzen zusammengefasst.

Kapitel	6 -	Praxisbedeutung
---------	-----	-----------------

Kapitel 7 - Zusammenfassung

Bild 1.3 Gliederung der Arbeit

Kapitel 2 Stand der Wissenschaft

Im Folgenden wird der Stand der Wissenschaft zu den Komponenten der Radial-Wellendichtung und zu den Hypothesen zum Dichtmechanismus dargestellt. Es folgen die Grundlagen zu diesbezüglich relevanten Grenzflächeneffekten. Abschließend werden dichtungstechnische Veröffentlichungen mit Bezug zu Grenzflächeneffekten genannt.

2.1 Komponenten der Radial-Wellendichtung

Die Radial-Wellendichtung besteht aus drei Hauptkomponenten:

- 1. Der Radial-Wellendichtring aus Elastomer
- 2. Die Gegenlauffläche
- 3. Der Schmierstoff.

Die Radial-Wellendichtung ist ein hochbeanspruchtes Maschinenelement. Nur das Zusammenspiel aller drei Hauptkomponenten gewährleistet einen leckagefreien Betrieb. Einer präzisen Beschreibung der Komponenten steht ihr komplexer Aufbau entgegen. Während die Geometrie des RWDRs leicht zu erfassen ist, beruht die Beschaffenheit des Elastomer-Compounds auf dem Erfahrungswissen des Herstellers. Eine Variation des Compounds ist nur in den Grenzen der am Markt verfügbaren Produkte möglich. Erzielte Messergebnisse sind daher stets im Kontext des verwendeten RWDRs und seines Elastomer-Compounds zu betrachten. Die Gegenlauffläche muss hohen fertigungstechnischen Ansprüchen genügen. Das empfohlene Fertigungsverfahren ist Schleifen im Einstich der gehärteten Stahl-Gegenlauffläche. Die Härte soll mindestens 45 HRC [24] bzw. 55 HRC [22] betragen. Die Oberflächenstruktur darf nicht durch Förderwirkung zu drehrichtungsabhängiger Leckage führen¹.

Der Schmierstoff ist meist auf die Maschinenelemente abgestimmt, deren Gehäuse abgedichtet wird. Im Fall von Getrieben sind das Verzahnungen, Kupplungen und Lagerstellen. Der RWDR wird deshalb abhängig vom Schmierstoff gewählt. Wegen steigender Leistungsdichten bei gleichzeitig verlängerten Wartungsintervallen in Getrieben substituieren zunehmend Synthetik-Schmierstoffe die herkömmlichen Schmierstoffe auf Mineralölbasis.

2.1.1 Radial-Wellendichtring

Der RWDR (Bild 2.1) besteht aus Elastomer, das an einen metallischen Versteifungsring vulkanisiert ist. Durch eine Übermaßpassung zwischen der Außenfläche des RWDRs und der Aufnahmebohrung erfolgt die statische Nebenabdichtung. Die dem Schmierstoff zugewandte Seite heißt »Stirnseite«, die gegenüberliegende Seite ist die »Bodenseite«. Die Dichtkante ist über eine Membrane an den Versteifungsring angebunden. Die metallische Zugfeder presst die Dichtkante an die Gegenlauffläche.

Bild 2.1 Profil eines RWDRs

Bild 2.2 Geometrie der Dichtzone (nicht maßstäblich)

¹Diese Bedingung wird als »Drallfreiheit« bezeichnet.

Geometrie

Der Kontaktflächenwinkel auf der Stirnseite α_{KW} (Bild 2.2) ist etwa doppelt so groß wie der bodenseitige Kontaktflächenwinkel β_{KW} . Die Pressung der Dichtkante verläuft über der Berührbreite *b* dadurch asymmetrisch. Diese Asymmetrie ist für den RWDR funktionsrelevant. Auf ihr bauen sämtliche Hypothesen zum Dichtmechanismus auf.

Die Berührbreite beträgt im Neuzustand $b\approx 0,10\cdot 10^{-3}\,\mathrm{m}$. Durch Verschleiß steigt die Berührbreite auf bis zu $b=0,35\cdot 10^{-3}\,\mathrm{m}$ an. Darüber liegende Werte deuten auf Verschleiß durch Schmutzeintrag oder ungünstige Betriebsbedingungen hin.

Werkstoffe

Die Dichtkante von Radial-Wellendichtringen nach DIN 3760 besteht aus synthetischem Kautschuk mit Füllstoffen.

Gängige Kautschuke sind Acrylnitril-Butadien-Kautschuk (NBR), Acrylat-Kautschuk (ACM) und Fluor-Kautschuk (FKM) [25]. Silikon-Kautschuke² (VMQ) und Perfluor-Kautschuke³ (FFKM) werden seltener verwendet.

Füllstoffe verleihen dem elastischen Kautschuk Festigkeit. Als Füllstoffe kommen Ru^4 und gefällte Kieselsäuren zum Einsatz [102]. Hygroskopische Füllstoffe⁵ sollten zum Schutz vor Korrosion nicht zum Einsatz kommen [87]. Neben Füllstoffen sind Zusätze zum Alterungsschutz⁶ und zur Verarbeitbarkeit beigemengt.

Die Kautschuke bestehen aus vernetzten (vulkanisierten) Makromolekülen [15]. Zwei Verfahren sind dazu üblich [102]: Schwefelvernetzung und Peroxidvernetzung⁷. Die Schwefelvernetzung nutzt elementaren Schwefel und Schwefelspender⁸. Sie dient hauptsächlich der Vernetzung ungesättigter Polymere. Gesättigte Polymere werden meist peroxidisch vernetzt.

Die Schädigung von Kautschuken kann auf folgenden Wegen eintreten: Chemische Schädigung durch ein anstehendes, aggresives Medium. Alterung durch reaktive Gase (Ozon) und Licht (UV-Strahlung). Nachvernetzung und Verhärtung durch Wärme⁹ [102].

²Eingeschränkte Verwendung wegen geringer Weiterreißfestigkeit.

³Sehr hoher Preis, relativ zu NBR (Stand 2013).

⁴Durchschnittliche Größe: $500 \cdot 10^{-9} \text{ m} \dots 1000 \cdot 10^{-9} \text{ m}$.

⁵Naturfasern, Silikate.

⁶Paraffin-Wachse, Phenole, aromatische Amine und Diamine.

⁷Weitere Verfahren sind die bisphenolische und die diaminische Vernetzung, die vorrangig für Fluorkautschuke verwendet werden.

⁸Zum Beispiel Dipentamethylenthiuramtetrasulfid (DPTT) [102].

⁹Je 10K Temperatursteigerung nimmt die Alterungsrate um das 2...4-fache zu [102].

Das erste synthetisch hergestellte Elastomer ist Butadien-Kautschuk. Es wird seit 1928 im industriellen Maßstab hergestellt¹⁰ [128]. Durch das Hinzufügen des Acrylnitril-Anteils entstand 1936 der heute weit verbreitete Acrylnitril-Butadien-Kautschuk. Die Strukturformel (2.1) zeigt das Polymer aus dem Acrylnitril-Anteil (linker Molekülteil) und dem Butadien-Anteil (rechter Molekülteil) [102]. Es ist ein ungesättigtes Elastomer. Dies ist erkennbar an der Doppelbindung im Butadien-Anteil. NBR wird von Alkanen und Cycloalkanen angegriffen. Ein höherer Acrylnitril-Anteil verbessert die Ölbeständigkeit [102]. Dadurch nimmt auch die Polarität von NBR zu.

$$-\left[\begin{array}{c} \left(CH_{2}-CH\right)_{x} \\ \left(CH_{2}-CH\right)_{x} \end{array}\right]_{x} \left(CH_{2}-CH=CH-CH_{2}\right)_{y} \\ \left(CH_{2}-CH\right)_{x} \left(CH_{2}-CH\right)_{y} \\ \left(CH_{2}-CH\right)_{x} \left(CH_{2}-CH\right)_{y} \\ \left(CH$$

Acrylat-Kautschuk (ACM) entsteht durch die Copolymerisation von Acrylsäureestern [102]. ACM besitzt eine gesättigte Hauptkette¹¹ mit stark polaren Estergruppen. Die Estergruppe ist in der Strukturformel (2.2) in der Verzweigung des linken Molekülteils zu erkennen. ACM ist beständiger gegen Öle als NBR und erträgt höhere Einsatztemperaturen [102].

$$\begin{array}{c|c}
\hline
\left(\begin{array}{c}
CH_{2} - CH \\
 \\
CH_{2} - CH \\
\hline
\\
CH_{2} - CH \\
\hline
\\
CH_{2} - CH \\
\hline
\\
CH_{2} \\
CH_{2} \\
\hline
CH_{2} \\
CH_{2} \\
\hline
CH_{2} \\
\hline
CH_{2} \\
\hline
CH_{2} \\
\hline
CH_{2} \\
C$$

Fluor-Kautschuk (FKM) wird in mehreren Varianten hergestellt: Als Copolymer (2.3), als Terpolymer(2.4) und als Tetrapolymer (2.5)¹² [102]. FKM ist thermisch und chemisch beständiger als NBR und ACM. Die Kälteflexibilität ist jedoch geringer¹³ als bei NBR.

$$-\left[\left(CF_{2}-CH_{2}\right)_{x}\left(CF-CH_{2}\right)_{y}\right]_{n}$$
(2.3)

$$-\left[\begin{array}{c} \left(\operatorname{CF}_{2}-\operatorname{CH}_{2}\right)_{x} \left(\operatorname{CF}_{1}-\operatorname{CH}_{2}\right)_{y} \left(\operatorname{CF}_{2}-\operatorname{CF}_{2}\right)_{z} \right]_{n} \end{array}$$
(2.4)

¹⁰Handelsname BUNA N(R) oder PERBUNAN(R).

¹¹Ausschließlich Einfachbindung zwischen den Kohlenstoffatomen.

¹²Das Grundmonomer Vinylidenfluorid wird wahlweise mit Hexafluorpropylen, Tetrafluorethylen, 1-Hydropentafluorpropylen oder Perfluormethylvinylether polymerisiert [102].

¹³Der übliche Temperaturbereich für die Anwendung von FKM ist $\vartheta = -20^{\circ}C...+200^{\circ}C.$

$$\begin{bmatrix} \begin{pmatrix} CF_2 - CH_2 \end{pmatrix}_x \begin{pmatrix} CF - CH_2 \\ 0 \\ -CF_3 \end{pmatrix}_y \begin{pmatrix} CF_2 - CF_2 \end{pmatrix}_z \begin{pmatrix} CF_2 - CF_2 \\ -Br \end{pmatrix}_n \quad (2.5)$$

Radialkraft

Die Radialkraft ist die radial auf die Welle wirkende Kraft des RWDRs. Ihre Messung kann nach DIN 3761-9 erfolgen [23].

Durch die Überdeckung zwischen Welle und Dichtring wird der Dichtring aufgeweitet. Dieser Aufweitung stehen nach [3] drei Kraftkomponenten entgegen (Bild 2.3): Erstens die Umfangsvergrößerung am RWDR-Innendurchmesser (Zugkomponente). Zweitens die Biegung der Membrane (Biegungskomponente). Drittens die Verlängerung der Spiralzugfeder (Federkomponente).

Die Steifigkeits-Kennlinie des Elastomers ist im betrachteten Bereich linear. Ab rund einem Viertel der Nennüberdeckung ist sie steiler als die der Feder [3, 93]. Die Steifigkeits-Kennlinie der Feder verläuft nach einem anfänglich steilen Anstieg flach. Bei höheren Überdeckungen als der Nenn-Überdeckung $\delta_{\bar{u},nenn}$ ist deshalb der Elastomeranteil groß.

Bei Temperaturen oberhalb der Raumtemperatur sinkt der Elastomeranteil der Radialkraft ab [3]. Die Ursachen dafür sind thermische Ausdehnung und Abnahme des E-Moduls (Bild 2.4). Bei der höchsten zulässigen Temperatur des Elastomers beträgt der Elastomeranteil ungefähr fünf Prozent des Werts bei Raumtemperatur.

Im Betrieb kann die Radialkraft weiter abnehmen. Durch Relaxation des Elastomers sinkt dessen Anteil gegen einen Grenzwert (Bild 2.5) [93]. Thermische und chemische Schädigung des Elastomers können die Radialkraft verändern. Abhängig vom verwendeten Elastomer und Schmierstoff kann eine Erhöhung oder eine Verringerung eintreten. ENGELKE¹⁴ untersuchte RWDR¹⁵ in Dauerlaufversuchen [29]. Die Radialkraft nahm bei allen RWDR ab (Bild 2.6).

Pressungsverteilung in der Dichtzone

Die Pressungsverteilung in der Dichtzone ist abhängig von der Größe der Kontaktflächenwinkel α_{KW} und β_{KW} . Bei förderaktiven RWDR ist der stirnseitige Kontaktflächenwinkel α_{KW} größer als der bodenseitige Kontaktflächenwinkel

 $^{^{14}\}mathrm{Tobias}$ Engelke $\star 1977$

 $^{^{15}}$ Nenndurchmesser $d_{nenn}=0,06\,{\rm m},$ Schmierstoff: PAO mit 20% Esteranteil (Modellfluid von FUCHS®), Elastomer: SIMRIT® 75FKM585

Bild 2.3 Anteile der Radialkraft in Abhängigkeit der Überdeckung δ_{ii} [3]

Bild 2.4 Abfall der Radialkraft des Elastomers mit der Temperatur [3]

Bild 2.5 Abfall der Radialkraft durch Rela-
xation [93]Bild 2.6 Abfall der Radialkraft im Betrieb
[29]

 β_{KW} . Diese Ungleichheit der Kontaktflächenwinkel führt zu einer asymmetrischen Pressungsverteilung in der Dichtzone.

Die Existenz und die Erforderlichkeit dieser asymmetrischen Pressungsverteilung ist allgemein anerkannt. HIRANO¹⁶ et al. wiesen die Asymmetrie mit spannungsoptischen Methoden nach [47] (aus [61]). KAWAHARA¹⁷ et al.

¹⁶F. Hirano

¹⁷Yoshio Kawahara

bestimmten den Pressungsverlauf direkt mittels Druckmessung [65].

HERMANN¹⁸ und SEFFLER¹⁹ variierten den stirnseitigen Kontaktflächenwinkel α_{KW} systematisch [45]. Die Pressungsverteilung maßen sie optisch. Durch einen kalibrierten Draht brachten sie eine Störstelle zwischen Glashohlwelle und Dichtkante ein (Bild 2.7). Die Dichtkante formte dadurch im Übergangsbereich von der Störstelle zum Kontaktbereich eine Kurve. Diese Kurve entspricht der Pressungsverteilung. Das Extremum in Nähe der Störstelle ist das Pressungsmaximum. Bild 2.8 zeigt den Zusammenhang zwischen der Pressungsverteilung und der Größe des stirnseitigen Kontaktflächenwinkels α_{KW}^{20} . Bei $\alpha_{KW} = 60^{\circ}$ liegt das Pressungsmaximum nahe an der Stirnseite. Der Kontaktflächenwinkel $\alpha_{KW} = 45^{\circ}$ entspricht dem gängigen Maß. Die Pressungsverteilung ist dabei leicht asymmetrisch mit Orientierung zur Stirnseite. Bei $\alpha_{KW} = 30^{\circ}$ ist die Pressungsverteilung symmetrisch.

[45]

Bild 2.7 Messung der Pressungsverteilung Bild 2.8 Zusammenhang der Pressungsverteilung mit dem stirnseitigen Kontaktflächenwinkel α_{KW} [45]

Reibung in der Dichtzone

LEIN untersuchte als erster systematisch die Reibung von RWDR heutiger $Bauform^{21}$ [74]. Er unterteilte die auftretende Reibung in zwei Anteile. Ein geschwindigkeitsunabhängiger Grenzreibungsanteil und ein geschwindigkeits-

¹⁸Waldemar Hermann

¹⁹HANS-WERNER SEFFLER

 $^{^{20}}$ Über den bodenseitigen Kontaktflächenwinkel β_{KW} machen die Autoren keine Angabe. ²¹RWDR von SIMRIT($\hat{\mathbf{R}}$), $d_{nenn} = 0,08 \,\mathrm{m}$, keine Bauformbezeichnung angegeben.

abhängiger Flüssigkeitsreibungsanteil²². Reine Festkörperreibung (Bild 2.9) nach $AMONTONS^{23}$ und $COULOMB^{24}$ sah er nur im Zusammenhang mit Verschleiß.

Wie HARDY²⁵ zeigte, tritt Festkörperreibung nur bei reinsten Oberflächen auf [42]. Aus der Dampfphase kondensierter Schmierstoff verringert bereits die Reibung. Es herrscht Grenzreibung. Mit Kondensat gesättigte Oberflächen (Monolage nach LANGMUIR²⁶ [72]) zeigten in HARDYs Versuchen denselben Reibbeiwert wie sumpfgeschmierte Oberflächen. Daraus entwickelte er das Modell der Grenzreibung (Bild 2.10). Die am Festkörper anhaftende Flüssigkeitsschicht wird demnach durch Adhäsionskräfte so stark gebunden, dass sie zum Quasi-Festkörper wird. Weiter vom Festkörper entfernte Flüssigkeitsschichten erfahren eine mit dem Abstand abnehmende Adhäsionskraft²⁷. Damit befinden sich zwischen den Festkörpern Flüssigkeitsschichten mit unterschiedlichen mechanischen Eigenschaften. In ausreichendem Abstand von den Festkörpern wirken ausschließlich die Kohäsionskräfte der Flüssigkeit [42].

Nach HOCKEL²⁸ tritt Grenzreibung im Elastomer-Stahl-Kontakt bis zu einer Gleitgeschwindigkeit von $v = 20 \text{ m} \cdot \text{s}^{-1}$ auf [48].

Bild 2.9 Festkörperreibung [14]

Bild 2.10 Grenzreibung [42]

²⁷HARDY sieht diese Hypothese selbst kritisch. Er argumentiert, für Moleküle mit funktionalen Gruppen tritt auch bei fehlender Adhäsion eine Orientierung der Moleküle ein.

 $^{28}\mathrm{Hans}$ Ludwig Hockel $\star 1924$

²²LEIN begründet seine Vermutung, es handele sich um Flüssigkeitsreibung mit einem steilen Reibmomentanstieg bei stirnseitiger Zugabe kühlen, höherviskosen Schmierstoffs.

 $^{^{23}\}mathrm{Guillaume}$ Amontons $\star 1663$ ± 1705

 $^{^{24}\}mathrm{Charles}$ Augustin de Coulomb $\star 1736$ †1806

 $^{^{25}\}mathrm{Sir}$ William Bate Hardy $\star 1864$ ± 1934

 $^{^{26}\}mathrm{Irving}$ Langmuir $\star 1881$ +1957

In einer ausreichend hohen Flüssigkeitsschicht herrscht bei Relativbewegung der Festkörper eine Scherströmung. NEWTON²⁹ beschrieb diesen Vorgang erstmals als Flüssigkeitsreibung. Die Reibkraft (Bild 2.11) ist dabei abhängig vom Geschwindigkeitsprofil $\partial u \cdot \partial h^{-1}$ der Scherströmung, der gescherten Fläche A und der dynamischen Viskosität η der Flüssigkeit (2.6) [121].

$$F_{reib} = A \cdot \eta \cdot \frac{\partial u}{\partial h} \tag{2.6}$$

HEIDEBROEK³⁰ untersuchte das Verhalten von Schmierstoffen in engen Spalten [44]. Flüssigkeitsreibung wies er dabei für Spaltenhöhen ab $10^{-6}\,\rm m$ nach.

Bei rauen Festkörperoberflächen und niedrigen Spalthöhen können sich Rauheitserhebungen der Festkörper berühren. Dabei liegt gleichzeitig Flüssigkeitsreibung und Festkörper- bzw. Grenzreibung vor (Bild 2.12). Dieser Zustand wird als Mischreibung bezeichnet. Je rauer die Oberflächen sind und je höher ihre gegenseitige Anpressung ist, desto ausgeprägter ist die Mischreibung³¹.

Bild 2.11 Flüssigkeitsreibung [121]

Bild 2.12 Mischreibung [1]

 ${\rm BRINK}^{32}$ maß das Reibmoment von RWDR in Abhängigkeit von Radialkraft und Drehzahl [9]. Die gemessenen Reibbeiwerte trug er über einer dimensionslosen Kennzahl G_{Brink} (2.7) auf. Damit zeigte er eine Analogie zwischen

 $^{^{29}\}mathrm{Sir}$ Isaac Newton $\star 1643$ +1727

³⁰Enno Heidebroek *1876 +1955

³¹Bei hydrodynamischer Reibung hat zudem die Gleitgeschwindigkeit einen Einfluss. Unterhalb einer Grenzgeschwindigkeit (Ausklinkpunkt) herrscht Mischreibung.

 $^{^{32}\}mathrm{Robert}$ V. Brink $\star 1931$ †2011

der Reibung von RWDR und hydrodynamischen Gleitlagern. Die erhaltene Kurve der Messwerte ähnelte der Stribeckkurve³³ (Bild 2.13).

$$G_{Brink} = \frac{\eta \cdot n}{\bar{p}} \tag{2.7}$$

Die Stribeckkurve gibt den Reibbeiwert f als Funktion der Gleitgeschwindigkeit u an. Das Losbrechen aus dem Stillstand gibt die Startreibung an. Bei niedrigsten Gleitgeschwindigkeiten herrscht Grenzreibung. Darüber herrscht Mischreibung bis zu einer kritischen Gleitgeschwindigkeit: Dem Ausklinkpunkt. Oberhalb des Ausklinkpunkts findet bei hydrodynamischen Gleitlagern nur noch Flüssigkeitsreibung statt.

Der Verlauf der Stribeckkurve wird durch zwei Faktoren maßgeblich beeinflusst: Bei höherer Viskosität (Bild 2.14) liegt der Ausklinkpunkt bei geringerer Gleitgeschwindigkeit. Der Reibbeiwert ist im Bereich der Flüssigkeitsreibung zudem höher. Bei höherer mittlerer Flächenpressung (Bild 2.15) verschiebt sich der Ausklinkpunkt zu einer höheren Gleitgeschwindigkeit.

Bild 2.13 Stribeckkurve für hydrodynamische Gleitlager [1] Bild 2.14 Einfluss der Viskosität auf die hydrodynamische Reibung [1]

HIRANO und ISHIWATA³⁴ entwickelten ein Modell hydrodynamischer und elastohydrodynamischer Vorgänge im Dichtspalt von RWDR [46]. Sie erweiterten den bisherigen Ansatz (hydrodynamische Gleitlager) um die Theorie der Folienlager nach BLOK³⁵ und VAN ROSSUM³⁶ [4]. Ebenso wie BRINK tru-

³³Richard Stribeck *****1861 **†**1950

³⁴H. Ishiwata

³⁵Н. Вloк

³⁶J.J. Van Rossum
gen sie gemessene Reibbeiwerte über einer dimensionslosen Kennzahl G_{Hirano} (2.8) auf.

$$G_{Hirano} = \frac{\eta \cdot u}{p_l} \tag{2.8}$$

Im Unterschied zu BRINK verwendeten sie statt der Drehzahl n die Gleitgeschwindigkeit u und statt der mittleren Flächenpressung \bar{p} die Linienpressung p_l über der Berührbreite $(F_r \cdot b^{-1})$. Für den Reibbeiwert f erhielten sie einen Zusammenhang mit der dimensionslosen Kennzahl nach Gleichung (2.9).

$$f = \Phi_{reib} \cdot \left(\frac{\eta \cdot u}{p_l}\right)^{\frac{1}{3}} = \Phi_{reib} \cdot \left(\frac{\eta \cdot u \cdot F_r}{b}\right)^{\frac{1}{3}}$$
(2.9)

Den Reibparameter Φ_{reib} ermittelten sie für eine gegebene Dichtung als annähernd konstant. Ab einer kritischen Drehzahl ($n_c = 2500 \text{ min}^{-1} \dots 5000 \text{ min}^{-1}$) fiel in den Versuchen der Wert für Φ_{reib} ab. Raue Gegenlaufflächen verringerten den Wert von Φ_{reib} ebenfalls. HIRANO und ISHIWATA erklärten sich den Abfall mit einer zunehmenden Dichtspalthöhe³⁷. Unterhalb eines kritischen Reibparameters³⁸ von $\Phi_{reib,c} = 34$ trat Leckage auf.

LINES³⁹ und O'DONOGHUE⁴⁰ führten Reibmomentmessungen mit gleichzeitiger Temperaturmessung im Dichtspalt durch [77]. Sie zeigten über den Temperaturanstieg im Dichtspalt die Drehzahlabhängigkeit des Reibparameters Φ_{reib} . Die gemessenen Reibbeiwerte trugen sie, wie BRINK, über der dimensionslosen Kennzahl G_{Brink} auf. Damit erzeugten sie das heute geläufige Gümbelzahldiagramm⁴¹ (Bild 2.16). Bei LINES und O'DONOGHUE unterschied sich die dimensionslose Kennzahl jedoch um den Faktor 2π von der Gümbelzahl G_{hyd} (2.10). Das in (Bild 2.16) dargestellte Streuband ist eine Näherungsfunktion nach FELDMETH⁴² aus bekannten Messwerten.

$$G_{hyd} = \frac{\eta \cdot \omega}{\bar{p}} = \frac{\eta \cdot \omega \cdot b \cdot \pi \cdot d}{F_r}$$
(2.10)

³⁷Bei rauen Gegenlaufflächen allein aufgrund der Höhe der Rauheit und bei hohen Drehzahlen durch die verringerte Folgefähigkeit des RWDRs gegenüber der Gegenlauffläche.

³⁸Hier sind unbedingt die Einheiten zu berücksichtigen. HIRANO und ISHIWATA verwendeten Einheiten, die nicht mehr gebräuchlich sind. Um ihre Werte nachzuvollziehen, muss der rechte Teil von Gleichung (2.9) durch den Faktor 98.7 dividiert werden.

³⁹D.J. Lines

⁴⁰J.P. O'Donoghue

⁴¹Ludwig Karl Friedrich Gümbel *1874 †1923

 $^{^{42}}$ Simon Christoph Feldmeth $\star 1983$

Bild 2.15 Einfluss der mittleren Flächen-Bild 2.16 Gümbelzahldiagramm [33] pressung auf die hydrodynamische Reibung [1]

Dichtspalthöhe

Die Dichtspalthöhe lässt sich nicht unmittelbar messen. Zu ihrer Bestimmung gibt es rechnerische Ansätze und mittelbare Messverfahren.

JAGGER⁴³ verwendete einen axialen Prüfaufbau⁴⁴ [53]. Der Dichtring⁴⁵ entsprach in seiner Geometrie einem Radial-Wellendichtring; umgestaltet für den axialen Aufbau. Die axiale Last betrug 31N...100N. Der Schmierstoff war mit Druck von $p = 0, 14 \cdot 10^6 \,\mathrm{N \cdot m^{-2}} \dots 0, 21 \cdot 10^6 \,\mathrm{N \cdot m^{-2}}$ beaufschlagt.

JAGGER nutzte zur rechnerischen Abschätzung der Dichtspalthöhe zwei unterschiedliche Ansätze: Den Leckagestrom der Dichtung setzte er in die Durchflussgleichung (Gleichung (2.11)) ein. Unter Annahme von Flüssigkeitsreibung setzte er die Reibkraft in Gleichung (2.6) ein. Dabei setzte er Parallelität und einen linearen Geschwindigkeitsverlauf in der Strömung voraus. Die Viskosität nahm er als konstant und gleich der Sumpfviskosität an. Mit der Durchflussgleichung ermittelte er $h = 5,85 \cdot 10^{-6} \text{m}...22,4 \cdot 10^{-6} \text{m}.$ Mit dem Reibungsansatz erhielt er $h = 1,45 \cdot 10^{-6} \text{m}...4,0 \cdot 10^{-6} \text{m}.$

Ergänzend zum rechnerischen Ansatz maß JAGGER mit einem kapazitiven Verfahren die Dichtspalthöhe⁴⁶. Bei einer geringen Gleitgeschwindigkeit von $u = 0, 1 \text{ m} \cdot \text{s}^{-1}$ betrug die gemessene Dichtspalthöhe $h = 10^{-6} \text{ m} \dots 2 \cdot 10^{-6} \text{ m}$.

⁴³E.T. Jagger

⁴⁴Vergleichbar mit einem Ring-Scheibe-Tribometer.

⁴⁵Die Versuchsbedingungen waren: $d = 0,139 \text{ m}, b \approx 10^{-3} \text{ m}, \eta = 0,051 \text{ Pa} \cdot \text{s}, \vartheta = 68 \,^{\circ}\text{C},$

 $u = 0, 1 \,\mathrm{m} \cdot \mathrm{s}^{-1} \dots 8, 3 \,\mathrm{m} \cdot \mathrm{s}^{-1}$

⁴⁶Selber Versuchsaufbau wie bei der rechnerischen Abschätzung.

Bei höherer Gleitgeschwindigkeit $(u = 8, 3 \,\mathrm{m \cdot s^{-1}})$ wuchs die Dichtspalthöhe auf $h = 2, 5 \cdot 10^{-6} \,\mathrm{m \dots 5}, 3 \cdot 10^{-6} \,\mathrm{m}.$

$$h = \sqrt[3]{\frac{12 \cdot \dot{V} \cdot \eta}{\frac{\partial p}{\partial x}}} \tag{2.11}$$

WOLLESEN⁴⁷ berechnete die Dichtspalthöhe von Radial-Wellendichtringen⁴⁸ ebenfalls mit dem Reibungsansatz [134]. Er erhielt Dichtspalthöhen von $h = 0.05 \cdot 10^{-6} \,\mathrm{m} \dots 0.3 \cdot 10^{-6} \,\mathrm{m}$. In Bild 2.17 sind die berechneten Dichtspalthöhen über der Gleitgeschwindigkeit aufgetragen.

VAN LEEUWEN⁴⁹ und WOLFERT⁵⁰ maßen die Dichtspalthöhe von Radial-Wellendichtringen mit einer optischen Methode [73]. Sie verwendeten eine transparente Welle und einen Lasersensor. Das Messverfahren ist vergleichbar mit der Funktion von CD-Abspielgeräten. Sie ermittelten Dichtspalthöhen von $h = 1, 2 \cdot 10^{-6}$ m bei $n = 60 \text{ min}^{-1}$ bis $h = 4, 5 \cdot 10^{-6}$ m bei $n = 600 \text{ min}^{-1}$. Die Ergebnisse sind in Bild 2.18 dargestellt.

 POLL^{51} und GABELLI⁵² verwendeten ein magnetisches Messverfahren zur Bestimmung der Dichtspalthöhe [97]. Das abgedichtete Fluid war magnetisierbar. Über einen wellenseitigen⁵³ Sensor wurde der magnetische Widerstand im Bereich der Dichtzone gemessen. Daraus konnte auf die Dichtspalthöhe geschlossen werden. Sie betrug in den Versuchen zwischen $h=2,4\cdot 10^{-6}\,\mathrm{m}$ bei $n=10\,\mathrm{min}^{-1}$ bis $h=9,5\cdot 10^{-6}\,\mathrm{m}$ bei $n=240\,\mathrm{min}^{-1}$. Die Ergebnisse sind in Bild 2.18 dargestellt.

Die rechnerisch mit dem Reibungsansatz ermittelten Spalthöhen sind durchweg geringer als die experimentell ermittelten Spalthöhen. WIEHLER⁵⁴ nimmt an, dass bei der abgeschätzten Dichtspalthöhe makromolekulare Schmierstoffbestandteile verzerrt werden [131]. Die Annahme reiner Flüssigkeitsreibung wäre damit unzulässig. BONNACURSO⁵⁵ et al. stellen für raue Oberflächen die Gültigkeit der Haftbedingung in Frage [6]. Zwischen der Flüssigkeitsschicht und dem Festkörper kann Schlupf auftreten.

⁴⁷Volkert Wollesen

 $^{^{48}}$ Seine Versuchsbedingungen waren: RWDR Simritr BA 80×100×10, Schmierstoff Pentosin SAE 15W-40 CESG Turbo, $\vartheta = 60^{\,\circ}\text{C}, \ b \approx 0, 15 \cdot 10^{-3} \,\text{m}.$

 $^{^{49}}$ Harry van Leeuwen $\star 1950$

⁵⁰Marcel Wolfert

⁵¹Gerhard Poll

⁵²A. Gabelli

 $^{{}^{53}}d = 0,11\,\mathrm{m}$

⁵⁴Kay Wiehler

 $^{^{55}\}mathrm{Elmar}$ Bonnacurso $\star 1973$

Bild 2.17 Berechnete Dichtspalthöhe [134]

Bild 2.18 Gemessene Dichtspalthöhe [73, 97]

Temperaturverteilung in der Dichtzone

Zur Bestimmung der Schmierstoffeigenschaften im Dichtspalt muss die dort herrschende Temperatur bekannt sein. Die direkte Messung kann über einen Temperatursensor erfolgen, der in der Welle eingelassen ist. LINES, LAWRIE⁵⁶ und O'DONOGHUE klebten einen Platindraht⁵⁷ entlang des Umfangs einer Versuchswelle ein [76]. Durch die geringe Breite des Drahts ($25 \cdot 10^{-6}$ m) erzielten sie eine hochauflösende Messung der Temperaturverteilung in der Dichtzone⁵⁸. Die Messstrecke betrug $x = 1, 27 \cdot 10^{-3}$ m gegenüber einer Berührbreite des RWDRs von $b = 0, 5 \cdot 10^{-3}$ m. Sie stellten zwischen den kühleren Randbereichen und dem heißesten Punkt im Dichtspalt eine Temperaturdifferenz von $\Delta T \approx 35$ K fest. Diese Temperaturdifferenz ΔT bezeichneten sie als Ȇbertemperatur« der Dichtzone.

UPPER⁵⁹ berechnete für einen Modell-RWDR Übertemperaturen [124]. Dabei erhielt er vergleichbare Temperaturdifferenzen. Er zeigte außerdem eine Abhängigkeit der Temperaturdifferenz von der Ölsumpftemperatur. Niedrige Ölsumpftemperaturen begünstigen hohe Temperaturdifferenzen.

SCHNÜRLE⁶⁰ merkte an, dass die bislang verwendeten Temperatursensoren nicht nur elektrisch, sondern auch thermisch isoliert eingebaut wurden

⁵⁶J.M. Lawrie

⁵⁷Als Thermistor, vergleichbar mit einem Pt100-Temperatursensor.

⁵⁸Ihre Versuchsbedingungen waren $d = 33 \cdot 10^{-3}$ m, $b = 0.5 \cdot 10^{-3}$ m, $p = 3 \cdot 10^{4}$ Pa,

 $u = 5, 2 \text{ m} \cdot \text{s}^{-1}$, Schmierstoff: SAE 30.

⁵⁹Gerd Upper *1935

⁶⁰Friedhelm Schnürle *1943

[110]. Dadurch lag nach seiner Ansicht in diesen Versuchen die gemessene Temperatur zu hoch. SCHNÜRLE verwendete ein thermisch nicht isoliertes Thermoelement zur Temperaturmessung. Er maß⁶¹ qualitativ den gleichen Temperaturverlauf wie LINES und O'DONOGHUE in [78] (Bild 2.19). Die Höhe der Temperaturdifferenz lag jedoch um den Faktor fünf niedriger.

LINES und O'DONOGHUE berechneten für einen RWDR den Verlauf der Übertemperatur in der Dichtzone (Bild 2.19) [78]. Sie verifizierten die Berechnungen an der realen Dichtung⁶². Dabei bestätigten sich die Ergebnisse aus [76]. WOLLESEN⁶³ führte vergleichbare Messungen durch und erzielte vergleichbare Ergebnisse [134]. Für den Zusammenhang der Übertemperatur mit der Umfangsgeschwindigkeit ermittelte WOLLESEN den Anhaltswert $\partial \Delta T \cdot \partial u^{-1} \approx 3.7 \,\mathrm{K} \cdot \mathrm{s} \cdot \mathrm{m}^{-1}$.

Bild 2.19 Berechneter Verlauf der Übertem- Bild 2.20 peratur [78, 110] (qualitativ)

Bild 2.20 Gemessener Temperaturverlauf (qualitativ) [134]

Neben der Umfangsgeschwindigkeit u variierten LINES und O'DONOGHUE die R_a -Rauheit der Gegenlauffläche und den Überdruck p auf der Stirnseite [78]. In Bild 2.21 sind die Ergebnisse für den Druck $p = 1, 4 \cdot 10^4$ Pa und Bild 2.22 für den Druck $p = 7 \cdot 10^4$ Pa dargestellt. Die Druckerhöhung bewirkte eine deutliche Erhöhung der Übertemperatur. Für die Rauheit $R_a = 0, 2 \cdot 10^{-6}$ m zeigte sich bei Umfangsgeschwindigkeiten ab $u = 5, 2 \,\mathrm{m \cdot s^{-1}}$ ein Minimum der Übertemperatur. LINES und O'DONOGHUE erklärten sich diesen Effekt mit

 $^{^{61}}$ Seine Versuchsbedingungen waren: $d=0,08\,\mathrm{m},\,b\approx0,3\cdot10^{-3}\,\mathrm{m},\,u=16,5\,\mathrm{m\cdot s^{-1}},\,\vartheta\approx100\,^{\circ}\mathrm{C},$ Schmierstoff: SAE20W-20, Elastomer: NBR, kein Überdruck.

 $^{^{62}}$ Ihre Versuchsbedingungen waren: $d=33\cdot10^{-3}\,\mathrm{m},\,u=17,3\,\mathrm{m\cdot s^{-1}},\,F_r=35\,\mathrm{N},$ Schmierstoff: Shell Tellus 27, druckloser Betrieb.

⁶³Volkert Wollesen

der Art der Reibung im Dichtspalt. Bei höheren Rauheiten nahmen sie zunehmende Festkörper- und Grenzreibung an. Bei geringeren Rauheiten nahmen sie Flüssigkeitsreibung bei geringen Spalthöhen an.

Bild 2.21 Rauheitseinfluss auf die Dichtspalttemperatur (geringer Überdruck) [78] spalttemperatur (hoher Überdruck) [78]

MAOUI⁶⁴, HAJJAM⁶⁵ und BONNEAU⁶⁶ berechneten die Temperatur im Dichtspalt⁶⁷ auf Basis elastohydrodynamischer Vorgänge [82]. Bild 2.23 zeigt den berechneten Temperaturverlauf über der Berührbreite. Auffällig sind die zwei Maxima. Auch WOLLESEN bemerkte in seinen Messungen diese beiden Maxima [134]. Er führte sie auf zwei Einflüsse zurück. Erstens: Durch eine Ondulierung der Dichtkante werden wellenseitig zwei Maxima gemessen. Zweitens: Durch die Förderwirkung des RWDRs wird Schmierstoff in Richtung Pressungsmaximum gepumpt. Dadurch kann dort eine höhere Spalthöhe existieren als im unmittelbaren Umfeld.

Für den Temperaturverlauf in radialer Richtung des Dichtspalts errechneten sie eine Temperaturdifferenz von $\Delta T \approx 7 \text{K}$ bei einer Spalthöhe von $h \approx 2 \cdot 10^{-6} \text{m}$. Damit bestätigen sie UPPERs Vermutung hinsichtlich eines radialen Temperaturgradienten [124].

KUNSTFELD⁶⁸ zeigte den Einfluss der Schmierungsart auf die Dichtspalttemperatur [70]. Ein Ölsumpf bis Wellenmitte wirkt temperatursenkend, bezo-

⁶⁴A. Maoui

 $^{^{65}}$ Mohamed Hajjam

⁶⁶D. Bonneau

⁶⁷Ihre Annahmen waren: $d = 0, 14 \text{ m}, b = 0, 1 \cdot 10^{-3} \text{ m}, p = 1 \cdot 10^{4} \text{ Pa}, u = 14, 7 \text{ m} \cdot \text{s}^{-1},$

 $[\]eta = 30 \cdot 10^{-3} \operatorname{Pa} \cdot \operatorname{s}$

 $^{^{68}}$ Thomas Kunstfeld $\star 1973$

gen auf einen Ölsumpf bis Wellenunterkante (Bild 2.24). Bei Minimalschmierung hingegen zeigten sich stets höhere Temperaturen.

Bild 2.23 Berechneter Temperaturverlauf in Bild 2.24 Schmierungseinfluss auf die Dichtaxialer Richtung entlang des Dichtspalts [82] spalttemperatur [70]

2.1.2 Gegenlauffläche

Der für die Abdichtung relevante Bereich auf der Welle ist die Gegenlauffläche. Sie hat als Teil des tribologischen Systems Einfluss auf die Funktion der Radial-Wellendichtung.

Wichtige Merkmale der Gegenlauffläche sind ihre geometrische Gestalt, ihre Oberflächenstruktur und ihre Oberflächenhärte. Für diese Merkmale geben DIN 3760 und DIN 3761-2 Empfehlungen (Tabelle 2.1) [22, 24]. Die quantitativen Empfehlungen der Normen beschränken sich auf Rauheitswerte und Härteangaben. Zur Oberflächenstruktur machen sie nur qualitative Angaben.

Aus [24]: "Wesentlich ist, daß in diesem Bereich keine Drallorientierung auf der Welle ist, die durch Förderwirkung zur Undichtigkeit führen kann."

Drall ist dabei der Sammelbegriff für Oberflächenstrukturen der Gegenlauffläche, die bei Wellenrotation drehrichtungsabhängig zu Flüssigkeitsförderung führen. Nach DIN 3761-2 sollten keine Kratzer, Schlagstellen, Rost oder Erhebungen im Bereich der Gegenlauffläche sein. Das empfohlene Fertigungsverfahren ist Schleifen im Einstichverfahren [22] mit 30 Sekunden Ausfeuern [114]. Tabelle 2.1 Empfehlungen für Gegenlaufflächen nach DIN 3760 [24]

Toleranz d	Härte	$R_a \ (10^{-6} \mathrm{m})$	$R_z \ (10^{-6} \mathrm{m})$	$R_{max} (10^{-6} \mathrm{m})$
h11	$55\mathrm{HRC}$	0,20,8	15	6,3

Die RUBBER MANUFACTURERS ASSOCIATION (RMA) empfiehlt abweichende Rauheitswerte⁶⁹ (Tabelle 2.2). Für Oberflächenstrukturen wird ein maximaler Strukturwinkel gegenüber der Umfangsrichtung von $0,05^{\circ}$ genannt.

Tabelle 2.2 Empfehlungen für Gegenlaufflächen nach RMA [103]

Rundheit	$R_a \ (10^{-6} \mathrm{m})$	$R_z \ (10^{-6} \mathrm{m})$	$R_{pm}~(10^{-6}{ m m})$	Strukturwinkel
$<\!25\!\cdot\!10^{-6}{ m m}$	0,200,43	$1,\!65.\dots 2,\!90$	$0,\!50.\dots 1,\!25$	$< 0.05^{\circ}$

Für makroskopischen Drall wurde die Modellvorstellung eines Fördergewindes entwickelt [98]. Umlaufende oder periodische Oberflächenstrukturen fördern dabei Fluid unter der Dichtkante analog zu Gewindewellendichtungen (Bild 2.25) [98].

RAAB⁷⁰ untersuchte hartgedrehte, geschliffene und gestrahlte Gegenlaufflächen hinsichtlich Makrodrall [98]. Bis zu einer gewissen Drall-Ausprägung war leckagefreier Betrieb mit den untersuchten Gegenlaufflächen möglich. Quantitative Angaben zum Drall der Gegenlaufflächen werden nicht genannt.

BUHL⁷¹ betrachtete Gegenlaufflächen hinsichtlich Mikrostrukturen [12, 13]. Mikrostrukturen bezeichnen Strukturen im Submikrometer-Bereich, die den Makrostrukturen⁷² überlagert sind. BUHL stellte fest, dass die Förderwirkung von Mikrostrukturen größer sein kann als die von Makrostrukturen. Die Beschreibung der Drall-Ausprägung einer Gegenlauffläche muss demnach Makround Mikrostrukturen berücksichtigen.

BAITINGER⁷³ entwickelte ein Verfahren zur Mikrostruktur-Analyse geschliffener Gegenlaufflächen [2]. Er verglich gängige Drall-Messverfahren⁷⁴ und das selbst entwickelte Verfahren mit Prüfstandsversuchen mehrerer Gegenlaufflächen. Eine stets treffsichere Beurteilung der Gegenlaufflächen erzielte kein Verfahren. BAITINGER führt dies auf die verschiedenen Anteile⁷⁵ der Oberflächenstruktur zurück.

- ⁷²Zum Beispiel Drehriefen.
- ⁷³Gert Baitinger *1979
- ⁷⁴Faden-Methode, CARMEN [17]

⁶⁹Messung der Rauheitswerte mit einer Diamantspitze $r = 5 \cdot 10^{-6}$ m, Öffnungswinkel $\varphi = 90^{\circ}, \lambda_r = 0.25 \cdot 10^{-3}$ m, Gauss-Filter M1.

⁷⁰Henry Sven Raab *1965 +2011

⁷¹Steffen Buhl *1972

 $^{^{75}\}mathrm{Makrostrukturen},$ Mikrostrukturen und gegeben
enfalls Kratzer oder Fehlstellen.

JUNG⁷⁶ untersuchte den Einfluss der Gegenlauffläche auf die Reibung der Radial-Wellendichtung [57]. In Bild 2.26 sind die Gümbelzahlkurven von vier unterschiedlichen Gegenlaufflächen dargestellt. Die polierte Gegenlauffläche mit dem höchsten Materialanteil $S_{mr} = 1$ hat bei gleicher Gümbelzahl den höchsten Reibbeiwert. Die Gümbelzahlkurven der anderen Gegenlaufflächen verlaufen um so niedriger, je niedriger der jeweilige Materialanteil ist.

Bild 2.25 Modellvorstellung von Drall [98]

Bild 2.26 Lage der Gümbelzahlkurve in Abhängigkeit des Materialanteils $S_{mr} \ [57]$

2.1.3 Schmierstoff

Eine Unterteilung der Grundöle erfolgt durch ihren Ursprung. Es gibt mineralische und synthetische Grundöle⁷⁷. Mineralöle werden aus Rohöl gewonnen. Synthetiköle werden aus kurzkettigen Edukten synthetisiert.

Mineralöl

Mineralöl besteht hauptsächlich aus Alkanen, Cycloalkanen und Arenen [35]. Alkane (2.12) sind hydrierte Kohlenstoffketten mit Einfachbindungen. Ringförmig geschlossene Alkane heißen Cycloalkane. Strukturformel (2.13) stellt beispielhaft Cyclohexan dar.

$$CH_3 - CH_2 - \dots - CH_2 - CH_3 \tag{2.12}$$

⁷⁶Steffen Jung *1978

⁷⁷Die historisch verwendeten, fetten Öle tierischen Ursprungs sind bedeutungslos geworden.

 $CH_{2} CH_{2} CH_{2} (2.13)$ $CH_{2} CH_{2} CH_{2} CH_{2}$

Arene sind den Cycloalkanen ähnlich. Sie haben jedoch delokalisierte Doppelbindungen⁷⁸. Strukturformel (2.14) stellt beispielhaft Benzol dar.

Poly- α -Olefin

Poly- α -Olefin wird aus Ethylen synthetisiert [28]. Kennzeichnend sind die Alkylreste⁷⁹ an jedem zweiten Kohlenstoffatom der Basisstruktur (2.15).

$$\mathbf{H} \underbrace{\begin{pmatrix} \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H} \\ & \\ & \\ & \mathbf{C}_n\mathbf{H}_{2n+1} \end{pmatrix}_{\mathbf{X}}}_{\mathbf{X}} \mathbf{H}$$
(2.15)

Ester

Ester sind das Reaktionsprodukt eines Alkohols mit einer Säure. Als Schmierstoff kommen häufig Dicarbonsäureester zum Einsatz [28]. Sie zeichnen sich durch unpolare Alkylreste an den Molekülenden und durch polare Estergruppen in der Molekülmitte aus (2.16).

$$\begin{array}{c} C_{m}H_{2m+1} - C_{H} - O - C_{r} - C_{n}H_{2n} - C_{r} - O - C_{H} - C_{m}H_{2m+1} \\ \downarrow \\ C_{p}H_{2p+1} & O & O \\ \end{array}$$

Polyglykol

Polyglykole haben eine Alkan-Basisstruktur mit Glykol-Verzweigungen (2.17) [88]. Sie können zusätzlich funktionale Gruppen besitzen⁸⁰.

⁷⁸Auf die übliche Darstellung der delokalisierten Bindungen als Ring wurde hier aus Gründen der Anschaulichkeit verzichtet.

⁷⁹Die alkene Basisstruktur wird bei der Synthese hydrocarburiert [28].

 $^{^{80} \}mathrm{In}$ der Strukturformel (2.17) durch ein X gekennzeichnet.

Polysiloxan

Die Basisstruktur der Polysiloxane besteht aus Silizium- und Sauerstoffatomen. Im Fall von Polydimethylsiloxan (2.18) sind Methylgruppen an die Siliziumatome gebunden [28]. Polysiloxane werden im Folgenden mit dem Trivialname »Silikonöl« bezeichnet.

$$\begin{array}{c} CH_{3} \\ CH_{3} - \underbrace{Si - O}_{CH_{3}} \\ CH_{3} \\ CH_{3} \end{array} \begin{pmatrix} CH_{3} \\ - \underbrace{Si - O}_{CH_{3}} \\ CH_{3} \\ CH_{3} \\ \end{array} \begin{pmatrix} CH_{3} \\ - \underbrace{Si - CH_{3}}_{n} \\ CH_{3} \\ CH_{3} \\ \end{array} (2.18)$$

2.2 Dichtmechanismus

Die Radial-Wellendichtung fördert bodenseitig angebotenes Fluid aktiv zur Stirnseite. Stirnseitig angebotenes Fluid wird in die Dichtzone gefördert, nicht jedoch darüber hinaus zur Bodenseite. Diese Eigenschaft wird Förderwirkung genannt. Der Dichtmechanismus ist die physikalische Erklärung der Förderwirkung.

2.2.1 Allgemeines

Die Förderwirkung der Radial-Wellendichtung wird als Maß für ihre Dichtgüte angesehen. KAMMÜLLER⁸¹ [60] zeigte einen Zusammenhang zwischen dem Auftreten von Leckage im Betrieb und der Förderwirkung der Radial-Wellendichtung. Andere messbare Eigenschaften des Radial-Wellendichtrings wie Radialkraft, Verschleißbreite, Berührbreite oder Dichtlippendurchmesser hatten keinen eindeutigen Zusammenhang mit der aufgetretenen Leckage.

