Determination of parameter values using measurement data

• $Y_{0\%}$ and $Y_{100\%}$:

The parameters $Y_{0\%}$ and $Y_{100\%}$, describing the glucose-biomass yield at 0% and 100% aerobiosis respectively, can be calculated from known glucose input and resulting steady state biomass for the anaerobic and aerobic case:

$$\begin{split} Y_{0\%} &= \frac{D}{v_{\rm Glc}(0\%)} \approx \frac{c_{\rm x}(0\%)}{c_{\rm in,Glc}} \\ Y_{100\%} &= \frac{D}{v_{\rm Glc}(100\%)} \approx \frac{c_{\rm x}(100\%)}{c_{\rm in,Glc}} \end{split}$$

These values equal to $Y_{0\%} = 0.02 \,\mathrm{g_{DCW}} \cdot \mathrm{mmol_{Glc}^{-1}}$ and $Y_{100\%} = 0.07 \,\mathrm{g_{DCW}} \cdot \mathrm{mmol_{Glc}^{-1}}$

X_u:

The parameter X_{μ} describing the proportion of electron pairs for forming biomass can be calculated from the state equation for $c_{\rm e_2H_2}$ using steady state measurement data and $v_{\rm Oxi}=v_{\rm Dh}$. Here we present the solution for the anaerobic and aerobic case only: anaerobic:

$$\begin{split} 0 &= 12 \cdot v_{\rm Glc}(0\%) - X_{\mu} \cdot \mu - v_{\rm Ferm}(0\%) \\ X_{\mu} &= \frac{12 \cdot v_{\rm Glc}(0\%) - v_{\rm Ferm}(0\%)}{D} \\ &= \frac{12}{Y_{0\%}} - \frac{v_{\rm Ferm}(0\%)}{D} \end{split}$$

aerobic:

$$0 = 12 \cdot v_{\text{Glc}}(100\%) - X_{\mu} \cdot \mu - v_{\text{Oxi}}(100\%)$$

$$X_{\mu} = \frac{12 \cdot v_{\text{Glc}}(100\%) - v_{\text{Oxi}}(100\%)}{D}$$

$$= \frac{12}{Y_{100\%}} - \frac{v_{\text{Oxi}}(100\%)}{D}$$

The calculated values were used for defining the lower and upper parameter bound for parameter identification. They result in $88.8 \, \text{mmol}_{e_2H_2} \cdot g_{DCW}^{-1}$ and $112.8 \, \text{mmol}_{e_2H_2} \cdot g_{DCW}^{-1}$, respectively.

• $v_{\text{in,O}_2,100\%}$:

The parameter $v_{\rm in,O_2,100\%}$ can be calculated using steady state data of biomass and oxygen uptake rate at 100% aerobiosis:

$$v_{\rm in,O_2,100\%} = 0.5 \cdot v_{\rm Oxi}(100\%) \cdot c_{\rm x}(100\%)$$

The value is different for the two experimental conditions resulting in values of $18.28\,\mathrm{mM_{O_2}\cdot h^{-1}}$ for "ExpA" and $10.84\,\mathrm{mM_{O_2}\cdot h^{-1}}$ for "ExpB", respectively.

\bullet $p_{\rm Glc}$

This parameter can be calculated from the oxygen and glucose uptake. Indeed, in that way this parameter evaluated at 100% aerobiosis ($\lambda_{\rm Y}=1$) is related to $v_{\rm in,O_2,100\%}$:

$$\begin{split} p_{\rm Glc} &= \frac{v_{\rm Oxi}(100\%)}{v_{\rm Glc}(100\%)} = \frac{v_{\rm Oxi}(100\%) \cdot c_{\rm x}(100\%)}{c_{\rm in,Glc} \cdot D} \\ &= 2 \cdot \frac{v_{\rm in,O_2,100\%}}{c_{\rm in,Glc} \cdot D}, \end{split}$$

resulting in a value of 5.42.