Geschichtliches

Früh nach der Entwicklung des Radial-Wellendichtrings aus Elastomer (1935 [21]) wurde erkannt, dass dieser nicht nur als Drosselspalt arbeitet, sondern

 $^{^{81}}$ Mathias Kammüller $\star 1958$

bei rotierender Gegenlauffläche einen Dichtmechanismus besitzt. Ein erster Erklärungsversuch von JAGGER beruhte auf dem Einfluss von Grenzflächenspannungen zwischen Fluid, Elastomer und Gegenlauffläche [52]. Kapillarkräfte fördern Fluid in den Dichtspalt, jedoch nicht darüber hinaus. Es bildet sich an der Grenzfläche ein, für das betrachtete System, konkaver Fluidmeniskus (Bild 2.27) aus. JAGGER beobachtete in diesem Zusammenhang das Verhalten von Fluiden in Kapillaren. Bei Druckbeaufschlagung der Kapillare schlug der Meniskus von konkaver in konvexe Form um. Das Fluid verblieb dabei in der Kapillare. Erst bei "erheblicher" Erhöhung des Drucks trat das Fluid aus der Kapillare aus. Darauf basierend wurde die Ausbildung eines konvexen Fluidmeniskus (Bild 2.28) auf der Bodenseite der Radial-Wellendichtung angenommen [51, 54, 100, 122]. Dieser Meniskus sollte ein Nachströmen von Fluid in den Dichtspalt verhindern.

Bild 2.27 Konkaver Meniskus durch Kapillarwirkung des Spalts [54]

Bild 2.28 Konvexer Meniskus durch Oberflächenspannung [54]

2.2.2 Makroskopische Betrachtung

Das Umfeld der Radial-Wellendichtung und die Einbaulage des Dichtrings haben Einfluss auf ihre Förderwirkung. Untersucht wurden die stirnseitige Schmierstoffbewegung und die Abweichung der RWDR-Einbaulage gegenüber der Wellenachse.

Taylor-Görtler-Wirbel

Auf der Stirnseite der Radial-Wellendichtung bilden Welle und Gehäuse einen Ringspalt, in dem sich Schmierstoff befindet. Bei Rotation der Welle wird

der Schmierstoff von der Welle mitgeschleppt. Es bildet sich zwischen der rotierenden Welle und dem feststehenden Gehäuse eine Couette⁸²-Strömung aus [130].

TAYLOR⁸³ [120] beobachtete und berechnete an senkrechten, flüssigkeitsgefüllten Ringspalten die nach ihm benannte Wirbelbildung (Bild 2.29). GÖRT-LER⁸⁴ verallgemeinerte diesen Ansatz für Grenzschichten an gekrümmten oder beheizten Wänden (Bild 2.30) [40].

In Bild 2.29 sind lineare, achsensymmetrische Taylor-Wirbel in einem senkrechten Ringspalt dargestellt. Dies ist der einfachste Modus der Taylor-Wirbel. Insgesamt existieren nach KOSCHMIEDER⁸⁵ [69] fünf Modi:

Bild 2.29 Taylor-Wirbel [106]

Bild 2.30 Görtler-Wirbel [40]

- 1. wirbelfreie Couette-Strömung
- 2. lineare und nichtlineare, achsensymmetrische Taylor-Wirbel
- 3. nichtlineare, gewellte Taylor-Wirbel
- 4. chaotische Taylor-Wirbel
- 5. Turbulenz.

Das Eintreten der jeweiligen Modi läßt sich über die Taylorzahl Ta abschätzen. Die Taylorzahl ist definiert zu (2.19) [69]:

$$Ta^2 = \frac{4 \cdot \omega^2 \cdot d^4 \cdot \rho^2}{\eta^2} \tag{2.19}$$

 $^{^{82}\}mathrm{Maurice}$ Marie Alfred Couette $\star 1858$ †1943

 $^{^{83}\}mathrm{Sir}$ Geoffrey Ingram Taylor $\star 1886$ ± 1975

⁸⁴Henry Görtler *1909 +1987

⁸⁵E.L. Koschmieder

Die kritische Taylorzahl Ta_c für den Umschlag von wirbelfreier Couette-Strömung in lineare Wirbelströmung beträgt $Ta_c = 41,3$ bzw. $Ta_c^2 = 1706$ [69, 106, 130]. Nichtlineare, gewellte Taylor-Wirbel treten bei circa $3 \cdot Ta_c$ auf [106]. Abhängig von der Reynoldszahl Re der Strömung treten chaotische Taylor-Wirbel und Turbulenz ab circa $50 \cdot Ta_c$ [106] bis $100 \cdot Ta_c$ [69] auf.

Anschaulich ist die Taylorzahl das Verhältnis von Fliehkraft (Bild 2.31) zu Reibkraft (Bild 2.32) eines Fluidelements in der Couette-Strömung. Aus [90]: "Der das Fluidelement radial weiter treibende Fliehkraftunterschied kann ausgedrückt werden als $F \propto \rho \cdot \omega^2 \cdot d^4$. Die Reibkraft ergibt sich zu $F_{reib} \propto$ $f \cdot \mathbf{v} \cdot d \cdot r^{-1}$. Das Einsetzen der Instabilität ist dann zu erwarten, wenn die Widerstandskraft den Fliehkraftüberschuss nicht mehr kompensieren kann:"

$$F \stackrel{!}{\geq} F_{reib} \iff \rho \cdot \omega^2 \cdot d^4 \stackrel{!}{\geq} \frac{f \cdot v \cdot d}{r \cdot \text{const.}}$$
(2.20)

Taylor-Wirbel können neben Fliehkräften auch von Auftriebskräften ange-

Bild 2.31 Einfluss der Fliehkraft [90]

Bild 2.32 Einfluss der Reibung [90]

facht werden. Negative Temperaturgradienten von Welle zu Gehäuse erzeugen Bénard⁸⁶-Instabilitäten. Diese sind in Art und Erscheinung (Bild 2.33)⁸⁷ den Taylor-Wirbeln sehr ähnlich und verstärken diese.

Die Ausprägung der Bénard-Instabilität beschreibt die Rayleighzahl⁸⁸ Ra (2.21) [130]. Sie ist anschaulich der Quotient aus freier Konvektion und Viskosität.

 $^{^{86}\}mathrm{Henri}$ Claude Bénard $\star 1874$ $\dagger 1939$

⁸⁷Das Bild ist ein Interferogramm einer Bénard-Instabilität von Polydimethylsiloxan in einem von unten beheizten Quader (Verhältnis der Kantenlängen 10:4:1).

⁸⁸John William Strutt, Lord Rayleigh *1842 +1919

Bild 2.33 Bénard-Instabilität in einem rechteckigen, von unten beheiztem Gefäß [89]

$$Ra = \frac{\beta \cdot g \cdot \Delta T \cdot d^3 \cdot \rho}{\chi \cdot \eta} \tag{2.21}$$

Die Berechnung der Taylor-Wirbel und der Bénard-Instabilitäten setzt einen flüssigkeitsgefüllten Ringspalt voraus. Diese Voraussetzung ist nur eine Vereinfachung, wie GÖRTLER zeigte. Er betrachtete Strömungsvorgänge in der Grenzschicht vom rein mathematischen Standpunkt aus [38]. Für die mathematisch exakte Lösung setzte er voraus:

- Leicht gekrümmte Wände (ohne quantitative Angabe)
- Laminare Strömung unterhalb der kritischen Reynoldszahl⁸⁹ Re
- Grenzschichtbildung nach BLASIUS⁹⁰.

GÖRTLER kommt zu dem Schluss [40]: "Wenn in einer Grenzschicht die Stromlinien nur selbst nach jener Normalenseite konkav verlaufen, nach der die Geschwindigkeit zunimmt, und wenn eine weitere Bedingung, [Anm.: Temperaturgradient] die dem Überschreiten des kritischen Parameterwerts entspricht, erfüllt ist, werden Störungen in Gestalt longitudinaler Wirbel angefacht werden."

Die quantitative Beschreibung der Einflussgrößen erfolgt über die Eigenwertparameter der Navier⁹¹-Stokes⁹²-Gleichungen. Die Eigenwertparameter ergeben sich zu $(2.22)^{93}$ für die Zentrifugalkraft und zu (2.23) für den Auftrieb. Hierbei zeigt sich die Ähnlichkeit mit der Bénard-Instabilität. Die Grashofzahl⁹⁴ *Gr* ist der Quotient aus Rayleighzahl *Ra* und Prandtlzahl⁹⁵ *Pr* (2.23).

$$G\ddot{\sigma}^2 = 2 \cdot Re_{\vartheta}^2 \cdot \frac{\vartheta}{r} \tag{2.22}$$

⁸⁹Osborne Reynolds $\star 1842 + 1912$

⁹⁰Heinrich Blasius *****1883 **†**1970

⁹¹Claude Louis Marie Henri Navier *1785 †1836

⁹²George Gabriel Stokes *1819 +1903

⁹³Ab einer kritischen Görtlerzahl von $G\ddot{o}_c = 0,58$ setzt die Wirbelbildung erstmals vollständig ein [40].

⁹⁴Franz Grashof *1826 +1893

 $^{^{95}}$ Ludwig Prandtl *1875 + 1953

$$Gr = \frac{g \cdot \vartheta^3 \cdot \rho^2}{\eta^2} \cdot \beta \cdot (T_{Wand} - T_{Sumpf})$$
(2.23)

Der Unterschied zur Berechnung der Taylor-Wirbel liegt in der Verwendung von Grenzschicht-Größen. Besondere Bedeutung kommt dabei der Impulsverlustdicke ϑ zu. Sie entspricht rund einem Sechstel der Grenzschichtdicke δ . In Bild 2.34 sind die relevanten Größen angegeben. Die Wellenlänge λ gibt den Abstand zweier Wirbelpaare an und entspricht etwa dem Fünffachen der Grenzschichtdicke.

Den Einfluss von Zentrifugal- und Auftriebskraft auf das Strömungsregime gibt GÖRTLER qualitativ an (Bild 2.35). Anschaulich bedeutet diese Kurve das Einsetzen von Wirbelbildung oberhalb einer kritischen Strömung⁹⁶ oder oberhalb einer kritischen Erwärmung⁹⁷.

Bild 2.34 Geometrie der Görtler-Wirbel Bild 2.35 Einfluss der Strömung und der (Querschnitt) [39]

Temperatur auf das Strömungsregime [40]

EUTENEUER⁹⁸ übertrug den Ansatz GÖRTLERs auf konvexe, bewegte Oberflächen⁹⁹ [31]. Der von ihm untersuchte Anwendungsfall waren rotierende Zvlinder, die teilweise in einen Ölsumpf eintauchen¹⁰⁰. Die rotierende Welle schleppt Öl mit sich und erzeugt dabei, analog zur umströmten Oberfläche

 $^{^{96}}$ Einflussgrößen der Strömung sind die Strömungsgeschwindigkeit u_{∞} , die kinematische Viskosität v, die Wandkrümmung r und die Impulsverlustdicke ϑ .

 $^{^{97}}$ Einflussgrößen der Erwärmung sind die Impulsverlustdicke ϑ , die kinematische Viskosität v, der thermische Ausdehnungskoeffizient β und die treibende Temperaturdifferenz ΔT .

⁹⁸Gustav-Adolf Euteneuer

⁹⁹Zum Vergleich: Görtler untersuchte primär stillstehende, konkave, umströmte Oberflächen.

¹⁰⁰Das entspricht dem Anwendungsfall der Radial-Wellendichtung.

bei Görtler-Wirbeln, eine Grenzschicht. Die Dicke dieser Grenzschicht berechnete EUTENEUER nach dem Gesetz für ebene Platten zu $\delta = 5 \cdot \sqrt{v \cdot t}$ in Abhängigkeit der Eintauchtiefe der Welle. Die Grenzschichtdicke setzte EU-TENEUER zur Vereinfachung mit der Spaltweite *d* der Taylorzahl *Ta* gleich. Den Einfluss weiterer Strömungen im Ölsumpf vernachlässigte er. In seinen Prüfstandsversuchen setzte die Wirbelbildung erst bei höheren Taylorzahlen als der kritischen Taylorzahl ein. Gründe dafür sind der Einfluss der rechnerisch vernachlässigten Sekundärströmungen und der, von GÖRTLER postulierte, dämpfende Einfluss der konvexen Wandkrümmung. Qualitativ stimmten EUTENEUERs Versuchsergebnisse gut mit der rechnerischen Abschätzung überein. Daraus schloss er, dass die Annahme von Taylor-Görtler-Wirbeln in diesem Anwendungsfall zulässig ist.

OTT¹⁰¹ entdeckte bei der Untersuchung von Radial-Wellendichtungen das Auftreten von Taylor-Görtler-Wirbeln auf der Stirnseite der Dichtung [92]. Er beobachtete eine von der Dichtkante zum Ölsumpf gerichtete Geschwindigkeitskomponente der Strömung in Dichtkantennähe. Diese Erscheinung verglich er mit der Wirkungsweise von Strahlpumpen und schloss so auf einen möglichen Dichtmechanismus. Er und KAMMÜLLER untersuchten den Einfluss phänomenologisch [60]. Sie variierten die Wellendrehzahl, die Ölsumpftemperatur, den Ölsumpfstand und die Länge des stirnseitigen Wellenstummels.

In den Versuchen ersetzte ein starrer PMMA¹⁰²-Ring den Elastomer-Dichtring (Bild 2.36). Dadurch bestand zwischen Welle und Ring ein starrer Spalt von $h = 10^{-4}$ m. Bei Wellenstillstand trat durch den Spalt ein Leckagestrom von wenigen 10^{-7} kg · s⁻¹ auf. In einem Drehzahlband¹⁰³ trat keine Leckage aus. Einfluss auf die Grenzen des Drehzahlbands hatten die Ölsumpftemperatur und der Ölsumpfstand. Bei höherer Ölsumpftemperatur oder höherem Ölsumpfstand war das Drehzahlband schmaler und verschob sich zu höheren Drehzahlen. Oberhalb kritischer Werte¹⁰⁴ trat drehzahlunabhängig Leckage aus. Die Länge des eintauchenden Wellenstummels *s* (Bild 2.37) war für $s \ge 4 \cdot 10^{-3}$ m bedeutungslos.

¹⁰¹Gerhard Walter Ott *1950

¹⁰²Polymethylmethacrylat, Handelsname PLEXIGLAS.

¹⁰³Bei den Bedingungen $v = 0, 7 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}, d_{Welle} = 0,08 \text{ m}, \vartheta = 40 \text{ }^{\circ}\text{C}$ betrug das Drehzahlband $n = 1200 \text{ min}^{-1} \dots 4300 \text{ min}^{-1}$.

 $^{^{104}\}mathrm{F\ddot{u}r}$ die Temperatur betrug dieser Wert $\vartheta=120~^{\circ}\mathrm{C}$

Bild 2.36 Strömung an der Stirnseite des Bild 2.37 Einfluss der Länge s des Wellenstarren Rings [92]

stummels [60]

OTT bestimmte den Einfluss der Tavlor-Görtler-Wirbel als dynamischen Druck, der dem hydrostatischen Druck des Ölsumpfstands entgegenwirkt. Mittels der Dimensionsanalyse erhielt er den Zusammenhang (2.24). Die Einflussgrößen¹⁰⁵ sind demnach die Winkelgeschwindigkeit ω , die dynamische Viskosität η , der Wellendurchmesser *d* und die Fluiddichte ρ .

$$p_{dyn} = 0,034 \cdot \boldsymbol{\omega}^{1,81} \cdot \boldsymbol{\eta}^{0,19} \cdot \boldsymbol{d}^{1,62} \cdot \boldsymbol{\rho}^{0,81}$$
(2.24)

Oszillationshypothese

Die Symmetrieachse von RWDR ist in der Praxis nicht identisch mit der Wellenachse. Sie ist gegenüber der Wellenachse verkippt (Bild 2.38) oder liegt radial versetzt zu ihr (Bild 2.39). Dadurch ist die Laufspur des RWDRs breiter als seine Berührbreite. Infolgedessen oszilliert ein wellenfester Punkt bei Wellendrehung axial gegenüber der Dichtkante [56]. Derselbe Effekt herrscht bei RWDR mit ondulierter Dichtkante. Die Ondulierung kann gewollt¹⁰⁶ oder zufällig¹⁰⁷ sein.

JENISCH¹⁰⁸ verglich die axiale Oszillation mit dem Ein- und Ausfahren von Stangen an Stangendichtungen. Dabei ist der beim Ausfahren auf der Stange verbleibende Schmierfilm niedriger als beim Einfahren. Der Grund dafür ist

¹⁰⁶RWDR mit onduliert gefertigter Dichtkante, Handelsname WAVESEAL(R).

 $^{^{105} \}mathrm{Diese}$ Größen entsprechen den von Görtler angegebenen Größen $v,\,u_\infty$ und r

¹⁰⁷Ungleichmäßige Verformung des Elastomers durch Aufweiten der Dichtkante beim Einbau.

¹⁰⁸Bernhard Jenisch *1957

Bild 2.38 Verbreiterung der Laufspur durch Bild 2.39 Verbreiterung der Laufspur durch Verkippen des RWDRs [56]

statische Exzentrizität von Wellen- und Gehäuseachse [56]

die asymmetrische Pressungsverteilung im Dichtkontakt von Stangendichtungen. Die verbleibende Schmierfilmhöhe h verhält sich reziprok zur Quadratwurzel des maximalen Pressungsgradienten $\partial p \cdot \partial x^{-1}$ in Bewegungsrichtung im Dichtkontakt (2.25).

$$h = \sqrt{\frac{2}{9} \cdot \eta \cdot \frac{u}{\frac{\partial p}{\partial x}}} \tag{2.25}$$

Die ebenfalls asymmetrische Pressungsverteilung im Dichtkontakt von RW-DR führte zur Oszillationshypothese (Bild 2.40). Die mögliche Schmierfilmhöhe h_a beim Ausfahren ist demnach geringer als h_e beim Einfahren. Es resultiert eine Förderwirkung von bodenseitig anstehendem Fluid zur Stirnseite. In Prüfstandsversuchen¹⁰⁹ verifizierte JENISCH die Hypothese an RWDR mit exzentrischer Lage (Bild 2.41). Der Förderwert stieg mit zunehmender Exzentrizität linear an. Ab einer Exzentrizität von $e = 10^{-3}$ m blieb der Förderwert konstant.

Eine dynamische Exzentrizität der Welle bewirkt keine axiale Oszillationsbewegung. Ein wellenfester Punkt hat zur Dichtkante stets dieselbe axiale Position [56]. Die Oszillationshypothese ist hier ungültig.

HERMANN¹¹⁰ fand dennoch für eine dynamische Exzentrizität der Welle eine erhöhte Förderwirkung¹¹¹ des RWDRs (Bild 2.42) [45]. Die Dichtkante

¹⁰⁹Bei den Bedingungen $v = 0, 14 \cdot 10^{-3} \text{ m}^2 \cdot \text{s}^{-1}, d_{Welle} = 0,08 \text{ m}, \vartheta = 30 \text{ }^{\circ}\text{C} \text{ und } u = 4,2 \text{ m} \cdot \text{s}^{-1}$ ¹¹⁰Waldemar Hermann

¹¹¹Bei den Bedingungen $v \approx 0.25 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$, $d_{Welle} = 0.038 \text{ m}$, $\vartheta = 80$ °C, ACM-RWDR

Bild 2.40 Modellvorstellung der Oszillationshypothese [56]

Bild 2.41 Einfluss der statischen Exzentrizität auf den Förderwert [56]

oszilliert nach einem Modell von BRITZ¹¹² dabei radial [10]. Er führte einen Modellversuch mit einem radial oszillierenden Keil durch (Bild 2.43). Der Keil tauchte in ein Bad ein und förderte dabei Fluid in Richtung des konvergierenden Spalts. Eine Verifikation des Modells an realen Dichtungen unterließ Britz.

trizität auf die Förderwirkung [45]

Bild 2.42 Einfluss der dynamischen Exzen- Bild 2.43 Modell des Radialschwingers [10]

¹¹²Stefan Britz *1958

2.2.3 Mikroskopische Betrachtung

Die Betrachtung von Reibungeinflüssen in der Dichtzone führte zu Hypothesen die den Dichtmechanismus unabhängig von äußeren Einflüssen beschreiben.

Verzerrungshypothese

KAWAHARA untersuchte systematisch die Förderwirkung invers eingebauter RWDR [63]. Dabei stellte er einen Zusammenhang zwischen der dimensionslosen hydrodynamischen Kennzahl nach HIRANO G_{Hirano} und einem dimensionslosen Förderwert FW_{dl} fest (2.26).

$$FW_{dl} = \frac{\bar{V}}{u \cdot d^2} \qquad FW_{dl} \propto G_{Hirano}^{\frac{1}{2}}$$
(2.26)

Er beobachtete die Dichtkante durch eine Glashohlwelle und stellte eine reibungsabhängige tangentiale Verzerrung fest [64]. In dieser Verzerrung sah er die Ursache der Förderwirkung.

Zitat aus [64]: (\ldots) the deformation of the rubbing surface of seal lip depends on the frictional force between the seal lip and the shaft surface, and is closely related to the sealing mechanism of oil seals."

Übersetzung: (...) die Verzerrung der Reibfläche der Dichtkante hängt von der Reibkraft zwischen Dichtkante und Gegenlauffläche ab und ist eng verknüpft mit dem Dichtmechanismus."

KAMMÜLLER zeigte quantitativ den Zusammenhang zwischen Dichtkantengeometrie und der Verzerrung im Betrieb (Bild 2.44) [61]. Die Form der Verzerrung entsprach der Pressungsverteilung¹¹³ im Dichtkontakt. VAN LEEU-WEN¹¹⁴ bestätigte mit hochauflösenden Verzerrungsmessungen KAMMÜLLERS Werte [73]: Förderaktive RWDR wiesen eine asymmetrische Verzerrung auf (Bild 2.44, oben). RWDR ohne aktive Förderwirkung hatten hingegen eine symmetrische Verzerrung (Bild 2.44, unten).

Aus diesen Erkenntnissen entwickelte KAMMÜLLER die Verzerrungshypothese. Die bei Wellenstillstand unverzerrte Struktur (Bild 2.45, a) wird durch Reibungsschubspannungen (b) bei Rotation der Welle verzerrt (c). Die tangentiale Schleppströmung wird an den verzerrten Strukturen axial umgelenkt. Es entstehen gegensinnige Förderströme \dot{V}_S und \dot{V}_B in axialer Richtung (d). Durch die Asymmetrie der Verzerrung ist der bodenseitige Förderstrom \dot{V}_B größer als der stirnseitige Förderstrom \dot{V}_S . Daraus resultiert ein, zur Stirnseite gerichteter, Nettostrom \dot{V}_{net} .

¹¹³Aus Literaturstellen bekannt oder numerisch bestimmt.

 $^{^{114}\}mathrm{Harry}$ van Leeuwen $\star 1950$

Bild 2.44 Tangentiale Verzerrung der Dicht- Bild 2.45 Verzerrungshypothese [61] kante [61]

Neben der Verzerrung hatten Rauheit und Struktur der verzerrten Elastomeroberfläche merklichen Einfluss auf die Förderwirkung [61]. Raue Elastomeroberflächen führten zu höherer Förderwirkung als glatte. Elastomeroberflächen mit axial orientierten Verschleißstrukturen führten zur höchsten Förderwirkung.

Solche axialen Verschleißstrukturen sind typisch für Elastomere. SCHAL-LAMACH¹¹⁵ zeigte in Tribometerversuchen die Bildung von Wellenfronten im Reibkontakt von Elastomeren [105]. Diese, nach ihm benannten, Schallamach-Wellen¹¹⁶ "(...) beruhen auf der lokalen Ausbauchung der Elastomeroberfläche infolge instabiler Spannungszustände in der Grenzschicht" [123]. Die Folge der Schallamach-Wellen ist ein welliger Verschleiß der Elastomeroberfläche. Für die Radial-Wellendichtung ergeben sich damit zwei Effekte: Erstens: Bildung einer dynamischen Welligkeit durch die Schallamach-Wellen selbst. Zweitens: Bildung einer permanenten Welligkeit durch die erzeugten Verschleißstrukturen.

Die Verschleißstrukturen entstehen im Betrieb von RWDR bereits bei der ersten Wellenumdrehung [61]. Die Oberflächenrauheit der Gegenlauffläche und die Initialschmierung der Dichtkante hat nach BUHL¹¹⁷ dabei entscheidenden Einfluss [13]. Raue Gegenlaufflächen und Mangelschmierung beim erstmaligen Anlauf begünstigen die Bildung der Verschleißstrukturen. Bei seinen Versu-

 $^{^{115}\}text{Adolf}$ Schallamach $\star 1904$ $\Diamond 1997$

¹¹⁶In mehreren Quellen zur Dichtungstechnik werden die Verschleißstrukturen als Schallamach-Wellen bezeichnet. Das ist nach Auffassung des Autors falsch. SCHALLA-MACH beschrieb dynamische Vorgänge im Reibkontakt.

 $^{^{117}}$ Steffen Buhl $\star 1972$

chen¹¹⁸ mit polierter Gegenlauffläche und geölt montiertem RWDR traten keine Verschleißstrukturen auf¹¹⁹. Dennoch zeigten diese RWDR ohne Verschleißstrukturen eine Förderwirkung¹²⁰.

Zur rechnerischen Abschätzung der Förderwirkung idealisierte KAMMÜL-LER die verzerrten Verschleißstrukturen als Gewindewellendichtung (Bild 2.46). Die Verschleißstrukturen sind dabei als Gänge rechteckigen Querschnitts, fester Länge und fester Winkelorientierung modelliert. In der Berechnung ermittelte KAMMÜLLER den Förderwert in Abhängigkeit der Gangtiefe. Die Ergebnisse (exemplarisch für eine Drehzahl in Bild 2.47) stimmten gut mit den praktischen Versuchen überein.

rungshypothese (abgewickelte Berührfläche tiefe auf den Förderwert [61] der Dichtkante) [61]

Bild 2.46 Modellvorstellung der Verzer- Bild 2.47 Rechnerischer Einfluss der Gang-

Seitenstromhypothese

Nicht nur bei axialen Verschleißstrukturen auf der Dichtkante stellt sich eine Förderwirkung ein. Auch bei stochastisch verteilten Rauheitserhebungen auf der Dichtkante fördert die Radial-Wellendichtung. Aus dieser Erkenntnis entwickelten KAMMÜLLER und MÜLLER¹²¹ die Seitenstromhypothese [60, 84].

¹²⁰Der durchschnittliche Förderwert der RWDR ohne Verschleißstrukturen betrug

¹¹⁸Bei den Bedingungen $v \approx 0, 18 \cdot 10^{-4} \text{ m}^2 \cdot \text{s}^{-1}, d_{Welle} = 0,08 \text{ m}, \vartheta = 80 \text{ }^\circ\text{C}, u = 4,2 \text{ m} \cdot \text{s}^{-1},$ FKM-RWDR mit gespritzter Dichtkante.

 $^{^{119}}$ Nach einer Versuchsdauer von $t=36\,\mathrm{h}$ wurden die Dichtkanten elektronenmikroskopisch auf Verschleißstrukturen untersucht.

 $FW\approx 0,008\cdot 10^{-9}\ {\rm m^3\cdot m^{-1}}$ gegenüber dem Förderwert von RWDR mit Verschleißstrukturen von $FW\approx 0,021\cdot 10^{-9}\ {\rm m^3\cdot m^{-1}}$

¹²¹Heinz Konrad Müller *1933

Die tangentiale Schleppströmung wird an den Rauheitserhebungen axial umgelenkt (Bild 2.48). Es entstehen mikroskopische Druckfelder. Der maximale lokale Druck \hat{p} ist größer als der mittlere Druck \bar{p} durch die Flächenpressung der Dichtkante¹²². Fluid kann durch den lokal höheren Druck das globale Pressungsmaximum (»Druckäquator«) in beiden Richtungen überqueren. Durch den flacheren Pressungsgradient auf der Bodenseite überquert statistisch mehr Fluid den Druckäquator von Boden- zu Stirnseite als umgekehrt.

An den Rändern der Dichtkante bilden sich hinter den Rauheitserhebungen Kavitationszonen (Bild 2.49). Fluid kann dadurch von außerhalb in den Spalt hineingezogen werden.

Die Ergebnisse von NAKAMURA¹²³ stützen diese Hypothese [86]. Er analysierte die Pressungsverteilung von Dichtkanten im Betrieb durch eine Glashohlwelle. RWDR mit asymmetrischer Pressungsverteilung und ausgeprägten Rauheitserhebungen zeigten weniger Leckage als solche mit symmetrischer Pressungsverteilung und glatter Dichtkante. In den "Tälern" nach den Rauheitserhebungen beobachtete NAKAMURA Kavitation des Fluids.

STAKENBORG¹²⁴ beobachtete am Rand der Dichtzone ebenfalls Kavitation [117].

Bild 2.48 Modellvorstellung der Seiten- Bild 2.49 Druckverteilung unter der Dichtstromhypothese (abgewickelte Berührfläche kante in Umfangsrichtung [60] der Dichtkante) [84]

¹²³K. Nakamura

¹²²Vorausgesetzt wird hydrodynamische Schmierung. Dabei ist das Integral der Fluiddruckverteilung gleich der RWDR-Radialkraft.

¹²⁴Marcel Jos Lou Stakenborg *1961

Nicht-newtonsches Fluidverhalten

Bei hohen Scherraten ($\dot{\gamma} > 10^4 \text{ s}^{-1}$) verhalten sich Fluide teilweise nicht mehr newtonsch. Ihre Viskosität sinkt mit zunehmender Scherrate (Bild 2.50) und es können Normalspannungen auftreten [5, 36].

OLIVEIRA¹²⁵ schloss aus den hohen Scherraten im Dichtspalt von RWDR auf den Einfluss nicht-newtonschen Fluidverhaltens auf den Dichtmechanismus [91]. Demnach bauen Normalspannungen im Fluid den Schmierfilm auf und nicht hydrodynamische Effekte. Im Normalbetrieb herrsche ein Gleichgewichtszustand zwischen der radialen Pressung und der Normalspannungsfunktion. Das Fluid werde dadurch in der Dichtzone gehalten (Bild 2.51). Bei bodenseitiger Fluidzugabe verschiebe sich die Normalspannungsverteilung zur Bodenseite. Das Fluid erfahre dadurch eine Kraft in Richtung Stirnseite (Bild 2.52). Es käme zur Fluidförderung.

OLIVEIRA gibt weder konkrete Werte an, noch verifizierte er seine Hypothese. Die Hypothese beruht außerdem auf folgenden Annahmen: Welle und RWDR seien konzentrisch; die Spaltwände zueinander parallel. Die Oberflächen von Welle und RWDR seien ideal glatt. Die Fluide seien isotrop und inkompressibel. Die Dichtzone sei isotherm.

Bild 2.50 Abnahme der Viskosität mit zunehmender Scherrate [36]

Bild 2.51 Modellvorstellung nicht-newtonsches Fluidverhalten, Schmierfilm im Gleichgewicht [91]

¹²⁵Sylvio Jose Ribeiro de Oliveira

WIEHLER¹²⁶ griff OLIVEIRAS Hypothese auf [131]. Er untersuchte ein PA-MA¹²⁷-additiviertes Hydrauliköl¹²⁸ auf nicht-newtonsches Verhalten. In einer Modellvorrichtung¹²⁹ scherte er das Fluid. Am Punkt der höchsten Scherrate entnahm er Fluid. Die Konzentration von PAMA in der Probe lag dabei um bis zu 5,4 % höher als im Anfangszustand. Er entwickelte aus der Konzentrationsänderung die Modellvorstellung »Folienmodell«. Dieses Modell beschreibt die Bewegung makromolekularer Fluidanteile quer zur Strömungrichtung, hin zu höheren Scherraten. In seinen Ergebnissen sieht WIEHLER Hinweise zur Bestätigung von OLIVEIRAS Hypothese.

HAJJAM verwendete den Berechnungsansatz GECIMS¹³⁰ – auf den auch OLIVEIRA und WIEHLER verweisen – in einem RWDR-Simulationsmodell [36, 41]. Normalkräfte im Fluid schloss HAJJAM aus¹³¹. Die sinkende Viskosität bei höheren Scherraten ergab gegenüber einem newtonschen Fluid ein geringeres Reibmoment und einen geringeren Förderwert (Bild 2.53).

Bild 2.52 Modellvorstellung nicht-newton- Bild 2.53 Rechnerisch ermittelter Fördersches Fluidverhalten, bodenseitige Fluidzu- wert auf Basis nicht-newtonschen Fluidvergabe [91]

haltens [41]

¹²⁶Kay Wiehler

¹²⁷Polyalkylmethacrylat, ein polymeres Additiv.

- ¹²⁹Maximale Scherrate $\hat{\gamma} = 84 \cdot 10^3 \ s^{-1}$, Scherratengradient $\partial \dot{\gamma} \cdot \partial s^{-1} = 3 \cdot 10^6 \ s^{-1} \cdot m^{-1}$
- ¹³⁰Burak A. Gecim
- ¹³¹Nicht-newtonsches Verhalten zeigte sich in GECIMS Versuchen hauptsächlich bei Radialgleitlagern mit großen relativen Lagerlängen $y \cdot d^{-1}$.

¹²⁸HLP 68

2.2.4 Betriebseinflüsse auf die Förderwirkung

Die Förderwirkung kann in der Regel nicht vorherbestimmt werden. Sie ist eine Funktion von RWDR-Elastomer, Gegenlauffläche, Schmierstoff und den Betriebsbedingungen. Das Elastomer kann nur durch am Markt verfügbare Produkte variiert werden. Der Einfluss ähnlicher Elastomere unterschiedlicher Hersteller auf die Förderwirkung kann beträchtlich sein [101]. Bei vergleichenden Betrachtungen muss deshalb unbedingt das jeweils verwendete Elastomer-Compound berücksichtigt werden.

SCHMUKER¹³² untersuchte die Betriebseinflüsse systematisch [108]. Er verwendete RWDR desselben Typs, wie sie in dieser Arbeit untersucht wurden¹³³. Als Schmierstoffe wurden ausschließlich mineralische FVA-Referenzöle verwendet. Die Gegenlaufflächen waren drallfreie, im Einstich geschliffene Wellenhülsen. Bild 2.54 bis Bild 2.56 zeigt die statistische Auswertung SCHMU-KERS Untersuchungen.

Die FKM-RWDR förderten, unabhängig von den Betriebsbedingungen, stets mehr als die RWDR aus NBR und ACM. Mit steigender Gleitgeschwindigkeit stieg der Förderwert von FKM-RWDR (Bild 2.54). Im Gegensatz dazu blieb der Förderwert von NBR- und ACM-RWDR unabhängig von der Gleitgeschwindigkeit. Bei steigender Viskosität (Bild 2.55) und bei steigender Wellenrauheit (Bild 2.56) nahm der Förderwert von FKM- und ACM-RWDR annähernd linear zu. Der Förderwert von NBR-RWDR stieg hingegen bis zu einem Höchstwert an und fiel für noch höhere Viskositäten und Rauheiten wieder ab.

Gegenlauffläche

Der Einfluss der Gegenlauffläche wurde in mehreren Arbeiten untersucht [2, 12, 13, 57, 71, 75, 98, 103]. Neben der Rauheit ist die Struktur der Gegenlauffläche entscheidend. Gerichtete Strukturen (»Drall«) können eine drehrichtungsabhängige Förderwirkung erzeugen, die derjenigen des RWDRs überlagert ist. Makroskopische Strukturen¹³⁴ werden als Makrodrall bezeichnet. Mikrostrukturen¹³⁵ sind der makroskopischen Struktur überlagert.

JUNG simulierte die Förderwirkung von Makrodrall und verifizierte seine Ergebnisse mit einer Modell-Gegenlauffläche. Diese Gegenlauffläche wurde poliert und mit definiertem Drall laserstrukturiert. Es zeigte sich, übereinstimmend mit der Simulation, eine Abhängigkeit der Förderwirkung von An-

¹³²Stefan Schmuker *1976

 $^{^{133}\}textsc{Dimension}$ 80 \times 100 \times 10, Hersteller Simrit(r), Compounds 75FKM585, 72NBR902, 70ACM121433.

¹³⁴Zum Beispiel die umlaufende Struktur einer Drehwendel.

¹³⁵Zum Beispiel Schleifriefen und kurze, stochastisch verteilte Strukturen.

zahl, Tiefe und Ausrichtung der Strukturen. Mit steigender Drehzahl stieg die Förderwirkung der Strukturen an (Bild 2.57).

0,5

auf die Förderwirkung [108]

Bild 2.54 Einfluss der Gleitgeschwindigkeit Bild 2.55 Einfluss der Viskosität auf die Förderwirkung [108]

0.4 0,3 0,2 0,1 0,0 1000 3000 4000 2000 0 $n \,({\rm min}^{-1})$

Förderwirkung [108]

Bild 2.56 Einfluss der Wellenrauheit auf die Bild 2.57 Einfluss von Makrodrall auf die Förderwirkung [57]

2.3 Grenzflächenphysik

Eine Grenzfläche entsteht beim Kontakt zweier Stoffe. Hier wird hauptsächlich der Kontakt eines Fluids mit einem Festkörper behandelt. Die Grenzflächenphysik beschreibt die Kräfte¹³⁶, die dabei auftreten.

2.3.1 Bindungskräfte

Nur bei Atomen der Edelgasgruppe¹³⁷ ist die äußerste Elektronenschale vollständig besetzt. In diesem Zustand (»Edelgaskonfiguration«) ist die freie Energie eines Atoms minimal [127]. Atome, die keine Edelgaskonfiguration aufweisen, verbinden sich mit anderen Atomen zu Molekülen um die Edelgaskonfiguration zu erreichen (»chemische Bindung«). Bei diesen Bindungen werden Valenzelektronen¹³⁸ von den Bindungspartnern aufgenommen, abgegeben oder gemeinsam gebunden.

Bindungsarten

Durch die Art der Elektronenbindung lassen sich nach [127] folgende Bindungen in Molekülen und zwischen Molekülen unterscheiden: Kovalente Bindung¹³⁹, Ionenbindung¹⁴⁰, Metallische Bindung, Van-der-Waals-Bindung, Wasserstoffbrücken-Bindung.

Handelt es sich bei den Bindungspartnern um Atome unterschiedlicher Elemente, werden die Valenzelektronen asymmetrisch gebunden. Das elektronegativere Atom bindet die Valenzelektronen stärker als das Atom mit geringerer Elektronegativität [95]. Abhängig von der Molekülgestalt (symmetrisch oder asymmetrisch) und der Elektronegativitätsdifferenz der Bindungsatome können Moleküle elektrische n-Pole¹⁴¹ bilden [20, 66]. Durch die Ladungsverschiebung ergibt sich ein permanentes Dipolmoment des Moleküls, das eine zwischenmolekulare Bindung hervorruft. KEESOM¹⁴² zeigte für permanent polare Moleküle diesen Zusammenhang [66]. Die daraus entstehenden Bindungskräfte heißen »Keesom-Kräfte«. DEBYE¹⁴³ erweiterte KEESOMs Ansatz um induzierte Dipolmomente in, zeitlich gemittelt, unpolaren Molekülen [20]. Die dabei wirkenden Kräfte heißen »Debye-Kräfte«.

 $^{^{136}}$ Üblicherweise als Spannung (Oberflächenspannung $\sigma)$ angegeben.

¹³⁷Helium, Neon, Argon, Krypton, Xenon, Radon [104].

 $^{^{138}\}mathrm{Elektronen}$ der nicht-abgeschlossenen äußersten Elektronenschale.

¹³⁹Auch »homöopolare Bindung«, Beispiel: Wasserstoff.

¹⁴⁰Auch »heteropolare Bindung«, Beispiel: Natriumchlorid (Kochsalz).

¹⁴¹Die geläufigste Form ist der Dipol. KEESOM und DEBYE beschrieben in ihren Arbeiten auch Quadrupole und Oktopole.

 $^{^{142}\}mathrm{Wilhelm}$ Hendrik Keesom $\star 1876$ ± 1956

 $^{^{143}\}mathrm{Peter}$ Joseph Wilhelm Debye $\star 1884$ †
1966

Ein Beispiel für polare Moleküle ist Wasser (Bild 2.58). Bei Wasser¹⁴⁴ überwiegen die Keesom-Kräfte – in Form von Wasserstoffbrücken – gegenüber anderen Bindungskräften [80].

Atome desselben Elements oder mit ähnlicher Elektronegativität ergeben, gegenüber ihrer Umwelt, elektrisch neutrale Moleküle. LONDON¹⁴⁵ betrachtete KEESOMS und DEBYES Arbeiten unter Gesichtspunkten der Quantenmechanik [79]. Er bestätigte die Existenz der genannten Bindungskräfte. Die Höhe der Bindungskräfte lag nach den bisherigen Theorien jedoch zu niedrig. LONDON entwickelte das Modell der dispersen Bindungskräfte [80]: Elektronen bewegen sich im Atom und polarisieren es dadurch ständig selbst minimal. Umgebende Atome werden im elektrischen Wechselfeld anderer Atome ebenfalls polarisiert. Die wirkenden Kräfte heißen »London'sche Dispersionskräfte«. Ein Beispiel für unpolare Moleküle ist Methan (Bild 2.59).

Die Van-der-Waals-Kräfte sind die Summe aus schwachen Keesom-, Debyeund London'schen Dispersionskräften. Wasserstoffbrücken beruhen auf starken Keesom-Kräften und werden als quasi-chemische Bindung betrachtet [59].

Bild 2.58 Polares Molekül: Wasser [95]

Bild 2.59 Unpolares Molekül: Methan [95]

Oberflächenenergie

Im Inneren von Kontinua gleichen sich die Bindungskräfte in allen Raumrichtungen gegenseitig aus [132]. An der Oberfläche sind die Bindungskräfte

¹⁴⁴Bei Wasser zeigt sich das von KEESOM beschriebene Verhalten der Ausrichtung von Molekülen zueinander: Wassermoleküle assozieren zu Gruppen mit acht Molekülen [116].
¹⁴⁵FRITZ WOLFGANG LONDON ★1900 \$\$1954

nicht ausgeglichen (Bild 2.60). Daraus resultiert eine senkrecht zur Oberfläche, nach innen gerichtete Kraft. Diese Kraft wirkt einer Vergrößerung der Oberfläche entgegen. Die Oberflächenenergie σ ist das Maß dieser Kraft. Sie ist ein Stoffwert und abhängig von Temperatur und Druck [132].

Wird eine Oberfläche vergrößert, muss Energie aufgewendet werden. Der Energieaufwand ist proportional zur Oberflächenvergrößerung. Die Oberflächenenergie ist der Proportionalitätsfaktor (2.27) [14].

$$\partial W = \boldsymbol{\sigma} \cdot \partial A \tag{2.27}$$

In Bild 2.61 ist die zu Grunde liegende Modellvorstellung nach [14] dargestellt. Ein Flüssigkeitsfilm wird in einem Rahmen gehalten. Der rechte Rand des Rahmens sei als Schieber ausgeführt. Bei einer Verschiebung um ∂x vergrößert sich die Oberfläche des Films¹⁴⁶ um $\partial A = 2 \cdot y \cdot \partial x$. Die Kraft, um den Schieber in Position zu halten und die Oberflächenenergie auszugleichen, beträgt:

$$|F| = 2 \cdot \boldsymbol{\sigma} \cdot \boldsymbol{y} \tag{2.28}$$

Die Kraftrichtung ist der Bewegungsrichtung von ∂x entgegengesetzt. Mit (2.27) ergibt sich:

$$F = -\frac{\partial W}{\partial x} = -2 \cdot \boldsymbol{\sigma} \cdot \boldsymbol{y} \tag{2.29}$$

Bild 2.60 Kräfte im Inneren und an der Bild 2.61 Modell: Oberflächenvergrößerung Oberfläche einer Flüssigkeit [132]

[14]

¹⁴⁶Der Film hat eine Vorder- und eine Rückseite; daher der Faktor 2.

Benetzung 2.3.2

Der Kontakt zweier Stoffe und die damit verbundene Bildung einer Grenzfläche wird als Benetzung bezeichnet. Es gibt drei Regime der Benetzung: Vollständige Benetzung (Spreiten, $\theta = 0^{\circ}$), teilweise Benetzung ($\cos \theta > 0$) und Nichtbenetzung ($\cos \theta < 0$). Die Grundlage aller hier behandelten Ansätze ist der von YOUNG¹⁴⁷ ermittelte Zusammenhang (2.30) [59, 137].

$$\sigma_{lv} \cdot \cos \theta = \sigma_s - \sigma_{sl} - \pi_e \tag{2.30}$$

Bild 2.62 illustriert die Young'sche Gleichung (2.30). Der Kontaktwinkel θ ist der Winkel zwischen der Tangente an den Flüssigkeitstropfen im Dreiphasenpunkt und der Festkörperoberfläche. Der Filmdruck π_e ist die Differenz der Oberflächenenergie des Festkörpers σ_s und der Grenzflächenspannung des Festkörpers gegenüber dem gesättigten Dampf der ihn benetzenden Flüssigkeit σ_{sv} . Die Adsorption von Flüssigkeitsmolekülen aus der Dampfphase auf der Festkörperoberfläche (Bild 2.63) setzt deren Oberflächenenergie herab. Dies wird durch den Filmdruck beschrieben. Für niederenergetische Festkörperoberflächen¹⁴⁸ kann der Filmdruck vernachlässigt werden [34].

Bild 2.62 Illustration der Young'schen Glei- Bild 2.63 Bildung der Grenzflächenspanchung (2.30) [59]

nung σ_{sv} durch Adsorption [139]

Grenzflächenspannung

Die einzigen direkt messbaren Größen bei der Benetzung von Festkörpern sind die Oberflächenenergie der Flüssigkeit σ_l bzw. σ_{lv} und der Kontaktwinkel θ .

¹⁴⁷Thomas Young *1773 +1829

¹⁴⁸Zum Beispiel Polymere.

Die wichtigste Größe, die Grenzflächenspannung σ_{sl} , ist nicht direkt messbar.

DUPRE¹⁴⁹ führte die reversible Adhäsionsarbeit W_a ein (2.31) [139]. Die Adhäsionsarbeit beschreibt die gebundene Energie durch die Benetzung¹⁵⁰ [138]. Die Grenzflächen gegen Dampf verschwinden; eine gemeinsame Grenzfläche von Flüssigkeit und Festkörper entsteht.

$$W_a = \sigma_{sv} + \sigma_{lv} - \sigma_{sl} \tag{2.31}$$

Der Term $\sigma_{sv} - \sigma_{sl}$ lässt sich durch Substitution mit der Young'schen Gleichung eliminieren. Damit ist die Adhäsionsarbeit auf die direkt messbaren Größen σ_{lv} und θ zurückgeführt¹⁵¹ (2.32).

$$W_a = \sigma_{lv} \cdot (1 + \cos \theta) \tag{2.32}$$

Die Kohäsionsarbeit beschreibt gedanklich die gebundene Energie zwischen zwei Oberflächen der selben Flüssigkeit. Sie ist gleich dem Zweifachen der Oberflächenenergie der Flüssigkeit (2.33) [138].

$$W_c = 2 \cdot \sigma_{lv} \tag{2.33}$$

COOPER und NUTTALL formulierten eine Bedingung für das Spreiten von Flüssigkeiten auf Festkörpern [138]. Sie führten den Spreitungskoeffizient S ein (2.34). Für S > 0 tritt Spreiten auf.

$$S = \sigma_s - (\sigma_{lv} + \sigma_{sl}) \tag{2.34}$$

HARKINS¹⁵² und FELDMAN¹⁵³ wählten für den Spreitungskoeffizient die Form der Differenz aus Adhäsions- und Kohäsionsarbeit (2.35) [43]. Dadurch führten sie den Spreitungskoeffizient auf direkt messbare Größen zurück.

$$S = W_a - W_c \tag{2.35}$$

GIRIFALCO¹⁵⁴ und GOOD¹⁵⁵ versuchten die Grenzflächenspannung über einen Ansatz nach dem Massenwirkungsgesetz zu bestimmen. Sie leiteten aus der Berthelot-Beziehung (2.36) einen konstanten Wechselwirkungsparameter

 $^{^{149}\}mathrm{Athanase}$ Louis Victoire Dupré $\star 1808$ †
1869

¹⁵⁰Hier werden die realen Bedingungen mit σ_{sv} betrachtet. Die idealisierte Adhäsionsarbeit W_a^* berücksichtigt die Oberflächenenergie σ_s des Festkörpers gegen Vakuum.

¹⁵¹Dieser Ansatz ist nur für Flüssigkeiten zulässig, die die Oberfläche unvollständig benetzen. Der Kontaktwinkel θ muss größer null sein.

¹⁵²William Draper Harkins *1873 +1951

¹⁵³Aaron Feldman

¹⁵⁴Louis A. Girifalco *1928

¹⁵⁵Robert J. Good

 Φ für das Verhältnis von Adhäsions- und Kohäsionsarbeiten unterschiedlicher Stoffe ab (2.37) [37].

$$\frac{A_{ab}}{\sqrt{A_{aa} \cdot A_{bb}}} = 1 \tag{2.36}$$

$$-\frac{W_{a\ ab}}{\sqrt{W_{c\ aa} \cdot W_{c\ bb}}} = \Phi \tag{2.37}$$

Gleichung (2.37), nach der Grenzflächenspannung σ_{ab} von zwei Stoffen *a* und *b* aufgelöst, ergibt (2.38).

$$\sigma_{ab} = \sigma_a + \sigma_b - 2 \cdot \Phi \sqrt{\sigma_a \cdot \sigma_b}$$
(2.38)

Der Wechselwirkungsparameter Φ lässt sich für sphärische Moleküle über deren Molvolumen abschätzen [37]. GIRIFALCO und GOOD verifizierten ihren Ansatz in praktischen Versuchen. Sie erkannten die Grenzen der Anwendbarkeit, insbesondere bei Molekülen mit funktionalen Gruppen¹⁵⁶.

FOWKES¹⁵⁷ führt die Unterscheidung der Oberflächenenergie in einen dispersen und einen polaren¹⁵⁸ Anteil ein (2.39) [34].

$$\sigma = \sigma^d + \sigma^p \tag{2.39}$$

Er untersuchte die Benetzung von Quecksilber durch Alkane. Alkane besitzen ausschließlich London'sche Dispersionskräfte. Bei der Benetzung beliebiger Körper können dabei nach FOWKES nur diese Bindungskräfte wirken. Basierend auf GIRIFALCOS und GOODS Ansatz definiert FOWKES die Grenzflächenspannung als Differenz aus Termen innerer Anziehung und äußerer Anziehung (2.40). Die innere Anziehung wird durch die Oberflächenenergie der beiden Stoffe σ_a und σ_b beschrieben. Die äußere Anziehung wirkt jeweils¹⁵⁹ von den Molekülen des einen Stoffs auf die Moleküle des anderen Stoffs in der Grenzfläche. FOWKES approximiert die äußere Anziehung als geometrisches Mittel der dispersen Anteile der Oberflächenenergien (Wurzelterm). Er betont dabei, dass diese Approximation auf einigen Annahmen¹⁶⁰ beruht und

¹⁵⁶Bei der Benetzung von Metall- und Glasoberflächen mit Fettsäuren stellten sie Autophobie fest. Mit dem bisherigen Ansatz lässt sich dieser Effekt nicht beschreiben.

 $^{^{157}\}mathrm{Frederick}$ M. Fowkes $\star 1915$ ± 1990

¹⁵⁸In Fowkes Arbeit selbst und in weiteren Arbeiten ist der nicht-disperse Anteil unterschiedlich benannt. Hier wird sofort die heute gebräuchliche Bezeichnung »polar« verwendet.

¹⁵⁹Daher der Faktor 2.

¹⁶⁰Polarisierbarkeit (vgl. KEESOM und DEBYE) und Ionisationspotential der Moleküle sowie der Molekülabstand.

seine Grenzen¹⁶¹ hat. Bild 2.64 zeigt FOWKES' Modellvorstellung für (2.40).

$$\sigma_{ab} = \sigma_a + \sigma_b - 2 \cdot \sqrt{\sigma_a^d \cdot \sigma_b^d}$$
(2.40)

Substitution der Grenzflächenspannung in der Young'schen Gleichung¹⁶² durch (2.40) und Auflösung nach $\cos \theta$ ergibt (2.41).

$$\cos\theta = -1 + 2 \cdot \sqrt{\sigma_s^d} \cdot \left(\frac{\sqrt{\sigma_l^d}}{\sigma_l}\right)$$
(2.41)

Ein Diagramm mit Abszisse $\frac{\sqrt{\sigma_l^d}}{\sigma_l}$ und Ordinate $\cos \theta$ ergibt Geraden mit Achsenabschnitt $\cos \theta = -1$ und Steigung $2 \cdot \sqrt{\sigma_s^d}$. Darüber lässt sich der disperse Anteil der Oberflächenenergie eines Festkörpers mit einer Messung bestimmen [34]. Bild 2.65 zeigt beispielhaft ein Diagramm mit Geraden für drei Festkörper a, b und c.

chenspannungsanteile [34]

Bild 2.64 Modellvorstellung der Grenzflä- Bild 2.65 Bestimmung des dispersen Anteils der Festkörper-Oberflächenenergie σ_s^d aus der Geradensteigung [34]

OWENS¹⁶³ und WENDT¹⁶⁴ erweiterten FOWKES' Modellvorstellung um einen polaren Anteil der äußeren Anziehung [94]. Die Grenzflächenspannung

¹⁶¹FOWKES nennt konkret die Kombination von Fluorkohlenstoffen und Kohlenwasserstoffen. Die Löslichkeit der Fluorkohlenstoffe würde anhand des gegebenen Ansatzes zu hoch eingeschätzt.

¹⁶²Der Filmdruck π_e wird hier vernachlässigt.

¹⁶³Daniel K. Owens

¹⁶⁴Robert C. Wendt

ergibt sich damit zu (2.42). Eingesetzt in die Young'sche Gleichung, und aufgelöst nach $\cos \theta$ ergibt sich (2.43).

$$\sigma_{ab} = \sigma_a + \sigma_b - 2 \cdot \sqrt{\sigma_a^d \cdot \sigma_b^d} - 2 \cdot \sqrt{\sigma_a^p \cdot \sigma_b^p}$$
(2.42)

$$\cos \theta = -1 + 2 \cdot \sqrt{\sigma_s^d} \cdot \left(\frac{\sqrt{\sigma_l^d}}{\sigma_l}\right) + 2 \cdot \sqrt{\sigma_s^p} \cdot \left(\frac{\sqrt{\sigma_l^p}}{\sigma_l}\right)$$
(2.43)

RABEL¹⁶⁵ stellte die Gleichung (2.43) in Geradenform (2.44) um [99]. Damit konnte er durch zwei Messungen mit unterschiedlichen Messflüssigkeiten die dispersen und polaren Anteile der Oberflächenenergie eines Festkörpers bestimmen.

$$\frac{1+\cos\theta}{2} \cdot \frac{\sigma_l}{\sqrt{\sigma_l^d}} = \sqrt{\sigma_s^d} + \sqrt{\sigma_s^p} \cdot \sqrt{\frac{\sigma_l - \sigma_l^d}{\sigma_l^d}}$$
(2.44)

Die Auftragung des linken Teils von (2.44) gegen $\sqrt{\frac{\sigma_l - \sigma_l^d}{\sigma_l^d}}$ als Gerade ergibt

 σ_s^d aus dem Achsenabschnitt und σ_s^p aus der Geradensteigung (Bild 2.66).

KAELBLE¹⁶⁶ brachte die bisherigen Ansätze von OWENS, WENDT und RA-BEL in mathematisch leicht lösbare Form [58]. Er substituierte die Grenzflächenspannung nach (2.42) in der Gleichung (2.31) der Adhäsionsarbeit und erhielt (2.45).

$$\frac{W_a}{2} = \sqrt{\sigma_l^d} \cdot \sqrt{\sigma_s^d} + \sqrt{\sigma_l^p} \cdot \sqrt{\sigma_s^p}$$
(2.45)

Mit zwei Fluiden a und b ergibt sich ein lineares Gleichungssystem, das KAELBLE in der Determinantenform löst. Die Adhäsionsarbeit der zwei Fluide a und b definiert die Determinante D (2.46). Die dispersen und polaren Anteile der Oberflächenenergie eines Festkörpers ergeben sich mit

 $W_a = \sigma_l \cdot (1 + \cos \theta)$ zu (2.47) und (2.48). Das Berechnungsverfahren ist genormt [26] und wird mit OWRK abgekürzt (OWENS, WENDT, RABEL und KAELBLE).

¹⁶⁵Wolfgang Rabel¹⁶⁶David. H. Kaelble
$$D = \begin{vmatrix} \sqrt{\sigma_{la}^d} & \sqrt{\sigma_{la}^p} \\ \sqrt{\sigma_{lb}^d} & \sqrt{\sigma_{lb}^p} \end{vmatrix}$$
(2.46)

$$\boldsymbol{\sigma}_{s}^{d} = \begin{vmatrix} \left(\frac{W_{a}}{2}\right)_{a} & \sqrt{\boldsymbol{\sigma}_{la}^{p}} \\ \left(\frac{W_{a}}{2}\right)_{b} & \sqrt{\boldsymbol{\sigma}_{lb}^{p}} \end{vmatrix}^{2} \cdot D^{-2}$$
(2.47)

$$\sigma_s^p = \begin{vmatrix} \sqrt{\sigma_{la}^d} & \left(\frac{w_a}{2}\right)_a \\ \sqrt{\sigma_{lb}^d} & \left(\frac{w_a}{2}\right)_b \end{vmatrix}^2 \cdot D^{-2}$$
(2.48)

WU¹⁶⁷ untersuchte die Grenzflächenspannung von Polymerschmelzen [136]. Die verwendeten Polymerschmelzen mischten sich untereinander nicht. Dadurch ließ sich die Grenzflächenspannung direkt messen¹⁶⁸. WU stellte zwischen den Messergebnissen und der Berechnung nach OWRK Abweichungen fest. Er schlägt für die äußere Anziehung anstelle des geometrischen Mittels das harmonische Mittel vor¹⁶⁹. Gleichung (2.42) wird damit zu (2.49). Das Berechnungsverfahren nach WU ist ebenfalls genormt [26]. Es wird für niederenergetische Oberflächen mit $\sigma_s < 20 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{m}^{-1}$ empfohlen.

$$\sigma_{ab} = \sigma_a + \sigma_b - 2 \cdot \frac{2 \cdot \sigma_a^d \cdot \sigma_b^d}{\sigma_a^d + \sigma_b^d} - 2 \cdot \frac{2 \cdot \sigma_a^p \cdot \sigma_b^p}{\sigma_a^p + \sigma_b^p}$$
(2.49)

Analog zu Gleichung (2.45) formulierte WU die Terme der äußeren Anziehung als Adhäsionsarbeit (2.50). Zusammen mit der Kohäsionsarbeit (2.33) erhielt er den Spreitungskoeffizient S^* mit dispersen und polaren Anteilen (2.51).

$$W_a = 2 \cdot \left(\frac{2 \cdot \sigma_a^d \cdot \sigma_b^d}{\sigma_a^d + \sigma_b^d} + \frac{2 \cdot \sigma_a^p \cdot \sigma_b^p}{\sigma_a^p + \sigma_b^p} \right)$$
(2.50)

$$S^* = 4 \cdot \left(\frac{\sigma_a^d \cdot \sigma_b^d}{\sigma_a^d + \sigma_b^d} + \frac{\sigma_a^p \cdot \sigma_b^p}{\sigma_a^p + \sigma_b^p} - \frac{\sigma_a}{2} \right)$$
(2.51)

¹⁶⁷Souheng Wu

¹⁶⁸Die Polymerschmelzen waren transparent. Über die Oberflächenkrümmung in der Grenzfläche von zwei Polymerschmelzen war die direkte Messung möglich.

¹⁶⁹WU verwendete auch eine Mischvariante: Geometrisches Mittel für den dispersen Anteil und harmonisches Mittel für den polaren Anteil. Diese Variante war jedoch nicht zielführend.

Wu führte einen dimensionslosen Spreitungskoeffizient Q ein (2.53). Dieser berechnet sich aus dem Verhältnis der Oberflächenenergien Ξ und aus den Polaritäten Π des Festkörpers und Ψ der Flüssigkeit (2.52).

$$\Xi = \frac{\sigma_l}{\sigma_s} \qquad \Pi = \frac{\sigma_s^p}{\sigma_s} \qquad \Psi = \frac{\sigma_l^p}{\sigma_l}$$
(2.52)

$$Q = \frac{1}{4 \cdot \Xi \cdot \sigma_s} \cdot (S^* + 2 \cdot \sigma_l) = \frac{(1 - \Pi) \cdot (1 - \Psi)}{\Xi \cdot (1 - \Psi) + (1 - \Pi)} + \frac{\Pi \cdot \Psi}{\Xi \cdot \Psi + \Pi} \quad (2.53)$$

Optimale Benetzung findet bei $\left(\frac{\partial Q}{\partial \Psi}\right)_{\Xi,\Pi} = 0$ statt. Dies ist für $\Psi = \Pi$ der Fall. Daraus folgt optimale Benetzung bei identischer Polarität von Festkörper und Flüssigkeit. Bild 2.67 zeigt den Spreitungskoeffizient Q in Abhängigkeit der Polarität der Flüssigkeit Ψ . Das Verhältnis der Oberflächenenergien Ξ von Festkörper und Flüssigkeit ist durch drei verschiedene Kurven dargestellt. Die Polarität Π des Festkörpers ist fest vorgegeben. Bei $\Psi = \Pi = 0,3$ sind die Hochpunkte der Kurven. Der dimensionslose Spreitungskoeffizient ist im Hochpunkt am größten.

Bild 2.66 Bestimmung der polaren und dispersen Oberflächenenergieanteile [99]

Bild 2.67 Einfluss der Polaritäten von Flüssigkeit Ψ und Festkörper Π auf die Benetzung [136]

2.3.3 Benetzungseffekte

In engen Spalten, auf rauen Oberflächen und bei Konzentrations- und Temperaturgradienten treten Benetzungseffekte auf, die hier gesondert betrachtet werden.

Kapillarwirkung

Benetzende Flüssigkeiten¹⁷⁰ bewegen sich selbsttätig in horizontalen Kapillarspalten¹⁷¹. In vertikalen Kapillarspalten bewegen sich benetzende Flüssigkeiten bis zu einer bestimmten Steighöhe [132]. Begrenzende Größen sind das verfügbare Flüssigkeitsvolumen und entgegenwirkende Kräfte¹⁷². Offene Riefen bewirken den selben Effekt wie Kapillarspalte [81]. Benetzende Flüssigkeiten spreiten entlang dem Riefengrund.

Ursache der Kapillarwirkung ist die Krümmung der Flüssigkeitsoberfläche. Die rechnerische Beschreibung erfolgt mit der Young-Laplace'schen Gleichung (2.54). Sie gibt die Druckdifferenz Δp normal zu einer gekrümmten Flüssigkeitoberfläche mit den Hauptradien r_1 und r_2 an [132]. Die Hauptradien beschreiben dabei die Gestalt der Flüssigkeitsoberfläche.

$$\Delta p = \sigma_l \cdot \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \tag{2.54}$$

In vereinfachter Form, für sphärische Tropfen¹⁷³, reduziert sich (2.54) zu (2.55). Größere Radien ergeben folglich kleinere Druckdifferenzen. Die Druckdifferenz ist vom konvexen Bereich zum konkaven Bereich gerichtet. Bild 2.68 veranschaulicht diesen Zusammenhang.

$$\Delta p = \frac{2 \cdot \sigma_l}{r} \tag{2.55}$$

Bei vollständiger Benetzung ($\theta = 0^{\circ}$) und ausreichend enger¹⁷⁴, zylindrischer Kapillare ist (2.55) gleich dem Krümmungsdruck p_k^{175} . Ist die Flüssigkeit nicht vollständig benetzend ($90^{\circ} > \theta > 0^{\circ}$) wird, analog zur Young'schen Gleichung (2.30), die Oberflächenenergie der Flüssigkeit σ mit dem Cosinus des Kontaktwinkels θ multipliziert.

Für die Benetzung eines parallelen Ringspalts mit zwei unterschiedlichen Spaltwänden mit einer teilweise benetzenden Flüssigkeit wird (2.54) zu (2.56)

¹⁷⁰Kontaktwinkel mit Festkörper $90^{\circ} > \theta \ge 0^{\circ}$.

¹⁷¹Entnetzende Flüssigkeiten (z.B. Quecksilber) dringen nicht in solche Spalte ein.

¹⁷²Bei vertikaler Bewegung begrenzt die Gravitation die Steighöhe.

¹⁷³Hauptradius r_1 ist identisch mit Hauptradius r_2 .

¹⁷⁴Voraussetzung für eine hemisphärische Flüssigkeitsoberfläche.

¹⁷⁵Zur Berechnung der Steighöhe in Kapillaren wird der Krümmungsdruck dem hydrostatischen Druck $p = \rho \cdot g \cdot h$ gleichgesetzt und nach der Höhe aufgelöst.

[107]. Der erste Hauptradius r_1 ist die halbe Spalthöhe $0, 5 \cdot h$. Der zweite Hauptradius r_2 ist der mittlere Abstand des Ringspalts zu seinem Zentrum.

$$\Delta p = \sigma_l \cdot \left[\cos \theta_l \cdot \left(\frac{1}{2 \cdot r_1} \right) + \cos \theta_2 \cdot \left(\frac{1}{2 \cdot r_1} \right) + \frac{1}{r_2} \right]$$
(2.56)

WASHBURN¹⁷⁶ ermittelte für die Eindringlänge l_e einer Flüssigkeitssäule (Bild 2.69) in zylindrische Kapillaren einen Zusammenhang mit der Zeit [126]. Die Eindringlänge ist proportional zur Wurzel der Zeit. Die Abhängigkeit der Eindringgeschwindigkeit v_e von den Stoffeigenschaften der Flüssigkeit fasste er in der Penetrativität ψ zusammen (2.57).

$$\Psi = \frac{\sigma_l \cdot \cos \theta}{2 \cdot \eta} \tag{2.57}$$

Bild 2.68 Zusammenhang zwischen Oberflä-Bild 2.69 Bewegung von Flüssigkeiten in chenkrümmung und Krümmungsdruck [132] Kapillaren [126]

In mikroskopischen Porositäten und am Grund von Riefen kann Dampf spontan kondensieren [14]. Der Effekt heißt "Kapillarkondensation". Die Ursache ist eine Abhängigkeit des Flüssigkeitsdampfdrucks p_0 von der Krümmung der Flüssigkeitsoberfläche. Diese Abhängigkeit beschreibt die Kelvin-Gleichung (2.58). Voraussetzung für die Kapillarkondensation ist ein konvergenter Spalt. Dessen halbe Spalthöhe muss kleiner sein als die kritischen Hauptradien¹⁷⁷.

$$R \cdot T \cdot \ln \frac{p_{0,k}}{p_0} = -\sigma_l \cdot V_m \cdot \left[\frac{1}{r_1 \cdot \cos \theta} + \frac{1}{r_2 \cdot \cos \theta}\right]$$
(2.58)

 $^{^{176}\}mathrm{Edward}$ Wight Washburn $\star 1881$ †1934

 $^{^{177}}$ Für Wasser in einer kegelförmigen, spitz zulaufenden Porosität beträgt der kritische Hauptradius $r_c=10^{-8}\,{\rm m}$ [14].

Raue Oberflächen

Die Benetzung rauer Oberflächen unterscheidet sich von der Benetzung glatter Oberflächen. WENZEL¹⁷⁸ definierte das Verhältnis *a* von real benetzter Fläche A_r zur projizierten Fläche A_p [129]. Die reale, raue Oberfläche ist stets größer als die projizierte Fläche. Dieses Verhältnis ist gleich dem Verhältnis vom Kontaktwinkel $\cos \theta'$ auf der rauen Oberfläche zum Kontaktwinkel $\cos \theta$ auf ideal glatter Oberfläche (2.59). Auf rauen Oberflächen erzeugen benetzende Flüssigkeiten ($\theta < 90^{\circ}$) demnach einen kleineren Kontaktwinkel. Nicht benetzende Flüssigkeiten ($\theta \ge 90^{\circ}$) erzeugen analog dazu einen größeren Kontaktwinkel.

$$a = \frac{A_r}{A_p} = \frac{\cos \theta'}{\cos \theta} \tag{2.59}$$

Die Ursache des Effekts ist das Gleichgewicht zwischen den Grenzflächenspannungen σ_{sl} und σ_{lv} . Ist $\sigma_{sl} < \sigma_{sv}$ wird beim Benetzen einer rauen Oberfläche mehr Energie frei als bei einer glatten Oberfläche. Diese Energie dient zur Bildung einer größeren Grenzfläche zwischen Flüssigkeit und Dampf. Der Tropfen zerfließt bei gleichem Volumen stärker als auf einer glatten Oberfläche. Der Kontaktwinkel wird dadurch kleiner.

Ist $\sigma_{sl} > \sigma_{sv}$ wird beim Benetzen der Oberfläche Energie gebunden. Bei einer rauen Oberfläche wird der Gleichgewichtszustand bereits bei einer kleineren projizierten Fläche erreicht. Der Flüssigkeitstropfen kontrahiert sich stärker. Der Kontaktwinkel wird dadurch größer.

CASSIE¹⁷⁹ und BAXTER¹⁸⁰ verallgemeinerten WENZELS Ansatz auf die Benetzung heterogener Oberflächen [16]. Die betrachtete Oberfläche bestehe aus zwei Bereichen mit den prozentualen Flächenanteilen f_1 und f_2 . Der Kontaktwinkel $\cos \theta'$ ist die Summe der Produkte der jeweiligen Flächenanteile und Kontaktwinkel (2.60). Bei einer rauen, homogenen Oberfläche sind die Kontaktwinkel θ_1 und θ_2 gleich. Die Flächenanteile summieren sich zur realen Oberfläche A_r , bezogen auf die projizierte Oberfläche A_p^{-181} . Damit reduziert sich (2.60) zu (2.59).

$$\cos \theta' = f_1 \cdot \cos \theta_1 + f_2 \cdot \cos \theta_2 \tag{2.60}$$

¹⁷⁸Robert N. Wenzel +1979

¹⁷⁹A.B.D. Cassie

¹⁸⁰S. Baxter

 $^{^{181}}$ Die Flächenanteil
e f_1 und f_2 liegen normiert vor, die projizierte Oberfläche
entspricht dem Wert 1.

Grenzflächenkräfte

Die freie Enthalpie einer Oberfläche ist die Summe der Produkte ihrer Flächenund Oberflächenenergieanteile (2.61) [62]. Aus einem Enthalpiegradient in der Grenzfläche resultiert eine Grenzflächenkraft $(2.62)^{182}$. Die Kraft ist dabei dem Gradient entgegengerichtet. Gleichung (2.62) wird mit (2.61) zu (2.63).

$$G = \sum_{a,b} A_{a,b} \cdot \sigma_{a,b} \tag{2.61}$$

$$F = -\frac{\partial G}{\partial x} \tag{2.62}$$

$$F = -\sum_{a,b} \sigma_{a,b} \cdot \frac{\partial A_{a,b}}{\partial x} - \sum_{a,b} A_{a,b} \cdot \frac{\partial \sigma_{a,b}}{\partial x}$$
(2.63)

Der zweite Term von (2.63) lässt sich in Abhängigkeiten der Oberflächenenergie aufspalten. Relevante Abhängigkeiten bestehen hinsichtlich Temperatur T, Konzentration c_x und elektrischem Potential E (2.64) [62]. Konzentrationsgradienten treten bei Mischungsvorgängen auf. Die Beeinflussung von Flüssigkeitstropfen durch elektrische Potentialgradienten wird als »Electrowetting« bezeichnet. Im Weiteren wird nur die Abhängigkeit von der Temperatur betrachtet. Dieser Einfluss wird »Thermokapillareffekt« genannt. Der Effekt wurde erstmals von MARANGONI¹⁸³ beschrieben. Er untersuchte die Filmbildung auf Flüssigkeitsoberflächen [83].

$$\frac{\partial \sigma_{a,b}}{\partial x} = \frac{\partial \sigma_{a,b}}{\partial T} \cdot \frac{\partial T}{\partial x} + \sum_{i} \frac{\partial \sigma_{a,b}}{\partial c_{x_i}} \cdot \frac{\partial c_{x_i}}{\partial x} + \frac{\partial \sigma_{a,b}}{\partial E} \cdot \frac{\partial E}{\partial x}$$
(2.64)

Der Thermokapillareffekt ist neben dem Auftrieb (vgl. 2.2.2) eine Ursache von Bénard-Instabilitäten. Diese destabilisierenden Einflüsse fachen in ruhenden oder stationär strömenden Fluiden Bewegungen bzw. Querbewegungen an. Stabilisierend wirkt dagegen die Schwerkraft. Die Stärke der jeweiligen Einflüsse wird durch dimensionslose Kennzahlen beschrieben. Der Auftrieb wird durch die Rayleighzahl Ra (2.21) charakterisiert. Oberhalb einer kritischen Rayleighzahl herrscht Instabilität durch Auftrieb. Sie beträgt für von unten beheizte Fluidschichten $Ra_c = 1708$ [135]. Den Thermokapillareffekt beschreibt die Marangonizahl¹⁸⁴ Mg (2.65) [96]. Den Einfluss der Schwerkraft beschreibt die Galileozahl¹⁸⁵ Ga (2.66) [7].

¹⁸²Diese Gleichung wurde in anschaulicher Form in (2.29) hergeleitet.

 $^{^{183}\}mathrm{Carlo}$ Giuseppe Matteo Marangoni $\star 1840$ †1925

¹⁸⁴J.R. ANTHONY PEARSON entwickelte die Marangonizahl als dimensionslose Kennzahl B nach mathematischer Betrachtung einer Instabilität der Oberflächenenergie in Fluidfilmen.

 $^{^{185}\}text{Galileo}$ Galilei $\star 1564$ †1642

$$Mg = \frac{\left|\frac{\partial\sigma}{\partial T}\right| \cdot \frac{\partial T}{\partial x} \cdot d^2}{\rho \cdot \mathbf{v} \cdot \boldsymbol{\chi}}$$
(2.65)

$$Ga = \frac{d^3 \cdot g}{\mathbf{v} \cdot \boldsymbol{\chi}} \tag{2.66}$$

Der Quotient aus Galileozahl und Marangonizahl ist die dynamische Bondzahl¹⁸⁶ Bo_{dyn} (2.67) [125]. Sie beschreibt das Einsetzen thermokapillarer Instabilität. Bei kleinen Volumina, geringer Dichte [125] oder bei Schwerelosigkeit [113] unterschreitet Bo_{dyn} einen kritischen Wert. Die Strömung bzw. das Fluid wird instabil. VANHOOK¹⁸⁷ fand für langwellige Instabilitäten von Bénard-Konvektionen einen kritischen Wert von $Bo_{dyn,c} = 1, 5$. Die kritische Marangonizahl betrug in seinen Versuchen¹⁸⁸ $Mg_c = 80$.

$$Bo_{dyn} = \frac{\rho \cdot g \cdot d}{\left|\frac{\partial \sigma}{\partial T}\right| \cdot \frac{\partial T}{\partial x}}$$
(2.67)

Kontaktwinkelhysterese

Wird ein Tropfen, der eine Oberfläche benetzt, auf dieser verschoben oder vergrößert, treten Hysterese-Effekte auf. Der Kontaktwinkel θ_v der Vorwärtsbewegung heißt »Vordrückwinkel«. Der Kontaktwinkel θ_r der Rückzugbewegung heißt »Rückzugwinkel«. Der Vordrückwinkel ist stets größer oder gleich dem Rückzugwinkel [132].

Die Ursachen solchen Verhaltens sind die Oberflächenrauheit, der Niederschlag gelöster Stoffe, die Kontaktlinienspannung und Werkstoffinhomogenitäten [14]. Überschreitet ein Tropfen eine Rauheitserhebung erfährt er bei der Benetzung der abfallenden Flanke einen größeren scheinbaren Kontaktwinkel. Gelöste Stoffe schlagen sich primär an der Dreiphasenlinie eines Tropfens nieder¹⁸⁹ und bewirken einen Widerstand. Die Dreiphasenlinie selbst übt durch die wirkende Grenzflächenspannung eine Haftwirkung aus, die Kontaktlinienspannung.

Die Kontaktwinkelhysterese beeinflusst stark die Beweglichkeit von Tropfen. Zur Bewegung von Tropfen muss eine Mindestkraft zur Überwindung des Hysterese-Effekts aufgewendet werden. Je größer die Hysterese, desto größer ist die benötigte Mindestkraft [18].

¹⁸⁶Wilfrid Noel Bond *1897 +1937

 $^{^{187}\}mathrm{Stephen}$ J. VanHook $\star 1969$

¹⁸⁸Der Temperaturgradient betrug $\partial T \cdot \partial x^{-1} = 2...1000 \text{ K} \cdot \text{m}^{-1}$, die kinematische Viskosität betrug bei $\vartheta = 50^{\circ}\text{C} v = 10, 2 \cdot 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}$, der Schmierstoff war Polydimethylsiloxan.

¹⁸⁹Anschauliches Beispiel sind Kalkränder, die Wassertropfen hinterlassen.

2.4 Benetzung bei Dichtungen

Der Einfluss von Grenzflächeneffekten auf den Dichtmechanismus von Radial-Wellendichtungen wird spätestens seit den 1950er Jahren betrachtet. LEIN vermutete den Einfluss von Grenzflächeneffekten, betrachtete ihn jedoch nicht näher [74]. Nachfolgende Arbeiten basieren hauptsächlich auf theoretischen Überlegungen. Erst zu Beginn des 21. Jahrhunderts wurden Benetzungsmessungen mit Schmierstoffen und an Gegenlaufflächen durchgeführt.

2.4.1 Meniskushypothese

JAGGER betrachtete das Verhalten von Flüssigkeiten in engen Spalten [52, 54]. Durch die Kapillarkraft wird die Flüssigkeit in den Spalt hineingezogen. Bei plötzlicher Aufweitung des Spalts bildet die anstehende Flüssigkeit einen konvexen Meniskus und bewegt sich nicht weiter. Er übertrug dieses Verhalten auf Radial-Wellendichtungen (vgl. Kapitel 2.2.1).

Dieser Ansatz (»Meniskushypothese«) wurde mehrfach übernommen [51, 100, 122]. RAJAKOVICS¹⁹⁰ nahm darüber hinaus an, Querschnittsänderungen innerhalb des Dichtspalts wirkten bereits hemmend auf die anstehende Flüssigkeit¹⁹¹ [100].

JAGGER versuchte die Notwendigkeit eines luftseitigen Meniskus nachzuweisen. Als ideales Experiment schlug er vor, Schmierstoffe mit unterschiedlicher Oberflächenenergie abzudichten. Die von ihm untersuchten Mineralöle hatten jedoch annähernd identische Oberflächenenergien. Als Alternative untersuchte JAGGER die Abdichtung von Schmierstoff gegenüber einem Wasser-Tensid-Gemisch. Er variierte dabei die Tensid-Konzentration im Gemisch. Die Grenzflächenspannungen zwischen Gemisch und Schmierstoff betrug in den Versuchen¹⁹² $\sigma_{ll} = 0...21 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$. Je höher die Grenzflächenspannung war, desto geringer war der gemessene Eintritt von Gemisch in den Schmierstoffs umpf (Bild 2.70). Eine hohe Grenzflächenspannung des abzudichtenden Schmierstoffs gegenüber dem luftseitig anstehenden Fluid würde demnach die Dichtwirkung begünstigen [54].

¹⁹²Versuchsbedingungen: $d = 76, 2 \cdot 10^{-3} \text{ m}, b \approx 10^{-3} \text{ m}, F_n = 13, 8 \text{ N}, u = 2 \text{ m} \cdot \text{s}^{-1}.$

¹⁹⁰Gundolf E. Rajakovics

¹⁹¹ JAGGER bezweifelte RAJAKOVICS' Überlegung. Er nannte drei Gründe, die dagegen sprechen: Erstens, die Änderung der Spalthöhe ist im Dichtspalt gering. Zweitens, eine zweidimensionale Betrachtung der Verhältnisse im Dichtspalt ist unzulässig. Drittens, der Schmierstoff bildet auf der Gegenlauffläche einen wesentlich geringeren Kontaktwinkel, als RAJAKOVICS annimmt.

2.4.2 Kapillarwirkung

Die passive Wirkung der Meniskushypothese steht im Widerspruch zur aktiven Förderwirkung von Radial-Wellendichtungen. Aus diesem Grund wurde in späteren Arbeiten ausschließlich die Kapillarwirkung betrachtet. OTT und BRITZ nennen die Kapillarwirkung, neben dem hydrostatischen Druck des Schmierstoffsumpfs, als Ursache für die Existenz von Schmierstoff im Dichtspalt [11, 92]. Beide Autoren beschränken sich jedoch auf theoretische Betrachtungen.

2.4.3 Benetzungsmessungen

Mit dem vermehrten Einsatz synthetischer Schmierstoffe wurde deren Benetzungsverhalten untersucht.

BRAUN¹⁹³, ROBERT¹⁹⁴ und PREM¹⁹⁵ führten Kontaktwinkelmessungen mit Polyglykolen auf Elastomer-Oberflächen durch [8]. In parallelen Versuchen maßen sie den Verschleiß von Radial-Wellendichtungen anhand der Verschleißbreite der Gegenlaufflächen. Ein Zusammenhang zwischen den Kontaktwinkeln und den Verschleißbreiten ergab sich dabei nicht. Die Autoren schlossen daraus, dass die Benetzungseigenschaften keinen signifikanten Einfluss auf die Tribologie der Radial-Wellendichtung haben.

ENGELKE führte ebenfalls Kontaktwinkelmessungen mit synthetischen Schmierstoffen auf Elastomeren durch [30]. Er verwendete dabei Polyglykolund Poly- α -Olefin-Schmierstoffe. Die untersuchten Elastomere waren der Fluor-Kautschuk 75FKM585 und der Acrylnitril-Butadien-Kautschuk 72NBR902, jeweils von SIMRIT(**R**). Weitere Parameter der Untersuchung waren der Temperatur¹⁹⁶- und der Alterungseinfluss¹⁹⁷. Auf dem Fluor-Kautschuk ergaben sich durchweg höhere Kontaktwinkel als auf dem Acrylnitril-Butadien-Kautschuk. Bei dem Fluor-Kautschuk waren die Kontaktwinkel der Schmierstoffe kaum von Temperatur und Alterung des Elastomers abhängig. Bei dem Acrylnitril-Butadien-Kautschuk nahmen die Kontaktwinkel mit zunehmender Temperatur und zunehmender Alterung ab. Einen Rückschluss auf das Abdichtverhalten von Radial-Wellendichtungen gab ENGELKE nicht an.

HOPPERMANN¹⁹⁸ und JAKOBI¹⁹⁹ führten in ihren Arbeiten begleitend Benetzungsmessungen durch. HOPPERMANN maß den Kontaktwinkel von Was-

¹⁹³Roland Braun

¹⁹⁴Jan Robert

¹⁹⁵Erich Prem

¹⁹⁶Messung des Kontaktwinkels bei folgenden Temperaturen: $\vartheta = RT, 50^{\circ}C, 80^{\circ}C$ und 110°C. ¹⁹⁷Alterung im Umluftschrank über sieben Tage bei Temperaturen von $\vartheta = 120^{\circ}C$ für NBR

und $\vartheta = 160^{\circ}$ C für FKM.

¹⁹⁸Andreas Hoppermann *1973

¹⁹⁹Boris Jakobi *****1982

ser auf der Oberfläche von Hydraulikstangen. Aus großen Kontaktwinkeln schloss er qualitativ auf den Übertrag von Dichtringmaterial auf die Stange [49]. JAKOBI verglich mit Kontaktwinkelmessungen das Benetzungsverhalten verschiedener Schmierstoffe. Eine allgmeingültige Aussage lässt sich aus seinen Untersuchungen nicht gewinnen [55].

KLAIBER²⁰⁰ untersuchte das Benetzungsverhalten additivierter Synthetiköle [67]. Dazu bestimmte er zwei Größen: Erstens, den Kontaktwinkel der Schmierstoffe auf den Elastomeren²⁰¹. Zweitens, das Ausbreitungsverhalten eines festgelegten Volumens Schmierstoff auf einer gewalzten Stahl-Oberfläche. Die zweite Größe beschreibt KLAIBER als »Benetzungsfaktor«. Je größer die benetzte Fläche ist, desto größer ist der Benetzungsfaktor. Im Vergleich mit parallel durchgeführten Reibmoment-, Förderwert- und Verschleißmessungen an Radial-Wellendichtungen ergaben sich folgende Tendenzen: Je kleiner der Benetzungsfaktor ist, desto größer sind Reibmoment, Förderwert²⁰² und Verschleiß.

Für den Zusammenhang zwischen Benetzung und dem Dichtmechanismus von Radial-Wellendichtungen schlägt KLAIBER folgendes Modell vor: Schmierstoffe mit großem Benetzungsfaktor breiten sich schneller aus als solche mit geringem Benetzungsfaktor. Gleichzeitig gilt, dass mit zunehmendem Benetzungsfaktor des Schmierstoffs der Förderwert abnimmt. Damit könnte die Ausbreitungswilligkeit der Förderwirkung entgegenstehen.

Bild 2.71 illustriert dieses Modell. Die von KLAIBER beschriebene Ausbreitungswilligkeit entspricht der Penetrativität ψ nach WASHBURN²⁰³ [126]. Im Bild ist daher die Penetrativität als Gegenkraft zur Förderwirkung dargestellt.

 $^{^{200}}$ Mathias Klaiber $\star 1980$

²⁰¹Fluor-Kautschuk 75FKM585 und Acrylnitril-Butadien-Kautschuk 72NBR902 (SIM-RIT(**R**).

²⁰²Der vom Autor bereits veröffentlichte Zusammenhang zwischen Tropfenausbreitung und Förderwert wurde damit bestätigt [112].

²⁰³KLAIBER erwähnt die Penetrativität nicht. Da er Schmierstoffe identischer Viskosität verwendete, erschloss sich dieser Zusammenhang nicht. Der entscheidende Fortschritt KLAIBERs ist die Einbeziehung einer zeitabhängigen Größe. In allen vorangegangenen Veröffentlichungen wurde nur der zeitunabhängige Kapillardruck berücksichtigt.

flächenspannung zwischen Lösung und Öl Dichtung [67, 126] [54]

Bild 2.70 In den Ölsumpf eingedrungene Bild 2.71 Die Penetrativität nach WASHwässrige Lösung, in Abhängigkeit der Grenz- BURN als Gegenkraft zur Förderwirkung der

Kapitel 3

Stoffwerte

In den Prüfstandsversuchen mit Radial-Wellendichtungen wurde eine festgelegte Auswahl an Schmierstoffen, Elastomeren und Wellenwerkstoffen verwendet. Von diesen wurden benetzungs- und strömungsrelevante Stoffwerte ermittelt. Sie bilden die Grundlage für spätere Aussagen über die Dichtfunktion der Radial-Wellendichtung. In diesem Kapitel wird zunächst die Messung der Stoffwerte erläutert. Es folgen die Ergebnisse der Messungen und ihre Auswertung.

3.1 Versuchsdurchführung

Die Versuchsdurchführung umfasst die Beschreibung der Messgeräte, der Versuchsteile und des Vorgehens.

3.1.1 Messgeräte

Insgesamt wurden sechs Stoffwerte gemessen: Die Oberflächenenergie σ aller untersuchten Schmier- und Werkstoffe. Der Kontaktwinkel θ und die Kontaktwinkelhysterese der Schmierstoffe auf den Elastomeren und den Wellenwerkstoffen. Die Viskosität η , Dichte ρ , die spezifische Wärmekapazität c_p und die Wärmeleitfähigkeit λ der Schmierstoffe.

Oberflächenenergie

Die Oberflächenenergie der Schmierstoffe wurde mit dem Blasendrucktensiometer SITA SCIENCE LINE T60 gemessen. Das Messprinzip beruht auf der

Young-Laplace's chen Gleichung (2.54).

Das Gerät taucht mit einer Kapillare¹ bekannten Durchmessers in die zu messende Flüssigkeit ein. Getrocknete Luft wird durch die Kapillare in die Flüssigkeit gepresst. An der Spitze der Kapillare bildet sich eine Luftblase. Zu Beginn hat die Luftblase die Form eines Kugelabschnitts. Mit zunehmendem Druck wächst die Luftblase. Erreicht die Luftblase Halbkugelform, ist der aufzuwendende Druck maximal. Wird die Luftblase größer, nimmt der Druck wieder ab. Die Luftblase wird instabil und reißt ab.

Aus dem gemessenen Maximaldruck \hat{p} und dem bekannten Kapillarendurchmesser d_{kap} wird die Oberflächenenergie σ_l der Flüssigkeit bestimmt. Der Maximaldruck wird dazu mit dem Kapillardruck und dem hydrostatischen Druck gleichgesetzt (3.1) [132]. Das verwendete Messgerät SITA SCIENCE LINE T60 führt diesen Rechenschritt intern durch. Der Nutzer erhält unmittelbar die gesuchte Oberflächenenergie der Flüssigkeit.

$$\hat{p} = \frac{4 \cdot \sigma}{d_{kap}} + g \cdot \rho \cdot h_t \tag{3.1}$$

Die Dauer vom Entstehen der Blase bis zum Abreißen heißt Blasenlebensdauer. Das Messgerät kann Blasenlebensdauern von $t_{Blase} = 30 \cdot 10^{-3} \text{ s...} 60 \text{ s}$ darstellen [115]. Eine lange Blasenlebensdauer ($t_{Blase} > 10 \text{ s}$) ermöglicht die Messung der Oberflächenenergie im thermodynamischen Gleichgewicht. Bei kurzer Blasenlebensdauer ($t_{Blase} < 10 \text{ s}$) beeinflusst die Bildung neuer Oberfläche die gemessene Oberflächenenergie. Beeinflussende Größen sind oberflächenaktive Bestandteile und die Viskosität der Flüssigkeit.

Die Temperierung der zu messenden Flüssigkeit geschah durch eine Heizplatte. Die Flüssigkeit befand sich dazu in einem seitlich isolierten Becher. Die Temperatur wurde durch einen Thermistor in unmittelbarer Nähe der Kapillare erfasst.

Kontaktwinkel

Die Messung von Kontaktwinkeln erfolgte mit dem Kontaktwinkelmessgerät DATAPHYSICS OCA20. Das Gerät verfügt über eine CCD-Kamera mit Zoom-Objektiv, die direkt mit einer diffusen Lichtquelle beleuchtet wird. Von Tropfen, die im Strahlengang abgesetzt werden, wird so nur die Silhouette abgebildet. Am aufgezeichneten Bild wird mittels Software² die Tropfenform bestimmt. Die Tangente an den Tropfen wird mit der Grundebene³ geschnitten und ergibt so den Kontaktwinkel.

¹Kapillaren-Werkstoff: PEEK.

²DataPhysics SCA.

 $^{^3{\}rm Hier}$ wurden nur ebene Substrate gemessen. Die Auswertung auf gekrümmten Oberflächen ist grundsätzlich möglich.

Das Gerät verfügt über eine temperierbare Probenkammer zur Messung von Kontaktwinkeln bei unterschiedlichen Temperaturen. Zur Messung der Kontaktwinkelhysterese kann das gesamte Gerät gegenüber dem tischfesten Gestell verkippt werden. Über eine automatisierte Auswertung ist die Messung des Kontaktwinkels über dem Kippwinkel möglich.

Viskosität

Die Messung der Viskosität erfolgte mit dem Rotationsviskosimeter VISCOLAB LC10 von PHYSICA. Ein rotierender Zylinder ragt dabei in einen zylindrischen Becher. Zwischen dem Rotor und dem Becher besteht ein Spalt mit bekannter Spalthöhe. Die zu messende Flüssigkeit befindet sich in diesem Spalt. Bei der Messung tritt zwischen dem Rotor und dem Becher Flüssigkeitsreibung auf. Gemessen wird das benötigte Drehmoment zum Erreichen der Solldrehzahl. Aus der Gleichung (2.6) lässt sich damit die Viskosität bestimmen.

Dichte

Die Dichte der Schmierstoffe wurde mit einem Pyknometer nach GAY-LUSSAC⁴ gemessen. Ein Pyknometer ist ein Gefäß mit bekanntem Volumen. Das verwendete Pyknometer hat ein Nennvolumen⁵ von $V = 0, 1 \cdot 10^{-3} \text{ m}^3$. Es ist mit einem Glasstopfen verschlossen, der durch eine Kapillare überschüssige Flüssigkeit abgibt.

Zur Messung der Dichte einer Flüssigkeit wird die Differenzmasse zwischen leerem Pyknometer und gefülltem Pyknometer bestimmt. Der Quotient aus dieser Differenzmasse und dem bekannten Volumen ist die Dichte der Flüssigkeit. Die Temperatur der Flüssigkeit muss dabei bekannt sein. Die Dichte ist temperaturabhängig.

Wärmekapazität

Die Messung der Wärmekapazität erfolgte als Auftragsmessung durch das INSTITUT FÜR CHEMISCHE VERFAHRENSTECHNIK der UNIVERSITÄT STUTT-GART. Das verwendete Messgerät war ein dynamisches Differenz-Kalorimeter DSC 204 F1 PHOENIX® von NETZSCH. Vor jeder Einzelmessung wurde das Gerät an einem Saphirkristall kalibriert.

⁴Joseph Louis Gay-Lussac *1778 †1850

 $^{^5}$ Laut Kalibrierschein beträgt das Volumen $V=99,4517\cdot 10^{-6}\,{\rm m}^3$ bei einer Messunsicherheit von $10^{-8}\,{\rm m}^3.$

Wärmeleitfähigkeit

Die Messung der Wärmeleitfähigkeit erfolgte als Auftragsmessung durch die F5 TECHNOLOGIE GMBH. Das verwendete Messgerät war das MESSSYSTEM LAMBDA. Das Messverfahren war die instationäre Widerstandsmessung nach ASTM D2717 [32].

3.1.2 Versuchsteile

Untersucht wurden zehn Schmierstoffe, drei Elastomere und drei Wellenwerkstoffe.

Schmierstoffe

Der Fokus lag auf der Untersuchung von Mineralölen, Polyglykolen und Silikonölen. Von jedem dieser Grundöle wurden zwei nicht additivierte Schmierstoffe in unterschiedlicher Viskosität verwendet. Zusätzlich wurden zwei kommerzielle, additivierte Schmierstoffe und zwei Ester verwendet. Tabelle 3.1 listet die verwendeten Schmierstoffe auf. Im Folgenden werden die jeweiligen Schmierstoffe mit dem in der Tabelle genannten Kürzel bezeichnet.

Von FVA 3 und PTX wurden zudem gealterte Proben gemessen⁶.

Tabelle 3.1	Verwendete	Schmierstoffe
-------------	------------	---------------

Kürzel	Hersteller	Produktname	Grundöl	Additive
FVA1	Schindler	FVA 1 Referenzöl	Mineralöl	keine
FVA3	Schindler	FVA 3 Referenzöl	Mineralöl	keine
PG1	Clariant	FVA PG1 Referenzöl	Polyglykol	keine
PG3	CLARIANT	FVA PG 3 Referenzöl	Polyglykol	keine
GH6	Klüber	KlüberSynth GH6-220	Polyglykol	ja
PTX	Mobil	Mobilube PTX 75W90	Poly- α -Olefin	ja
EG	Klüber	KlüberBio EG 2-150	Ester	unbek.
RM	Klüber	KlüberBio RM 2-150	Ester	unbek.
S50	OKS	OKS 1050/0	Silikonöl	keine
S100	OKS	OKS 1010/1	Silikonöl	keine

⁶Das FVA3 wurde über 240 Stunden bei $\vartheta = 120 \,^{\circ}\text{C}$ im RWDR-Prüfstandsversuch gealtert. Das PTX wurde von der FZG (TU MÜNCHEN) über 1200 Stunden im Getriebe-Prüfstandsversuch gealtert bei $\vartheta = 110 \,^{\circ}\text{C}$.

Elastomere

Für die Bestimmung der Stoffwerte wurde Elastomer-Plattenmaterial⁷ verwendet. Tabelle 3.2 listet die verwendeten Elastomere auf. Aus dem Plattenmaterial wurden Proben im Durchmesser d = 0,04 m (NBR und FKM) und d = 0,02 m (ACM) gestanzt. Die Aufnahme der Proben erfolgte durch Aufkleben⁸ auf Aluminiumteller. Je Elastomer wurden zehn Proben verwendet.

Die Oberfläche der Proben sollte weitgehend derjenigen von RWDR mit gestochener Dichtkante entsprechen. Da die Elastomeroberfläche altert⁹ wurde vor Messungen stets eine neue Oberfläche erzeugt. Alle Proben wurden trocken, mit Siliziumkarbid-Schleifscheiben in Körnung 500 geschliffen.

Tabelle 3.2 Verwendete Elastomere

Kürzel	Hersteller	Elastomer	Compound	Härte
ACM	Simrit	Acrylat-Kautschuk	121433	$70 { m Sh A}$
FKM	Simrit	Fluor-Kautschuk	585	$75 { m Sh A}$
NBR	Simrit	Acrylnitril-Butadien-K.	902	$72 { m Sh A}$

Wellenwerkstoffe

Die Stoffwerte der Wellenwerkstoffe wurden an polierten¹⁰ Proben ermittelt. Je Wellenwerkstoff wurde eine Probe verwendet. Die Metalle Stahl und Messing wurden aus Rundstab-Halbzeug gefertigt. Die Härte der Stahlprobe betrug vor dem Polieren 60 ± 2 HRC. Für den Werkstoff Glas dienten Mikroskop-Objektträger als Proben. Tabelle 3.3 listet die verwendeten Werkstoffe auf.

Tabelle 3.3 Verwendete Wellenwerkstoffe

Kürzel	Trivialname	Werkstoffbezeichnung
Gl	Glas	Kalk-Soda-Glas
St	Stahl	100Cr6 Wälzlagerstahl
Ms	Messing	CuZn39Pb3 Automatenmessing

⁷Maße: $0,205 \text{ m} \times 0,205 \text{ m} \times 2 \cdot 10^{-3} \text{ m}.$

⁸Schlagzäher Cyanacrylat-Klebstoff.

⁹Das Elastomer wird durch UV-Strahlung, Sauerstoff und Ozon angegriffen. Verarbeitungs-Hilfsstoffe, wie Wachse, migrieren an die Oberfläche.

 $^{^{10}{\}rm Auf}$ geschliffenen Proben breiten sich Tropfen nicht völlig symmetrisch aus. Eine korrekte Messung des Kontaktwinkels ist damit nicht möglich.

3.1.3 Vorgehen

Die Probenvorbereitung, das Vorgehen in den Versuchen und der Versuchsumfang werden geschildert.

Oberflächenenergie

Die Kapillare des Messgeräts wurde vor der Messung eines anderen Schmierstoffs gereinigt und kalibriert. Die Kalibrierung erfolgte in demineralisiertem Wasser.

Von jedem Schmierstoff (Tabelle 3.1) wurde eine Probe von $V \approx 50 \cdot 10^{-6} \,\mathrm{m}^3$ verwendet. Die Proben wurden zuvor nicht anderweitig verwendet. Sie wurden ebenso nicht weiterverwendet.

Die Oberflächenenergie wurde bei Blasenlebensdauern von $t_{Blase} = 0,03 \,\mathrm{s}$ bis $t = 60 \,\mathrm{s}$ gemessen¹¹. Die Versuchstemperatur betrug in Temperaturschritten von $\Delta T = 20 \,\mathrm{K} \,\vartheta = 20 \,^{\circ}\mathrm{C} \dots 140 \,^{\circ}\mathrm{C}$. Je Blasenlebensdauer und Versuchstemperatur wurde ein Versuch je Schmierstoff durchgeführt.

Die Bewertung von Umgebungseinflüssen ist durch die aufgezeichneten Werte für die Raumtemperatur ϑ_{Raum} , den Luftdruck p_{Luft} und die relative Luftfeuchte φ_{rel} möglich.

Zusätzlich zu den genannten Schmierstoffen wurden Mischungen der Mineralöle FVA 1, FVA 2 und FVA 3 gemessen. Die FVA Referenz-Mineralöle sind chemisch nahezu identisch und ermöglichen Mischungen in Viskositäts-Zwischenstufen [35]. Die erzeugten Mischungen sind in Tabelle 3.4 aufgelistet. Dieser Versuchsblock sollte den Einfluss der Viskosität auf die Oberflächenenergie bewertbar machen.

Viskositätsklasse	Mischung
ISO VG 15	100 % FVA 1
$\mathrm{ISOVG22}$	45% FVA 1 und $55%$ FVA 2
$\mathrm{ISOVG32}$	$100\%\mathrm{FVA}2$
$\mathrm{ISOVG}46$	62% FVA 2 und $38%$ FVA 3
ISO VG 68	30% FVA 2 und $70%$ FVA 3
$\mathrm{ISOVG100}$	100 % FVA 3

Tabelle 3.4 Mischungen aus Referenz-Mineralölen mit unterschiedlicher Viskosität

 $^{^{11}\}mathrm{Die}$ Blasenlebensdauern waren im angegebenen Intervall durch die Software logarithmisch abgestuft.

Kontaktwinkel

Die Messung der Kontaktwinkel teilt sich in drei Abschnitte: Erstens, die Bestimmung der Oberflächenenergie der Elastomere und der Wellenwerkstoffe nach OWRK und Wu (siehe 2.3.2). Zweitens, die Bestimmung des dispersen Anteils der Oberflächenenergie der Schmierstoffe. Drittens, die Messung des Kontaktwinkels und der Kontaktwinkelhysterese der Schmierstoffe auf den Elastomeren, den Wellenwerkstoffen und einem PTFE-Subtrat.

Die Elastomerproben wurden vor jeder Messung neu geschliffen; eine chemische Reinigung erfolgte nicht. Die Reinigung der Metall- und Glasproben erfolgte mit Aceton¹². Je Messflüssigkeit¹³ stand eine individuelle Spritze zur Verfügung. Zur Dosierung der Schmierstoffe wurden Einwegspritzen verwendet. Dadurch konnte gegenseitige Kontaminierung ausgeschlossen werden.

Oberflächenenergie nach OWRK **und** WU Zur Bestimmung der Oberflächenenergie nach OWRK und WU wurden die Messflüssigkeiten nach Tabelle 3.5 verwendet. Die Stoffwerte der Messflüssigkeiten wurden nach STRÖM¹⁴ angenommen [119]. Alle Messflüssigkeiten wurden in der Reinheit »pro analysi« (p.a.) bezogen. Die Messungen wurden in Anlehnung an DIN 55660-2 [26] durchgeführt. Das Tropfenvolumen von Wasser und Ethylenglykol betrug $V \approx 4 \cdot 10^{-9}$ m³. Das Tropfenvolumen von Diiodmethan betrug $V \approx 2 \cdot 10^{-9}$ m³. Zur Auswertung des Kontaktwinkels wurde ein Bild des Tropfens nach $t \approx 5$ s aufgezeichnet. Oberhalb dieser Zeitspanne verfälschten zwei Effekte die Messung: Das Wasser verdunstete merklich, der Tropfen wurde flacher. Bei Diiodmethan konnte es zur Reaktion mit den Elastomerproben kommen.

Für die Elastomere erfolgten 30 Messungen je Messflüssigkeit und Temperaturstufe ($\vartheta = RT, 50^{\circ}C, 80^{\circ}C$). Bei den Wellenwerkstoffen betrug die Anzahl an Messungen 20, bei $\vartheta = RT, 30^{\circ}C, 50^{\circ}C, 70^{\circ}C, 90^{\circ}C, 110^{\circ}C$.

Tabelle 3.5 Messflüssigkeiten zur Bestimmung der Oberflächenenergie nach OWRK und Wu; Werte nach Ström [119]

Flüssigkeit	$\sigma_l (\mathbf{N} \cdot \mathbf{m}^{-1})$	$\sigma_l^d \; ({ m N} \cdot { m m}^{-1})$	$\sigma_l^p (\mathbf{N} \cdot \mathbf{m}^{-1})$	$\frac{\partial \sigma}{\partial T} (\mathbf{N} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$
Wasser	$72,8 \cdot 10^{-3}$	$21,8 \cdot 10^{-3}$	$51,0 \cdot 10^{-3}$	$-0,151 \cdot 10^{-3}$
Ethylenglykol	$47,7 \cdot 10^{-3}$	$30,9 \cdot 10^{-3}$	$16,8 \cdot 10^{-3}$	$-0,089 \cdot 10^{-3}$
Diiodmethan	$50, 8 \cdot 10^{-3}$	$50, 8 \cdot 10^{-3}$	0	$-0,138 \cdot 10^{-3}$

Die Berechnung der Oberflächenenergie nach OWRK konnte direkt mit den Gleichungen (2.46) bis (2.48) erfolgen. Für die Berechnung nach WU

¹⁴Göran Ström

 $^{^{12}\}mathrm{Gebr\ddot{a}uchlicher}$ Trivialname von Dimethylketon.

¹³Wasser, Diiodmethan und Ethylenglykol

wurde KAELBLES Lösungsansatz für lineare Gleichungssysteme auf 3×3 -Determinanten erweitert. Mit dem Berechnungsansatz nach WU ergeben sich die Gleichungen (3.2) bis (3.5). Das Gleichungssystem ist wegen des dritten Terms (3.5) nichtlinear. Damit ergeben sich stets zwei Lösungen wovon eine meist negativ ist¹⁵.

$$\mathbf{D} = \begin{vmatrix}
\sigma_{l1}^{p} \cdot \left(\sigma_{l1}^{d} - \frac{W_{a1}}{4}\right) & \sigma_{l1}^{d} \cdot \left(\sigma_{l1}^{p} - \frac{W_{a1}}{4}\right) & \sigma_{l1} - \frac{W_{a1}}{4} \\
\sigma_{l2}^{p} \cdot \left(\sigma_{l2}^{d} - \frac{W_{a2}}{4}\right) & \sigma_{l2}^{d} \cdot \left(\sigma_{l2}^{p} - \frac{W_{a2}}{4}\right) & \sigma_{l2} - \frac{W_{a2}}{4} \\
\sigma_{l3}^{p} \cdot \left(\sigma_{l3}^{d} - \frac{W_{a3}}{4}\right) & \sigma_{l3}^{d} \cdot \left(\sigma_{l3}^{p} - \frac{W_{a3}}{4}\right) & \sigma_{l3} - \frac{W_{a3}}{4}
\end{vmatrix}$$

$$(3.2)$$

$$\mathbf{\sigma}_{s}^{d} = \begin{vmatrix}
\sigma_{l1}^{p} \cdot \sigma_{l1}^{d} \cdot \frac{W_{a1}}{4} & \sigma_{l1}^{d} \cdot \left(\sigma_{l1}^{p} - \frac{W_{a1}}{4}\right) & \sigma_{l1} - \frac{W_{a1}}{4} \\
\sigma_{l2}^{p} \cdot \sigma_{l2}^{d} \cdot \frac{W_{a2}}{4} & \sigma_{l2}^{d} \cdot \left(\sigma_{l2}^{p} - \frac{W_{a2}}{4}\right) & \sigma_{l2} - \frac{W_{a2}}{4} \\
\sigma_{l3}^{p} \cdot \sigma_{l3}^{d} \cdot \frac{W_{a3}}{4} & \sigma_{l3}^{d} \cdot \left(\sigma_{l3}^{p} - \frac{W_{a3}}{4}\right) & \sigma_{l3} - \frac{W_{a3}}{4}
\end{vmatrix} \cdot D^{-1}$$

$$(3.3)$$

$$\mathbf{\sigma}_{s}^{p} = \begin{vmatrix}
\sigma_{l1}^{p} \cdot \left(\sigma_{l1}^{d} - \frac{W_{a1}}{4}\right) & \sigma_{l1}^{p} \cdot \sigma_{l1}^{d} \cdot \frac{W_{a1}}{4} & \sigma_{l1} - \frac{W_{a1}}{4} \\
\sigma_{l2}^{p} \cdot \left(\sigma_{l2}^{d} - \frac{W_{a2}}{4}\right) & \sigma_{l2}^{p} \cdot \sigma_{l2}^{d} \cdot \frac{W_{a3}}{4} & \sigma_{l3} - \frac{W_{a3}}{4}
\end{vmatrix} \cdot D^{-1}$$

$$(3.4)$$

$$\mathbf{\sigma}_{s}^{p} \cdot \mathbf{\sigma}_{s}^{d} = \begin{vmatrix}
\sigma_{l1}^{p} \cdot \left(\sigma_{l1}^{d} - \frac{W_{a1}}{4}\right) & \sigma_{l1} - \frac{W_{a1}}{4} & \sigma_{l1} - \frac{W_{a1}}{4} \\
\sigma_{l2}^{p} \cdot \left(\sigma_{l2}^{d} - \frac{W_{a2}}{4}\right) & \sigma_{l2} - \frac{W_{a2}}{4} & \sigma_{l3} - \frac{W_{a3}}{4}
\end{vmatrix} \cdot D^{-1}$$

$$(3.4)$$

Disperser Anteil der Oberflächenenergie Die Messung des dispersen Anteils der Oberflächenenergie einer Flüssigkeit kehrt die Verfahren nach OWRK und WU um. Die Flüssigkeit mit bekannter Gesamt-Oberflächenenergie wird auf einem rein dispersen Substrat abgesetzt. Aus dem Kontaktwinkel kann der disperse Anteil der Oberflächenenergie der Flüssigkeit bestimmt werden [27]. Für das Verfahren nach OWRK gilt Gleichung (3.6), für das Verfahren nach WU gilt (3.7).

Als rein disperses Substrat wurde poliertes¹⁶ PTFE¹⁷ verwendet. PTFE war anwendbar, da keiner der verwendeten Schmierstoffe das Substrat vollständig benetzte¹⁸. Statische Aufladung des PTFEs wurde mit einem Ionisie-

¹⁷Oberflächenenergie $\sigma_s = 18, 5 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{m}^{-1}$

 $^{^{15}\}mathrm{Die}$ negative Lösung ist physikalisch falsch und kann ignoriert werden. Bei zwei positiven Lösungen ist nach Plausibilität zu entscheiden.

¹⁶Verhältnis tatsächlicher Oberfläche zu projizierter Oberfläche a = 1,02.

¹⁸PTFE wurde in den Versuchen nur durch das begleitend gemessene PFPE benetzt.

rer¹⁹ verhindert. Je Schmierstoff wurden fünf Tropfen mit $V\approx 4\cdot 10^{-9}\,\mathrm{m^3}$ abgesetzt und dreimal vermessen. Daraus ergeben sich 30 Messwerte je Schmierstoff.

$$\sigma_l^d = \frac{(1 + \cos\theta)^2 \cdot \sigma_l^2}{4 \cdot \sigma_s^d} \tag{3.6}$$

$$\sigma_l^d = \frac{\sigma_l \cdot \sigma_s^d \cdot (1 + \cos \theta)}{4 \cdot \sigma_s^d - \sigma_l \cdot (1 + \cos \theta)}$$
(3.7)

Kontaktwinkel und Kontaktwinkelhysterese Der für Benetzungseffekte relevante Kontaktwinkel θ wurde für die Schmierstoffe auf den Elastomeren, den Wellenwerkstoffen und einem Bronze gefüllten PTFE gemessen.

Die Messung des Kontaktwinkels θ im thermodynamischen Gleichgewicht war nur für die Elastomere möglich. Die Wellenwerkstoffe besitzen eine höhere Oberflächenenergie als die Schmierstoffe. Die Schmierstoffe neigen grundsätzlich zum Spreiten auf den Wellenwerkstoffen. Für die Wellenwerkstoffe wurden deshalb primär der Vordrückwinkel θ_v und der Rückzugwinkel θ_r gemessen. Die Differenz aus Vordrückwinkel θ_v und Rückzugwinkel θ_r ist die Kontaktwinkelhysterese $\Delta \theta$. Die Messung des Kontaktwinkels θ erfolgte nach einer Verweildauer der Schmierstoff-Tropfen von $t \approx 10$ s. Die Tropfen änderten ihre Gestalt nach der Verweildauer nur noch sehr langsam. Ein ,quasi-Gleichgewichtszustand' wurde dabei angenommen.

Die Kontaktwinkel wurden bei $\vartheta = RT, 50^{\circ}C, 80^{\circ}C$ gemessen. Die Ergebnisse sind Mittelwerte aus 14...30 Einzelmessungen.

Spreitverhalten Flüssigkeiten, die ein Substrat mit einem Kontaktwinkel $\theta \rightarrow 0$ benetzen, breiten sich auf diesem aus. Dieses selbstinduzierte Ausbreiten auf unbenetztem Substrat wird im Folgenden als Spreiten bezeichnet. Es ist von zwei anderen Modi zu unterscheiden: Erstens, von temperaturinduziertem Spreiten auf unbenetztem Substrat. Zweitens, von temperaturinduzierter Migration auf benetztem Substrat.

Die Versuche wurden nur auf unbenetzten Substraten durchgeführt. Die Substratwerkstoffe waren polierter 100Cr6-Stahl und geschliffener C45-Stahl.

Der Versuch zum Spreiten wurde mit $V = 10^{-8} \text{ m}^3$ jedes Schmierstoffs durchgeführt. Die Probe befand sich während der Versuchsdauer in einem evakuierten Exsikkator. Die Auswertung der Tropfengröße erfolgte nach Ende des Spreitvorgangs ($\hat{t} \approx 72 \text{ h}$).

 $^{19}\mathrm{SMC}$ IZF 10 LP

Der Versuch zum temperaturinduzierten Spreiten wurde für vier Schmierstoffe mit ähnlicher Viskosität durchgeführt. Das Tropfenvolumen betrug jeweils $V \approx 10^{-7} \,\mathrm{m}^3$. Diese vier Schmierstoffe waren FVA 2, FVA 3, PTX und PG 1. Der Temperaturgradient betrug $\partial T \cdot \partial x^{-1} \approx 1500 \,\mathrm{K} \cdot \mathrm{m}^{-1}$. Die Bewegung der Tropfen wurde mit einer CCD-Kamera aufgezeichnet. Die Auswertung erfolgte anhand der Videoaufzeichnung (Zeit-Komponente) und einem ortsfesten Maßstab (Weg-Komponente).

Viskosität

Vor Beginn der Messungen wurde das Rotationsviskosimeter mit Prüfflüssigkeiten²⁰ kalibriert. Die Abweichung betrug 1,1%...2,4% gegenüber den Sollwerten der Prüfflüssigkeiten.

Die Viskosität der Schmierstoffe wurde für $\vartheta = 20^{\circ}C...140^{\circ}C$ in Stufen von $\Delta T = 20$ K bestimmt.

Dichte

Das Pyknometer wurde vor jedem Flüssigkeitswechsel mehrfach mit Aceton gespült und anschließend getrocknet. Vor Beginn der Messungen wurde das Pyknometer ohne Glasstopfen vollständig mit der zu messenden Flüssigkeit befüllt. Durch das Befüllen enthielt die Flüssigkeit zunächst Luftblasen. Die Messung begann erst nach einer ausreichend langen Ruhephase, nachdem alle Luftblasen entwichen waren. Die Ausdehnung des Pyknometers mit zunehmender Temperatur wurde vernachlässigt.

Die Dichte wurde im Temperaturbereich $\vartheta = 30 \,^{\circ}\text{C} \dots 140 \,^{\circ}\text{C}$ in Stufen von $\Delta T = 10$ K gemessen. Für jede Temperaturstufe wurde zunächst der Wärmeschrank auf die Solltemperatur geheizt. Das Pyknometer kam erst bei eingeregelter Solltemperatur in den Wärmeschrank. Dadurch wurden Messfehler durch Überschwingen der Temperatur vermieden. Das Pyknometer blieb für $t \approx 30 \text{ min}$ zur Temperierung im Wärmeschrank. Beim Entnehmen des Pyknometers wurde der ausgetretene Schmierstoff sofort mit einem Zellstofftuch abgewischt. Ein Zurückfließen des Schmierstoffs war dadurch nicht möglich. Als Messwert wurde die Gesamtmasse von Pyknometer und Schmierstoff gemessen. Mit dem bekannten Volumen und der bekannten Masse des Pyknometers konnte die Dichte nach Gleichung (3.8) berechnet werden.

$$\rho = \frac{m}{V} = \frac{m_{gesamt} - m_{Pyknometer}}{V_{Pyknometer}}$$
(3.8)

²⁰THERMO FISHER SCIENTIFIC Prüfflüssigkeiten E200 und E2000

Wärmekapazität

Die Messung der spezifischen Wärmekapazität c_p wurde als Auftragsmessung am INSTITUT FÜR CHEMISCHE VERFAHRENSTECHNIK der UNIVERSITÄT STUTTGART durchgeführt. Verwendet wurden Proben der Schmierstoffe mit $V=5\cdot 10^{-6}\,\mathrm{m^3}$. Die Versuchstemperatur betrug $\vartheta=20\,^\circ\mathrm{C}\ldots140\,^\circ\mathrm{C}$ in Stufen von $\Delta T=0,01\,\mathrm{K}.$

Wärmeleitfähigkeit

Die Messung der Wärmeleitfähigkeit λ wurde als Auftragsmessung von der F5 TECHNOLOGIE GMBH durchgeführt. Verwendet wurden Proben der Schmierstoffe mit $V=50\cdot 10^{-6}\,\mathrm{m^3}$. Die Versuchstemperatur betrug $\vartheta=20\,^\circ\mathrm{C}\ldots140\,^\circ\mathrm{C}$ in Stufen von $\Delta T=2\,\mathrm{K}$. Ausnahme bildeten die Ester-Schmierstoffe. Aufgrund deren begrenzter thermischer Stabilität betrug hier die Höchsttemperatur $\hat{\vartheta}=120\,^\circ\mathrm{C}$.

3.2 Ergebnisse

Hier sind die gemessenen Stoffwerte der Schmierstoffe, der Elastomere und der Wellenwerkstoffe dargestellt. Sie dienen der nachfolgenden Auswertung nach Grenzflächeneffekten.

3.2.1 Schmierstoffe

Die Stoffwerte der Schmierstoffe werden nach zwei Kriterien dargestellt: Erstens, nach ihrer Temperaturabhängigkeit. Zweitens, nach den Unterschieden zwischen chemisch unterschiedlichen Schmierstoffen. Bei Punkt zwei stehen die Schmierstoffe FVA 3, PG 1 und S 100 im Vordergrund. Diese Schmierstoffe sind chemisch stark unterschiedlich und haben eine ähnlich hohe Viskosität. In den Versuchen zur Radial-Wellendichtung wurden diese Schmierstoffe vorrangig verwendet.

Oberflächenenergie

Die Oberflächenenergie σ_l der Schmierstoffe nimmt im Gleichgewichtszustand linear mit der Temperatur ab. Lineare Abnahme und Betrag der Oberflächenenergie sind nach [132] plausibel. Die Messung der gealterten Proben ergab identische Ergebnisse wie bei den nicht-gealterten Proben. Der Alterungseinfluss scheint vernachlässigbar zu sein. Die Messwerte aller untersuchten Schmierstoffe sind in Tabelle 3.6 aufgelistet. Bei hochviskosen Schmierstoffen war eine fehlerfreie Messung erst ab $\vartheta = 60^{\circ}$ C möglich. Die extrapolierten Werte für $\vartheta = 40^{\circ}$ C sind eingeklammert.

Tabelle 3.6 Oberflächenenergie σ_l in 10^{-3} N · m⁻¹ bei $t_{Blase} = 60$ s Extrapolierte Werte sind eingeklammert

θ	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
$40^{\circ}\mathrm{C}$	28,0	29,4	31,7	(39,9)	(33,2)	26,7	29,2	(30,5)	18,6	19,6
$60^{\circ}\mathrm{C}$	25,4	27,2	$_{30,0}$	38,0	31,2	24,9	27,2	27,7	17,2	17,9
$80^{\circ}\mathrm{C}$	23,9	25,3	28,1	36,3	29,4	23,2	26,1	25,6	15,9	16,7
$100^{\circ}\mathrm{C}$	23,7	24,0	26,5	34,5	27,5	21,8	24,5	24,4	15,0	15,5
$120^{\circ}\mathrm{C}$	20,8	22,3	24,9	32,7	25,1	20,3	23,3	22,9	14,1	14,3

Bild 3.1 zeigt die Abhängigkeit der Oberflächenenergie σ_l von der Temperatur ϑ . Die Gradienten von FVA 3 und PG 1 sind annähernd gleich. Für FVA 3 beträgt er $\partial \sigma_l \cdot \partial T^{-1} = -0,087 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1} \cdot K^{-1}}$. Für PG 1 beträgt er $\partial \sigma_l \cdot \partial T^{-1} = -0,086 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1} \cdot K^{-1}}$. Der Gradient von S 100 weicht demgegenüber ab: Er beträgt $\partial \sigma_l \cdot \partial T^{-1} = -0,065 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1} \cdot K^{-1}}$.

Bei geringerer Blasenlebensdauer t_{Blase} ist der Messwert der Oberflächenenergie σ_l von FVA 3, PG 1 und S 100 stets größer als im Gleichgewichtszustand. Bild 3.2 zeigt die Oberflächenenergie σ_l für $t_{Blase} = 0, 1$ s. Die Plausibilität kann hier nicht bewertet werden. Literaturwerte vergleichbarer Flüssigkeiten sind nicht bekannt.

Bild 3.1 Oberflächenenergie σ von FVA 3, **Bild 3.2** Oberflächenenergie σ von FVA 3, PG 1 und S 100 bei $t_{Blase} = 60$ s (thermodyna-PG 1 und S 100 bei $t_{Blase} = 0, 1$ s misches Gleichgewicht)

Die Bilder 3.3 bis 3.5 zeigen die Oberflächenenergie σ_l in Abhängigkeit

der Blasenlebensdauer t_{Blase} mit dem Scharparameter Temperatur ϑ für die Schmierstoffe FVA 3, PG 1 und S 100. Der steile Anstieg bei geringer Blasenlebensdauer und geringer Temperatur kann viskositätsbedingt sein. Für PG1 war bei Temperaturen $\vartheta < 60^{\circ}$ C die Oberflächenenergie nur bei hohen Blasenlebensdauern messbar. Im Folgenden werden nur die Werte der Oberflächenenergie im Gleichgewichtszustand $(t_{Blase} = 60 s)$ verwendet.

der Oberflächenenergie von der Blasenlebensdauer

Bild 3.3 Mineralöl FVA 3: Abhängigkeit Bild 3.4 Polyglykol PG 1: Abhängigkeit der Oberflächenenergie von der Blasenlebensdauer

Durch die Abmischung der chemisch sehr ähnlichen FVA Referenz-Mineralöle FVA 1, FVA 2 und FVA 3 konnte eine enge Viskositätsabstufung erzielt werden. Damit sollte der Einfluss der Viskosität auf die gemessene Oberflächenenergie ermittelt werden. Wie Bild 3.6 zeigt, wiesen die Mischungen ein abweichendes Verhalten gegenüber den Grundölen auf. Ein Viskositätseinfluss kann auf Basis der Ergebnisse nicht ausgeschlossen werden. Die chemischen Eigenschaften der Flüssigkeit haben jedoch einen größeren Einfluss.

Zur Bestimmung des polaren Anteils der Oberflächenenergie σ_l^p wurde der disperse Anteil σ_l^d nach dem Verfahren von OWRK bestimmt. Der polare Anteil ergibt sich aus der Differenz des Gesamt-Oberflächenenergie und des dispersen Anteils. Das Verfahren nach WU ergab keine plausiblen Ergeb $nisse^{21}$.

Als Referenzflüssigkeit wurde Ethylenglykol gemessen. Der Messwert des polaren Anteils betrug $\sigma_l^p = 20, 2 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$ gegenüber dem Literaturwert $\sigma_l^p = 16, 8 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$. In Anbetracht der möglichen Fehlerquellen (Wasser-

²¹Sowohl für die Schmierstoffe als auch für die Referenzflüssigkeit Ethylenglykol wurden zu hohe Werte berechnet.

Bild 3.5 Silikonöl S100: Abhängigkeit der Bild 3.6 FVA Referenz-Mineralöle: Abhän-Oberflächenenergie von der Blasenlebensdauer

gigkeit der Oberflächenenergie von der Viskosität

dampf auf dem Substrat, Hygroskopie des Ethylenglykols, unbekannter tatsächlicher Wert des Ethylenglykols) ist die Genauigkeit akzeptabel.

In Tabelle 3.7 sind die ermittelten Werte aufgelistet. Im Folgenden wird nur Bezug auf die Mittelwerte $\bar{\sigma}_l^p$ genommen. Die Minimal- und Maximalwerte basieren auf den Abweichungen bei der Kontaktwinkelmessung. Sie sollen den möglichen Fehler bei der Bestimmung von σ_l^p zeigen.

Die negativen Werte für FVA 1 beruhen auf einem zu hohen Messwert für den dispersen Anteil σ_l^d . Der polare Anteil von FVA 1 wird im Folgenden zu null angenommen.

Tabelle 3.7 Minimum ($\check{\sigma}_l^p$), Mittelwert ($\bar{\sigma}_l^p$) und Maximum ($\hat{\sigma}_l^p$) des polaren Anteils der Oberflächenenergie σ_i^p in 10^{-3} N m⁻¹ bei Raumtemperatur

	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
$\check{\sigma}_l^p$	-1,05	0,30	5,96	1,39	4,93	$4,\!82$	2,39	0,95	$2,\!27$	1,11
$\bar{\sigma}_l^p$	-0,53	0,57	$6,\!48$	$3,\!08$	5,38	5,47	$2,\!63$	1,20	$2,\!29$	$1,\!38$
$\hat{\sigma}_{l}^{p}$	0,01	0,85	7,00	4,75	5,84	$6,\!13$	2,89	$1,\!45$	$2,\!46$	$1,\!48$

Spreitverhalten

Chemisch ähnliche Schmierstoffe zeigten ein ähnliches Spreitverhalten (Bild 3.7). Die Tropfengrößen korrespondierten innerhalb einer Grundölart. Ausnahmen bildeten FVA 1 und PTX. FVA 1 spreitete deutlich stärker als alle anderen Schmierstoffe. PTX war nicht bewertbar, da es das einzige PAO und zudem additiviert ist.

Beim temperaturinduzierten Spreiten (Bild 3.8) bewegte sich FVA 2 am schnellsten. Die Geschwindigkeit betrug bis zu $\nu\approx 2\cdot 10^{-3}\,\mathrm{m\cdot s^{-1}}$. Etwas langsamer und mit ähnlichem Verlauf folgten FVA 3 und PTX. PG 1 bewegte sich am langsamsten. Bewegung war dabei nur bei Temperaturen $\vartheta>95\,^{\circ}\mathrm{C}$ zu beobachten.

Bild 3.8 Migrationsgeschwindigkeit von Schmierstoffen mit ähnlicher dynamischer Viskosität bei $\frac{\partial T}{\partial x} \approx 1500 \,\mathrm{K} \cdot \mathrm{m}^{-1}$

Viskosität

Die gemessene dynamische Viskosität η der Schmierstoffe ist in Tabelle 3.8 aufgelistet. Bei Viskositäten $\eta < 10^{-2} \operatorname{Pa} \cdot \mathrm{s}$ war die Messgenauigkeit des verwendeten Rotationsviskosimeters unzureichend. Für FVA 1 wurde deshalb der Wert bei $\vartheta = 120^{\circ}\mathrm{C}$ extrapoliert. Für die Silikonöle S50 und S100 wurde keine Messung durchgeführt. Aus den bekannten Viskositäten bei $\vartheta = 40^{\circ}\mathrm{C}$ und $\vartheta = 100^{\circ}\mathrm{C}$ wurden die weiteren Werte inter- und extrapoliert.

Bild 3.9 zeigt den Temperatur-Viskositätsverlauf für FVA 3, PG 1 und S 100. Diese Schmierstoffe wurden aufgrund ihrer ähnlichen Viskosität in den Versuchen zur Radial-Wellendichtung bevorzugt verwendet.

Dichte

Tabelle 3.9 gibt die Dichte ρ der Schmierstoffe wieder. Die Übereinstimmung der Werte mit Literaturwerten ist sehr gut [35].

θ	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
$40^{\circ}\mathrm{C}$	22,7	77,5	75,1	238	234	66,7	139	140	46,0	80,0
$60^{\circ}\mathrm{C}$	16,7	32,4	40,8	115	108	37,1	58,1	58,3	(34,0)	(56,3)
$80^{\circ}\mathrm{C}$	11,6	24,6	32,4	65,4	64,8	26,0	29,1	29,1	(24,7)	(40,0)
$100^{\circ}\mathrm{C}$	9,5	20,7	27,7	49,7	42,5	22,4	16,7	16,7	17,5	27,8
$120^{\circ}\mathrm{C}$	(8,4)	15,5	24,5	35,3	33,4	19,1	11,4	11,4	(12,5)	(20)

Tabelle 3.8 Dynamische Viskosität η in 10^{-3} Pa·s Interpolierte und extrapolierte Werte sind eingeklammert

In Bild 3.10 sind die Dichten von FVA 3, PG 1 und S 100 gegenübergestellt.

Tabelle 3.9 Dichte ρ in kg·m⁻³

θ	FVA1	FVA3	PG1	PG3	GH6	PTX	\mathbf{EG}	RM	S50	S100
$40^{\circ}\mathrm{C}$	846	865	1025	1059	1042	835	909	914	946	950
$60^{\circ}\mathrm{C}$	833	853	1010	1044	1026	823	896	901	928	933
$80^{\circ}\mathrm{C}$	821	841	994	1028	1010	810	884	888	911	915
$100^{\circ}\mathrm{C}$	808	829	979	1012	996	798	871	875	894	899
$120^{\circ}\mathrm{C}$	795	816	964	996	981	785	858	863	877	882

Aus dem ermittelten Temperatur-Dichte-Verlauf wurde mit Gleichung (3.9) der thermische Ausdehnungskoeffizient β berechnet. Dieser ist bei allen Schmierstoffe mit Kohlenwasserstoff-Basisstruktur ähnlich. Die Silikonöle haben einen größeren thermischen Ausdehnungskoeffizient. Die einzelnen Werte sind in Tabelle 3.10 aufgelistet.

$$\beta = \frac{1}{V} \cdot \frac{\partial V}{\partial T} = \left[\rho \cdot \frac{\partial \frac{1}{\rho}}{\partial T} \right]_m \tag{3.9}$$

Tabelle 3.10 Thermischer Ausdehnungskoeffizient β in 10^{-6} K⁻¹

FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
782	719	769	755	756	779	720	726	942	936

Wärmekapazität

Die untersuchten Schmierstoffe unterscheiden sich kaum in ihrer Wärmekapazität c_p . Außer bei PG 1 und PG 3 steigt die Wärmekapazität c_p mit der Temperatur ϑ kontinuierlich an (Bild 3.11)²². Tabelle 3.11 listet die einzelnen Werte auf.

²²Die Abnahme der Wärmekapazität mit der Temperatur ist ungewöhnlich und wird in solchen Fällen mit Evaporation oder thermischem Zerfall erklärt. Dieser Erklärung entgegen steht der höhere zulässige Temperaturbereich für die betreffenden Schmierstoffe.

Bild 3.9 Dynamische Viskosität η von Bild 3.10 Dichte ρ von FVA 3, PG 1 und FVA 3, PG 1 und S100 S100

θ	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
$40^{\circ}\mathrm{C}$	2,05	2,48	2,12	2,28	2,20	1,89	2,13	2,06	1,99	2,29
$60^{\circ}\mathrm{C}$	2,13	2,57	2,22	$2,\!43$	2,28	1,96	2,20	2,10	2,07	2,37
$80^{\circ}\mathrm{C}$	2,20	2,61	2,28	2,51	2,33	2,05	2,26	2,16	2,12	2,40
$100^{\circ}\mathrm{C}$	2,27	2,64	2,28	2,49	2,33	2,12	2,30	2,20	2,14	2,41
$120^{\circ}\mathrm{C}$	2,33	2,70	2,24	2,39	2,32	2,18	$2,\!36$	2,25	$2,\!15$	$2,\!44$

Tabelle 3.11 Wärmekapazität c_p in $10^3 \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$

Wärmeleitfähigkeit

Die Wärmeleitfähigkeit λ nahm für alle Schmierstoffe annähernd linear mit zunehmender Temperatur ab. Die Mineralöle zeigten die geringste, die Polyglykole die höchste Wärmeleitfähigkeit. Bild 3.12 zeigt die Wärmeleitfähigkeit λ von FVA 3, PG 1 und S 100 über der Temperatur ϑ . Tabelle 3.12 listet die einzelnen Werte auf.

Tabelle 3.12 Wärmeleitfähigkeit λ in $10^{-3} \, W \cdot m^{-1} \cdot K^{-1}$

θ	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
$40^{\circ}\mathrm{C}$	128	138	169	179	171	150	168	167	150	154
$60^{\circ}\mathrm{C}$	125	135	166	176	169	147	164	163	145	149
$80^{\circ}\mathrm{C}$	123	133	164	174	166	144	161	160	141	146
$100^{\circ}\mathrm{C}$	121	132	162	172	165	141	159	158	138	142
$120^{\circ}\mathrm{C}$	119	130	160	171	163	139	156	156	134	138

Bild 3.11 Wärmekapazität c_p von FVA 3, **Bild 3.12** Wärmeleitfähigkeit λ von FVA 3, PG 1 und S 100 PG 1 und S 100

Thermische Diffusivität

Die thermische Diffusivität ist das thermische Pendant zur kinematischen Viskosität. Die Berechnung erfolgte nach Gleichung (3.10). Die Werte der Schmierstoffe sind in Tabelle 3.13 aufgelistet.

$$\chi = \frac{\lambda}{c_p \cdot \rho} \tag{3.10}$$

Tabelle 3.13 Thermische Diffusivität χ in $10^{-9}\,\text{m}^2\cdot\text{s}^{-1}$

θ	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
$40^{\circ}\mathrm{C}$	73,7	64,3	77,7	73,9	74,6	95,4	86,7	88,9	79,7	$70,\!6$
$60^{\circ}\mathrm{C}$	70,5	61,7	73,9	69,4	72,2	90,9	83,3	86,4	75,7	67,5
$80^{\circ}\mathrm{C}$	67,9	60,7	72,2	67,3	70,7	87,0	81,0	83,5	73,2	66,3
$100^{\circ}\mathrm{C}$	66,0	60,2	$72,\!6$	68,3	71,1	85,4	79,1	81,9	72,2	65,5
$120^{\circ}\mathrm{C}$	64,2	59,0	74,0	71,7	71,6	81,3	77,2	80,1	71,1	64,2

3.2.2 Elastomere

Die Ergebnisse für die Elastomere sind als Vergleich der Elastomere untereinander zu sehen. Eine Ermittlung von Absolutwerten ist kaum möglich. Durch die Probenvorbereitung, die Wahl der Messflüssigkeiten, Streuung bei der Messung und durch die Wahl des Berechnungsverfahrens ergeben sich viele Fehlerquellen.

Oberflächenenergie

Die Auswertung der Oberflächenenergie der Elastomere erfolgte nach WU. Das Verfahren nach OWRK ergab unplausible Werte. Sie waren zu gering²³.

In Tabelle 3.14 sind die Minima, Maxima und Mittelwerte der Oberflächenenergien aufgelistet. Die Minima und Maxima berücksichtigen die Streuung der Kontaktwinkel der Messflüssigkeiten. Die berechneten polaren Anteile σ_s^p der Oberflächenenergie sind nach [102] plausibel. NBR als polar geltender Werkstoff hat die höchste Polarität $\Pi = 0,41$. Für FKM ergibt sich $\Pi = 0,35$, für ACM ist $\Pi = 0,25$.

FKM hat die geringste Oberflächenenergie, $\sigma_s = 19,27 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{m}^{-1}$. Sie liegt knapp oberhalb von PTFE²⁴.

Tabelle 3.14 Nach WU berechnete Oberflächenergie σ_s (10⁻³N·m⁻¹) der Elastomere bei Raumtemperatur; angegeben sind jeweils Maximum $\hat{\sigma}$, Mittelwert $\tilde{\sigma}$ und Minimum $\check{\sigma}$

	ACM	FKM	NBR
$\hat{\sigma}_{s}^{p}$	$9,\!80$	8,00	$32,\!17$
$\bar{\sigma}_{s}^{p}$	$8,\!49$	$6,\!69$	$21,\!95$
$\check{\sigma}_{s}^{p}$	$6,\!35$	4,96	$18,\!13$
$\hat{\sigma}^d_s$	$27,\!15$	15,20	$33,\!32$
$ar{\sigma}^d_s$	$25,\!89$	12,58	$31,\!61$
$\check{\sigma}^d_s$	$24,\!64$	10,25	$29,\!89$
$\hat{\sigma}_s$	$36,\!95$	23,2	$65,\!49$
$\bar{\sigma}_s$	$34,\!38$	19,27	$53,\!56$
$\check{\sigma}_{s}$	$30,\!99$	15,21	48,02

Benetzung

Viele der untersuchten Schmierstoffe benetzen die Elastomere. Die Messung eines Kontaktwinkels im thermodynamischen Gleichgewicht war nicht möglich. Daher wurde der Vordrückwinkel θ'_{ν} der geschliffenen Proben gemessen. Tabelle 3.15 listet die gemessenen Vordrückwinkel auf.

Der ergänzend gemessene Kontaktwinkel θ' ist in Tabelle 3.16 aufgelistet. Die Verweildauer der Tropfen betrug $t \approx 10$ s

²³Nach OWRK ergab sich für FKM $\sigma_s = 17, 8 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$, für NBR $\sigma_s = 18, 8 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$ und für ACM $\sigma_s = 20, 4 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$. Diese Werte liegen im Bereich der Oberflächenenergie von PTFE. Das ist aufgrund der chemischen Zusammensetzung der Elastomere unwahrscheinlich.

²⁴Die Oberflächenenergie von PTFE beträgt $\sigma_s = 18, 5 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$.

	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
ACM	23,6	24,9	43,3	42,5	39,9	24,7	23,2	24,8	20,2	16,8
FKM	25,6	30,6	62,0	56,2	42,5	23,8	23,2	23,8	24,9	19,4
NBR	24,5	25,5	46,5	47,5	37,2	25,7	23,6	21,1	22,3	16,9

Tabelle 3.15 Gemessener Vordrückwinke
l θ'_{ν} (°) der Schmierstoffe auf den Elastomeren bei Raumtemperatur

Tabelle 3.16 Gemessener Kontaktwinkel θ' (°) der Schmierstoffe auf den Elastomeren bei Raumtemperatur

	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
ACM	10,7	17,9	17,6	34,5	33,5	15,1	23,2	21,4	6,6	6,2
FKM	12,9	20,8	49,9	48,6	37,3	15,2	16,0	21,6	6,3	7,6
NBR	$11,\!6$	15,8	19,3	$_{36,7}$	33,4	15,2	16,3	17,3	6,4	6,3

3.2.3 Wellenwerkstoffe

Die Wellenwerkstoffe werden durch die Schmierstoffe benetzt. Daher wurde die Oberflächenenergie σ_s mit Messflüssigkeiten bestimmt und der Vordrückwinkel θ'_{ν} der Schmierstoffe gemessen.

Oberflächenenergie

Die Oberflächenenergie der gemessenen Stähle hat einen ähnlichen Betrag und Verlauf (Bilder 3.13 und 3.14). Der disperse Anteil der Oberflächenenergie ist etwas größer als der polare Anteil. Als Berechnungsverfahren wurde OWRK benutzt.

Die Oberflächenenergie von Messing (Bild 3.15) und Glas (Bild 3.16) liegt unterhalb derer von Stahl. Der polare Anteil der Oberflächenenergie ist bei beiden Werkstoffen deutlich kleiner als der disperse Anteil. Es wurde das Berechnungsverfahren nach WU benutzt. Die Berechnung nach OWRK ergab im Vergleich unplausibel geringe polare Anteile.

Benetzung

Von den Wellenwerkstoffen wurde primär der Vordrückwinkel θ'_{ν} gemessen. Tabelle 3.17 listet die gemessenen Vordrückwinkel auf. Die Messung des Rückzugwinkels θ'_r ergab keine zuverlässigen Werte. Durch das Spreitverhalten der Schmierstoffe wurde der Rückzugwinkel verfälscht. Auf eine Angabe des Rückzugwinkels und der Kontaktwinkelhysterese wird deshalb verzichtet. Ergänzend sind in Tabelle 3.18 die Kontaktwinkel θ' nach einer Verweildauer der Tropfen von $t \approx 10$ s aufgelistet. Die Werte für das Mineralöl FVA 1 und die beiden Silikonöle sind Näherungswerte.

teil σ^p und disperser Anteil σ^d von 100Cr6- teil σ^p und disperser Anteil σ^d von C45-Stahl Stahl

Bild 3.13 Oberflächenenergie σ , polarer An-Bild 3.14 Oberflächenenergie σ , polarer An-

Bild 3.15 Oberflächenenergie σ , polarer Bild 3.16 Oberflächenenergie σ , polarer An-Anteil σ^p und disperser Anteil σ^d von teil σ^p und disperser Anteil σ^d von Glas CuZn39Pb3-Messing

In Bild 3.17 sind die Vordrückwinkel von FVA 3, PG 1 und S 100 über der Temperatur aufgetragen. FVA 3 und S 100 bildeten auf allen drei Substraten ähnliche Vordrückwinkel; mit der Temperatur abnehmend. PG1 bildete wesentlich größere Vordrückwinkel. Der Betrag des Vordrückwinkels hing bei PG1 zudem vom Substrat ab.

Die Vordrückwinkel auf dem Modellsubstrat (Bronze gefülltes PTFE) ent-

sprechen den Vordrückwinkeln auf den Wellenwerkstoffen (Bild 3.18). Der Betrag dieser Vordrückwinkel ist größer als bei den Wellenwerkstoffen. Die Relation der Schmierstoffe zueinander ist jedoch identisch.

Tabelle 3.17 Gemessener Vordrückwinkel θ'_{ν} (°) der Schmierstoffe auf den Wellenwerkstoffen bei Raumtemperatur

	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
St	29,6	29,7	47,6	54,9	45,8	31,0	42,2	37,8	27,6	29,9
Ms	31,5	$31,\!6$	50,3	49,2	43,8	31,5	40,1	$_{38,5}$	28,6	29,8
Gl	29,0	32,9	51,8	52,1	40,1	29,8	$_{38,4}$	41,7	27,9	31,5

Tabelle 3.18 Gemessener Kontaktwinkel θ' (°) der Schmierstoffe auf den Wellenwerkstoffen bei Raumtemperatur

	FVA1	FVA3	PG1	PG3	GH6	PTX	EG	RM	S50	S100
St	5	15,4	37,1	40,2	40,1	11,7	18,3	17,5	4	7,5
Ms	5	$13,\!6$	34,0	40,7	$_{36,2}$	10,0	17,0	18,8	4	5

Bild 3.17 Vordrückwinkel θ'_{ν} von FVA3, **Bild 3.18** Vordrückwinkel θ'_{ν} auf Bronze ge-PG 1 und S 100 auf den Wellenwerkstoffen St, fülltem PTFE Ms und Gl

Kapitel 4

Dichtsystem

Die Untersuchungen an Dichtsystemen sind der zentrale Bestandteil dieser Arbeit. Der Einfluss von Grenzflächeneffekten auf messbare Größen von Radial-Wellendichtungen wurde untersucht. Diese Größen sind Reibung, Förderwert und Verschleiß. Dichtring-Elastomer, Wellenwerkstoff und Schmierstoff wurden systematisch variiert. Untersuchungen zum Temperaturverlauf und zur Schmierfilmhöhe bei Stangendichtungen ergänzten das Versuchsprogramm.

4.1 Versuchsdurchführung

Die Versuchsdurchführung umfasst die Beschreibung der Prüfeinrichtungen, der Versuchsteile und des Vorgehens.

4.1.1 Prüfeinrichtungen

Die Versuche wurden großteils mit Prüfeinrichtungen durchgeführt, die aus früheren Arbeiten ([13, 57, 61, 71]) vorhanden sind. Dies sind Messgeräte für Radialkraft, Berührbreite und Temperatur sowie Prüfstände zur Reibmomentmessung und Dauerlauf-Prüfung.

Messgeräte RWDR

Von den verwendeten RWDR wurden die Radialkraft F_r und die Berührbreite
b gemessen. Diese Größen dienen der Berechnung der mittleren Flächenpressung
 $\bar{p} = F_r \cdot (\pi \cdot d \cdot b)^{-1}$

Radialkraft Die Radialkraft wurde mit einem Messgerät nach DIN 3761-9 gemessen [23]. Das Messgerät besteht aus einem zweiteiligen Dorn im Durchmesser des zu messenden RWDRs. Eine Hälfte des Dorns ist gestellfest, die andere Hälfte ist über eine steife Feder an das Gestell gekoppelt. Durch Aufschieben eines RWDRs wird die bewegliche Dornhälfte zur gestellfesten Dornhälfte verschoben¹. Der Verschiebeweg ist proportional zur Radialkraft des RWDRs.

Berührbreite Zur Messung der Berührbreite wird der RWDR auf eine PMMA-Hohlwelle aufgeschoben. Über einen Winkelspiegel kann die Berührbreite des RWDRs betrachtet werden. Zur Messung wird ein Mikroskop mit Messskala verwendet. Die Vergrößerung beträgt wahlweise $8 \times$, $40 \times$ oder $63 \times$. Der RWDR kann bei der Messung gedreht werden um mehrere Stellen am Umfang zu messen.

Thermographie

Die Temperatur an der Dichtkante wurde mit einer Infrarotkamera gemessen. Verwendet wurde das Modell VARIO THERM HEAD II (R) von INFRATEC. Der Platin-Silizium-Detektor hat eine optische Auflösung von 256×256 Pixeln. Die thermische Auflösung ist besser als 0,1 K. Der Messbereich umfasst Temperaturen zwischen $\vartheta = 50^{\circ}$ C und $\vartheta = 250^{\circ}$ C. Der gewählte Emissionskoeffizient betrug, in Anlehnung an [19], $\varepsilon_{IR} = 0,95$.

In den Versuchen mit Stahl-, Messing- und Glaswelle wurde die Temperatur in einem Ausschnitt am Hochpunkt der Welle erfasst. Zur Messung des Temperaturverlaufs in axialer Richtung wurde eine Saphir-Hohlwelle verwendet. Wie in Bild 4.1 dargestellt, wird die Wärmestrahlung aus der Dichtzone über einen Infrarot-Hohlspiegel in Richtung Infrarot-Kamera umgelenkt. Der Saphir lässt die Wärmestrahlung im Messbereich der Infrarot-Kamera fast ungehindert durch. Die Wärmeleitfähigkeit des Saphirs (Bild 4.2) ist mit der von Stahl vergleichbar.

Reibmoment

Die Reibmomentmessungen wurden am Universalprüfstand 1 durchgeführt.

Grundaufbau Der Grundaufbau ist ein gestellfestes Stehlager. Im Stehlager ist eine elektrisch angetriebene Spindel fliegend gelagert. An der Stirnseite der Spindel befindet sich ein Aufnehmer für die Prüfwelle. Koaxial zur Spindel führen drei Stangen den axial beweglichen Gehäuseträger. Im Gehäuseträger

¹Durch die steife Feder beträgt der Verschiebeweg nur wenige Mikrometer.

Bild 4.1 Versuchsaufbau für Thermographie Bild 4.2 Wärmeleitfähigkeit λ von Saphir mit Saphirhohlwelle

im Vergleich zu 16MnCr5-Stahl und V2A-Stahl [50]

befindet sich ein aerostatisches Lager. Das aerostatische Lager nimmt Kräfte in axialer und radialer Richtung auf.

Die Temperierung der Dichtzone erfolgte in zwei Varianten: Mittels temperierter Welle und mittels temperiertem Ölsumpf.

Temperierte Welle Für den Fall der temperierten Welle wird zwischen Spindel und Prüfwelle ein Drehübertrager eingebaut. Der Drehübertrager fungiert als Aufnehmer für Prüfwellen in Hülsenform. Ein Hydraulikaggregat pumpt temperiertes Öl durch den Drehübertrager. Das temperierte Öl fließt mäanderförmig an der Innenseite der Prüfwelle. Ein Pt100-Sensor misst am Austritt des Drehübertrags die Öltemperatur als Regelgröße für die Wellentemperatur. Eine Prüfkammer mit Ölsumpf existiert bei diesem Aufbau nicht. Es werden stattdessen, in regelmäßigen zeitlichen Abständen, einige Tropfen Schmierstoff an der Bodenseite eingespritzt. Der RWDR befindet sich in einem ringförmigen Aufnehmer, der im aerostatischen Lager montiert wird. Der Aufnehmer stützt sich tangential an einem Kraftsensor² ab. Die im Betrieb auftretende Reibkraft zwischen Welle und Dichtring wird durch das aerostatische Lager verlustfrei auf den Kraftsensor übertragen. Ein Auswerte-Rechner rechnet das Spannungssignal des Kraftsensors in das wirkende Reibmoment um. Der Reibmomentwert wird an einem Monitor dargestellt und aufgezeichnet.

²Ein biegeweicher Balken mit applizierten Dehnmessstreifen, umgangssprachlich »Biegebalken«
Temperierter Sumpf Bei temperiertem Sumpf kommt im Aufbau eine Prüfkammer hinzu. Die temperierte Welle bleibt bestehen. Anstatt des ringförmigen RWDR-Aufnehmers wird ein Öltopf mit $V \approx 2 \cdot 10^{-3} \,\mathrm{m}^3$ eingebaut. Eine Stirnseite des Öltopfs wird von dem zu untersuchenden RWDR abgedichtet. Die andere Stirnseite besitzt eine Zulauf- und eine Ablaufbohrung. Über diese Bohrungen wird extern temperiertes Prüföl berührungslos zu- und abgeführt. Die Temperierung erfolgt in einem JULABO Labor-Temperieraggregat. Die Durchströmung des Öltopfs wird so eingestellt, dass der Ölpegel bis Wellenmitte reicht.

Förderwert

Die Förderwertmessungen wurden am Universalprüfstand 2 durchgeführt. Der Grundaufbau ist prinzipiell gleich wie der des Universalprüfstand 1.

Der Prüfaufbau für die Förderwertmessung hat zwei Merkmale: Erstens, stirnseitig vor dem RWDR angebrachte Wirbelbrecher zur Vermeidung von Taylor-Görtler-Wirbeln. Zweitens, eine Schmierstoffumwälzung mit druckloser Ausströmung in Dichtkantennähe; ohne Ölsumpf.

Wirbelbrecher Vor der Stirnseite des RWDRs befindet sich im Abstand von $s = 5 \cdot 10^{-3}$ m eine gehäusefeste Hülse (Bild 4.3). Die Hülse lässt einen Spalt von $h = 1 \cdot 10^{-3}$ m zur Gegenlauffläche. Schmierstoff kann in axialen und tangentialen Nuten der Hülse fließen. Somit entstehen keine Wirbel.

Schmierstoffumwälzung Durch die Wirbelbrecher findet keine selbstinduzierte Schmierstoffumwälzung statt. Der Schmierstoff wird deshalb mit einer Pumpe umgewälzt. Eine peristaltische Pumpe³ saugt Schmierstoff aus einem Auffangbehälter. Der Schmierstoff wird in Dichtkantennähe, oberhalb des Hochpunkts der Welle, drucklos zugeführt. Über den Wirbelbrecher fließt der Schmierstoff in den Auffangbehälter zurück. Der Schmierstoff wird nicht temperiert.

Verschleiß

Die 1000 h-Versuche zur Verschleißuntersuchung wurden an dem Zwölfzellen-Prüfstand Goetze⁴ durchgeführt. Der Prüfstand verfügt über zwölf einzelne Prüfzellen. Alle Prüfzellen werden gemeinsam mit einem Elektromotor über Riementriebe angetrieben.

³Umgangssprachlich: »Schlauchpumpe«.

⁴Am Institut des Autors werden mehrere, vergleichbare Prüfstände betrieben. Zur eindeutigen Unterscheidung wird hier der Markenname des Herstellers als Bezeichnung verwendet.

wertmessung

Bild 4.3 Dichtungsumfeld bei der Förder- Bild 4.4 Messwerterfassung bei der Reibmoment- und Förderwertmessung

Gegenlaufflächen werden über Konus-Schnittstellen an die Spindeln des Prüfstands montiert. Dichtringe werden über scheibenförmige Aufnehmer in Nähe der Spindellagerung ans Gehäuse angeflanscht. Die Bodenseite des Dichtrings blickt dabei zur Spindel. Der Prüftopf wird auf den Dichtring-Aufnehmer montiert. Die Anordnung ist in Bild 4.5 dargestellt. Es wurden, wie dargestellt, RWDR nach DIN 3760 verwendet: der Schmierstoffsumpf reicht bei Wellenstillstand bis Wellenmitte.

Die Prüftöpfe bestehen aus gut Wärme leitendem Aluminium. Sie werden an ihrer Außenseite flächig beheizt. Die Kühlung der Prüftöpfe erfolgt über Kühlwendel im Schmierstoffsumpf. In unmittelbarer Nähe der Gegenlauffläche befindet sich ein Pt100-Temperatursensor. Über dieses Temperatursignal wird die Temperatur im Schmierstoffsumpf geregelt.

Das Volumen der Prüftöpfe beträgt $V \approx 1.6 \cdot 10^{-3} \text{ m}^3$. Die Schwankung der Temperaturregelung beträgt $\Delta T \approx 2$ K. Die Abweichung von der Soll-Drehzahl beträgt $\Delta n \approx 0.15 \,\mathrm{s}^{-1}$.

Leckage

Die 168 h-Versuche zur Dichtheit/Leckage wurden am Sechszellen-Prüfstand durchgeführt. Dieser Prüfstand gleicht dem Zwölfzellen-Prüfstand Goetze im Aufbau.

Die Anordnung ist in Bild 4.6 dargestellt. Das Volumen der Prüftöpfe beträgt $V \approx 1.6 \cdot 10^{-3} \,\mathrm{m}^3$. Die untersuchten PTFE-Manschetten waren vollständig geflutet.

Bild 4.5 Dichtungsumfeld bei den 1000 h-Versuchen (nicht maßstäblich)

Bild 4.6 Dichtungsumfeld bei den Leckage-Versuchen (nicht maßstäblich)

Schmierfilmdicke

Die Schmierfilmdicke auf Hydraulikstangen wurde mit einem Ellipsometer⁵ gemessen. Ein Ellipsometer strahlt polarisiertes Licht auf die benetzte Oberfläche. Ein Empfänger misst die Intensität des reflektierten Lichts in Abhängigkeit der Polarisation. Aus dem Rückstrahlverhalten kann die Schmierfilmhöhe bestimmt werden.

4.1.2 Gegenlaufflächen

Die Gegenlaufflächen unterteilen sich in Wellen für die RWDR-Versuche und die Stange für den Stangendichtungs-Versuch.

Wellen

Es wurden Wellen aus drei unterschiedlichen Werkstoffen verwendet: 100Cr6-Stahl, Cu39ZnPb3-Messing und Kalk-Soda-Glas.

Als Stahl-Wellen wurden Nadellager-Innenringe von INA® verwendet. Die Innenringe können in annähernd gleichbleibender Qualität kommerziell bezogen werden. Sie dienen am IMA als Standard-Gegenlaufflächen für RW-DR. Insgesamt wurden 20 einzelne Innenringe verwendet. Für die Förderwertund Reibmomentmessungen wurde jeweils ein Innenring verwendet. Zwölf Innenringe kamen bei den Verschleißuntersuchungen zum Einsatz. Sechs Innen-

⁵Hersteller: Plasmos GmbH, D-85319 München.

ringe mit unterschiedlicher R_z -Rauheit wurden für die Untersuchung des Rauheitseinflusses genutzt.

Die Geometrie der Innenringe ist in Bild 4.7 dargestellt. Die Innenringe haben eine Härte von 58±2 HRC und sind im Einstich geschliffen. Die Oberflächenrauheit beträgt $R_z \approx 2 \cdot 10^{-6}$ m. Ausnahmen bilden nur die Glaswelle und die sechs Innenringe zur Untersuchung des Rauheitseinflusses. Die einzelnen Rauheitswerte sind im Anhang auf Seite 171 aufgelistet.

Die Aufnahme der Innenringe am Prüfstand erfolgt über die Passung am Innendurchmesser. In den Versuchen zu Reibmoment und Förderwert wurde dazu ein Vollaufnehmer bzw. ein Drehübertrager verwendet. Die Wellenhülsen verhielten sich dadurch wie Vollwellen. In den Versuchen zu Verschleiß und Leckage wurden die Wellenhülsen zwischen Deckel gespannt. Diese Aufnahme ist schematisch in den Bildern 4.5 und 4.6 zu sehen.

Die Messing-Welle ist eine Vollwelle. Ihre äußeren Abmessungen entsprechen denen der Nadellager-Innenringe (Bild 4.8). Die Lauffläche der Messing-Welle wurde im Einstich geschliffen⁶. Die mittlere Rautiefe ist $R_z \approx 2 \cdot 10^{-6}$ m.

Bild 4.7 Geometrie der Nadellager-Innen- Bild 4.8 Geometrie der Messingwelle ringe von $INA(\mathbb{R})$

Die Glas-Hohlwelle wurde aus früheren Arbeiten übernommen. Ihre Geometrie (Bild 4.9) entspricht den Nadellager-Innenringen. Die Oberflächenrauheit beträgt $R_z \approx 0.3 \cdot 10^{-6}$ m. Die Glas-Hohlwelle ist auf einer Seite fest in einen Stahl-Aufnehmer eingefügt.

⁶Hersteller: Präzisionsschleiferei Rainer Schäffler, D-73079 Süßen.

Stange

Die Stange (Bild 4.10) ist eine Hartchrom-beschichtete Hohlstange. Die Oberfläche ist poliert. Der Außendurchmesser beträgt $d = 50 \cdot 10^{-3} \,\mathrm{m}$. Die Länge der Lauffläche beträgt $x \approx 0,45 \,\mathrm{m}$.

Bild 4.9 Geometrie der Glashohlwelle

Bild 4.10 Geometrie der Hydraulikstange

4.1.3 Dichtringe

Die hauptsächlich verwendeten Dichtringe sind Elastomer-RWDR nach DIN 3760. Zusätzlich wurden PTFE-Manschetten und Stangendichtungen untersucht.

Elastomer-RWDR

Die Elastomer-RWDR wurden von SIMRIT[®] bezogen. Die Dimension der RWDR ist $80 \times 100 \times 10$ bzw. $80 \times 100 \times 12$. Der Außendurchmesser der RW-DR ist mit Elastomer ummantelt. Die Geometrie ist bei allen verwendeten RWDR identisch (Bild 4.11). Die Herstellerbezeichnung der Geometrie lautet BAU bzw. BAUM. Die Dichtkante ist bei dieser Geometrie bearbeitet (»gestochen«).

Die RWDR lagen in drei Werkstoffen vor: ACM, FKM und NBR. Die Elastomer-Compounds entsprechen den in Abschnitt 3.1.2 aufgeführten. Vorrangig wurden RWDR aus FKM verwendet. Diese sind bei den Versuchsbedingungen resistent gegen alle eingesetzten Schmierstoffe [102]. Eine Verfälschung von Ergebnissen durch Unverträglichkeiten wird dadurch vermieden. Die Radialkraft der FKM-RWDR wurde bei Temperaturen von $\vartheta = 40^{\,\circ}\text{C}...$ 150°C in Schritten von $\Delta T = 10\,\text{K}$ gemessen. Der in Bild 4.12 dargestellte Verlauf zeigt Mittelwerte (Punkte) und Abweichungen (Balken) von fünf RWDR. Die Radialkraft fällt mit zunehmender Temperatur annähernd linear ab. Im relevanten Temperaturbereich von $\vartheta = 40^{\,\circ}\text{C}...80^{\,\circ}\text{C}$ beträgt die Radialkraft $F_r \approx 22\,\text{N}.$

Die Radialkraft der NBR-RWDR beträgt bei Raumtemperatur $F_r\approx 39\,\mathrm{N}.$ Die Radialkraft der ACM-RWDR beträgt analog dazu $F_r\approx 25\,\mathrm{N}.$

Bild 4.11 Geometrie der RWDR SIMRIT®Bild 4.12 Abhängigkeit der Radialkraft F_r BAU und BAUMvon der Temperatur ϑ bei FKM-RWDR

PTFE-Manschette

Die PTFE-Manschetten vom Typ PS-SEAL® wurden von GARLOCK® bezogen. Die Werkstoffbezeichnung des PTFE-Compounds ist GYLON® BLAU. Die Dimension ist $80 \times 100 \times 10$. Der Außendurchmesser ist metallisch. Die Geometrie ist in Bild 4.13 dargestellt. Die Radialkraft der PTFE-Manschetten beträgt $F_r \approx 68$ N.

Stangendichtung

Als Stangendichtung wurde ein Nutring verwendet. Bild 4.14 zeigt dessen Geometrie. Der Werkstoff ist Polyurethan (PU).

Bild 4.13 Geometrie der PTFE-Manschet- Bild 4.14 Geometrie des PU-Nutrings ten GARLOCK® PS-SEAL®

4.1.4 Schmierstoffe

In den Versuchen zum Dichtsystem wurden die in Abschnitt 3.1.2 (Seite 65) aufgeführten Schmierstoffe verwendet. Aufgrund ihrer ähnlichen Viskosität wurden hauptsächlich folgende drei Schmierstoffe eingesetzt: Das Mineralöl FVA 3, das Polyglykol PG 1 und das Silikonöl S 100.

Alle Schmierstoffe wurden in Kleingebinden bezogen und ausschließlich für die hier beschrieben Versuche verwendet. Für die Ermittlung der Stoffwerte (Kapitel 3) wurde jeweils dieselbe Charge Schmierstoff untersucht. Bei den Förderwertmessungen kam nur frischer Schmierstoff zum Einsatz. In den Verschleiß- und Leckage-Versuchen wurde der Schmierstoff in Wiederholungsversuchen wiederverwendet.

4.1.5 Vorgehen

Im Folgenden wird das Vorgehen in den Versuchen zum Dichtsystem beschrieben. Dies umfasst die eingestellten Versuchsparameter und die angewandten Methoden.

Radialkraft

Die Radialkraft der RWDR wurde jeweils vor und nach den Versuchen gemessen. Vor der Messung lagerten die RWDR für mindestens 24 Stunden auf einem Dorn mit $d = 80 \cdot 10^{-3} \,\mathrm{m}$.

Die Messung erfolgte fünf mal je RWDR. Nach jeder Einzelmessung wurde der RWDR um 90° gedreht. Die Radialkraft wurde als arithmetischer Mittelwert aus dem zweiten bis fünften Messwert berechnet. Der erste Messwert weicht meist von den weiteren Messwerten ab. Bei der Mittelwertbildung wird er deshalb ignoriert.

Reibmoment

Das Ziel der Reibmoment-Versuche war die Ermittlung des Schmierstoff-Einflusses auf den Verlauf der Gümbelzahl-Kurve. Dazu wurden die drei Schmierstoffe FVA 3, PG 1 und S 100 verwendet.

Das Reibmoment wurde bei folgenden Drehzahlstufen gemessen: $n \in \{50; 100; 200; 500; 1000; 2000; 5000\} (min^{-1})$. Im Versuchsaufbau mit temperierter Welle dichtete der RWDR keinen Schmierstoffsumpf ab. Bei jeder Drehzahlstufe wurde eine geringe Menge Schmierstoff $(V = 50 \cdot 10^{-9} \text{ m}^3)$ an der Bodenseite eingespritzt. Nach Ende der Förderung durch den RWDR, in stationärem Zustand, wurde das Reibmoment erfasst. Parallel zum Reibmoment wurde die Temperatur an der Dichtkante mit einer IR-Kamera gemessen.

Als weitere Versuchsparameter wurden das Elastomer, die Temperatur und das Schmierstoffangebot variiert.

Elastomer Im Versuchsaufbau mit temperierter Welle wurde das Elastomer variiert. Es wurden fünf Einzelversuche mit FKM-RWDR und jeweils drei Einzelversuche mit ACM- und NBR-RWDR durchgeführt. Die Wellentemperatur betrug in diesen Versuchen $\vartheta = 40$ °C.

Temperatur Die Versuche mit temperierter Welle wurden für die FKM-RWDR bei $\vartheta = 40$ °C und bei $\vartheta = 80$ °C durchgeführt. Die Anzahl an Einzelversuchen betrug fünf bei $\vartheta = 40$ °C und drei bei $\vartheta = 80$ °C.

Schmierstoffangebot Ein Versuchsblock beinhaltete Versuche mit Schmierstoffsumpf. Das Schmierstoffvolumen im Sumpf betrug $V \approx 1, 2 \cdot 10^{-3} \text{ m}^3$. Der Schmierstoff wurde ständig umgewälzt und extern temperiert. Die Temperierung der Welle blieb dabei bestehen. Sumpf und Welle wurden auf $\vartheta = 40$ °C temperiert.

Förderwert

Der Förderwert wurde mit zwei unterschiedlichen Methoden bestimmt: Mit der Einspritzmethode und der KAWAHARA-Methode.

Einspritzmethode Die Einspritzmethode greift auf die Reibmomentmessung zurück. Bei rotierender Welle wird bodenseitig am RWDR eine definierte Menge Schmierstoff eingespritzt (Bild 4.15). Unmittelbar nach Zugabe des Schmierstoffs ändert sich das Reibmoment des RWDRs (Bild 4.16). Diese Änderung wird als Reibmomentsprung bezeichnet. Abhängig von der Viskosität des Schmierstoffs und dem Förderwert des RWDRs kann die Änderung positiv oder negativ sein. Während der Förderung bleibt das Reibmoment auf einem annähernd konstanten Niveau. Mit dem Ende der Förderung tritt ein weiterer Reibmomentsprung auf. Aus dem eingespritzten Schmierstoffvolumen V und der Förderdauer t_f kann der Förderwert nach 4.1 berechnet werden [108].

$$FW = \frac{2 \cdot V}{\boldsymbol{\omega} \cdot \boldsymbol{d} \cdot \boldsymbol{t}_f} \tag{4.1}$$

Das eingespritzte Schmierstoffvolumen betrug $V = 50 \cdot 10^{-9} \text{ m}^3$. Bei schwach fördernden Dichtsystemen wurde das Volumen auf $V = 20 \cdot 10^{-9} \text{ m}^3$ reduziert. Die Winkelgeschwindigkeit betrug $\omega = 104,72 \,\mathrm{rad} \cdot \mathrm{s}^{-1}$.

Der Schmierstoff wurde mit einer direktverdrängenden Kolbenhubpipette $(\text{TRANSFERPETTOR}(\widehat{\mathbf{R}}) \text{ von } \text{BRAND}(\widehat{\mathbf{R}}))$ eingespritzt.

tige Schmierstoffzugabe

Bild 4.15 Förderwertmessung durch luftsei- Bild 4.16 Bestimmung der Förderdauer t_f über das Reibmoment M_r

KAWAHARA-**Methode** Bei der KAWAHARA-Methode wird der RWDR invers eingebaut (Bild 4.17). Die Bodenseite zeigt zum abzudichtenden Schmierstoff, die Stirnseite zur Umgebung. Dadurch kann der RWDR ständig Schmierstoff fördern.

Gemessen wird das geförderte, ausgetretene Schmierstoffvolumen V nach einer bestimmten Zeit t. Der Förderwert kann nach Gleichung (4.2) berechnet werden [108].

Angewandt wurde die Methode zur Bestimmung des Rauheitseinfluss der Gegenlauffläche auf den Förderwert. Sechs Stahl-Gegenlaufflächen in drei ,Rauheitsklassen' wurden verwendet. Die Rauheiten betrugen $R_z \approx 1 \cdot 10^{-6}$ m, $R_z \approx 3.5 \cdot 10^{-6}$ m, $R_z \approx 6 \cdot 10^{-6}$ m. Je Rauheit wurden vier Versuche mit jeweils

 $K_z \approx 3,5 \cdot 10^{-1}$ m, $K_z \approx 0.10^{-1}$ m. Je Rathert wurden vier Versuche mit jeweiss neuem FKM-RWDR durchgeführt. Die Umfangsgeschwindigkeit und die Temperatur betrugen konstant $u = 4,2 \text{ m} \cdot \text{s}^{-1}$ und $\vartheta = 40^{\circ}$ C. Die Versuche dauerten jeweils acht Stunden. Die geförderte Schmierstoff-Masse wurde stündlich gewogen.

Nachteile der KAWAHARA-Methode sind der irreguläre Betriebszustand des RWDRs und die nicht exakt bekannte Temperatur des austretenden Schmierstoffs⁷. Aufgrund dieser Nachteile wurde die Einspritzmethode bevorzugt angewandt.

$$FW = \frac{2 \cdot m}{\rho \cdot \omega \cdot d \cdot t} \tag{4.2}$$

Verschleiß

Die 1000 h-Versuche wurden bei konstanter Umfangsgeschwindigkeit und bei konstanter Temperatur betrieben. Die Umfangsgeschwindigkeit der Wellen betrug $u = 4, 2 \,\mathrm{m \cdot s^{-1}}$. Die Temperatur im Ölsumpf betrug $\vartheta = 40\,^{\circ}\mathrm{C}$.

Mit allen untersuchten Schmierstoffen (siehe 3.1.2) wurden Versuche mit FKM-RWDR durchgeführt. Je Schmierstoff fanden zwei Versuche statt. Mit ausgewählten Schmierstoffen (FVA 3, PG 1 und S 100) wurden Versuche mit ACM-RWDR und NBR-RWDR durchgeführt. Je Kombination fanden ebenfalls zwei Versuche statt.

Zur Bestimmung des RWDR-Verschleißes wurde die Berührbreite der RW-DR gemessen. Die Verschleißgrößen der Gegenlaufflächen wurden aus einem⁸ Profilschrieb ermittelt. Bild 4.18 zeigt den Profilschrieb der Gegenlauffläche des Versuchs mit FKM-RWDR und dem Schmierstoff FVA 3. Die Abszisse entspricht der Achsrichtung der Gegenlauffläche. Die Ordinate gibt die Höhe in radialer Richtung an. Die Verschleißbreite l_{ν} ist über diejenige Breite definiert, in der Verschleiß stattfand. Die Verschleißtiefe h_{ν} ist der Abstand

⁷Es kann nur die geförderte Schmierstoffmasse gemessen werden. Zur Ermittlung des Volumens ist die Kenntnis der Dichte des austretenden Schmierstoffs erforderlich. Die dafür anzusetzende Temperatur kann nur geschätzt werden.

 $^{^8 \}rm Der$ Verschleiß war stets gleichmäßig. Eine Mittelung über mehrere Profilschriebe am Umfang war nicht erforderlich.

zwischen dem tiefsten Punkt des Profilschriebs und der ursprünglichen Oberfläche.

Bild 4.17 Methode zur Förderwertmessung Bild 4.18 Bestimmung der Verschleißgrößen nach Kawahara

bei Gegenlaufflächen

Leckage

Die 168 h-Versuche zur Leckage-Messung bei PTFE-Manschetten wurden bei konstanter Umfangsgeschwindigkeit und bei konstanter Temperatur betrieben. Die Umfangsgeschwindigkeit betrug $u = 4, 2 \text{ m} \cdot \text{s}^{-1}$. Die Temperatur im Ölsumpf betrug $\vartheta = 40^{\circ}$ C.

Die Leckage wurde in Bechergläsern aufgefangen und die während 24 Stunden ausgetretene Leckage jeweils gewogen.

Je Schmierstoff (FVA 3, PG 1 und S 100) wurden vier Versuche durchgeführt. Es wurden ausschließlich PTFE-Manschetten vom Typ GARLOCK(R) PS-SEAL(R) und Nadellager-Innenringe untersucht.

Schmierfilmdicke

Die Stange wurde vollständig mit Schmierstoff befeuchtet. Mit der Stangendichtung wurde der Schmierstoff in mehreren Hüben abgestreift. Die Bewegung der Stangendichtung geschah von Hand. Der jeweils letzte Hub entsprach einer Ausfahrbewegung der Stange.

Die Messung der Schmierfilmhöhe erfolgte in einem helixförmigen Messchrieb am Umfang der Stange. Ungleichförmigkeiten des Schmierfilms in Längs- und in Umfangsrichtung sollten damit kompensiert werden.

Für jeden Schmierstoff wurden Befeuchtung und Messung fünf mal durchgeführt.

4.2 Ergebnisse

Die Ergebnisse aus den Versuchen am Dichtsystem werden im Folgenden dargestellt. Die Darstellung erfolgt weitgehend unkommentiert. Die Auswertung der Ergebnisse hinsichtlich des Einflusses der Stoffwerte erfolgt in Kapitel 5.

4.2.1 Thermographie

Die direkte Temperaturmessung durch die Saphir-Hohlwelle an der Dichtkante bestätigte den aus der Literatur (Abschnitt 2.1.1) bekannten Temperaturverlauf. In Bild 4.19 ist der Temperaturverlauf in axialer Richtung quer zur Dichtkante dargestellt. Die linke Seite des Bildes entspricht der Stirnseite des RWDRs; die rechte Seite entpricht der Bodenseite.

Der Temperaturverlauf ist qualitativ unabhängig von der Umfangsgeschwindigkeit u der Gegenlauffläche. Die Umfangsgeschwindigkeit u hat lediglich Einfluss auf den Betrag der Temperatur ϑ .

Die aus dem gemessenen Temperaturverlauf berechneten Temperaturgradienten sind in Bild 4.20 dargestellt. Die Temperaturgradienten in Dichtkantennähe betragen $\partial T \cdot \partial x^{-1} = 100 \,\mathrm{K} \cdot \mathrm{m}^{-1} \dots 2000 \,\mathrm{K} \cdot \mathrm{m}^{-1}$.

Bild4.19GemessenerTemperaturverlaufBild4.20BerechneteTemperaturgradien-an der Dichtkante in axialer Richtungten aus Bild4.19

4.2.2 Reibung

Die Ergebnisse zur Reibung im Dichtsystem wurden aus den Förderwertmessungen und den Versuchen zur Gümbelzahlkurve ermittelt.

Wellenwerkstoff

Bei der Förderwert-Messungen mit der Einspritzmethode wurde das Reibmoment aufgezeichnet. Umfangreiche Daten lagen damit für FKM-RWDR und die Wellenwerkstoffe Stahl und Messing vor. Ausgewertet wurde das Reibmoment unmittelbar vor dem Einspritzen von Schmierstoff.

Ein eindeutige Unterscheidung der Schmierstoffe anhand des gemessenen Reibmoments ist nicht möglich. Bei der Stahl-Gegenlauffläche (Bild 4.21) gibt es eine Tendenz zu höherem Reibmoment für Schmierstoffe mit höherer Viskosität. Dies gilt jedoch nur für chemisch ähnliche Schmierstoffe. Bei der Messing-Gegenlauffläche (Bild 4.22) haben fast alle Schmierstoffe ein ähnliches Reibmoment. Ausnahme sind die Polyglykole PG 1 und PG 3 mit verhältnismäßig geringem Reibmoment.

Bild 4.21 Reibmoment bei $u = 4, 2 \text{m} \cdot \text{s}^{-1}$, FKM-RWDR, Stahl-Gegenlauffläche

Temperierte Gegenlauffläche

Die Versuche zur Gümbelzahlkurve (im Folgenden: »Kurve«) wurden mit temperierter Gegenlauffläche durchgeführt. In einem Vergleichsversuch wurde zusätzlich ein temperierter Sumpf verwendet. Die Viskosität der Schmierstoffe (FVA 3, PG 1 und S 100) ist bei $\vartheta = 40 \,^{\circ}$ C ungefähr gleich. Die dargestellten Kurven sind gemittelt aus drei bis fünf Einzelmessungen.

Bei fast allen Versuchen⁹ trat ab einer kritischen Gümbelzahl ein Knick in der Kurve auf. Dieser Knick ist aus der Arbeit von OTT bekannt [92]. OTT führte den Knick auf einen hohen Viskositäts- und Radialkraftverlust infolge hohen Wärmeeintrags zurück. Er beobachtete den Knick bei $G_{hyd} > 2 \cdot 10^{-5}$ und gab Reibleistungen von $P_{reib} \gg 100$ W an.

In den hier beschriebenen Versuchen trat der Knick bereits ab Werten von $G_{hyd} > 3 \cdot 10^{-6}$ und $P_{reib} \approx 40$ W auf.

Die Bilder 4.23 und 4.24 zeigen die Kurven von zwei Versuchen, bei denen nur die Wellentemperatur variiert wurde.

Bei der Wellentemperatur $\vartheta = 40 \,^{\circ}$ C sind die Kurven bis $G_{hyd} \approx 8 \cdot 10^{-6}$ fast deckungsgleich. Oberhalb dieser kritischen Gümbelzahl knicken die Kurven FVA 3 und PG 1 ab. Die Kurve von FVA 3 fällt dabei steiler ab, als die von PG 1. Die Kurve von S 100 steigt hingegen weiter an und knickt erst bei einer höheren Gümbelzahl ab.

Bei der Wellentemperatur $\vartheta = 80$ °C verlaufen die Kurven von FVA 3 und PG 1 wieder annähernd gleich. Der Knick ist nicht so ausgeprägt, wie bei $\vartheta = 40$ °C. Ab $G_{hyd} = 10^{-5}$ verläuft die Kurve von PG 1 flacher als die von FVA 3. Die Kurve von S 100 unterscheidet sich deutlich von denen von FVA 3 und PG 1. Bis $G_{hyd} = 5 \cdot 10^{-6}$ steigt sie steiler an. Danach bleibt der Reibbeiwert f annähernd konstant. Bei der höchsten gemessenen Gümbelzahl fällt der Reibbeiwert deutlich ab.

Elastomer

Der Versuch bei $\vartheta = 40^{\circ}$ C wurde auch mit RWDR aus ACM und NBR durchgeführt. Dadurch sollen Wechselwirkungen zwischen Elastomer und Schmierstoff im Reibverhalten gezeigt werden.

Bei ACM-RWDR (Bild 4.25) verhalten sich die Schmierstoffe ähnlich. Die Kurve von FVA 3 ist, gegenüber PG 1 und S 100, zu kleineren Gümbelzahlen verschoben. Die Höhe der Reibbeiwerte unterscheiden sich kaum von dem Versuch mit FKM-RWDR. Ein Knick ist bei allen drei Kurven zu beobachten.

Im Versuch mit NBR-RWDR (Bild 4.26) ist insbesondere für PG 1 ein deutlich abweichendes Verhalten zu sehen. Die Reibbeiwerte liegen generell niedriger als in den Versuchen mit ACM- und FKM-RWDR. Die Kurve von PG 1 verläuft flach und weist niedrige Reibbeiwerte auf. Ein ausgeprägter Knick tritt dabei nicht auf. Die Kurve von S 100 verläuft ebenfalls flacher als in den anderen Versuchen.

⁹Einzige Ausnahme bildete das Silikonöl S 100 bei dem Versuch mit Ölsumpf.

Bild 4.23 Gümbelzahlkurven von FVA3, PG1 und S100 bei einer Wellentemperatur von $\vartheta = 40^{\circ}$ C, FKM-RWDR

Bild 4.24 Gümbelzahlkurven von FVA3, PG1 und S100 bei einer Wellentemperatur von $\vartheta = 80^{\circ}$ C, FKM-RWDR

von $\vartheta = 40^{\circ}$ C, ACM-RWDR

Bild 4.25 Gümbelzahlkurven von FVA3, Bild 4.26 Gümbelzahlkurven von FVA3, PG1 und S100 bei einer Wellentemperatur PG1 und S100 bei einer Wellentemperatur von $\vartheta = 40^{\circ}$ C, NBR-RWDR

Ölsumpf

Im Versuch mit Ölsumpf lag der Reibbeiwert f deutlich höher, als in den Versuchen ohne Ölsumpf. Dieses Ergebnis deckt sich mit Ergebnissen JUNGs [57]. Die Ursache des höheren gemessenen Moments ist das Schleppmoment, das durch Rotation der Welle im Ölsumpf entsteht.

Die Verläufe der Kurven von FVA 3 und PG 1 sind einander ähnlich (Bild 4.27). Sie verlaufen flach und sind annähernd symmetrisch zu ihrem Hochpunkt bei $G_{hyd} \approx 6 \cdot 10^{-6}$.

Die Kurve von S 100 weicht davon ab. Sie steigt bis zur zweihöchsten Gümbelzahl kontinuierlich an. Dabei werden Reibbeiwerte von f > 1 erreicht.

Reibmomentsprung

Der Reibmomentsprung ΔM_r ist der Indikator für den Förderbeginn und das Förderende bei der Förderwertmessung mit der Einspritzmethode (siehe 4.1.5). In Bild 4.28 sind die Reibmomentsprünge der Fördertwertmessung mit Messingwelle dargestellt. Die Standardabweichungen sind als Fehlerbalken eingetragen. Es wurden nur die Reibmomentsprünge bei Förderbeginn ausgewertet.

Bei den Mineralölen, dem Poly- α -Olefin und den Silikonölen war stets $\Delta M_r < 0$. Das bedeutet eine Verringerung des Reibmoments während des Fördervorgangs.

Bei den Polyglykolen und den Estern traten auch Reibmomentsprünge mit $\Delta M_r > 0$ auf. Das Reibmoment während des Fördervorgangs lag damit oberhalb des Reibmoments im regulären, abdichtenden Betrieb. Bei dem Polyglykol GH 6 und dem Ester EG war der Reibmomentsprung stets größer null.

Bild 4.27 Gümbelzahlkurven von FVA3, PG1 und S100 bei einer Wellen- und Sumpftemperatur von $\vartheta = 40^{\circ}$ C, FKM-RWDR

Bild 4.28 Reibmomentsprung bei der Förderwertmessung, FKM-RWDR, Messing-Gegenlauffläche

Förderwert 4.2.3

Der Förderwert der Dichtsysteme wurde vorrangig mit der Einspritzmethode ermittelt. Diese ergab besser differenzierbare Ergebnisse. Begleitende Untersuchungen wurden mit der KAWAHARA-Methode durchgeführt.

Einspritz-Methode

Alle untersuchten Schmierstoffe wurden bei Verwendung von FKM-RWDR und Stahl- bzw. Messing-Gegenlauffläche gefördert. Den höchsten Förderwert FW haben die Polyglykole (PG 1, PG 3 und GH 6). Den geringsten Förderwert haben die Silikonöle (S 50 und S 100).

In Bild 4.29 sind die Förderwerte bei der Stahl-Gegenlauffläche abgebildet. Bei der Messing-Gegenlauffläche (Bild 4.30) zeigt sich ein ähnliches Verhalten der Schmierstoffe. Die Förderwerte sind jedoch nicht so stark differenziert wie bei der Stahl-Gegenlauffläche.

Die Temperatur des eingespritzten Schmierstoffs hatte für PG 1 und S 100 keinen nennenswerten Einfluss auf den Förderwert (Bild 4.31). Bei dem Mineralöl FVA 3 nahm der Förderwert mit zunehmender Temperatur ab.

der Schmierstoffe auf der Stahl-Gegenlauffläche (FKM-RWDR)

Bild 4.29 Durchschnittlicher Förderwert Bild 4.30 Durchschnittlicher Förderwert der Schmierstoffe auf der Messing-Gegenlauffläche (FKM-RWDR)

KAWAHARA-Methode

Für ausgewählte Schmierstoffe wurde die KAWAHARA-Methode mit der Einspritz-Methode verglichen. Die Versuchsbedingungen waren jeweils dieselben. Die nach der KAWAHARA-Methode gemessenen Förderwerte sind geringer als die nach der Einspritz-Methode gemessenen. Bild 4.32 zeigt die Förderwerte im direkten Vergleich.

Bild 4.31 Förderwert in Abhängigkeit der Bild 4.32 Vergleich der Förderwerte nach Temperatur ϑ des eingespritzten Schmierstoffs

der Kawahara-Methode und der Einspritz-Methode

Wellenwerkstoff

Bei Vergleich der Wellenwerkstoffe ergeben sich die geringsten Förderwerte bei Verwendung der Glas-Gegenlauffläche (Bild 4.33). Der geringste Unterschied zu Stahl und Messing ergibt sich dabei für das Silikonöl S 100. Die Förderwerte von FVA3 und PG1 sind auf der Messing- und der Stahl-Gegenlauffläche hoch. Die jeweils höchsten Werte ergeben sich für die Messing-Gegenlauffläche.

Elastomer

Die Versuche mit Variation von Wellenwerkstoff und Elastomer sind im Folgenden nach den Elastomeren aufgeschlüsselt.

Bild 4.34 zeigt die Förderwerte von FVA 3, PG 1 und S 100 auf der Glas-Gegenlauffläche. Der negative Wert für ACM und S100 bedeutet Leckage. Die Leckagerate wurde in einen negativen Förderwert umgerechnet. Das Mineralöl FVA 3 zeigt für alle drei Elastomere einen sehr geringen Förderwert. Das Silikonöl S 100 wird, mit Ausnahme von ACM, im Vergleich am stärksten gefördert.

Bei Verwendung der Stahl-Gegenlauffläche zeigen die FKM-RWDR erheblich höhere Förderwerte als NBR und ACM (Bild 4.35). Von FKM-RWDR

Abhängigkeit des Wellenwerkstoffs

Bild 4.33 Förderwert von FKM-RWDR in Bild 4.34 Förderwert bei Verwendung der Glas-Gegenlauffläche

wird PG1 am stärksten gefördert, gefolgt von FVA3 und S100. Der umgekehrte Zusammenhang zeigt sich für NBR-RWDR: Von NBR-RWDR wird S 100 am stärksten gefördert. Das mit FKM-RWDR sehr stark geförderte Polyglykol PG 1 wird von NBR-RWDR nicht gefördert.

Bei der Messing-Gegenlauffläche zeigen sich ähnliche Verhältnisse wie bei der Stahl-Gegenlauffläche (Bild 4.36). Mit FKM-RWDR wurden die höchsten Förderwerte gemessen. Die ACM- und die NBR-RWDR ergaben gleichermaßen geringe Förderwerte.

Oberflächenrauheit

Mit zunehmender Rauheit nahm der Förderwert für alle drei untersuchten Schmierstoffe zu (Bild 4.37). Dieses Ergebnis bestätigt SCHMUKERS Untersuchungen zum Rauheitseinfluss (vgl. Bild 2.56) [108].

Für PG 1 war die Zunahme des Förderwerts von der mittleren Rauheit zur höchsten Rauheit gering. Eine Ursache kann die fehlende Konditionierung der RWDR sein. Die RWDR wurden ausschließlich in inversem Einbau betrieben. Konditionierungseffekte sollten in diesem Versuch nicht bestimmend sein.

Wie im Versuch zum Vergleich von KAWAHARA- und Einspritzmethode, unterscheiden sich die Förderwerte von FVA 3 und PG1 kaum.

4.2.4Leckage

Das Leckage-Volumen V der PTFE-Manschetten nahm annähernd linear mit der Versuchsdauer t zu (Bild 4.38). Bei der Abdichtung des Polyglykols PG 1

Bild 4.35 Förderwert bei Verwendung der Bild 4.36 Förderwert bei Verwendung der Stahl-Gegenlauffläche

Messing-Gegenlauffläche

trat die höchste Leckagerate auf. Die geringste Leckagerate zeigte das Silikonöl S 100.

Abhängigkeit der Rauheit

4.2.5Verschleiß

Alle 1000 h-Versuche mit FKM-RWDR blieben leckagefrei. Die Bodenseite aller RWDR war nach Versuchsende trocken. Ein geminderter Verschleiß durch

unvollständige Abdichtung kann damit ausgeschlossen werden.

Bei den Versuchen mit ACM- und NBR-RWDR trat jeweils bei dem Silikonöl S 100 Leckage auf. Das Leckage-Volumen betrug $V < 10\cdot 10^{-6}\,\mathrm{m^3}$ Die Verschleißgrößen aus diesen Versuchen können daher nur bedingt mit denen anderer Versuche verglichen werden.

Gegenlaufflächen

Der Verschleiß der Gegenlaufflächen wurde anhand von Profilschrieben ermittelt. Sämtliche Profilschriebe sind im Anhang beigefügt. Neben der Verschleißbreite l_{ν} und der Verschleißtiefe h_{ν} wurde aus den Profilschrieben die Verschleißfläche A_{ν} bestimmt. Die Verschleißfläche ist die im Profilschrieb messbare, meist dreieckige Fläche mit der Grundseite l_{ν} und der Höhe h_{ν} .

Die Bilder 4.39 und 4.40 zeigen die Verschleißgrößen der Versuche mit FKM-RWDR. Trotz unterschiedlicher Geometrien der Verschleißflächen sind h_v und A_v annähernd äquivalent. Im Folgenden wird die Verschleißtiefe h_v als charakteristische Verschleißgröße der Gegenlaufflächen verwendet.

In den Versuchen mit ACM- und NBR-RWDR trat bei keiner Gegenlauffläche nennenswerter Verschleiß auf. Die Profilschriebe zeigten eine leichte Einglättung von Rauheitserhebungen. Die ursprüngliche Oberflächen-Struktur blieb bei allen Gegenlaufflächen erhalten.

Bild 4.39 Verschleißtief
e h_{ν} der Gegenlaufflächen bei FKM-RWDR

Bild 4.40 Verschleißfläche A_{ν} der Gegenlaufflächen bei FKM-RWDR

Dichtring

Als Verschleißkenngröße der Dichtringe wurde die Berührbreite b ausgewertet. Die angegebenen Werte sind arithmetische Mittelwerte aus 18 Messungen am Umfang.

Die Berührbreite der FKM-RWDR betrug nach dem 1000 h-Versuch $b = 0, 1, \dots, 0, 37 \cdot 10^{-3}$ m (Bild 4.41). Die geringste Berührbreite trat in den Versuchen mit dem Mineralöl FVA 1, dem Poly- α -Olefin PTX und den Silikonölen S 50 und S 100 auf. Den größten Verschleiß zeigten RWDR aus den Versuchen mit dem Mineralöl FVA 3, den Polyglykolen und den Estern.

Im Vergleich von Schmierstoffen und Elastomeren (Bild 4.42) zeigte PG1 den verschleißförderndsten Einfluss auf alle Elastomere. Eine Ausnahme bildet die Kombination aus FVA 3 und FKM. Dort war die Berührbreite mit Abstand am größten.

Die durchweg geringsten Berührbreiten traten bei S100 auf.

Bild 4.41 Berührbreite b nach 1000 h- Bild 4.42 Berührbreite b nach 1000 h-Versuch, für alle Schmierstoffe und FKM-RWDR.

Versuch, für alle Elastomere und ausgewählte Schmierstoffe

Die Radialkraft der FKM-RWDR änderte sich bei keinem Versuch erheblich. Wie Bild 4.43 zeigt, nahm die Radialkraft durchschnittlich um 5 % ab.

Der Vergleich mit anderen Elastomeren zeigt die Beständigkeit der FKM-RWDR (Bild 4.44). Trotz der moderaten Versuchsbedingungen¹⁰ nahm die Radialkraft von ACM- und NBR-RWDR im Versuch mit dem Polyglykol PG 1 deutlich ab. Die ACM-RWDR büßten 60 % ihrer ursprünglichen Radialkraft ein. Die NBR-RWDR wiesen eine um 30 % verringerte Radialkraft auf.

¹⁰Sumpftemperatur $\vartheta = 40^{\circ}$ C, $u = 4, 2 \text{ m} \cdot \text{s}^{-1}$

In den Versuchen mit dem Mineralöl FVA 3 und dem Silikonöl S 100 zeigte nur der NBR-RWDR eine nennenswerte Radialkraftänderung. Die Radialkraft nahm um rund 10% zu.

Versuch, für alle Schmierstoffe und FKM-RWDR

Bild 4.43 Radialkraft F_r nach 1000 h- **Bild 4.44** Radialkraft F_r nach 1000 h-Versuch, für alle Elastomere und ausgewählte Schmierstoffe

Schmierfilmhöhe 4.2.6

Die polierte Stange wurde nur von dem Silikonöl S 100 vollständig benetzt. Das Mineralöl FVA 3 und das Polyglykol PG 1 bildeten Tröpfchen. Die Messung der Schmierfilmhöhe ergab nur für S100 plausible Werte.

Auf eine weitere Auswertung wird verzichtet.

Kapitel 5

Auswertung

Die Ergebnisse der Versuche zum Dichtsystem werden im Folgenden ausgewertet. Es wird ein Zusammenhang der Ergebnisse mit benetzungsrelevanten Größen untersucht. Das Vorgehen wird jeweils diskutiert. Die Plausibilität der Ergebnisse, die Zulässigkeit der Schlüsse und mögliche, weitere Einflüsse werden geprüft.

5.1 Benetzung

Die in Kapitel 3 ermittelten Stoffwerte werden hinsichtlich der Benetzungseigenschaft der Schmierstoffe, der Elastomere und der Wellenwerkstoffe ausgewertet. Charakteristische Größen sind der dimensionslose Spreitungskoeffizient nach WU, die Adhäsionsarbeit, der Kapillardruck und die Penetrativität nach WASHBURN.

5.1.1 Spreitungskoeffizient

Der dimensionslose Spreitungskoeffizient nach WU gibt an, wie hoch die Neigung einer Flüssigkeit ist, auf einem Substrat zu spreiten. Der Wert Q = 0bedeutet dabei vollständige Nicht-Benetzung. Der Wert Q = 1 bedeutet dagegen höchstmögliche Benetzung. Zwei Beispiele: Für Wasser auf einem PTFE-Substrat nimmt der dimensionslose Spreitungskoeffizient den Wert Q = 0,145an. Methanol auf einem 100Cr6-Stahl-Substrat ergibt Q = 0,739. Für die Berechnung wurde die Gleichung (2.53) verwendet. Der dimensionslose Spreitungskoeffizient liegt für die Paarung Schmierstoff-Wellenwerkstoff durchschnittlich bei $Q \approx 0,6$. Bild 5.1 zeigt die Werte für das 100Cr6-Stahl-Substrat. Bild 5.2 zeigt die Werte für das CuZn39Pb3-Messing-Substrat. Die Werte spiegeln tendenziell das Ausbreitungsverhalten von Schmierstofftropfen auf dem polierten Stahl-Substrat wider (vgl. Bild 3.7).

Eine Ausnahme bilden die Polyglykole. Bei den Polyglykolen ist der dimensionslose Spreitungskoeffizient hoch im Vergleich zu der beobachteten, geringen Ausbreitung von Tropfen. Eine Ursache kann autophobes Benetzungsverhalten sein. Solches Verhalten ist von Alkoholen, insbesondere von 1-Oktanol, bekannt. Evaporierte Moleküle heften sich vorzugsweise mit der polaren Hydroxylgruppe an das noch unbenetzte Substrat. Zur benetzenden Flüssigkeit ragt der unpolare Rest (vgl. Bild 2.63) [37]. Dadurch kann die Grenzflächenspannung σ_{sv} stark gesenkt werden. Die Flüssigkeit hindert sich selbst an der Ausbreitung.

Eine weitere Ursache der Tropfenbildung kann eine unzureichend große, benetzbare Substratfläche sein. Stark spreitende Flüssigkeiten benetzen spreitbare Substrate mit einer Monolage [133]. Überschüssige Flüssigkeit sammelt sich in Tropfen. Solche Monolagen sind mit bloßem Auge in der Regel nicht zu erkennen. Benetzungsversuche von Tropfen auf Oberflächen müssen deshalb stets kritisch gesehen werden.

Bild 5.1 Dimensionsloser Spreitungskoeffizient Q der Schmierstoffe für Stahl

Bild 5.2 Dimensionsloser Spreitungskoeffizient Q der Schmierstoffe für Messing

Der dimensionslose Spreitungskoeffizient für FKM-Elastomer als Substrat beträgt durchschnittlich $Q \approx 0.35$ (Bild 5.3). Das Verhältnis der Schmierstoffe untereinander ist nahezu unverändert gegenüber den Wellenwerkstoffen. Bild 5.4 zeigt den dimensionslosen Spreitungskoeffizient für ausgewählte Schmierstoffe und die Elastomere. Mit FKM ergibt sich der geringste, mit NBR der größte dimensionslose Spreitungskoeffizient. Die Werte für ACM liegen knapp unterhalb derer für NBR.

Bild 5.4 Dimensionsloser Spreitungskoeffizient Q ausgewählter Schmierstoffe für Elastomere

5.1.2 Adhäsionsarbeit

Die Adhäsionsarbeit wurde nach WU, Gleichung (2.50), berechnet. WUS Berechnungsansatz ergab die plausibleren Ergebnisse, als der Berechnungsansatz nach OWRK. Die Werte der Adhäsionsarbeit sind dennoch nur als Relativwerte zu betrachten. Sie beruhen nicht auf direkt gemessenen Größen. Der gewählte Berechnungsansatz trifft Annahmen¹, die nicht für die untersuchten Stoffe gelten müssen.

Die Bilder 5.5 und 5.6 zeigen die Adhäsionsarbeit ausgewählter Schmierstoffe auf den Wellenwerkstoffen, in Abhängigkeit der Temperatur. Der Zusammenhang zwischen Adhäsionsarbeit und Temperatur ist linear. Mit zunehmender Temperatur nimmt die Adhäsionsarbeit ab. Das Polyglykol PG 1 weist stets die höchste, das Silikonöl S 100 die niedrigste Adhäsionsarbeit auf. Der Unterschied zwischen Stahl und Messing als Substrat ist gering. Lediglich das Mineralöl FVA 3 hat im Vergleich zu den anderen Schmierstoffen eine

¹Es wird nur die Wirkung polarer und disperser Bindungskräfte berücksichtigt. Die Übertragbarkeit der Ergebnisse auf polierten Substraten auf die geschliffenen Gegenlaufflächen wird vorausgesetzt.

etwas höhere Adhäsionsarbeit.

Bild 5.5Adhäsionsarbeit W_a ausgewählterBild 5.6Adhäsionsarbeit W_a ausgewählterSchmierstoffe auf StahlSchmierstoffe auf Messing

Die Adhäsionsarbeit der Schmierstoffe auf den Elastomeren wurde nur für $\vartheta = 25$ °C bestimmt. Für höhere Temperaturen lagen keine belastbaren Werte für die Oberflächenenergie der Elastomere vor.

Auf FKM haben die Polyglykole die höchste Adhäsionsarbeit (Bild 5.7, $W_a \approx 45 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{m}^{-1}$). Die Mineralöle und die Silikone haben dagegen die geringste Adhäsionsarbeit ($W_a \approx 35 \cdot 10^{-3} \,\mathrm{N} \cdot \mathrm{m}^{-1}$).

Im Vergleich der Elastomere ergibt sich für FKM die geringste, für NBR die höchste Adhäsionsarbeit (Bild 5.8).

Alleine mit der Adhäsionsarbeit kann noch keine Aussage über das Benetzungsverhalten der Schmierstoffe getroffen werden. Die Adhäsionsarbeit beschreibt nur die gebundene Energie zwischen zwei Stoffen, wenn sich diese binden. Relevant für die Benetzung ist die Differenz zwischen der Adhäsionsarbeit und der Kohäsionsarbeit [43]. Diese Differenz wird als Spreitungskoeffizient S bezeichnet. Anschaulich ist der Spreitungskoeffizient die Bindungsneigung des Schmierstoffs. Ist S < 0, binden sich Schmierstoffmoleküle vorzugsweise mit sich selbst. Ist S > 0, binden sich Schmierstoffmoleküle vorzugsweise an das Substrat. Dieser Zusammenhang wird in Abschnitt 5.2.3 aufgegriffen.

5.1.3 Kapillardruck und Penetrativität

Die Größen Kapillardruck Δp und Penetrativität ψ sollen die Eigenschaft einer Flüssigkeit beschreiben, in Spalte einzudringen. Beide Größen wurden

Bild 5.7 Adhäsionsarbeit W_a der Schmier- Bild 5.8 Adhäsionsarbeit W_a ausgewählter stoffe auf FKM

Schmierstoffe auf den Elastomeren

hinsichtlich des vorrangig eingesetzten Dichtsystems ausgewertet: Stahl-Gegenlauffläche und FKM-RWDR.

Kapillardruck

Der Kapillardruck wurde nach Gleichung (2.56) berechnet. Für die Kontaktwinkel θ_1 und θ_2 wurden die Messwerte für Stahl und FKM verwendet.

Die Spalthöhe $h = 2 \cdot r_1$ wurde für alle Schmierstoffe zu $2 \cdot r_1 = 10^{-6}$ m angenommen. Die Zulässigkeit dieser Annahme ist fraglich, da sich die Spalthöhe für die Schmierstoffe unterscheiden wird. Es standen jedoch keine Messwerte oder belastbaren Schätzungen zur Verfügung. Der zweite Hauptradius r_2 entspricht dem Wellenradius des untersuchten Dichtsystems: $r_2 = 0,04 \,\mathrm{m}$.

Die Kapillardrücke der Schmierstoffe unterscheiden sich wenig (Bild 5.9). Fast alle Schmierstoffe haben einen Kapillardruck von $\Delta p \approx 60 \cdot 10^3 \,\mathrm{N \cdot m^{-2}}$. Nur das Polyglykol PG 1 und die Silikonöle S 50 und S 100 haben einen etwas geringeren Kapillardruck.

Penetrativität

Die Penetrativität ψ wurde nach Gleichung (2.57) berechnet. Für den Kontaktwinkel wurde, in Anlehnung an Gleichung (2.56), der Mittelwert aus den Kontaktwinkeln für Stahl und für FKM eingesetzt. Die erhaltenen Werte für die Penetrativität (Bild 5.10) korrelieren gut mit dem Ausbreitungsverhalten der Schmierstoffe auf der Stahl-Oberfläche (vgl. Bild 3.7). Eine hohe Penetrativität entspricht einer großen Ausbreitungsfläche.

Gegenüber dem Kapillardruck ist die Penetrativität eine zeitabhängige Größe. Sie hat die Dimension einer Geschwindigkeit. Damit beschreibt sie die charakteristische Ausbreitungsgeschwindigkeit einer Flüssigkeit. Der Vergleich mit KLAIBERS Versuchen zeigt [67]: Der von ihm eingeführte »Benetzungskoeffizient« hat dieselbe Aussagekraft wie die Penetrativität.

Die Bedeutung der Penetrativität für den Dichtmechanismus entspricht KLAIBERS Hypothese. Der Schmierstoff fließt durch den Kapillardruck selbsttätig in den Dichtspalt. Die Förderwirkung der Radial-Wellendichtung .arbeitet' gegen den eindringenden Schmierstoff an. Ein Schmierstoff mit geringer Penetrativität bietet der Förderwirkung einen geringeren Widerstand, als ein Schmierstoff mit hoher Penetrativität. Anschaulich formuliert: Wollte man mit einem Straßenbesen Wasser zusammenkehren, gelänge es nicht. Das Wasser würde sich unmittelbar wieder ausbreiten. Wollte man stattdessen feinen Sand zusammenkehren, gelänge es. Der Sand breitet sich über ein gewisses Maß nicht aus.

für Stahl und FKM bei angenommener Spalt- für Stahl und FKM höhe $h = 10^{-6} \, \text{m}$

Bild 5.9 Kapillardruck Δp der Schmierstoffe **Bild 5.10** Penetrativität ψ der Schmierstoffe

Dichtungstechnisches Fazit von Abschnitt 5.1

Spreitungskoeffizient Der dimensionslose Spreitungskoeffizient Q nach WU gibt Auskunft über das Benetzungsverhalten, relativ zu anderen Flüssigkeit-Festkörper-Paarungen. Bei den untersuchten Schmierstoffen ist mit Q keine differenzierte Aussage über deren Benetzungsverhalten möglich. Die dichtungstechnische Relevanz wird deshalb als gering eingeschätzt. Nützlich kann Q jedoch beim Vergleich stark unterschiedlicher Stoffe sein (z.B. Schmierstoff gegenüber Wasser.)

Adhäsionsarbeit Die Adhäsionsarbeit W_a ist die wichtigste Größe bei Benetzungsvorgängen. Sie beschreibt die gebundene Energie durch die Benetzung. Flüssigkeiten versuchen stets ihre freie Oberflächenenergie zu verringern. Dazu binden sie sich vorzugsweise an den Stoff, mit dem sie die höchste Adhäsionsarbeit bilden. Bei Dichtungen ist das meist die Gegenlauffläche. An Stoffe, mit denen Flüssigkeiten eine geringere Adhäsionsarbeit bilden, als mit sich selbst (Kohäsionsarbeit), binden sie sich nicht. Bei Dichtungen kann das für Elastomere der Fall sein. Der Einfluss der Oberflächenrauheit ist auch auf die Adhäsionsarbeit zurückzuführen (vgl. Abschnitt 2.3.3). Raue Oberflächen haben eine reale Oberfläche, die gröker ist als die projizierte Oberfläche. Die Benetzungseigenschaft verstärkt sich dadurch gegenüber einer ideal glatten Oberfläche. Für benetzbare Oberflächen (z.B. Gegenlaufflächen) bedeutet das eine größere gebundene Energiemenge je Flächeneinheit. Für nicht benetzbare Oberflächen (manche Elastomere) bedeutet das noch stärker entnetzende Eigenschaften.

Kapillardruck Der Kapillardruck Δp ist abhängig von der - meist unbekannten - Spalthöhe *h*. Damit ist er trotz Kenntnis von Oberflächenenergie σ_{lv} und Kontaktwinkeln θ_1 , θ_2 nicht eindeutig. Zur Bewertung von Radial-Wellendichtungen ist der Kapillardruck damit ungeeignet.

Penetrativität Die Penetrativität ψ charakterisiert die Ausbreitungsgeschwindigkeit von Flüssigkeiten bei konstanter Temperatur. Je höher die Penetrativität, desto schneller kann Schmierstoff in den Dichtspalt eindringen. Nach KLAIBERS Hypothese steht eine hohe Penetrativität einem hohen Förderwert einer Radial-Wellendichtung entgegen. Eigene Versuche bestätigen diese Hypothese und zeigen außerdem: Bei Schmierstoffen mit hoher Penetrativität tritt geringerer Verschleiß auf.

5.2 Förderwert

Der Förderwert der untersuchten Dichtsysteme war von der Art des verwendeten Schmierstoffs abhängig. Welche physikalische Größe dieser Abhängigkeit zu Grunde liegt, wird im Folgenden erörtert. Für den Wirkmechanismus wird eine Modellvorstellung gezeigt. Der Einfluss des Elastomers und des Wellenwerkstoffs wird anschließend diskutiert.

Allgemein wird bei der Betrachtung des Fördermechanismus die Gültigkeit der bestehenden Hypothesen² vorausgesetzt. Keines der hier erzielten Ergebnisse widerspricht deren Annahmen.

5.2.1 Korrelation mit Benetzungsgrößen

Ein Zusammenhang zwischen dem Förderwert und Benetzungsgrößen wurde durch Benetzungsmessungen offensichtlich: Der Vordrückwinkel θ'_{ν} der Schmierstoffe auf Bronze gefülltem PTFE steht in linearem Zusammenhang mit dem Förderwert (Bild 5.11). Ein ähnlicher, jedoch umgekehrter Zusammenhang zeigte sich bei Korrelation des Förderwerts mit der Ausbreitungsfläche von Schmierstofftropfen (vgl. Bild 3.7).

Beide zu Grunde liegenden Benetzungsgrößen sind jedoch kritisch zu sehen: Die Ausbreitungsfläche von Flüssigkeiten ist keine zuverlässige Messgröße. Der Vordrückwinkel der Schmierstoffe auf einem Modellsubstrat ist keine direkte Messgröße.

Die Korrelation des Vordrückwinkels θ'_{ν} des jeweiligen Wellenwerkstoffs mit dem Förderwert ergibt einen eindeutigen, aber nicht linearen Zusammenhang (Bild 5.12).

Ein eindeutiger und linearer Zusammenhang ergab sich mit der Kohäsionsarbeit und der Adhäsionsarbeit. Die Verbindung zu den Vordrückwinkeln ist dabei Gleichung (2.32) nach DUPRÉ. Ein direkter Vergleich ist jedoch nicht möglich. Gleichung (2.32) verwendet den Kontaktwinkel θ im thermodynamischen Gleichgewicht.

Die Oberflächenenergie σ_l des Schmierstoffs entspricht der halben Kohäsionsarbeit. Mit zunehmender Oberflächenenergie σ_l steigt der Förderwert FW an (Bild 5.13). Kritisch zu sehen ist jedoch die Häufung der Werte bei $\sigma_l \approx 30 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$. In dem Bereich, in dem die meisten Schmierstoffe liegen, ist damit keine eindeutige Unterscheidung möglich. Eine stärkere Spreizung der Werte ergab sich für die Adhäsionsarbeit W_a der Schmierstoffe auf dem Wellenwerkstoff (Bild 5.14). Mit zunehmender Adhäsionsarbeit W_a steigt der Förderwert FW an. Die Adhäsionsarbeit wird im Folgenden als eine maßgebliche physikalische Größe für den Förderwert angenommen.

 $^{^{2}}$ Verzerrungshypothese, Seitenstromhypothese und Oszillationshypothese.

Bild 5.11 Förderwert FW der Schmierstoffe (FKM-RWDR) gegenüber dem Vordrückwinkel θ'_{ν} auf dem PTFE-Substrat

Bild 5.12 Förderwert FW der Schmierstoffe (FKM-RWDR) gegenüber dem Vordrückwinkel θ'_{ν} auf dem jeweiligen Metall

(FKM-RWDR) gegenüber der Oberflächenenergie σ_l der Schmierstoffe

Bild 5.13 Förderwert FW der Schmierstoffe Bild 5.14 Förderwert FW der Schmierstoffe (FKM-RWDR) gegenüber der Adhäsionsarbeit W_a auf dem jeweiligen Metall

5.2.2Vergleich mit Leckage und Verschleiß

Ein Zusammenhang mit der Adhäsionsarbeit zeigte sich auch für die Leckageund die Verschleißversuche. Daraus ergeben sich zwei Folgerungen, die zur Modellvorstellung für den Einfluss der Adhäsionsarbeit führen.

Leckage

Die Leckagerate von PTFE-Manschetten stieg linear mit der Adhäsionsarbeit zwischen Schmierstoff und Gegenlauffläche an (Bild 5.15).

Für die Förderwirkung von RWDR nach der Verzerrungs-, und der Seitenstromhypothese ist ein tangentiales Mitschleppen von Schmierstoff durch die Gegenlauffläche erforderlich. Rauheitserhebungen des Elastomers lenken den tangential mitgeschleppten Schmierstoff axial um. Durch die Förderwirkung des RWDRs entsteht dabei ein axial gerichteter Netto-Förderstrom zur Stirnseite.

Bei nicht-förderaktiven PTFE-Manschetten wird tangential mitgeschleppter Schmierstoff ebenfalls axial umgelenkt. Durch die fehlende Förderwirkung kann Schmierstoff zur Bodenseite gelangen. Es kommt zu Leckage.

In beiden Fällen ist es entscheidend, dass Schmierstoff von der Gegenlauffläche mitgeschleppt werden kann. Der Zusammenhang zwischen der Leckagerate und der Adhäsionsarbeit zeigt: Schmierstoffe mit höherer Adhäsionsarbeit werden stärker von der Gegenlauffläche mitgeschleppt. Daraus resultiert bei RWDR ein hoher Förderwert und bei PTFE-Manschetten eine hohe Leckage.

Erste Folgerung Je größer die Adhäsionsarbeit zwischen Schmierstoff und Gegenlauffläche ist, desto größer ist die Fähigkeit der Gegenlauffläche Schmierstoff mitzuschleppen.

Verschleiß

Für den Verschleiß zeigte sich kein eindeutiger Zusammenhang mit der Adhäsionsarbeit zwischen Schmierstoff und Gegenlauffläche. Da nennenswerter Verschleiß nur für FKM-RWDR auftrat, wurde die Adhäsionsarbeit zwischen Schmierstoff und Elastomer untersucht. Als entscheidend zeigte sich die Differenz aus Adhäsionsarbeit W_a (Schmierstoff-Elastomer) und Kohäsionsarbeit W_c (Schmierstoff). Diese Differenz ist der Spreitungskoeffizient S nach HARKINS und FELDMAN [43]. Für S > 0 spreitet der Schmierstoff auf dem Elastomer. Er bildet einen Film. Für S < 0 spreitet der Schmierstoff nicht.

Wie Bild 5.16 zeigt, ist der Spreitungskoeffizient für die Elastomere ACM und NBR, bis auf eine Ausnahme, größer null. Der Spreitungskoeffizient für FKM ist für alle Schmierstoffe negativ. Den niedrigsten Wert nimmt er für FVA 3 an, den höchsten Wert für S 100. Die Ausprägung des Spreitungskoeffizient spiegelt sich in der Verschleißtiefe h_v wieder (vgl. Bild 4.39).

Zweite Folgerung Verschleiß, und damit Festkörperkontakt zwischen Elastomer und Gegenlauffläche, tritt bei negativem Spreitungskoeffizient auf. Je kleiner der Spreitungskoeffizient ist, desto mehr Verschleiß kann auftreten.

Bild 5.15 Zusammenhang der Leckagerate Bild 5.16 Spreitungskoeffizient S (nach V von PTFE-Manschetten und der Adhäsi- HARKINS und onsarbeit W_a der Schmierstoffe auf der Stahl- Schmierstoffe auf den Elastomeren Gegenlauffläche

Feldman) ausgewählter

Modellvorstellung 5.2.3

Für den Einfluss der Benetzung auf den Dichtmechanismus der Radial-Wellendichtung ergibt sich folgende Modellvorstellung:

Gegenlauffläche Die Stahl-Gegenlauffläche wird durch alle untersuchten Schmierstoffe vollständig benetzt. Der Spreitungskoeffizient S ist hierfür stets größer null. Auf der Gegenlauffläche bildet sich ein Schmierstofffilm. Die Adhäsionsarbeit W_q zwischen Schmierstoff und Gegenlauffläche ist ein Maß für die Fähigkeit der Gegenlauffläche, Schmierstoff mitzuschleppen. In erster Näherung gilt: Je größer die Oberflächenenergie des Schmierstoffs ist, desto größer ist die Adhäsionsarbeit. Je größer die Adhäsionsarbeit ist, umso stärker wird Schmierstoff mitgeschleppt.

Vollständig benetzte Dichtkante Ist der Spreitungskoeffizient für Schmierstoff und Dichtkante größer null, wird die Dichtkante vollständig benetzt (Bild 5.17). Auf der Dichtkante bildet sich ein Schmierstofffilm. Im Bild ist die Höhe der Adhäsionsarbeit durch die Packungsdichte der Moleküle im Film dargestellt. Je dichter die Packung, desto höher ist die Adhäsionsarbeit. Die Kohäsionsarbeit W_c ist jeweils geringer als die Adhäsionsarbeit für die Gegenlauffläche und die Adhäsionsarbeit für die Dichtkante. Der Schmierstoff kann seine freie Energie absenken, indem er sich an die Festkörperoberflächen anheftet. Ein direkter Kontakt zwischen Dichtkante und Gegenlauffläche tritt

selten auf. Zwischen Dichtkante und Gegenlauffläche kann sich ein durchgängiger Spalt aufbauen.

Teilweise benetzte Dichtkante Die elastomere Dichtkante wird durch manche Schmierstoffe nur teilweise benetzt (Bild 5.18). Für ein Elastomer mit geringer Oberflächenenergie kann die Adhäsionsarbeit zwischen Schmierstoff und Elastomer kleiner als die Kohäsionsarbeit des Schmierstoffs sein. Der Spreitungskoeffizient ist in diesem Fall kleiner null, also negativ. Um freie Energie abzusenken binden sich Schmierstoffmoleküle zuerst an die Gegenlauffläche, dann an andere Schmierstoffmoleküle. Sie binden sich jedoch nicht an das Elastomer. Es bildet sich kein Schmierstofffilm auf der Dichtkante. Im Gegenteil: Die Dichtkante kann Schmierstoff verdrängen.

Bild 5.17 Modellvorstellung für einen voll- Bild 5.18 Modellvorstellung für einen teilger Adhäsions- und Kohäsionsarbeit

ständig benetzenden Schmierstoff mit gerin- weise benetzenden Schmierstoff mit hoher Adhäsions- und Kohäsionsarbeit

Bedeutung für den Dichtmechanismus Die Adhäsion von Schmierstoff an Gegenlauffläche und Dichtkante ist für zwei Hypothesen zum Dichtmechanismus relevant: Für die Verzerrungshypothese und die Seitenstromhypothese. Bei beiden Hypothesen leitet die Dichtkante (als Ganzes oder nur die Rauheitserhebungen) tangential mitgeschleppten Schmierstoff in axialer Richtung um.

Im Fall der vollständig benetzten Dichtkante kann sich ein durchgängiger Schmierspalt bilden. Im Schmierspalt kann Schmierstoff annähernd richtungsunabhängig fließen. Übersteigt die Penetrativität des Schmierstoffs die Förderwirkung des RWDRs, kann der Schmierstoff die Bodenseite benetzen; es kommt zu Leckage. Diese Annahme entspricht KLAIBERs Modellvorstellung, erweitert um den Anteil der Viskosität (vgl. Abschnitt 2.4.3, Seite 59) [67].

Eine teilweise benetzte Dichtkante hat die Wirkung eines Verdrängers und Abstreifers. Durch den anzunehmenden, kleineren Dichtspalt wird Schmierstoff effizienter umgelenkt.

Der Fall der teilweise benetzten Dichtkante tritt hauptsächlich bei Schmierstoffen mit hoher Oberflächenenergie σ_l auf. Dadurch sind die Adhäsionsarbeit zwischen Schmierstoff und Gegenlauffläche und die Kohäsionsarbeit größer. Der Schmierstoff haftet stärker an der Gegenlauffläche und wird stärker mitgeschleppt als ein Schmierstoff mit geringer Adhäsionsarbeit.

Einfluss von Elastomer und Wellenwerkstoff Bei den Wellenwerkstoffen Stahl und Messing ist der Förderwert der FKM-RWDR am höchsten (Bilder 5.19 und 5.20). Die Elastomere ACM und NBR weisen wesentlich geringere Förderwerte auf.

Für ACM nimmt der Förderwert mit zunehmender Adhäsionsarbeit zwischen Schmierstoff und Gegenlauffläche linear zu^3 . Dieser Zusammenhang gilt offensichtlich auch, wenn statt Förderung Leckage eintritt (Bild 5.19).

Für NBR bleibt der Förderwert konstant (Messing-Gegenlauffläche) oder nimmt mit zunehmender Adhäsionsarbeit ab (Stahl-Gegenlauffläche). Die mutmaßliche Ursache dafür ist die hohe Oberflächenenergie des NBRs. Sie führt zu einer hohen Adhäsionsarbeit zwischen Schmierstoff und Elastomer. Der Spreitungskoeffizient S kann selbst für das Polyglykol PG1 größer null werden. Wie im letzten Abschnitt besprochen, wird dadurch die Förderwirkung des RWDRs geringer.

Bei Verwendung der Glas-Gegenlauffläche zeigen nur das Silikonöl S 100 ($W_a \approx 50 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$) und das Polyglykol PG 1 ($W_a \approx 75 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$) Förderung. Das Mineralöl FVA 3 wird weder gefördert, noch führt es zu Leckage.

Neben der geringen Rauheit der Glas-Gegenlauffläche wird ein Einfluss der Wärmeleitfähigkeit vermutet. Wie Bild 5.22 zeigt, nimmt der Förderwert für FVA 3 mit der Wärmeleitfähigkeit der Gegenlauffläche zu. Dies erklärt auch den hohen Förderwert für die Messing-Gegenlauffläche trotz deren moderater Adhäsionsarbeit.

Wie in Abschnitt 5.4.3 (Seite 133) gezeigt wird, bewirken Werkstoffe mit geringer Wärmeleitfähigkeit hohe Temperaturgradienten. Diese hohen Temperaturgradienten verursachen thermokapillare Instabilität im Schmierstoff. Wie ebenfalls in Abschnitt 5.4.3 gezeigt wird, wird das Mineralöl FVA 3 als erster der untersuchten Schmierstoffe instabil. Die Thermokapillarkraft F_t übersteigt in diesem Fall scheinbar die Kräfte des Fördermechanismus.

³Ausnahme: ACM, PG1 und Messing-Gegenlauffläche.

Bild 5.19 Förderwert FW gegenüber der Adhäsionsarbeit Wa bei Verwendung der Stahl-Gegenlauffläche

Bild 5.20 Förderwert FW gegenüber der Adhäsionsarbeit Wa bei Verwendung der Messing-Gegenlauffläche

Gegenlauffläche

Bild 5.21 Förderwert FW gegenüber der Ad- Bild 5.22 Förderwert FW des Mineralöls häsionsarbeit W_a bei Verwendung der Glas- FVA 3 gegenüber der Wärmeleitfähigkeit λ der Gegenlaufflächen

Dichtungstechnisches Fazit von Abschnitt 5.2

Förderwert Zur Beschreibung der Funktion einer Radial-Wellendichtung wird oft der normierte Förderwert FW herangezogen. Der Förderwert ist weniger stark abhängig von den Betriebsbedingungen als Reibung und Verschleiß. Bislang wurde die Viskosität als die maßgebliche Einflussgröße des Schmierstoffs auf den Förderwert betrachtet. Für chemisch unterschiedliche Schmierstoffe oder additivierte Schmierstoffe (vgl. [67]) ist diese Annahme falsch.

Adhäsionsarbeit Die Versuche zeigen: Das Benetzungsverhalten des Schmierstoffs hat signifikanten Einfluss auf den Förderwert der Radial-Wellendichtung. Die maßgebliche physikalische Größe ist dabei die Adhäsionsarbeit W_a zwischen dem Schmierstoff und der Gegenlauffläche. Schmierstoff, der eine höhere Adhäsionsarbeit (»Bindungsenergie«) mit der Gegenlauffläche hat, kann von dieser stärker mitgeschleppt werden. Die Folge ist ein höherer Förderwert bei förderaktiven Radial-Wellendichtungen und eine höhere Leckage bei nicht-förderaktiven Dichtungen (z.B. PTFE-Manschetten). Den Hypothesen zum Dichtmechanismus (vgl. [61, 84]) widerspricht diese Erkenntnis nicht.

Spreitungskoeffizient Für das Auftreten von Verschleiß ist die Differenz aus Adhäsionsarbeit und Kohäsionsarbeit entscheidend. Diese Differenz ist der Spreitungskoeffizient *S* nach HARKINS und FELDMAN [43]. Ist S > 0, bildet sich ein verschleißmindernder Schmierstofffilm auf dem Festkörper. Das Ziel für Dichtungen muss deshalb - für Gegenlauffläche und Elastomer - ein Spreitungskoeffizient S > 0 sein.

Bedeutung für den Schmierstoff Für den Schmierstoff gelten zwei Anforderungen: Erstens, durch ausreichende Schmierung der Dichtung soll Verschleiß vermieden werden. Dafür muss der Spreitungskoeffizient S größer null sein. Zweitens, durch ausreichende Rückförderung des Schmierstoffs soll Leckage vermieden werden. Dafür muss der Förderwert FW und damit die Adhäsionsarbeit W_a ausreichend groß sein. **Bedeutung für den Wellenwerkstoff** Für den Wellenwerkstoff ist in jedem Fall eine hohe Oberflächenenergie σ_s anzustreben. Dadurch wird eher eine hohe Adhäsionsarbeit W_a mit dem Schmierstoff erzielt und die Bedingung $W_a > W_c$ erfüllt.

Bedeutung für das Elastomer Zur Verschleißminderung sollte für Elastomere ebenfalls die Bedingung $W_a > W_c$ erfüllt sein. Das lässt sich nur durch eine ausreichend hohe Oberflächenenergie σ_s des Elastomers erreichen. Inwieweit die Adhäsionsarbeit zwischen Schmierstoff und Elastomer den Förderwert FW beeinflusst, kann auf Grundlage dieser Arbeit nicht beantwortet werden.

5.3 Taylor-Görtler-Wirbel

Es wurden die Arbeiten von OTT und KAMMÜLLER unter dem Aspekt der dimensionslosen Kennzahlen betrachtet. Von den eigenen Arbeiten wurden die Verschleißuntersuchungen hinsichtlich des Einflusses von Taylor-Görtler-Wirbeln untersucht.

5.3.1 Arbeiten anderer Forscher

Im Versuchsaufbau mit offenem Spalt (vgl. Bild 2.36) variierte KAMMÜLLER die Sumpftemperatur [60]. Die Bereiche, in denen keine Leckage auftrat, sind in Bild 5.23 dargestellt. Charakteristisch ist die abnehmende Breite der Bereiche mit zunehmender Temperatur. Ab $\vartheta = 70$ °C verschieben sich die Bereiche zu höheren Umfangsgeschwindigkeiten.

Die Görtler- und Grashofzahlen können für diesen Versuch nicht berechnet werden. Die dafür benötigten Stoffwerte des verwendeten Schmierstoffs sind nicht bekannt.

Zum Vergleich sind in Bild 5.24 die normierte Rayleigh- und Taylorzahl für den Schmierstoff FVA 3 angegeben⁴. Der Verlauf dieser Werte gibt Aufschluss über das von KAMMÜLLER beobachtete Verhalten. Rayleigh- und Taylorzahl wachsen gleichermaßen mit zunehmemder Temperatur.

Für die Taylorzahl bedeutet das: Bei höherer Temperatur wird früher eine Grenze erreicht, ab der chaotische Wirbel und Turbulenz auftreten. Dieses

 $^{^4 \}text{Die}$ Werte der Taylorzahl sind für eine konstante Winkelgeschwindigkeit von $\omega = 210 \, \text{rad} \cdot \text{s}^{-1}$ berechnet.

Verhalten ist die Ursache der abnehmenden Breite der leckagefreien Bereiche in Bild 5.23.

Für die Ravleighzahl bedeutet das: Bei höherer Temperatur haben Temperaturgradienten eine größere anfachende bzw. dämpfende Wirkung. Im Fall der Versuche KAMMÜLLERs wird durch die Welle Wärme abgeführt. Der Temperaturgradient verläuft von Schmierstoff zu Welle. Der Einfluss auf Wirbel ist dämpfend. In Bild 5.23 zeigt sich dieses Verhalten durch das Verschieben der leckagefreien Bereiche zu höherer Umfangsgeschwindigkeit bei höheren Temperaturen.

Bild 5.23 Leckagefreie Bereiche in KAM- Bild 5.24 Normierte Rayleigh- und Taylor-MÜLLERS Versuchen mit offenem Dichtspalt [60]

zahl von FVA 3 in Abhängigkeit der Temperatur

Eigene Arbeiten 5.3.2

Bei den Verschleißuntersuchungen war ein Einfluss von Taylor-Görtler-Wirbeln möglich. Die Geometrie des Dichtungsumfeld und die Betriebsbedingungen gleichen denen OTTs und KAMMÜLLERS.

Berechnungsansatz

Für die Berechnung der Görtlerzahl und der Grashofzahl wird nach GÖRT-LER die Impulsverlustdicke ϑ benötigt [39]. Die Impulsverlustdicke kann nach EUTENEUER mit Gleichung (5.1) abgeschätzt werden [31]. Der Winkel φ ist dabei der Eintauchwinkel eines wellenfesten Punkts gegenüber der Flüssigkeitsoberfläche bei Rotation der Welle. Für die Berechnung wurde $\varphi = 0.5 \cdot \pi$

angenommen. Das entspricht bei einem Schmierstoff-Füllstand bis Wellenmitte dem halben Weg.

$$6 \cdot \vartheta = 5 \cdot \sqrt{\nu \cdot \frac{\varphi}{\omega}} \tag{5.1}$$

Der Krümmungsradius wurde zu r = 0,04m angenommen, dem Wellenradius der untersuchten Dichtsysteme. Die Winkelgeschwindigkeit $\boldsymbol{\omega}$ und die benötigten Stoffwerte wurden entsprechend den Gegebenheiten in den Verschleißuntersuchungen gewählt. Für die Berechnung der Grashofzahl wurde eine Temperaturdifferenz von $\Delta T = 5$ K zwischen Gegenlauffläche und Schmierstoffsumpf angenommen⁵.

Für die Berechnung des dynamischen Drucks wurde Gleichung (2.24) verwendet.

Werte

Die Reynoldszahl bei der Impulsverlustdicke liegt bei Re = 20...80 (Bild 5.25). Es kann auf laminare Strömung geschlossen werden. Die Bildung von Wirbeln ist damit grundsätzlich möglich.

Die berechneten Görtlerzahlen liegen für alle Schmierstoffe deutlich über der kritischen Görtlerzahl $G\ddot{o}_c$ (Bild 5.26). Sie betragen $G\ddot{o} = 7...13$ und damit das 12- bis 22-fache der kritischen Görtlerzahl.

Die berechneten Grashofzahlen verhalten sich relativ zueinander wie die Görtlerzahlen (Bild 5.27).

Der nach OTT berechnete dynamische Druck liegt bei $p_{dyn} = 300 \,\mathrm{N} \cdot \mathrm{m}^{-2}$

 \dots 550N·m⁻² (Bild 5.28). Die Werte für die Schmierstoffe sind proportional zum Kehrwert von Görtler- und Grashofzahl.

Für die weitere Betrachtung werden normierte Werte der Görtler- und der Grashofzahl betrachtet. Damit soll der von GÖRTLER beschriebene Zusammenhang zwischen Strömungs- und Temperatureinfluss auf die Wirbelbildung berücksichtigt werden (vgl. Bild 2.35).

Bild 5.29 stellt die Summe aus normierter Görtler- und Grashofzahl dem normierten dynamischen Druck gegenüber. Der lineare Zusammenhang bestätigt OTTs Berechnungsansatz.

⁵Die Temperaturdifferenz zwischen Dichtzone und Schmierstoffsumpf beträgt nach eigenen Messungen $\Delta T = 2, 5...5 \cdot u$ [111]. WOLLESEN ermittelte in seinen Messungen einen Wert von $\Delta T \approx 3, 7 \cdot u$, Müller gibt $\Delta T \approx 2, 5 \cdot u$ an [85, 134]. Bei einer Umfangsgeschwindigkeit von $u = 4, 2 \text{ m} \cdot \text{s}^{-1}$ erscheint eine mittlere Temperaturdifferenz zwischen Schmierstoffsumpf und Gegenlauffläche von $\Delta T = 5 \text{ K}$ in Dichtkantennähe plausibel.

Bild 5.25 Reynoldszahl Re_{ϑ} bei der Impulsverlustdicke ϑ für die Schmierstoffe

Bild 5.27 Grashofzahl Gr der Schmierstoffe Bild 5.28 Dynamischer Druck p_{dyn} nach für die Versuchsbedingungen der Verschlei- OTT der Schmierstoffe für die Versuchsbeßuntersuchung; angenommene Temperatur- dingungen der Verschleißuntersuchung differenz: $\Delta T = 5 \,\mathrm{K}$

Bild 5.26 Görtlerzahl Gö der Schmierstoffe für die Versuchsbedingungen der Verschleißuntersuchung

Bedeutung für das Dichtsystem

Ein lokaler Unterdruck im Bereich der Dichtspalts führte in OTTs Versuchen zu Leckagefreiheit am offenen Dichtspalt. Bei der berührenden Radial-Wellendichtung kann Schmierstoffmangel am Dichtspalt angenommen werden. Der Schmierstoffmangel kann zu erhöhtem Verschleiß führen.

Die Verschleißtiefe h_v wird in Bild 5.30 der Summe aus normierter Görtlerund Grashofzahl gegenübergestellt. Ein eindeutiger Zusammenhang ergibt sich daraus nicht. Als Tendenz zeigt sich jedoch: Für zunehmende Görtlerund Grashofzahl-Werte nimmt die Verschleißtiefe ab. Bei den höchsten Werten für $G\ddot{o}$ und Gr ist die Verschleißtiefe nahe bei null. Die Ursache dafür kann der Umschlag von linearen oder nichtlinearen Wirbeln in chaotische Wirbel oder Turbulenz sein (vgl. Abschnitt 2.2.2, Seite 26).

Neben dem Benetzungsverhalten können Sekundärströmungen Folgerung den Schmierungszustand des Dichtspalts beeinflussen. Die Sekundärströmungen werden durch die Strömung selbst und durch Temperaturgradienten angefacht. Der Einfluss war in den durchgeführten Versuchen nicht eindeutig zu bestimmen. Oberhalb einer "superkritischen" Görtler- und Grashofzahl trat jedoch nur geringer Verschleiß auf. Das Zusammenbrechen Unterdruck erzeugender Wirbel kann dafür der Grund sein. Gegenüber dem Einfluss der Benetzung wird der Einfluss von Wirbeln als gering eingeschätzt.

mischem Druck $||p_{dyn}||$ und Summe aus normierter Görtler- und Grashofzahl

Bild 5.29 Vergleich von normiertem dyna-Bild 5.30 Verschleißtiefe h_{ν} der Wellen gegenüber der Summe aus normierter Görtlerund Grashofzahl

Dichtungstechnisches Fazit von Abschnitt 5.3

Sekundärströmung Bei rotierenden Wellen und bei Temperaturgradienten kann eine Sekundärströmung im Ölsumpf angefacht werden. Dies ist bei teilweise oder vollständig überfluteten Wellendichtungen der Fall. Die Sekundärströmung wird als Taylor-Görtler-Wirbel bezeichnet.

Unmittelbar an der Dichtstelle herrscht in der Sekundärströmung eine Geschwindigkeitskomponente, die von der Dichtkante zum Ölsumpf gerichtet ist. Wie OTT zeigte, wird dadurch Schmierstoff von der Dichtkante weggefördert [92]. Bei drosselnden Spaltdichtungen kann der Effekt wünschenswert sein. Bei berührenden Wellendichtungen kann der Effekt zu Schmierstoffmangel und letztlich Verschleiß führen.

Wirkungsbereich Charakterisiert wird der Zustand der Sekundärströmung durch zwei dimensionslose Kennzahlen. Erstens, durch die Görtlerzahl $G\ddot{o}$. Sie beschreibt den mechanischen Teil der Anregung. Zweitens, durch die Grashofzahl Gr. Sie beschreibt den thermischen Teil der Anregung.

Für beide Kennzahlen gibt es eine Untergrenze, unterhalb derer keine Anregung stattfindet (vgl. Bild 2.35). Überschreitet die Summe der Kennzahlen einen kritischen Wert, tritt Wirbelbildung ein. Für die Görtlerzahl alleine, gibt Görtler einen Wert von $G\ddot{o}_c = 0,58$ an [40]. Für die Grashofzahl ist dem Autor kein Wert bekannt.

Oberhalb einer Obergrenze schlagen die Primärströmung und die Sekundärströmung in Turbulenz um. In diesem »superkritischen« Bereich brechen die Wirbel zusammen. Die für die Dichtung relevante Strömung verschwindet.

Einflussgrößen Die einzige konstruktive Einflussgröße ist der Wellendurchmesser. Kleinere Durchmesser führen nach GörtLer zur stärkerer Anfachung [38].

Die Umfangsgeschwindigkeit der Welle wirkt ebenfalls anfachend. Ein Temperaturgradient von Welle zu Gehäuse, wie er fast ausschließlich vorkommt, facht die Sekundärströmung an. Ein entgegengesetzter Temperaturgradient von Gehäuse zu Welle dämpft die Sekundärströmung.

Die weiteren Einflussgrößen sind Stoffwerte des Schmierstoffs: Die kinematische Viskosität v wirkt dämpfend. Der thermische Ausdehnungskoeffizient wirkt anfachend.

5.4 Reibung

Für die Auswertung der Reibeigenschaften werden ausschließlich die Gümbelzahlkurven verwendet. Die gemessenen Reibmomentwerte alleine bieten keine eindeutige Unterscheidung des Schmierstoffeinflusses.

5.4.1 Elastomereinfluss

Ein klar erkennbarer Einfluss des Elastomers auf die Reibung zeigte sich nicht. Bei niedrigen Gümbelzahlen verlaufen die Gümbelzahlkurven mit nahezu identischer Steigung. Bei hohen Gümbelzahlen ist das Verhalten vom Schmierstoff abhängig. Eine Korrelation mit Benetzungsgrößen der Elastomere ergab keinen Zusammenhang.

5.4.2 Knick der Gümbelzahlkurve

Bei fast allen Gümbelzahlkurven trat ab $G_{hyd}>3\cdot10^{-6}$ ein Knick auf. Für größere Gümbelzahlen nahm dabei der Reibbeiwert f ab.

Aus der Literatur sind zwei Ansätze zur Erklärung dieses Knicks bekannt. Erstens, ein Viskositätsverlust durch hohe, lokale Erwärmung im Dichtspalt [92] oder durch hohe Scherraten im Dichtspalt [91, 131]. Zweitens, die Ausbildung vollständiger Flüssigkeitsreibung durch Aufschwimmen des RWDRs [46].

Für den ersten Ansatz wird die anzunehmende Viskosität abgeschätzt und den Werten aus der Messung gegenübergestellt. Die Winkelgeschwindigkeit $\boldsymbol{\omega}$ wird durch die exakt messbare Drehzahl als korrekt angenommen. Die mittlere Flächenpressung \bar{p} wird als konstant angenommen.

Im ersten Schritt wird eine höhere Temperatur im Dichtspalt angenommen. Aus eigenen Versuchen bei identischen Bedingungen ist ein Temperaturanstieg in der Dichtzone um bis zu 5K je $1 \text{ m} \cdot \text{s}^{-1}$ Gleitgeschwindigkeit bekannt [111]. Anstelle der gemessenen Temperatur⁶ wird die Temperatur zu $\vartheta = 5 \cdot u + \vartheta_{Welle}$ geschätzt⁷.

Im zweiten Schritt wird der Zusammenhang zwischen Scherrate $\dot{\gamma}$ und dynamischer Viskosität η von GECIM verwendet [36]. Bei der höchsten Umfangsgeschwindigkeit wird eine Verringerung der Viskosität auf die Hälfte des Werts im statischen Zustand angenommen. Der temperaturbedingte Viskositätsverlust wird ebenfalls berücksichtigt.

 $^{^6\}mathrm{Die}$ Temperatur an der Dichtkante wurde während der Versuche mit einer IR-Kamera gemessen.

⁷In der Literatur wird meist von einer Übertemperatur gegenüber dem Ölsumpf ausgegangen [85, 134]. Im vorliegenden Fall wurde ausschließlich die Welle temperiert.

Bild 5.31 zeigt die, aus Messung und Schätzung bestimmte, dynamische Viskosität von FVA 3. Die aus diesen Viskositäten berechneten Gümbelzahlkurven sind in Bild 5.32 dargestellt. Die Änderung des Kurvenverlaufs ist für die höhere Temperatur minimal. Für den Einfluss von Temperatur und Scherrate ist die Änderung des Kurvenverlaufs, wie zu erwarten, größer.

Ein "Zurückschreiten" auf der Gümbelzahlkurve wird in keinem Fall erreicht. Die geringeren Reibbeiwerte sind auf diesem Weg nicht zu erklären.

Es wird im Folgenden eine Änderung des Reibungszustands angenommen.

Bild 5.31 FVA 3, bestimmt aus der gemessenen Dicht- $\vartheta = 40^{\circ}$ C aus gemessenen und geschätzten kantentemperatur und geschätzt

Dynamische Viskosität von Bild 5.32 Gümbelzahlkurve für FVA3 bei Werten

Der zweite Ansatz nimmt Flüssigkeitsreibung an. Die Fähigkeit des RW-DRs einer exzentrisch laufenden Welle zu folgen ist ab einer Grenzdrehzahl erschöpft. Durch das Aufschwimmen wird der Schmierspalt größer, die Scherrate und damit die Reibung werden geringer.

Gegen diesen zweiten Ansatz spricht der kontinuierliche Abfall des Reibbeiwerts nach dem Knick der Gümbelzahlkurve. Die Spalthöhe müsste dafür deutlich ansteigen und die Viskosität deutlich abfallen um die stark ansteigende Winkelgeschwindigkeit zu kompensieren⁸.

Ebenso sprechen die Ergebnisse aus den Verschleißuntersuchungen dagegen. Der beobachtete Verschleiß trat in einem Bereich auf, der nach HIRANOS Ansatz im Bereich der Flüssigkeitsreibung liegen müsste [46]. Hoher Verschleiß korrespondiert mit frühem Wegknicken der Kurve des betreffenden Schmierstoffs.

⁸Die Erfahrung zeigt, dass bei hohen Gümbelzahlen abrasiver Verschleiß auftreten kann. Das wäre bei dem erforderlichen, starken Aufschwimmen des RWDRs unwahrscheinlich.

Eine weitere, bisher nicht betrachtete Möglichkeit, ist das Einsetzen von Mischreibung. Gemäß der Stribeckkurve gilt, dass oberhalb eines »Ausklinkpunkts« ausschließlich Flüssigkeitsreibung herrscht (vgl. Abschnitt 2.1.1, Seite 11). Die gesamte Fläche A_{ges} des Reibkontakts ist an der - flächenabhängigen - Flüssigkeitreibung beteiligt. Setzt aber tatsächlich oberhalb des Ausklinkpunkts wieder Mischreibung ein, findet auf einer Teilfläche A_1 des Reibkontakts flächen- und geschwindigkeitsunabhängige Grenzreibung statt (vgl. LEIN, [74]). Der Reibbeiwert für Mischreibung f_M wird mit Gleichung (5.2) als Summe von Flüssigkeits- und Grenzreibung über die Teilflächen approximiert.

$$f_{M} = \frac{1}{A_{ges}} \cdot \left(\int_{0}^{A_{ges} - A_{1}} f_{F} \cdot dA + \int_{0}^{A_{1}} f_{G} \cdot dA \right)$$
$$= \frac{1}{A_{ges}} \cdot \left(f_{F} \cdot \left(A_{ges} - A_{1} \right) + f_{G} \cdot A_{1} \right)$$
$$= f_{F} + \left(\frac{A_{1}}{A_{ges}} \right) \cdot \left[f_{G} - f_{F} \right]$$
(5.2)

Ist f_G kleiner als f_F , wird f_M ebenfalls kleiner als f_F . Das würde erklären, weshalb der globale Reibbeiwert f beim Einsetzen von Mischreibung kleiner werden kann⁹. Der Ansatz der Mischreibung wird im Folgenden mit Blick auf die Schmierstoffe betrachtet.

Die Gümbelzahl, bei der die Änderung eintritt, wird als kritische Gümbelzahl $G_{hyd,c}$ bezeichnet. Die kritischen Gümbelzahlen der Schmierstoffe unterscheiden sich. In Bild 5.33 sind die kritischen Gümbelzahlen $G_{hyd,c}$ der Schmierstoffe aus den Versuchen bei $\vartheta = 40$ °C dargestellt. Für das Mineralöl FVA 3 ist $G_{hyd,c}$ am kleinsten, für das Silikonöl S 100 am größten. Die kritische Gümbelzahl von PG 1 liegt dazwischen.

Der Schmierstoff hat scheinbar einen entscheidenden Einfluss auf den Knick der Gümbelzahlkurve. Im folgenden Abschnitt wird ein Erklärungsansatz aufgezeigt.

5.4.3 Thermokapillareffekt

Als Ursache für das Einsetzen von Mischreibung ab einer kritischen Gümbelzahl wird der Thermokapillareffekt vermutet. Die durch Reibung im Dichtspalt eingetragene Wärme Q_{reib} wird hauptsächlich über die Welle abgeführt. Dabei entstehen Temperaturgradienten von der Dichtkante zur Umgebung (Bild 5.34). Die Temperaturgradienten bewirken eine Thermokapillarkraft F_t ,

⁹Die Ergebnisse Jungs zur Abhängigkeit der Gümbelzahlkurve von der Rauheit der Gegenlauffläche stützen diese Hypothese [57].

die Schmierstoff von der Dichtkante weg bewegen kann. Dadurch ist die Dichtkante nicht mehr ausreichend geschmiert. Es kommt zu Mischreibung.

Die Thermokapillarkräfte sind meist klein gegenüber den Kapillarkräften des Spalts. Der Effekt wird demnach nur für das Schmierstoffvolumen wirksam sein, für das die Thermokapillarkraft die Kapillarkräfte des Schmierspalts übersteigt. Das wird vor allem für Randbereiche des Dichtspalts der Fall sein. Dort ist die Spalthöhe größer und damit die Kapillarkraft geringer.

Wie in Abschnitt 4.2.1 gezeigt, betragen die Temperaturgradienten in Dichtkantennähe mehrere $100 \,\mathrm{K} \cdot \mathrm{m}^{-1}$. Zur Dichtkante hin werden die Tempergradienten kleiner. Einfluss auf die Höhe der Temperaturgradienten hat die Gestaltung der Gegenlauffläche.

Bild 5.33 Kritische Gümbelzahl $G_{hyd,c}$ in **Bild 5.34** Einfluss des Thermokapillarefden Versuchen bei $\vartheta = 40$ °C ausgewählter fekts auf Schmierstoff in Nähe der Dichtkante Schmierstoffe

In Bild 5.35 ist der Temperaturverlauf in Nähe der Dichtkante für verschiedene Wärmeleitfähigkeiten der Gegenlauffläche dargestellt. Die Werte wurden simulativ ermittelt. Die Randbedingungen wurden entsprechend den experimentell durchgeführten Versuchen gewählt. Bei hoher Wärmeleitfähigkeit ist der Temperaturverlauf flach; die Temperaturgradienten sind gering. Bei geringer Wärmeleitfähigkeit sind die Temperaturgradienten hingegen hoch. Im Versuch wurde dieser Effekt durch die temperierte Gegenlauffläche und die Glas-Gegenlauffläche realisiert.

Für die Schmierstoffe FVA 3, PG 1 und S 100 wurde der kritische Temperaturgradient berechnet, ab dem thermokapillare Instabilität einsetzt. Dazu wurde die dynamische Bondzahl gleich der kritischen dynamischen Bondzahl gesetzt und nach dem Temperaturgradient aufgelöst. Die benötigten Stoffwerte standen aus den Messungen in dieser Arbeit zur Verfügung.

Bild 5.36 zeigt den kritischen Temperaturgradient der Schmierstoffe in Abhängigkeit der Schmierstoff-Temperatur. Mit zunehmender Schmierstoff-Temperatur nimmt auch der kritische Temperaturgradient zu. Thermokapillare Instabilität setzt demnach als erstes bei dem Mineralöl FVA 3 ein, danach bei dem Polyglykol PG 1 und zuletzt bei dem Silikonöl S 100. Durch den flacheren Kurvenverlauf von PG1 kann bei $\vartheta > 110$ °C vor FVA3 thermokapillare Instabilität eintreten.

Dieser Zusammenhang zeigte sich auch in den Versuchen zum Förderwert: Bei Verwendung der Glas-Gegenlauffläche ($\lambda \approx 1 \, W \cdot m^{-1} \cdot K^{-1}$) konnte für FVA 3 keine Förderung gemessen werden (vgl. Abschnitt 5.2.3, Seite 122). Für PG1 wurde ein geringer Förderwert gemessen. Der Förderwert für S100 unterschied sich kaum von Versuchen mit anderen Gegenlaufflächen.

Mit diesen Erkenntnissen kann Mischreibung und »Trockenlauf« von Dichtungen bei hohen Umfangsgeschwindigkeiten erklärt werden. Durch die eingebrachte Reibleistung entstehen steile Temperaturgradienten. Der Thermokapillareffekt bewegt Schmierstoff von der heißen, hochbelasteten Dichtzone in kühlere Randbereiche. Mischreibung ist die Folge. Unter ungünstigen Bedingungen kann auch Trockenlauf und damit die Zerstörung der Dichtung eintreten. Solche ungünstigen Bedingungen sind hohe Reibleistung, geringe Wärmeleitfähigkeit der Gegenlauffläche und empfindlich reagierender Schmierstoff (z.B. Mineralöl).

 λ der Gegenlauffläche auf den Temperatur- ausgewählter Schmierstoffe verlauf in Nähe der Dichtkante (berechnete Werte)

Bild 5.35 Einfluss der Wärmeleitfähigkeit Bild 5.36 Kritischer Temperaturgradient

5.4.4 Reibungs- und Schmierungszustand

Auf den Schmierungs- und Reibungszustand der Radial-Wellendichtung haben mehrere drehzahlabhängige Faktoren Einfluss.

SCHNÜRLE führte Lebensdauerversuche¹⁰ mit RWDR durch (Bild 5.37) [110]. Dabei variierte er die Drehzahl der Gegenlauffläche. Das Ausfallkriterium war das erstmalige Auftreten abtropfender Leckage. Unterhalb einer kritischen Drehzahl ($n_c \approx 2000 \,\mathrm{min}^{-1}$) war die Ausfallursache Verschleiß. Oberhalb der kritischen Drehzahl war thermische Schädigung die Ausfallursache. Die kritische Drehzahl führte SCHNÜRLE auf eine kritische Gümbelzahl von $G_{hyd,c} \approx 6 \cdot 10^{-7}$ zurück. Unterhalb dieser kritischen Gümbelzahl nahm er Mischreibung, oberhalb davon reine Flüssigkeitsreibung an.

JENISCH bestimmte Reibbeiwerte bei geringsten Drehzahlen [56]. Der Ausklinkpunkt lag in seinen Versuchen bei $n = 1 \min^{-1} \dots 4 \min^{-1}$. Oberhalb des Ausklinkpunkts nahm JENISCH Flüssigkeitsreibung an. Angaben über Werte für G_{hyd} , η oder p machte er jedoch nicht. Für Anfahrvorgänge stellte er einen Zusammenhang zwischen der Reibkraft und der Verweildauer im Stillstand fest.

Der Einfluss von Taylor-Görtler-Wirbeln und des Thermokapillareffekts wurde in den vorhergehenden Abschnitten gezeigt. Die thermische Schädigung¹¹ von Schmierstoff und RWDR bei sehr hoher Drehzahl wurde bisher nicht ausdrücklich erwähnt. Sie hängt von der thermischen Belastbarkeit der Komponenten ab. Thermische Schädigung zeigt sich in Messungen meist durch ein instationäres Reibmoment.

Bild 5.38 fasst die Einflussfaktoren zusammen: Bei Anfahrvorgängen und geringsten Drehzahlen muss mit Festkörperreibung bzw. Grenzreibung gerechnet werden. Bis zum Ausklinkpunkt herrscht Mischreibung. Abhängig vom Schmierstoff können sich in einem breiten Drehzahlband förderaktive Wirbel bilden. Diese fördern Schmierstoff von der Dichtzone weg und können dadurch Mangelschmierung bzw. Mischreibung bewirken. Bei hohen Drehzahlen kann, bedingt durch den Wärmeeintrag, thermokapillare Instabilität einsetzen. Schmierstoff wird durch Thermokapillarkräfte aus der Dichtzone gefördert. Magelschmierung ist die Folge. Oberhalb einer werkstoffabhängigen Gleitgeschwindigkeit tritt akute thermische Schädigung ein. Der Einfluss von Drall der Gegenlauffläche und von Alterung des Elastomers wird in diesen Betrachtungen nicht berücksichtigt.

¹⁰Versuchsbedingungen: RWDR in der Dimension $80 \times 100 \times 10$ aus NBR, Schmierstoff: Motoröl in der Viskosität SAE 20W20, Sumpftemperatur $\vartheta = 130$ °C, Sumpf bis Wellenmitte.

¹¹Hier ist nicht die Langzeit-Schädigung (Verhärten, Oxidieren) gemeint, sondern die unmittelbare Schädigung (Verkoken, Zersetzen).

Bild 5.37 Lebensdauer von Radia Wellendichtungen in Abhängigkeit de Drehzahl nach SCHNÜRLE [110]

Radial- **Bild 5.38** Drehzahlabhängige Einflussfaktoit der ren auf den Schmierungs- und Reibungszustand von Radial-Wellendichtungen

Dichtungstechnisches Fazit von Abschnitt 5.4

Elastomereinfluss Ein eindeutiger Einfluss des Elastomers auf den Reibbeiwert zeigte sich nicht. Für die Anwendung ist damit vorrangig die Radialkraft für die Höhe der Reibkraft verantwortlich.

Knick der Gümbelzahlkurve In den Versuchen zur Reibung nahm der Reibbeiwert oberhalb einer kritischen Gümbelzahl kontinuierlich ab. (Die kritische Gümbelzahl entspricht hier, vereinfacht, einer kritischen Umfangsgeschwindigkeit.) Dieser Abfall des Reibbeiwerts wird mit dem erneuten Einsetzen von Mischreibung erklärt. Die bisherigen Ansätze, die Flüssigkeitsreibung annehmen, erscheinen unplausibel.

Thermokapillareffekt Als Ursache für den Abfall des Reibbeiwerts wird der Thermokapillareffekt vermutet. Die Versuchsbedingungen und das unterschiedliche Verhalten der Schmierstoffe lassen darauf schließen.

Temperaturgradienten von der heißen Dichtzone zur kühlen Umgebung bewirken einen Gradient der Oberflächenenergie im Schmierstoff. Der Schmierstoff erfährt dadurch eine Thermokapillarkraft die ihn aus der heißen Dichtzone herausbewegt. Mangelschmierung und Verschleiß, im schlimmsten Fall Trockenlauf und Zerstörung der Dichtung sind die Folge.

Bedeutung für den Schmierstoff Die charakteristische Größe für den Schmierstoff ist die dynamische Bondzahl Bo_{dyn} . Unterschreitet sie einen kritischen Wert ($Bo_{dyn,c} = 1,5$ nach VANHOOK [125]), kann sich der Schmierstoff grundsätzlich bewegen.

An freien Oberflächen führt das zu starker Bewegung des Schmierstoffs (vgl. Bild 3.8). Angespritzter Schmierstoff gelangt damit gar nicht erst bis zur Dichtzone hin.

Im Schmierstoffvolumen und in der Dichtzone ,arbeitet' der Thermokapillareffekt gegen den statischen Druck bzw. gegen die Kapillarkraft an. Der Schmierstoff hält sich dadurch bis zu einem gewissen Maß in der Dichtzone. Übersteigt der Thermokapillareffekt die Wirkung von statischem Druck und von Kapillarkraft, bewegt sich Schmierstoff aus der Dichtzone heraus. Es kommt zu Mangelschmierung.

Bedeutung für den Wellenwerkstoff Eine geringe Wärmeleitfähigkeit des Wellenwerkstoffs begünstigt die Bildung steiler Temperaturgradienten und damit schädlicher Mangelschmierung. Das erklärt, weshalb solche Gegenlaufflächen (z.B. schlecht wärmeleitende Beschichtungen) einen stark schädigenden Einfluss auf RWDR haben (vgl. SCHMUKER, [109]). Für Gegenlaufflächen ist daher unbedingt ein Werkstoff mit hoher Wärmeleitfähigkeit zu wählen.

Reibungs- und Schmierungszustand Für den Reibungs- und Schmierungszustand existieren demnach fünf ungünstige Betriebszustände. Die nachteilige Wirkung ist in vier Fällen Mischreibung und damit Verschleiß, in einem Fall nur thermische Schädigung.

- 1. Festkörper-/Grenzreibung bei sehr geringen Gleitgeschwindigkeiten
- 2. Mischreibung durch unzureichenden Schmierfilmaufbau bei geringen Gleitgeschwindigkeiten
- 3. Mischreibung durch Mangelschmierung wegen förderaktiver Taylor-Görtler-Wirbel
- 4. Mischreibung durch Mangelschmierung wegen Thermokapillareffekt
- 5. Thermische Schädigung durch Zersetzen von Schmierstoff und/oder Elastomer

Kapitel 6

Praxisbedeutung

Die Bedeutung der erzielten Ergebnisse für die Praxis wird in diesem Kapitel aufgezeigt. Das Kapitel beantwortet folgende Fragestellungen:

- Wo und wann treten Grenzflächeneffekte auf?
- Was ist ihre dichtungstechnische Bedeutung?
- Wie können sie abgeschätzt werden?
- Welche Anwendung oder Abhilfemaßnahmen gibt es?

6.1 Kapillarkräfte

Unter Kapillarkräften sind Kräfte und Bewegungen zusammengefasst, die aus der Oberflächenenergie einer Flüssigkeit resultieren.

6.1.1 Auftreten

Das "klassische" Auftreten ist das Eindringen einer Flüssigkeit in einen engen Spalt. Dasselbe Verhalten findet in den Riefen einer rauen Oberfläche statt. Beide Erscheinungen sind direkt miteinander vergleichbar. Entscheidend ist in beiden Fällen die Krümmung der freien Oberfläche.

Eine weitere Kapillarkraft entsteht durch einen Gradient der Oberflächenenergie über einen Weg. Solch ein Gradient kann drei Ursachen haben: Eine Temperaturdifferenz, eine (elektrische) Potentialdifferenz oder eine (chemische) Konzentrationsdifferenz. Bei Dichtungen ist meist die Temperaturdifferenz, hervorgerufen durch Reibungswärme, die Ursache.

6.1.2 Bedeutung

Für Radial-Wellendichtungen haben Kapillarkräfte drei Bedeutungen:

Erstens, sie fördern Schmierstoff in den Dichtspalt (,klassische' Kapillarwirkung). Dadurch unterstützen sie den Aufbau eines tragfähigen Schmierfilms. Das ist günstig für die Dichtung.

Zweitens, die Kapillarwirkung steht der (Rück-)Förderwirkung von Radial-Wellendichtungen entgegen. Übersteigt im Betrieb die Kapillarwirkung die Förderwirkung, kann Leckage auftreten. Ist im Gegensatz dazu die Förderwirkung höher als die Kapillarwirkung, kann Mangelschmierung und damit Verschleiß auftreten. Beide Szenarien sind ungünstig für die Dichtung.

Drittens, durch Reibungswärme herrschen in unmittelbarer Umgebung der Dichtzone steile Temperaturgradienten. Sind diese Temperaturgradienten ausreichend steil oder der Schmierstoff ausreichend ,instabil', bewegt sich der Schmierstoff von der heißen Dichtzone weg. Frisch angespritzter Schmierstoff kann auch nicht bis zur Dichtzone vordringen. Für die Anwendung bedeutet das: Trotz vermeintlich reichlicher Schmierstoffversorgung kann die Dichtung ,trockenlaufen'. Übersteigt der Temperaturgradient einen schmierstoffabhängigen, kritischen Wert, kann der Schmierstoff nicht mehr durch Kapillarkräfte im Dichtspalt gehalten werden. Es kommt unweigerlich zur Schädigung der Dichtung.

6.1.3 Abschätzung

Zur Abschätzung von Kapillarkräften wird meist die Young-Laplace'sche Gleichung (2.54) angeführt. Diese Gleichung gilt jedoch nur im thermodynamischen Gleichgewicht. Damit ist sie für die dichtungstechnische Anwendung unzweckmäßig.

Eine geeignetere Größe ist die Penetrativität ψ nach WASHBURN. Die Gleichung (2.57) ist hier nochmals als Gleichung (6.1) dargestellt. Die Penetrativität berücksichtigt, neben der Oberflächenenergie σ_l und dem Kontaktwinkel θ , die dynamische Viskosität η der Flüssigkeit. Damit ist sie eine zeitabhängige Größe und berücksichtigt dynamische Einflüsse. Eine hohe Penetrativität bedeutet eine hohe Ausbreitungswilligkeit der Flüssigkeit. Einen Anhaltswert für die Oberflächenenergie σ_l und den Kontaktwinkel θ auf Wellenwerkstoffen gibt Tabelle 6.1.

Eine weitere Möglichkeit zur Abschätzung der Kapillarwirkung beschreibt KLAIBER: Ein Tropfen Schmierstoff wird auf eine Stahloberfläche¹ gegeben. Aus der Größenänderung der benetzten Fläche kann der »Benetzungsfaktor« abgeleitet werden [67]. Dieser entspricht prinzipiell der Penetrativität².

¹Bei KLAIBER handelte es sich um gewalzten C100-Stahl.

²WASHBURNS Versuchsdurchführung ähnelte diesem Vorgehen.

$$\psi = \frac{\sigma_l \cdot \cos \theta}{2 \cdot \eta} \tag{6.1}$$

Tabelle 6.1 Anhaltswerte zur Abschätzung der Pentrativität ψ

Größe	Mineralöl	Polyglykol	Silikonöl	Ester
σ_l bei $\vartheta = 40 ^{\circ}\text{C} (10^{-3} \text{N} \cdot \text{m}^{-1})$	2830	$32\ldots 40$	≈ 19	≈ 30
heta	$0^{\circ} \dots 15^{\circ}$	35° 40°	$pprox 0^\circ$	$pprox 18^\circ$

Zur Abschätzung der Kapillarwirkung durch Temperaturgradienten wird Gleichung (2.63) auf den Temperaturanteil reduziert. Die Division durch die Fläche A ergibt einen »Thermokapillardruck« nach Gleichung (6.2). Einen Anhaltswert für den Oberflächenenergie-Gradient gibt Tabelle 6.2. Der Temperaturgradient muss für die jeweilige Anwendung gemessen oder berechnet werden. Für die untersuchten Dichtungen lag der Temperaturgradient bei $\partial T \cdot \partial x^{-1} = 100...2000 \text{ K} \cdot \text{m}^{-1}$. Anhaltswerte für die Bewegung freier Tropfen unter einem Temperaturgradient gibt Bild 3.8. Tropfen-Geschwindigkeiten von mehreren Millimetern pro Sekunde sind üblich.

$$p_{TK} = -\frac{\partial \sigma_l}{\partial T} \cdot \frac{\partial T}{\partial x}$$
(6.2)

Tabelle 6.2 Anhaltswerte zur Abschätzung des Thermokapillardrucks p_{TK}

6.1.4 Anwendung

Für die Kapillarwirkung gibt es zwei Anwendungshinweise:

Erstens, die "klassische" Kapillarwirkung muss im Einklang mit der aktiven Förderwirkung der Radial-Wellendichtung stehen. Eine sehr hohe Kapillarwirkung (z.B. von Silikonöl) vermindert zwar Verschleiß, kann aber zu Leckage führen. Eine sehr geringe Kapillarwirkung (z.B. von Polyglykol und Ester) führt meist zu höherem Verschleiß der Dichtung. Was das richtige Maß ist, lässt sich anhand von Stoffwerten zur Zeit nicht sagen. Dazu sind Dauerlaufuntersuchungen der Dichtungen zu Leckage und Verschleiß erforderlich.

Zweitens, die Kapillarwirkung durch Temperaturgradienten sollte so klein wie möglich sein. Die Schmierstoffe bieten kaum Möglichkeit zur Minderung dieses Effekts. Deshalb müssen die Temperaturgradienten im Bereich der Dichtzone verringert werden. Das ist durch die Verwendung gut wärmeleitender Werkstoffe möglich (vgl. Tabelle 6.3). Die Wärmeleitfähigkeit von Stahl ist dafür oft ausreichend.

Tabelle 6.3 Anhaltswerte für die Wärmeleitfähigkeit λ von Werkstoffen

Werkstoff	$\lambda \ (W \cdot m^{-1} \cdot K^{-1})$		
Glas	1		
Titan	10		
rostfreier Stahl	15		
Stahl	45		
Messing	130		
Siliziumkarbid	140		

6.2 Bindungsenergie

Die Bindungsenergie zwischen einer Flüssigkeit und einem Festkörper heißt »Adhäsionsarbeit« W_a . Die Bindungsenergie zwischen zwei (gedanklichen) Flüssigkeitsteilen heißt »Kohäsionsarbeit« W_c . Die Differenz S zwischen Adhäsionsund Kohäsionsarbeit sowie der Betrag der Adhäsionsarbeit ist dichtungstechnisch bedeutsam. Diese Differenz wird nach HARKINS und FELDMAN als »Spreitungskoeffizient« bezeichnet.

6.2.1 Auftreten

Bei jedem Kontakt zwischen einer Flüssigkeit und einem Festkörper spielt die Bindungsenergie eine Rolle. Jeder Stoff ,will' seine freie Energie absenken. Ist für eine Flüssigkeit die Adhäsionsarbeit mit einem Festkörper größer als die Kohäsionsarbeit (S > 0), sucht die Flüssigkeit eine möglichst große Oberfläche des Festkörpers zu benetzen. Dieser Zustand heißt »vollständige Benetzung«.

Im umgekehrten Fall (S < 0) benetzt die Flüssigkeit eine möglichst kleine Fläche des Festkörpers. Bei Vergrößerung würde Energie frei. Nach dem zweiten Hauptsatz der Thermodynamik ist das nicht möglich. Dieser Zustand heißt »teilweise Benetzung«.

6.2.2 Bedeutung

Für Dichtungen ergeben sich zwei Bedeutungen der Bindungsenergie:

Erstens, die Art der Benetzung ist entscheidend für das Auftreten von Verschleiß. Eine nur teilweise Benetzung von Gegenlauffläche oder Elastomer führt zu Verschleiß.

Zweitens, die Höhe der Adhäsionsarbeit zwischen Schmierstoff und Gegenlauffläche gibt an, wie stark die Gegenlauffläche Schmierstoff mitschleppen kann. Bei förderaktiven Radial-Wellendichtringen führt eine höhere Adhäsionsarbeit zu höheren Förderwerten. Bei nicht-förderaktiven Dichtungen (z.B. PTFE-Manschettendichtungen) führt eine höhere Adhäsionsarbeit zu höherer Leckage³.

6.2.3 Abschätzung

Die Art der Benetzung lässt sich mit annehmbarer Genauigkeit nur rechnerisch ermitteln. Dazu müssen die Adhäsionsarbeit und die Kohäsionsarbeit bekannt sein⁴. Als grobe Abschätzung kann ein Tropfen Schmierstoff auf der Festkörperoberfläche abgesetzt werden. Zerfließt der Tropfen auch nach mehreren Stunden Wartezeit nicht, liegt sehr wahrscheinlich teilweise Benetzung vor⁵.

Mit bekannter Adhäsionsarbeit⁶ und Kohäsionsarbeit muss für vollständige Benetzung Gleichung (6.3) gelten.

$$\frac{2 \cdot \sigma_s^d \cdot \sigma_l^d}{\sigma_s^d + \sigma_l^d} + \frac{2 \cdot \sigma_s^p \cdot \sigma_l^p}{\sigma_s^p + \sigma_l^p} - \left(\sigma_l^d + \sigma_l^p\right) \stackrel{!}{>} 0 \tag{6.3}$$

Die Höhe der Adhäsionsarbeit kann ebenfalls nur rechnerisch bestimmt werden. Das Berechnungsverfahren nach WU wird dafür empfohlen [136]. Es gilt Gleichung (6.4). Tabelle 6.4 gibt die Adhäsionsarbeiten einiger Schmierstoffe gegenüber 100Cr6-Stahl an.

$$W_a = 2 \cdot \left(\frac{2 \cdot \sigma_s^d \cdot \sigma_l^d}{\sigma_s^d + \sigma_l^d} + \frac{2 \cdot \sigma_s^p \cdot \sigma_l^p}{\sigma_s^p + \sigma_l^p} \right)$$
(6.4)

³Diese Aussage bezieht sich auf drallfreie Gegenlaufflächen. Eine weitere Leckage durch Kapillarwirkung ist zudem möglich. Im praktischen Versuch muss also nicht zwangsläufig der Schmierstoff mit höherer Adhäsionsarbeit zu höherer (Gesamt-)Leckage führen.

⁴Ein Gleichsetzen von Gleichung (2.32) und Gleichung (2.33) führt zur Forderung $\theta = 0^{\circ}$. Das ist nicht messbar.

⁵Nebeneffekte wie die Reinigung des Substrats, eine Vorbenetzung und die Oberflächenrauheit verfälschen das Ergebnis.

⁶Das Berechnungsverfahren nach WU wird empfohlen.

Tabelle 6.4 Adhäsionsarbeit einiger Schmierstoffe gegenüber 100Cr6-Stahl

Größe	Mineralöl	Polyglykol	Silikonöl	Ester
W_a bei $\vartheta = 40^{\circ} \text{C} (10^{-3} \text{N} \cdot \text{m}^{-1})$	6468	8286	≈ 54	≈ 71

6.2.4 Anwendung

Die Benetzung der Gegenlauffläche ist in der Regel unkritisch. Die meisten Wellenwerkstoffe werden von üblichen Schmierstoffen vollständig benetzt.

Manche Elastomere⁷ werden dagegen nur teilweise benetzt. Abhilfe schafft der Einsatz eines Elastomers mit höherer Oberflächenenergie oder der Einsatz eines Schmierstoffs mit geringerer Oberflächenenergie.

6.3 Sekundärströmungen

Bei Wellendichtstellen ragt die abzudichtende Welle oft in einen Ölsumpf. Der tangential mitgeschleppte Schmierstoff bildet die Primärströmung; eine »Couette-Strömung«. Dieser Primärströmung kann eine Sekundärströmung überlagert sein. Die Sekundärströmung wird in der Literatur meist als »Taylor-Wirbel« oder »Görtler-Wirbel« bezeichnet.

6.3.1 Auftreten

Durch Zentrifugal- und Auftriebskräfte kann die Primärströmung instabil werden. Für beide Einflüsse formulierte GÖRTLER eine dimensionslose Kennzahl. Für die Zentrifugalkraft die Görtlerzahl $G\ddot{o}$ und für die Auftriebskraft die Grashofzahl Gr. Überschreitet die Summe der Kennzahlen einen kritischen Wert, wird die Primärströmung instabil; es tritt Wirbelbildung ein. Oberhalb eines superkritischen Werts schlägt die gesamte Strömung in Turbulenz um; die Wirbel brechen zusammen. Konkrete Angaben über die Höhe der jeweiligen Werte existieren für die vorliegende Anwendung noch nicht.

6.3.2 Bedeutung

Die Sekundärströmung in Dichtkantennähe hat stets eine Geschwindigkeitskomponente, die von der Dichtkante weg, hin zum Ölsumpf zeigt. OTT zeigte, dass dabei ein dynamischer Unterdruck entsteht, der Schmierstoff von der Dichtzone wegfördert [92]. Das entspricht dem Wirkprinzip einer Strahlpumpe.

 $^{^7\}mathrm{In}$ den Versuchen dieser Arbeit war dies für Fluor-Kautschuk der Fall.

Die Folge für die Dichtung ist eine schlechtere Schmierstoffversorgung. Im Extremfall kann es dazu kommen, dass die Dichtung trotz Ölsumpf nicht ausreichend mit Schmierstoff versorgt wird. Mangelschmierung und Verschleiß können die Folge sein.

6.3.3 Abschätzung

Eigene Versuche und Berechnungen bestätigen OTTs empirisch ermittelten dynamischen Druck p_{dyn} ; Gleichung (6.5). Treibende Größen sind dabei die Winkelgeschwindigkeit $\boldsymbol{\omega}$ und der Wellendurchmesser d. Dämpfende Größen sind die dynamische Viskosität $\boldsymbol{\eta}$ und die Dichte $\boldsymbol{\rho}$ [92].

$$p_{dyn} = 0.034 \cdot \boldsymbol{\omega}^{1,81} \cdot \boldsymbol{\eta}^{0,19} \cdot \boldsymbol{d}^{1,62} \cdot \boldsymbol{\rho}^{0,81}$$
(6.5)

6.3.4 Anwendung

In der Anwendung sind solche Sekundärströmungen meist störend. Lediglich bei drosselnden Spaltdichtungen kann der Effekt gewünscht sein.

Abhilfe schaffen »Wirbelbrecher« in unmittelbarer Nähe der Dichtkante. Das sind Bleche, Gitter und ähnliches, welche die Strömung frühzeitig turbulent werden lassen. Nachteil dieser Maßnahme ist gegebenenfalls ein höheres Planschmoment.

Kapitel 7

Zusammenfassung und Ausblick

Die Ausgangssituation, der gewählte Ansatz und die durchgeführten Untersuchungen werden knapp dargestellt. Die wichtigsten Ergebnisse und der erzielte Fortschritt werden nochmals geschildert. Ein Ausblick auf Ansätze für fortführende Forschungen schließt diese Arbeit ab.

Problemstellung und Ansätze

Moderne Schmierstoffe, wie Polyglykole und Ester, verursachen beim Abdichten mit Radial-Wellendichtringen (RWDR) Probleme. Neben chemischer Unverträglichkeit mit dem Elastomer kann höherer Verschleiß und schließlich Leckage auftreten. Die Ursache dieser Nachteile gegenüber konventionellen, mineralischen Schmierstoffen wurde in den Benetzungseigenschaften der Schmierstoffe vermutet.

Zur Lösung wurden zwei Ansätze gewählt:

Erstens, die Bestimmung der Oberflächenenergie der Komponenten der Radial-Wellendichtung (Schmierstoff, Elastomer und Gegenlauffläche). Von der Oberflächenenergie wurde dabei die Aufspaltung in einen polaren und einen dispersen Anteil berücksichtigt.

Zweitens, die Untersuchung der Schmierstoffeigenschaften hinsichtlich des Einflusses strömungsmechanischer Instabilitäten. Solche Instabilitäten sind Taylor-Görtler-Wirbel und der Thermokapillareffekt.

Untersuchungen

Zehn chemisch unterschiedliche Schmierstoffe wurden untersucht: Zwei Mineralöle, drei Polyglykole, ein Poly- α -Olefin, zwei Ester und zwei Silikonöle. Benetzungs- und strömungsrelevante Stoffwerte wurden in Abhängigkeit der Temperatur gemessen. Diese Stoffwerte dienten der Berechnung von Benetzungs- und Strömungskenngrößen. Benetzungsversuche zeigten direkt das Verhalten der Schmierstoffe auf unterschiedlichen Substraten.

Dichtungstechnische Versuche wurden hauptsächlich mit Radial-Wellendichtungen durchgeführt. Versuche mit PTFE-Manschetten und Stangendichtungen erweiterten den Blick auf andere Dichtsysteme. Von Radial-Wellendichtungen wurde das Förderverhalten, das Reibverhalten und das Verschleißverhalten bestimmt. Die Ergebnisse der dichtungstechnischen Versuche wurden nach den Benetzungs- und Strömungskenngrößen ausgewertet.

Ergebnisse

Die wichtigsten Ergebnisse sind:

Der Förderwert von Radial-Wellendichtungen hängt, für die untersuchten Schmierstoffe, linear von deren Adhäsionsarbeit auf der Gegenlauffläche ab. Hohe Adhäsionsarbeit bedeutet einen hohen Förderwert.

Für den Verschleiß von RWDR und Gegenlauffläche zeigt sich ein Zusammenhang mit der Adhäsionsarbeit zwischen Schmierstoff und Elastomer-Dichtkante. Unterschritt die Adhäsionsarbeit den Wert der Kohäsionsarbeit, trat im Versuch Verschleiß auf.

Ab einem kritischen Wert der hydrodynamischen Kennzahl G_{hyd} ändert sich der Reibungszustand der Radial-Wellendichtung. Das Eintreten der Änderung wurde mit dem Einsetzen thermokapillarer Instabilität erklärt.

Fortschritt

Eine Erklärung für den Schmierstoffeinfluss auf den Dichtmechanismus wurde gefunden. Adhäsions- und Kohäsionsarbeit der Komponenten der Radial-Wellendichtung haben einen deutlichen Einfluss auf das Förder- und Verschleißverhalten.

Der Einfluss axialer (Thermokapillareffekt) und radialer (Görtler-Wirbel) Temperaturgradienten wurde aufgezeigt.

Einschränkungen

Die erzielten Ergebnisse gelten in erster Linie nur für die untersuchten Komponenten. Trotz der breiten Fächerung an Versuchsteilen kann nicht ohne Weiteres auf andere Polymere und Schmierstoffarten geschlossen werden. Die für die Elastomere ermittelten Oberflächenenergien hängen von der Vorbehandlung der Proben ab. Trotz plausibler Ergebnisse sind diese Oberflächenenergien als Relativwerte zu verstehen.

Die dichtungstechnischen Versuche wurden für einen Betriebspunkt durchgeführt. Die gezeigten Zusammenhänge könnten an anderen Betriebspunkten (insbesondere sehr niedrige und sehr hohe Temperatur) durch weitere Effekte überlagert oder egalisiert werden.

Ausblick

Die Ansätze dieser Arbeit sollten für weitere Betriebspunkte von Radial-Wellendichtungen untersucht werden. Dies umfasst eine Variation von Temperatur, Wellendrehzahl und Gestaltung des Dichtungsumfelds.

Von weiteren Schmierstoffen, auch Fetten, sollte der Benetzungseinfluss bestimmt werden. Das Vorgehen für Fette könnte sich dabei am Vorgehen für Festkörper orientieren.

Die Wechselwirkung von Drall der Gegenlauffläche und der Benetzung könnte bei der Beschreibung von Drall hilfreich sein. Durch die Variation des Schmierstoffs läßt sich möglicherweise der Einfluss einzelner Drall-Kenngrößen quantifizieren. Ebenso ist noch nicht klar, inwiefern die Oberflächenstruktur der Gegenlauffläche einen Einfluss auf das Halte- und Leitvermögen von Schmierstoff hat.

Eine Hypothese zum Dichtmechanismus nennt Kavitation des Schmierstoffs als wichtige Einflussgröße, was in dieser Arbeit nicht berücksichtigt wurde. Anhand des Dampfdrucks der Schmierstoffe ließe sich die Kavitationszahl und damit die Neigung der Schmierstoffe zu kavitieren bestimmen.

Literaturverzeichnis

- AFFENZELLER, J.; GLÄSER, H.: Die Verbrennungskraftmaschine, Neue Folge. In: LIST, H. (Hrsg.); PISCHINGER, A. (Hrsg.): Lagerung und Schmierung von Verbrennungsmotoren. Springer-Verlag OHG, 1996 (8)
- BAITINGER, G.: Multiskalenansatz mit Mikrostrukturanalyse zur Drallbeurteilung von Dichtungsgegenlaufflächen, Universität Stuttgart, Diss., 2011
- [3] BECKER, B.: Abdichtung rotierender Wellen durch Radial-Wellendichtringe - Teil 1. In: VDI-Z 118 (1976), März, Nr. 5, S. 225–228
- BLOK, H.; VANHOOK, J.J.: The Foil Bearing A New Departure in Hydrodynamic Lubrication. In: Lubrication Engineering 9 (1953), Nr. 6, S. 316–320
- BÖHME, G.: Strömungsmechanik Nichtnewtonscher Fluide. 2. Teubner Verlag, 2000 (ISBN-13 978-3519123545)
- [6] BONNACURSO, E. ; BUTT, H.-J. ; CRAIG, V.S.L.: Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System. In: *Physical Review Letters* 90 (2003), April, Nr. 14, S. 144501.1–144501.4
- [7] BOOS, W.: Marangoni-Konvektion in Gebieten mit nichttrivialen Grenzflächen, Technische Universität Ilmenau, Diss., 1999
- [8] BRAUN, R.; ROBERT, J.; PREM, E.: Interaction between Gear Oils and Sealing Materials. In: *International Colloquium Tribology* Bd. 16 Technische Akademie Esslingen, 2008
- BRINK, R.V.: Oil Seal Life Good Loading or Good Luck / Society of Automotive Engineers. 1965 (650656). – SAE Paper

- [10] BRITZ, S.: Ein Beitrag zur Erfassung der Funktionsprinzipien dynamischer Wellendichtungen unter besonderer Berücksichtigung des Radialwellendichtrings, Universität Kaiserslautern, Diss., 1988
- [11] BRITZ, S.: Der Einfluß der Oberflächenspannungen auf das tribologische System im Dichtspalt von Radial-Wellendichtringen (RWDR). In: unbekanntes Journal (unbekanntes Jahr, circa 1988)
- [12] BUHL, S.: FVA-Heft 667 Oberflächentopographie Ermittlung von Kennwerten zur Beurteilung der Topographie technischer Oberflächen insbesondere hinsichtlich deren Reibungs-, Verschleiβ- und Dichtungsverhalten. Forschungsheft, 2002
- [13] BUHL, S.: Wechselbeziehungen im Dichtsystem von Radial-Wellendichtring, Gegenlauffläche und Fluid, Universität Stuttgart, Diss., 2006
- BUTT, H.-J.; GRAF, K.; KAPPL, M.: Physics and Chemistry of Interfaces. 2. Weinheim, Deutschland : WILEY-VCH Verlag GmbH u. Co. KGaA, 2006 (ISBN-10: 3-527-40629-8)
- [15] CALLISTER, W.D.; RETHWISCH, D.G.: Fundamentals of Materials Science and Engineering. 3. WILEY-VCH Verlag GmbH u. Co. KGaA, 2008 (ISBN 978-0-470-23463-1)
- [16] CASSIE, A.B.D.; BAXTER, S.: Wettability of Porous Surfaces. In: Transactions of the Faraday Society 40 (1944), S. 546–551
- [17] DAIMLER: MBN 31 007-7 Drallreduzierte dynamische Dichtflächen. Werksnorm, 2002
- [18] DARHUBER, A.A.; TROIAN, S.M.: Principles of Microfluidic Actuation by Modulation of Surface Stresses. In: Annual Reviews of Fluid Mechanics 37 (2005), S. 425–455
- [19] DAUBNER, A. ; HAAS, W.: Simulation der Temperatur im und am Reibkontakt. In: NAFEMS Magazin 14 (2009), März, S. 62–71
- [20] DEBYE, P.: Die Van-der-Waalsschen Kohäsionskräfte. In: *Physikalische Zeitschrift* 21 (1920), Nr. 7, S. 178–187
- [21] DEURING, H.: Lehrgang Dichtungstechnik I-III DIN 3761 Radial-Wellendichtringe für Kraftfahrzeuge / Goetze AG. Technische Akademie Esslingen, 30.11.-2.12. 1987 (9941.1/61.126). – Forschungsbericht

- [22] DIN: DIN 3761 Radial-Wellendichtringe für Kraftfahrzeuge Teil 2 -Anwendungshinweise. Norm, November 1983
- [23] DIN: DIN 3761 Radial-Wellendichtringe für Kraftfahrzeuge Teil 9 -Prüfung, Radialkraft-Messgerät-Digital. Norm, Januar 1984
- [24] DIN: DIN 3760 Radial-Wellendichtringe. Norm, September 1996
- [25] DIN: Kautschuk und Latices Einteilung, Kurzzeichen (ISO 1629:1995). Norm, November 2004
- [26] DIN: DIN 55660-2:2011-12 Beschichtungsstoffe Benetzbarkeit Teil
 2: Bestimmung der freien Oberflächenenergie fester Oberflächen durch Messung des Kontaktwinkels. Norm, Dezember 2011
- [27] DIN: DIN 55660-5:2012-04 Beschichtungsstoffe Benetzbarkeit Teil 5: Bestimmung des polaren und dispersen Anteils der Oberflächenspannung von Flüssigkeiten aus Kontaktwinkelmessungen auf einem Festkörper mit rein dispersem Anteil der Oberflächenenergie. Norm, April 2012
- [28] Kapitel Synthetic Base Oils. In: DRESEL, W.: Lubricants and Lubrication. 2. WILEY-VCH Verlag GmbH u. Co. KGaA, 2007 (ISBN 978-3-527-31497-3), S. 63–87
- [29] ENGELKE, T.: FVA-Heft 786 Dichtungsverträglichkeit Synthetiköle -Dichtungsverträglichkeit von Synthetikölen auch unter Berücksichtigung umweltverträglicher Esterschmierstoffe. Forschungsheft, 2006
- [30] ENGELKE, T.: FVA-Heft 919 Synthetiköle Dichtungsalterung in synthetischen Getriebeölen. Forschungsheft, 2009
- [31] EUTENEUER, G.-A.: Längswirbel bei der laminaren Umströmung teilweise eintauchender, rotierender Walzen. In: Forschung im Ingenieurwesen Bd. 37. VDI Verlag, 1971, S. 173–208
- [32] F5-TECHNOLOGIE: Meßsystem Lambda Datenblatt
- [33] FELDMETH, S. ; BAUER, F. ; HAAS, W.: Temperaturbestimmung bei Radial-Wellendichtungen mittels CHT-Simulation. In: TRIBOLO-GIE E.V., Gesellschaft für (Hrsg.) ; Gesellschaft für Tribologie e.V. (Veranst.): *Tribologie Fachtagung 2012*. Göttingen, September 2012, S. 60/1-60/11
- [34] FOWKES, F.M.: Attractive Forces at Interfaces. In: Industrial and Engineering Chemistry 56 (1964), Nr. 12

- [35] FVA: Referenzöle für Wälz- und Gleitlager, Zahnrad- und Kupplungsversuche - Datensammlung für Mineralöle. Frankfurt am Main : Forschungsheft, 1985
- [36] GECIM, B.: Non-Newtonian effects in multigrade oils on journal bearing performance. In: STLE 44th Annual Meeting Bd. 89-AM-4B-2, 1989, S. 1–11
- [37] GIRIFALCO, L.A.; GOOD, R.J.: A Theory for the Estimation of Surface and Interfacial Energies I. - Derivation and Application to Interfacial Tension. In: *Journal of Physical Chemistry* 61 (1957), Juli, S. 904–909
- [38] GÖRTLER, H.: Über die dreidimensionale Instabilität laminarer Grenzschichtströmungen an konkaven Wänden. In: Nachrichten aus der Mathematik Band 2, Nr. 1 (1940), S. 1–26
- [39] GÖRTLER, H.: On the Three-Dimensional Instability of Laminar Boundary Layers On Concave Walls / National Advisory Committee for Aeronautics. 1954. – Technical Memorandum. – 1–26 S.
- [40] GÖRTLER, H.: Über eine Analogie zwischen den Instabilitäten laminarer Grenzschichtströmungen an konkaven Wänden und an erwärmten Wänden. In: Deutsche Versuchsanstalt für Luftfahrt e. V. 111 (1959), S. 71–78
- [41] HAJJAM, M. ; DOMINIQUE, B.: Non-Newtonian effects on elastohydrodynamic behaviour of rotary lip seals. In: *Proc. IMechE* 220 (2006), S. 79–84
- [42] HARDY, W.B.; DOUBLEDAY, I.: Boundary Lubrication. The Paraffin Series. In: Proceedings of the Royal Society A 100 (1922), März, S. 550–574
- [43] HARKINS, W.D.; FELDMAN, A.: Films. The Spreading of Liquids and the Spreading Coefficient. In: *Journal of the Americal Chemical Society* 44 (1922), Nr. 12
- [44] HEIDEBROEK, E.: Das Verhalten von zähen Flüssigkeiten insbesondere Schmierflüssigkeiten in engen Spalten. In: Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig 97 (1950), März, Nr. 6, S. 1–39
- [45] HERMANN, W. ; SEFFLER, H.-W.: Neue Erkenntnisse für den Abdichtmechanismus von Radial-Wellendichtringen. In: Automobiltechnische Zeitschrift 87 (1985), Nr. 9, S. 475–484

- [46] HIRANO, F.; ISHIWATA, H.: The Lubricating Condition of a Lip Seal. In: DOWSON, D. (Hrsg.); Institution of Mechanical Engineers (Veranst.): *Elastohydrodynamic Lubrication* Bd. 180. Westminster, London, 1966, S. 187–196
- [47] HIRANO, F. ; ISHIWATA, H. ; KAMBAYASHI, H.: Friction and Sealing Characteristics of Oil Seals. In: International Conference on Fluid Sealing Bd. 1 British Hydromechanics Research Association, 1961
- [48] HOCKEL, H.L.: Untersuchungen über Grenzreibung von Metallen und Gummi bei höheren Gleitgeschwindigkeiten. In: Konstruktion 7 (1955), Nr. 10, S. 394–404
- [49] HOPPERMANN, A.: Einfluss von Oberflächengestaltung und Werkstoffwahl auf das tribologische Verhalten von Gleit- und Dichtungskontakten hydraulischer Komponenten, Technische Hochschule Aachen, Diss., 2005
- [50] INCROPERA, F.P.; DEWITT, D.P.: Fundamentals of Heat and Mass Transfer. 6. WILEY-VCH Verlag GmbH u. Co. KGaA, 2006
- [51] INY, E.H.; CAMERON, A.: Rotary Oil Seals / The British Hydromechanics Research Association. 1958 (RR579). – Forschungsbericht
- [52] JAGGER, E.T.: Rotary Shaft Seals: The Sealing Mechanism of Synthetic Rubber Seals Running at Atmospheric Pressure. In: *Proceedings of the Conference on Lubrication and Wear*, 1957, S. 597–616
- [53] JAGGER, E.T.: Study of the Lubrication of Synthetic Rubber Rotary Shaft Seals. In: Conference on Lubrication and Wear Institution of Mechanical Engineers, 1957, S. 1–7
- [54] JAGGER, E.T.: Further Experiments on the Sealing Mechanism of Synthetic Rubber Lip Type Seals operating on a rotating Shaft. In: *Proceedings of the Institution of Mechanical Engineers* Bd. 187 Institution of Mechanical Engineers, 1973, S. 361–367
- [55] JAKOBI, B.: Versagen der Befettung bei Radial-Wellendichtungen im Pkw-Lenkungsventil, Universität Stuttgart, Diss., 2013
- [56] JENISCH, B.: Abdichten mit Radial-Wellendichtringen aus Elastomer und Polytetrafluorethylen, Universität Stuttgart, Diss., 1991
- [57] JUNG, S.: Beitrag zum Einfluss der Oberflächencharakteristik von Gegenlaufflächen auf das tribologische System Radial-Wellendichtung, Universität Stuttgart, Diss., 2012

- [58] KAELBLE, D.H.: Dispersion-Polar Surface Tension Properties of Organic Solids. In: *Journal of Adhesion* 2 (1970), Nr. 2, S. 66–81
- [59] KAELBLE, D.H.: *Physical Chemistry of Adhesion*. John Wiley and Sons, 1971 (ISBN 0-471-45411-7)
- [60] KAMMÜLLER, M.: FKM-Heft 122 Radial-Wellendichtringe I Dichtverhalten von Radial-Wellendichtringen. Forschungsheft, 1986
- [61] KAMMÜLLER, M.: Zur Abdichtwirkung von Radial-Wellendichtringen, Universität Stuttgart, Diss., 1986
- [62] KAPTAY, G.: Classification and General Derivation of Interfacial Forces, Acting on Phases, Situated in the Bulk, or at the Interface of Other Phases. In: *Journal of Materials Science* 40 (2005), S. 2125–2131
- [63] KAWAHARA, Y.: A Study of Sealing Phenomena on Oil Seals. In: AS-LE/ASME Lubrication Conference American Society of Lubrication Engineers, 1977
- [64] KAWAHARA, Y.: An Analysis of Sealing Characteristics of Oil Seals. In: ASLE/ASME Lubrication Conference Bd. 23 American Society of Lubrication Engineers, 1978, S. 93–102
- [65] KAWAHARA, Y.; OHTAKE, Y.; HIRABAYASHI, H.: Oil Film Formation of Oil Seals for Reciprocating Motion. In: *International Conference on Fluid Sealing* Bd. 9. Noordwijkerhout, Niederlande, April 1981, S. 73–84
- [66] KEESOM, W.H.: Die Van-der-Waalsschen Kohäsionskräfte. In: Physikalische Zeitschrift 22 (1921), Nr. 5, S. 129–141
- [67] KLAIBER, M.: Betriebs- und Benetzungseigenschaften im Dichtsystem Radial-Wellendichtung am Beispiel von additivierten synthetischen Schmierölen, Universität Stuttgart, Diss., 2013
- [68] KLIEN, S.: Influences of Lubricants and Surface Topography on Marangoni Phenomena. In: *Tribology under extreme conditions*. Dübendorf, Schweiz, April 2008
- [69] KOSCHMIEDER, E.L.: Bénard Cells and Taylor Vortices. University of Texas, Austin, USA : Cambridge University Press, 1993 (0-521-40204-2)
- [70] KUNSTFELD, T.: FKM-Heft 261 Dichtungsumfeld Einfluss des bespritzungs- und luftseitigen Umfeldes auf die Dichtwirkung von Radial-Wellendichtungen. Forschungsheft, 2001

- [71] KUNSTFELD, T.: Einfluss der Wellenoberfläche auf das Dichtverhalten von Radial-Wellendichtungen, Universität Stuttgart, Diss., 2005
- [72] LANGMUIR, I.: The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. In: *Journal of the Americal Chemical Society* 38 (1916), November, Nr. 11, S. 2221–2295
- [73] Kapitel The Sealing and Lubrication Principles of Plain Radial Lip Seals: An Experimental Study of Local Tangential Deformations and Film Thickness. In: LEEUWEN, H. van: Elastohydrodynamics 1996. Elsevier Science B.V., 1997, S. 219–232
- [74] LEIN, J.: Mechanische Untersuchungen an Dichtungsringen für rotierende Wellen, Technische Hochschule Karlsruhe, Diss., 1952
- [75] LEIS, A. ; HOLLEN, J. von: FKM-Heft 307 Stochastische Strukturen. Forschungsheft, 2010
- [76] LINES, D.J.; LAWRIE, J.M.; O'DONOGHUE, J.P.: The Effect of Under-Lip Temperatures on the Lubrication of Rotary Shaft Garter Spring Seals. In: *Proceedings of the Institution of Mechanical Engineers* Bd. 181 Institution of Mechanical Engineers, 1966, S. 1–6
- [77] LINES, D.J.; O'DONOGHUE, J.P.: Under Lip Temperatures in Rotary Shaft Seals. In: 5th International Conference on Fluid Sealing Bd. 5. Cranfield, Bedford., 1971, S. 1–20
- [78] LINES, D.J.; O'DONOGHUE, J.P.: The Effect of Surface Roughness and Thermal Operating Conditions on the Under-Lip Temperature of a Rotary Shaft Seal. In: 8th International Conference on Fluid Sealing Bd. 8. Cranfield, Bedford., 1978, S. 35–41
- [79] LONDON, F.: Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. In: Zeitschrift für Physik 44 (1927), S. 455–472
- [80] LONDON, F.: The General Theory of Molecular Forces. In: Transactions of the Faraday Society 33 (1937), Nr. 8, S. 8–26
- [81] MANN, J.A.; ROMERO, L.: Flow of Simple Liquids Down Narrow V-Grooves. In: *Physical Review E* 52 (1995), Oktober, Nr. 4
- [82] MAOUI, A.; HAJJAM, M.; BONNEAU, D.: Numerical Analysis of Thermoelastohydrodynamic Behaviour of Elastomer Radial Lip Seals. In: *Journal of Tribology* 130 (2008), April

- [83] MARANGONI, C.G.M.: Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. In: Annalen der Physik und Chemie 143 (1871), Nr. 7, S. 337–354
- [84] MÜLLER, H. K.: Concepts of Sealing Mechanism of Rubber Lip Type Rotary Shaft Seals. In: ELSEVIER (Hrsg.): International Conference on Fluid Sealing Bd. Paper K1. London, 1987, S. 698–709
- [85] MÜLLER, H. K.: Abdichtung bewegter Maschinenteile. Waiblingen : Medienverlag Ursula Müller, 1990 (ISBN 3-920484-00-2)
- [86] NAKAMURA, K.: An Investigation of Sealing Properties of Lip Seals through Observations of Sealing Surfaces under Dynamic Condition. In: 10th International Conference on Fluid Sealing. Innsbruck : BHRA, 1984, S. Paper C1
- [87] Kapitel How to Reduce Corrosion of Seals and Shafts. In: N.N.: Materials in Design Engineering. Reinhold Publishing Corporation, 1966 (Band 63), S. 74–75
- [88] NOF: EP 1564236B1 Polyalkylen Derivat. Patent, 2008
- [89] OERTEL, H.; MÜLLER, U. (Hrsg.): Recent Developments in Theoretical and Experimental Fluid Mechanics. Berlin : Springer-Verlag OHG, 1979
- [90] OERTEL, H.: Strömungsmechanische Instabilitäten. Springer-Verlag OHG, 1996 (ISBN 3-540-56984-7)
- [91] OLIVEIRA, S.: Das nichtnewtonsche Verhalten von Fluiden bei hohen Schergefällen als Erklärung der Schmierungs- und Dichtvorgänge bei Radialwellendichtringen, Technische Universität Hamburg-Harburg, Diss., Dezember 1995
- [92] OTT, G.: Untersuchungen zum dynamischen Leckage- und Reibverhalten von Radial-Wellendichtringen, Universität Stuttgart, Diss., 1983
- [93] OTTO, V.: Die Radialkraft von Radial-Wellendichtringen, ihre Zusammensetzung, Veränderungen und Toleranzen / Goetze AG. Burscheid, unbekanntes Jahr. – Forschungsbericht
- [94] OWENS, D.K.; WENDT, R.C.: Estimation of the Surface Free Energy of Polymers. In: Journal of Applied Polymer Science 13 (1969), S. 1741– 1747
- [95] PAULING, L.: Die Natur der chemischen Bindung. 3. Verlag Chemie GmbH, 1962

- [96] PEARSON, J.R.A.: On Convective Cells Induced by Surface Tension. In: Journal of Fluid Mechanics 4 (1958), Nr. 5, S. 489–500
- [97] POLL, G.; GABELLI, A.: Formation of Lubricant Film in Rotary Sealing Contacts: Part II - A New Measuring Principle for Lubricant Film Thickness. In: *Journal of Tribology* 114 (1992), April, S. 290–297
- [98] RAAB, H.S.: FKM-Heft 239 Wellenlaufflächen Einfluss der Wellenlauffläche auf das Dichtverhalten von Radial-Wellendichtringen. Forschungsheft, 1998
- [99] RABEL, W.: Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaft von Polymeren. In: Farbe und Lack 77 (1971), Nr. 10, S. 997–1005
- [100] RAJAKOVICS, G.E.: On the Sealing Mechanism of Dynamic Fluid Seals. In: Proceedings of the 5th International Conference on Fluid Sealing. Coventry, England, März 1971
- [101] REMPPIS, M.: FVA-Projekt 617 Berechenbare Dichtgüte. Forschungsreport, November 2012
- [102] Kapitel Elastomere. In: RINNBAUER, M. ; STEIN, G. ; PETERSEIM, V.: Kunststoffe - Eigenschaften und Anwendungen. 8. Springer-Verlag OHG, 2012, S. 1231–1298
- [103] RMA: Shaft Requirements for Rotary Lip Seals / Rubber Manufacturers Association. Washington, USA, 1999 (OS-1-1). – Oil Seal Technical Bulletin
- [104] ROOS, E.: Werkstoffkunde f
 ür Ingenieure. 2. Springer-Verlag OHG, 2005 (ISBN 3-540-22034-8)
- [105] SCHALLAMACH, A.: How does Rubber slide? In: Wear 17 (1971), S. 301–312
- [106] SCHLICHTING, H.: Grenzschicht-Theorie. 5. Karlsruhe : Verlag G. Braun, 1965
- [107] SCHMIDTHALS, C. ; NOSOWICZ, J.: Zusammenhang von der Benetzungsfähigkeit von Flüssigkeiten und dem tribologischen Verhalten von Gleitringdichtungen. In: TIETZE, W. (Hrsg.) ; Dichtungskolloquium (Veranst.): Untersuchung und Anwendung von Dichtelementen. Essen : Vulkan-Verlag, 2001 (12 ISBN 3-8027-2198-5), S. 369–382

- [108] SCHMUKER, S.: FKM-Heft 297 Oberflächentopographie Einfluss der Wellenlaufflächen-Topographie auf das Dichtsystem der Radial-Wellendichtung. Forschungsheft, 2007
- [109] SCHMUKER, S.: FKM-Heft 308 Mit Radialwellendichtringen auf neuen, innovativen Wellenwerkstoffen und Beschichtungen zuverlässig abdichten. Forschungsheft, 2010
- [110] SCHNÜRLE, F.: Beitrag zur Beurteilung der Einflussgrößen auf Schmierungszustand und Betriebsverhalten, insbesondere Verschleiß und Lebensdauer, von Radial-Wellendichtringen, Technische Hochschule Karlsruhe, Diss., 1975
- [111] SCHULER, P.: Einfluss der Systemparameter auf das Reibmoment von Radial-Wellendichtringen. 2008. – Studienarbeit am Institut f
 ür Maschinenelemente
- [112] SCHULER, P. ; HAAS, W.: Die Kontaktwinkelhysterese als Kennwert für den Einfluss von Schmierstoffen auf das Dichtverhalten der Radial-Wellendichtung. In: *GETLUB - Tribologie- und Schmierstoffkongress* Bd. 2 FVA e.V., 2012, S. 154–166
- [113] SCHWABE, D. ; LAMPRECHT, R. ; SCHARMAN, A.: Marangoni-Konvektion im offenen Boot (MKB). In: *Naturwissenschaften* 73 (1986), S. 350–351
- [114] SIMRIT, Freudenberg: Der Simmerring Grundlagen zur Schadensprävention. Firmenbroschüre, unbekanntes Jahr
- [115] SITA-MESSTECHNIK: SITA Science Line t60 Technische Daten
- [116] SORKAU, W.: Über den Zusammenhang zwischen Molekulargewicht und Turbulenzreibungskonstante. In: *Physikalische Zeitschrift* 14 (1913), Februar, Nr. 4, S. 147–152
- [117] STAKENBORG, M.L.: On the Sealing and Lubrication Mechanism of Radial Lip Seals, Technische Universität Eindhoven, Diss., 1988
- [118] STEINHILPER, W.: Funktion von Radial-Wellendichtringen bei Geometrieabweichungen. In: Der Konstrukteur (1990), Nr. 6
- STRÖM, G.; FREDERIKSSON, M.; STENIUS, P.: Contact Angles, Work of Adhesion, and Interfacial Tensions at a Dissolving Hydrocarbon Surface. In: *Journal of Colloid and Interface Science* 119 (1987), Oktober, Nr. 2, S. 352–361
- [120] TAYLOR, G.I.: Stability of a Viscous Liquid Contained between Two Rotating Cylinders. In: Royal Society of London Proceedings Series A 223 (1923), Januar, S. 289–343
- [121] TRUCKENBRODT, E.: Fluidmechanik, Band 1. 3. Springer-Verlag OHG, 1989
- [122] TRUTNOVSKY, K.: Konstruktive Möglichkeiten der Abdichtung von Lagern. In: Schmiertechnik 10 (1963), Nr. 3 und 4, S. 143–147 und 203–205
- [123] UETZ, H.: Tribologie der Polymere. München : Carl Hanser Verlag, 1985 (ISBN 3-446-14050-6)
- [124] UPPER, G.: Dichtlippentemperatur von Radial-Wellendichtringen, Technische Hochschule Karlsruhe, Diss., 1968
- [125] VANHOOK, S. J.: Long-Wavelength Instability in Surface-Tension-Driven Bénard Convection. In: *Physical Review Letters* 75 (1995), Dezember, Nr. 24, S. 4397–4400
- [126] WASHBURN, E.W.: The Dynamics of Capillary Flow. In: *Physical Review* 17 (1921), Nr. 3
- [127] WEBER, R.: Physik Teil II: Atom-, Molekül- und Quantenphysik. 1. Teubner Verlag, 2007 (ISBN 978-3-8351-0201-9)
- [128] WEHRMACHT, Oberkommando der (Hrsg.): Allgemeinbildender Aufbaulehrgang - 1. Teil. Verlag Ferdinand Hirt, 1941
- [129] WENZEL, R.N.: Resistance of Solid Surfaces to Wetting by Water. In: Industrial and Engineering Chemistry 28 (1936), August, Nr. 8
- [130] WHITE, F. M.: Fluid Mechanics. 5. McGraw-Hill, 2003 (ISBN 0-07-240217-2)
- [131] WIEHLER, K.: Tribologie und Fluidverhalten in der Dichtzone von Radial-Wellendichtringen unter der Berücksichtigung makromolekularer Bestandteile der Schmierfluide, Technische Universität Hamburg-Harburg, Diss., 2003
- [132] WOLF, K.L.: Physik und Chemie der Grenzflächen Die Phänomene im Allgemeinen. Bd. 1. 1. Berlin : Springer-Verlag OHG, 1957
- [133] WOLF, K.L.: Physik und Chemie der Grenzflächen Die Phänomene im Besonderen. Bd. 2. 1. Berlin : Springer-Verlag OHG, 1959

- [134] WOLLESEN, V.: Temperaturbestimmung in der Dichtzone von Radialwellendichtringen als Randbedingung für die Modellierung des Dichtvorgangs, Technische Universität Hamburg-Harburg, Diss., 1993
- [135] WOZNIAK, G.: Experimentelle Untersuchung des Einflusses der Thermokapillarität auf die Bewegung von Tropfen und Blasen, Universität Gesamthochschule Essen, Diss., 1987
- [136] WU, S.: Polar and Nonpolar Interactions in Adhesion. In: Journal of Adhesion 5 (1973), S. 39–55
- [137] YOUNG, T.: An Essay on the Cohesion of Fluids. In: Philosophical Transactions of the Royal Society of London 95 (1805), S. 65–87
- [138] ZISMAN, W.A.: Influence of Constitution on Adhesion. In: Industrial and Engineering Chemistry 55 (1963), Oktober, Nr. 10, S. 18–38
- [139] ZISMAN, W.A.: Relation of Equilibrium Contact Angle to Liquid and Solid Constitution. In: GOULD, R.F. (Hrsg.); American Chemical Society (Veranst.): Contact Angle - Wettability and Adhesion Bd. 43 American Chemical Society, 1963 (Advances in Chemistry), S. 1–51

Anhang A

Messungen

Grenzflächeneffekte wurden in dieser Arbeit hauptsächlich durch folgende Kenngrößen charakterisiert: Die Adhäsionsarbeit, die Kohäsionsarbeit und die Penetrativität. Diese Kenngrößen werden rechnerisch aus der Oberflächenenergie der beteiligten Stoffe und gegebenenfalls dem Kontaktwinkel bestimmt. Die Oberflächenenergie selbst kann ebenfalls nicht direkt gemessen werden. Zusätzliche Annahmen und Berechnungsmodelle sind dafür erforderlich. Bei der Messung können unerwünschte Nebeneffekte auftreten, die das Ergebnis verfälschen. Aus diesen Gründen ist die Bestimmung der Kenngrößen fehleranfällig.

In diesem Kapitel werden die erforderlichen Messungen an konkreten Beispielen geschildert. Auf mögliche Fehlerquellen und Nebeneffekte wird hingewiesen. Alle benötigten Gleichungen werden ohne Herleitung nochmals aufgeführt.

A.1 Vorgehen

Die alleinige Messung des Kontaktwinkels θ einer Flüssigkeit-Festkörper-Paarung genügt in keinem Fall. Zur Bewertung einer teilweise benetzenden Flüssigkeit auf einer Festkörperoberfläche muss zusätzlich mindestens die Oberflächenenergie σ_l der Flüssigkeit bekannt sein.

Neben der Gesamt-Oberflächenenergie haben der polare und der disperse Anteil der Oberflächenenergie einen Einfluss auf die Benetzung. Aus Bild 2.67 (Seite 52) geht dieser Einfluss anschaulich hervor. Der polare und der disperse Anteil werden über die Berechnungsansätze von OWENS, WENDT, RABEL, KAELBLE (OWRK) und WU berücksichtigt. Dazu ist bei Festkörpern die indirekte Messung der Oberflächenenergie mittels Kontaktwinkelmessung von Flüssigkeiten erforderlich, deren Oberflächenenergie nach polarem und dispersem Anteil bekannt ist. Bei Flüssigkeiten wird das Verfahren umgekehrt und ein Festkörper mit bekannter Oberflächenenergie mit der Flüssigkeit benetzt.

Sind von einer Flüssigkeit-Festkörper-Paarung die polaren und dispersen Anteile der Oberflächenenergie bekannt, kann die Adhäsionsarbeit zwischen den beiden Stoffen berechnet werden. Wie sich in dieser Arbeit zeigte, hat die Adhäsionsarbeit große Bedeutung für die Erklärung des Dichtmechanismus der Radial-Wellendichtung. Deshalb wird im Folgenden die Bestimmung der Adhäsionsarbeit erläutert. Das Vorgehen ist in Bild A.1 dargestellt. Die einzelnen Schritte sind mit römischen Zahlen von (τ) bis (xn) bezeichnet.

A.2 Oberflächenenergie von Festkörpern

Die Oberflächenenergie von Festkörpern kann nur indirekt gemessen werden. Die Kontaktwinkel von mindestens zwei bekannten Messflüssigkeiten werden dazu ausgewertet. Im Folgenden wird die Kontaktwinkelmessung am liegenden Tropfen (englisch: *sessile drop*) beschrieben.

A.2.1 Kontaktwinkelmessung

Die Kontaktwinkelmessung von Festkörperproben umfasst die Schritte Vorbereiten (1), Messen (1) und Auswerten (11).

Vorbereiten

Die Vorbereitung 🕕 der zu messenden Festkörperoberfläche hat entscheidenden Einfluss auf das Messergebnis. Das hat zwei Gründe: Erstens, die Rauheit der Oberfläche. Zweitens, die (chemische) Reinheit der Oberfläche.

Raue Oberflächen ergeben den Kontaktwinkel θ' , der nach WENZEL gemäß Gleichung (A.1) vom Oberflächenverhältnis a des Festkörpers abhängt. Zur Bestimmung von Stoffwerten sollten deshalb Festkörper mit $a \approx 1$ verwendet werden. Anhaltswerte für das Oberflächenverhältnis sind a = 1,02 für polierte Festkörper und a = 1,2 für feingeschliffene Festkörper.

$$\cos \theta' = a \cdot \cos \theta \tag{A.1}$$

Bei chemisch verunreinigten Oberflächen wird nicht der Kontaktwinkel gegenüber dem Festkörper gemessen, sondern gegenüber der Verunreinigung.

Bild A.1 Bestimmung der Adhäsionsarbeit einer Flüssigkeit-Festkörper-Paarung

Mit geeigneten Reinigungsmethoden soll deshalb eine möglichst reine Oberfläche erzeugt werden. Für Wellenwerkstoffe wird die Reinigung mit Aceton¹ empfohlen. Reinigungsalkohol oder Reinigungsbenzin ergeben unbefriedigende Reinigungsergebnisse und hinterlassen teilweise Rückstände. Von einer zusätzlichen Behandlung mit einem Plasmagerät ist abzuraten. Dadurch kann die Oberfläche chemisch verändert werden, was das Messergebnis der Kontaktwinkelmessung verfälscht.

Die Vorbereitung von Elastomeren ist wesentlich kritischer als die von

 $^{^1\}mathrm{Aceton}$ ist der gebräuchliche Trivialname für Dimethylketon.

Wellenwerkstoffen. Elastomere lassen sich nicht polieren wie Wellenwerkstoffe. Ebenso ist eine Reinigung mit aggresiven Reinigungsmitteln nicht möglich, da sie das Elastomer schädigen können. Alterungseinflüsse, wie ultraviolettes Licht, verändern Elastomere zusätzlich mit der Zeit. Für die Versuche wird deshalb empfohlen unmittelbar vor der Messung die Elastomerprobe anzuschleifen. Für diese Arbeit wurden die Elastomerproben trocken, mit Siliziumkarbid-Schleifscheiben in Körnung 500 geschliffen. Schleifstaub wurde mit einer autoadhäsiven Folie entfernt. Von chemischem Reinigen oder Plasmareinigen wird abgeraten.

Messen

Die Messung (1) von Kontaktwinkeln auf dem Festkörper erfolgt mit bekannten Messflüssigkeiten. Nach DIN 55660-2 werden Wasser, Diiodmethan und Ethylenglykol empfohlen. Die Messflüssigkeiten sollten in möglichst reiner Form bezogen werden; zum Beispiel in der Reinheitsklasse »pro analysi«. Die Stoffwerte der Messflüssigkeiten werden in der Regel nicht überprüft. Sie werden gemäß Datenbanken angenommen; zum Beispiel nach STRÖM. Tabelle A.1 führt die Werte der empfohlenen Messflüssigkeiten auf.

Flüssigkeit	$\sigma_l (\mathbf{N} \cdot \mathbf{m}^{-1})$	$\sigma_l^d \left({ m N} \cdot { m m}^{-1} ight)$	$\sigma_l^p (\mathbf{N} \cdot \mathbf{m}^{-1})$	$\frac{\partial \sigma}{\partial T} (\mathbf{N} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$
Wasser	$72,8 \cdot 10^{-3}$	$21,8 \cdot 10^{-3}$	$51,0\cdot 10^{-3}$	$-0,151 \cdot 10^{-3}$
Ethylenglykol	$47,7 \cdot 10^{-3}$	$30,9 \cdot 10^{-3}$	$16,8 \cdot 10^{-3}$	$-0,089 \cdot 10^{-3}$
Diiodmethan	$50, 8 \cdot 10^{-3}$	$50, 8 \cdot 10^{-3}$	0	$-0,138 \cdot 10^{-3}$

Tabelle A.1 Messflüssigkeiten zur Kontaktwinkelmessung; Werte nach Ström

Die Messflüssigkeiten werden in individuelle Spritzen gefüllt. Die Spritzen müssen vor Gebrauch von Rückständen und Verunreinigungen befreit werden. Mehrfaches Spülen mit Aceton und anschließendes Spülen mit der Messflüssigkeit wird empfohlen.

Zur Kontaktwinkelmessung werden Tropfen der Messflüssigkeiten auf der Festkörperoberfläche abgesetzt. Dazu wird ein geringes Volumen der Messflüssigkeit dosiert. Für Wasser und Ethylenglykol beträgt das empfohlene Volumen $V = 4 \cdot 10^{-9} \,\mathrm{m^3}$ und für Diiodmethan $V = 2 \cdot 10^{-9} \,\mathrm{m^3}$. Der Tropfen bleibt an der Spitze der Spritzennadel hängen und kann durch senkrechtes Verfahren der Festkörperoberfläche "abgeholt" werden. Der Tropfen sollte die Oberfläche in der Form eines symmetrischen Ellipsoidabschnitts benetzen. Hat der Tropfen eine ungleichmäßige Form oder breitet sich die Flüssigkeit kontinuierlich aus, ist die Messung ungültig. Von dem Tropfen sollte kurz nach dem Absetzen ($t \approx 5 \,\mathrm{s}$) ein Bild gespeichert werden. Durch das kleine Volumen führt

Verdampfen von Flüssigkeit schnell zu einer Veränderung der Tropfengeometrie.

Die Messung des Kontaktwinkels erfolgt über die graphischen Werkzeuge der Messgerät-Software. Der Tropfensilhouette wird dabei ein Ellipsenabschnitt eingepasst und mit der, ebenfalls eingepassten, Festkörperoberfläche geschnitten. Die Messgerät-Software ermittelt dabei automatisch den Kontaktwinkel. Sowohl beim Absetzen des Tropfens als auch bei der Messung des Kontaktwinkels können Fehler auftreten. Beide Vorgänge sollten deshalb mehrfach wiederholt werden um das Messergebnis statistisch abzusichern.

Auswerten

Die gemessenen Kontaktwinkel müssen statistisch und entsprechend des Oberflächenverhältnisses ausgewertet werden. Die statistische Auswertung (m) sollte über den gewichteten Mittelwert (»Median«) erfolgen. Dadurch wird die Häufung beim mutmaßlich korrekten Kontaktwinkel stärker berücksichtigt als über den arithmetischen Mittelwert.

Bei rauen Festkörperoberflächen weicht der gemessene Kontaktwinkel θ' vom gesuchten Kontaktwinkel θ ab. Ist das Oberflächenverhältnis *a* bekannt, sollte über Gleichung (A.1) der Kontaktwinkel θ berechnet werden.

A.2.2 Berechnung der Oberflächenenergie

Die Berechnung (v) der Oberflächenenergie kann nach den Ansätzen von OWRK und WU erfolgen. Der Ansatz von OWRK wird für Festkörper mit höherer Oberflächenenergie ($\sigma_s > 20 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$ nach DIN 55660-2) empfohlen. Der Ansatz von WU wird für Festkörper mit geringerer Oberflächenenergie empfohlen. Grundsätzlich sollte jedoch die Oberflächenenergie nach beiden Ansätzen berechnet werden und die Ergebnisse nach ihrer Plausibilität bewertet werden.

Die Software von Kontaktwinkelmessgeräten berechnet in der Regel automatisch die Oberflächenenergie aus den Daten der Kontaktwinkelmessungen. Die Berechnung nach OWRK wird im Folgenden beispielhaft erläutert. Grundlage sind die Gleichungen (A.2) bis (A.6).

Der gemessene Wert des Kontaktwinkels wird über die Adhäsionsarbeit W_a zwischen der Messflüssigkeit und dem Festkörper berücksichtigt. Die Indizes a und b in Gleichung (A.2) und Gleichung (A.3) stehen dabei für die Messflüssigkeiten a und b, zum Beispiel Wasser und Diiodmethan.

Über die Adhäsionsarbeiten der Messflüssigkeiten (A.2) und (A.3) und die dispersen und polaren Anteile ihrer Oberflächenenergie (A.4) lässt sich die Oberflächenenergie des Festkörpers mit (A.5) und (A.6) berechnen. Die Ergebnisse sind der disperse Anteil σ_s^d und der polare Anteil σ_s^p der Oberflächenenergie des Festkörpers. Die Summe $\sigma_s = \sigma_s^d + \sigma_s^p$ ist die gesamte Oberflächenenergie des Festkörpers.

$$(W_a)_a = \sigma_{la} \cdot (1 + \cos \theta_a) \tag{A.2}$$

$$(W_a)_b = \sigma_{lb} \cdot (1 + \cos \theta_b) \tag{A.3}$$

$$D = \begin{vmatrix} \sqrt{\sigma_{la}^d} & \sqrt{\sigma_{la}^p} \\ \sqrt{\sigma_{lb}^d} & \sqrt{\sigma_{lb}^p} \end{vmatrix}$$
(A.4)

$$\boldsymbol{\sigma}_{s}^{d} = \begin{vmatrix} \left(\frac{W_{a}}{2}\right)_{a} & \sqrt{\boldsymbol{\sigma}_{la}^{p}} \\ \left(\frac{W_{a}}{2}\right)_{b} & \sqrt{\boldsymbol{\sigma}_{lb}^{p}} \end{vmatrix}^{2} \cdot D^{-2}$$
(A.5)

$$\boldsymbol{\sigma}_{s}^{p} = \begin{vmatrix} \sqrt{\boldsymbol{\sigma}_{la}^{d}} & \left(\frac{W_{a}}{2}\right)_{a} \\ \sqrt{\boldsymbol{\sigma}_{lb}^{d}} & \left(\frac{W_{a}}{2}\right)_{b} \end{vmatrix}^{2} \cdot D^{-2}$$
(A.6)

Die Gleichungen (A.5) und (A.6) sind die Lösungen eines linearen Gleichungssystems. Damit ergibt sich nur für zwei Messflüssigkeiten eine eindeutige Lösung. Werden drei oder mehr Messflüssigkeiten verwendet, ist das Gleichungssystem überbestimmt (vgl. Gleichungen (3.2) bis (3.5) auf Seite 69).

Das Ergebnis der Berechnung muss hinsichtlich seiner Plausibilität bewertet werden \bigcirc . Insbesondere bei überbestimmtem Gleichungssystem muss mindestens eine Lösung verworfen werden. Bei der Bewertung des Berechnungsverfahren (OWRK oder WU) hilft die Orientierung an Literaturwerten. Bei überbestimmtem Gleichungssystem ist meist eine Lösung negativ und damit physikalisch falsch.

A.3 Oberflächenenergie von Flüssigkeiten

Die Oberflächenenergie von Flüssigkeiten wird mit zwei getrennten Methoden bestimmt. Mit einem Tensiometer wird die Gesamt-Oberflächenenergie gemessen. Mit einer Kontaktwinkelmessung auf einem rein dispersen Festkörper wird der disperse Anteil der Oberflächenenergie gemessen. Aus der Differenz von Gesamt-Oberflächenenergie und dispersem Anteil wird abschließend der polare Anteil berechnet.

A.3.1 Blasendrucktensiometrie

Grundsätzlich ist die Messung der Oberflächenenergie einer Flüssigkeit mit mehreren verschiedenen Verfahren möglich. Gängige Verfahren sind die Blasendrucktensiometrie (m) und die kraftmessende Tensiometrie (Wilhelmy-Platte, Du-Noüy-Ring). In dieser Arbeit wurde die Blasendrucktensiometrie verwendet, weshalb das Vorgehen an dieser Methode beschrieben wird.

Ein Volumen von $V \approx 50 \cdot 10^{-6} \text{ m}^3$ der zu messenden Flüssigkeit wird zunächst in einem Gefäß temperiert. Die Kapillare des Blasendrucktensiometers wird ausreichend tief $(h_t \approx 10...20 \cdot 10^{-3} \text{ m})$ in die Flüssigkeit getaucht. Bei der Messung presst das Blasendrucktensiometer getrocknete Luft durch die Kapillare in die Flüssigkeit. An der Spitze der Kapillare bilden sich Blasen, deren Maximaldruck von der Oberflächenenergie der Flüssigkeit σ_l und dem Kapillarendurchmesser d_{kap} abhängt. Der Maximaldruck ergibt sich zu (A.7).

$$\hat{p} = \frac{4 \cdot \sigma_l}{d_{kap}} + g \cdot \rho \cdot h_t \tag{A.7}$$

Die Dauer bis zum Abreißen der Luftblase wird Blasenlebensdauer t_{Blase} genannt. Durch Einfluss von Viskosität und oberflächenaktiven Bestandteilen der Flüssigkeit hängt die gemessene Oberflächenenergie von der Blasenlebensdauer ab. Bei einer Blasenlebensdauer von $t_{Blase} > 10$ s wird in der Regel ein konstanter Messwert erreicht. Dieser Wert ist die gesuchte Gesamt-Oberflächenenergie der Flüssigkeit. Für die nachfolgende Berechnung $\widehat{(x)}$ wird dieser Wert benötigt.

A.3.2 Kontaktwinkelmessung

Die Kontaktwinkelmessung (v) der zu untersuchenden Flüssigkeit erfolgt auf einem rein dispersen Festkörper, der durch die Flüssigkeit teilweise benetzt wird. Die Flüssigkeit darf den Festkörper nicht vollständig benetzen. Als Festkörper kann in der Regel reines PTFE verwendet werden. Die Oberflächenenergie von PTFE beträgt $\sigma_s^d = 18, 5 \cdot 10^{-3} \,\mathrm{N \cdot m^{-1}}$.

Vor der Kontaktwinkelmessung muss die Festkörperoberfläche gereinigt werden. Da PTFE sehr weich ist, sollte die Oberfläche nicht mit einem Tuch abgewischt werden. Dadurch würden sonst Kratzer entstehen, die die gleichmäßige Benetzung durch die Flüssigkeit stören und damit das Messergebnis verfälschen würden. Empfohlen wird das Abspülen der Oberfläche mit Aceton.

Der PTFE-Festkörper kann sich elektrostatisch aufladen. Dadurch zerspringt ein aufgebrachter Flüssigkeitstropfen. Eine Messung ist kaum möglich. Abhilfe schafft die Entladung des Festkörpers mit einem Ionisierer unmittelbar vor Aufbringen des Tropfens. Von der zu messenden Flüssigkeit sollten Tropfen mit einem Volumen von $V = 3...6 \cdot 10^{-9} \,\mathrm{m}^3$ auf dem PTFE-Festkörper abgesetzt werden. Wie in A.2.1 bereits beschrieben, sollten zur statistischen Absicherung mehrere Kontaktwinkelmessungen je Flüssigkeit durchgeführt werden. Für die Auswertung wir wird der gewichtete Mittelwert empfohlen.

A.3.3 Berechnung der Oberflächenenergie

Der disperse Anteil der Oberflächenenergie kann über den inversen Ansatz nach OWRK oder WU berechnet werden (x). Gleichung (A.8) zeigt das Verfahren nach OWRK, Gleichung (A.9) zeigt das Verfahren nach WU.

Welcher Ansatz anzuwenden ist, muss nach Plausibilität ∞ der Ergebnisse entschieden werden. Mit der Messung bekannter Flüssigkeiten wie Ethylenglykol oder Glycerin kann die Plausibilität der Berechungsansätze überprüft werden.

Der polare Anteil der Oberflächenenergie der Flüssigkeit ergibt sich zu $\sigma_l^p = \sigma_l - \sigma_l^d$.

$$\sigma_l^d = \frac{(1 + \cos\theta)^2 \cdot \sigma_l^2}{4 \cdot \sigma_s^d} \tag{A.8}$$

$$\sigma_l^d = \frac{\sigma_l \cdot \sigma_s^d \cdot (1 + \cos \theta)}{4 \cdot \sigma_s^d - \sigma_l \cdot (1 + \cos \theta)}$$
(A.9)

A.4 Berechnung der Adhäsionsarbeit

Mit den bekannten Werten der Oberflächenenergie von Festkörper und Flüssigkeit kann die Adhäsionsarbeit zwischen beiden Stoffen berechnet werden $\overline{(x)}$. Dazu können wiederum die Ansätze nach OWRK und WU verwendet werden. Nach OWRK berechnet sich die Adhäsionsarbeit gemäß Gleichung (A.10). Nach Wu gilt für die Adhäsionsarbeit Gleichung (A.11).

Bei der Bewertung $\overline{\langle n \rangle}$ ist zu entscheiden, welcher Ansatz das plausiblere Ergebnis liefert. Einen Anhalt für die Plausibilität liefert der Vergleich mit Gleichung (A.2) für teilweise benetzende Flüssigkeiten. Bei vollständig benetztenden Flüssigkeiten muss die Adhäsionsarbeit W_a größer als die Kohäsionsarbeit W_c sein. Es muss also gelten $W_a > 2 \cdot \sigma_l$.

$$W_a = 2 \cdot \left(\sqrt{\sigma_l^d \cdot \sigma_s^d} + \sqrt{\sigma_l^p \cdot \sigma_s^p} \right) \tag{A.10}$$

$$W_a = 2 \cdot \left(\frac{2 \cdot \sigma_s^d \cdot \sigma_l^d}{\sigma_s^d + \sigma_l^d} + \frac{2 \cdot \sigma_s^p \cdot \sigma_l^p}{\sigma_s^p + \sigma_l^p} \right)$$
(A.11)

A.5 Kontaktwinkelmessung mit Schmierstoffen

Die Kontaktwinkelmessung ergibt nur dann ein physikalisch korrektes Ergebnis, wenn der benetzende Tropfen sich im thermodynamischen Gleichgewicht befindet. Für die meisten Schmierstoffe trifft diese Bedingung bei Benetzung von Wellenwerkstoffen nicht zu. Eine Kontaktwinkelmessung, mit dem Ziel die Adhäsionsarbeit "direkt" zu bestimmen, ist deshalb meist nicht möglich. Die Messung des Kontaktwinkels nach einer festgelegten Zeitspanne ist in erster Linie von der Viskosität der Flüssigkeit abhängig und damit ebenso wenig zielführend. Gewissheit über das Benetzungsverhalten von Schmierstoffen bringen deshalb nur Messungen über einen längeren Zeitraum oder die indirekte Messung über die Oberflächenenergie.

Soll die Penetrativität bestimmt werden, wird der Kontaktwinkel benötigt. Für teilweise benetzende Schmierstoffe kann der Kontaktwinkel gemessen werden. Für vollständig benetzende Schmierstoffe muss der Kontaktwinkel zu null, also der Faktor $\cos \theta$ zu eins, angenommen werden.

Anhang B

Messdaten

B.1 Rauheitswerte der Gegenlaufflächen

Kürzel	R_a	R_{7}	R _{max}
$\operatorname{REF} 02$	0,41	2,34	2,69
EGS05	0,30	2,53	3,17
$\mathrm{EGS}06$	0,31	2,55	3,16
$\mathrm{EGS}07$	0,22	1,77	2,09
$\mathrm{EGS}08$	0,28	2,16	$2,\!44$
$\mathrm{EGS}09$	0,32	2,57	3,21
$\mathrm{EGS}11$	0,26	2,22	2,51
$\mathrm{EGS}12$	0,31	2,53	3,11
$\mathrm{EGS}13$	0,28	2,23	$2,\!63$
$\mathrm{EGS}14$	0,30	2,41	3,23
$\mathrm{EGS}17$	0,34	2,38	$2,\!87$
$\mathrm{EGS}18$	0,30	2,32	2,73
$\operatorname{EGS}22$	0,31	2,51	3,13
$\mathrm{EG}01$	0,08	0,67	0,79
$\mathrm{EG}02$	0,87	6,12	$6,\!82$
$\mathrm{EG}04$	0,08	0,66	0,76
$\mathrm{EG}05$	0,76	6,32	8,08
$\mathrm{EG}07$	0,45	3,66	4,58
$\mathrm{EG}10$	0,56	5,13	$5,\!58$
$\mathrm{EG}11$	$0,\!52$	3,93	$4,\!67$

Tabelle B.1 Rauheitswerte der Gegenlaufflächen in 10^{-6} m

B.2 Laufspuren der Gegenlaufflächen

Im Folgenden sind alle Laufspuren der Gegenlaufflächen aus den 1000 h-Versuchen abgebildet.

Bild B.1 Schmierstoff: FVA1, RWDR: FKM DL1, Gegenlauffläche: EGS5

Bild B.2 Schmierstoff: FVA 3, RWDR: FKM DL 2, Gegenlauffläche: EGS 6

DL 3, Gegenlauffläche: EGS 7

Bild B.3 Schmierstoff: PG1, RWDR: FKM Bild B.4 Schmierstoff: PG3, RWDR: FKM DL4, Gegenlauffläche: EGS8

Bild B.5 Schmierstoff: GH 6, RWDR: FKM DL 5, Gegenlauffläche: EGS 9

Bild B.6 Schmierstoff: S 50, RWDR: FKM DL 6, Gegenlauffläche: EGS 11

Bild B.7 Schmierstoff: S 100, RWDR: FKM DL 7, Gegenlauffläche: EGS 12

Bild B.8 Schmierstoff: RM, RWDR: FKM DL 8, Gegenlauffläche: EGS 14

Bild B.9 Schmierstoff: EG, RWDR: FKM Bild B.10 Schmierstoff: PTX, RWDR: DL 9, Gegenlauffläche: EGS 17

FKM DL 10, Gegenlauffläche: EGS 18

Bild B.11 Schmierstoff: FVA1, RWDR: Bild B.12 Schmierstoff: FVA3, RWDR: FKM DL 11, Gegenlauffläche: EGS 6

FKM DL 12, Gegenlauffläche: EGS 5

FKM DL 13, Gegenlauffläche: EGS 8

Bild B.13 Schmierstoff: PG1, RWDR: Bild B.14 Schmierstoff: PG3, RWDR: FKM DL 14, Gegenlauffläche: EGS 7

FKM DL 15, Gegenlauffläche: EGS 18

Bild B.15 Schmierstoff: GH6, RWDR: Bild B.16 Schmierstoff: S 50, RWDR: FKM DL 16, Gegenlauffläche: EGS 12

FKM DL 17, Gegenlauffläche: EGS 11

Bild B.17 Schmierstoff: S100, RWDR: Bild B.18 Schmierstoff: RM, RWDR: FKM DL 18, Gegenlauffläche: EGS 17

Bild B.19 Schmierstoff: EG, RWDR: FKM Bild B.20 Schmierstoff: PTX, RWDR: DL 19, Gegenlauffläche: EGS 14

FKM DL 20, Gegenlauffläche: EGS 9

ACM DLA 1, Gegenlauffläche: EGS 6

Bild B.21 Schmierstoff: FVA3, RWDR: Bild B.22 Schmierstoff: FVA3, RWDR: ACM DLA 2, Gegenlauffläche: EGS 5

ACM DLA 3, Gegenlauffläche: EGS 8

Bild B.23 Schmierstoff: PG1, RWDR: Bild B.24 Schmierstoff: PG1, RWDR: ACM DLA 4, Gegenlauffläche: EGS 7

ACM DLA 5, Gegenlauffläche: EGS 18

Bild B.25 Schmierstoff: S100, RWDR: Bild B.26 Schmierstoff: S100, RWDR: ACM DLA 6, Gegenlauffläche: EGS 12

Bild B.27 Schmierstoff: FVA3, RWDR: Bild B.28 Schmierstoff: FVA3, RWDR: NBR DLN 1, Gegenlauffläche: EGS 11

NBR DLN 2, Gegenlauffläche: EGS 17

DLN 3, Gegenlauffläche: EGS 14

Bild B.29 Schmierstoff: PG1, RWDR: NBR Bild B.30 Schmierstoff: PG1, RWDR: NBR DLN 4, Gegenlauffläche: EGS 9

DLN 5, Gegenlauffläche: EGS 13

Bild B.31 Schmierstoff: S100, RWDR: NBR Bild B.32 Schmierstoff: S100, RWDR: NBR DLN 6, Gegenlauffläche: EGS 22

Lebenslauf

Persönliche Daten

Anschrift	Peter Schuler Uferweg 10 73079 Süßen
Geboren	31.10.1981 in Göppingen
Staatsangeh.	deutsch
Familienstand	verheiratet mit Sarah Ulrike (ϖ 2009)
Kinder	David Friedrich (*2012); Ylvi Ronya (*2013)

Schulbildung

1988 - 1992	J.G. Fischer-Grundschule in Süßen
1992-2001	Rechberg-Gymnasium in Donzdorf

Wehrdienst

07/2001 - 03/2002	Wehrpflichtiger,	2./InstBat210	in Ellwangen
-------------------	------------------	---------------	--------------

Studium

10/2002-08/2008	Universität Stuttgart
	Studiengang: Fahrzeug- und Motorentechnik
	Abschluss: Diplom-Ingenieur
04/2008-10/2008	Fernuniversität Hagen
	Studienfach: Gewerblicher Rechtsschutz
	Abschluss: Patent-Ingenieur

Beruf

seit $09/2008$	Akademischer	Mitarbeiter	am	Institut	für	Maschinenele-
	mente, Univer	sität Stuttga	rt, E	Bereich D	licht	ungstechnik

Liste der bisher erschienenen Berichte aus dem IMA:

Nr.	Verfasser	Titel
1	H.K. Müller	Beitrag zur Berechnung und Konstruktion von Hochdruckdichtungen an schnellaufenden
2	W Passara	wellen Konzentrisch laufande Gewinde Wellen Dichtung im laminaren Bereich
2	K Karow	Konzentrische Donnelgewindewellendichtung im laminaren Bereich
2	K. Kalow	Die Kreiszwlinderscholendichtung: Eine Avieleneltdichtung mit druckehköngiger Sneltweite
3	F.E. DICIL	Die Kreiszynnderschalendichtung. Eine Axiaispandichtung mit druckabhangiger Spanweite
	w. Sommer	Dichungen an Wenrphasensystemen: Berunrungstreie weitendichtungen mit nochviskosen
	TZ TT 1 1	Sperrflussigkeiten
4	K. Heitel	Beitrag zur Berechnung und Konstruktion konzentrisch und exzentrisch betriebener Gewin-
_		dewellendichtungen im laminaren Bereich
5	KH. Hirschmann	Beitrag zur Berechnung der Geometrie von Evolventenverzahnungen
6	H. Däuble	Durchfluß und Druckverlauf im radial durchströmten Dichtspalt bei pulsierendem Druck
7	J. Rybak	Einheitliche Berechnung von Schneidrädern für Außen- und Innenverzahnungen. Beitrag zu Eingriffsstörungen beim Hohlrad-Verzahnen mittels Schneidräder
8	D. Franz	Rechnergestütztes Entwerfen von Varianten auf der Grundlage gesammelter Erfahrungs-
		werte
9	E Lauster	Untersuchungen und Berechnungen zum Wärmehaushalt mechanischer Schaltgetriebe
10		Festschrift zum 70 Geburtstag von Prof. DrIng. K. Talke
11	G Ott	Untersuchungen zum dynamischen Leckage- und Reibverhalten von Radialwellen-
	0.00	dichtringen
12	E Euche	Untersuchung des elestahydrodynamischen Verhaltens von berührungsfreien Hochdruck
12	L. Fuens	dichtungen
13	G Sedlak	Rechnerunterstütztes Aufnehmen und Auswerten spannungsontischer Rilder
14	W Wolf	Programmevetem zur Analyse und Ontimierung von Fahrzeuggetrieben
15	U v Eiff	Finfluß der Verzehnungsgeometrie auf die Zehnfußbeenspruchung innen und außenver
15	П. V. EIII	zahntar Garadstirnrödar
16	N Massmar	Zaliliter Octauslilliader Untersuchung von Hydraulikatengondichtungen aus Polytetraflueräthylen
17	V. Sahada	Entwicklung von Hydraunkstangendiendigen aus Folyten and einer rechnorecest staten
1/	v. Schade	Aussiant and the definition of the second seco
10	A C::1	
18	A. Gunrer	Beitrag zur Optimierung von Antriebssträngen bei Fantzeugen
19	K. NIII	Das Schwingungsverhalten loser Bautelle in Fahrzeuggetrieben
20	M. Kammuller	Zum Abdichtverhalten von Radial-weitendichtringen
21	H. Iruong	Strukturorientiertes Modellieren, Optimieren und Identifizieren von Menrkorpersystemen
22	H. Liu	Rechnergestutzte Bilderfassung, -verarbeitung und -auswertung in der Spannungsoptik
23	W. Haas	Berunrungstreie weitendichtungen für flussigkeitsbespritzte Dichtstellen
24	M. Plank	Das Betriebsverhalten von walzlagern im Drenzanibereich bis 100.000/min bei
25	4 117 10	Kleinstmengenschmierung
25	A. Wolf	Untersuchungen zum Abdichtverhalten von druckbelastbaren Elastomer- und PTFE-
•	D 117 1	Wellendichtungen
26	P. Waldner	Vorgange im Dichtspalt wasserabdichtender Gleitringdichtungen
27	Hirschmann u.a.	Veröffentlichungen aus Anlaß des 75. Geburtstags von Prof. DrIng. Kurt Talke
28	B. Bertsche	Zur Berechnung der Systemzuverlässigkeit von Maschinenbau-Produkten
29	G. Lechner;	Forschungsarbeiten zur Zuverlässigkeit im Maschinenbau
	KH.Hirschmann;	
	B. Bertsche	
30	HJ. Prokop	Zum Abdicht- und Reibungsverhalten von Hydraulikstangendichtungen aus Polytetrafluor-
		äthylen
31	K. Kleinbach	Qualitätsbeurteilung von Kegelradsätzen durch integrierte Prüfung von Tragbild,
		Einflankenwälzabweichung und Spielverlauf
32	E. Zürn	Beitrag zur Erhöhung der Meßgenauigkeit und -geschwindigkeit eines Mehrkoordinaten-
		tasters
33	F. Jauch	Optimierung des Antriebsstranges von Kraftfahrzeugen durch Fahrsimulation
34	J. Grabscheid	Entwicklung einer Kegelrad-Laufprüfmaschine mit thermografischer Tragbilderfassung
35	A. Hölderlin	Verknüpfung von rechnerunterstützter Konstruktion und Koordinatenmeßtechnik
36	J. Kurfess	Abdichten von Flüssigkeiten mit Magnetflüssigkeitsdichtungen
37	G. Borenius	Zur rechnerischen Schädigungsakkumulation in der Erprobung von Kraftfahrzeugteilen bei
		stochastischer Belastung mit variabler Mittellast
38	E. Fritz	Abdichtung von Maschinenspindeln
39	E. Fritz; W. Haas;	Berührungsfreie Spindelabdichtungen im Werkzeugmaschinenbau. Konstruktionskatalog
	H.K. Müller	· · · · · ·

Nr.	Verfasser	Titel
40	B. Jenisch	Abdichten mit Radial-Wellendichtringen aus Elastomer und Polytetrafluorethylen
41	G. Weidner	Klappern und Rasseln von Fahrzeuggetrieben
42	A. Herzog	Erweiterung des Datenmodells eines 2D CAD-Systems zur Programmierung von Mehrko-
42	тр	ordinatenmeßgeräten
43	I. KOSEF D. Wössehle	Entlastata Wallandiahtringa
44	7 Wu	Undstete wenendtentringe Vergleich und Entwicklung von Methoden zur Zuwerlössigkeitsenalvse von Systemen
46	W Richter	Nichtwiederholbarer Schlag von Wälzlagereinheiten für Festnlattenlaufwerke
47	R Durst	Rechnerunterstützte Nutprofilentwicklung und clusteranalytische Methoden zur Ontimierung
• /	R. Dubt	von Gewindewerkzeugen
48	G.S. Müller	Das Abdichtverhalten von Gleitringdichtungen aus Siliziumkarbid
49	WE. Krieg	Untersuchungen an Gehäuseabdichtungen von hochbelasteten Getrieben
50	J. Grill	Zur Krümmungstheorie von Hüllflächen und ihrer Anwendung bei Werkzeugen und
		Verzahnungen
51	M. Jäckle	Entlüftung von Getrieben
52	M. Köchling	Beitrag zur Auslegung von geradverzahnten Stirnrädern mit beliebiger Flankenform
53	M. Hildebrandt	Schadensfrüherkennung an Wälzkontakten mit Körperschall-Referenzsignalen
54	H. Kaiser	Konstruieren im Verbund von Expertensystem, CAD-System, Datenbank und Wiederholteil-
~ ~		suchsystem
55	N. Stanger	Berunrungstrei abdichten bei kleinem Bauraum
50 57	K. Lenk	Zuverlassigkensanalyse von komplexen Systemen am Beispiel PK w-Automatikgetriebe
58	G Neumann	Thermografische Tragbilderfassung an rotierenden Zahnrädern
59	G Wüstenhagen	Beitrag zur Ontimierung des Entlasteten Wellendichtrings
60	P. Brodbeck	Experimentelle und theoretische Untersuchungen zur Bauteilzuverlässigkeit und zur System-
		berechnung nach dem Booleschen Modell
61	Ch. Hoffmann	Untersuchungen an PTFE-Wellendichtungen
62	V. Hettich	Identifikation und Modellierung des Materialverhaltens dynamisch beanspruchter Flächen-
		dichtungen
63	K. Riedl	Pulsationsoptimierte Außenzahnradpumpen mit ungleichförmig übersetzenden Radpaaren
64	D. Schwuchow	Sonderverzahnungen für Zahnradpumpen mit minimaler Volumenstrompulsation
65	T. Spörl	Modulares Fahrsimulationsprogramm für beliebig aufgebaute Fahrzeugtriebstränge und An-
~	V 71	wendung auf Hybridantriebe
66	K. Zhao	Entwicklung eines raumlichen Toleranzmodells zur Optimierung der Produktqualität
68	T. Wagner	Entwicklung oines Qualitätainformationssystems für die Konstruktion
69	H Zelßmann	Ontimierung des Betriebsverhaltens von Getriebeentlüftungen
70	E Bock	Schwimmende Wellendichtringe
71	S. Ring	Anwendung der Verzahnungstheorie auf die Modellierung und Simulation des Werkzeug-
	0	schleifens
72	M. Klöpfer	Dynamisch beanspruchte Dichtverbindungen von Getriebegehäusen
73	CH. Lang	Losteilgeräusche von Fahrzeuggetrieben
74	W. Haas	Berührungsfreies Abdichten im Maschinenbau unter besonderer Berücksichtigung der Fang-
70	D C 1 1	labyrinthe
/5 76	P. Schiberna W. Elsor	Beitrag zur Optimiorung von Wälzgetrieben
70	P Mary	Durchgöngige hauteilübergreifende Auslegung von Maschinenelementen mit unscharfen
,,	I. Maix	Vorgahen
78	I Konsch	Unterstützung der Konstruktionstätigkeiten mit einem Aktiven Semantischen Netz
79	J. Rach	Beitrag zur Minimierung von Klapper- und Rasselgeräuschen von Fahrzeuggetrieben
80	U. Häussler	Generalisierte Berechnung räumlicher Verzahnungen und ihre Anwendung auf
		Wälzfräserherstellung und Wälzfräsen
81	M. Hüsges	Steigerung der Tolerierungsfähigkeit unter fertigungstechnischen Gesichtspunkten
82	X. Nastos	Ein räumliches Toleranzbewertungssystem für die Konstruktion
83	A. Seifried	Eine neue Methode zur Berechnung von Rollenlagern über lagerinterne Kontakt-
0.4	CL D:	Beanspruchungen
84 85	Cn. Dorr	Ermittung von Getriebelastkollektiven mittels Winkelbeschleunigungen
65 86	A. Vell	Rückenstrukturierte Hydraulikstangendichtungen aus Polyurethan
80 87	U Braup	Autorish ukun etter riyuraunkstangenutentungen aus Polyurenian Ontimierung von Außenzahnradnumnen mit nulsationsarmer Sonderverzahnung
88	M Lambert	Abdichtung von Werkzeugmaschinen-Flachführungen
89	R. Kubalczyk	Gehäusegestaltung von Fahrzeuggetrieben im Abdichtbereich

Nr.	Verfasser	Titel
	Moharl	
90	M. Oberle	Spielbeeinilussende Loleranzparameter bei Planetengetrieben
91	S. N. Dogan	Zur Minimierung der Losteilgeräusche von Fahrzeuggetrieben
92	M. Bast	Beitrag zur werkstuckorientierten Konstruktion von Zerspanwerkzeugen
93	M. Ebennoch	entwicklungsprozeß
94	A. Fritz	Berechnung und Monte-Carlo Simulation der Zuverlässigkeit und Verfügbarkeit technischer Systeme
95	O. Schrems	Die Fertigung als Versuchsfeld für die qualitätsgerechte Produktoptimierung
96	M. Jäckle	Untersuchungen zur elastischen Verformung von Fahrzeuggetrieben
97	H. Haiser	PTFE-Compounds im dynamischen Dichtkontakt bei druckbelastbaren Radial- Wellendichtungen
98	M. Rettenmaier	Entwicklung eines Modellierungs-Hilfssystems für Rapid Prototyping gerechte Bauteile
99	M. Przybilla	Methodisches Konstruieren von Leichtbauelementen für hochdynamische Werkzeug- maschinen
100	M. Olbrich	Werkstoffmodelle zur Finiten-Elemente-Analyse von PTFE-Wellendichtungen
101	M. Kunz	Ermittlung des Einflusses fahrzeug-, fahrer- und verkehrsspezifischer Parameter auf die
		Getriebelastkollektive mittels Fahrsimulation
102	H. Ruppert	CAD-integrierte Zuverlässigkeitsanalyse und -optimierung
103	S. Kilian	Entwicklung hochdynamisch beanspruchter Flächendichtverbindungen
104	A. Flaig	Untersuchung von umweltschonenden Antriebskonzepten für Kraftfahrzeuge mittels
	.	Simulation
105	B. Luo	Uberprüfung und Weiterentwicklung der Zuverlässigkeitsmodelle im Maschinenbau mittels
106	I. Cohünnonhouor	Mono-Bauteil-Systemen
100	L. Schuppenhauer	keit von Systemen
107	J. Ryborz	Klapper - und Rasselgeräuschverhalten von Pkw- und Nkw- Getrieben
108	M. Würthner	Rotierende Wellen gegen Kühlschmierstoff und Partikel berührungsfrei abdichten
109	C. Gitt	Analyse und Synthese leistungsverzweigter Stufenlosgetriebe
110	A. Krolo	Planung von Zuverlässigkeitstests mit weitreichender Berücksichtigung von Vorkenntnissen
111	G. Schöllhammer	Entwicklung und Untersuchung inverser Wellendichtsysteme
112	K. Fronius	Genausegestaltung im Abdichtbereich unter pulsierendem Innendruck
115	A. Weidler	Ermittiung von Kattungstaktoren für die Getriebeerprobung
114	B. Stiegler	Berunrungstreie Dichtsysteme für Anwendungen im Fahrzeug- und Maschlienbau
115	M Janssen	Abstraifer für Werkzeugmaschinenführungen
117	S Bubl	Wechselbeziehungen im Dichtsystem von Radial Wellendichtring, Gegenlauffläche und
117	5. Dull	Fluid
118	P. Pozsgai	Realitätsnahe Modellierung und Analyse der operativen Zuverlässigkeitskennwerte technischer Systeme
119	H. Li	Untersuchungen zum realen Bewegungsverhalten von Losteilen in Fahrzeuggetrieben
120	B. Otte	Strukturierung und Bewertung von Eingangsdaten für Zuverlässigkeitsanalysen
121	P. Jäger	Zuverlässigkeitsbewertung mechatronischer Systeme in frühen Entwicklungsphasen
122	T. Hitziger	Übertragbarkeit von Vorkenntnissen bei der Zuverlässigkeitstestplanung
123	M. Delonga	Zuverlässigkeitsmanagementsystem auf Basis von Felddaten
124	M. Maisch	Zuverlässigkeitsorientiertes Erprobungskonzept für Nutzfahrzeuggetriebe unter Berücksich-
125	LOw	tigung von Betriebsdaten
125	J. UISO	Berunrungstreies Abdichten schneiltautender Spindeln gegen feine Stäube
120	r. Bauer	r i r E-ivianscheutendichlungen mit Spirairine - Analyse, Funktionsweise und Erweiterung der Einsatzgrenzen
127	M Stockmeier	Entwicklung von Klapper- und rasselgeräuschfreien Fahrzeuggetrieben
128	M Trost	Gesamtheitliche Anlagenmodellierung und -analyse auf Basis stochastischer Netzverfahren
120	P Lambeck	Unterstützung der Kreativität von verteilten Konstrukteuren mit einem Aktiven
120	V D' 1 1	Semantischen Netz
130	K. Pickard	Erweiterte qualitative Zuverlässigkeitsanalyse mit Ausfallprognose von Systemen
131	W. Novak	Geräusch- und Wirkungsgradoptimierung bei Fahrzeuggetrieben durch Festradentkopplung
132	M. Henzler	Radialdichtungen unter hoher Druckbelastung in Drehübertragern von Werkzeugmaschinen
133	B. Rzepka	Konzeption eines aktiven semantischen Zuverlässigkeitsinformationssystems
134	C.G. Pflüger	Abdıchtung schnelllaufender Hochdruck-Drehübertrager mittels Rechteckring und hocheffi- zient strukturierter Gleitfläche
135	G. Baitinger	Multiskalenansatz mit Mikrostrukturanalyse zur Drallbeurteilung von Dichtungsgegenlauf- flächen

Nr.	Verfasser	Titel
136	J. Gäng	Berücksichtigung von Wechselwirkungen bei Zuverlässigkeitsanalysen
137	Ch. Maisch	Berücksichtigung der Ölalterung bei der Lebensdauer- und Zuverlässigkeitsprognose von Getrieben
138	D. Kirschmann	Ermittlung erweiterter Zuverlässigkeitsziele in der Produktentwicklung
139	D. Weber	Numerische Verschleißsimulation auf Basis tribologischer Untersuchungen am Beispiel von PTFE-Manschettendichtungen
140	T. Leopold	Ganzheitliche Datenerfassung für verbesserte Zuverlässigkeitsanalysen
141	St. Jung	Beitrag zum Einfluss der Oberflächencharakteristik von Gegenlaufflächen auf das tribologische System Radial-Wellendichtung
142	T. Prill	Beitrag zur Gestaltung von Leichtbau-Getriebegehäusen und deren Abdichtung
143	D. Hofmann	Verknüpfungsmodell zuverlässigkeitsrelevanter Informationen in der Produktentwicklung mechatronischer Systeme
144	M. Wacker	Einfluss von Drehungleichförmigkeiten auf die Zahnradlebensdauer in Fahrzeuggetrieben
145	B. Jakobi	Dichtungsgeräusche am Beispiel von Pkw-Lenkungen – Analyse und Abhilfemaßnahmen
146	S. Kiefer	Bewegungsverhalten von singulären Zahnradstufen mit schaltbaren Koppelungseinrichtun- gen
147	P. Fietkau	Transiente Kontaktberechnung bei Fahrzeuggetrieben
148	B. Klein	Numerische Analyse von gemischten Ausfallverteilungen in der Zuverlässigkeitstechnik
149	M. Klaiber	Betriebs- und Benetzungseigenschaften im Dichtsystem Radial-Wellendichtung am Beispiel von additivierten synthetischen Schmierölen
150	A. Baumann	Rasselgeräuschminimierung von Fahrzeuggetrieben durch Getriebeöle
151	M. Kopp	Modularisierung und Synthese von Zuverlässigkeitsmethoden
152	M. Narten	Abdichtung von fließfettgeschmierten Getrieben mit Radialwellendichtungen – Reibungs- minderung durch Makrostsrukturierung der Dichtungsgegenlauffläche